1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 148 static void invoke_rcu_core(void); 149 static void rcu_report_exp_rdp(struct rcu_data *rdp); 150 static void sync_sched_exp_online_cleanup(int cpu); 151 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 152 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 153 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 154 static bool rcu_init_invoked(void); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 157 158 /* 159 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 160 * real-time priority(enabling/disabling) is controlled by 161 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 162 */ 163 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 164 module_param(kthread_prio, int, 0444); 165 166 /* Delay in jiffies for grace-period initialization delays, debug only. */ 167 168 static int gp_preinit_delay; 169 module_param(gp_preinit_delay, int, 0444); 170 static int gp_init_delay; 171 module_param(gp_init_delay, int, 0444); 172 static int gp_cleanup_delay; 173 module_param(gp_cleanup_delay, int, 0444); 174 175 // Add delay to rcu_read_unlock() for strict grace periods. 176 static int rcu_unlock_delay; 177 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 178 module_param(rcu_unlock_delay, int, 0444); 179 #endif 180 181 /* 182 * This rcu parameter is runtime-read-only. It reflects 183 * a minimum allowed number of objects which can be cached 184 * per-CPU. Object size is equal to one page. This value 185 * can be changed at boot time. 186 */ 187 static int rcu_min_cached_objs = 5; 188 module_param(rcu_min_cached_objs, int, 0444); 189 190 // A page shrinker can ask for pages to be freed to make them 191 // available for other parts of the system. This usually happens 192 // under low memory conditions, and in that case we should also 193 // defer page-cache filling for a short time period. 194 // 195 // The default value is 5 seconds, which is long enough to reduce 196 // interference with the shrinker while it asks other systems to 197 // drain their caches. 198 static int rcu_delay_page_cache_fill_msec = 5000; 199 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 200 201 /* Retrieve RCU kthreads priority for rcutorture */ 202 int rcu_get_gp_kthreads_prio(void) 203 { 204 return kthread_prio; 205 } 206 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 207 208 /* 209 * Number of grace periods between delays, normalized by the duration of 210 * the delay. The longer the delay, the more the grace periods between 211 * each delay. The reason for this normalization is that it means that, 212 * for non-zero delays, the overall slowdown of grace periods is constant 213 * regardless of the duration of the delay. This arrangement balances 214 * the need for long delays to increase some race probabilities with the 215 * need for fast grace periods to increase other race probabilities. 216 */ 217 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 218 219 /* 220 * Return true if an RCU grace period is in progress. The READ_ONCE()s 221 * permit this function to be invoked without holding the root rcu_node 222 * structure's ->lock, but of course results can be subject to change. 223 */ 224 static int rcu_gp_in_progress(void) 225 { 226 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 227 } 228 229 /* 230 * Return the number of callbacks queued on the specified CPU. 231 * Handles both the nocbs and normal cases. 232 */ 233 static long rcu_get_n_cbs_cpu(int cpu) 234 { 235 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 236 237 if (rcu_segcblist_is_enabled(&rdp->cblist)) 238 return rcu_segcblist_n_cbs(&rdp->cblist); 239 return 0; 240 } 241 242 void rcu_softirq_qs(void) 243 { 244 rcu_qs(); 245 rcu_preempt_deferred_qs(current); 246 rcu_tasks_qs(current, false); 247 } 248 249 /* 250 * Reset the current CPU's ->dynticks counter to indicate that the 251 * newly onlined CPU is no longer in an extended quiescent state. 252 * This will either leave the counter unchanged, or increment it 253 * to the next non-quiescent value. 254 * 255 * The non-atomic test/increment sequence works because the upper bits 256 * of the ->dynticks counter are manipulated only by the corresponding CPU, 257 * or when the corresponding CPU is offline. 258 */ 259 static void rcu_dynticks_eqs_online(void) 260 { 261 if (ct_dynticks() & RCU_DYNTICKS_IDX) 262 return; 263 ct_state_inc(RCU_DYNTICKS_IDX); 264 } 265 266 /* 267 * Snapshot the ->dynticks counter with full ordering so as to allow 268 * stable comparison of this counter with past and future snapshots. 269 */ 270 static int rcu_dynticks_snap(int cpu) 271 { 272 smp_mb(); // Fundamental RCU ordering guarantee. 273 return ct_dynticks_cpu_acquire(cpu); 274 } 275 276 /* 277 * Return true if the snapshot returned from rcu_dynticks_snap() 278 * indicates that RCU is in an extended quiescent state. 279 */ 280 static bool rcu_dynticks_in_eqs(int snap) 281 { 282 return !(snap & RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Return true if the CPU corresponding to the specified rcu_data 287 * structure has spent some time in an extended quiescent state since 288 * rcu_dynticks_snap() returned the specified snapshot. 289 */ 290 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 291 { 292 return snap != rcu_dynticks_snap(rdp->cpu); 293 } 294 295 /* 296 * Return true if the referenced integer is zero while the specified 297 * CPU remains within a single extended quiescent state. 298 */ 299 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 300 { 301 int snap; 302 303 // If not quiescent, force back to earlier extended quiescent state. 304 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 305 smp_rmb(); // Order ->dynticks and *vp reads. 306 if (READ_ONCE(*vp)) 307 return false; // Non-zero, so report failure; 308 smp_rmb(); // Order *vp read and ->dynticks re-read. 309 310 // If still in the same extended quiescent state, we are good! 311 return snap == ct_dynticks_cpu(cpu); 312 } 313 314 /* 315 * Let the RCU core know that this CPU has gone through the scheduler, 316 * which is a quiescent state. This is called when the need for a 317 * quiescent state is urgent, so we burn an atomic operation and full 318 * memory barriers to let the RCU core know about it, regardless of what 319 * this CPU might (or might not) do in the near future. 320 * 321 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 322 * 323 * The caller must have disabled interrupts and must not be idle. 324 */ 325 notrace void rcu_momentary_dyntick_idle(void) 326 { 327 int seq; 328 329 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 330 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 331 /* It is illegal to call this from idle state. */ 332 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 333 rcu_preempt_deferred_qs(current); 334 } 335 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 336 337 /** 338 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 339 * 340 * If the current CPU is idle and running at a first-level (not nested) 341 * interrupt, or directly, from idle, return true. 342 * 343 * The caller must have at least disabled IRQs. 344 */ 345 static int rcu_is_cpu_rrupt_from_idle(void) 346 { 347 long nesting; 348 349 /* 350 * Usually called from the tick; but also used from smp_function_call() 351 * for expedited grace periods. This latter can result in running from 352 * the idle task, instead of an actual IPI. 353 */ 354 lockdep_assert_irqs_disabled(); 355 356 /* Check for counter underflows */ 357 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 358 "RCU dynticks_nesting counter underflow!"); 359 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 360 "RCU dynticks_nmi_nesting counter underflow/zero!"); 361 362 /* Are we at first interrupt nesting level? */ 363 nesting = ct_dynticks_nmi_nesting(); 364 if (nesting > 1) 365 return false; 366 367 /* 368 * If we're not in an interrupt, we must be in the idle task! 369 */ 370 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 371 372 /* Does CPU appear to be idle from an RCU standpoint? */ 373 return ct_dynticks_nesting() == 0; 374 } 375 376 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 377 // Maximum callbacks per rcu_do_batch ... 378 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 379 static long blimit = DEFAULT_RCU_BLIMIT; 380 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 381 static long qhimark = DEFAULT_RCU_QHIMARK; 382 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 383 static long qlowmark = DEFAULT_RCU_QLOMARK; 384 #define DEFAULT_RCU_QOVLD_MULT 2 385 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 386 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 387 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 388 389 module_param(blimit, long, 0444); 390 module_param(qhimark, long, 0444); 391 module_param(qlowmark, long, 0444); 392 module_param(qovld, long, 0444); 393 394 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 395 static ulong jiffies_till_next_fqs = ULONG_MAX; 396 static bool rcu_kick_kthreads; 397 static int rcu_divisor = 7; 398 module_param(rcu_divisor, int, 0644); 399 400 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 401 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 402 module_param(rcu_resched_ns, long, 0644); 403 404 /* 405 * How long the grace period must be before we start recruiting 406 * quiescent-state help from rcu_note_context_switch(). 407 */ 408 static ulong jiffies_till_sched_qs = ULONG_MAX; 409 module_param(jiffies_till_sched_qs, ulong, 0444); 410 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 411 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 412 413 /* 414 * Make sure that we give the grace-period kthread time to detect any 415 * idle CPUs before taking active measures to force quiescent states. 416 * However, don't go below 100 milliseconds, adjusted upwards for really 417 * large systems. 418 */ 419 static void adjust_jiffies_till_sched_qs(void) 420 { 421 unsigned long j; 422 423 /* If jiffies_till_sched_qs was specified, respect the request. */ 424 if (jiffies_till_sched_qs != ULONG_MAX) { 425 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 426 return; 427 } 428 /* Otherwise, set to third fqs scan, but bound below on large system. */ 429 j = READ_ONCE(jiffies_till_first_fqs) + 430 2 * READ_ONCE(jiffies_till_next_fqs); 431 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 432 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 433 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 434 WRITE_ONCE(jiffies_to_sched_qs, j); 435 } 436 437 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 438 { 439 ulong j; 440 int ret = kstrtoul(val, 0, &j); 441 442 if (!ret) { 443 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 444 adjust_jiffies_till_sched_qs(); 445 } 446 return ret; 447 } 448 449 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 450 { 451 ulong j; 452 int ret = kstrtoul(val, 0, &j); 453 454 if (!ret) { 455 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 456 adjust_jiffies_till_sched_qs(); 457 } 458 return ret; 459 } 460 461 static const struct kernel_param_ops first_fqs_jiffies_ops = { 462 .set = param_set_first_fqs_jiffies, 463 .get = param_get_ulong, 464 }; 465 466 static const struct kernel_param_ops next_fqs_jiffies_ops = { 467 .set = param_set_next_fqs_jiffies, 468 .get = param_get_ulong, 469 }; 470 471 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 472 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 473 module_param(rcu_kick_kthreads, bool, 0644); 474 475 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 476 static int rcu_pending(int user); 477 478 /* 479 * Return the number of RCU GPs completed thus far for debug & stats. 480 */ 481 unsigned long rcu_get_gp_seq(void) 482 { 483 return READ_ONCE(rcu_state.gp_seq); 484 } 485 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 486 487 /* 488 * Return the number of RCU expedited batches completed thus far for 489 * debug & stats. Odd numbers mean that a batch is in progress, even 490 * numbers mean idle. The value returned will thus be roughly double 491 * the cumulative batches since boot. 492 */ 493 unsigned long rcu_exp_batches_completed(void) 494 { 495 return rcu_state.expedited_sequence; 496 } 497 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 498 499 /* 500 * Return the root node of the rcu_state structure. 501 */ 502 static struct rcu_node *rcu_get_root(void) 503 { 504 return &rcu_state.node[0]; 505 } 506 507 /* 508 * Send along grace-period-related data for rcutorture diagnostics. 509 */ 510 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 511 unsigned long *gp_seq) 512 { 513 switch (test_type) { 514 case RCU_FLAVOR: 515 *flags = READ_ONCE(rcu_state.gp_flags); 516 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 517 break; 518 default: 519 break; 520 } 521 } 522 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 523 524 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 525 /* 526 * An empty function that will trigger a reschedule on 527 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 528 */ 529 static void late_wakeup_func(struct irq_work *work) 530 { 531 } 532 533 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 534 IRQ_WORK_INIT(late_wakeup_func); 535 536 /* 537 * If either: 538 * 539 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 540 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 541 * 542 * In these cases the late RCU wake ups aren't supported in the resched loops and our 543 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 544 * get re-enabled again. 545 */ 546 noinstr void rcu_irq_work_resched(void) 547 { 548 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 549 550 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 551 return; 552 553 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 554 return; 555 556 instrumentation_begin(); 557 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 558 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 559 } 560 instrumentation_end(); 561 } 562 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 563 564 #ifdef CONFIG_PROVE_RCU 565 /** 566 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 567 */ 568 void rcu_irq_exit_check_preempt(void) 569 { 570 lockdep_assert_irqs_disabled(); 571 572 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 573 "RCU dynticks_nesting counter underflow/zero!"); 574 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 575 DYNTICK_IRQ_NONIDLE, 576 "Bad RCU dynticks_nmi_nesting counter\n"); 577 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 578 "RCU in extended quiescent state!"); 579 } 580 #endif /* #ifdef CONFIG_PROVE_RCU */ 581 582 #ifdef CONFIG_NO_HZ_FULL 583 /** 584 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 585 * 586 * The scheduler tick is not normally enabled when CPUs enter the kernel 587 * from nohz_full userspace execution. After all, nohz_full userspace 588 * execution is an RCU quiescent state and the time executing in the kernel 589 * is quite short. Except of course when it isn't. And it is not hard to 590 * cause a large system to spend tens of seconds or even minutes looping 591 * in the kernel, which can cause a number of problems, include RCU CPU 592 * stall warnings. 593 * 594 * Therefore, if a nohz_full CPU fails to report a quiescent state 595 * in a timely manner, the RCU grace-period kthread sets that CPU's 596 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 597 * exception will invoke this function, which will turn on the scheduler 598 * tick, which will enable RCU to detect that CPU's quiescent states, 599 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 600 * The tick will be disabled once a quiescent state is reported for 601 * this CPU. 602 * 603 * Of course, in carefully tuned systems, there might never be an 604 * interrupt or exception. In that case, the RCU grace-period kthread 605 * will eventually cause one to happen. However, in less carefully 606 * controlled environments, this function allows RCU to get what it 607 * needs without creating otherwise useless interruptions. 608 */ 609 void __rcu_irq_enter_check_tick(void) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 // If we're here from NMI there's nothing to do. 614 if (in_nmi()) 615 return; 616 617 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 618 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 619 620 if (!tick_nohz_full_cpu(rdp->cpu) || 621 !READ_ONCE(rdp->rcu_urgent_qs) || 622 READ_ONCE(rdp->rcu_forced_tick)) { 623 // RCU doesn't need nohz_full help from this CPU, or it is 624 // already getting that help. 625 return; 626 } 627 628 // We get here only when not in an extended quiescent state and 629 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 630 // already watching and (2) The fact that we are in an interrupt 631 // handler and that the rcu_node lock is an irq-disabled lock 632 // prevents self-deadlock. So we can safely recheck under the lock. 633 // Note that the nohz_full state currently cannot change. 634 raw_spin_lock_rcu_node(rdp->mynode); 635 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 636 // A nohz_full CPU is in the kernel and RCU needs a 637 // quiescent state. Turn on the tick! 638 WRITE_ONCE(rdp->rcu_forced_tick, true); 639 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 640 } 641 raw_spin_unlock_rcu_node(rdp->mynode); 642 } 643 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 644 #endif /* CONFIG_NO_HZ_FULL */ 645 646 /* 647 * Check to see if any future non-offloaded RCU-related work will need 648 * to be done by the current CPU, even if none need be done immediately, 649 * returning 1 if so. This function is part of the RCU implementation; 650 * it is -not- an exported member of the RCU API. This is used by 651 * the idle-entry code to figure out whether it is safe to disable the 652 * scheduler-clock interrupt. 653 * 654 * Just check whether or not this CPU has non-offloaded RCU callbacks 655 * queued. 656 */ 657 int rcu_needs_cpu(void) 658 { 659 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 660 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 661 } 662 663 /* 664 * If any sort of urgency was applied to the current CPU (for example, 665 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 666 * to get to a quiescent state, disable it. 667 */ 668 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 669 { 670 raw_lockdep_assert_held_rcu_node(rdp->mynode); 671 WRITE_ONCE(rdp->rcu_urgent_qs, false); 672 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 673 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 674 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 675 WRITE_ONCE(rdp->rcu_forced_tick, false); 676 } 677 } 678 679 /** 680 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 681 * 682 * Return true if RCU is watching the running CPU, which means that this 683 * CPU can safely enter RCU read-side critical sections. In other words, 684 * if the current CPU is not in its idle loop or is in an interrupt or 685 * NMI handler, return true. 686 * 687 * Make notrace because it can be called by the internal functions of 688 * ftrace, and making this notrace removes unnecessary recursion calls. 689 */ 690 notrace bool rcu_is_watching(void) 691 { 692 bool ret; 693 694 preempt_disable_notrace(); 695 ret = !rcu_dynticks_curr_cpu_in_eqs(); 696 preempt_enable_notrace(); 697 return ret; 698 } 699 EXPORT_SYMBOL_GPL(rcu_is_watching); 700 701 /* 702 * If a holdout task is actually running, request an urgent quiescent 703 * state from its CPU. This is unsynchronized, so migrations can cause 704 * the request to go to the wrong CPU. Which is OK, all that will happen 705 * is that the CPU's next context switch will be a bit slower and next 706 * time around this task will generate another request. 707 */ 708 void rcu_request_urgent_qs_task(struct task_struct *t) 709 { 710 int cpu; 711 712 barrier(); 713 cpu = task_cpu(t); 714 if (!task_curr(t)) 715 return; /* This task is not running on that CPU. */ 716 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 717 } 718 719 /* 720 * When trying to report a quiescent state on behalf of some other CPU, 721 * it is our responsibility to check for and handle potential overflow 722 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 723 * After all, the CPU might be in deep idle state, and thus executing no 724 * code whatsoever. 725 */ 726 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 727 { 728 raw_lockdep_assert_held_rcu_node(rnp); 729 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 730 rnp->gp_seq)) 731 WRITE_ONCE(rdp->gpwrap, true); 732 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 733 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 734 } 735 736 /* 737 * Snapshot the specified CPU's dynticks counter so that we can later 738 * credit them with an implicit quiescent state. Return 1 if this CPU 739 * is in dynticks idle mode, which is an extended quiescent state. 740 */ 741 static int dyntick_save_progress_counter(struct rcu_data *rdp) 742 { 743 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 744 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 745 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 746 rcu_gpnum_ovf(rdp->mynode, rdp); 747 return 1; 748 } 749 return 0; 750 } 751 752 /* 753 * Return true if the specified CPU has passed through a quiescent 754 * state by virtue of being in or having passed through an dynticks 755 * idle state since the last call to dyntick_save_progress_counter() 756 * for this same CPU, or by virtue of having been offline. 