1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/trace_events.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 /* 72 * In order to export the rcu_state name to the tracing tools, it 73 * needs to be added in the __tracepoint_string section. 74 * This requires defining a separate variable tp_<sname>_varname 75 * that points to the string being used, and this will allow 76 * the tracing userspace tools to be able to decipher the string 77 * address to the matching string. 78 */ 79 #ifdef CONFIG_TRACING 80 # define DEFINE_RCU_TPS(sname) \ 81 static char sname##_varname[] = #sname; \ 82 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 83 # define RCU_STATE_NAME(sname) sname##_varname 84 #else 85 # define DEFINE_RCU_TPS(sname) 86 # define RCU_STATE_NAME(sname) __stringify(sname) 87 #endif 88 89 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 90 DEFINE_RCU_TPS(sname) \ 91 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 92 struct rcu_state sname##_state = { \ 93 .level = { &sname##_state.node[0] }, \ 94 .rda = &sname##_data, \ 95 .call = cr, \ 96 .gp_state = RCU_GP_IDLE, \ 97 .gpnum = 0UL - 300UL, \ 98 .completed = 0UL - 300UL, \ 99 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 100 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 101 .orphan_donetail = &sname##_state.orphan_donelist, \ 102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 103 .name = RCU_STATE_NAME(sname), \ 104 .abbr = sabbr, \ 105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 107 } 108 109 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 110 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 111 112 static struct rcu_state *const rcu_state_p; 113 LIST_HEAD(rcu_struct_flavors); 114 115 /* Dump rcu_node combining tree at boot to verify correct setup. */ 116 static bool dump_tree; 117 module_param(dump_tree, bool, 0444); 118 /* Control rcu_node-tree auto-balancing at boot time. */ 119 static bool rcu_fanout_exact; 120 module_param(rcu_fanout_exact, bool, 0444); 121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 122 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 123 module_param(rcu_fanout_leaf, int, 0444); 124 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 125 /* Number of rcu_nodes at specified level. */ 126 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 128 129 /* 130 * The rcu_scheduler_active variable transitions from zero to one just 131 * before the first task is spawned. So when this variable is zero, RCU 132 * can assume that there is but one task, allowing RCU to (for example) 133 * optimize synchronize_sched() to a simple barrier(). When this variable 134 * is one, RCU must actually do all the hard work required to detect real 135 * grace periods. This variable is also used to suppress boot-time false 136 * positives from lockdep-RCU error checking. 137 */ 138 int rcu_scheduler_active __read_mostly; 139 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 140 141 /* 142 * The rcu_scheduler_fully_active variable transitions from zero to one 143 * during the early_initcall() processing, which is after the scheduler 144 * is capable of creating new tasks. So RCU processing (for example, 145 * creating tasks for RCU priority boosting) must be delayed until after 146 * rcu_scheduler_fully_active transitions from zero to one. We also 147 * currently delay invocation of any RCU callbacks until after this point. 148 * 149 * It might later prove better for people registering RCU callbacks during 150 * early boot to take responsibility for these callbacks, but one step at 151 * a time. 152 */ 153 static int rcu_scheduler_fully_active __read_mostly; 154 155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 158 static void invoke_rcu_core(void); 159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 160 static void rcu_report_exp_rdp(struct rcu_state *rsp, 161 struct rcu_data *rdp, bool wake); 162 163 /* rcuc/rcub kthread realtime priority */ 164 #ifdef CONFIG_RCU_KTHREAD_PRIO 165 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 166 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */ 167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 168 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */ 169 module_param(kthread_prio, int, 0644); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT 174 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY; 175 module_param(gp_preinit_delay, int, 0644); 176 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 177 static const int gp_preinit_delay; 178 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */ 179 180 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT 181 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY; 182 module_param(gp_init_delay, int, 0644); 183 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 184 static const int gp_init_delay; 185 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */ 186 187 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP 188 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY; 189 module_param(gp_cleanup_delay, int, 0644); 190 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 191 static const int gp_cleanup_delay; 192 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */ 193 194 /* 195 * Number of grace periods between delays, normalized by the duration of 196 * the delay. The longer the the delay, the more the grace periods between 197 * each delay. The reason for this normalization is that it means that, 198 * for non-zero delays, the overall slowdown of grace periods is constant 199 * regardless of the duration of the delay. This arrangement balances 200 * the need for long delays to increase some race probabilities with the 201 * need for fast grace periods to increase other race probabilities. 202 */ 203 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 204 205 /* 206 * Track the rcutorture test sequence number and the update version 207 * number within a given test. The rcutorture_testseq is incremented 208 * on every rcutorture module load and unload, so has an odd value 209 * when a test is running. The rcutorture_vernum is set to zero 210 * when rcutorture starts and is incremented on each rcutorture update. 211 * These variables enable correlating rcutorture output with the 212 * RCU tracing information. 213 */ 214 unsigned long rcutorture_testseq; 215 unsigned long rcutorture_vernum; 216 217 /* 218 * Compute the mask of online CPUs for the specified rcu_node structure. 219 * This will not be stable unless the rcu_node structure's ->lock is 220 * held, but the bit corresponding to the current CPU will be stable 221 * in most contexts. 222 */ 223 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 224 { 225 return READ_ONCE(rnp->qsmaskinitnext); 226 } 227 228 /* 229 * Return true if an RCU grace period is in progress. The READ_ONCE()s 230 * permit this function to be invoked without holding the root rcu_node 231 * structure's ->lock, but of course results can be subject to change. 232 */ 233 static int rcu_gp_in_progress(struct rcu_state *rsp) 234 { 235 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 236 } 237 238 /* 239 * Note a quiescent state. Because we do not need to know 240 * how many quiescent states passed, just if there was at least 241 * one since the start of the grace period, this just sets a flag. 242 * The caller must have disabled preemption. 243 */ 244 void rcu_sched_qs(void) 245 { 246 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 247 return; 248 trace_rcu_grace_period(TPS("rcu_sched"), 249 __this_cpu_read(rcu_sched_data.gpnum), 250 TPS("cpuqs")); 251 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 252 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 253 return; 254 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 255 rcu_report_exp_rdp(&rcu_sched_state, 256 this_cpu_ptr(&rcu_sched_data), true); 257 } 258 259 void rcu_bh_qs(void) 260 { 261 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 262 trace_rcu_grace_period(TPS("rcu_bh"), 263 __this_cpu_read(rcu_bh_data.gpnum), 264 TPS("cpuqs")); 265 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 266 } 267 } 268 269 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 270 271 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 272 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 273 .dynticks = ATOMIC_INIT(1), 274 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 275 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 276 .dynticks_idle = ATOMIC_INIT(1), 277 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 278 }; 279 280 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 281 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 282 283 /* 284 * Let the RCU core know that this CPU has gone through the scheduler, 285 * which is a quiescent state. This is called when the need for a 286 * quiescent state is urgent, so we burn an atomic operation and full 287 * memory barriers to let the RCU core know about it, regardless of what 288 * this CPU might (or might not) do in the near future. 289 * 290 * We inform the RCU core by emulating a zero-duration dyntick-idle 291 * period, which we in turn do by incrementing the ->dynticks counter 292 * by two. 293 * 294 * The caller must have disabled interrupts. 295 */ 296 static void rcu_momentary_dyntick_idle(void) 297 { 298 struct rcu_data *rdp; 299 struct rcu_dynticks *rdtp; 300 int resched_mask; 301 struct rcu_state *rsp; 302 303 /* 304 * Yes, we can lose flag-setting operations. This is OK, because 305 * the flag will be set again after some delay. 306 */ 307 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 308 raw_cpu_write(rcu_sched_qs_mask, 0); 309 310 /* Find the flavor that needs a quiescent state. */ 311 for_each_rcu_flavor(rsp) { 312 rdp = raw_cpu_ptr(rsp->rda); 313 if (!(resched_mask & rsp->flavor_mask)) 314 continue; 315 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 316 if (READ_ONCE(rdp->mynode->completed) != 317 READ_ONCE(rdp->cond_resched_completed)) 318 continue; 319 320 /* 321 * Pretend to be momentarily idle for the quiescent state. 322 * This allows the grace-period kthread to record the 323 * quiescent state, with no need for this CPU to do anything 324 * further. 325 */ 326 rdtp = this_cpu_ptr(&rcu_dynticks); 327 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 328 atomic_add(2, &rdtp->dynticks); /* QS. */ 329 smp_mb__after_atomic(); /* Later stuff after QS. */ 330 break; 331 } 332 } 333 334 /* 335 * Note a context switch. This is a quiescent state for RCU-sched, 336 * and requires special handling for preemptible RCU. 337 * The caller must have disabled interrupts. 338 */ 339 void rcu_note_context_switch(void) 340 { 341 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 342 trace_rcu_utilization(TPS("Start context switch")); 343 rcu_sched_qs(); 344 rcu_preempt_note_context_switch(); 345 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 346 rcu_momentary_dyntick_idle(); 347 trace_rcu_utilization(TPS("End context switch")); 348 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 349 } 350 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 351 352 /* 353 * Register a quiescent state for all RCU flavors. If there is an 354 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 355 * dyntick-idle quiescent state visible to other CPUs (but only for those 356 * RCU flavors in desperate need of a quiescent state, which will normally 357 * be none of them). Either way, do a lightweight quiescent state for 358 * all RCU flavors. 359 * 360 * The barrier() calls are redundant in the common case when this is 361 * called externally, but just in case this is called from within this 362 * file. 363 * 364 */ 365 void rcu_all_qs(void) 366 { 367 unsigned long flags; 368 369 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 370 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) { 371 local_irq_save(flags); 372 rcu_momentary_dyntick_idle(); 373 local_irq_restore(flags); 374 } 375 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) { 376 /* 377 * Yes, we just checked a per-CPU variable with preemption 378 * enabled, so we might be migrated to some other CPU at 379 * this point. That is OK because in that case, the 380 * migration will supply the needed quiescent state. 381 * We might end up needlessly disabling preemption and 382 * invoking rcu_sched_qs() on the destination CPU, but 383 * the probability and cost are both quite low, so this 384 * should not be a problem in practice. 385 */ 386 preempt_disable(); 387 rcu_sched_qs(); 388 preempt_enable(); 389 } 390 this_cpu_inc(rcu_qs_ctr); 391 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 392 } 393 EXPORT_SYMBOL_GPL(rcu_all_qs); 394 395 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 396 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 397 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 398 399 module_param(blimit, long, 0444); 400 module_param(qhimark, long, 0444); 401 module_param(qlowmark, long, 0444); 402 403 static ulong jiffies_till_first_fqs = ULONG_MAX; 404 static ulong jiffies_till_next_fqs = ULONG_MAX; 405 static bool rcu_kick_kthreads; 406 407 module_param(jiffies_till_first_fqs, ulong, 0644); 408 module_param(jiffies_till_next_fqs, ulong, 0644); 409 module_param(rcu_kick_kthreads, bool, 0644); 410 411 /* 412 * How long the grace period must be before we start recruiting 413 * quiescent-state help from rcu_note_context_switch(). 414 */ 415 static ulong jiffies_till_sched_qs = HZ / 20; 416 module_param(jiffies_till_sched_qs, ulong, 0644); 417 418 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 419 struct rcu_data *rdp); 420 static void force_qs_rnp(struct rcu_state *rsp, 421 int (*f)(struct rcu_data *rsp, bool *isidle, 422 unsigned long *maxj), 423 bool *isidle, unsigned long *maxj); 424 static void force_quiescent_state(struct rcu_state *rsp); 425 static int rcu_pending(void); 426 427 /* 428 * Return the number of RCU batches started thus far for debug & stats. 429 */ 430 unsigned long rcu_batches_started(void) 431 { 432 return rcu_state_p->gpnum; 433 } 434 EXPORT_SYMBOL_GPL(rcu_batches_started); 435 436 /* 437 * Return the number of RCU-sched batches started thus far for debug & stats. 438 */ 439 unsigned long rcu_batches_started_sched(void) 440 { 441 return rcu_sched_state.gpnum; 442 } 443 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 444 445 /* 446 * Return the number of RCU BH batches started thus far for debug & stats. 447 */ 448 unsigned long rcu_batches_started_bh(void) 449 { 450 return rcu_bh_state.gpnum; 451 } 452 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 453 454 /* 455 * Return the number of RCU batches completed thus far for debug & stats. 456 */ 457 unsigned long rcu_batches_completed(void) 458 { 459 return rcu_state_p->completed; 460 } 461 EXPORT_SYMBOL_GPL(rcu_batches_completed); 462 463 /* 464 * Return the number of RCU-sched batches completed thus far for debug & stats. 465 */ 466 unsigned long rcu_batches_completed_sched(void) 467 { 468 return rcu_sched_state.completed; 469 } 470 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 471 472 /* 473 * Return the number of RCU BH batches completed thus far for debug & stats. 474 */ 475 unsigned long rcu_batches_completed_bh(void) 476 { 477 return rcu_bh_state.completed; 478 } 479 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 480 481 /* 482 * Return the number of RCU expedited batches completed thus far for 483 * debug & stats. Odd numbers mean that a batch is in progress, even 484 * numbers mean idle. The value returned will thus be roughly double 485 * the cumulative batches since boot. 486 */ 487 unsigned long rcu_exp_batches_completed(void) 488 { 489 return rcu_state_p->expedited_sequence; 490 } 491 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 492 493 /* 494 * Return the number of RCU-sched expedited batches completed thus far 495 * for debug & stats. Similar to rcu_exp_batches_completed(). 496 */ 497 unsigned long rcu_exp_batches_completed_sched(void) 498 { 499 return rcu_sched_state.expedited_sequence; 500 } 501 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 502 503 /* 504 * Force a quiescent state. 505 */ 506 void rcu_force_quiescent_state(void) 507 { 508 force_quiescent_state(rcu_state_p); 509 } 510 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 511 512 /* 513 * Force a quiescent state for RCU BH. 514 */ 515 void rcu_bh_force_quiescent_state(void) 516 { 517 force_quiescent_state(&rcu_bh_state); 518 } 519 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 520 521 /* 522 * Force a quiescent state for RCU-sched. 523 */ 524 void rcu_sched_force_quiescent_state(void) 525 { 526 force_quiescent_state(&rcu_sched_state); 527 } 528 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 529 530 /* 531 * Show the state of the grace-period kthreads. 532 */ 533 void show_rcu_gp_kthreads(void) 534 { 535 struct rcu_state *rsp; 536 537 for_each_rcu_flavor(rsp) { 538 pr_info("%s: wait state: %d ->state: %#lx\n", 539 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 540 /* sched_show_task(rsp->gp_kthread); */ 541 } 542 } 543 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 544 545 /* 546 * Record the number of times rcutorture tests have been initiated and 547 * terminated. This information allows the debugfs tracing stats to be 548 * correlated to the rcutorture messages, even when the rcutorture module 549 * is being repeatedly loaded and unloaded. In other words, we cannot 550 * store this state in rcutorture itself. 551 */ 552 void rcutorture_record_test_transition(void) 553 { 554 rcutorture_testseq++; 555 rcutorture_vernum = 0; 556 } 557 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 558 559 /* 560 * Send along grace-period-related data for rcutorture diagnostics. 561 */ 562 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 563 unsigned long *gpnum, unsigned long *completed) 564 { 565 struct rcu_state *rsp = NULL; 566 567 switch (test_type) { 568 case RCU_FLAVOR: 569 rsp = rcu_state_p; 570 break; 571 case RCU_BH_FLAVOR: 572 rsp = &rcu_bh_state; 573 break; 574 case RCU_SCHED_FLAVOR: 575 rsp = &rcu_sched_state; 576 break; 577 default: 578 break; 579 } 580 if (rsp != NULL) { 581 *flags = READ_ONCE(rsp->gp_flags); 582 *gpnum = READ_ONCE(rsp->gpnum); 583 *completed = READ_ONCE(rsp->completed); 584 return; 585 } 586 *flags = 0; 587 *gpnum = 0; 588 *completed = 0; 589 } 590 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 591 592 /* 593 * Record the number of writer passes through the current rcutorture test. 594 * This is also used to correlate debugfs tracing stats with the rcutorture 595 * messages. 596 */ 597 void rcutorture_record_progress(unsigned long vernum) 598 { 599 rcutorture_vernum++; 600 } 601 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 602 603 /* 604 * Does the CPU have callbacks ready to be invoked? 605 */ 606 static int 607 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 608 { 609 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 610 rdp->nxttail[RCU_DONE_TAIL] != NULL; 611 } 612 613 /* 614 * Return the root node of the specified rcu_state structure. 615 */ 616 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 617 { 618 return &rsp->node[0]; 619 } 620 621 /* 622 * Is there any need for future grace periods? 623 * Interrupts must be disabled. If the caller does not hold the root 624 * rnp_node structure's ->lock, the results are advisory only. 625 */ 626 static int rcu_future_needs_gp(struct rcu_state *rsp) 627 { 628 struct rcu_node *rnp = rcu_get_root(rsp); 629 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 630 int *fp = &rnp->need_future_gp[idx]; 631 632 return READ_ONCE(*fp); 633 } 634 635 /* 636 * Does the current CPU require a not-yet-started grace period? 637 * The caller must have disabled interrupts to prevent races with 638 * normal callback registry. 