757 */ 758 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 759 { 760 unsigned long jtsq; 761 struct rcu_node *rnp = rdp->mynode; 762 763 /* 764 * If the CPU passed through or entered a dynticks idle phase with 765 * no active irq/NMI handlers, then we can safely pretend that the CPU 766 * already acknowledged the request to pass through a quiescent 767 * state. Either way, that CPU cannot possibly be in an RCU 768 * read-side critical section that started before the beginning 769 * of the current RCU grace period. 770 */ 771 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 772 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 773 rcu_gpnum_ovf(rnp, rdp); 774 return 1; 775 } 776 777 /* 778 * Complain if a CPU that is considered to be offline from RCU's 779 * perspective has not yet reported a quiescent state. After all, 780 * the offline CPU should have reported a quiescent state during 781 * the CPU-offline process, or, failing that, by rcu_gp_init() 782 * if it ran concurrently with either the CPU going offline or the 783 * last task on a leaf rcu_node structure exiting its RCU read-side 784 * critical section while all CPUs corresponding to that structure 785 * are offline. This added warning detects bugs in any of these 786 * code paths. 787 * 788 * The rcu_node structure's ->lock is held here, which excludes 789 * the relevant portions the CPU-hotplug code, the grace-period 790 * initialization code, and the rcu_read_unlock() code paths. 791 * 792 * For more detail, please refer to the "Hotplug CPU" section 793 * of RCU's Requirements documentation. 794 */ 795 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 796 struct rcu_node *rnp1; 797 798 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 799 __func__, rnp->grplo, rnp->grphi, rnp->level, 800 (long)rnp->gp_seq, (long)rnp->completedqs); 801 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 802 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 803 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 804 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 805 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 806 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 807 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 808 return 1; /* Break things loose after complaining. */ 809 } 810 811 /* 812 * A CPU running for an extended time within the kernel can 813 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 814 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 815 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 816 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 817 * variable are safe because the assignments are repeated if this 818 * CPU failed to pass through a quiescent state. This code 819 * also checks .jiffies_resched in case jiffies_to_sched_qs 820 * is set way high. 821 */ 822 jtsq = READ_ONCE(jiffies_to_sched_qs); 823 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 824 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 825 time_after(jiffies, rcu_state.jiffies_resched) || 826 rcu_state.cbovld)) { 827 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 828 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 829 smp_store_release(&rdp->rcu_urgent_qs, true); 830 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 831 WRITE_ONCE(rdp->rcu_urgent_qs, true); 832 } 833 834 /* 835 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 836 * The above code handles this, but only for straight cond_resched(). 837 * And some in-kernel loops check need_resched() before calling 838 * cond_resched(), which defeats the above code for CPUs that are 839 * running in-kernel with scheduling-clock interrupts disabled. 840 * So hit them over the head with the resched_cpu() hammer! 841 */ 842 if (tick_nohz_full_cpu(rdp->cpu) && 843 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 844 rcu_state.cbovld)) { 845 WRITE_ONCE(rdp->rcu_urgent_qs, true); 846 resched_cpu(rdp->cpu); 847 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 848 } 849 850 /* 851 * If more than halfway to RCU CPU stall-warning time, invoke 852 * resched_cpu() more frequently to try to loosen things up a bit. 853 * Also check to see if the CPU is getting hammered with interrupts, 854 * but only once per grace period, just to keep the IPIs down to 855 * a dull roar. 856 */ 857 if (time_after(jiffies, rcu_state.jiffies_resched)) { 858 if (time_after(jiffies, 859 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 860 resched_cpu(rdp->cpu); 861 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 862 } 863 if (IS_ENABLED(CONFIG_IRQ_WORK) && 864 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 865 (rnp->ffmask & rdp->grpmask)) { 866 rdp->rcu_iw_pending = true; 867 rdp->rcu_iw_gp_seq = rnp->gp_seq; 868 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 869 } 870 871 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 872 int cpu = rdp->cpu; 873 struct rcu_snap_record *rsrp; 874 struct kernel_cpustat *kcsp; 875 876 kcsp = &kcpustat_cpu(cpu); 877 878 rsrp = &rdp->snap_record; 879 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 880 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 881 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 882 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 883 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 884 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 885 rsrp->jiffies = jiffies; 886 rsrp->gp_seq = rdp->gp_seq; 887 } 888 } 889 890 return 0; 891 } 892 893 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 894 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 895 unsigned long gp_seq_req, const char *s) 896 { 897 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 898 gp_seq_req, rnp->level, 899 rnp->grplo, rnp->grphi, s); 900 } 901 902 /* 903 * rcu_start_this_gp - Request the start of a particular grace period 904 * @rnp_start: The leaf node of the CPU from which to start. 905 * @rdp: The rcu_data corresponding to the CPU from which to start. 906 * @gp_seq_req: The gp_seq of the grace period to start. 907 * 908 * Start the specified grace period, as needed to handle newly arrived 909 * callbacks. The required future grace periods are recorded in each 910 * rcu_node structure's ->gp_seq_needed field. Returns true if there 911 * is reason to awaken the grace-period kthread. 912 * 913 * The caller must hold the specified rcu_node structure's ->lock, which 914 * is why the caller is responsible for waking the grace-period kthread. 915 * 916 * Returns true if the GP thread needs to be awakened else false. 917 */ 918 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 919 unsigned long gp_seq_req) 920 { 921 bool ret = false; 922 struct rcu_node *rnp; 923 924 /* 925 * Use funnel locking to either acquire the root rcu_node 926 * structure's lock or bail out if the need for this grace period 927 * has already been recorded -- or if that grace period has in 928 * fact already started. If there is already a grace period in 929 * progress in a non-leaf node, no recording is needed because the 930 * end of the grace period will scan the leaf rcu_node structures. 931 * Note that rnp_start->lock must not be released. 932 */ 933 raw_lockdep_assert_held_rcu_node(rnp_start); 934 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 935 for (rnp = rnp_start; 1; rnp = rnp->parent) { 936 if (rnp != rnp_start) 937 raw_spin_lock_rcu_node(rnp); 938 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 939 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 940 (rnp != rnp_start && 941 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 942 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 943 TPS("Prestarted")); 944 goto unlock_out; 945 } 946 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 947 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 948 /* 949 * We just marked the leaf or internal node, and a 950 * grace period is in progress, which means that 951 * rcu_gp_cleanup() will see the marking. Bail to 952 * reduce contention. 953 */ 954 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 955 TPS("Startedleaf")); 956 goto unlock_out; 957 } 958 if (rnp != rnp_start && rnp->parent != NULL) 959 raw_spin_unlock_rcu_node(rnp); 960 if (!rnp->parent) 961 break; /* At root, and perhaps also leaf. */ 962 } 963 964 /* If GP already in progress, just leave, otherwise start one. */ 965 if (rcu_gp_in_progress()) { 966 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 967 goto unlock_out; 968 } 969 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 970 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 971 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 972 if (!READ_ONCE(rcu_state.gp_kthread)) { 973 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 974 goto unlock_out; 975 } 976 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 977 ret = true; /* Caller must wake GP kthread. */ 978 unlock_out: 979 /* Push furthest requested GP to leaf node and rcu_data structure. */ 980 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 981 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 982 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 983 } 984 if (rnp != rnp_start) 985 raw_spin_unlock_rcu_node(rnp); 986 return ret; 987 } 988 989 /* 990 * Clean up any old requests for the just-ended grace period. Also return 991 * whether any additional grace periods have been requested. 992 */ 993 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 994 { 995 bool needmore; 996 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 997 998 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 999 if (!needmore) 1000 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1001 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1002 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1003 return needmore; 1004 } 1005 1006 /* 1007 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1008 * interrupt or softirq handler, in which case we just might immediately 1009 * sleep upon return, resulting in a grace-period hang), and don't bother 1010 * awakening when there is nothing for the grace-period kthread to do 1011 * (as in several CPUs raced to awaken, we lost), and finally don't try 1012 * to awaken a kthread that has not yet been created. If all those checks 1013 * are passed, track some debug information and awaken. 1014 * 1015 * So why do the self-wakeup when in an interrupt or softirq handler 1016 * in the grace-period kthread's context? Because the kthread might have 1017 * been interrupted just as it was going to sleep, and just after the final 1018 * pre-sleep check of the awaken condition. In this case, a wakeup really 1019 * is required, and is therefore supplied. 1020 */ 1021 static void rcu_gp_kthread_wake(void) 1022 { 1023 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1024 1025 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1026 !READ_ONCE(rcu_state.gp_flags) || !t) 1027 return; 1028 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1029 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1030 swake_up_one(&rcu_state.gp_wq); 1031 } 1032 1033 /* 1034 * If there is room, assign a ->gp_seq number to any callbacks on this 1035 * CPU that have not already been assigned. Also accelerate any callbacks 1036 * that were previously assigned a ->gp_seq number that has since proven 1037 * to be too conservative, which can happen if callbacks get assigned a 1038 * ->gp_seq number while RCU is idle, but with reference to a non-root 1039 * rcu_node structure. This function is idempotent, so it does not hurt 1040 * to call it repeatedly. Returns an flag saying that we should awaken 1041 * the RCU grace-period kthread. 1042 * 1043 * The caller must hold rnp->lock with interrupts disabled. 1044 */ 1045 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1046 { 1047 unsigned long gp_seq_req; 1048 bool ret = false; 1049 1050 rcu_lockdep_assert_cblist_protected(rdp); 1051 raw_lockdep_assert_held_rcu_node(rnp); 1052 1053 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1054 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1055 return false; 1056 1057 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1058 1059 /* 1060 * Callbacks are often registered with incomplete grace-period 1061 * information. Something about the fact that getting exact 1062 * information requires acquiring a global lock... RCU therefore 1063 * makes a conservative estimate of the grace period number at which 1064 * a given callback will become ready to invoke. The following 1065 * code checks this estimate and improves it when possible, thus 1066 * accelerating callback invocation to an earlier grace-period 1067 * number. 1068 */ 1069 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1070 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1071 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1072 1073 /* Trace depending on how much we were able to accelerate. */ 1074 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1075 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1076 else 1077 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1078 1079 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1080 1081 return ret; 1082 } 1083 1084 /* 1085 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1086 * rcu_node structure's ->lock be held. It consults the cached value 1087 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1088 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1089 * while holding the leaf rcu_node structure's ->lock. 1090 */ 1091 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1092 struct rcu_data *rdp) 1093 { 1094 unsigned long c; 1095 bool needwake; 1096 1097 rcu_lockdep_assert_cblist_protected(rdp); 1098 c = rcu_seq_snap(&rcu_state.gp_seq); 1099 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1100 /* Old request still live, so mark recent callbacks. */ 1101 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1102 return; 1103 } 1104 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1105 needwake = rcu_accelerate_cbs(rnp, rdp); 1106 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1107 if (needwake) 1108 rcu_gp_kthread_wake(); 1109 } 1110 1111 /* 1112 * Move any callbacks whose grace period has completed to the 1113 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1114 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1115 * sublist. This function is idempotent, so it does not hurt to 1116 * invoke it repeatedly. As long as it is not invoked -too- often... 1117 * Returns true if the RCU grace-period kthread needs to be awakened. 1118 * 1119 * The caller must hold rnp->lock with interrupts disabled. 1120 */ 1121 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1122 { 1123 rcu_lockdep_assert_cblist_protected(rdp); 1124 raw_lockdep_assert_held_rcu_node(rnp); 1125 1126 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1127 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1128 return false; 1129 1130 /* 1131 * Find all callbacks whose ->gp_seq numbers indicate that they 1132 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1133 */ 1134 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1135 1136 /* Classify any remaining callbacks. */ 1137 return rcu_accelerate_cbs(rnp, rdp); 1138 } 1139 1140 /* 1141 * Move and classify callbacks, but only if doing so won't require 1142 * that the RCU grace-period kthread be awakened. 1143 */ 1144 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1145 struct rcu_data *rdp) 1146 { 1147 rcu_lockdep_assert_cblist_protected(rdp); 1148 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1149 return; 1150 // The grace period cannot end while we hold the rcu_node lock. 1151 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1152 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1153 raw_spin_unlock_rcu_node(rnp); 1154 } 1155 1156 /* 1157 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1158 * quiescent state. This is intended to be invoked when the CPU notices 1159 * a new grace period. 1160 */ 1161 static void rcu_strict_gp_check_qs(void) 1162 { 1163 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1164 rcu_read_lock(); 1165 rcu_read_unlock(); 1166 } 1167 } 1168 1169 /* 1170 * Update CPU-local rcu_data state to record the beginnings and ends of 1171 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1172 * structure corresponding to the current CPU, and must have irqs disabled. 1173 * Returns true if the grace-period kthread needs to be awakened. 1174 */ 1175 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1176 { 1177 bool ret = false; 1178 bool need_qs; 1179 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1180 1181 raw_lockdep_assert_held_rcu_node(rnp); 1182 1183 if (rdp->gp_seq == rnp->gp_seq) 1184 return false; /* Nothing to do. */ 1185 1186 /* Handle the ends of any preceding grace periods first. */ 1187 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1188 unlikely(READ_ONCE(rdp->gpwrap))) { 1189 if (!offloaded) 1190 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1191 rdp->core_needs_qs = false; 1192 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1193 } else { 1194 if (!offloaded) 1195 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1196 if (rdp->core_needs_qs) 1197 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1198 } 1199 1200 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1201 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1202 unlikely(READ_ONCE(rdp->gpwrap))) { 1203 /* 1204 * If the current grace period is waiting for this CPU, 1205 * set up to detect a quiescent state, otherwise don't 1206 * go looking for one. 1207 */ 1208 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1209 need_qs = !!(rnp->qsmask & rdp->grpmask); 1210 rdp->cpu_no_qs.b.norm = need_qs; 1211 rdp->core_needs_qs = need_qs; 1212 zero_cpu_stall_ticks(rdp); 1213 } 1214 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1215 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1216 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1217 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1218 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1219 WRITE_ONCE(rdp->gpwrap, false); 1220 rcu_gpnum_ovf(rnp, rdp); 1221 return ret; 1222 } 1223 1224 static void note_gp_changes(struct rcu_data *rdp) 1225 { 1226 unsigned long flags; 1227 bool needwake; 1228 struct rcu_node *rnp; 1229 1230 local_irq_save(flags); 1231 rnp = rdp->mynode; 1232 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1233 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1234 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1235 local_irq_restore(flags); 1236 return; 1237 } 1238 needwake = __note_gp_changes(rnp, rdp); 1239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1240 rcu_strict_gp_check_qs(); 1241 if (needwake) 1242 rcu_gp_kthread_wake(); 1243 } 1244 1245 static atomic_t *rcu_gp_slow_suppress; 1246 1247 /* Register a counter to suppress debugging grace-period delays. */ 1248 void rcu_gp_slow_register(atomic_t *rgssp) 1249 { 1250 WARN_ON_ONCE(rcu_gp_slow_suppress); 1251 1252 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1253 } 1254 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1255 1256 /* Unregister a counter, with NULL for not caring which. */ 1257 void rcu_gp_slow_unregister(atomic_t *rgssp) 1258 { 1259 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1260 1261 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1262 } 1263 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1264 1265 static bool rcu_gp_slow_is_suppressed(void) 1266 { 1267 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1268 1269 return rgssp && atomic_read(rgssp); 1270 } 1271 1272 static void rcu_gp_slow(int delay) 1273 { 1274 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1275 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1276 schedule_timeout_idle(delay); 1277 } 1278 1279 static unsigned long sleep_duration; 1280 1281 /* Allow rcutorture to stall the grace-period kthread. */ 1282 void rcu_gp_set_torture_wait(int duration) 1283 { 1284 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1285 WRITE_ONCE(sleep_duration, duration); 1286 } 1287 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1288 1289 /* Actually implement the aforementioned wait. */ 1290 static void rcu_gp_torture_wait(void) 1291 { 1292 unsigned long duration; 1293 1294 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1295 return; 1296 duration = xchg(&sleep_duration, 0UL); 1297 if (duration > 0) { 1298 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1299 schedule_timeout_idle(duration); 1300 pr_alert("%s: Wait complete\n", __func__); 1301 } 1302 } 1303 1304 /* 1305 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1306 * processing. 1307 */ 1308 static void rcu_strict_gp_boundary(void *unused) 1309 { 1310 invoke_rcu_core(); 1311 } 1312 1313 // Make the polled API aware of the beginning of a grace period. 1314 static void rcu_poll_gp_seq_start(unsigned long *snap) 1315 { 1316 struct rcu_node *rnp = rcu_get_root(); 1317 1318 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1319 raw_lockdep_assert_held_rcu_node(rnp); 1320 1321 // If RCU was idle, note beginning of GP. 1322 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1323 rcu_seq_start(&rcu_state.gp_seq_polled); 1324 1325 // Either way, record current state. 