639 */ 640 static bool 641 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 642 { 643 int i; 644 645 if (rcu_gp_in_progress(rsp)) 646 return false; /* No, a grace period is already in progress. */ 647 if (rcu_future_needs_gp(rsp)) 648 return true; /* Yes, a no-CBs CPU needs one. */ 649 if (!rdp->nxttail[RCU_NEXT_TAIL]) 650 return false; /* No, this is a no-CBs (or offline) CPU. */ 651 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 652 return true; /* Yes, CPU has newly registered callbacks. */ 653 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 654 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 655 ULONG_CMP_LT(READ_ONCE(rsp->completed), 656 rdp->nxtcompleted[i])) 657 return true; /* Yes, CBs for future grace period. */ 658 return false; /* No grace period needed. */ 659 } 660 661 /* 662 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 663 * 664 * If the new value of the ->dynticks_nesting counter now is zero, 665 * we really have entered idle, and must do the appropriate accounting. 666 * The caller must have disabled interrupts. 667 */ 668 static void rcu_eqs_enter_common(long long oldval, bool user) 669 { 670 struct rcu_state *rsp; 671 struct rcu_data *rdp; 672 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 673 674 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 675 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 676 !user && !is_idle_task(current)) { 677 struct task_struct *idle __maybe_unused = 678 idle_task(smp_processor_id()); 679 680 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 681 rcu_ftrace_dump(DUMP_ORIG); 682 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 683 current->pid, current->comm, 684 idle->pid, idle->comm); /* must be idle task! */ 685 } 686 for_each_rcu_flavor(rsp) { 687 rdp = this_cpu_ptr(rsp->rda); 688 do_nocb_deferred_wakeup(rdp); 689 } 690 rcu_prepare_for_idle(); 691 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 692 smp_mb__before_atomic(); /* See above. */ 693 atomic_inc(&rdtp->dynticks); 694 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 695 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 696 atomic_read(&rdtp->dynticks) & 0x1); 697 rcu_dynticks_task_enter(); 698 699 /* 700 * It is illegal to enter an extended quiescent state while 701 * in an RCU read-side critical section. 702 */ 703 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 704 "Illegal idle entry in RCU read-side critical section."); 705 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 706 "Illegal idle entry in RCU-bh read-side critical section."); 707 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 708 "Illegal idle entry in RCU-sched read-side critical section."); 709 } 710 711 /* 712 * Enter an RCU extended quiescent state, which can be either the 713 * idle loop or adaptive-tickless usermode execution. 714 */ 715 static void rcu_eqs_enter(bool user) 716 { 717 long long oldval; 718 struct rcu_dynticks *rdtp; 719 720 rdtp = this_cpu_ptr(&rcu_dynticks); 721 oldval = rdtp->dynticks_nesting; 722 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 723 (oldval & DYNTICK_TASK_NEST_MASK) == 0); 724 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 725 rdtp->dynticks_nesting = 0; 726 rcu_eqs_enter_common(oldval, user); 727 } else { 728 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 729 } 730 } 731 732 /** 733 * rcu_idle_enter - inform RCU that current CPU is entering idle 734 * 735 * Enter idle mode, in other words, -leave- the mode in which RCU 736 * read-side critical sections can occur. (Though RCU read-side 737 * critical sections can occur in irq handlers in idle, a possibility 738 * handled by irq_enter() and irq_exit().) 739 * 740 * We crowbar the ->dynticks_nesting field to zero to allow for 741 * the possibility of usermode upcalls having messed up our count 742 * of interrupt nesting level during the prior busy period. 743 */ 744 void rcu_idle_enter(void) 745 { 746 unsigned long flags; 747 748 local_irq_save(flags); 749 rcu_eqs_enter(false); 750 rcu_sysidle_enter(0); 751 local_irq_restore(flags); 752 } 753 EXPORT_SYMBOL_GPL(rcu_idle_enter); 754 755 #ifdef CONFIG_NO_HZ_FULL 756 /** 757 * rcu_user_enter - inform RCU that we are resuming userspace. 758 * 759 * Enter RCU idle mode right before resuming userspace. No use of RCU 760 * is permitted between this call and rcu_user_exit(). This way the 761 * CPU doesn't need to maintain the tick for RCU maintenance purposes 762 * when the CPU runs in userspace. 763 */ 764 void rcu_user_enter(void) 765 { 766 rcu_eqs_enter(1); 767 } 768 #endif /* CONFIG_NO_HZ_FULL */ 769 770 /** 771 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 772 * 773 * Exit from an interrupt handler, which might possibly result in entering 774 * idle mode, in other words, leaving the mode in which read-side critical 775 * sections can occur. The caller must have disabled interrupts. 776 * 777 * This code assumes that the idle loop never does anything that might 778 * result in unbalanced calls to irq_enter() and irq_exit(). If your 779 * architecture violates this assumption, RCU will give you what you 780 * deserve, good and hard. But very infrequently and irreproducibly. 781 * 782 * Use things like work queues to work around this limitation. 783 * 784 * You have been warned. 785 */ 786 void rcu_irq_exit(void) 787 { 788 long long oldval; 789 struct rcu_dynticks *rdtp; 790 791 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 792 rdtp = this_cpu_ptr(&rcu_dynticks); 793 oldval = rdtp->dynticks_nesting; 794 rdtp->dynticks_nesting--; 795 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 796 rdtp->dynticks_nesting < 0); 797 if (rdtp->dynticks_nesting) 798 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 799 else 800 rcu_eqs_enter_common(oldval, true); 801 rcu_sysidle_enter(1); 802 } 803 804 /* 805 * Wrapper for rcu_irq_exit() where interrupts are enabled. 806 */ 807 void rcu_irq_exit_irqson(void) 808 { 809 unsigned long flags; 810 811 local_irq_save(flags); 812 rcu_irq_exit(); 813 local_irq_restore(flags); 814 } 815 816 /* 817 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 818 * 819 * If the new value of the ->dynticks_nesting counter was previously zero, 820 * we really have exited idle, and must do the appropriate accounting. 821 * The caller must have disabled interrupts. 822 */ 823 static void rcu_eqs_exit_common(long long oldval, int user) 824 { 825 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 826 827 rcu_dynticks_task_exit(); 828 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 829 atomic_inc(&rdtp->dynticks); 830 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 831 smp_mb__after_atomic(); /* See above. */ 832 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 833 !(atomic_read(&rdtp->dynticks) & 0x1)); 834 rcu_cleanup_after_idle(); 835 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 836 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 837 !user && !is_idle_task(current)) { 838 struct task_struct *idle __maybe_unused = 839 idle_task(smp_processor_id()); 840 841 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 842 oldval, rdtp->dynticks_nesting); 843 rcu_ftrace_dump(DUMP_ORIG); 844 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 845 current->pid, current->comm, 846 idle->pid, idle->comm); /* must be idle task! */ 847 } 848 } 849 850 /* 851 * Exit an RCU extended quiescent state, which can be either the 852 * idle loop or adaptive-tickless usermode execution. 853 */ 854 static void rcu_eqs_exit(bool user) 855 { 856 struct rcu_dynticks *rdtp; 857 long long oldval; 858 859 rdtp = this_cpu_ptr(&rcu_dynticks); 860 oldval = rdtp->dynticks_nesting; 861 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 862 if (oldval & DYNTICK_TASK_NEST_MASK) { 863 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 864 } else { 865 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 866 rcu_eqs_exit_common(oldval, user); 867 } 868 } 869 870 /** 871 * rcu_idle_exit - inform RCU that current CPU is leaving idle 872 * 873 * Exit idle mode, in other words, -enter- the mode in which RCU 874 * read-side critical sections can occur. 875 * 876 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 877 * allow for the possibility of usermode upcalls messing up our count 878 * of interrupt nesting level during the busy period that is just 879 * now starting. 880 */ 881 void rcu_idle_exit(void) 882 { 883 unsigned long flags; 884 885 local_irq_save(flags); 886 rcu_eqs_exit(false); 887 rcu_sysidle_exit(0); 888 local_irq_restore(flags); 889 } 890 EXPORT_SYMBOL_GPL(rcu_idle_exit); 891 892 #ifdef CONFIG_NO_HZ_FULL 893 /** 894 * rcu_user_exit - inform RCU that we are exiting userspace. 895 * 896 * Exit RCU idle mode while entering the kernel because it can 897 * run a RCU read side critical section anytime. 898 */ 899 void rcu_user_exit(void) 900 { 901 rcu_eqs_exit(1); 902 } 903 #endif /* CONFIG_NO_HZ_FULL */ 904 905 /** 906 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 907 * 908 * Enter an interrupt handler, which might possibly result in exiting 909 * idle mode, in other words, entering the mode in which read-side critical 910 * sections can occur. The caller must have disabled interrupts. 911 * 912 * Note that the Linux kernel is fully capable of entering an interrupt 913 * handler that it never exits, for example when doing upcalls to 914 * user mode! This code assumes that the idle loop never does upcalls to 915 * user mode. If your architecture does do upcalls from the idle loop (or 916 * does anything else that results in unbalanced calls to the irq_enter() 917 * and irq_exit() functions), RCU will give you what you deserve, good 918 * and hard. But very infrequently and irreproducibly. 919 * 920 * Use things like work queues to work around this limitation. 921 * 922 * You have been warned. 923 */ 924 void rcu_irq_enter(void) 925 { 926 struct rcu_dynticks *rdtp; 927 long long oldval; 928 929 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 930 rdtp = this_cpu_ptr(&rcu_dynticks); 931 oldval = rdtp->dynticks_nesting; 932 rdtp->dynticks_nesting++; 933 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 934 rdtp->dynticks_nesting == 0); 935 if (oldval) 936 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 937 else 938 rcu_eqs_exit_common(oldval, true); 939 rcu_sysidle_exit(1); 940 } 941 942 /* 943 * Wrapper for rcu_irq_enter() where interrupts are enabled. 944 */ 945 void rcu_irq_enter_irqson(void) 946 { 947 unsigned long flags; 948 949 local_irq_save(flags); 950 rcu_irq_enter(); 951 local_irq_restore(flags); 952 } 953 954 /** 955 * rcu_nmi_enter - inform RCU of entry to NMI context 956 * 957 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 958 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 959 * that the CPU is active. This implementation permits nested NMIs, as 960 * long as the nesting level does not overflow an int. (You will probably 961 * run out of stack space first.) 962 */ 963 void rcu_nmi_enter(void) 964 { 965 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 966 int incby = 2; 967 968 /* Complain about underflow. */ 969 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 970 971 /* 972 * If idle from RCU viewpoint, atomically increment ->dynticks 973 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 974 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 975 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 976 * to be in the outermost NMI handler that interrupted an RCU-idle 977 * period (observation due to Andy Lutomirski). 978 */ 979 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 980 smp_mb__before_atomic(); /* Force delay from prior write. */ 981 atomic_inc(&rdtp->dynticks); 982 /* atomic_inc() before later RCU read-side crit sects */ 983 smp_mb__after_atomic(); /* See above. */ 984 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 985 incby = 1; 986 } 987 rdtp->dynticks_nmi_nesting += incby; 988 barrier(); 989 } 990 991 /** 992 * rcu_nmi_exit - inform RCU of exit from NMI context 993 * 994 * If we are returning from the outermost NMI handler that interrupted an 995 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 996 * to let the RCU grace-period handling know that the CPU is back to 997 * being RCU-idle. 998 */ 999 void rcu_nmi_exit(void) 1000 { 1001 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1002 1003 /* 1004 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1005 * (We are exiting an NMI handler, so RCU better be paying attention 1006 * to us!) 1007 */ 1008 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1009 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 1010 1011 /* 1012 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1013 * leave it in non-RCU-idle state. 1014 */ 1015 if (rdtp->dynticks_nmi_nesting != 1) { 1016 rdtp->dynticks_nmi_nesting -= 2; 1017 return; 1018 } 1019 1020 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1021 rdtp->dynticks_nmi_nesting = 0; 1022 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 1023 smp_mb__before_atomic(); /* See above. */ 1024 atomic_inc(&rdtp->dynticks); 1025 smp_mb__after_atomic(); /* Force delay to next write. */ 1026 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 1027 } 1028 1029 /** 1030 * __rcu_is_watching - are RCU read-side critical sections safe? 1031 * 1032 * Return true if RCU is watching the running CPU, which means that 1033 * this CPU can safely enter RCU read-side critical sections. Unlike 1034 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 1035 * least disabled preemption. 1036 */ 1037 bool notrace __rcu_is_watching(void) 1038 { 1039 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 1040 } 1041 1042 /** 1043 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1044 * 1045 * If the current CPU is in its idle loop and is neither in an interrupt 1046 * or NMI handler, return true. 1047 */ 1048 bool notrace rcu_is_watching(void) 1049 { 1050 bool ret; 1051 1052 preempt_disable_notrace(); 1053 ret = __rcu_is_watching(); 1054 preempt_enable_notrace(); 1055 return ret; 1056 } 1057 EXPORT_SYMBOL_GPL(rcu_is_watching); 1058 1059 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1060 1061 /* 1062 * Is the current CPU online? Disable preemption to avoid false positives 1063 * that could otherwise happen due to the current CPU number being sampled, 1064 * this task being preempted, its old CPU being taken offline, resuming 1065 * on some other CPU, then determining that its old CPU is now offline. 1066 * It is OK to use RCU on an offline processor during initial boot, hence 1067 * the check for rcu_scheduler_fully_active. Note also that it is OK 1068 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1069 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1070 * offline to continue to use RCU for one jiffy after marking itself 1071 * offline in the cpu_online_mask. This leniency is necessary given the 1072 * non-atomic nature of the online and offline processing, for example, 1073 * the fact that a CPU enters the scheduler after completing the CPU_DYING 1074 * notifiers. 1075 * 1076 * This is also why RCU internally marks CPUs online during the 1077 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 1078 * 1079 * Disable checking if in an NMI handler because we cannot safely report 1080 * errors from NMI handlers anyway. 1081 */ 1082 bool rcu_lockdep_current_cpu_online(void) 1083 { 1084 struct rcu_data *rdp; 1085 struct rcu_node *rnp; 1086 bool ret; 1087 1088 if (in_nmi()) 1089 return true; 1090 preempt_disable(); 1091 rdp = this_cpu_ptr(&rcu_sched_data); 1092 rnp = rdp->mynode; 1093 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1094 !rcu_scheduler_fully_active; 1095 preempt_enable(); 1096 return ret; 1097 } 1098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1099 1100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1101 1102 /** 1103 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1104 * 1105 * If the current CPU is idle or running at a first-level (not nested) 1106 * interrupt from idle, return true. The caller must have at least 1107 * disabled preemption. 1108 */ 1109 static int rcu_is_cpu_rrupt_from_idle(void) 1110 { 1111 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1112 } 1113 1114 /* 1115 * Snapshot the specified CPU's dynticks counter so that we can later 1116 * credit them with an implicit quiescent state. Return 1 if this CPU 1117 * is in dynticks idle mode, which is an extended quiescent state. 1118 */ 1119 static int dyntick_save_progress_counter(struct rcu_data *rdp, 1120 bool *isidle, unsigned long *maxj) 1121 { 1122 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 1123 rcu_sysidle_check_cpu(rdp, isidle, maxj); 1124 if ((rdp->dynticks_snap & 0x1) == 0) { 1125 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1126 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1127 rdp->mynode->gpnum)) 1128 WRITE_ONCE(rdp->gpwrap, true); 1129 return 1; 1130 } 1131 return 0; 1132 } 1133 1134 /* 1135 * Return true if the specified CPU has passed through a quiescent 1136 * state by virtue of being in or having passed through an dynticks 1137 * idle state since the last call to dyntick_save_progress_counter() 1138 * for this same CPU, or by virtue of having been offline. 1139 */ 1140 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1141 bool *isidle, unsigned long *maxj) 1142 { 1143 unsigned int curr; 1144 int *rcrmp; 1145 unsigned int snap; 1146 1147 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1148 snap = (unsigned int)rdp->dynticks_snap; 1149 1150 /* 1151 * If the CPU passed through or entered a dynticks idle phase with 1152 * no active irq/NMI handlers, then we can safely pretend that the CPU 1153 * already acknowledged the request to pass through a quiescent 1154 * state. Either way, that CPU cannot possibly be in an RCU 1155 * read-side critical section that started before the beginning 1156 * of the current RCU grace period. 1157 */ 1158 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1159 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1160 rdp->dynticks_fqs++; 1161 return 1; 1162 } 1163 1164 /* 1165 * Check for the CPU being offline, but only if the grace period 1166 * is old enough. We don't need to worry about the CPU changing 1167 * state: If we see it offline even once, it has been through a 1168 * quiescent state. 1169 * 1170 * The reason for insisting that the grace period be at least 1171 * one jiffy old is that CPUs that are not quite online and that 1172 * have just gone offline can still execute RCU read-side critical 1173 * sections. 1174 */ 1175 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1176 return 0; /* Grace period is not old enough. */ 1177 barrier(); 1178 if (cpu_is_offline(rdp->cpu)) { 1179 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1180 rdp->offline_fqs++; 1181 return 1; 1182 } 1183 1184 /* 1185 * A CPU running for an extended time within the kernel can 1186 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1187 * even context-switching back and forth between a pair of 1188 * in-kernel CPU-bound tasks cannot advance grace periods. 1189 * So if the grace period is old enough, make the CPU pay attention. 1190 * Note that the unsynchronized assignments to the per-CPU 1191 * rcu_sched_qs_mask variable are safe. Yes, setting of 1192 * bits can be lost, but they will be set again on the next 1193 * force-quiescent-state pass. So lost bit sets do not result 1194 * in incorrect behavior, merely in a grace period lasting 1195 * a few jiffies longer than it might otherwise. Because 1196 * there are at most four threads involved, and because the 1197 * updates are only once every few jiffies, the probability of 1198 * lossage (and thus of slight grace-period extension) is 1199 * quite low. 1200 * 1201 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1202 * is set too high, we override with half of the RCU CPU stall 1203 * warning delay. 