1326 *snap = rcu_state.gp_seq_polled; 1327 } 1328 1329 // Make the polled API aware of the end of a grace period. 1330 static void rcu_poll_gp_seq_end(unsigned long *snap) 1331 { 1332 struct rcu_node *rnp = rcu_get_root(); 1333 1334 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1335 raw_lockdep_assert_held_rcu_node(rnp); 1336 1337 // If the previously noted GP is still in effect, record the 1338 // end of that GP. Either way, zero counter to avoid counter-wrap 1339 // problems. 1340 if (*snap && *snap == rcu_state.gp_seq_polled) { 1341 rcu_seq_end(&rcu_state.gp_seq_polled); 1342 rcu_state.gp_seq_polled_snap = 0; 1343 rcu_state.gp_seq_polled_exp_snap = 0; 1344 } else { 1345 *snap = 0; 1346 } 1347 } 1348 1349 // Make the polled API aware of the beginning of a grace period, but 1350 // where caller does not hold the root rcu_node structure's lock. 1351 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1352 { 1353 unsigned long flags; 1354 struct rcu_node *rnp = rcu_get_root(); 1355 1356 if (rcu_init_invoked()) { 1357 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1358 lockdep_assert_irqs_enabled(); 1359 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1360 } 1361 rcu_poll_gp_seq_start(snap); 1362 if (rcu_init_invoked()) 1363 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1364 } 1365 1366 // Make the polled API aware of the end of a grace period, but where 1367 // caller does not hold the root rcu_node structure's lock. 1368 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1369 { 1370 unsigned long flags; 1371 struct rcu_node *rnp = rcu_get_root(); 1372 1373 if (rcu_init_invoked()) { 1374 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1375 lockdep_assert_irqs_enabled(); 1376 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1377 } 1378 rcu_poll_gp_seq_end(snap); 1379 if (rcu_init_invoked()) 1380 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1381 } 1382 1383 /* 1384 * Initialize a new grace period. Return false if no grace period required. 1385 */ 1386 static noinline_for_stack bool rcu_gp_init(void) 1387 { 1388 unsigned long flags; 1389 unsigned long oldmask; 1390 unsigned long mask; 1391 struct rcu_data *rdp; 1392 struct rcu_node *rnp = rcu_get_root(); 1393 1394 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1395 raw_spin_lock_irq_rcu_node(rnp); 1396 if (!READ_ONCE(rcu_state.gp_flags)) { 1397 /* Spurious wakeup, tell caller to go back to sleep. */ 1398 raw_spin_unlock_irq_rcu_node(rnp); 1399 return false; 1400 } 1401 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1402 1403 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1404 /* 1405 * Grace period already in progress, don't start another. 1406 * Not supposed to be able to happen. 1407 */ 1408 raw_spin_unlock_irq_rcu_node(rnp); 1409 return false; 1410 } 1411 1412 /* Advance to a new grace period and initialize state. */ 1413 record_gp_stall_check_time(); 1414 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1415 rcu_seq_start(&rcu_state.gp_seq); 1416 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1417 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1418 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1419 raw_spin_unlock_irq_rcu_node(rnp); 1420 1421 /* 1422 * Apply per-leaf buffered online and offline operations to 1423 * the rcu_node tree. Note that this new grace period need not 1424 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1425 * offlining path, when combined with checks in this function, 1426 * will handle CPUs that are currently going offline or that will 1427 * go offline later. Please also refer to "Hotplug CPU" section 1428 * of RCU's Requirements documentation. 1429 */ 1430 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1431 /* Exclude CPU hotplug operations. */ 1432 rcu_for_each_leaf_node(rnp) { 1433 local_irq_save(flags); 1434 arch_spin_lock(&rcu_state.ofl_lock); 1435 raw_spin_lock_rcu_node(rnp); 1436 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1437 !rnp->wait_blkd_tasks) { 1438 /* Nothing to do on this leaf rcu_node structure. */ 1439 raw_spin_unlock_rcu_node(rnp); 1440 arch_spin_unlock(&rcu_state.ofl_lock); 1441 local_irq_restore(flags); 1442 continue; 1443 } 1444 1445 /* Record old state, apply changes to ->qsmaskinit field. */ 1446 oldmask = rnp->qsmaskinit; 1447 rnp->qsmaskinit = rnp->qsmaskinitnext; 1448 1449 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1450 if (!oldmask != !rnp->qsmaskinit) { 1451 if (!oldmask) { /* First online CPU for rcu_node. */ 1452 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1453 rcu_init_new_rnp(rnp); 1454 } else if (rcu_preempt_has_tasks(rnp)) { 1455 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1456 } else { /* Last offline CPU and can propagate. */ 1457 rcu_cleanup_dead_rnp(rnp); 1458 } 1459 } 1460 1461 /* 1462 * If all waited-on tasks from prior grace period are 1463 * done, and if all this rcu_node structure's CPUs are 1464 * still offline, propagate up the rcu_node tree and 1465 * clear ->wait_blkd_tasks. Otherwise, if one of this 1466 * rcu_node structure's CPUs has since come back online, 1467 * simply clear ->wait_blkd_tasks. 1468 */ 1469 if (rnp->wait_blkd_tasks && 1470 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1471 rnp->wait_blkd_tasks = false; 1472 if (!rnp->qsmaskinit) 1473 rcu_cleanup_dead_rnp(rnp); 1474 } 1475 1476 raw_spin_unlock_rcu_node(rnp); 1477 arch_spin_unlock(&rcu_state.ofl_lock); 1478 local_irq_restore(flags); 1479 } 1480 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1481 1482 /* 1483 * Set the quiescent-state-needed bits in all the rcu_node 1484 * structures for all currently online CPUs in breadth-first 1485 * order, starting from the root rcu_node structure, relying on the 1486 * layout of the tree within the rcu_state.node[] array. Note that 1487 * other CPUs will access only the leaves of the hierarchy, thus 1488 * seeing that no grace period is in progress, at least until the 1489 * corresponding leaf node has been initialized. 1490 * 1491 * The grace period cannot complete until the initialization 1492 * process finishes, because this kthread handles both. 1493 */ 1494 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1495 rcu_for_each_node_breadth_first(rnp) { 1496 rcu_gp_slow(gp_init_delay); 1497 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1498 rdp = this_cpu_ptr(&rcu_data); 1499 rcu_preempt_check_blocked_tasks(rnp); 1500 rnp->qsmask = rnp->qsmaskinit; 1501 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1502 if (rnp == rdp->mynode) 1503 (void)__note_gp_changes(rnp, rdp); 1504 rcu_preempt_boost_start_gp(rnp); 1505 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1506 rnp->level, rnp->grplo, 1507 rnp->grphi, rnp->qsmask); 1508 /* Quiescent states for tasks on any now-offline CPUs. */ 1509 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1510 rnp->rcu_gp_init_mask = mask; 1511 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1512 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1513 else 1514 raw_spin_unlock_irq_rcu_node(rnp); 1515 cond_resched_tasks_rcu_qs(); 1516 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1517 } 1518 1519 // If strict, make all CPUs aware of new grace period. 1520 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1521 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1522 1523 return true; 1524 } 1525 1526 /* 1527 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1528 * time. 1529 */ 1530 static bool rcu_gp_fqs_check_wake(int *gfp) 1531 { 1532 struct rcu_node *rnp = rcu_get_root(); 1533 1534 // If under overload conditions, force an immediate FQS scan. 1535 if (*gfp & RCU_GP_FLAG_OVLD) 1536 return true; 1537 1538 // Someone like call_rcu() requested a force-quiescent-state scan. 1539 *gfp = READ_ONCE(rcu_state.gp_flags); 1540 if (*gfp & RCU_GP_FLAG_FQS) 1541 return true; 1542 1543 // The current grace period has completed. 1544 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1545 return true; 1546 1547 return false; 1548 } 1549 1550 /* 1551 * Do one round of quiescent-state forcing. 1552 */ 1553 static void rcu_gp_fqs(bool first_time) 1554 { 1555 struct rcu_node *rnp = rcu_get_root(); 1556 1557 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1558 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1559 if (first_time) { 1560 /* Collect dyntick-idle snapshots. */ 1561 force_qs_rnp(dyntick_save_progress_counter); 1562 } else { 1563 /* Handle dyntick-idle and offline CPUs. */ 1564 force_qs_rnp(rcu_implicit_dynticks_qs); 1565 } 1566 /* Clear flag to prevent immediate re-entry. */ 1567 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1568 raw_spin_lock_irq_rcu_node(rnp); 1569 WRITE_ONCE(rcu_state.gp_flags, 1570 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1571 raw_spin_unlock_irq_rcu_node(rnp); 1572 } 1573 } 1574 1575 /* 1576 * Loop doing repeated quiescent-state forcing until the grace period ends. 1577 */ 1578 static noinline_for_stack void rcu_gp_fqs_loop(void) 1579 { 1580 bool first_gp_fqs = true; 1581 int gf = 0; 1582 unsigned long j; 1583 int ret; 1584 struct rcu_node *rnp = rcu_get_root(); 1585 1586 j = READ_ONCE(jiffies_till_first_fqs); 1587 if (rcu_state.cbovld) 1588 gf = RCU_GP_FLAG_OVLD; 1589 ret = 0; 1590 for (;;) { 1591 if (rcu_state.cbovld) { 1592 j = (j + 2) / 3; 1593 if (j <= 0) 1594 j = 1; 1595 } 1596 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1597 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1598 /* 1599 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1600 * update; required for stall checks. 1601 */ 1602 smp_wmb(); 1603 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1604 jiffies + (j ? 3 * j : 2)); 1605 } 1606 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1607 TPS("fqswait")); 1608 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1609 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1610 rcu_gp_fqs_check_wake(&gf), j); 1611 rcu_gp_torture_wait(); 1612 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1613 /* Locking provides needed memory barriers. */ 1614 /* 1615 * Exit the loop if the root rcu_node structure indicates that the grace period 1616 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1617 * is required only for single-node rcu_node trees because readers blocking 1618 * the current grace period are queued only on leaf rcu_node structures. 1619 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1620 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1621 * the corresponding leaf nodes have passed through their quiescent state. 1622 */ 1623 if (!READ_ONCE(rnp->qsmask) && 1624 !rcu_preempt_blocked_readers_cgp(rnp)) 1625 break; 1626 /* If time for quiescent-state forcing, do it. */ 1627 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1628 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1629 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1630 TPS("fqsstart")); 1631 rcu_gp_fqs(first_gp_fqs); 1632 gf = 0; 1633 if (first_gp_fqs) { 1634 first_gp_fqs = false; 1635 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1636 } 1637 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1638 TPS("fqsend")); 1639 cond_resched_tasks_rcu_qs(); 1640 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1641 ret = 0; /* Force full wait till next FQS. */ 1642 j = READ_ONCE(jiffies_till_next_fqs); 1643 } else { 1644 /* Deal with stray signal. */ 1645 cond_resched_tasks_rcu_qs(); 1646 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1647 WARN_ON(signal_pending(current)); 1648 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1649 TPS("fqswaitsig")); 1650 ret = 1; /* Keep old FQS timing. */ 1651 j = jiffies; 1652 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1653 j = 1; 1654 else 1655 j = rcu_state.jiffies_force_qs - j; 1656 gf = 0; 1657 } 1658 } 1659 } 1660 1661 /* 1662 * Clean up after the old grace period. 1663 */ 1664 static noinline void rcu_gp_cleanup(void) 1665 { 1666 int cpu; 1667 bool needgp = false; 1668 unsigned long gp_duration; 1669 unsigned long new_gp_seq; 1670 bool offloaded; 1671 struct rcu_data *rdp; 1672 struct rcu_node *rnp = rcu_get_root(); 1673 struct swait_queue_head *sq; 1674 1675 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1676 raw_spin_lock_irq_rcu_node(rnp); 1677 rcu_state.gp_end = jiffies; 1678 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1679 if (gp_duration > rcu_state.gp_max) 1680 rcu_state.gp_max = gp_duration; 1681 1682 /* 1683 * We know the grace period is complete, but to everyone else 1684 * it appears to still be ongoing. But it is also the case 1685 * that to everyone else it looks like there is nothing that 1686 * they can do to advance the grace period. It is therefore 1687 * safe for us to drop the lock in order to mark the grace 1688 * period as completed in all of the rcu_node structures. 1689 */ 1690 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1691 raw_spin_unlock_irq_rcu_node(rnp); 1692 1693 /* 1694 * Propagate new ->gp_seq value to rcu_node structures so that 1695 * other CPUs don't have to wait until the start of the next grace 1696 * period to process their callbacks. This also avoids some nasty 1697 * RCU grace-period initialization races by forcing the end of 1698 * the current grace period to be completely recorded in all of 1699 * the rcu_node structures before the beginning of the next grace 1700 * period is recorded in any of the rcu_node structures. 1701 */ 1702 new_gp_seq = rcu_state.gp_seq; 1703 rcu_seq_end(&new_gp_seq); 1704 rcu_for_each_node_breadth_first(rnp) { 1705 raw_spin_lock_irq_rcu_node(rnp); 1706 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1707 dump_blkd_tasks(rnp, 10); 1708 WARN_ON_ONCE(rnp->qsmask); 1709 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1710 if (!rnp->parent) 1711 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1712 rdp = this_cpu_ptr(&rcu_data); 1713 if (rnp == rdp->mynode) 1714 needgp = __note_gp_changes(rnp, rdp) || needgp; 1715 /* smp_mb() provided by prior unlock-lock pair. */ 1716 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1717 // Reset overload indication for CPUs no longer overloaded 1718 if (rcu_is_leaf_node(rnp)) 1719 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1720 rdp = per_cpu_ptr(&rcu_data, cpu); 1721 check_cb_ovld_locked(rdp, rnp); 1722 } 1723 sq = rcu_nocb_gp_get(rnp); 1724 raw_spin_unlock_irq_rcu_node(rnp); 1725 rcu_nocb_gp_cleanup(sq); 1726 cond_resched_tasks_rcu_qs(); 1727 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1728 rcu_gp_slow(gp_cleanup_delay); 1729 } 1730 rnp = rcu_get_root(); 1731 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1732 1733 /* Declare grace period done, trace first to use old GP number. */ 1734 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1735 rcu_seq_end(&rcu_state.gp_seq); 1736 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1737 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1738 /* Check for GP requests since above loop. */ 1739 rdp = this_cpu_ptr(&rcu_data); 1740 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1741 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1742 TPS("CleanupMore")); 1743 needgp = true; 1744 } 1745 /* Advance CBs to reduce false positives below. */ 1746 offloaded = rcu_rdp_is_offloaded(rdp); 1747 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1748 1749 // We get here if a grace period was needed (“needgp”) 1750 // and the above call to rcu_accelerate_cbs() did not set 1751 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1752 // the need for another grace period). The purpose 1753 // of the “offloaded” check is to avoid invoking 1754 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1755 // hold the ->nocb_lock needed to safely access an offloaded 1756 // ->cblist. We do not want to acquire that lock because 1757 // it can be heavily contended during callback floods. 1758 1759 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1760 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1761 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1762 } else { 1763 1764 // We get here either if there is no need for an 1765 // additional grace period or if rcu_accelerate_cbs() has 1766 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1767 // So all we need to do is to clear all of the other 1768 // ->gp_flags bits. 1769 1770 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1771 } 1772 raw_spin_unlock_irq_rcu_node(rnp); 1773 1774 // If strict, make all CPUs aware of the end of the old grace period. 1775 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1776 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1777 } 1778 1779 /* 1780 * Body of kthread that handles grace periods. 1781 */ 1782 static int __noreturn rcu_gp_kthread(void *unused) 1783 { 1784 rcu_bind_gp_kthread(); 1785 for (;;) { 1786 1787 /* Handle grace-period start. */ 1788 for (;;) { 1789 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1790 TPS("reqwait")); 1791 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1792 swait_event_idle_exclusive(rcu_state.gp_wq, 1793 READ_ONCE(rcu_state.gp_flags) & 1794 RCU_GP_FLAG_INIT); 1795 rcu_gp_torture_wait(); 1796 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1797 /* Locking provides needed memory barrier. */ 1798 if (rcu_gp_init()) 1799 break; 1800 cond_resched_tasks_rcu_qs(); 1801 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1802 WARN_ON(signal_pending(current)); 1803 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1804 TPS("reqwaitsig")); 1805 } 1806 1807 /* Handle quiescent-state forcing. */ 1808 rcu_gp_fqs_loop(); 1809 1810 /* Handle grace-period end. */ 1811 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1812 rcu_gp_cleanup(); 1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1814 } 1815 } 1816 1817 /* 1818 * Report a full set of quiescent states to the rcu_state data structure. 1819 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1820 * another grace period is required. Whether we wake the grace-period 1821 * kthread or it awakens itself for the next round of quiescent-state 1822 * forcing, that kthread will clean up after the just-completed grace 1823 * period. Note that the caller must hold rnp->lock, which is released 1824 * before return. 1825 */ 1826 static void rcu_report_qs_rsp(unsigned long flags) 1827 __releases(rcu_get_root()->lock) 1828 { 1829 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1830 WARN_ON_ONCE(!rcu_gp_in_progress()); 1831 WRITE_ONCE(rcu_state.gp_flags, 1832 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1833 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1834 rcu_gp_kthread_wake(); 1835 } 1836 1837 /* 1838 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1839 * Allows quiescent states for a group of CPUs to be reported at one go 1840 * to the specified rcu_node structure, though all the CPUs in the group 1841 * must be represented by the same rcu_node structure (which need not be a 1842 * leaf rcu_node structure, though it often will be). The gps parameter 1843 * is the grace-period snapshot, which means that the quiescent states 1844 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1845 * must be held upon entry, and it is released before return. 1846 * 1847 * As a special case, if mask is zero, the bit-already-cleared check is 1848 * disabled. This allows propagating quiescent state due to resumed tasks 1849 * during grace-period initialization. 1850 */ 1851 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1852 unsigned long gps, unsigned long flags) 1853 __releases(rnp->lock) 1854 { 1855 unsigned long oldmask = 0; 1856 struct rcu_node *rnp_c; 1857 1858 raw_lockdep_assert_held_rcu_node(rnp); 1859 1860 /* Walk up the rcu_node hierarchy. */ 1861 for (;;) { 1862 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1863 1864 /* 1865 * Our bit has already been cleared, or the 1866 * relevant grace period is already over, so done. 1867 */ 1868 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1869 return; 1870 } 1871 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1872 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1873 rcu_preempt_blocked_readers_cgp(rnp)); 1874 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1875 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1876 mask, rnp->qsmask, rnp->level, 1877 rnp->grplo, rnp->grphi, 1878 !!rnp->gp_tasks); 1879 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1880 1881 /* Other bits still set at this level, so done. */ 1882 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1883 return; 1884 } 1885 rnp->completedqs = rnp->gp_seq; 1886 mask = rnp->grpmask; 1887 if (rnp->parent == NULL) { 1888 1889 /* No more levels. Exit loop holding root lock. */ 1890 1891 break; 1892 } 1893 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1894 rnp_c = rnp; 1895 rnp = rnp->parent; 1896 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1897 oldmask = READ_ONCE(rnp_c->qsmask); 1898 } 1899 1900 /* 1901 * Get here if we are the last CPU to pass through a quiescent 1902 * state for this grace period. Invoke rcu_report_qs_rsp() 1903 * to clean up and start the next grace period if one is needed. 1904 */ 1905 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1906 } 1907 1908 /* 1909 * Record a quiescent state for all tasks that were previously queued 1910 * on the specified rcu_node structure and that were blocking the current 1911 * RCU grace period. The caller must hold the corresponding rnp->lock with 1912 * irqs disabled, and this lock is released upon return, but irqs remain 1913 * disabled. 