1204 */ 1205 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1206 if (ULONG_CMP_GE(jiffies, 1207 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1208 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1209 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1210 WRITE_ONCE(rdp->cond_resched_completed, 1211 READ_ONCE(rdp->mynode->completed)); 1212 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1213 WRITE_ONCE(*rcrmp, 1214 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask); 1215 } 1216 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1217 } 1218 1219 /* And if it has been a really long time, kick the CPU as well. */ 1220 if (ULONG_CMP_GE(jiffies, 1221 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) || 1222 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs)) 1223 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1224 1225 return 0; 1226 } 1227 1228 static void record_gp_stall_check_time(struct rcu_state *rsp) 1229 { 1230 unsigned long j = jiffies; 1231 unsigned long j1; 1232 1233 rsp->gp_start = j; 1234 smp_wmb(); /* Record start time before stall time. */ 1235 j1 = rcu_jiffies_till_stall_check(); 1236 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1237 rsp->jiffies_resched = j + j1 / 2; 1238 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1239 } 1240 1241 /* 1242 * Convert a ->gp_state value to a character string. 1243 */ 1244 static const char *gp_state_getname(short gs) 1245 { 1246 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1247 return "???"; 1248 return gp_state_names[gs]; 1249 } 1250 1251 /* 1252 * Complain about starvation of grace-period kthread. 1253 */ 1254 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1255 { 1256 unsigned long gpa; 1257 unsigned long j; 1258 1259 j = jiffies; 1260 gpa = READ_ONCE(rsp->gp_activity); 1261 if (j - gpa > 2 * HZ) { 1262 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1263 rsp->name, j - gpa, 1264 rsp->gpnum, rsp->completed, 1265 rsp->gp_flags, 1266 gp_state_getname(rsp->gp_state), rsp->gp_state, 1267 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1268 if (rsp->gp_kthread) { 1269 sched_show_task(rsp->gp_kthread); 1270 wake_up_process(rsp->gp_kthread); 1271 } 1272 } 1273 } 1274 1275 /* 1276 * Dump stacks of all tasks running on stalled CPUs. 1277 */ 1278 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1279 { 1280 int cpu; 1281 unsigned long flags; 1282 struct rcu_node *rnp; 1283 1284 rcu_for_each_leaf_node(rsp, rnp) { 1285 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1286 if (rnp->qsmask != 0) { 1287 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1288 if (rnp->qsmask & (1UL << cpu)) 1289 dump_cpu_task(rnp->grplo + cpu); 1290 } 1291 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1292 } 1293 } 1294 1295 /* 1296 * If too much time has passed in the current grace period, and if 1297 * so configured, go kick the relevant kthreads. 1298 */ 1299 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1300 { 1301 unsigned long j; 1302 1303 if (!rcu_kick_kthreads) 1304 return; 1305 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1306 if (time_after(jiffies, j) && rsp->gp_kthread) { 1307 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1308 rcu_ftrace_dump(DUMP_ALL); 1309 wake_up_process(rsp->gp_kthread); 1310 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1311 } 1312 } 1313 1314 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1315 { 1316 int cpu; 1317 long delta; 1318 unsigned long flags; 1319 unsigned long gpa; 1320 unsigned long j; 1321 int ndetected = 0; 1322 struct rcu_node *rnp = rcu_get_root(rsp); 1323 long totqlen = 0; 1324 1325 /* Kick and suppress, if so configured. */ 1326 rcu_stall_kick_kthreads(rsp); 1327 if (rcu_cpu_stall_suppress) 1328 return; 1329 1330 /* Only let one CPU complain about others per time interval. */ 1331 1332 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1333 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1334 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1335 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1336 return; 1337 } 1338 WRITE_ONCE(rsp->jiffies_stall, 1339 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1341 1342 /* 1343 * OK, time to rat on our buddy... 1344 * See Documentation/RCU/stallwarn.txt for info on how to debug 1345 * RCU CPU stall warnings. 1346 */ 1347 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1348 rsp->name); 1349 print_cpu_stall_info_begin(); 1350 rcu_for_each_leaf_node(rsp, rnp) { 1351 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1352 ndetected += rcu_print_task_stall(rnp); 1353 if (rnp->qsmask != 0) { 1354 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1355 if (rnp->qsmask & (1UL << cpu)) { 1356 print_cpu_stall_info(rsp, 1357 rnp->grplo + cpu); 1358 ndetected++; 1359 } 1360 } 1361 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1362 } 1363 1364 print_cpu_stall_info_end(); 1365 for_each_possible_cpu(cpu) 1366 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1367 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1368 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1369 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1370 if (ndetected) { 1371 rcu_dump_cpu_stacks(rsp); 1372 } else { 1373 if (READ_ONCE(rsp->gpnum) != gpnum || 1374 READ_ONCE(rsp->completed) == gpnum) { 1375 pr_err("INFO: Stall ended before state dump start\n"); 1376 } else { 1377 j = jiffies; 1378 gpa = READ_ONCE(rsp->gp_activity); 1379 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1380 rsp->name, j - gpa, j, gpa, 1381 jiffies_till_next_fqs, 1382 rcu_get_root(rsp)->qsmask); 1383 /* In this case, the current CPU might be at fault. */ 1384 sched_show_task(current); 1385 } 1386 } 1387 1388 /* Complain about tasks blocking the grace period. */ 1389 rcu_print_detail_task_stall(rsp); 1390 1391 rcu_check_gp_kthread_starvation(rsp); 1392 1393 force_quiescent_state(rsp); /* Kick them all. */ 1394 } 1395 1396 static void print_cpu_stall(struct rcu_state *rsp) 1397 { 1398 int cpu; 1399 unsigned long flags; 1400 struct rcu_node *rnp = rcu_get_root(rsp); 1401 long totqlen = 0; 1402 1403 /* Kick and suppress, if so configured. */ 1404 rcu_stall_kick_kthreads(rsp); 1405 if (rcu_cpu_stall_suppress) 1406 return; 1407 1408 /* 1409 * OK, time to rat on ourselves... 1410 * See Documentation/RCU/stallwarn.txt for info on how to debug 1411 * RCU CPU stall warnings. 1412 */ 1413 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1414 print_cpu_stall_info_begin(); 1415 print_cpu_stall_info(rsp, smp_processor_id()); 1416 print_cpu_stall_info_end(); 1417 for_each_possible_cpu(cpu) 1418 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1419 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1420 jiffies - rsp->gp_start, 1421 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1422 1423 rcu_check_gp_kthread_starvation(rsp); 1424 1425 rcu_dump_cpu_stacks(rsp); 1426 1427 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1428 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1429 WRITE_ONCE(rsp->jiffies_stall, 1430 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1432 1433 /* 1434 * Attempt to revive the RCU machinery by forcing a context switch. 1435 * 1436 * A context switch would normally allow the RCU state machine to make 1437 * progress and it could be we're stuck in kernel space without context 1438 * switches for an entirely unreasonable amount of time. 1439 */ 1440 resched_cpu(smp_processor_id()); 1441 } 1442 1443 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1444 { 1445 unsigned long completed; 1446 unsigned long gpnum; 1447 unsigned long gps; 1448 unsigned long j; 1449 unsigned long js; 1450 struct rcu_node *rnp; 1451 1452 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1453 !rcu_gp_in_progress(rsp)) 1454 return; 1455 rcu_stall_kick_kthreads(rsp); 1456 j = jiffies; 1457 1458 /* 1459 * Lots of memory barriers to reject false positives. 1460 * 1461 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1462 * then rsp->gp_start, and finally rsp->completed. These values 1463 * are updated in the opposite order with memory barriers (or 1464 * equivalent) during grace-period initialization and cleanup. 1465 * Now, a false positive can occur if we get an new value of 1466 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1467 * the memory barriers, the only way that this can happen is if one 1468 * grace period ends and another starts between these two fetches. 1469 * Detect this by comparing rsp->completed with the previous fetch 1470 * from rsp->gpnum. 1471 * 1472 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1473 * and rsp->gp_start suffice to forestall false positives. 1474 */ 1475 gpnum = READ_ONCE(rsp->gpnum); 1476 smp_rmb(); /* Pick up ->gpnum first... */ 1477 js = READ_ONCE(rsp->jiffies_stall); 1478 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1479 gps = READ_ONCE(rsp->gp_start); 1480 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1481 completed = READ_ONCE(rsp->completed); 1482 if (ULONG_CMP_GE(completed, gpnum) || 1483 ULONG_CMP_LT(j, js) || 1484 ULONG_CMP_GE(gps, js)) 1485 return; /* No stall or GP completed since entering function. */ 1486 rnp = rdp->mynode; 1487 if (rcu_gp_in_progress(rsp) && 1488 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1489 1490 /* We haven't checked in, so go dump stack. */ 1491 print_cpu_stall(rsp); 1492 1493 } else if (rcu_gp_in_progress(rsp) && 1494 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1495 1496 /* They had a few time units to dump stack, so complain. */ 1497 print_other_cpu_stall(rsp, gpnum); 1498 } 1499 } 1500 1501 /** 1502 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1503 * 1504 * Set the stall-warning timeout way off into the future, thus preventing 1505 * any RCU CPU stall-warning messages from appearing in the current set of 1506 * RCU grace periods. 1507 * 1508 * The caller must disable hard irqs. 1509 */ 1510 void rcu_cpu_stall_reset(void) 1511 { 1512 struct rcu_state *rsp; 1513 1514 for_each_rcu_flavor(rsp) 1515 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1516 } 1517 1518 /* 1519 * Initialize the specified rcu_data structure's default callback list 1520 * to empty. The default callback list is the one that is not used by 1521 * no-callbacks CPUs. 1522 */ 1523 static void init_default_callback_list(struct rcu_data *rdp) 1524 { 1525 int i; 1526 1527 rdp->nxtlist = NULL; 1528 for (i = 0; i < RCU_NEXT_SIZE; i++) 1529 rdp->nxttail[i] = &rdp->nxtlist; 1530 } 1531 1532 /* 1533 * Initialize the specified rcu_data structure's callback list to empty. 1534 */ 1535 static void init_callback_list(struct rcu_data *rdp) 1536 { 1537 if (init_nocb_callback_list(rdp)) 1538 return; 1539 init_default_callback_list(rdp); 1540 } 1541 1542 /* 1543 * Determine the value that ->completed will have at the end of the 1544 * next subsequent grace period. This is used to tag callbacks so that 1545 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1546 * been dyntick-idle for an extended period with callbacks under the 1547 * influence of RCU_FAST_NO_HZ. 1548 * 1549 * The caller must hold rnp->lock with interrupts disabled. 1550 */ 1551 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1552 struct rcu_node *rnp) 1553 { 1554 /* 1555 * If RCU is idle, we just wait for the next grace period. 1556 * But we can only be sure that RCU is idle if we are looking 1557 * at the root rcu_node structure -- otherwise, a new grace 1558 * period might have started, but just not yet gotten around 1559 * to initializing the current non-root rcu_node structure. 1560 */ 1561 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1562 return rnp->completed + 1; 1563 1564 /* 1565 * Otherwise, wait for a possible partial grace period and 1566 * then the subsequent full grace period. 1567 */ 1568 return rnp->completed + 2; 1569 } 1570 1571 /* 1572 * Trace-event helper function for rcu_start_future_gp() and 1573 * rcu_nocb_wait_gp(). 1574 */ 1575 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1576 unsigned long c, const char *s) 1577 { 1578 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1579 rnp->completed, c, rnp->level, 1580 rnp->grplo, rnp->grphi, s); 1581 } 1582 1583 /* 1584 * Start some future grace period, as needed to handle newly arrived 1585 * callbacks. The required future grace periods are recorded in each 1586 * rcu_node structure's ->need_future_gp field. Returns true if there 1587 * is reason to awaken the grace-period kthread. 1588 * 1589 * The caller must hold the specified rcu_node structure's ->lock. 1590 */ 1591 static bool __maybe_unused 1592 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1593 unsigned long *c_out) 1594 { 1595 unsigned long c; 1596 int i; 1597 bool ret = false; 1598 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1599 1600 /* 1601 * Pick up grace-period number for new callbacks. If this 1602 * grace period is already marked as needed, return to the caller. 1603 */ 1604 c = rcu_cbs_completed(rdp->rsp, rnp); 1605 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1606 if (rnp->need_future_gp[c & 0x1]) { 1607 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1608 goto out; 1609 } 1610 1611 /* 1612 * If either this rcu_node structure or the root rcu_node structure 1613 * believe that a grace period is in progress, then we must wait 1614 * for the one following, which is in "c". Because our request 1615 * will be noticed at the end of the current grace period, we don't 1616 * need to explicitly start one. We only do the lockless check 1617 * of rnp_root's fields if the current rcu_node structure thinks 1618 * there is no grace period in flight, and because we hold rnp->lock, 1619 * the only possible change is when rnp_root's two fields are 1620 * equal, in which case rnp_root->gpnum might be concurrently 1621 * incremented. But that is OK, as it will just result in our 1622 * doing some extra useless work. 1623 */ 1624 if (rnp->gpnum != rnp->completed || 1625 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1626 rnp->need_future_gp[c & 0x1]++; 1627 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1628 goto out; 1629 } 1630 1631 /* 1632 * There might be no grace period in progress. If we don't already 1633 * hold it, acquire the root rcu_node structure's lock in order to 1634 * start one (if needed). 1635 */ 1636 if (rnp != rnp_root) 1637 raw_spin_lock_rcu_node(rnp_root); 1638 1639 /* 1640 * Get a new grace-period number. If there really is no grace 1641 * period in progress, it will be smaller than the one we obtained 1642 * earlier. Adjust callbacks as needed. Note that even no-CBs 1643 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1644 */ 1645 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1646 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1647 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1648 rdp->nxtcompleted[i] = c; 1649 1650 /* 1651 * If the needed for the required grace period is already 1652 * recorded, trace and leave. 1653 */ 1654 if (rnp_root->need_future_gp[c & 0x1]) { 1655 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1656 goto unlock_out; 1657 } 1658 1659 /* Record the need for the future grace period. */ 1660 rnp_root->need_future_gp[c & 0x1]++; 1661 1662 /* If a grace period is not already in progress, start one. */ 1663 if (rnp_root->gpnum != rnp_root->completed) { 1664 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1665 } else { 1666 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1667 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1668 } 1669 unlock_out: 1670 if (rnp != rnp_root) 1671 raw_spin_unlock_rcu_node(rnp_root); 1672 out: 1673 if (c_out != NULL) 1674 *c_out = c; 1675 return ret; 1676 } 1677 1678 /* 1679 * Clean up any old requests for the just-ended grace period. Also return 1680 * whether any additional grace periods have been requested. Also invoke 1681 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1682 * waiting for this grace period to complete. 1683 */ 1684 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1685 { 1686 int c = rnp->completed; 1687 int needmore; 1688 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1689 1690 rnp->need_future_gp[c & 0x1] = 0; 1691 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1692 trace_rcu_future_gp(rnp, rdp, c, 1693 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1694 return needmore; 1695 } 1696 1697 /* 1698 * Awaken the grace-period kthread for the specified flavor of RCU. 1699 * Don't do a self-awaken, and don't bother awakening when there is 1700 * nothing for the grace-period kthread to do (as in several CPUs 1701 * raced to awaken, and we lost), and finally don't try to awaken 1702 * a kthread that has not yet been created. 1703 */ 1704 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1705 { 1706 if (current == rsp->gp_kthread || 1707 !READ_ONCE(rsp->gp_flags) || 1708 !rsp->gp_kthread) 1709 return; 1710 swake_up(&rsp->gp_wq); 1711 } 1712 1713 /* 1714 * If there is room, assign a ->completed number to any callbacks on 1715 * this CPU that have not already been assigned. Also accelerate any 1716 * callbacks that were previously assigned a ->completed number that has 1717 * since proven to be too conservative, which can happen if callbacks get 1718 * assigned a ->completed number while RCU is idle, but with reference to 1719 * a non-root rcu_node structure. This function is idempotent, so it does 1720 * not hurt to call it repeatedly. Returns an flag saying that we should 1721 * awaken the RCU grace-period kthread. 1722 * 1723 * The caller must hold rnp->lock with interrupts disabled. 1724 */ 1725 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1726 struct rcu_data *rdp) 1727 { 1728 unsigned long c; 1729 int i; 1730 bool ret; 1731 1732 /* If the CPU has no callbacks, nothing to do. */ 1733 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1734 return false; 1735 1736 /* 1737 * Starting from the sublist containing the callbacks most 1738 * recently assigned a ->completed number and working down, find the 1739 * first sublist that is not assignable to an upcoming grace period. 1740 * Such a sublist has something in it (first two tests) and has 1741 * a ->completed number assigned that will complete sooner than 1742 * the ->completed number for newly arrived callbacks (last test). 1743 * 1744 * The key point is that any later sublist can be assigned the 1745 * same ->completed number as the newly arrived callbacks, which 1746 * means that the callbacks in any of these later sublist can be 1747 * grouped into a single sublist, whether or not they have already 1748 * been assigned a ->completed number. 1749 */ 1750 c = rcu_cbs_completed(rsp, rnp); 1751 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1752 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1753 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1754 break; 1755 1756 /* 1757 * If there are no sublist for unassigned callbacks, leave. 1758 * At the same time, advance "i" one sublist, so that "i" will 1759 * index into the sublist where all the remaining callbacks should 1760 * be grouped into. 1761 */ 1762 if (++i >= RCU_NEXT_TAIL) 1763 return false; 1764 1765 /* 1766 * Assign all subsequent callbacks' ->completed number to the next 1767 * full grace period and group them all in the sublist initially 1768 * indexed by "i". 1769 */ 1770 for (; i <= RCU_NEXT_TAIL; i++) { 1771 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1772 rdp->nxtcompleted[i] = c; 1773 } 1774 /* Record any needed additional grace periods. */ 1775 ret = rcu_start_future_gp(rnp, rdp, NULL); 1776 1777 /* Trace depending on how much we were able to accelerate. */ 1778 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1779 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1780 else 1781 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1782 return ret; 1783 } 1784 1785 /* 1786 * Move any callbacks whose grace period has completed to the 1787 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1788 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1789 * sublist. This function is idempotent, so it does not hurt to 1790 * invoke it repeatedly. As long as it is not invoked -too- often... 