1914 */ 1915 static void __maybe_unused 1916 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1917 __releases(rnp->lock) 1918 { 1919 unsigned long gps; 1920 unsigned long mask; 1921 struct rcu_node *rnp_p; 1922 1923 raw_lockdep_assert_held_rcu_node(rnp); 1924 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1925 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1926 rnp->qsmask != 0) { 1927 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1928 return; /* Still need more quiescent states! */ 1929 } 1930 1931 rnp->completedqs = rnp->gp_seq; 1932 rnp_p = rnp->parent; 1933 if (rnp_p == NULL) { 1934 /* 1935 * Only one rcu_node structure in the tree, so don't 1936 * try to report up to its nonexistent parent! 1937 */ 1938 rcu_report_qs_rsp(flags); 1939 return; 1940 } 1941 1942 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1943 gps = rnp->gp_seq; 1944 mask = rnp->grpmask; 1945 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1946 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1947 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1948 } 1949 1950 /* 1951 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1952 * structure. This must be called from the specified CPU. 1953 */ 1954 static void 1955 rcu_report_qs_rdp(struct rcu_data *rdp) 1956 { 1957 unsigned long flags; 1958 unsigned long mask; 1959 bool needacc = false; 1960 struct rcu_node *rnp; 1961 1962 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1963 rnp = rdp->mynode; 1964 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1965 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1966 rdp->gpwrap) { 1967 1968 /* 1969 * The grace period in which this quiescent state was 1970 * recorded has ended, so don't report it upwards. 1971 * We will instead need a new quiescent state that lies 1972 * within the current grace period. 1973 */ 1974 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1975 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1976 return; 1977 } 1978 mask = rdp->grpmask; 1979 rdp->core_needs_qs = false; 1980 if ((rnp->qsmask & mask) == 0) { 1981 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1982 } else { 1983 /* 1984 * This GP can't end until cpu checks in, so all of our 1985 * callbacks can be processed during the next GP. 1986 * 1987 * NOCB kthreads have their own way to deal with that... 1988 */ 1989 if (!rcu_rdp_is_offloaded(rdp)) { 1990 /* 1991 * The current GP has not yet ended, so it 1992 * should not be possible for rcu_accelerate_cbs() 1993 * to return true. So complain, but don't awaken. 1994 */ 1995 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 1996 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 1997 /* 1998 * ...but NOCB kthreads may miss or delay callbacks acceleration 1999 * if in the middle of a (de-)offloading process. 2000 */ 2001 needacc = true; 2002 } 2003 2004 rcu_disable_urgency_upon_qs(rdp); 2005 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2006 /* ^^^ Released rnp->lock */ 2007 2008 if (needacc) { 2009 rcu_nocb_lock_irqsave(rdp, flags); 2010 rcu_accelerate_cbs_unlocked(rnp, rdp); 2011 rcu_nocb_unlock_irqrestore(rdp, flags); 2012 } 2013 } 2014 } 2015 2016 /* 2017 * Check to see if there is a new grace period of which this CPU 2018 * is not yet aware, and if so, set up local rcu_data state for it. 2019 * Otherwise, see if this CPU has just passed through its first 2020 * quiescent state for this grace period, and record that fact if so. 2021 */ 2022 static void 2023 rcu_check_quiescent_state(struct rcu_data *rdp) 2024 { 2025 /* Check for grace-period ends and beginnings. */ 2026 note_gp_changes(rdp); 2027 2028 /* 2029 * Does this CPU still need to do its part for current grace period? 2030 * If no, return and let the other CPUs do their part as well. 2031 */ 2032 if (!rdp->core_needs_qs) 2033 return; 2034 2035 /* 2036 * Was there a quiescent state since the beginning of the grace 2037 * period? If no, then exit and wait for the next call. 2038 */ 2039 if (rdp->cpu_no_qs.b.norm) 2040 return; 2041 2042 /* 2043 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2044 * judge of that). 2045 */ 2046 rcu_report_qs_rdp(rdp); 2047 } 2048 2049 /* Return true if callback-invocation time limit exceeded. */ 2050 static bool rcu_do_batch_check_time(long count, long tlimit, 2051 bool jlimit_check, unsigned long jlimit) 2052 { 2053 // Invoke local_clock() only once per 32 consecutive callbacks. 2054 return unlikely(tlimit) && 2055 (!likely(count & 31) || 2056 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2057 jlimit_check && time_after(jiffies, jlimit))) && 2058 local_clock() >= tlimit; 2059 } 2060 2061 /* 2062 * Invoke any RCU callbacks that have made it to the end of their grace 2063 * period. Throttle as specified by rdp->blimit. 2064 */ 2065 static void rcu_do_batch(struct rcu_data *rdp) 2066 { 2067 long bl; 2068 long count = 0; 2069 int div; 2070 bool __maybe_unused empty; 2071 unsigned long flags; 2072 unsigned long jlimit; 2073 bool jlimit_check = false; 2074 long pending; 2075 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2076 struct rcu_head *rhp; 2077 long tlimit = 0; 2078 2079 /* If no callbacks are ready, just return. */ 2080 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2081 trace_rcu_batch_start(rcu_state.name, 2082 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2083 trace_rcu_batch_end(rcu_state.name, 0, 2084 !rcu_segcblist_empty(&rdp->cblist), 2085 need_resched(), is_idle_task(current), 2086 rcu_is_callbacks_kthread(rdp)); 2087 return; 2088 } 2089 2090 /* 2091 * Extract the list of ready callbacks, disabling IRQs to prevent 2092 * races with call_rcu() from interrupt handlers. Leave the 2093 * callback counts, as rcu_barrier() needs to be conservative. 2094 */ 2095 rcu_nocb_lock_irqsave(rdp, flags); 2096 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2097 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2098 div = READ_ONCE(rcu_divisor); 2099 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2100 bl = max(rdp->blimit, pending >> div); 2101 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2102 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2103 const long npj = NSEC_PER_SEC / HZ; 2104 long rrn = READ_ONCE(rcu_resched_ns); 2105 2106 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2107 tlimit = local_clock() + rrn; 2108 jlimit = jiffies + (rrn + npj + 1) / npj; 2109 jlimit_check = true; 2110 } 2111 trace_rcu_batch_start(rcu_state.name, 2112 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2113 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2114 if (rcu_rdp_is_offloaded(rdp)) 2115 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2116 2117 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2118 rcu_nocb_unlock_irqrestore(rdp, flags); 2119 2120 /* Invoke callbacks. */ 2121 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2122 rhp = rcu_cblist_dequeue(&rcl); 2123 2124 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2125 rcu_callback_t f; 2126 2127 count++; 2128 debug_rcu_head_unqueue(rhp); 2129 2130 rcu_lock_acquire(&rcu_callback_map); 2131 trace_rcu_invoke_callback(rcu_state.name, rhp); 2132 2133 f = rhp->func; 2134 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2135 f(rhp); 2136 2137 rcu_lock_release(&rcu_callback_map); 2138 2139 /* 2140 * Stop only if limit reached and CPU has something to do. 2141 */ 2142 if (in_serving_softirq()) { 2143 if (count >= bl && (need_resched() || !is_idle_task(current))) 2144 break; 2145 /* 2146 * Make sure we don't spend too much time here and deprive other 2147 * softirq vectors of CPU cycles. 2148 */ 2149 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2150 break; 2151 } else { 2152 // In rcuc/rcuoc context, so no worries about 2153 // depriving other softirq vectors of CPU cycles. 2154 local_bh_enable(); 2155 lockdep_assert_irqs_enabled(); 2156 cond_resched_tasks_rcu_qs(); 2157 lockdep_assert_irqs_enabled(); 2158 local_bh_disable(); 2159 // But rcuc kthreads can delay quiescent-state 2160 // reporting, so check time limits for them. 2161 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2162 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2163 rdp->rcu_cpu_has_work = 1; 2164 break; 2165 } 2166 } 2167 } 2168 2169 rcu_nocb_lock_irqsave(rdp, flags); 2170 rdp->n_cbs_invoked += count; 2171 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2172 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2173 2174 /* Update counts and requeue any remaining callbacks. */ 2175 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2176 rcu_segcblist_add_len(&rdp->cblist, -count); 2177 2178 /* Reinstate batch limit if we have worked down the excess. */ 2179 count = rcu_segcblist_n_cbs(&rdp->cblist); 2180 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2181 rdp->blimit = blimit; 2182 2183 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2184 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2185 rdp->qlen_last_fqs_check = 0; 2186 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2187 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2188 rdp->qlen_last_fqs_check = count; 2189 2190 /* 2191 * The following usually indicates a double call_rcu(). To track 2192 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2193 */ 2194 empty = rcu_segcblist_empty(&rdp->cblist); 2195 WARN_ON_ONCE(count == 0 && !empty); 2196 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2197 count != 0 && empty); 2198 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2199 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2200 2201 rcu_nocb_unlock_irqrestore(rdp, flags); 2202 2203 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2204 } 2205 2206 /* 2207 * This function is invoked from each scheduling-clock interrupt, 2208 * and checks to see if this CPU is in a non-context-switch quiescent 2209 * state, for example, user mode or idle loop. It also schedules RCU 2210 * core processing. If the current grace period has gone on too long, 2211 * it will ask the scheduler to manufacture a context switch for the sole 2212 * purpose of providing the needed quiescent state. 2213 */ 2214 void rcu_sched_clock_irq(int user) 2215 { 2216 unsigned long j; 2217 2218 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2219 j = jiffies; 2220 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2221 __this_cpu_write(rcu_data.last_sched_clock, j); 2222 } 2223 trace_rcu_utilization(TPS("Start scheduler-tick")); 2224 lockdep_assert_irqs_disabled(); 2225 raw_cpu_inc(rcu_data.ticks_this_gp); 2226 /* The load-acquire pairs with the store-release setting to true. */ 2227 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2228 /* Idle and userspace execution already are quiescent states. */ 2229 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2230 set_tsk_need_resched(current); 2231 set_preempt_need_resched(); 2232 } 2233 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2234 } 2235 rcu_flavor_sched_clock_irq(user); 2236 if (rcu_pending(user)) 2237 invoke_rcu_core(); 2238 if (user || rcu_is_cpu_rrupt_from_idle()) 2239 rcu_note_voluntary_context_switch(current); 2240 lockdep_assert_irqs_disabled(); 2241 2242 trace_rcu_utilization(TPS("End scheduler-tick")); 2243 } 2244 2245 /* 2246 * Scan the leaf rcu_node structures. For each structure on which all 2247 * CPUs have reported a quiescent state and on which there are tasks 2248 * blocking the current grace period, initiate RCU priority boosting. 2249 * Otherwise, invoke the specified function to check dyntick state for 2250 * each CPU that has not yet reported a quiescent state. 2251 */ 2252 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2253 { 2254 int cpu; 2255 unsigned long flags; 2256 unsigned long mask; 2257 struct rcu_data *rdp; 2258 struct rcu_node *rnp; 2259 2260 rcu_state.cbovld = rcu_state.cbovldnext; 2261 rcu_state.cbovldnext = false; 2262 rcu_for_each_leaf_node(rnp) { 2263 cond_resched_tasks_rcu_qs(); 2264 mask = 0; 2265 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2266 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2267 if (rnp->qsmask == 0) { 2268 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2269 /* 2270 * No point in scanning bits because they 2271 * are all zero. But we might need to 2272 * priority-boost blocked readers. 2273 */ 2274 rcu_initiate_boost(rnp, flags); 2275 /* rcu_initiate_boost() releases rnp->lock */ 2276 continue; 2277 } 2278 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2279 continue; 2280 } 2281 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2282 rdp = per_cpu_ptr(&rcu_data, cpu); 2283 if (f(rdp)) { 2284 mask |= rdp->grpmask; 2285 rcu_disable_urgency_upon_qs(rdp); 2286 } 2287 } 2288 if (mask != 0) { 2289 /* Idle/offline CPUs, report (releases rnp->lock). */ 2290 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2291 } else { 2292 /* Nothing to do here, so just drop the lock. */ 2293 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2294 } 2295 } 2296 } 2297 2298 /* 2299 * Force quiescent states on reluctant CPUs, and also detect which 2300 * CPUs are in dyntick-idle mode. 2301 */ 2302 void rcu_force_quiescent_state(void) 2303 { 2304 unsigned long flags; 2305 bool ret; 2306 struct rcu_node *rnp; 2307 struct rcu_node *rnp_old = NULL; 2308 2309 /* Funnel through hierarchy to reduce memory contention. */ 2310 rnp = raw_cpu_read(rcu_data.mynode); 2311 for (; rnp != NULL; rnp = rnp->parent) { 2312 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2313 !raw_spin_trylock(&rnp->fqslock); 2314 if (rnp_old != NULL) 2315 raw_spin_unlock(&rnp_old->fqslock); 2316 if (ret) 2317 return; 2318 rnp_old = rnp; 2319 } 2320 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2321 2322 /* Reached the root of the rcu_node tree, acquire lock. */ 2323 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2324 raw_spin_unlock(&rnp_old->fqslock); 2325 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2326 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2327 return; /* Someone beat us to it. */ 2328 } 2329 WRITE_ONCE(rcu_state.gp_flags, 2330 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2331 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2332 rcu_gp_kthread_wake(); 2333 } 2334 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2335 2336 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2337 // grace periods. 2338 static void strict_work_handler(struct work_struct *work) 2339 { 2340 rcu_read_lock(); 2341 rcu_read_unlock(); 2342 } 2343 2344 /* Perform RCU core processing work for the current CPU. */ 2345 static __latent_entropy void rcu_core(void) 2346 { 2347 unsigned long flags; 2348 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2349 struct rcu_node *rnp = rdp->mynode; 2350 /* 2351 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2352 * Therefore this function can race with concurrent NOCB (de-)offloading 2353 * on this CPU and the below condition must be considered volatile. 2354 * However if we race with: 2355 * 2356 * _ Offloading: In the worst case we accelerate or process callbacks 2357 * concurrently with NOCB kthreads. We are guaranteed to 2358 * call rcu_nocb_lock() if that happens. 2359 * 2360 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2361 * processing. This is fine because the early stage 2362 * of deoffloading invokes rcu_core() after setting 2363 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2364 * what could have been dismissed without the need to wait 2365 * for the next rcu_pending() check in the next jiffy. 2366 */ 2367 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2368 2369 if (cpu_is_offline(smp_processor_id())) 2370 return; 2371 trace_rcu_utilization(TPS("Start RCU core")); 2372 WARN_ON_ONCE(!rdp->beenonline); 2373 2374 /* Report any deferred quiescent states if preemption enabled. */ 2375 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2376 rcu_preempt_deferred_qs(current); 2377 } else if (rcu_preempt_need_deferred_qs(current)) { 2378 set_tsk_need_resched(current); 2379 set_preempt_need_resched(); 2380 } 2381 2382 /* Update RCU state based on any recent quiescent states. */ 2383 rcu_check_quiescent_state(rdp); 2384 2385 /* No grace period and unregistered callbacks? */ 2386 if (!rcu_gp_in_progress() && 2387 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2388 rcu_nocb_lock_irqsave(rdp, flags); 2389 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2390 rcu_accelerate_cbs_unlocked(rnp, rdp); 2391 rcu_nocb_unlock_irqrestore(rdp, flags); 2392 } 2393 2394 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2395 2396 /* If there are callbacks ready, invoke them. */ 2397 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2398 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2399 rcu_do_batch(rdp); 2400 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2401 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2402 invoke_rcu_core(); 2403 } 2404 2405 /* Do any needed deferred wakeups of rcuo kthreads. */ 2406 do_nocb_deferred_wakeup(rdp); 2407 trace_rcu_utilization(TPS("End RCU core")); 2408 2409 // If strict GPs, schedule an RCU reader in a clean environment. 2410 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2411 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2412 } 2413 2414 static void rcu_core_si(struct softirq_action *h) 2415 { 2416 rcu_core(); 2417 } 2418 2419 static void rcu_wake_cond(struct task_struct *t, int status) 2420 { 2421 /* 2422 * If the thread is yielding, only wake it when this 2423 * is invoked from idle 2424 */ 2425 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2426 wake_up_process(t); 2427 } 2428 2429 static void invoke_rcu_core_kthread(void) 2430 { 2431 struct task_struct *t; 2432 unsigned long flags; 2433 2434 local_irq_save(flags); 2435 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2436 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2437 if (t != NULL && t != current) 2438 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2439 local_irq_restore(flags); 2440 } 2441 2442 /* 2443 * Wake up this CPU's rcuc kthread to do RCU core processing. 2444 */ 2445 static void invoke_rcu_core(void) 2446 { 2447 if (!cpu_online(smp_processor_id())) 2448 return; 2449 if (use_softirq) 2450 raise_softirq(RCU_SOFTIRQ); 2451 else 2452 invoke_rcu_core_kthread(); 2453 } 2454 2455 static void rcu_cpu_kthread_park(unsigned int cpu) 2456 { 2457 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2458 } 2459 2460 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2461 { 2462 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2463 } 2464 2465 /* 2466 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2467 * the RCU softirq used in configurations of RCU that do not support RCU 2468 * priority boosting. 2469 */ 2470 static void rcu_cpu_kthread(unsigned int cpu) 2471 { 2472 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2473 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2474 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2475 int spincnt; 2476 2477 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2478 for (spincnt = 0; spincnt < 10; spincnt++) { 2479 WRITE_ONCE(*j, jiffies); 2480 local_bh_disable(); 2481 *statusp = RCU_KTHREAD_RUNNING; 2482 local_irq_disable(); 2483 work = *workp; 2484 WRITE_ONCE(*workp, 0); 2485 local_irq_enable(); 2486 if (work) 2487 rcu_core(); 2488 local_bh_enable(); 2489 if (!READ_ONCE(*workp)) { 2490 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2491 *statusp = RCU_KTHREAD_WAITING; 2492 return; 2493 } 2494 } 2495 *statusp = RCU_KTHREAD_YIELDING; 2496 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2497 schedule_timeout_idle(2); 2498 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2499 *statusp = RCU_KTHREAD_WAITING; 2500 WRITE_ONCE(*j, jiffies); 2501 } 2502 2503 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2504 .store = &rcu_data.rcu_cpu_kthread_task, 2505 .thread_should_run = rcu_cpu_kthread_should_run, 2506 .thread_fn = rcu_cpu_kthread, 2507 .thread_comm = "rcuc/%u", 2508 .setup = rcu_cpu_kthread_setup, 2509 .park = rcu_cpu_kthread_park, 2510 }; 2511 2512 /* 2513 * Spawn per-CPU RCU core processing kthreads. 2514 */ 2515 static int __init rcu_spawn_core_kthreads(void) 2516 { 2517 int cpu; 2518 2519 for_each_possible_cpu(cpu) 2520 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2521 if (use_softirq) 2522 return 0; 2523 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2524 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2525 return 0; 2526 } 2527 2528 /* 2529 * Handle any core-RCU processing required by a call_rcu() invocation. 2530 */ 2531 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2532 unsigned long flags) 2533 { 2534 /* 2535 * If called from an extended quiescent state, invoke the RCU 2536 * core in order to force a re-evaluation of RCU's idleness. 2537 */ 2538 if (!rcu_is_watching()) 2539 invoke_rcu_core(); 2540 2541 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2542 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2543 return; 2544 2545 /* 2546 * Force the grace period if too many callbacks or too long waiting. 2547 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2548 * if some other CPU has recently done so. Also, don't bother 2549 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2550 * is the only one waiting for a grace period to complete. 