1791 * Returns true if the RCU grace-period kthread needs to be awakened. 1792 * 1793 * The caller must hold rnp->lock with interrupts disabled. 1794 */ 1795 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1796 struct rcu_data *rdp) 1797 { 1798 int i, j; 1799 1800 /* If the CPU has no callbacks, nothing to do. */ 1801 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1802 return false; 1803 1804 /* 1805 * Find all callbacks whose ->completed numbers indicate that they 1806 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1807 */ 1808 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1809 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1810 break; 1811 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1812 } 1813 /* Clean up any sublist tail pointers that were misordered above. */ 1814 for (j = RCU_WAIT_TAIL; j < i; j++) 1815 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1816 1817 /* Copy down callbacks to fill in empty sublists. */ 1818 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1819 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1820 break; 1821 rdp->nxttail[j] = rdp->nxttail[i]; 1822 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1823 } 1824 1825 /* Classify any remaining callbacks. */ 1826 return rcu_accelerate_cbs(rsp, rnp, rdp); 1827 } 1828 1829 /* 1830 * Update CPU-local rcu_data state to record the beginnings and ends of 1831 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1832 * structure corresponding to the current CPU, and must have irqs disabled. 1833 * Returns true if the grace-period kthread needs to be awakened. 1834 */ 1835 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1836 struct rcu_data *rdp) 1837 { 1838 bool ret; 1839 1840 /* Handle the ends of any preceding grace periods first. */ 1841 if (rdp->completed == rnp->completed && 1842 !unlikely(READ_ONCE(rdp->gpwrap))) { 1843 1844 /* No grace period end, so just accelerate recent callbacks. */ 1845 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1846 1847 } else { 1848 1849 /* Advance callbacks. */ 1850 ret = rcu_advance_cbs(rsp, rnp, rdp); 1851 1852 /* Remember that we saw this grace-period completion. */ 1853 rdp->completed = rnp->completed; 1854 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1855 } 1856 1857 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1858 /* 1859 * If the current grace period is waiting for this CPU, 1860 * set up to detect a quiescent state, otherwise don't 1861 * go looking for one. 1862 */ 1863 rdp->gpnum = rnp->gpnum; 1864 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1865 rdp->cpu_no_qs.b.norm = true; 1866 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1867 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1868 zero_cpu_stall_ticks(rdp); 1869 WRITE_ONCE(rdp->gpwrap, false); 1870 } 1871 return ret; 1872 } 1873 1874 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1875 { 1876 unsigned long flags; 1877 bool needwake; 1878 struct rcu_node *rnp; 1879 1880 local_irq_save(flags); 1881 rnp = rdp->mynode; 1882 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1883 rdp->completed == READ_ONCE(rnp->completed) && 1884 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1885 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1886 local_irq_restore(flags); 1887 return; 1888 } 1889 needwake = __note_gp_changes(rsp, rnp, rdp); 1890 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1891 if (needwake) 1892 rcu_gp_kthread_wake(rsp); 1893 } 1894 1895 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1896 { 1897 if (delay > 0 && 1898 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1899 schedule_timeout_uninterruptible(delay); 1900 } 1901 1902 /* 1903 * Initialize a new grace period. Return false if no grace period required. 1904 */ 1905 static bool rcu_gp_init(struct rcu_state *rsp) 1906 { 1907 unsigned long oldmask; 1908 struct rcu_data *rdp; 1909 struct rcu_node *rnp = rcu_get_root(rsp); 1910 1911 WRITE_ONCE(rsp->gp_activity, jiffies); 1912 raw_spin_lock_irq_rcu_node(rnp); 1913 if (!READ_ONCE(rsp->gp_flags)) { 1914 /* Spurious wakeup, tell caller to go back to sleep. */ 1915 raw_spin_unlock_irq_rcu_node(rnp); 1916 return false; 1917 } 1918 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1919 1920 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1921 /* 1922 * Grace period already in progress, don't start another. 1923 * Not supposed to be able to happen. 1924 */ 1925 raw_spin_unlock_irq_rcu_node(rnp); 1926 return false; 1927 } 1928 1929 /* Advance to a new grace period and initialize state. */ 1930 record_gp_stall_check_time(rsp); 1931 /* Record GP times before starting GP, hence smp_store_release(). */ 1932 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1933 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1934 raw_spin_unlock_irq_rcu_node(rnp); 1935 1936 /* 1937 * Apply per-leaf buffered online and offline operations to the 1938 * rcu_node tree. Note that this new grace period need not wait 1939 * for subsequent online CPUs, and that quiescent-state forcing 1940 * will handle subsequent offline CPUs. 1941 */ 1942 rcu_for_each_leaf_node(rsp, rnp) { 1943 rcu_gp_slow(rsp, gp_preinit_delay); 1944 raw_spin_lock_irq_rcu_node(rnp); 1945 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1946 !rnp->wait_blkd_tasks) { 1947 /* Nothing to do on this leaf rcu_node structure. */ 1948 raw_spin_unlock_irq_rcu_node(rnp); 1949 continue; 1950 } 1951 1952 /* Record old state, apply changes to ->qsmaskinit field. */ 1953 oldmask = rnp->qsmaskinit; 1954 rnp->qsmaskinit = rnp->qsmaskinitnext; 1955 1956 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1957 if (!oldmask != !rnp->qsmaskinit) { 1958 if (!oldmask) /* First online CPU for this rcu_node. */ 1959 rcu_init_new_rnp(rnp); 1960 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 1961 rnp->wait_blkd_tasks = true; 1962 else /* Last offline CPU and can propagate. */ 1963 rcu_cleanup_dead_rnp(rnp); 1964 } 1965 1966 /* 1967 * If all waited-on tasks from prior grace period are 1968 * done, and if all this rcu_node structure's CPUs are 1969 * still offline, propagate up the rcu_node tree and 1970 * clear ->wait_blkd_tasks. Otherwise, if one of this 1971 * rcu_node structure's CPUs has since come back online, 1972 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 1973 * checks for this, so just call it unconditionally). 1974 */ 1975 if (rnp->wait_blkd_tasks && 1976 (!rcu_preempt_has_tasks(rnp) || 1977 rnp->qsmaskinit)) { 1978 rnp->wait_blkd_tasks = false; 1979 rcu_cleanup_dead_rnp(rnp); 1980 } 1981 1982 raw_spin_unlock_irq_rcu_node(rnp); 1983 } 1984 1985 /* 1986 * Set the quiescent-state-needed bits in all the rcu_node 1987 * structures for all currently online CPUs in breadth-first order, 1988 * starting from the root rcu_node structure, relying on the layout 1989 * of the tree within the rsp->node[] array. Note that other CPUs 1990 * will access only the leaves of the hierarchy, thus seeing that no 1991 * grace period is in progress, at least until the corresponding 1992 * leaf node has been initialized. In addition, we have excluded 1993 * CPU-hotplug operations. 1994 * 1995 * The grace period cannot complete until the initialization 1996 * process finishes, because this kthread handles both. 1997 */ 1998 rcu_for_each_node_breadth_first(rsp, rnp) { 1999 rcu_gp_slow(rsp, gp_init_delay); 2000 raw_spin_lock_irq_rcu_node(rnp); 2001 rdp = this_cpu_ptr(rsp->rda); 2002 rcu_preempt_check_blocked_tasks(rnp); 2003 rnp->qsmask = rnp->qsmaskinit; 2004 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2005 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2006 WRITE_ONCE(rnp->completed, rsp->completed); 2007 if (rnp == rdp->mynode) 2008 (void)__note_gp_changes(rsp, rnp, rdp); 2009 rcu_preempt_boost_start_gp(rnp); 2010 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2011 rnp->level, rnp->grplo, 2012 rnp->grphi, rnp->qsmask); 2013 raw_spin_unlock_irq_rcu_node(rnp); 2014 cond_resched_rcu_qs(); 2015 WRITE_ONCE(rsp->gp_activity, jiffies); 2016 } 2017 2018 return true; 2019 } 2020 2021 /* 2022 * Helper function for wait_event_interruptible_timeout() wakeup 2023 * at force-quiescent-state time. 2024 */ 2025 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2026 { 2027 struct rcu_node *rnp = rcu_get_root(rsp); 2028 2029 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2030 *gfp = READ_ONCE(rsp->gp_flags); 2031 if (*gfp & RCU_GP_FLAG_FQS) 2032 return true; 2033 2034 /* The current grace period has completed. */ 2035 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2036 return true; 2037 2038 return false; 2039 } 2040 2041 /* 2042 * Do one round of quiescent-state forcing. 2043 */ 2044 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2045 { 2046 bool isidle = false; 2047 unsigned long maxj; 2048 struct rcu_node *rnp = rcu_get_root(rsp); 2049 2050 WRITE_ONCE(rsp->gp_activity, jiffies); 2051 rsp->n_force_qs++; 2052 if (first_time) { 2053 /* Collect dyntick-idle snapshots. */ 2054 if (is_sysidle_rcu_state(rsp)) { 2055 isidle = true; 2056 maxj = jiffies - ULONG_MAX / 4; 2057 } 2058 force_qs_rnp(rsp, dyntick_save_progress_counter, 2059 &isidle, &maxj); 2060 rcu_sysidle_report_gp(rsp, isidle, maxj); 2061 } else { 2062 /* Handle dyntick-idle and offline CPUs. */ 2063 isidle = true; 2064 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 2065 } 2066 /* Clear flag to prevent immediate re-entry. */ 2067 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2068 raw_spin_lock_irq_rcu_node(rnp); 2069 WRITE_ONCE(rsp->gp_flags, 2070 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2071 raw_spin_unlock_irq_rcu_node(rnp); 2072 } 2073 } 2074 2075 /* 2076 * Clean up after the old grace period. 2077 */ 2078 static void rcu_gp_cleanup(struct rcu_state *rsp) 2079 { 2080 unsigned long gp_duration; 2081 bool needgp = false; 2082 int nocb = 0; 2083 struct rcu_data *rdp; 2084 struct rcu_node *rnp = rcu_get_root(rsp); 2085 struct swait_queue_head *sq; 2086 2087 WRITE_ONCE(rsp->gp_activity, jiffies); 2088 raw_spin_lock_irq_rcu_node(rnp); 2089 gp_duration = jiffies - rsp->gp_start; 2090 if (gp_duration > rsp->gp_max) 2091 rsp->gp_max = gp_duration; 2092 2093 /* 2094 * We know the grace period is complete, but to everyone else 2095 * it appears to still be ongoing. But it is also the case 2096 * that to everyone else it looks like there is nothing that 2097 * they can do to advance the grace period. It is therefore 2098 * safe for us to drop the lock in order to mark the grace 2099 * period as completed in all of the rcu_node structures. 2100 */ 2101 raw_spin_unlock_irq_rcu_node(rnp); 2102 2103 /* 2104 * Propagate new ->completed value to rcu_node structures so 2105 * that other CPUs don't have to wait until the start of the next 2106 * grace period to process their callbacks. This also avoids 2107 * some nasty RCU grace-period initialization races by forcing 2108 * the end of the current grace period to be completely recorded in 2109 * all of the rcu_node structures before the beginning of the next 2110 * grace period is recorded in any of the rcu_node structures. 2111 */ 2112 rcu_for_each_node_breadth_first(rsp, rnp) { 2113 raw_spin_lock_irq_rcu_node(rnp); 2114 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2115 WARN_ON_ONCE(rnp->qsmask); 2116 WRITE_ONCE(rnp->completed, rsp->gpnum); 2117 rdp = this_cpu_ptr(rsp->rda); 2118 if (rnp == rdp->mynode) 2119 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2120 /* smp_mb() provided by prior unlock-lock pair. */ 2121 nocb += rcu_future_gp_cleanup(rsp, rnp); 2122 sq = rcu_nocb_gp_get(rnp); 2123 raw_spin_unlock_irq_rcu_node(rnp); 2124 rcu_nocb_gp_cleanup(sq); 2125 cond_resched_rcu_qs(); 2126 WRITE_ONCE(rsp->gp_activity, jiffies); 2127 rcu_gp_slow(rsp, gp_cleanup_delay); 2128 } 2129 rnp = rcu_get_root(rsp); 2130 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2131 rcu_nocb_gp_set(rnp, nocb); 2132 2133 /* Declare grace period done. */ 2134 WRITE_ONCE(rsp->completed, rsp->gpnum); 2135 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2136 rsp->gp_state = RCU_GP_IDLE; 2137 rdp = this_cpu_ptr(rsp->rda); 2138 /* Advance CBs to reduce false positives below. */ 2139 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2140 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2141 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2142 trace_rcu_grace_period(rsp->name, 2143 READ_ONCE(rsp->gpnum), 2144 TPS("newreq")); 2145 } 2146 raw_spin_unlock_irq_rcu_node(rnp); 2147 } 2148 2149 /* 2150 * Body of kthread that handles grace periods. 2151 */ 2152 static int __noreturn rcu_gp_kthread(void *arg) 2153 { 2154 bool first_gp_fqs; 2155 int gf; 2156 unsigned long j; 2157 int ret; 2158 struct rcu_state *rsp = arg; 2159 struct rcu_node *rnp = rcu_get_root(rsp); 2160 2161 rcu_bind_gp_kthread(); 2162 for (;;) { 2163 2164 /* Handle grace-period start. */ 2165 for (;;) { 2166 trace_rcu_grace_period(rsp->name, 2167 READ_ONCE(rsp->gpnum), 2168 TPS("reqwait")); 2169 rsp->gp_state = RCU_GP_WAIT_GPS; 2170 swait_event_interruptible(rsp->gp_wq, 2171 READ_ONCE(rsp->gp_flags) & 2172 RCU_GP_FLAG_INIT); 2173 rsp->gp_state = RCU_GP_DONE_GPS; 2174 /* Locking provides needed memory barrier. */ 2175 if (rcu_gp_init(rsp)) 2176 break; 2177 cond_resched_rcu_qs(); 2178 WRITE_ONCE(rsp->gp_activity, jiffies); 2179 WARN_ON(signal_pending(current)); 2180 trace_rcu_grace_period(rsp->name, 2181 READ_ONCE(rsp->gpnum), 2182 TPS("reqwaitsig")); 2183 } 2184 2185 /* Handle quiescent-state forcing. */ 2186 first_gp_fqs = true; 2187 j = jiffies_till_first_fqs; 2188 if (j > HZ) { 2189 j = HZ; 2190 jiffies_till_first_fqs = HZ; 2191 } 2192 ret = 0; 2193 for (;;) { 2194 if (!ret) { 2195 rsp->jiffies_force_qs = jiffies + j; 2196 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2197 jiffies + 3 * j); 2198 } 2199 trace_rcu_grace_period(rsp->name, 2200 READ_ONCE(rsp->gpnum), 2201 TPS("fqswait")); 2202 rsp->gp_state = RCU_GP_WAIT_FQS; 2203 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2204 rcu_gp_fqs_check_wake(rsp, &gf), j); 2205 rsp->gp_state = RCU_GP_DOING_FQS; 2206 /* Locking provides needed memory barriers. */ 2207 /* If grace period done, leave loop. */ 2208 if (!READ_ONCE(rnp->qsmask) && 2209 !rcu_preempt_blocked_readers_cgp(rnp)) 2210 break; 2211 /* If time for quiescent-state forcing, do it. */ 2212 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2213 (gf & RCU_GP_FLAG_FQS)) { 2214 trace_rcu_grace_period(rsp->name, 2215 READ_ONCE(rsp->gpnum), 2216 TPS("fqsstart")); 2217 rcu_gp_fqs(rsp, first_gp_fqs); 2218 first_gp_fqs = false; 2219 trace_rcu_grace_period(rsp->name, 2220 READ_ONCE(rsp->gpnum), 2221 TPS("fqsend")); 2222 cond_resched_rcu_qs(); 2223 WRITE_ONCE(rsp->gp_activity, jiffies); 2224 ret = 0; /* Force full wait till next FQS. */ 2225 j = jiffies_till_next_fqs; 2226 if (j > HZ) { 2227 j = HZ; 2228 jiffies_till_next_fqs = HZ; 2229 } else if (j < 1) { 2230 j = 1; 2231 jiffies_till_next_fqs = 1; 2232 } 2233 } else { 2234 /* Deal with stray signal. */ 2235 cond_resched_rcu_qs(); 2236 WRITE_ONCE(rsp->gp_activity, jiffies); 2237 WARN_ON(signal_pending(current)); 2238 trace_rcu_grace_period(rsp->name, 2239 READ_ONCE(rsp->gpnum), 2240 TPS("fqswaitsig")); 2241 ret = 1; /* Keep old FQS timing. */ 2242 j = jiffies; 2243 if (time_after(jiffies, rsp->jiffies_force_qs)) 2244 j = 1; 2245 else 2246 j = rsp->jiffies_force_qs - j; 2247 } 2248 } 2249 2250 /* Handle grace-period end. */ 2251 rsp->gp_state = RCU_GP_CLEANUP; 2252 rcu_gp_cleanup(rsp); 2253 rsp->gp_state = RCU_GP_CLEANED; 2254 } 2255 } 2256 2257 /* 2258 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2259 * in preparation for detecting the next grace period. The caller must hold 2260 * the root node's ->lock and hard irqs must be disabled. 2261 * 2262 * Note that it is legal for a dying CPU (which is marked as offline) to 2263 * invoke this function. This can happen when the dying CPU reports its 2264 * quiescent state. 2265 * 2266 * Returns true if the grace-period kthread must be awakened. 2267 */ 2268 static bool 2269 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2270 struct rcu_data *rdp) 2271 { 2272 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2273 /* 2274 * Either we have not yet spawned the grace-period 2275 * task, this CPU does not need another grace period, 2276 * or a grace period is already in progress. 2277 * Either way, don't start a new grace period. 2278 */ 2279 return false; 2280 } 2281 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2282 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2283 TPS("newreq")); 2284 2285 /* 2286 * We can't do wakeups while holding the rnp->lock, as that 2287 * could cause possible deadlocks with the rq->lock. Defer 2288 * the wakeup to our caller. 2289 */ 2290 return true; 2291 } 2292 2293 /* 2294 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2295 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2296 * is invoked indirectly from rcu_advance_cbs(), which would result in 2297 * endless recursion -- or would do so if it wasn't for the self-deadlock 2298 * that is encountered beforehand. 2299 * 2300 * Returns true if the grace-period kthread needs to be awakened. 2301 */ 2302 static bool rcu_start_gp(struct rcu_state *rsp) 2303 { 2304 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2305 struct rcu_node *rnp = rcu_get_root(rsp); 2306 bool ret = false; 2307 2308 /* 2309 * If there is no grace period in progress right now, any 2310 * callbacks we have up to this point will be satisfied by the 2311 * next grace period. Also, advancing the callbacks reduces the 2312 * probability of false positives from cpu_needs_another_gp() 2313 * resulting in pointless grace periods. So, advance callbacks 2314 * then start the grace period! 2315 */ 2316 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2317 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2318 return ret; 2319 } 2320 2321 /* 2322 * Report a full set of quiescent states to the specified rcu_state data 2323 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2324 * kthread if another grace period is required. Whether we wake 2325 * the grace-period kthread or it awakens itself for the next round 2326 * of quiescent-state forcing, that kthread will clean up after the 2327 * just-completed grace period. Note that the caller must hold rnp->lock, 2328 * which is released before return. 2329 */ 2330 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2331 __releases(rcu_get_root(rsp)->lock) 2332 { 2333 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2334 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2335 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2336 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */ 2337 } 2338 2339 /* 2340 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2341 * Allows quiescent states for a group of CPUs to be reported at one go 2342 * to the specified rcu_node structure, though all the CPUs in the group 2343 * must be represented by the same rcu_node structure (which need not be a 2344 * leaf rcu_node structure, though it often will be). The gps parameter 2345 * is the grace-period snapshot, which means that the quiescent states 2346 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2347 * must be held upon entry, and it is released before return. 2348 */ 2349 static void 2350 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2351 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2352 __releases(rnp->lock) 2353 { 2354 unsigned long oldmask = 0; 2355 struct rcu_node *rnp_c; 2356 2357 /* Walk up the rcu_node hierarchy. */ 2358 for (;;) { 2359 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2360 2361 /* 2362 * Our bit has already been cleared, or the 2363 * relevant grace period is already over, so done. 2364 */ 2365 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2366 return; 2367 } 2368 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2369 rnp->qsmask &= ~mask; 2370 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2371 mask, rnp->qsmask, rnp->level, 2372 rnp->grplo, rnp->grphi, 2373 !!rnp->gp_tasks); 2374 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2375 2376 /* Other bits still set at this level, so done. */ 2377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2378 return; 2379 } 2380 mask = rnp->grpmask; 2381 if (rnp->parent == NULL) { 2382 2383 /* No more levels. Exit loop holding root lock. */ 2384 2385 break; 2386 } 2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2388 rnp_c = rnp; 2389 rnp = rnp->parent; 2390 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2391 oldmask = rnp_c->qsmask; 2392 } 2393 2394 /* 2395 * Get here if we are the last CPU to pass through a quiescent 2396 * state for this grace period. Invoke rcu_report_qs_rsp() 2397 * to clean up and start the next grace period if one is needed. 2398 */ 2399 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2400 } 2401 2402 /* 2403 * Record a quiescent state for all tasks that were previously queued 2404 * on the specified rcu_node structure and that were blocking the current 2405 * RCU grace period. The caller must hold the specified rnp->lock with 2406 * irqs disabled, and this lock is released upon return, but irqs remain 2407 * disabled. 2408 */ 2409 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2410 struct rcu_node *rnp, unsigned long flags) 2411 __releases(rnp->lock) 2412 { 2413 unsigned long gps; 2414 unsigned long mask; 2415 struct rcu_node *rnp_p; 2416 2417 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2418 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2419 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2420 return; /* Still need more quiescent states! */ 2421 } 2422 2423 rnp_p = rnp->parent; 2424 if (rnp_p == NULL) { 2425 /* 2426 * Only one rcu_node structure in the tree, so don't 2427 * try to report up to its nonexistent parent! 2428 */ 2429 rcu_report_qs_rsp(rsp, flags); 2430 return; 2431 } 2432 2433 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2434 gps = rnp->gpnum; 2435 mask = rnp->grpmask; 2436 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2437 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2438 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2439 } 2440 2441 /* 2442 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2443 * structure. This must be called from the specified CPU. 2444 */ 2445 static void 2446 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2447 { 2448 unsigned long flags; 2449 unsigned long mask; 2450 bool needwake; 2451 struct rcu_node *rnp; 2452 2453 rnp = rdp->mynode; 2454 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2455 if ((rdp->cpu_no_qs.b.norm && 2456 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2457 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2458 rdp->gpwrap) { 2459 2460 /* 2461 * The grace period in which this quiescent state was 2462 * recorded has ended, so don't report it upwards. 2463 * We will instead need a new quiescent state that lies 2464 * within the current grace period. 2465 */ 2466 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2467 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2469 return; 2470 } 2471 mask = rdp->grpmask; 2472 if ((rnp->qsmask & mask) == 0) { 2473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2474 } else { 2475 rdp->core_needs_qs = false; 2476 2477 /* 2478 * This GP can't end until cpu checks in, so all of our 2479 * callbacks can be processed during the next GP. 2480 */ 2481 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2482 2483 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2484 /* ^^^ Released rnp->lock */ 2485 if (needwake) 2486 rcu_gp_kthread_wake(rsp); 2487 } 2488 } 2489 2490 /* 2491 * Check to see if there is a new grace period of which this CPU 2492 * is not yet aware, and if so, set up local rcu_data state for it. 2493 * Otherwise, see if this CPU has just passed through its first 2494 * quiescent state for this grace period, and record that fact if so. 2495 */ 2496 static void 2497 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2498 { 2499 /* Check for grace-period ends and beginnings. */ 2500 note_gp_changes(rsp, rdp); 2501 2502 /* 2503 * Does this CPU still need to do its part for current grace period? 2504 * If no, return and let the other CPUs do their part as well. 2505 */ 2506 if (!rdp->core_needs_qs) 2507 return; 2508 2509 /* 2510 * Was there a quiescent state since the beginning of the grace 2511 * period? If no, then exit and wait for the next call. 2512 */ 2513 if (rdp->cpu_no_qs.b.norm && 2514 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2515 return; 2516 2517 /* 2518 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2519 * judge of that). 2520 */ 2521 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2522 } 2523 2524 /* 2525 * Send the specified CPU's RCU callbacks to the orphanage. The 2526 * specified CPU must be offline, and the caller must hold the 2527 * ->orphan_lock. 2528 */ 2529 static void 2530 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2531 struct rcu_node *rnp, struct rcu_data *rdp) 2532 { 2533 /* No-CBs CPUs do not have orphanable callbacks. */ 2534 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2535 return; 2536 2537 /* 2538 * Orphan the callbacks. First adjust the counts. This is safe 2539 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2540 * cannot be running now. Thus no memory barrier is required. 2541 */ 2542 if (rdp->nxtlist != NULL) { 2543 rsp->qlen_lazy += rdp->qlen_lazy; 2544 rsp->qlen += rdp->qlen; 2545 rdp->n_cbs_orphaned += rdp->qlen; 2546 rdp->qlen_lazy = 0; 2547 WRITE_ONCE(rdp->qlen, 0); 2548 } 2549 2550 /* 2551 * Next, move those callbacks still needing a grace period to 2552 * the orphanage, where some other CPU will pick them up. 2553 * Some of the callbacks might have gone partway through a grace 2554 * period, but that is too bad. They get to start over because we 2555 * cannot assume that grace periods are synchronized across CPUs. 2556 * We don't bother updating the ->nxttail[] array yet, instead 2557 * we just reset the whole thing later on. 2558 */ 2559 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2560 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2561 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2562 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2563 } 2564 2565 /* 2566 * Then move the ready-to-invoke callbacks to the orphanage, 2567 * where some other CPU will pick them up. These will not be 2568 * required to pass though another grace period: They are done. 2569 */ 2570 if (rdp->nxtlist != NULL) { 2571 *rsp->orphan_donetail = rdp->nxtlist; 2572 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2573 } 2574 2575 /* 2576 * Finally, initialize the rcu_data structure's list to empty and 2577 * disallow further callbacks on this CPU. 2578 */ 2579 init_callback_list(rdp); 2580 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2581 } 2582 2583 /* 2584 * Adopt the RCU callbacks from the specified rcu_state structure's 2585 * orphanage. The caller must hold the ->orphan_lock. 2586 */ 2587 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2588 { 2589 int i; 2590 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2591 2592 /* No-CBs CPUs are handled specially. */ 2593 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2594 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2595 return; 2596 2597 /* Do the accounting first. */ 2598 rdp->qlen_lazy += rsp->qlen_lazy; 2599 rdp->qlen += rsp->qlen; 2600 rdp->n_cbs_adopted += rsp->qlen; 2601 if (rsp->qlen_lazy != rsp->qlen) 2602 rcu_idle_count_callbacks_posted(); 2603 rsp->qlen_lazy = 0; 2604 rsp->qlen = 0; 2605 2606 /* 2607 * We do not need a memory barrier here because the only way we 2608 * can get here if there is an rcu_barrier() in flight is if 2609 * we are the task doing the rcu_barrier(). 2610 */ 2611 2612 /* First adopt the ready-to-invoke callbacks. */ 2613 if (rsp->orphan_donelist != NULL) { 2614 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2615 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2616 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2617 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2618 rdp->nxttail[i] = rsp->orphan_donetail; 2619 rsp->orphan_donelist = NULL; 2620 rsp->orphan_donetail = &rsp->orphan_donelist; 2621 } 2622 2623 /* And then adopt the callbacks that still need a grace period. */ 2624 if (rsp->orphan_nxtlist != NULL) { 2625 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2626 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2627 rsp->orphan_nxtlist = NULL; 2628 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2629 } 2630 } 2631 2632 /* 2633 * Trace the fact that this CPU is going offline. 2634 */ 2635 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2636 { 2637 RCU_TRACE(unsigned long mask); 2638 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2639 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2640 2641 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2642 return; 2643 2644 RCU_TRACE(mask = rdp->grpmask); 2645 trace_rcu_grace_period(rsp->name, 2646 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2647 TPS("cpuofl")); 2648 } 2649 2650 /* 2651 * All CPUs for the specified rcu_node structure have gone offline, 2652 * and all tasks that were preempted within an RCU read-side critical 2653 * section while running on one of those CPUs have since exited their RCU 2654 * read-side critical section. Some other CPU is reporting this fact with 2655 * the specified rcu_node structure's ->lock held and interrupts disabled. 2656 * This function therefore goes up the tree of rcu_node structures, 2657 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2658 * the leaf rcu_node structure's ->qsmaskinit field has already been 2659 * updated 2660 * 2661 * This function does check that the specified rcu_node structure has 2662 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2663 * prematurely. That said, invoking it after the fact will cost you 2664 * a needless lock acquisition. So once it has done its work, don't 2665 * invoke it again. 2666 */ 2667 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2668 { 2669 long mask; 2670 struct rcu_node *rnp = rnp_leaf; 2671 2672 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2673 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2674 return; 2675 for (;;) { 2676 mask = rnp->grpmask; 2677 rnp = rnp->parent; 2678 if (!rnp) 2679 break; 2680 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2681 rnp->qsmaskinit &= ~mask; 2682 rnp->qsmask &= ~mask; 2683 if (rnp->qsmaskinit) { 2684 raw_spin_unlock_rcu_node(rnp); 2685 /* irqs remain disabled. */ 2686 return; 2687 } 2688 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2689 } 2690 } 2691 2692 /* 2693 * The CPU has been completely removed, and some other CPU is reporting 2694 * this fact from process context. Do the remainder of the cleanup, 2695 * including orphaning the outgoing CPU's RCU callbacks, and also 2696 * adopting them. There can only be one CPU hotplug operation at a time, 2697 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2698 */ 2699 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2700 { 2701 unsigned long flags; 2702 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2703 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2704 2705 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2706 return; 2707 2708 /* Adjust any no-longer-needed kthreads. */ 2709 rcu_boost_kthread_setaffinity(rnp, -1); 2710 2711 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2712 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2713 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2714 rcu_adopt_orphan_cbs(rsp, flags); 2715 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2716 2717 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2718 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2719 cpu, rdp->qlen, rdp->nxtlist); 2720 } 2721 2722 /* 2723 * Invoke any RCU callbacks that have made it to the end of their grace 2724 * period. Thottle as specified by rdp->blimit. 2725 */ 2726 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2727 { 2728 unsigned long flags; 2729 struct rcu_head *next, *list, **tail; 2730 long bl, count, count_lazy; 2731 int i; 2732 2733 /* If no callbacks are ready, just return. */ 2734 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2735 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2736 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist), 2737 need_resched(), is_idle_task(current), 2738 rcu_is_callbacks_kthread()); 2739 return; 2740 } 2741 2742 /* 2743 * Extract the list of ready callbacks, disabling to prevent 2744 * races with call_rcu() from interrupt handlers. 2745 */ 2746 local_irq_save(flags); 2747 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2748 bl = rdp->blimit; 2749 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2750 list = rdp->nxtlist; 2751 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2752 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2753 tail = rdp->nxttail[RCU_DONE_TAIL]; 2754 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2755 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2756 rdp->nxttail[i] = &rdp->nxtlist; 2757 local_irq_restore(flags); 2758 2759 /* Invoke callbacks. */ 2760 count = count_lazy = 0; 2761 while (list) { 2762 next = list->next; 2763 prefetch(next); 2764 debug_rcu_head_unqueue(list); 2765 if (__rcu_reclaim(rsp->name, list)) 2766 count_lazy++; 2767 list = next; 2768 /* Stop only if limit reached and CPU has something to do. */ 2769 if (++count >= bl && 2770 (need_resched() || 2771 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2772 break; 2773 } 2774 2775 local_irq_save(flags); 2776 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2777 is_idle_task(current), 2778 rcu_is_callbacks_kthread()); 2779 2780 /* Update count, and requeue any remaining callbacks. */ 2781 if (list != NULL) { 2782 *tail = rdp->nxtlist; 2783 rdp->nxtlist = list; 2784 for (i = 0; i < RCU_NEXT_SIZE; i++) 2785 if (&rdp->nxtlist == rdp->nxttail[i]) 2786 rdp->nxttail[i] = tail; 2787 else 2788 break; 2789 } 2790 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2791 rdp->qlen_lazy -= count_lazy; 2792 WRITE_ONCE(rdp->qlen, rdp->qlen - count); 2793 rdp->n_cbs_invoked += count; 2794 2795 /* Reinstate batch limit if we have worked down the excess. */ 2796 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2797 rdp->blimit = blimit; 2798 2799 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2800 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2801 rdp->qlen_last_fqs_check = 0; 2802 rdp->n_force_qs_snap = rsp->n_force_qs; 2803 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2804 rdp->qlen_last_fqs_check = rdp->qlen; 2805 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2806 2807 local_irq_restore(flags); 2808 2809 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2810 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2811 invoke_rcu_core(); 2812 } 2813 2814 /* 2815 * Check to see if this CPU is in a non-context-switch quiescent state 2816 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2817 * Also schedule RCU core processing. 2818 * 2819 * This function must be called from hardirq context. It is normally 2820 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2821 * false, there is no point in invoking rcu_check_callbacks(). 2822 */ 2823 void rcu_check_callbacks(int user) 2824 { 2825 trace_rcu_utilization(TPS("Start scheduler-tick")); 2826 increment_cpu_stall_ticks(); 2827 if (user || rcu_is_cpu_rrupt_from_idle()) { 2828 2829 /* 2830 * Get here if this CPU took its interrupt from user 2831 * mode or from the idle loop, and if this is not a 2832 * nested interrupt. In this case, the CPU is in 2833 * a quiescent state, so note it. 2834 * 2835 * No memory barrier is required here because both 2836 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2837 * variables that other CPUs neither access nor modify, 2838 * at least not while the corresponding CPU is online. 2839 */ 2840 2841 rcu_sched_qs(); 2842 rcu_bh_qs(); 2843 2844 } else if (!in_softirq()) { 2845 2846 /* 2847 * Get here if this CPU did not take its interrupt from 2848 * softirq, in other words, if it is not interrupting 2849 * a rcu_bh read-side critical section. This is an _bh 2850 * critical section, so note it. 2851 */ 2852 2853 rcu_bh_qs(); 2854 } 2855 rcu_preempt_check_callbacks(); 2856 if (rcu_pending()) 2857 invoke_rcu_core(); 2858 if (user) 2859 rcu_note_voluntary_context_switch(current); 2860 trace_rcu_utilization(TPS("End scheduler-tick")); 2861 } 2862 2863 /* 2864 * Scan the leaf rcu_node structures, processing dyntick state for any that 2865 * have not yet encountered a quiescent state, using the function specified. 2866 * Also initiate boosting for any threads blocked on the root rcu_node. 2867 * 2868 * The caller must have suppressed start of new grace periods. 2869 */ 2870 static void force_qs_rnp(struct rcu_state *rsp, 2871 int (*f)(struct rcu_data *rsp, bool *isidle, 2872 unsigned long *maxj), 2873 bool *isidle, unsigned long *maxj) 2874 { 2875 unsigned long bit; 2876 int cpu; 2877 unsigned long flags; 2878 unsigned long mask; 2879 struct rcu_node *rnp; 2880 2881 rcu_for_each_leaf_node(rsp, rnp) { 2882 cond_resched_rcu_qs(); 2883 mask = 0; 2884 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2885 if (rnp->qsmask == 0) { 2886 if (rcu_state_p == &rcu_sched_state || 2887 rsp != rcu_state_p || 2888 rcu_preempt_blocked_readers_cgp(rnp)) { 2889 /* 2890 * No point in scanning bits because they 2891 * are all zero. But we might need to 2892 * priority-boost blocked readers. 2893 */ 2894 rcu_initiate_boost(rnp, flags); 2895 /* rcu_initiate_boost() releases rnp->lock */ 2896 continue; 2897 } 2898 if (rnp->parent && 2899 (rnp->parent->qsmask & rnp->grpmask)) { 2900 /* 2901 * Race between grace-period 2902 * initialization and task exiting RCU 2903 * read-side critical section: Report. 2904 */ 2905 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2906 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2907 continue; 2908 } 2909 } 2910 cpu = rnp->grplo; 2911 bit = 1; 2912 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2913 if ((rnp->qsmask & bit) != 0) { 2914 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2915 mask |= bit; 2916 } 2917 } 2918 if (mask != 0) { 2919 /* Idle/offline CPUs, report (releases rnp->lock. */ 2920 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2921 } else { 2922 /* Nothing to do here, so just drop the lock. */ 2923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2924 } 2925 } 2926 } 2927 2928 /* 2929 * Force quiescent states on reluctant CPUs, and also detect which 2930 * CPUs are in dyntick-idle mode. 2931 */ 2932 static void force_quiescent_state(struct rcu_state *rsp) 2933 { 2934 unsigned long flags; 2935 bool ret; 2936 struct rcu_node *rnp; 2937 struct rcu_node *rnp_old = NULL; 2938 2939 /* Funnel through hierarchy to reduce memory contention. */ 2940 rnp = __this_cpu_read(rsp->rda->mynode); 2941 for (; rnp != NULL; rnp = rnp->parent) { 2942 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2943 !raw_spin_trylock(&rnp->fqslock); 2944 if (rnp_old != NULL) 2945 raw_spin_unlock(&rnp_old->fqslock); 2946 if (ret) { 2947 rsp->n_force_qs_lh++; 2948 return; 2949 } 2950 rnp_old = rnp; 2951 } 2952 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2953 2954 /* Reached the root of the rcu_node tree, acquire lock. */ 2955 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2956 raw_spin_unlock(&rnp_old->fqslock); 2957 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2958 rsp->n_force_qs_lh++; 2959 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2960 return; /* Someone beat us to it. */ 2961 } 2962 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2963 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2964 swake_up(&rsp->gp_wq); /* Memory barrier implied by swake_up() path. */ 2965 } 2966 2967 /* 2968 * This does the RCU core processing work for the specified rcu_state 2969 * and rcu_data structures. This may be called only from the CPU to 2970 * whom the rdp belongs. 