2551 */ 2552 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2553 rdp->qlen_last_fqs_check + qhimark)) { 2554 2555 /* Are we ignoring a completed grace period? */ 2556 note_gp_changes(rdp); 2557 2558 /* Start a new grace period if one not already started. */ 2559 if (!rcu_gp_in_progress()) { 2560 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2561 } else { 2562 /* Give the grace period a kick. */ 2563 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2564 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2565 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2566 rcu_force_quiescent_state(); 2567 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2568 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2569 } 2570 } 2571 } 2572 2573 /* 2574 * RCU callback function to leak a callback. 2575 */ 2576 static void rcu_leak_callback(struct rcu_head *rhp) 2577 { 2578 } 2579 2580 /* 2581 * Check and if necessary update the leaf rcu_node structure's 2582 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2583 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2584 * structure's ->lock. 2585 */ 2586 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2587 { 2588 raw_lockdep_assert_held_rcu_node(rnp); 2589 if (qovld_calc <= 0) 2590 return; // Early boot and wildcard value set. 2591 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2592 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2593 else 2594 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2595 } 2596 2597 /* 2598 * Check and if necessary update the leaf rcu_node structure's 2599 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2600 * number of queued RCU callbacks. No locks need be held, but the 2601 * caller must have disabled interrupts. 2602 * 2603 * Note that this function ignores the possibility that there are a lot 2604 * of callbacks all of which have already seen the end of their respective 2605 * grace periods. This omission is due to the need for no-CBs CPUs to 2606 * be holding ->nocb_lock to do this check, which is too heavy for a 2607 * common-case operation. 2608 */ 2609 static void check_cb_ovld(struct rcu_data *rdp) 2610 { 2611 struct rcu_node *const rnp = rdp->mynode; 2612 2613 if (qovld_calc <= 0 || 2614 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2615 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2616 return; // Early boot wildcard value or already set correctly. 2617 raw_spin_lock_rcu_node(rnp); 2618 check_cb_ovld_locked(rdp, rnp); 2619 raw_spin_unlock_rcu_node(rnp); 2620 } 2621 2622 static void 2623 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2624 { 2625 static atomic_t doublefrees; 2626 unsigned long flags; 2627 bool lazy; 2628 struct rcu_data *rdp; 2629 bool was_alldone; 2630 2631 /* Misaligned rcu_head! */ 2632 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2633 2634 if (debug_rcu_head_queue(head)) { 2635 /* 2636 * Probable double call_rcu(), so leak the callback. 2637 * Use rcu:rcu_callback trace event to find the previous 2638 * time callback was passed to call_rcu(). 2639 */ 2640 if (atomic_inc_return(&doublefrees) < 4) { 2641 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2642 mem_dump_obj(head); 2643 } 2644 WRITE_ONCE(head->func, rcu_leak_callback); 2645 return; 2646 } 2647 head->func = func; 2648 head->next = NULL; 2649 kasan_record_aux_stack_noalloc(head); 2650 local_irq_save(flags); 2651 rdp = this_cpu_ptr(&rcu_data); 2652 lazy = lazy_in && !rcu_async_should_hurry(); 2653 2654 /* Add the callback to our list. */ 2655 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2656 // This can trigger due to call_rcu() from offline CPU: 2657 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2658 WARN_ON_ONCE(!rcu_is_watching()); 2659 // Very early boot, before rcu_init(). Initialize if needed 2660 // and then drop through to queue the callback. 2661 if (rcu_segcblist_empty(&rdp->cblist)) 2662 rcu_segcblist_init(&rdp->cblist); 2663 } 2664 2665 check_cb_ovld(rdp); 2666 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2667 return; // Enqueued onto ->nocb_bypass, so just leave. 2668 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2669 rcu_segcblist_enqueue(&rdp->cblist, head); 2670 if (__is_kvfree_rcu_offset((unsigned long)func)) 2671 trace_rcu_kvfree_callback(rcu_state.name, head, 2672 (unsigned long)func, 2673 rcu_segcblist_n_cbs(&rdp->cblist)); 2674 else 2675 trace_rcu_callback(rcu_state.name, head, 2676 rcu_segcblist_n_cbs(&rdp->cblist)); 2677 2678 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2679 2680 /* Go handle any RCU core processing required. */ 2681 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2682 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2683 } else { 2684 __call_rcu_core(rdp, head, flags); 2685 local_irq_restore(flags); 2686 } 2687 } 2688 2689 #ifdef CONFIG_RCU_LAZY 2690 /** 2691 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2692 * flush all lazy callbacks (including the new one) to the main ->cblist while 2693 * doing so. 2694 * 2695 * @head: structure to be used for queueing the RCU updates. 2696 * @func: actual callback function to be invoked after the grace period 2697 * 2698 * The callback function will be invoked some time after a full grace 2699 * period elapses, in other words after all pre-existing RCU read-side 2700 * critical sections have completed. 2701 * 2702 * Use this API instead of call_rcu() if you don't want the callback to be 2703 * invoked after very long periods of time, which can happen on systems without 2704 * memory pressure and on systems which are lightly loaded or mostly idle. 2705 * This function will cause callbacks to be invoked sooner than later at the 2706 * expense of extra power. Other than that, this function is identical to, and 2707 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2708 * ordering and other functionality. 2709 */ 2710 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2711 { 2712 return __call_rcu_common(head, func, false); 2713 } 2714 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2715 #endif 2716 2717 /** 2718 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2719 * By default the callbacks are 'lazy' and are kept hidden from the main 2720 * ->cblist to prevent starting of grace periods too soon. 2721 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2722 * 2723 * @head: structure to be used for queueing the RCU updates. 2724 * @func: actual callback function to be invoked after the grace period 2725 * 2726 * The callback function will be invoked some time after a full grace 2727 * period elapses, in other words after all pre-existing RCU read-side 2728 * critical sections have completed. However, the callback function 2729 * might well execute concurrently with RCU read-side critical sections 2730 * that started after call_rcu() was invoked. 2731 * 2732 * RCU read-side critical sections are delimited by rcu_read_lock() 2733 * and rcu_read_unlock(), and may be nested. In addition, but only in 2734 * v5.0 and later, regions of code across which interrupts, preemption, 2735 * or softirqs have been disabled also serve as RCU read-side critical 2736 * sections. This includes hardware interrupt handlers, softirq handlers, 2737 * and NMI handlers. 2738 * 2739 * Note that all CPUs must agree that the grace period extended beyond 2740 * all pre-existing RCU read-side critical section. On systems with more 2741 * than one CPU, this means that when "func()" is invoked, each CPU is 2742 * guaranteed to have executed a full memory barrier since the end of its 2743 * last RCU read-side critical section whose beginning preceded the call 2744 * to call_rcu(). It also means that each CPU executing an RCU read-side 2745 * critical section that continues beyond the start of "func()" must have 2746 * executed a memory barrier after the call_rcu() but before the beginning 2747 * of that RCU read-side critical section. Note that these guarantees 2748 * include CPUs that are offline, idle, or executing in user mode, as 2749 * well as CPUs that are executing in the kernel. 2750 * 2751 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2752 * resulting RCU callback function "func()", then both CPU A and CPU B are 2753 * guaranteed to execute a full memory barrier during the time interval 2754 * between the call to call_rcu() and the invocation of "func()" -- even 2755 * if CPU A and CPU B are the same CPU (but again only if the system has 2756 * more than one CPU). 2757 * 2758 * Implementation of these memory-ordering guarantees is described here: 2759 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2760 */ 2761 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2762 { 2763 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2764 } 2765 EXPORT_SYMBOL_GPL(call_rcu); 2766 2767 /* Maximum number of jiffies to wait before draining a batch. */ 2768 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2769 #define KFREE_N_BATCHES 2 2770 #define FREE_N_CHANNELS 2 2771 2772 /** 2773 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2774 * @list: List node. All blocks are linked between each other 2775 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2776 * @nr_records: Number of active pointers in the array 2777 * @records: Array of the kvfree_rcu() pointers 2778 */ 2779 struct kvfree_rcu_bulk_data { 2780 struct list_head list; 2781 struct rcu_gp_oldstate gp_snap; 2782 unsigned long nr_records; 2783 void *records[]; 2784 }; 2785 2786 /* 2787 * This macro defines how many entries the "records" array 2788 * will contain. It is based on the fact that the size of 2789 * kvfree_rcu_bulk_data structure becomes exactly one page. 2790 */ 2791 #define KVFREE_BULK_MAX_ENTR \ 2792 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2793 2794 /** 2795 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2796 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2797 * @head_free: List of kfree_rcu() objects waiting for a grace period 2798 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2799 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2800 * @krcp: Pointer to @kfree_rcu_cpu structure 2801 */ 2802 2803 struct kfree_rcu_cpu_work { 2804 struct rcu_work rcu_work; 2805 struct rcu_head *head_free; 2806 struct rcu_gp_oldstate head_free_gp_snap; 2807 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2808 struct kfree_rcu_cpu *krcp; 2809 }; 2810 2811 /** 2812 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2813 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2814 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2815 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2816 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2817 * @lock: Synchronize access to this structure 2818 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2819 * @initialized: The @rcu_work fields have been initialized 2820 * @head_count: Number of objects in rcu_head singular list 2821 * @bulk_count: Number of objects in bulk-list 2822 * @bkvcache: 2823 * A simple cache list that contains objects for reuse purpose. 2824 * In order to save some per-cpu space the list is singular. 2825 * Even though it is lockless an access has to be protected by the 2826 * per-cpu lock. 2827 * @page_cache_work: A work to refill the cache when it is empty 2828 * @backoff_page_cache_fill: Delay cache refills 2829 * @work_in_progress: Indicates that page_cache_work is running 2830 * @hrtimer: A hrtimer for scheduling a page_cache_work 2831 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2832 * 2833 * This is a per-CPU structure. The reason that it is not included in 2834 * the rcu_data structure is to permit this code to be extracted from 2835 * the RCU files. Such extraction could allow further optimization of 2836 * the interactions with the slab allocators. 2837 */ 2838 struct kfree_rcu_cpu { 2839 // Objects queued on a linked list 2840 // through their rcu_head structures. 2841 struct rcu_head *head; 2842 unsigned long head_gp_snap; 2843 atomic_t head_count; 2844 2845 // Objects queued on a bulk-list. 2846 struct list_head bulk_head[FREE_N_CHANNELS]; 2847 atomic_t bulk_count[FREE_N_CHANNELS]; 2848 2849 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2850 raw_spinlock_t lock; 2851 struct delayed_work monitor_work; 2852 bool initialized; 2853 2854 struct delayed_work page_cache_work; 2855 atomic_t backoff_page_cache_fill; 2856 atomic_t work_in_progress; 2857 struct hrtimer hrtimer; 2858 2859 struct llist_head bkvcache; 2860 int nr_bkv_objs; 2861 }; 2862 2863 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2864 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2865 }; 2866 2867 static __always_inline void 2868 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2869 { 2870 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2871 int i; 2872 2873 for (i = 0; i < bhead->nr_records; i++) 2874 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2875 #endif 2876 } 2877 2878 static inline struct kfree_rcu_cpu * 2879 krc_this_cpu_lock(unsigned long *flags) 2880 { 2881 struct kfree_rcu_cpu *krcp; 2882 2883 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2884 krcp = this_cpu_ptr(&krc); 2885 raw_spin_lock(&krcp->lock); 2886 2887 return krcp; 2888 } 2889 2890 static inline void 2891 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2892 { 2893 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2894 } 2895 2896 static inline struct kvfree_rcu_bulk_data * 2897 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2898 { 2899 if (!krcp->nr_bkv_objs) 2900 return NULL; 2901 2902 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2903 return (struct kvfree_rcu_bulk_data *) 2904 llist_del_first(&krcp->bkvcache); 2905 } 2906 2907 static inline bool 2908 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2909 struct kvfree_rcu_bulk_data *bnode) 2910 { 2911 // Check the limit. 2912 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2913 return false; 2914 2915 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2916 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2917 return true; 2918 } 2919 2920 static int 2921 drain_page_cache(struct kfree_rcu_cpu *krcp) 2922 { 2923 unsigned long flags; 2924 struct llist_node *page_list, *pos, *n; 2925 int freed = 0; 2926 2927 if (!rcu_min_cached_objs) 2928 return 0; 2929 2930 raw_spin_lock_irqsave(&krcp->lock, flags); 2931 page_list = llist_del_all(&krcp->bkvcache); 2932 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2933 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2934 2935 llist_for_each_safe(pos, n, page_list) { 2936 free_page((unsigned long)pos); 2937 freed++; 2938 } 2939 2940 return freed; 2941 } 2942 2943 static void 2944 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2945 struct kvfree_rcu_bulk_data *bnode, int idx) 2946 { 2947 unsigned long flags; 2948 int i; 2949 2950 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 2951 debug_rcu_bhead_unqueue(bnode); 2952 rcu_lock_acquire(&rcu_callback_map); 2953 if (idx == 0) { // kmalloc() / kfree(). 2954 trace_rcu_invoke_kfree_bulk_callback( 2955 rcu_state.name, bnode->nr_records, 2956 bnode->records); 2957 2958 kfree_bulk(bnode->nr_records, bnode->records); 2959 } else { // vmalloc() / vfree(). 2960 for (i = 0; i < bnode->nr_records; i++) { 2961 trace_rcu_invoke_kvfree_callback( 2962 rcu_state.name, bnode->records[i], 0); 2963 2964 vfree(bnode->records[i]); 2965 } 2966 } 2967 rcu_lock_release(&rcu_callback_map); 2968 } 2969 2970 raw_spin_lock_irqsave(&krcp->lock, flags); 2971 if (put_cached_bnode(krcp, bnode)) 2972 bnode = NULL; 2973 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2974 2975 if (bnode) 2976 free_page((unsigned long) bnode); 2977 2978 cond_resched_tasks_rcu_qs(); 2979 } 2980 2981 static void 2982 kvfree_rcu_list(struct rcu_head *head) 2983 { 2984 struct rcu_head *next; 2985 2986 for (; head; head = next) { 2987 void *ptr = (void *) head->func; 2988 unsigned long offset = (void *) head - ptr; 2989 2990 next = head->next; 2991 debug_rcu_head_unqueue((struct rcu_head *)ptr); 2992 rcu_lock_acquire(&rcu_callback_map); 2993 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 2994 2995 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 2996 kvfree(ptr); 2997 2998 rcu_lock_release(&rcu_callback_map); 2999 cond_resched_tasks_rcu_qs(); 3000 } 3001 } 3002 3003 /* 3004 * This function is invoked in workqueue context after a grace period. 3005 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3006 */ 3007 static void kfree_rcu_work(struct work_struct *work) 3008 { 3009 unsigned long flags; 3010 struct kvfree_rcu_bulk_data *bnode, *n; 3011 struct list_head bulk_head[FREE_N_CHANNELS]; 3012 struct rcu_head *head; 3013 struct kfree_rcu_cpu *krcp; 3014 struct kfree_rcu_cpu_work *krwp; 3015 struct rcu_gp_oldstate head_gp_snap; 3016 int i; 3017 3018 krwp = container_of(to_rcu_work(work), 3019 struct kfree_rcu_cpu_work, rcu_work); 3020 krcp = krwp->krcp; 3021 3022 raw_spin_lock_irqsave(&krcp->lock, flags); 3023 // Channels 1 and 2. 3024 for (i = 0; i < FREE_N_CHANNELS; i++) 3025 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3026 3027 // Channel 3. 3028 head = krwp->head_free; 3029 krwp->head_free = NULL; 3030 head_gp_snap = krwp->head_free_gp_snap; 3031 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3032 3033 // Handle the first two channels. 3034 for (i = 0; i < FREE_N_CHANNELS; i++) { 3035 // Start from the tail page, so a GP is likely passed for it. 3036 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3037 kvfree_rcu_bulk(krcp, bnode, i); 3038 } 3039 3040 /* 3041 * This is used when the "bulk" path can not be used for the 3042 * double-argument of kvfree_rcu(). This happens when the 3043 * page-cache is empty, which means that objects are instead 3044 * queued on a linked list through their rcu_head structures. 3045 * This list is named "Channel 3". 3046 */ 3047 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3048 kvfree_rcu_list(head); 3049 } 3050 3051 static bool 3052 need_offload_krc(struct kfree_rcu_cpu *krcp) 3053 { 3054 int i; 3055 3056 for (i = 0; i < FREE_N_CHANNELS; i++) 3057 if (!list_empty(&krcp->bulk_head[i])) 3058 return true; 3059 3060 return !!READ_ONCE(krcp->head); 3061 } 3062 3063 static bool 3064 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3065 { 3066 int i; 3067 3068 for (i = 0; i < FREE_N_CHANNELS; i++) 3069 if (!list_empty(&krwp->bulk_head_free[i])) 3070 return true; 3071 3072 return !!krwp->head_free; 3073 } 3074 3075 static int krc_count(struct kfree_rcu_cpu *krcp) 3076 { 3077 int sum = atomic_read(&krcp->head_count); 3078 int i; 3079 3080 for (i = 0; i < FREE_N_CHANNELS; i++) 3081 sum += atomic_read(&krcp->bulk_count[i]); 3082 3083 return sum; 3084 } 3085 3086 static void 3087 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3088 { 3089 long delay, delay_left; 3090 3091 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3092 if (delayed_work_pending(&krcp->monitor_work)) { 3093 delay_left = krcp->monitor_work.timer.expires - jiffies; 3094 if (delay < delay_left) 3095 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3096 return; 3097 } 3098 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3099 } 3100 3101 static void 3102 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3103 { 3104 struct list_head bulk_ready[FREE_N_CHANNELS]; 3105 struct kvfree_rcu_bulk_data *bnode, *n; 3106 struct rcu_head *head_ready = NULL; 3107 unsigned long flags; 3108 int i; 3109 3110 raw_spin_lock_irqsave(&krcp->lock, flags); 3111 for (i = 0; i < FREE_N_CHANNELS; i++) { 3112 INIT_LIST_HEAD(&bulk_ready[i]); 3113 3114 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3115 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3116 break; 3117 3118 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3119 list_move(&bnode->list, &bulk_ready[i]); 3120 } 3121 } 3122 3123 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3124 head_ready = krcp->head; 3125 atomic_set(&krcp->head_count, 0); 3126 WRITE_ONCE(krcp->head, NULL); 3127 } 3128 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3129 3130 for (i = 0; i < FREE_N_CHANNELS; i++) { 3131 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3132 kvfree_rcu_bulk(krcp, bnode, i); 3133 } 3134 3135 if (head_ready) 3136 kvfree_rcu_list(head_ready); 3137 } 3138 3139 /* 3140 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3141 */ 3142 static void kfree_rcu_monitor(struct work_struct *work) 3143 { 3144 struct kfree_rcu_cpu *krcp = container_of(work, 3145 struct kfree_rcu_cpu, monitor_work.work); 3146 unsigned long flags; 3147 int i, j; 3148 3149 // Drain ready for reclaim. 3150 kvfree_rcu_drain_ready(krcp); 3151 3152 raw_spin_lock_irqsave(&krcp->lock, flags); 3153 3154 // Attempt to start a new batch. 3155 for (i = 0; i < KFREE_N_BATCHES; i++) { 3156 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3157 3158 // Try to detach bulk_head or head and attach it, only when 3159 // all channels are free. Any channel is not free means at krwp 3160 // there is on-going rcu work to handle krwp's free business. 3161 if (need_wait_for_krwp_work(krwp)) 3162 continue; 3163 3164 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3165 if (need_offload_krc(krcp)) { 3166 // Channel 1 corresponds to the SLAB-pointer bulk path. 3167 // Channel 2 corresponds to vmalloc-pointer bulk path. 3168 for (j = 0; j < FREE_N_CHANNELS; j++) { 3169 if (list_empty(&krwp->bulk_head_free[j])) { 3170 atomic_set(&krcp->bulk_count[j], 0); 3171 list_replace_init(&krcp->bulk_head[j], 3172 &krwp->bulk_head_free[j]); 3173 } 3174 } 3175 3176 // Channel 3 corresponds to both SLAB and vmalloc 3177 // objects queued on the linked list. 3178 if (!krwp->head_free) { 3179 krwp->head_free = krcp->head; 3180 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3181 atomic_set(&krcp->head_count, 0); 3182 WRITE_ONCE(krcp->head, NULL); 3183 } 3184 3185 // One work is per one batch, so there are three 3186 // "free channels", the batch can handle. It can 3187 // be that the work is in the pending state when 3188 // channels have been detached following by each 3189 // other. 3190 queue_rcu_work(system_wq, &krwp->rcu_work); 3191 } 3192 } 3193 3194 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3195 3196 // If there is nothing to detach, it means that our job is 3197 // successfully done here. In case of having at least one 3198 // of the channels that is still busy we should rearm the 3199 // work to repeat an attempt. Because previous batches are 3200 // still in progress. 3201 if (need_offload_krc(krcp)) 3202 schedule_delayed_monitor_work(krcp); 3203 } 3204 3205 static enum hrtimer_restart 3206 schedule_page_work_fn(struct hrtimer *t) 3207 { 3208 struct kfree_rcu_cpu *krcp = 3209 container_of(t, struct kfree_rcu_cpu, hrtimer); 3210 3211 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3212 return HRTIMER_NORESTART; 3213 } 3214 3215 static void fill_page_cache_func(struct work_struct *work) 3216 { 3217 struct kvfree_rcu_bulk_data *bnode; 3218 struct kfree_rcu_cpu *krcp = 3219 container_of(work, struct kfree_rcu_cpu, 3220 page_cache_work.work); 3221 unsigned long flags; 3222 int nr_pages; 3223 bool pushed; 3224 int i; 3225 3226 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3227 1 : rcu_min_cached_objs; 3228 3229 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3230 bnode = (struct kvfree_rcu_bulk_data *) 3231 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3232 3233 if (!bnode) 3234 break; 3235 3236 raw_spin_lock_irqsave(&krcp->lock, flags); 3237 pushed = put_cached_bnode(krcp, bnode); 3238 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3239 3240 if (!pushed) { 3241 free_page((unsigned long) bnode); 3242 break; 3243 } 3244 } 3245 3246 atomic_set(&krcp->work_in_progress, 0); 3247 atomic_set(&krcp->backoff_page_cache_fill, 0); 3248 } 3249 3250 static void 3251 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3252 { 3253 // If cache disabled, bail out. 3254 if (!rcu_min_cached_objs) 3255 return; 3256 3257 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3258 !atomic_xchg(&krcp->work_in_progress, 1)) { 3259 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3260 queue_delayed_work(system_wq, 3261 &krcp->page_cache_work, 3262 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3263 } else { 3264 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3265 krcp->hrtimer.function = schedule_page_work_fn; 3266 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3267 } 3268 } 3269 } 3270 3271 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3272 // state specified by flags. If can_alloc is true, the caller must 3273 // be schedulable and not be holding any locks or mutexes that might be 3274 // acquired by the memory allocator or anything that it might invoke. 3275 // Returns true if ptr was successfully recorded, else the caller must 3276 // use a fallback. 3277 static inline bool 3278 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3279 unsigned long *flags, void *ptr, bool can_alloc) 3280 { 3281 struct kvfree_rcu_bulk_data *bnode; 3282 int idx; 3283 3284 *krcp = krc_this_cpu_lock(flags); 3285 if (unlikely(!(*krcp)->initialized)) 3286 return false; 3287 3288 idx = !!is_vmalloc_addr(ptr); 3289 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3290 struct kvfree_rcu_bulk_data, list); 3291 3292 /* Check if a new block is required. */ 3293 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3294 bnode = get_cached_bnode(*krcp); 3295 if (!bnode && can_alloc) { 3296 krc_this_cpu_unlock(*krcp, *flags); 3297 3298 // __GFP_NORETRY - allows a light-weight direct reclaim 3299 // what is OK from minimizing of fallback hitting point of 3300 // view. Apart of that it forbids any OOM invoking what is 3301 // also beneficial since we are about to release memory soon. 3302 // 3303 // __GFP_NOMEMALLOC - prevents from consuming of all the 3304 // memory reserves. Please note we have a fallback path. 3305 // 3306 // __GFP_NOWARN - it is supposed that an allocation can 3307 // be failed under low memory or high memory pressure 3308 // scenarios. 3309 bnode = (struct kvfree_rcu_bulk_data *) 3310 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3311 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3312 } 3313 3314 if (!bnode) 3315 return false; 3316 3317 // Initialize the new block and attach it. 3318 bnode->nr_records = 0; 3319 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3320 } 3321 3322 // Finally insert and update the GP for this page. 3323 bnode->records[bnode->nr_records++] = ptr; 3324 get_state_synchronize_rcu_full(&bnode->gp_snap); 3325 atomic_inc(&(*krcp)->bulk_count[idx]); 3326 3327 return true; 3328 } 3329 3330 /* 3331 * Queue a request for lazy invocation of the appropriate free routine 3332 * after a grace period. Please note that three paths are maintained, 3333 * two for the common case using arrays of pointers and a third one that 3334 * is used only when the main paths cannot be used, for example, due to 3335 * memory pressure. 3336 * 3337 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3338 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3339 * be free'd in workqueue context. This allows us to: batch requests together to 3340 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3341 */ 3342 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3343 { 3344 unsigned long flags; 3345 struct kfree_rcu_cpu *krcp; 3346 bool success; 3347 3348 /* 3349 * Please note there is a limitation for the head-less 3350 * variant, that is why there is a clear rule for such 3351 * objects: it can be used from might_sleep() context 3352 * only. For other places please embed an rcu_head to 3353 * your data. 3354 */ 3355 if (!head) 3356 might_sleep(); 3357 3358 // Queue the object but don't yet schedule the batch. 3359 if (debug_rcu_head_queue(ptr)) { 3360 // Probable double kfree_rcu(), just leak. 3361 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3362 __func__, head); 3363 3364 // Mark as success and leave. 3365 return; 3366 } 3367 3368 kasan_record_aux_stack_noalloc(ptr); 3369 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3370 if (!success) { 3371 run_page_cache_worker(krcp); 3372 3373 if (head == NULL) 3374 // Inline if kvfree_rcu(one_arg) call. 3375 goto unlock_return; 3376 3377 head->func = ptr; 3378 head->next = krcp->head; 3379 WRITE_ONCE(krcp->head, head); 3380 atomic_inc(&krcp->head_count); 3381 3382 // Take a snapshot for this krcp. 3383 krcp->head_gp_snap = get_state_synchronize_rcu(); 3384 success = true; 3385 } 3386 3387 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3388 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3389 schedule_delayed_monitor_work(krcp); 3390 3391 unlock_return: 3392 krc_this_cpu_unlock(krcp, flags); 3393 3394 /* 3395 * Inline kvfree() after synchronize_rcu(). We can do 3396 * it from might_sleep() context only, so the current 3397 * CPU can pass the QS state. 3398 */ 3399 if (!success) { 3400 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3401 synchronize_rcu(); 3402 kvfree(ptr); 3403 } 3404 } 3405 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3406 3407 static unsigned long 3408 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3409 { 3410 int cpu; 3411 unsigned long count = 0; 3412 3413 /* Snapshot count of all CPUs */ 3414 for_each_possible_cpu(cpu) { 3415 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3416 3417 count += krc_count(krcp); 3418 count += READ_ONCE(krcp->nr_bkv_objs); 3419 atomic_set(&krcp->backoff_page_cache_fill, 1); 3420 } 3421 3422 return count == 0 ? SHRINK_EMPTY : count; 3423 } 3424 3425 static unsigned long 3426 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3427 { 3428 int cpu, freed = 0; 3429 3430 for_each_possible_cpu(cpu) { 3431 int count; 3432 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3433 3434 count = krc_count(krcp); 3435 count += drain_page_cache(krcp); 3436 kfree_rcu_monitor(&krcp->monitor_work.work); 3437 3438 sc->nr_to_scan -= count; 3439 freed += count; 3440 3441 if (sc->nr_to_scan <= 0) 3442 break; 3443 } 3444 3445 return freed == 0 ? SHRINK_STOP : freed; 3446 } 3447 3448 static struct shrinker kfree_rcu_shrinker = { 3449 .count_objects = kfree_rcu_shrink_count, 3450 .scan_objects = kfree_rcu_shrink_scan, 3451 .batch = 0, 3452 .seeks = DEFAULT_SEEKS, 3453 }; 3454 3455 void __init kfree_rcu_scheduler_running(void) 3456 { 3457 int cpu; 3458 3459 for_each_possible_cpu(cpu) { 3460 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3461 3462 if (need_offload_krc(krcp)) 3463 schedule_delayed_monitor_work(krcp); 3464 } 3465 } 3466 3467 /* 3468 * During early boot, any blocking grace-period wait automatically 3469 * implies a grace period. 3470 * 3471 * Later on, this could in theory be the case for kernels built with 3472 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3473 * is not a common case. Furthermore, this optimization would cause 3474 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3475 * grace-period optimization is ignored once the scheduler is running. 3476 */ 3477 static int rcu_blocking_is_gp(void) 3478 { 3479 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3480 might_sleep(); 3481 return false; 3482 } 3483 return true; 3484 } 3485 3486 /** 3487 * synchronize_rcu - wait until a grace period has elapsed. 3488 * 3489 * Control will return to the caller some time after a full grace 3490 * period has elapsed, in other words after all currently executing RCU 3491 * read-side critical sections have completed. Note, however, that 3492 * upon return from synchronize_rcu(), the caller might well be executing 3493 * concurrently with new RCU read-side critical sections that began while 3494 * synchronize_rcu() was waiting. 3495 * 3496 * RCU read-side critical sections are delimited by rcu_read_lock() 3497 * and rcu_read_unlock(), and may be nested. In addition, but only in 3498 * v5.0 and later, regions of code across which interrupts, preemption, 3499 * or softirqs have been disabled also serve as RCU read-side critical 3500 * sections. This includes hardware interrupt handlers, softirq handlers, 3501 * and NMI handlers. 3502 * 3503 * Note that this guarantee implies further memory-ordering guarantees. 3504 * On systems with more than one CPU, when synchronize_rcu() returns, 3505 * each CPU is guaranteed to have executed a full memory barrier since 3506 * the end of its last RCU read-side critical section whose beginning 3507 * preceded the call to synchronize_rcu(). In addition, each CPU having 3508 * an RCU read-side critical section that extends beyond the return from 3509 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3510 * after the beginning of synchronize_rcu() and before the beginning of 3511 * that RCU read-side critical section. Note that these guarantees include 3512 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3513 * that are executing in the kernel. 3514 * 3515 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3516 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3517 * to have executed a full memory barrier during the execution of 3518 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3519 * again only if the system has more than one CPU). 3520 * 3521 * Implementation of these memory-ordering guarantees is described here: 3522 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3523 */ 3524 void synchronize_rcu(void) 3525 { 3526 unsigned long flags; 3527 struct rcu_node *rnp; 3528 3529 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3530 lock_is_held(&rcu_lock_map) || 3531 lock_is_held(&rcu_sched_lock_map), 3532 "Illegal synchronize_rcu() in RCU read-side critical section"); 3533 if (!rcu_blocking_is_gp()) { 3534 if (rcu_gp_is_expedited()) 3535 synchronize_rcu_expedited(); 3536 else 3537 wait_rcu_gp(call_rcu_hurry); 3538 return; 3539 } 3540 3541 // Context allows vacuous grace periods. 3542 // Note well that this code runs with !PREEMPT && !SMP. 3543 // In addition, all code that advances grace periods runs at 3544 // process level. Therefore, this normal GP overlaps with other 3545 // normal GPs only by being fully nested within them, which allows 3546 // reuse of ->gp_seq_polled_snap. 3547 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3548 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3549 3550 // Update the normal grace-period counters to record 3551 // this grace period, but only those used by the boot CPU. 3552 // The rcu_scheduler_starting() will take care of the rest of 3553 // these counters. 3554 local_irq_save(flags); 3555 WARN_ON_ONCE(num_online_cpus() > 1); 3556 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3557 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3558 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3559 local_irq_restore(flags); 3560 } 3561 EXPORT_SYMBOL_GPL(synchronize_rcu); 3562 3563 /** 3564 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3565 * @rgosp: Place to put state cookie 3566 * 3567 * Stores into @rgosp a value that will always be treated by functions 3568 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3569 * has already completed. 3570 */ 3571 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3572 { 3573 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3574 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3575 } 3576 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3577 3578 /** 3579 * get_state_synchronize_rcu - Snapshot current RCU state 3580 * 3581 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3582 * or poll_state_synchronize_rcu() to determine whether or not a full 3583 * grace period has elapsed in the meantime. 3584 */ 3585 unsigned long get_state_synchronize_rcu(void) 3586 { 3587 /* 3588 * Any prior manipulation of RCU-protected data must happen 3589 * before the load from ->gp_seq. 3590 */ 3591 smp_mb(); /* ^^^ */ 3592 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3593 } 3594 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3595 3596 /** 3597 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3598 * @rgosp: location to place combined normal/expedited grace-period state 3599 * 3600 * Places the normal and expedited grace-period states in @rgosp. This 3601 * state value can be passed to a later call to cond_synchronize_rcu_full() 3602 * or poll_state_synchronize_rcu_full() to determine whether or not a 3603 * grace period (whether normal or expedited) has elapsed in the meantime. 3604 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3605 * long, but is guaranteed to see all grace periods. In contrast, the 3606 * combined state occupies less memory, but can sometimes fail to take 3607 * grace periods into account. 3608 * 3609 * This does not guarantee that the needed grace period will actually 3610 * start. 3611 */ 3612 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3613 { 3614 struct rcu_node *rnp = rcu_get_root(); 3615 3616 /* 3617 * Any prior manipulation of RCU-protected data must happen 3618 * before the loads from ->gp_seq and ->expedited_sequence. 3619 */ 3620 smp_mb(); /* ^^^ */ 3621 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3622 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3623 } 3624 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3625 3626 /* 3627 * Helper function for start_poll_synchronize_rcu() and 3628 * start_poll_synchronize_rcu_full(). 3629 */ 3630 static void start_poll_synchronize_rcu_common(void) 3631 { 3632 unsigned long flags; 3633 bool needwake; 3634 struct rcu_data *rdp; 3635 struct rcu_node *rnp; 3636 3637 lockdep_assert_irqs_enabled(); 3638 local_irq_save(flags); 3639 rdp = this_cpu_ptr(&rcu_data); 3640 rnp = rdp->mynode; 3641 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3642 // Note it is possible for a grace period to have elapsed between 3643 // the above call to get_state_synchronize_rcu() and the below call 3644 // to rcu_seq_snap. This is OK, the worst that happens is that we 3645 // get a grace period that no one needed. These accesses are ordered 3646 // by smp_mb(), and we are accessing them in the opposite order 3647 // from which they are updated at grace-period start, as required. 3648 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3649 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3650 if (needwake) 3651 rcu_gp_kthread_wake(); 3652 } 3653 3654 /** 3655 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3656 * 3657 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3658 * or poll_state_synchronize_rcu() to determine whether or not a full 3659 * grace period has elapsed in the meantime. If the needed grace period 3660 * is not already slated to start, notifies RCU core of the need for that 3661 * grace period. 3662 * 3663 * Interrupts must be enabled for the case where it is necessary to awaken 3664 * the grace-period kthread. 3665 */ 3666 unsigned long start_poll_synchronize_rcu(void) 3667 { 3668 unsigned long gp_seq = get_state_synchronize_rcu(); 3669 3670 start_poll_synchronize_rcu_common(); 3671 return gp_seq; 3672 } 3673 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3674 3675 /** 3676 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3677 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3678 * 3679 * Places the normal and expedited grace-period states in *@rgos. This 3680 * state value can be passed to a later call to cond_synchronize_rcu_full() 3681 * or poll_state_synchronize_rcu_full() to determine whether or not a 3682 * grace period (whether normal or expedited) has elapsed in the meantime. 3683 * If the needed grace period is not already slated to start, notifies 3684 * RCU core of the need for that grace period. 3685 * 3686 * Interrupts must be enabled for the case where it is necessary to awaken 3687 * the grace-period kthread. 3688 */ 3689 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3690 { 3691 get_state_synchronize_rcu_full(rgosp); 3692 3693 start_poll_synchronize_rcu_common(); 3694 } 3695 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3696 3697 /** 3698 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3699 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3700 * 3701 * If a full RCU grace period has elapsed since the earlier call from 3702 * which @oldstate was obtained, return @true, otherwise return @false. 3703 * If @false is returned, it is the caller's responsibility to invoke this 3704 * function later on until it does return @true. Alternatively, the caller 3705 * can explicitly wait for a grace period, for example, by passing @oldstate 3706 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3707 * on the one hand or by directly invoking either synchronize_rcu() or 3708 * synchronize_rcu_expedited() on the other. 3709 * 3710 * Yes, this function does not take counter wrap into account. 3711 * But counter wrap is harmless. If the counter wraps, we have waited for 3712 * more than a billion grace periods (and way more on a 64-bit system!). 3713 * Those needing to keep old state values for very long time periods 3714 * (many hours even on 32-bit systems) should check them occasionally and 3715 * either refresh them or set a flag indicating that the grace period has 3716 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3717 * to get a guaranteed-completed grace-period state. 3718 * 3719 * In addition, because oldstate compresses the grace-period state for 3720 * both normal and expedited grace periods into a single unsigned long, 3721 * it can miss a grace period when synchronize_rcu() runs concurrently 3722 * with synchronize_rcu_expedited(). If this is unacceptable, please 3723 * instead use the _full() variant of these polling APIs. 3724 * 3725 * This function provides the same memory-ordering guarantees that 3726 * would be provided by a synchronize_rcu() that was invoked at the call 3727 * to the function that provided @oldstate, and that returned at the end 3728 * of this function. 3729 */ 3730 bool poll_state_synchronize_rcu(unsigned long oldstate) 3731 { 3732 if (oldstate == RCU_GET_STATE_COMPLETED || 3733 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3734 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3735 return true; 3736 } 3737 return false; 3738 } 3739 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3740 3741 /** 3742 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3743 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3744 * 3745 * If a full RCU grace period has elapsed since the earlier call from 3746 * which *rgosp was obtained, return @true, otherwise return @false. 3747 * If @false is returned, it is the caller's responsibility to invoke this 3748 * function later on until it does return @true. Alternatively, the caller 3749 * can explicitly wait for a grace period, for example, by passing @rgosp 3750 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3751 * 3752 * Yes, this function does not take counter wrap into account. 3753 * But counter wrap is harmless. If the counter wraps, we have waited 3754 * for more than a billion grace periods (and way more on a 64-bit 3755 * system!). Those needing to keep rcu_gp_oldstate values for very 3756 * long time periods (many hours even on 32-bit systems) should check 3757 * them occasionally and either refresh them or set a flag indicating 3758 * that the grace period has completed. Alternatively, they can use 3759 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3760 * grace-period state. 