2971 */ 2972 static void 2973 __rcu_process_callbacks(struct rcu_state *rsp) 2974 { 2975 unsigned long flags; 2976 bool needwake; 2977 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2978 2979 WARN_ON_ONCE(rdp->beenonline == 0); 2980 2981 /* Update RCU state based on any recent quiescent states. */ 2982 rcu_check_quiescent_state(rsp, rdp); 2983 2984 /* Does this CPU require a not-yet-started grace period? */ 2985 local_irq_save(flags); 2986 if (cpu_needs_another_gp(rsp, rdp)) { 2987 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2988 needwake = rcu_start_gp(rsp); 2989 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2990 if (needwake) 2991 rcu_gp_kthread_wake(rsp); 2992 } else { 2993 local_irq_restore(flags); 2994 } 2995 2996 /* If there are callbacks ready, invoke them. */ 2997 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2998 invoke_rcu_callbacks(rsp, rdp); 2999 3000 /* Do any needed deferred wakeups of rcuo kthreads. */ 3001 do_nocb_deferred_wakeup(rdp); 3002 } 3003 3004 /* 3005 * Do RCU core processing for the current CPU. 3006 */ 3007 static void rcu_process_callbacks(struct softirq_action *unused) 3008 { 3009 struct rcu_state *rsp; 3010 3011 if (cpu_is_offline(smp_processor_id())) 3012 return; 3013 trace_rcu_utilization(TPS("Start RCU core")); 3014 for_each_rcu_flavor(rsp) 3015 __rcu_process_callbacks(rsp); 3016 trace_rcu_utilization(TPS("End RCU core")); 3017 } 3018 3019 /* 3020 * Schedule RCU callback invocation. If the specified type of RCU 3021 * does not support RCU priority boosting, just do a direct call, 3022 * otherwise wake up the per-CPU kernel kthread. Note that because we 3023 * are running on the current CPU with softirqs disabled, the 3024 * rcu_cpu_kthread_task cannot disappear out from under us. 3025 */ 3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3027 { 3028 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3029 return; 3030 if (likely(!rsp->boost)) { 3031 rcu_do_batch(rsp, rdp); 3032 return; 3033 } 3034 invoke_rcu_callbacks_kthread(); 3035 } 3036 3037 static void invoke_rcu_core(void) 3038 { 3039 if (cpu_online(smp_processor_id())) 3040 raise_softirq(RCU_SOFTIRQ); 3041 } 3042 3043 /* 3044 * Handle any core-RCU processing required by a call_rcu() invocation. 3045 */ 3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3047 struct rcu_head *head, unsigned long flags) 3048 { 3049 bool needwake; 3050 3051 /* 3052 * If called from an extended quiescent state, invoke the RCU 3053 * core in order to force a re-evaluation of RCU's idleness. 3054 */ 3055 if (!rcu_is_watching()) 3056 invoke_rcu_core(); 3057 3058 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3059 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3060 return; 3061 3062 /* 3063 * Force the grace period if too many callbacks or too long waiting. 3064 * Enforce hysteresis, and don't invoke force_quiescent_state() 3065 * if some other CPU has recently done so. Also, don't bother 3066 * invoking force_quiescent_state() if the newly enqueued callback 3067 * is the only one waiting for a grace period to complete. 3068 */ 3069 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 3070 3071 /* Are we ignoring a completed grace period? */ 3072 note_gp_changes(rsp, rdp); 3073 3074 /* Start a new grace period if one not already started. */ 3075 if (!rcu_gp_in_progress(rsp)) { 3076 struct rcu_node *rnp_root = rcu_get_root(rsp); 3077 3078 raw_spin_lock_rcu_node(rnp_root); 3079 needwake = rcu_start_gp(rsp); 3080 raw_spin_unlock_rcu_node(rnp_root); 3081 if (needwake) 3082 rcu_gp_kthread_wake(rsp); 3083 } else { 3084 /* Give the grace period a kick. */ 3085 rdp->blimit = LONG_MAX; 3086 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3087 *rdp->nxttail[RCU_DONE_TAIL] != head) 3088 force_quiescent_state(rsp); 3089 rdp->n_force_qs_snap = rsp->n_force_qs; 3090 rdp->qlen_last_fqs_check = rdp->qlen; 3091 } 3092 } 3093 } 3094 3095 /* 3096 * RCU callback function to leak a callback. 3097 */ 3098 static void rcu_leak_callback(struct rcu_head *rhp) 3099 { 3100 } 3101 3102 /* 3103 * Helper function for call_rcu() and friends. The cpu argument will 3104 * normally be -1, indicating "currently running CPU". It may specify 3105 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3106 * is expected to specify a CPU. 3107 */ 3108 static void 3109 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3110 struct rcu_state *rsp, int cpu, bool lazy) 3111 { 3112 unsigned long flags; 3113 struct rcu_data *rdp; 3114 3115 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 3116 if (debug_rcu_head_queue(head)) { 3117 /* Probable double call_rcu(), so leak the callback. */ 3118 WRITE_ONCE(head->func, rcu_leak_callback); 3119 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 3120 return; 3121 } 3122 head->func = func; 3123 head->next = NULL; 3124 3125 /* 3126 * Opportunistically note grace-period endings and beginnings. 3127 * Note that we might see a beginning right after we see an 3128 * end, but never vice versa, since this CPU has to pass through 3129 * a quiescent state betweentimes. 3130 */ 3131 local_irq_save(flags); 3132 rdp = this_cpu_ptr(rsp->rda); 3133 3134 /* Add the callback to our list. */ 3135 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 3136 int offline; 3137 3138 if (cpu != -1) 3139 rdp = per_cpu_ptr(rsp->rda, cpu); 3140 if (likely(rdp->mynode)) { 3141 /* Post-boot, so this should be for a no-CBs CPU. */ 3142 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3143 WARN_ON_ONCE(offline); 3144 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3145 local_irq_restore(flags); 3146 return; 3147 } 3148 /* 3149 * Very early boot, before rcu_init(). Initialize if needed 3150 * and then drop through to queue the callback. 3151 */ 3152 BUG_ON(cpu != -1); 3153 WARN_ON_ONCE(!rcu_is_watching()); 3154 if (!likely(rdp->nxtlist)) 3155 init_default_callback_list(rdp); 3156 } 3157 WRITE_ONCE(rdp->qlen, rdp->qlen + 1); 3158 if (lazy) 3159 rdp->qlen_lazy++; 3160 else 3161 rcu_idle_count_callbacks_posted(); 3162 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 3163 *rdp->nxttail[RCU_NEXT_TAIL] = head; 3164 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 3165 3166 if (__is_kfree_rcu_offset((unsigned long)func)) 3167 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3168 rdp->qlen_lazy, rdp->qlen); 3169 else 3170 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 3171 3172 /* Go handle any RCU core processing required. */ 3173 __call_rcu_core(rsp, rdp, head, flags); 3174 local_irq_restore(flags); 3175 } 3176 3177 /* 3178 * Queue an RCU-sched callback for invocation after a grace period. 3179 */ 3180 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3181 { 3182 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3183 } 3184 EXPORT_SYMBOL_GPL(call_rcu_sched); 3185 3186 /* 3187 * Queue an RCU callback for invocation after a quicker grace period. 3188 */ 3189 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3190 { 3191 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3192 } 3193 EXPORT_SYMBOL_GPL(call_rcu_bh); 3194 3195 /* 3196 * Queue an RCU callback for lazy invocation after a grace period. 3197 * This will likely be later named something like "call_rcu_lazy()", 3198 * but this change will require some way of tagging the lazy RCU 3199 * callbacks in the list of pending callbacks. Until then, this 3200 * function may only be called from __kfree_rcu(). 3201 */ 3202 void kfree_call_rcu(struct rcu_head *head, 3203 rcu_callback_t func) 3204 { 3205 __call_rcu(head, func, rcu_state_p, -1, 1); 3206 } 3207 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3208 3209 /* 3210 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3211 * any blocking grace-period wait automatically implies a grace period 3212 * if there is only one CPU online at any point time during execution 3213 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3214 * occasionally incorrectly indicate that there are multiple CPUs online 3215 * when there was in fact only one the whole time, as this just adds 3216 * some overhead: RCU still operates correctly. 3217 */ 3218 static inline int rcu_blocking_is_gp(void) 3219 { 3220 int ret; 3221 3222 might_sleep(); /* Check for RCU read-side critical section. */ 3223 preempt_disable(); 3224 ret = num_online_cpus() <= 1; 3225 preempt_enable(); 3226 return ret; 3227 } 3228 3229 /** 3230 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3231 * 3232 * Control will return to the caller some time after a full rcu-sched 3233 * grace period has elapsed, in other words after all currently executing 3234 * rcu-sched read-side critical sections have completed. These read-side 3235 * critical sections are delimited by rcu_read_lock_sched() and 3236 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3237 * local_irq_disable(), and so on may be used in place of 3238 * rcu_read_lock_sched(). 3239 * 3240 * This means that all preempt_disable code sequences, including NMI and 3241 * non-threaded hardware-interrupt handlers, in progress on entry will 3242 * have completed before this primitive returns. However, this does not 3243 * guarantee that softirq handlers will have completed, since in some 3244 * kernels, these handlers can run in process context, and can block. 3245 * 3246 * Note that this guarantee implies further memory-ordering guarantees. 3247 * On systems with more than one CPU, when synchronize_sched() returns, 3248 * each CPU is guaranteed to have executed a full memory barrier since the 3249 * end of its last RCU-sched read-side critical section whose beginning 3250 * preceded the call to synchronize_sched(). In addition, each CPU having 3251 * an RCU read-side critical section that extends beyond the return from 3252 * synchronize_sched() is guaranteed to have executed a full memory barrier 3253 * after the beginning of synchronize_sched() and before the beginning of 3254 * that RCU read-side critical section. Note that these guarantees include 3255 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3256 * that are executing in the kernel. 3257 * 3258 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3259 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3260 * to have executed a full memory barrier during the execution of 3261 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3262 * again only if the system has more than one CPU). 3263 * 3264 * This primitive provides the guarantees made by the (now removed) 3265 * synchronize_kernel() API. In contrast, synchronize_rcu() only 3266 * guarantees that rcu_read_lock() sections will have completed. 3267 * In "classic RCU", these two guarantees happen to be one and 3268 * the same, but can differ in realtime RCU implementations. 3269 */ 3270 void synchronize_sched(void) 3271 { 3272 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3273 lock_is_held(&rcu_lock_map) || 3274 lock_is_held(&rcu_sched_lock_map), 3275 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3276 if (rcu_blocking_is_gp()) 3277 return; 3278 if (rcu_gp_is_expedited()) 3279 synchronize_sched_expedited(); 3280 else 3281 wait_rcu_gp(call_rcu_sched); 3282 } 3283 EXPORT_SYMBOL_GPL(synchronize_sched); 3284 3285 /** 3286 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3287 * 3288 * Control will return to the caller some time after a full rcu_bh grace 3289 * period has elapsed, in other words after all currently executing rcu_bh 3290 * read-side critical sections have completed. RCU read-side critical 3291 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3292 * and may be nested. 3293 * 3294 * See the description of synchronize_sched() for more detailed information 3295 * on memory ordering guarantees. 3296 */ 3297 void synchronize_rcu_bh(void) 3298 { 3299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3300 lock_is_held(&rcu_lock_map) || 3301 lock_is_held(&rcu_sched_lock_map), 3302 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3303 if (rcu_blocking_is_gp()) 3304 return; 3305 if (rcu_gp_is_expedited()) 3306 synchronize_rcu_bh_expedited(); 3307 else 3308 wait_rcu_gp(call_rcu_bh); 3309 } 3310 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3311 3312 /** 3313 * get_state_synchronize_rcu - Snapshot current RCU state 3314 * 3315 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3316 * to determine whether or not a full grace period has elapsed in the 3317 * meantime. 3318 */ 3319 unsigned long get_state_synchronize_rcu(void) 3320 { 3321 /* 3322 * Any prior manipulation of RCU-protected data must happen 3323 * before the load from ->gpnum. 3324 */ 3325 smp_mb(); /* ^^^ */ 3326 3327 /* 3328 * Make sure this load happens before the purportedly 3329 * time-consuming work between get_state_synchronize_rcu() 3330 * and cond_synchronize_rcu(). 3331 */ 3332 return smp_load_acquire(&rcu_state_p->gpnum); 3333 } 3334 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3335 3336 /** 3337 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3338 * 3339 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3340 * 3341 * If a full RCU grace period has elapsed since the earlier call to 3342 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3343 * synchronize_rcu() to wait for a full grace period. 3344 * 3345 * Yes, this function does not take counter wrap into account. But 3346 * counter wrap is harmless. If the counter wraps, we have waited for 3347 * more than 2 billion grace periods (and way more on a 64-bit system!), 3348 * so waiting for one additional grace period should be just fine. 3349 */ 3350 void cond_synchronize_rcu(unsigned long oldstate) 3351 { 3352 unsigned long newstate; 3353 3354 /* 3355 * Ensure that this load happens before any RCU-destructive 3356 * actions the caller might carry out after we return. 3357 */ 3358 newstate = smp_load_acquire(&rcu_state_p->completed); 3359 if (ULONG_CMP_GE(oldstate, newstate)) 3360 synchronize_rcu(); 3361 } 3362 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3363 3364 /** 3365 * get_state_synchronize_sched - Snapshot current RCU-sched state 3366 * 3367 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3368 * to determine whether or not a full grace period has elapsed in the 3369 * meantime. 3370 */ 3371 unsigned long get_state_synchronize_sched(void) 3372 { 3373 /* 3374 * Any prior manipulation of RCU-protected data must happen 3375 * before the load from ->gpnum. 3376 */ 3377 smp_mb(); /* ^^^ */ 3378 3379 /* 3380 * Make sure this load happens before the purportedly 3381 * time-consuming work between get_state_synchronize_sched() 3382 * and cond_synchronize_sched(). 3383 */ 3384 return smp_load_acquire(&rcu_sched_state.gpnum); 3385 } 3386 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3387 3388 /** 3389 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3390 * 3391 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3392 * 3393 * If a full RCU-sched grace period has elapsed since the earlier call to 3394 * get_state_synchronize_sched(), just return. Otherwise, invoke 3395 * synchronize_sched() to wait for a full grace period. 3396 * 3397 * Yes, this function does not take counter wrap into account. But 3398 * counter wrap is harmless. If the counter wraps, we have waited for 3399 * more than 2 billion grace periods (and way more on a 64-bit system!), 3400 * so waiting for one additional grace period should be just fine. 3401 */ 3402 void cond_synchronize_sched(unsigned long oldstate) 3403 { 3404 unsigned long newstate; 3405 3406 /* 3407 * Ensure that this load happens before any RCU-destructive 3408 * actions the caller might carry out after we return. 3409 */ 3410 newstate = smp_load_acquire(&rcu_sched_state.completed); 3411 if (ULONG_CMP_GE(oldstate, newstate)) 3412 synchronize_sched(); 3413 } 3414 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3415 3416 /* Adjust sequence number for start of update-side operation. */ 3417 static void rcu_seq_start(unsigned long *sp) 3418 { 3419 WRITE_ONCE(*sp, *sp + 1); 3420 smp_mb(); /* Ensure update-side operation after counter increment. */ 3421 WARN_ON_ONCE(!(*sp & 0x1)); 3422 } 3423 3424 /* Adjust sequence number for end of update-side operation. */ 3425 static void rcu_seq_end(unsigned long *sp) 3426 { 3427 smp_mb(); /* Ensure update-side operation before counter increment. */ 3428 WRITE_ONCE(*sp, *sp + 1); 3429 WARN_ON_ONCE(*sp & 0x1); 3430 } 3431 3432 /* Take a snapshot of the update side's sequence number. */ 3433 static unsigned long rcu_seq_snap(unsigned long *sp) 3434 { 3435 unsigned long s; 3436 3437 s = (READ_ONCE(*sp) + 3) & ~0x1; 3438 smp_mb(); /* Above access must not bleed into critical section. */ 3439 return s; 3440 } 3441 3442 /* 3443 * Given a snapshot from rcu_seq_snap(), determine whether or not a 3444 * full update-side operation has occurred. 3445 */ 3446 static bool rcu_seq_done(unsigned long *sp, unsigned long s) 3447 { 3448 return ULONG_CMP_GE(READ_ONCE(*sp), s); 3449 } 3450 3451 /* Wrapper functions for expedited grace periods. */ 3452 static void rcu_exp_gp_seq_start(struct rcu_state *rsp) 3453 { 3454 rcu_seq_start(&rsp->expedited_sequence); 3455 } 3456 static void rcu_exp_gp_seq_end(struct rcu_state *rsp) 3457 { 3458 rcu_seq_end(&rsp->expedited_sequence); 3459 smp_mb(); /* Ensure that consecutive grace periods serialize. */ 3460 } 3461 static unsigned long rcu_exp_gp_seq_snap(struct rcu_state *rsp) 3462 { 3463 unsigned long s; 3464 3465 smp_mb(); /* Caller's modifications seen first by other CPUs. */ 3466 s = rcu_seq_snap(&rsp->expedited_sequence); 3467 trace_rcu_exp_grace_period(rsp->name, s, TPS("snap")); 3468 return s; 3469 } 3470 static bool rcu_exp_gp_seq_done(struct rcu_state *rsp, unsigned long s) 3471 { 3472 return rcu_seq_done(&rsp->expedited_sequence, s); 3473 } 3474 3475 /* 3476 * Reset the ->expmaskinit values in the rcu_node tree to reflect any 3477 * recent CPU-online activity. Note that these masks are not cleared 3478 * when CPUs go offline, so they reflect the union of all CPUs that have 3479 * ever been online. This means that this function normally takes its 3480 * no-work-to-do fastpath. 3481 */ 3482 static void sync_exp_reset_tree_hotplug(struct rcu_state *rsp) 3483 { 3484 bool done; 3485 unsigned long flags; 3486 unsigned long mask; 3487 unsigned long oldmask; 3488 int ncpus = READ_ONCE(rsp->ncpus); 3489 struct rcu_node *rnp; 3490 struct rcu_node *rnp_up; 3491 3492 /* If no new CPUs onlined since last time, nothing to do. */ 3493 if (likely(ncpus == rsp->ncpus_snap)) 3494 return; 3495 rsp->ncpus_snap = ncpus; 3496 3497 /* 3498 * Each pass through the following loop propagates newly onlined 3499 * CPUs for the current rcu_node structure up the rcu_node tree. 3500 */ 3501 rcu_for_each_leaf_node(rsp, rnp) { 3502 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3503 if (rnp->expmaskinit == rnp->expmaskinitnext) { 3504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3505 continue; /* No new CPUs, nothing to do. */ 3506 } 3507 3508 /* Update this node's mask, track old value for propagation. */ 3509 oldmask = rnp->expmaskinit; 3510 rnp->expmaskinit = rnp->expmaskinitnext; 3511 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3512 3513 /* If was already nonzero, nothing to propagate. */ 3514 if (oldmask) 3515 continue; 3516 3517 /* Propagate the new CPU up the tree. */ 3518 mask = rnp->grpmask; 3519 rnp_up = rnp->parent; 3520 done = false; 3521 while (rnp_up) { 3522 raw_spin_lock_irqsave_rcu_node(rnp_up, flags); 3523 if (rnp_up->expmaskinit) 3524 done = true; 3525 rnp_up->expmaskinit |= mask; 3526 raw_spin_unlock_irqrestore_rcu_node(rnp_up, flags); 3527 if (done) 3528 break; 3529 mask = rnp_up->grpmask; 3530 rnp_up = rnp_up->parent; 3531 } 3532 } 3533 } 3534 3535 /* 3536 * Reset the ->expmask values in the rcu_node tree in preparation for 3537 * a new expedited grace period. 3538 */ 3539 static void __maybe_unused sync_exp_reset_tree(struct rcu_state *rsp) 3540 { 3541 unsigned long flags; 3542 struct rcu_node *rnp; 3543 3544 sync_exp_reset_tree_hotplug(rsp); 3545 rcu_for_each_node_breadth_first(rsp, rnp) { 3546 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3547 WARN_ON_ONCE(rnp->expmask); 3548 rnp->expmask = rnp->expmaskinit; 3549 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3550 } 3551 } 3552 3553 /* 3554 * Return non-zero if there is no RCU expedited grace period in progress 3555 * for the specified rcu_node structure, in other words, if all CPUs and 3556 * tasks covered by the specified rcu_node structure have done their bit 3557 * for the current expedited grace period. Works only for preemptible 3558 * RCU -- other RCU implementation use other means. 3559 * 3560 * Caller must hold the rcu_state's exp_mutex. 3561 */ 3562 static int sync_rcu_preempt_exp_done(struct rcu_node *rnp) 3563 { 3564 return rnp->exp_tasks == NULL && 3565 READ_ONCE(rnp->expmask) == 0; 3566 } 3567 3568 /* 3569 * Report the exit from RCU read-side critical section for the last task 3570 * that queued itself during or before the current expedited preemptible-RCU 3571 * grace period. This event is reported either to the rcu_node structure on 3572 * which the task was queued or to one of that rcu_node structure's ancestors, 3573 * recursively up the tree. (Calm down, calm down, we do the recursion 3574 * iteratively!) 3575 * 3576 * Caller must hold the rcu_state's exp_mutex and the specified rcu_node 3577 * structure's ->lock. 3578 */ 3579 static void __rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp, 3580 bool wake, unsigned long flags) 3581 __releases(rnp->lock) 3582 { 3583 unsigned long mask; 3584 3585 for (;;) { 3586 if (!sync_rcu_preempt_exp_done(rnp)) { 3587 if (!rnp->expmask) 3588 rcu_initiate_boost(rnp, flags); 3589 else 3590 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3591 break; 3592 } 3593 if (rnp->parent == NULL) { 3594 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3595 if (wake) { 3596 smp_mb(); /* EGP done before wake_up(). */ 3597 swake_up(&rsp->expedited_wq); 3598 } 3599 break; 3600 } 3601 mask = rnp->grpmask; 3602 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled */ 3603 rnp = rnp->parent; 3604 raw_spin_lock_rcu_node(rnp); /* irqs already disabled */ 3605 WARN_ON_ONCE(!(rnp->expmask & mask)); 3606 rnp->expmask &= ~mask; 3607 } 3608 } 3609 3610 /* 3611 * Report expedited quiescent state for specified node. This is a 3612 * lock-acquisition wrapper function for __rcu_report_exp_rnp(). 3613 * 3614 * Caller must hold the rcu_state's exp_mutex. 3615 */ 3616 static void __maybe_unused rcu_report_exp_rnp(struct rcu_state *rsp, 3617 struct rcu_node *rnp, bool wake) 3618 { 3619 unsigned long flags; 3620 3621 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3622 __rcu_report_exp_rnp(rsp, rnp, wake, flags); 3623 } 3624 3625 /* 3626 * Report expedited quiescent state for multiple CPUs, all covered by the 3627 * specified leaf rcu_node structure. Caller must hold the rcu_state's 3628 * exp_mutex. 3629 */ 3630 static void rcu_report_exp_cpu_mult(struct rcu_state *rsp, struct rcu_node *rnp, 3631 unsigned long mask, bool wake) 3632 { 3633 unsigned long flags; 3634 3635 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3636 if (!(rnp->expmask & mask)) { 3637 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3638 return; 3639 } 3640 rnp->expmask &= ~mask; 3641 __rcu_report_exp_rnp(rsp, rnp, wake, flags); /* Releases rnp->lock. */ 3642 } 3643 3644 /* 3645 * Report expedited quiescent state for specified rcu_data (CPU). 3646 */ 3647 static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp, 3648 bool wake) 3649 { 3650 rcu_report_exp_cpu_mult(rsp, rdp->mynode, rdp->grpmask, wake); 3651 } 3652 3653 /* Common code for synchronize_{rcu,sched}_expedited() work-done checking. */ 3654 static bool sync_exp_work_done(struct rcu_state *rsp, atomic_long_t *stat, 3655 unsigned long s) 3656 { 3657 if (rcu_exp_gp_seq_done(rsp, s)) { 3658 trace_rcu_exp_grace_period(rsp->name, s, TPS("done")); 3659 /* Ensure test happens before caller kfree(). */ 3660 smp_mb__before_atomic(); /* ^^^ */ 3661 atomic_long_inc(stat); 3662 return true; 3663 } 3664 return false; 3665 } 3666 3667 /* 3668 * Funnel-lock acquisition for expedited grace periods. Returns true 3669 * if some other task completed an expedited grace period that this task 3670 * can piggy-back on, and with no mutex held. Otherwise, returns false 3671 * with the mutex held, indicating that the caller must actually do the 3672 * expedited grace period. 3673 */ 3674 static bool exp_funnel_lock(struct rcu_state *rsp, unsigned long s) 3675 { 3676 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, raw_smp_processor_id()); 3677 struct rcu_node *rnp = rdp->mynode; 3678 struct rcu_node *rnp_root = rcu_get_root(rsp); 3679 3680 /* Low-contention fastpath. */ 3681 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s) && 3682 (rnp == rnp_root || 3683 ULONG_CMP_LT(READ_ONCE(rnp_root->exp_seq_rq), s)) && 3684 !mutex_is_locked(&rsp->exp_mutex) && 3685 mutex_trylock(&rsp->exp_mutex)) 3686 goto fastpath; 3687 3688 /* 3689 * Each pass through the following loop works its way up 3690 * the rcu_node tree, returning if others have done the work or 3691 * otherwise falls through to acquire rsp->exp_mutex. The mapping 3692 * from CPU to rcu_node structure can be inexact, as it is just 3693 * promoting locality and is not strictly needed for correctness. 3694 */ 3695 for (; rnp != NULL; rnp = rnp->parent) { 3696 if (sync_exp_work_done(rsp, &rdp->exp_workdone1, s)) 3697 return true; 3698 3699 /* Work not done, either wait here or go up. */ 3700 spin_lock(&rnp->exp_lock); 3701 if (ULONG_CMP_GE(rnp->exp_seq_rq, s)) { 3702 3703 /* Someone else doing GP, so wait for them. */ 3704 spin_unlock(&rnp->exp_lock); 3705 trace_rcu_exp_funnel_lock(rsp->name, rnp->level, 3706 rnp->grplo, rnp->grphi, 3707 TPS("wait")); 3708 wait_event(rnp->exp_wq[(s >> 1) & 0x3], 3709 sync_exp_work_done(rsp, 3710 &rdp->exp_workdone2, s)); 3711 return true; 3712 } 3713 rnp->exp_seq_rq = s; /* Followers can wait on us. */ 3714 spin_unlock(&rnp->exp_lock); 3715 trace_rcu_exp_funnel_lock(rsp->name, rnp->level, rnp->grplo, 3716 rnp->grphi, TPS("nxtlvl")); 3717 } 3718 mutex_lock(&rsp->exp_mutex); 3719 fastpath: 3720 if (sync_exp_work_done(rsp, &rdp->exp_workdone3, s)) { 3721 mutex_unlock(&rsp->exp_mutex); 3722 return true; 3723 } 3724 rcu_exp_gp_seq_start(rsp); 3725 trace_rcu_exp_grace_period(rsp->name, s, TPS("start")); 3726 return false; 3727 } 3728 3729 /* Invoked on each online non-idle CPU for expedited quiescent state. */ 3730 static void sync_sched_exp_handler(void *data) 3731 { 3732 struct rcu_data *rdp; 3733 struct rcu_node *rnp; 3734 struct rcu_state *rsp = data; 3735 3736 rdp = this_cpu_ptr(rsp->rda); 3737 rnp = rdp->mynode; 3738 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask) || 3739 __this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 3740 return; 3741 if (rcu_is_cpu_rrupt_from_idle()) { 3742 rcu_report_exp_rdp(&rcu_sched_state, 3743 this_cpu_ptr(&rcu_sched_data), true); 3744 return; 3745 } 3746 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, true); 3747 resched_cpu(smp_processor_id()); 3748 } 3749 3750 /* Send IPI for expedited cleanup if needed at end of CPU-hotplug operation. */ 3751 static void sync_sched_exp_online_cleanup(int cpu) 3752 { 3753 struct rcu_data *rdp; 3754 int ret; 3755 struct rcu_node *rnp; 3756 struct rcu_state *rsp = &rcu_sched_state; 3757 3758 rdp = per_cpu_ptr(rsp->rda, cpu); 3759 rnp = rdp->mynode; 3760 if (!(READ_ONCE(rnp->expmask) & rdp->grpmask)) 3761 return; 3762 ret = smp_call_function_single(cpu, sync_sched_exp_handler, rsp, 0); 3763 WARN_ON_ONCE(ret); 3764 } 3765 3766 /* 3767 * Select the nodes that the upcoming expedited grace period needs 3768 * to wait for. 3769 */ 3770 static void sync_rcu_exp_select_cpus(struct rcu_state *rsp, 3771 smp_call_func_t func) 3772 { 3773 int cpu; 3774 unsigned long flags; 3775 unsigned long mask; 3776 unsigned long mask_ofl_test; 3777 unsigned long mask_ofl_ipi; 3778 int ret; 3779 struct rcu_node *rnp; 3780 3781 sync_exp_reset_tree(rsp); 3782 rcu_for_each_leaf_node(rsp, rnp) { 3783 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3784 3785 /* Each pass checks a CPU for identity, offline, and idle. */ 3786 mask_ofl_test = 0; 3787 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) { 3788 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3789 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3790 3791 if (raw_smp_processor_id() == cpu || 3792 !(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3793 mask_ofl_test |= rdp->grpmask; 3794 } 3795 mask_ofl_ipi = rnp->expmask & ~mask_ofl_test; 3796 3797 /* 3798 * Need to wait for any blocked tasks as well. Note that 3799 * additional blocking tasks will also block the expedited 3800 * GP until such time as the ->expmask bits are cleared. 3801 */ 3802 if (rcu_preempt_has_tasks(rnp)) 3803 rnp->exp_tasks = rnp->blkd_tasks.next; 3804 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3805 3806 /* IPI the remaining CPUs for expedited quiescent state. */ 3807 mask = 1; 3808 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3809 if (!(mask_ofl_ipi & mask)) 3810 continue; 3811 retry_ipi: 3812 ret = smp_call_function_single(cpu, func, rsp, 0); 3813 if (!ret) { 3814 mask_ofl_ipi &= ~mask; 3815 continue; 3816 } 3817 /* Failed, raced with offline. */ 3818 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3819 if (cpu_online(cpu) && 3820 (rnp->expmask & mask)) { 3821 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3822 schedule_timeout_uninterruptible(1); 3823 if (cpu_online(cpu) && 3824 (rnp->expmask & mask)) 3825 goto retry_ipi; 3826 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3827 } 3828 if (!(rnp->expmask & mask)) 3829 mask_ofl_ipi &= ~mask; 3830 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3831 } 3832 /* Report quiescent states for those that went offline. */ 3833 mask_ofl_test |= mask_ofl_ipi; 3834 if (mask_ofl_test) 3835 rcu_report_exp_cpu_mult(rsp, rnp, mask_ofl_test, false); 3836 } 3837 } 3838 3839 static void synchronize_sched_expedited_wait(struct rcu_state *rsp) 3840 { 3841 int cpu; 3842 unsigned long jiffies_stall; 3843 unsigned long jiffies_start; 3844 unsigned long mask; 3845 int ndetected; 3846 struct rcu_node *rnp; 3847 struct rcu_node *rnp_root = rcu_get_root(rsp); 3848 int ret; 3849 3850 jiffies_stall = rcu_jiffies_till_stall_check(); 3851 jiffies_start = jiffies; 3852 3853 for (;;) { 3854 ret = swait_event_timeout( 3855 rsp->expedited_wq, 3856 sync_rcu_preempt_exp_done(rnp_root), 3857 jiffies_stall); 3858 if (ret > 0 || sync_rcu_preempt_exp_done(rnp_root)) 3859 return; 3860 if (ret < 0) { 3861 /* Hit a signal, disable CPU stall warnings. */ 3862 swait_event(rsp->expedited_wq, 3863 sync_rcu_preempt_exp_done(rnp_root)); 3864 return; 3865 } 3866 pr_err("INFO: %s detected expedited stalls on CPUs/tasks: {", 3867 rsp->name); 3868 ndetected = 0; 3869 rcu_for_each_leaf_node(rsp, rnp) { 3870 ndetected += rcu_print_task_exp_stall(rnp); 3871 mask = 1; 3872 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3873 struct rcu_data *rdp; 3874 3875 if (!(rnp->expmask & mask)) 3876 continue; 3877 ndetected++; 3878 rdp = per_cpu_ptr(rsp->rda, cpu); 3879 pr_cont(" %d-%c%c%c", cpu, 3880 "O."[!!cpu_online(cpu)], 3881 "o."[!!(rdp->grpmask & rnp->expmaskinit)], 3882 "N."[!!(rdp->grpmask & rnp->expmaskinitnext)]); 3883 } 3884 mask <<= 1; 3885 } 3886 pr_cont(" } %lu jiffies s: %lu root: %#lx/%c\n", 3887 jiffies - jiffies_start, rsp->expedited_sequence, 3888 rnp_root->expmask, ".T"[!!rnp_root->exp_tasks]); 3889 if (ndetected) { 3890 pr_err("blocking rcu_node structures:"); 3891 rcu_for_each_node_breadth_first(rsp, rnp) { 3892 if (rnp == rnp_root) 3893 continue; /* printed unconditionally */ 3894 if (sync_rcu_preempt_exp_done(rnp)) 3895 continue; 3896 pr_cont(" l=%u:%d-%d:%#lx/%c", 3897 rnp->level, rnp->grplo, rnp->grphi, 3898 rnp->expmask, 3899 ".T"[!!rnp->exp_tasks]); 3900 } 3901 pr_cont("\n"); 3902 } 3903 rcu_for_each_leaf_node(rsp, rnp) { 3904 mask = 1; 3905 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask <<= 1) { 3906 if (!(rnp->expmask & mask)) 3907 continue; 3908 dump_cpu_task(cpu); 3909 } 3910 } 3911 jiffies_stall = 3 * rcu_jiffies_till_stall_check() + 3; 3912 } 3913 } 3914 3915 /* 3916 * Wait for the current expedited grace period to complete, and then 3917 * wake up everyone who piggybacked on the just-completed expedited 3918 * grace period. Also update all the ->exp_seq_rq counters as needed 3919 * in order to avoid counter-wrap problems. 3920 */ 3921 static void rcu_exp_wait_wake(struct rcu_state *rsp, unsigned long s) 3922 { 3923 struct rcu_node *rnp; 3924 3925 synchronize_sched_expedited_wait(rsp); 3926 rcu_exp_gp_seq_end(rsp); 3927 trace_rcu_exp_grace_period(rsp->name, s, TPS("end")); 3928 3929 /* 3930 * Switch over to wakeup mode, allowing the next GP, but -only- the 3931 * next GP, to proceed. 3932 */ 3933 mutex_lock(&rsp->exp_wake_mutex); 3934 mutex_unlock(&rsp->exp_mutex); 3935 3936 rcu_for_each_node_breadth_first(rsp, rnp) { 3937 if (ULONG_CMP_LT(READ_ONCE(rnp->exp_seq_rq), s)) { 3938 spin_lock(&rnp->exp_lock); 3939 /* Recheck, avoid hang in case someone just arrived. */ 3940 if (ULONG_CMP_LT(rnp->exp_seq_rq, s)) 3941 rnp->exp_seq_rq = s; 3942 spin_unlock(&rnp->exp_lock); 3943 } 3944 wake_up_all(&rnp->exp_wq[(rsp->expedited_sequence >> 1) & 0x3]); 3945 } 3946 trace_rcu_exp_grace_period(rsp->name, s, TPS("endwake")); 3947 mutex_unlock(&rsp->exp_wake_mutex); 3948 } 3949 3950 /** 3951 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3952 * 3953 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3954 * approach to force the grace period to end quickly. This consumes 3955 * significant time on all CPUs and is unfriendly to real-time workloads, 3956 * so is thus not recommended for any sort of common-case code. In fact, 3957 * if you are using synchronize_sched_expedited() in a loop, please 3958 * restructure your code to batch your updates, and then use a single 3959 * synchronize_sched() instead. 3960 * 3961 * This implementation can be thought of as an application of sequence 3962 * locking to expedited grace periods, but using the sequence counter to 3963 * determine when someone else has already done the work instead of for 3964 * retrying readers. 3965 */ 3966 void synchronize_sched_expedited(void) 3967 { 3968 unsigned long s; 3969 struct rcu_state *rsp = &rcu_sched_state; 3970 3971 /* If only one CPU, this is automatically a grace period. */ 3972 if (rcu_blocking_is_gp()) 3973 return; 3974 3975 /* If expedited grace periods are prohibited, fall back to normal. */ 3976 if (rcu_gp_is_normal()) { 3977 wait_rcu_gp(call_rcu_sched); 3978 return; 3979 } 3980 3981 /* Take a snapshot of the sequence number. */ 3982 s = rcu_exp_gp_seq_snap(rsp); 3983 if (exp_funnel_lock(rsp, s)) 3984 return; /* Someone else did our work for us. */ 3985 3986 /* Initialize the rcu_node tree in preparation for the wait. */ 3987 sync_rcu_exp_select_cpus(rsp, sync_sched_exp_handler); 3988 3989 /* Wait and clean up, including waking everyone. */ 3990 rcu_exp_wait_wake(rsp, s); 3991 } 3992 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3993 3994 /* 3995 * Check to see if there is any immediate RCU-related work to be done 3996 * by the current CPU, for the specified type of RCU, returning 1 if so. 3997 * The checks are in order of increasing expense: checks that can be 3998 * carried out against CPU-local state are performed first. However, 3999 * we must check for CPU stalls first, else we might not get a chance. 4000 */ 4001 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 4002 { 4003 struct rcu_node *rnp = rdp->mynode; 4004 4005 rdp->n_rcu_pending++; 4006 4007 /* Check for CPU stalls, if enabled. */ 4008 check_cpu_stall(rsp, rdp); 4009 4010 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 4011 if (rcu_nohz_full_cpu(rsp)) 4012 return 0; 4013 4014 /* Is the RCU core waiting for a quiescent state from this CPU? */ 4015 if (rcu_scheduler_fully_active && 4016 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 4017 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 4018 rdp->n_rp_core_needs_qs++; 4019 } else if (rdp->core_needs_qs && 4020 (!rdp->cpu_no_qs.b.norm || 4021 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 4022 rdp->n_rp_report_qs++; 4023 return 1; 4024 } 4025 4026 /* Does this CPU have callbacks ready to invoke? */ 4027 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 4028 rdp->n_rp_cb_ready++; 4029 return 1; 4030 } 4031 4032 /* Has RCU gone idle with this CPU needing another grace period? */ 4033 if (cpu_needs_another_gp(rsp, rdp)) { 4034 rdp->n_rp_cpu_needs_gp++; 4035 return 1; 4036 } 4037 4038 /* Has another RCU grace period completed? */ 4039 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 4040 rdp->n_rp_gp_completed++; 4041 return 1; 4042 } 4043 4044 /* Has a new RCU grace period started? */ 4045 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 4046 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 4047 rdp->n_rp_gp_started++; 4048 return 1; 4049 } 4050 4051 /* Does this CPU need a deferred NOCB wakeup? */ 4052 if (rcu_nocb_need_deferred_wakeup(rdp)) { 4053 rdp->n_rp_nocb_defer_wakeup++; 4054 return 1; 4055 } 4056 4057 /* nothing to do */ 4058 rdp->n_rp_need_nothing++; 4059 return 0; 4060 } 4061 4062 /* 4063 * Check to see if there is any immediate RCU-related work to be done 4064 * by the current CPU, returning 1 if so. This function is part of the 4065 * RCU implementation; it is -not- an exported member of the RCU API. 4066 */ 4067 static int rcu_pending(void) 4068 { 4069 struct rcu_state *rsp; 4070 4071 for_each_rcu_flavor(rsp) 4072 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 4073 return 1; 4074 return 0; 4075 } 4076 4077 /* 4078 * Return true if the specified CPU has any callback. If all_lazy is 4079 * non-NULL, store an indication of whether all callbacks are lazy. 4080 * (If there are no callbacks, all of them are deemed to be lazy.) 4081 */ 4082 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 4083 { 4084 bool al = true; 4085 bool hc = false; 4086 struct rcu_data *rdp; 4087 struct rcu_state *rsp; 4088 4089 for_each_rcu_flavor(rsp) { 4090 rdp = this_cpu_ptr(rsp->rda); 4091 if (!rdp->nxtlist) 4092 continue; 4093 hc = true; 4094 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 4095 al = false; 4096 break; 4097 } 4098 } 4099 if (all_lazy) 4100 *all_lazy = al; 4101 return hc; 4102 } 4103 4104 /* 4105 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 4106 * the compiler is expected to optimize this away. 4107 */ 4108 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 4109 int cpu, unsigned long done) 4110 { 4111 trace_rcu_barrier(rsp->name, s, cpu, 4112 atomic_read(&rsp->barrier_cpu_count), done); 4113 } 4114 4115 /* 4116 * RCU callback function for _rcu_barrier(). If we are last, wake 4117 * up the task executing _rcu_barrier(). 4118 */ 4119 static void rcu_barrier_callback(struct rcu_head *rhp) 4120 { 4121 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 4122 struct rcu_state *rsp = rdp->rsp; 4123 4124 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 4125 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 4126 complete(&rsp->barrier_completion); 4127 } else { 4128 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 4129 } 4130 } 4131 4132 /* 4133 * Called with preemption disabled, and from cross-cpu IRQ context. 