3761 * 3762 * This function provides the same memory-ordering guarantees that would 3763 * be provided by a synchronize_rcu() that was invoked at the call to 3764 * the function that provided @rgosp, and that returned at the end of this 3765 * function. And this guarantee requires that the root rcu_node structure's 3766 * ->gp_seq field be checked instead of that of the rcu_state structure. 3767 * The problem is that the just-ending grace-period's callbacks can be 3768 * invoked between the time that the root rcu_node structure's ->gp_seq 3769 * field is updated and the time that the rcu_state structure's ->gp_seq 3770 * field is updated. Therefore, if a single synchronize_rcu() is to 3771 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3772 * then the root rcu_node structure is the one that needs to be polled. 3773 */ 3774 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3775 { 3776 struct rcu_node *rnp = rcu_get_root(); 3777 3778 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3779 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3780 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3781 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3782 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3783 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3784 return true; 3785 } 3786 return false; 3787 } 3788 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3789 3790 /** 3791 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3792 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3793 * 3794 * If a full RCU grace period has elapsed since the earlier call to 3795 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3796 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3797 * 3798 * Yes, this function does not take counter wrap into account. 3799 * But counter wrap is harmless. If the counter wraps, we have waited for 3800 * more than 2 billion grace periods (and way more on a 64-bit system!), 3801 * so waiting for a couple of additional grace periods should be just fine. 3802 * 3803 * This function provides the same memory-ordering guarantees that 3804 * would be provided by a synchronize_rcu() that was invoked at the call 3805 * to the function that provided @oldstate and that returned at the end 3806 * of this function. 3807 */ 3808 void cond_synchronize_rcu(unsigned long oldstate) 3809 { 3810 if (!poll_state_synchronize_rcu(oldstate)) 3811 synchronize_rcu(); 3812 } 3813 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3814 3815 /** 3816 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3817 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3818 * 3819 * If a full RCU grace period has elapsed since the call to 3820 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3821 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3822 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3823 * for a full grace period. 3824 * 3825 * Yes, this function does not take counter wrap into account. 3826 * But counter wrap is harmless. If the counter wraps, we have waited for 3827 * more than 2 billion grace periods (and way more on a 64-bit system!), 3828 * so waiting for a couple of additional grace periods should be just fine. 3829 * 3830 * This function provides the same memory-ordering guarantees that 3831 * would be provided by a synchronize_rcu() that was invoked at the call 3832 * to the function that provided @rgosp and that returned at the end of 3833 * this function. 3834 */ 3835 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3836 { 3837 if (!poll_state_synchronize_rcu_full(rgosp)) 3838 synchronize_rcu(); 3839 } 3840 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3841 3842 /* 3843 * Check to see if there is any immediate RCU-related work to be done by 3844 * the current CPU, returning 1 if so and zero otherwise. The checks are 3845 * in order of increasing expense: checks that can be carried out against 3846 * CPU-local state are performed first. However, we must check for CPU 3847 * stalls first, else we might not get a chance. 3848 */ 3849 static int rcu_pending(int user) 3850 { 3851 bool gp_in_progress; 3852 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3853 struct rcu_node *rnp = rdp->mynode; 3854 3855 lockdep_assert_irqs_disabled(); 3856 3857 /* Check for CPU stalls, if enabled. */ 3858 check_cpu_stall(rdp); 3859 3860 /* Does this CPU need a deferred NOCB wakeup? */ 3861 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3862 return 1; 3863 3864 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3865 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3866 return 0; 3867 3868 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3869 gp_in_progress = rcu_gp_in_progress(); 3870 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3871 return 1; 3872 3873 /* Does this CPU have callbacks ready to invoke? */ 3874 if (!rcu_rdp_is_offloaded(rdp) && 3875 rcu_segcblist_ready_cbs(&rdp->cblist)) 3876 return 1; 3877 3878 /* Has RCU gone idle with this CPU needing another grace period? */ 3879 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3880 !rcu_rdp_is_offloaded(rdp) && 3881 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3882 return 1; 3883 3884 /* Have RCU grace period completed or started? */ 3885 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3886 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3887 return 1; 3888 3889 /* nothing to do */ 3890 return 0; 3891 } 3892 3893 /* 3894 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3895 * the compiler is expected to optimize this away. 3896 */ 3897 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3898 { 3899 trace_rcu_barrier(rcu_state.name, s, cpu, 3900 atomic_read(&rcu_state.barrier_cpu_count), done); 3901 } 3902 3903 /* 3904 * RCU callback function for rcu_barrier(). If we are last, wake 3905 * up the task executing rcu_barrier(). 3906 * 3907 * Note that the value of rcu_state.barrier_sequence must be captured 3908 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3909 * other CPUs might count the value down to zero before this CPU gets 3910 * around to invoking rcu_barrier_trace(), which might result in bogus 3911 * data from the next instance of rcu_barrier(). 3912 */ 3913 static void rcu_barrier_callback(struct rcu_head *rhp) 3914 { 3915 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3916 3917 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3918 rcu_barrier_trace(TPS("LastCB"), -1, s); 3919 complete(&rcu_state.barrier_completion); 3920 } else { 3921 rcu_barrier_trace(TPS("CB"), -1, s); 3922 } 3923 } 3924 3925 /* 3926 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3927 */ 3928 static void rcu_barrier_entrain(struct rcu_data *rdp) 3929 { 3930 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3931 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3932 bool wake_nocb = false; 3933 bool was_alldone = false; 3934 3935 lockdep_assert_held(&rcu_state.barrier_lock); 3936 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3937 return; 3938 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3939 rdp->barrier_head.func = rcu_barrier_callback; 3940 debug_rcu_head_queue(&rdp->barrier_head); 3941 rcu_nocb_lock(rdp); 3942 /* 3943 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3944 * queue. This way we don't wait for bypass timer that can reach seconds 3945 * if it's fully lazy. 3946 */ 3947 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3948 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3949 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3950 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3951 atomic_inc(&rcu_state.barrier_cpu_count); 3952 } else { 3953 debug_rcu_head_unqueue(&rdp->barrier_head); 3954 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3955 } 3956 rcu_nocb_unlock(rdp); 3957 if (wake_nocb) 3958 wake_nocb_gp(rdp, false); 3959 smp_store_release(&rdp->barrier_seq_snap, gseq); 3960 } 3961 3962 /* 3963 * Called with preemption disabled, and from cross-cpu IRQ context. 3964 */ 3965 static void rcu_barrier_handler(void *cpu_in) 3966 { 3967 uintptr_t cpu = (uintptr_t)cpu_in; 3968 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3969 3970 lockdep_assert_irqs_disabled(); 3971 WARN_ON_ONCE(cpu != rdp->cpu); 3972 WARN_ON_ONCE(cpu != smp_processor_id()); 3973 raw_spin_lock(&rcu_state.barrier_lock); 3974 rcu_barrier_entrain(rdp); 3975 raw_spin_unlock(&rcu_state.barrier_lock); 3976 } 3977 3978 /** 3979 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3980 * 3981 * Note that this primitive does not necessarily wait for an RCU grace period 3982 * to complete. For example, if there are no RCU callbacks queued anywhere 3983 * in the system, then rcu_barrier() is within its rights to return 3984 * immediately, without waiting for anything, much less an RCU grace period. 3985 */ 3986 void rcu_barrier(void) 3987 { 3988 uintptr_t cpu; 3989 unsigned long flags; 3990 unsigned long gseq; 3991 struct rcu_data *rdp; 3992 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3993 3994 rcu_barrier_trace(TPS("Begin"), -1, s); 3995 3996 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3997 mutex_lock(&rcu_state.barrier_mutex); 3998 3999 /* Did someone else do our work for us? */ 4000 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4001 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4002 smp_mb(); /* caller's subsequent code after above check. */ 4003 mutex_unlock(&rcu_state.barrier_mutex); 4004 return; 4005 } 4006 4007 /* Mark the start of the barrier operation. */ 4008 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4009 rcu_seq_start(&rcu_state.barrier_sequence); 4010 gseq = rcu_state.barrier_sequence; 4011 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4012 4013 /* 4014 * Initialize the count to two rather than to zero in order 4015 * to avoid a too-soon return to zero in case of an immediate 4016 * invocation of the just-enqueued callback (or preemption of 4017 * this task). Exclude CPU-hotplug operations to ensure that no 4018 * offline non-offloaded CPU has callbacks queued. 4019 */ 4020 init_completion(&rcu_state.barrier_completion); 4021 atomic_set(&rcu_state.barrier_cpu_count, 2); 4022 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4023 4024 /* 4025 * Force each CPU with callbacks to register a new callback. 4026 * When that callback is invoked, we will know that all of the 4027 * corresponding CPU's preceding callbacks have been invoked. 4028 */ 4029 for_each_possible_cpu(cpu) { 4030 rdp = per_cpu_ptr(&rcu_data, cpu); 4031 retry: 4032 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4033 continue; 4034 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4035 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4036 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4037 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4038 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4039 continue; 4040 } 4041 if (!rcu_rdp_cpu_online(rdp)) { 4042 rcu_barrier_entrain(rdp); 4043 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4044 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4045 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4046 continue; 4047 } 4048 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4049 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4050 schedule_timeout_uninterruptible(1); 4051 goto retry; 4052 } 4053 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4054 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4055 } 4056 4057 /* 4058 * Now that we have an rcu_barrier_callback() callback on each 4059 * CPU, and thus each counted, remove the initial count. 4060 */ 4061 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4062 complete(&rcu_state.barrier_completion); 4063 4064 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4065 wait_for_completion(&rcu_state.barrier_completion); 4066 4067 /* Mark the end of the barrier operation. */ 4068 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4069 rcu_seq_end(&rcu_state.barrier_sequence); 4070 gseq = rcu_state.barrier_sequence; 4071 for_each_possible_cpu(cpu) { 4072 rdp = per_cpu_ptr(&rcu_data, cpu); 4073 4074 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4075 } 4076 4077 /* Other rcu_barrier() invocations can now safely proceed. */ 4078 mutex_unlock(&rcu_state.barrier_mutex); 4079 } 4080 EXPORT_SYMBOL_GPL(rcu_barrier); 4081 4082 /* 4083 * Compute the mask of online CPUs for the specified rcu_node structure. 4084 * This will not be stable unless the rcu_node structure's ->lock is 4085 * held, but the bit corresponding to the current CPU will be stable 4086 * in most contexts. 4087 */ 4088 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4089 { 4090 return READ_ONCE(rnp->qsmaskinitnext); 4091 } 4092 4093 /* 4094 * Is the CPU corresponding to the specified rcu_data structure online 4095 * from RCU's perspective? This perspective is given by that structure's 4096 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4097 */ 4098 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4099 { 4100 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4101 } 4102 4103 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4104 4105 /* 4106 * Is the current CPU online as far as RCU is concerned? 4107 * 4108 * Disable preemption to avoid false positives that could otherwise 4109 * happen due to the current CPU number being sampled, this task being 4110 * preempted, its old CPU being taken offline, resuming on some other CPU, 4111 * then determining that its old CPU is now offline. 4112 * 4113 * Disable checking if in an NMI handler because we cannot safely 4114 * report errors from NMI handlers anyway. In addition, it is OK to use 4115 * RCU on an offline processor during initial boot, hence the check for 4116 * rcu_scheduler_fully_active. 4117 */ 4118 bool rcu_lockdep_current_cpu_online(void) 4119 { 4120 struct rcu_data *rdp; 4121 bool ret = false; 4122 4123 if (in_nmi() || !rcu_scheduler_fully_active) 4124 return true; 4125 preempt_disable_notrace(); 4126 rdp = this_cpu_ptr(&rcu_data); 4127 /* 4128 * Strictly, we care here about the case where the current CPU is 4129 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 4130 * not being up to date. So arch_spin_is_locked() might have a 4131 * false positive if it's held by some *other* CPU, but that's 4132 * OK because that just means a false *negative* on the warning. 4133 */ 4134 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4135 ret = true; 4136 preempt_enable_notrace(); 4137 return ret; 4138 } 4139 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4140 4141 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4142 4143 // Has rcu_init() been invoked? This is used (for example) to determine 4144 // whether spinlocks may be acquired safely. 4145 static bool rcu_init_invoked(void) 4146 { 4147 return !!rcu_state.n_online_cpus; 4148 } 4149 4150 /* 4151 * Near the end of the offline process. Trace the fact that this CPU 4152 * is going offline. 4153 */ 4154 int rcutree_dying_cpu(unsigned int cpu) 4155 { 4156 bool blkd; 4157 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4158 struct rcu_node *rnp = rdp->mynode; 4159 4160 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4161 return 0; 4162 4163 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4164 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4165 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4166 return 0; 4167 } 4168 4169 /* 4170 * All CPUs for the specified rcu_node structure have gone offline, 4171 * and all tasks that were preempted within an RCU read-side critical 4172 * section while running on one of those CPUs have since exited their RCU 4173 * read-side critical section. Some other CPU is reporting this fact with 4174 * the specified rcu_node structure's ->lock held and interrupts disabled. 4175 * This function therefore goes up the tree of rcu_node structures, 4176 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4177 * the leaf rcu_node structure's ->qsmaskinit field has already been 4178 * updated. 4179 * 4180 * This function does check that the specified rcu_node structure has 4181 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4182 * prematurely. That said, invoking it after the fact will cost you 4183 * a needless lock acquisition. So once it has done its work, don't 4184 * invoke it again. 4185 */ 4186 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4187 { 4188 long mask; 4189 struct rcu_node *rnp = rnp_leaf; 4190 4191 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4192 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4193 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4194 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4195 return; 4196 for (;;) { 4197 mask = rnp->grpmask; 4198 rnp = rnp->parent; 4199 if (!rnp) 4200 break; 4201 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4202 rnp->qsmaskinit &= ~mask; 4203 /* Between grace periods, so better already be zero! */ 4204 WARN_ON_ONCE(rnp->qsmask); 4205 if (rnp->qsmaskinit) { 4206 raw_spin_unlock_rcu_node(rnp); 4207 /* irqs remain disabled. */ 4208 return; 4209 } 4210 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4211 } 4212 } 4213 4214 /* 4215 * The CPU has been completely removed, and some other CPU is reporting 4216 * this fact from process context. Do the remainder of the cleanup. 4217 * There can only be one CPU hotplug operation at a time, so no need for 4218 * explicit locking. 4219 */ 4220 int rcutree_dead_cpu(unsigned int cpu) 4221 { 4222 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4223 return 0; 4224 4225 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4226 // Stop-machine done, so allow nohz_full to disable tick. 4227 tick_dep_clear(TICK_DEP_BIT_RCU); 4228 return 0; 4229 } 4230 4231 /* 4232 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4233 * first CPU in a given leaf rcu_node structure coming online. The caller 4234 * must hold the corresponding leaf rcu_node ->lock with interrupts 4235 * disabled. 4236 */ 4237 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4238 { 4239 long mask; 4240 long oldmask; 4241 struct rcu_node *rnp = rnp_leaf; 4242 4243 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4244 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4245 for (;;) { 4246 mask = rnp->grpmask; 4247 rnp = rnp->parent; 4248 if (rnp == NULL) 4249 return; 4250 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4251 oldmask = rnp->qsmaskinit; 4252 rnp->qsmaskinit |= mask; 4253 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4254 if (oldmask) 4255 return; 4256 } 4257 } 4258 4259 /* 4260 * Do boot-time initialization of a CPU's per-CPU RCU data. 4261 */ 4262 static void __init 4263 rcu_boot_init_percpu_data(int cpu) 4264 { 4265 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4266 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4267 4268 /* Set up local state, ensuring consistent view of global state. */ 4269 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4270 INIT_WORK(&rdp->strict_work, strict_work_handler); 4271 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4272 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4273 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4274 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4275 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4276 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4277 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4278 rdp->last_sched_clock = jiffies; 4279 rdp->cpu = cpu; 4280 rcu_boot_init_nocb_percpu_data(rdp); 4281 } 4282 4283 /* 4284 * Invoked early in the CPU-online process, when pretty much all services 4285 * are available. The incoming CPU is not present. 4286 * 4287 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4288 * offline event can be happening at a given time. Note also that we can 4289 * accept some slop in the rsp->gp_seq access due to the fact that this 4290 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4291 * And any offloaded callbacks are being numbered elsewhere. 4292 */ 4293 int rcutree_prepare_cpu(unsigned int cpu) 4294 { 4295 unsigned long flags; 4296 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4297 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4298 struct rcu_node *rnp = rcu_get_root(); 4299 4300 /* Set up local state, ensuring consistent view of global state. */ 4301 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4302 rdp->qlen_last_fqs_check = 0; 4303 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4304 rdp->blimit = blimit; 4305 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4306 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4307 4308 /* 4309 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4310 * (re-)initialized. 4311 */ 4312 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4313 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4314 4315 /* 4316 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4317 * propagation up the rcu_node tree will happen at the beginning 4318 * of the next grace period. 