4134 */ 4135 static void rcu_barrier_func(void *type) 4136 { 4137 struct rcu_state *rsp = type; 4138 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 4139 4140 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 4141 atomic_inc(&rsp->barrier_cpu_count); 4142 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 4143 } 4144 4145 /* 4146 * Orchestrate the specified type of RCU barrier, waiting for all 4147 * RCU callbacks of the specified type to complete. 4148 */ 4149 static void _rcu_barrier(struct rcu_state *rsp) 4150 { 4151 int cpu; 4152 struct rcu_data *rdp; 4153 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 4154 4155 _rcu_barrier_trace(rsp, "Begin", -1, s); 4156 4157 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4158 mutex_lock(&rsp->barrier_mutex); 4159 4160 /* Did someone else do our work for us? */ 4161 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 4162 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 4163 smp_mb(); /* caller's subsequent code after above check. */ 4164 mutex_unlock(&rsp->barrier_mutex); 4165 return; 4166 } 4167 4168 /* Mark the start of the barrier operation. */ 4169 rcu_seq_start(&rsp->barrier_sequence); 4170 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 4171 4172 /* 4173 * Initialize the count to one rather than to zero in order to 4174 * avoid a too-soon return to zero in case of a short grace period 4175 * (or preemption of this task). Exclude CPU-hotplug operations 4176 * to ensure that no offline CPU has callbacks queued. 4177 */ 4178 init_completion(&rsp->barrier_completion); 4179 atomic_set(&rsp->barrier_cpu_count, 1); 4180 get_online_cpus(); 4181 4182 /* 4183 * Force each CPU with callbacks to register a new callback. 4184 * When that callback is invoked, we will know that all of the 4185 * corresponding CPU's preceding callbacks have been invoked. 4186 */ 4187 for_each_possible_cpu(cpu) { 4188 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 4189 continue; 4190 rdp = per_cpu_ptr(rsp->rda, cpu); 4191 if (rcu_is_nocb_cpu(cpu)) { 4192 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 4193 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 4194 rsp->barrier_sequence); 4195 } else { 4196 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 4197 rsp->barrier_sequence); 4198 smp_mb__before_atomic(); 4199 atomic_inc(&rsp->barrier_cpu_count); 4200 __call_rcu(&rdp->barrier_head, 4201 rcu_barrier_callback, rsp, cpu, 0); 4202 } 4203 } else if (READ_ONCE(rdp->qlen)) { 4204 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 4205 rsp->barrier_sequence); 4206 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 4207 } else { 4208 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 4209 rsp->barrier_sequence); 4210 } 4211 } 4212 put_online_cpus(); 4213 4214 /* 4215 * Now that we have an rcu_barrier_callback() callback on each 4216 * CPU, and thus each counted, remove the initial count. 4217 */ 4218 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 4219 complete(&rsp->barrier_completion); 4220 4221 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4222 wait_for_completion(&rsp->barrier_completion); 4223 4224 /* Mark the end of the barrier operation. */ 4225 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 4226 rcu_seq_end(&rsp->barrier_sequence); 4227 4228 /* Other rcu_barrier() invocations can now safely proceed. */ 4229 mutex_unlock(&rsp->barrier_mutex); 4230 } 4231 4232 /** 4233 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 4234 */ 4235 void rcu_barrier_bh(void) 4236 { 4237 _rcu_barrier(&rcu_bh_state); 4238 } 4239 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 4240 4241 /** 4242 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 4243 */ 4244 void rcu_barrier_sched(void) 4245 { 4246 _rcu_barrier(&rcu_sched_state); 4247 } 4248 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 4249 4250 /* 4251 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4252 * first CPU in a given leaf rcu_node structure coming online. The caller 4253 * must hold the corresponding leaf rcu_node ->lock with interrrupts 4254 * disabled. 4255 */ 4256 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4257 { 4258 long mask; 4259 struct rcu_node *rnp = rnp_leaf; 4260 4261 for (;;) { 4262 mask = rnp->grpmask; 4263 rnp = rnp->parent; 4264 if (rnp == NULL) 4265 return; 4266 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4267 rnp->qsmaskinit |= mask; 4268 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4269 } 4270 } 4271 4272 /* 4273 * Do boot-time initialization of a CPU's per-CPU RCU data. 4274 */ 4275 static void __init 4276 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 4277 { 4278 unsigned long flags; 4279 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 4280 struct rcu_node *rnp = rcu_get_root(rsp); 4281 4282 /* Set up local state, ensuring consistent view of global state. */ 4283 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4284 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 4285 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 4286 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 4287 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 4288 rdp->cpu = cpu; 4289 rdp->rsp = rsp; 4290 rcu_boot_init_nocb_percpu_data(rdp); 4291 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4292 } 4293 4294 /* 4295 * Initialize a CPU's per-CPU RCU data. Note that only one online or 4296 * offline event can be happening at a given time. Note also that we 4297 * can accept some slop in the rsp->completed access due to the fact 4298 * that this CPU cannot possibly have any RCU callbacks in flight yet. 4299 */ 4300 static void 4301 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 4302 { 4303 unsigned long flags; 4304 unsigned long mask; 4305 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 4306 struct rcu_node *rnp = rcu_get_root(rsp); 4307 4308 /* Set up local state, ensuring consistent view of global state. */ 4309 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4310 rdp->qlen_last_fqs_check = 0; 4311 rdp->n_force_qs_snap = rsp->n_force_qs; 4312 rdp->blimit = blimit; 4313 if (!rdp->nxtlist) 4314 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 4315 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 4316 rcu_sysidle_init_percpu_data(rdp->dynticks); 4317 atomic_set(&rdp->dynticks->dynticks, 4318 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 4319 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4320 4321 /* 4322 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4323 * propagation up the rcu_node tree will happen at the beginning 4324 * of the next grace period. 4325 */ 4326 rnp = rdp->mynode; 4327 mask = rdp->grpmask; 4328 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4329 rnp->qsmaskinitnext |= mask; 4330 rnp->expmaskinitnext |= mask; 4331 if (!rdp->beenonline) 4332 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 4333 rdp->beenonline = true; /* We have now been online. */ 4334 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 4335 rdp->completed = rnp->completed; 4336 rdp->cpu_no_qs.b.norm = true; 4337 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu); 4338 rdp->core_needs_qs = false; 4339 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 4340 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4341 } 4342 4343 static void rcu_prepare_cpu(int cpu) 4344 { 4345 struct rcu_state *rsp; 4346 4347 for_each_rcu_flavor(rsp) 4348 rcu_init_percpu_data(cpu, rsp); 4349 } 4350 4351 #ifdef CONFIG_HOTPLUG_CPU 4352 /* 4353 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 4354 * function. We now remove it from the rcu_node tree's ->qsmaskinit 4355 * bit masks. 4356 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 4357 * function. We now remove it from the rcu_node tree's ->qsmaskinit 4358 * bit masks. 4359 */ 4360 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 4361 { 4362 unsigned long flags; 4363 unsigned long mask; 4364 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 4365 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4366 4367 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4368 return; 4369 4370 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4371 mask = rdp->grpmask; 4372 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4373 rnp->qsmaskinitnext &= ~mask; 4374 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4375 } 4376 4377 void rcu_report_dead(unsigned int cpu) 4378 { 4379 struct rcu_state *rsp; 4380 4381 /* QS for any half-done expedited RCU-sched GP. */ 4382 preempt_disable(); 4383 rcu_report_exp_rdp(&rcu_sched_state, 4384 this_cpu_ptr(rcu_sched_state.rda), true); 4385 preempt_enable(); 4386 for_each_rcu_flavor(rsp) 4387 rcu_cleanup_dying_idle_cpu(cpu, rsp); 4388 } 4389 #endif 4390 4391 /* 4392 * Handle CPU online/offline notification events. 4393 */ 4394 int rcu_cpu_notify(struct notifier_block *self, 4395 unsigned long action, void *hcpu) 4396 { 4397 long cpu = (long)hcpu; 4398 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 4399 struct rcu_node *rnp = rdp->mynode; 4400 struct rcu_state *rsp; 4401 4402 switch (action) { 4403 case CPU_UP_PREPARE: 4404 case CPU_UP_PREPARE_FROZEN: 4405 rcu_prepare_cpu(cpu); 4406 rcu_prepare_kthreads(cpu); 4407 rcu_spawn_all_nocb_kthreads(cpu); 4408 break; 4409 case CPU_ONLINE: 4410 case CPU_DOWN_FAILED: 4411 sync_sched_exp_online_cleanup(cpu); 4412 rcu_boost_kthread_setaffinity(rnp, -1); 4413 break; 4414 case CPU_DOWN_PREPARE: 4415 rcu_boost_kthread_setaffinity(rnp, cpu); 4416 break; 4417 case CPU_DYING: 4418 case CPU_DYING_FROZEN: 4419 for_each_rcu_flavor(rsp) 4420 rcu_cleanup_dying_cpu(rsp); 4421 break; 4422 case CPU_DEAD: 4423 case CPU_DEAD_FROZEN: 4424 case CPU_UP_CANCELED: 4425 case CPU_UP_CANCELED_FROZEN: 4426 for_each_rcu_flavor(rsp) { 4427 rcu_cleanup_dead_cpu(cpu, rsp); 4428 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 4429 } 4430 break; 4431 default: 4432 break; 4433 } 4434 return NOTIFY_OK; 4435 } 4436 4437 static int rcu_pm_notify(struct notifier_block *self, 4438 unsigned long action, void *hcpu) 4439 { 4440 switch (action) { 4441 case PM_HIBERNATION_PREPARE: 4442 case PM_SUSPEND_PREPARE: 4443 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4444 rcu_expedite_gp(); 4445 break; 4446 case PM_POST_HIBERNATION: 4447 case PM_POST_SUSPEND: 4448 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4449 rcu_unexpedite_gp(); 4450 break; 4451 default: 4452 break; 4453 } 4454 return NOTIFY_OK; 4455 } 4456 4457 /* 4458 * Spawn the kthreads that handle each RCU flavor's grace periods. 4459 */ 4460 static int __init rcu_spawn_gp_kthread(void) 4461 { 4462 unsigned long flags; 4463 int kthread_prio_in = kthread_prio; 4464 struct rcu_node *rnp; 4465 struct rcu_state *rsp; 4466 struct sched_param sp; 4467 struct task_struct *t; 4468 4469 /* Force priority into range. */ 4470 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4471 kthread_prio = 1; 4472 else if (kthread_prio < 0) 4473 kthread_prio = 0; 4474 else if (kthread_prio > 99) 4475 kthread_prio = 99; 4476 if (kthread_prio != kthread_prio_in) 4477 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4478 kthread_prio, kthread_prio_in); 4479 4480 rcu_scheduler_fully_active = 1; 4481 for_each_rcu_flavor(rsp) { 4482 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4483 BUG_ON(IS_ERR(t)); 4484 rnp = rcu_get_root(rsp); 4485 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4486 rsp->gp_kthread = t; 4487 if (kthread_prio) { 4488 sp.sched_priority = kthread_prio; 4489 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4490 } 4491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4492 wake_up_process(t); 4493 } 4494 rcu_spawn_nocb_kthreads(); 4495 rcu_spawn_boost_kthreads(); 4496 return 0; 4497 } 4498 early_initcall(rcu_spawn_gp_kthread); 4499 4500 /* 4501 * This function is invoked towards the end of the scheduler's initialization 4502 * process. Before this is called, the idle task might contain 4503 * RCU read-side critical sections (during which time, this idle 4504 * task is booting the system). After this function is called, the 4505 * idle tasks are prohibited from containing RCU read-side critical 4506 * sections. This function also enables RCU lockdep checking. 4507 */ 4508 void rcu_scheduler_starting(void) 4509 { 4510 WARN_ON(num_online_cpus() != 1); 4511 WARN_ON(nr_context_switches() > 0); 4512 rcu_scheduler_active = 1; 4513 } 4514 4515 /* 4516 * Compute the per-level fanout, either using the exact fanout specified 4517 * or balancing the tree, depending on the rcu_fanout_exact boot parameter. 4518 */ 4519 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt) 4520 { 4521 int i; 4522 4523 if (rcu_fanout_exact) { 4524 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 4525 for (i = rcu_num_lvls - 2; i >= 0; i--) 4526 levelspread[i] = RCU_FANOUT; 4527 } else { 4528 int ccur; 4529 int cprv; 4530 4531 cprv = nr_cpu_ids; 4532 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4533 ccur = levelcnt[i]; 4534 levelspread[i] = (cprv + ccur - 1) / ccur; 4535 cprv = ccur; 4536 } 4537 } 4538 } 4539 4540 /* 4541 * Helper function for rcu_init() that initializes one rcu_state structure. 4542 */ 4543 static void __init rcu_init_one(struct rcu_state *rsp) 4544 { 4545 static const char * const buf[] = RCU_NODE_NAME_INIT; 4546 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4547 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4548 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4549 static u8 fl_mask = 0x1; 4550 4551 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */ 4552 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4553 int cpustride = 1; 4554 int i; 4555 int j; 4556 struct rcu_node *rnp; 4557 4558 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4559 4560 /* Silence gcc 4.8 false positive about array index out of range. */ 4561 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4562 panic("rcu_init_one: rcu_num_lvls out of range"); 4563 4564 /* Initialize the level-tracking arrays. */ 4565 4566 for (i = 0; i < rcu_num_lvls; i++) 4567 levelcnt[i] = num_rcu_lvl[i]; 4568 for (i = 1; i < rcu_num_lvls; i++) 4569 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1]; 4570 rcu_init_levelspread(levelspread, levelcnt); 4571 rsp->flavor_mask = fl_mask; 4572 fl_mask <<= 1; 4573 4574 /* Initialize the elements themselves, starting from the leaves. */ 4575 4576 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4577 cpustride *= levelspread[i]; 4578 rnp = rsp->level[i]; 4579 for (j = 0; j < levelcnt[i]; j++, rnp++) { 4580 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4581 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4582 &rcu_node_class[i], buf[i]); 4583 raw_spin_lock_init(&rnp->fqslock); 4584 lockdep_set_class_and_name(&rnp->fqslock, 4585 &rcu_fqs_class[i], fqs[i]); 4586 rnp->gpnum = rsp->gpnum; 4587 rnp->completed = rsp->completed; 4588 rnp->qsmask = 0; 4589 rnp->qsmaskinit = 0; 4590 rnp->grplo = j * cpustride; 4591 rnp->grphi = (j + 1) * cpustride - 1; 4592 if (rnp->grphi >= nr_cpu_ids) 4593 rnp->grphi = nr_cpu_ids - 1; 4594 if (i == 0) { 4595 rnp->grpnum = 0; 4596 rnp->grpmask = 0; 4597 rnp->parent = NULL; 4598 } else { 4599 rnp->grpnum = j % levelspread[i - 1]; 4600 rnp->grpmask = 1UL << rnp->grpnum; 4601 rnp->parent = rsp->level[i - 1] + 4602 j / levelspread[i - 1]; 4603 } 4604 rnp->level = i; 4605 INIT_LIST_HEAD(&rnp->blkd_tasks); 4606 rcu_init_one_nocb(rnp); 4607 init_waitqueue_head(&rnp->exp_wq[0]); 4608 init_waitqueue_head(&rnp->exp_wq[1]); 4609 init_waitqueue_head(&rnp->exp_wq[2]); 4610 init_waitqueue_head(&rnp->exp_wq[3]); 4611 spin_lock_init(&rnp->exp_lock); 4612 } 4613 } 4614 4615 init_swait_queue_head(&rsp->gp_wq); 4616 init_swait_queue_head(&rsp->expedited_wq); 4617 rnp = rsp->level[rcu_num_lvls - 1]; 4618 for_each_possible_cpu(i) { 4619 while (i > rnp->grphi) 4620 rnp++; 4621 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4622 rcu_boot_init_percpu_data(i, rsp); 4623 } 4624 list_add(&rsp->flavors, &rcu_struct_flavors); 4625 } 4626 4627 /* 4628 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4629 * replace the definitions in tree.h because those are needed to size 4630 * the ->node array in the rcu_state structure. 4631 */ 4632 static void __init rcu_init_geometry(void) 4633 { 4634 ulong d; 4635 int i; 4636 int rcu_capacity[RCU_NUM_LVLS]; 4637 4638 /* 4639 * Initialize any unspecified boot parameters. 4640 * The default values of jiffies_till_first_fqs and 4641 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4642 * value, which is a function of HZ, then adding one for each 4643 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4644 */ 4645 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4646 if (jiffies_till_first_fqs == ULONG_MAX) 4647 jiffies_till_first_fqs = d; 4648 if (jiffies_till_next_fqs == ULONG_MAX) 4649 jiffies_till_next_fqs = d; 4650 4651 /* If the compile-time values are accurate, just leave. */ 4652 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4653 nr_cpu_ids == NR_CPUS) 4654 return; 4655 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4656 rcu_fanout_leaf, nr_cpu_ids); 4657 4658 /* 4659 * The boot-time rcu_fanout_leaf parameter must be at least two 4660 * and cannot exceed the number of bits in the rcu_node masks. 4661 * Complain and fall back to the compile-time values if this 4662 * limit is exceeded. 4663 */ 4664 if (rcu_fanout_leaf < 2 || 4665 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4666 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4667 WARN_ON(1); 4668 return; 4669 } 4670 4671 /* 4672 * Compute number of nodes that can be handled an rcu_node tree 4673 * with the given number of levels. 4674 */ 4675 rcu_capacity[0] = rcu_fanout_leaf; 4676 for (i = 1; i < RCU_NUM_LVLS; i++) 4677 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4678 4679 /* 4680 * The tree must be able to accommodate the configured number of CPUs. 4681 * If this limit is exceeded, fall back to the compile-time values. 4682 */ 4683 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4684 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4685 WARN_ON(1); 4686 return; 4687 } 4688 4689 /* Calculate the number of levels in the tree. */ 4690 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4691 } 4692 rcu_num_lvls = i + 1; 4693 4694 /* Calculate the number of rcu_nodes at each level of the tree. */ 4695 for (i = 0; i < rcu_num_lvls; i++) { 4696 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4697 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4698 } 4699 4700 /* Calculate the total number of rcu_node structures. */ 4701 rcu_num_nodes = 0; 4702 for (i = 0; i < rcu_num_lvls; i++) 4703 rcu_num_nodes += num_rcu_lvl[i]; 4704 } 4705 4706 /* 4707 * Dump out the structure of the rcu_node combining tree associated 4708 * with the rcu_state structure referenced by rsp. 4709 */ 4710 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4711 { 4712 int level = 0; 4713 struct rcu_node *rnp; 4714 4715 pr_info("rcu_node tree layout dump\n"); 4716 pr_info(" "); 4717 rcu_for_each_node_breadth_first(rsp, rnp) { 4718 if (rnp->level != level) { 4719 pr_cont("\n"); 4720 pr_info(" "); 4721 level = rnp->level; 4722 } 4723 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4724 } 4725 pr_cont("\n"); 4726 } 4727 4728 void __init rcu_init(void) 4729 { 4730 int cpu; 4731 4732 rcu_early_boot_tests(); 4733 4734 rcu_bootup_announce(); 4735 rcu_init_geometry(); 4736 rcu_init_one(&rcu_bh_state); 4737 rcu_init_one(&rcu_sched_state); 4738 if (dump_tree) 4739 rcu_dump_rcu_node_tree(&rcu_sched_state); 4740 __rcu_init_preempt(); 4741 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4742 4743 /* 4744 * We don't need protection against CPU-hotplug here because 4745 * this is called early in boot, before either interrupts 4746 * or the scheduler are operational. 4747 */ 4748 cpu_notifier(rcu_cpu_notify, 0); 4749 pm_notifier(rcu_pm_notify, 0); 4750 for_each_online_cpu(cpu) 4751 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 4752 } 4753 4754 #include "tree_plugin.h" 4755