4319 */ 4320 rnp = rdp->mynode; 4321 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4322 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4323 rdp->gp_seq_needed = rdp->gp_seq; 4324 rdp->cpu_no_qs.b.norm = true; 4325 rdp->core_needs_qs = false; 4326 rdp->rcu_iw_pending = false; 4327 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4328 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4329 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4330 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4331 rcu_spawn_one_boost_kthread(rnp); 4332 rcu_spawn_cpu_nocb_kthread(cpu); 4333 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4334 4335 return 0; 4336 } 4337 4338 /* 4339 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4340 */ 4341 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4342 { 4343 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4344 4345 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4346 } 4347 4348 /* 4349 * Has the specified (known valid) CPU ever been fully online? 4350 */ 4351 bool rcu_cpu_beenfullyonline(int cpu) 4352 { 4353 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4354 4355 return smp_load_acquire(&rdp->beenonline); 4356 } 4357 4358 /* 4359 * Near the end of the CPU-online process. Pretty much all services 4360 * enabled, and the CPU is now very much alive. 4361 */ 4362 int rcutree_online_cpu(unsigned int cpu) 4363 { 4364 unsigned long flags; 4365 struct rcu_data *rdp; 4366 struct rcu_node *rnp; 4367 4368 rdp = per_cpu_ptr(&rcu_data, cpu); 4369 rnp = rdp->mynode; 4370 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4371 rnp->ffmask |= rdp->grpmask; 4372 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4373 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4374 return 0; /* Too early in boot for scheduler work. */ 4375 sync_sched_exp_online_cleanup(cpu); 4376 rcutree_affinity_setting(cpu, -1); 4377 4378 // Stop-machine done, so allow nohz_full to disable tick. 4379 tick_dep_clear(TICK_DEP_BIT_RCU); 4380 return 0; 4381 } 4382 4383 /* 4384 * Near the beginning of the process. The CPU is still very much alive 4385 * with pretty much all services enabled. 4386 */ 4387 int rcutree_offline_cpu(unsigned int cpu) 4388 { 4389 unsigned long flags; 4390 struct rcu_data *rdp; 4391 struct rcu_node *rnp; 4392 4393 rdp = per_cpu_ptr(&rcu_data, cpu); 4394 rnp = rdp->mynode; 4395 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4396 rnp->ffmask &= ~rdp->grpmask; 4397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4398 4399 rcutree_affinity_setting(cpu, cpu); 4400 4401 // nohz_full CPUs need the tick for stop-machine to work quickly 4402 tick_dep_set(TICK_DEP_BIT_RCU); 4403 return 0; 4404 } 4405 4406 /* 4407 * Mark the specified CPU as being online so that subsequent grace periods 4408 * (both expedited and normal) will wait on it. Note that this means that 4409 * incoming CPUs are not allowed to use RCU read-side critical sections 4410 * until this function is called. Failing to observe this restriction 4411 * will result in lockdep splats. 4412 * 4413 * Note that this function is special in that it is invoked directly 4414 * from the incoming CPU rather than from the cpuhp_step mechanism. 4415 * This is because this function must be invoked at a precise location. 4416 * This incoming CPU must not have enabled interrupts yet. 4417 */ 4418 void rcu_cpu_starting(unsigned int cpu) 4419 { 4420 unsigned long mask; 4421 struct rcu_data *rdp; 4422 struct rcu_node *rnp; 4423 bool newcpu; 4424 4425 lockdep_assert_irqs_disabled(); 4426 rdp = per_cpu_ptr(&rcu_data, cpu); 4427 if (rdp->cpu_started) 4428 return; 4429 rdp->cpu_started = true; 4430 4431 rnp = rdp->mynode; 4432 mask = rdp->grpmask; 4433 arch_spin_lock(&rcu_state.ofl_lock); 4434 rcu_dynticks_eqs_online(); 4435 raw_spin_lock(&rcu_state.barrier_lock); 4436 raw_spin_lock_rcu_node(rnp); 4437 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4438 raw_spin_unlock(&rcu_state.barrier_lock); 4439 newcpu = !(rnp->expmaskinitnext & mask); 4440 rnp->expmaskinitnext |= mask; 4441 /* Allow lockless access for expedited grace periods. */ 4442 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4443 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4444 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4445 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4446 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4447 4448 /* An incoming CPU should never be blocking a grace period. */ 4449 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4450 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4451 unsigned long flags; 4452 4453 local_irq_save(flags); 4454 rcu_disable_urgency_upon_qs(rdp); 4455 /* Report QS -after- changing ->qsmaskinitnext! */ 4456 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4457 } else { 4458 raw_spin_unlock_rcu_node(rnp); 4459 } 4460 arch_spin_unlock(&rcu_state.ofl_lock); 4461 smp_store_release(&rdp->beenonline, true); 4462 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4463 } 4464 4465 /* 4466 * The outgoing function has no further need of RCU, so remove it from 4467 * the rcu_node tree's ->qsmaskinitnext bit masks. 4468 * 4469 * Note that this function is special in that it is invoked directly 4470 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4471 * This is because this function must be invoked at a precise location. 4472 */ 4473 void rcu_report_dead(unsigned int cpu) 4474 { 4475 unsigned long flags, seq_flags; 4476 unsigned long mask; 4477 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4478 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4479 4480 // Do any dangling deferred wakeups. 4481 do_nocb_deferred_wakeup(rdp); 4482 4483 rcu_preempt_deferred_qs(current); 4484 4485 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4486 mask = rdp->grpmask; 4487 local_irq_save(seq_flags); 4488 arch_spin_lock(&rcu_state.ofl_lock); 4489 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4490 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4491 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4492 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4493 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4494 rcu_disable_urgency_upon_qs(rdp); 4495 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4496 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4497 } 4498 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4499 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4500 arch_spin_unlock(&rcu_state.ofl_lock); 4501 local_irq_restore(seq_flags); 4502 4503 rdp->cpu_started = false; 4504 } 4505 4506 #ifdef CONFIG_HOTPLUG_CPU 4507 /* 4508 * The outgoing CPU has just passed through the dying-idle state, and we 4509 * are being invoked from the CPU that was IPIed to continue the offline 4510 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4511 */ 4512 void rcutree_migrate_callbacks(int cpu) 4513 { 4514 unsigned long flags; 4515 struct rcu_data *my_rdp; 4516 struct rcu_node *my_rnp; 4517 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4518 bool needwake; 4519 4520 if (rcu_rdp_is_offloaded(rdp) || 4521 rcu_segcblist_empty(&rdp->cblist)) 4522 return; /* No callbacks to migrate. */ 4523 4524 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4525 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4526 rcu_barrier_entrain(rdp); 4527 my_rdp = this_cpu_ptr(&rcu_data); 4528 my_rnp = my_rdp->mynode; 4529 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4530 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4531 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4532 /* Leverage recent GPs and set GP for new callbacks. */ 4533 needwake = rcu_advance_cbs(my_rnp, rdp) || 4534 rcu_advance_cbs(my_rnp, my_rdp); 4535 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4536 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4537 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4538 rcu_segcblist_disable(&rdp->cblist); 4539 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4540 check_cb_ovld_locked(my_rdp, my_rnp); 4541 if (rcu_rdp_is_offloaded(my_rdp)) { 4542 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4543 __call_rcu_nocb_wake(my_rdp, true, flags); 4544 } else { 4545 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4546 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4547 } 4548 if (needwake) 4549 rcu_gp_kthread_wake(); 4550 lockdep_assert_irqs_enabled(); 4551 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4552 !rcu_segcblist_empty(&rdp->cblist), 4553 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4554 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4555 rcu_segcblist_first_cb(&rdp->cblist)); 4556 } 4557 #endif 4558 4559 /* 4560 * On non-huge systems, use expedited RCU grace periods to make suspend 4561 * and hibernation run faster. 4562 */ 4563 static int rcu_pm_notify(struct notifier_block *self, 4564 unsigned long action, void *hcpu) 4565 { 4566 switch (action) { 4567 case PM_HIBERNATION_PREPARE: 4568 case PM_SUSPEND_PREPARE: 4569 rcu_async_hurry(); 4570 rcu_expedite_gp(); 4571 break; 4572 case PM_POST_HIBERNATION: 4573 case PM_POST_SUSPEND: 4574 rcu_unexpedite_gp(); 4575 rcu_async_relax(); 4576 break; 4577 default: 4578 break; 4579 } 4580 return NOTIFY_OK; 4581 } 4582 4583 #ifdef CONFIG_RCU_EXP_KTHREAD 4584 struct kthread_worker *rcu_exp_gp_kworker; 4585 struct kthread_worker *rcu_exp_par_gp_kworker; 4586 4587 static void __init rcu_start_exp_gp_kworkers(void) 4588 { 4589 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4590 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4591 struct sched_param param = { .sched_priority = kthread_prio }; 4592 4593 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4594 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4595 pr_err("Failed to create %s!\n", gp_kworker_name); 4596 return; 4597 } 4598 4599 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4600 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4601 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4602 kthread_destroy_worker(rcu_exp_gp_kworker); 4603 return; 4604 } 4605 4606 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4607 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4608 ¶m); 4609 } 4610 4611 static inline void rcu_alloc_par_gp_wq(void) 4612 { 4613 } 4614 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4615 struct workqueue_struct *rcu_par_gp_wq; 4616 4617 static void __init rcu_start_exp_gp_kworkers(void) 4618 { 4619 } 4620 4621 static inline void rcu_alloc_par_gp_wq(void) 4622 { 4623 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4624 WARN_ON(!rcu_par_gp_wq); 4625 } 4626 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4627 4628 /* 4629 * Spawn the kthreads that handle RCU's grace periods. 4630 */ 4631 static int __init rcu_spawn_gp_kthread(void) 4632 { 4633 unsigned long flags; 4634 struct rcu_node *rnp; 4635 struct sched_param sp; 4636 struct task_struct *t; 4637 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4638 4639 rcu_scheduler_fully_active = 1; 4640 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4641 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4642 return 0; 4643 if (kthread_prio) { 4644 sp.sched_priority = kthread_prio; 4645 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4646 } 4647 rnp = rcu_get_root(); 4648 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4649 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4650 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4651 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4652 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4653 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4654 wake_up_process(t); 4655 /* This is a pre-SMP initcall, we expect a single CPU */ 4656 WARN_ON(num_online_cpus() > 1); 4657 /* 4658 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4659 * due to rcu_scheduler_fully_active. 4660 */ 4661 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4662 rcu_spawn_one_boost_kthread(rdp->mynode); 4663 rcu_spawn_core_kthreads(); 4664 /* Create kthread worker for expedited GPs */ 4665 rcu_start_exp_gp_kworkers(); 4666 return 0; 4667 } 4668 early_initcall(rcu_spawn_gp_kthread); 4669 4670 /* 4671 * This function is invoked towards the end of the scheduler's 4672 * initialization process. Before this is called, the idle task might 4673 * contain synchronous grace-period primitives (during which time, this idle 4674 * task is booting the system, and such primitives are no-ops). After this 4675 * function is called, any synchronous grace-period primitives are run as 4676 * expedited, with the requesting task driving the grace period forward. 4677 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4678 * runtime RCU functionality. 4679 */ 4680 void rcu_scheduler_starting(void) 4681 { 4682 unsigned long flags; 4683 struct rcu_node *rnp; 4684 4685 WARN_ON(num_online_cpus() != 1); 4686 WARN_ON(nr_context_switches() > 0); 4687 rcu_test_sync_prims(); 4688 4689 // Fix up the ->gp_seq counters. 4690 local_irq_save(flags); 4691 rcu_for_each_node_breadth_first(rnp) 4692 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4693 local_irq_restore(flags); 4694 4695 // Switch out of early boot mode. 4696 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4697 rcu_test_sync_prims(); 4698 } 4699 4700 /* 4701 * Helper function for rcu_init() that initializes the rcu_state structure. 4702 */ 4703 static void __init rcu_init_one(void) 4704 { 4705 static const char * const buf[] = RCU_NODE_NAME_INIT; 4706 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4707 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4708 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4709 4710 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4711 int cpustride = 1; 4712 int i; 4713 int j; 4714 struct rcu_node *rnp; 4715 4716 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4717 4718 /* Silence gcc 4.8 false positive about array index out of range. */ 4719 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4720 panic("rcu_init_one: rcu_num_lvls out of range"); 4721 4722 /* Initialize the level-tracking arrays. */ 4723 4724 for (i = 1; i < rcu_num_lvls; i++) 4725 rcu_state.level[i] = 4726 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4727 rcu_init_levelspread(levelspread, num_rcu_lvl); 4728 4729 /* Initialize the elements themselves, starting from the leaves. */ 4730 4731 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4732 cpustride *= levelspread[i]; 4733 rnp = rcu_state.level[i]; 4734 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4735 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4736 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4737 &rcu_node_class[i], buf[i]); 4738 raw_spin_lock_init(&rnp->fqslock); 4739 lockdep_set_class_and_name(&rnp->fqslock, 4740 &rcu_fqs_class[i], fqs[i]); 4741 rnp->gp_seq = rcu_state.gp_seq; 4742 rnp->gp_seq_needed = rcu_state.gp_seq; 4743 rnp->completedqs = rcu_state.gp_seq; 4744 rnp->qsmask = 0; 4745 rnp->qsmaskinit = 0; 4746 rnp->grplo = j * cpustride; 4747 rnp->grphi = (j + 1) * cpustride - 1; 4748 if (rnp->grphi >= nr_cpu_ids) 4749 rnp->grphi = nr_cpu_ids - 1; 4750 if (i == 0) { 4751 rnp->grpnum = 0; 4752 rnp->grpmask = 0; 4753 rnp->parent = NULL; 4754 } else { 4755 rnp->grpnum = j % levelspread[i - 1]; 4756 rnp->grpmask = BIT(rnp->grpnum); 4757 rnp->parent = rcu_state.level[i - 1] + 4758 j / levelspread[i - 1]; 4759 } 4760 rnp->level = i; 4761 INIT_LIST_HEAD(&rnp->blkd_tasks); 4762 rcu_init_one_nocb(rnp); 4763 init_waitqueue_head(&rnp->exp_wq[0]); 4764 init_waitqueue_head(&rnp->exp_wq[1]); 4765 init_waitqueue_head(&rnp->exp_wq[2]); 4766 init_waitqueue_head(&rnp->exp_wq[3]); 4767 spin_lock_init(&rnp->exp_lock); 4768 mutex_init(&rnp->boost_kthread_mutex); 4769 raw_spin_lock_init(&rnp->exp_poll_lock); 4770 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4771 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4772 } 4773 } 4774 4775 init_swait_queue_head(&rcu_state.gp_wq); 4776 init_swait_queue_head(&rcu_state.expedited_wq); 4777 rnp = rcu_first_leaf_node(); 4778 for_each_possible_cpu(i) { 4779 while (i > rnp->grphi) 4780 rnp++; 4781 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4782 rcu_boot_init_percpu_data(i); 4783 } 4784 } 4785 4786 /* 4787 * Force priority from the kernel command-line into range. 4788 */ 4789 static void __init sanitize_kthread_prio(void) 4790 { 4791 int kthread_prio_in = kthread_prio; 4792 4793 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4794 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4795 kthread_prio = 2; 4796 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4797 kthread_prio = 1; 4798 else if (kthread_prio < 0) 4799 kthread_prio = 0; 4800 else if (kthread_prio > 99) 4801 kthread_prio = 99; 4802 4803 if (kthread_prio != kthread_prio_in) 4804 pr_alert("%s: Limited prio to %d from %d\n", 4805 __func__, kthread_prio, kthread_prio_in); 4806 } 4807 4808 /* 4809 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4810 * replace the definitions in tree.h because those are needed to size 4811 * the ->node array in the rcu_state structure. 4812 */ 4813 void rcu_init_geometry(void) 4814 { 4815 ulong d; 4816 int i; 4817 static unsigned long old_nr_cpu_ids; 4818 int rcu_capacity[RCU_NUM_LVLS]; 4819 static bool initialized; 4820 4821 if (initialized) { 4822 /* 4823 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4824 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4825 */ 4826 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4827 return; 4828 } 4829 4830 old_nr_cpu_ids = nr_cpu_ids; 4831 initialized = true; 4832 4833 /* 4834 * Initialize any unspecified boot parameters. 4835 * The default values of jiffies_till_first_fqs and 4836 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4837 * value, which is a function of HZ, then adding one for each 4838 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4839 */ 4840 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4841 if (jiffies_till_first_fqs == ULONG_MAX) 4842 jiffies_till_first_fqs = d; 4843 if (jiffies_till_next_fqs == ULONG_MAX) 4844 jiffies_till_next_fqs = d; 4845 adjust_jiffies_till_sched_qs(); 4846 4847 /* If the compile-time values are accurate, just leave. */ 4848 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4849 nr_cpu_ids == NR_CPUS) 4850 return; 4851 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4852 rcu_fanout_leaf, nr_cpu_ids); 4853 4854 /* 4855 * The boot-time rcu_fanout_leaf parameter must be at least two 4856 * and cannot exceed the number of bits in the rcu_node masks. 4857 * Complain and fall back to the compile-time values if this 4858 * limit is exceeded. 4859 */ 4860 if (rcu_fanout_leaf < 2 || 4861 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4862 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4863 WARN_ON(1); 4864 return; 4865 } 4866 4867 /* 4868 * Compute number of nodes that can be handled an rcu_node tree 4869 * with the given number of levels. 4870 */ 4871 rcu_capacity[0] = rcu_fanout_leaf; 4872 for (i = 1; i < RCU_NUM_LVLS; i++) 4873 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4874 4875 /* 4876 * The tree must be able to accommodate the configured number of CPUs. 4877 * If this limit is exceeded, fall back to the compile-time values. 4878 */ 4879 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4880 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4881 WARN_ON(1); 4882 return; 4883 } 4884 4885 /* Calculate the number of levels in the tree. */ 4886 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4887 } 4888 rcu_num_lvls = i + 1; 4889 4890 /* Calculate the number of rcu_nodes at each level of the tree. */ 4891 for (i = 0; i < rcu_num_lvls; i++) { 4892 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4893 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4894 } 4895 4896 /* Calculate the total number of rcu_node structures. */ 4897 rcu_num_nodes = 0; 4898 for (i = 0; i < rcu_num_lvls; i++) 4899 rcu_num_nodes += num_rcu_lvl[i]; 4900 } 4901 4902 /* 4903 * Dump out the structure of the rcu_node combining tree associated 4904 * with the rcu_state structure. 4905 */ 4906 static void __init rcu_dump_rcu_node_tree(void) 4907 { 4908 int level = 0; 4909 struct rcu_node *rnp; 4910 4911 pr_info("rcu_node tree layout dump\n"); 4912 pr_info(" "); 4913 rcu_for_each_node_breadth_first(rnp) { 4914 if (rnp->level != level) { 4915 pr_cont("\n"); 4916 pr_info(" "); 4917 level = rnp->level; 4918 } 4919 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4920 } 4921 pr_cont("\n"); 4922 } 4923 4924 struct workqueue_struct *rcu_gp_wq; 4925 4926 static void __init kfree_rcu_batch_init(void) 4927 { 4928 int cpu; 4929 int i, j; 4930 4931 /* Clamp it to [0:100] seconds interval. */ 4932 if (rcu_delay_page_cache_fill_msec < 0 || 4933 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4934 4935 rcu_delay_page_cache_fill_msec = 4936 clamp(rcu_delay_page_cache_fill_msec, 0, 4937 (int) (100 * MSEC_PER_SEC)); 4938 4939 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4940 rcu_delay_page_cache_fill_msec); 4941 } 4942 4943 for_each_possible_cpu(cpu) { 4944 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4945 4946 for (i = 0; i < KFREE_N_BATCHES; i++) { 4947 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4948 krcp->krw_arr[i].krcp = krcp; 4949 4950 for (j = 0; j < FREE_N_CHANNELS; j++) 4951 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 4952 } 4953 4954 for (i = 0; i < FREE_N_CHANNELS; i++) 4955 INIT_LIST_HEAD(&krcp->bulk_head[i]); 4956 4957 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4958 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4959 krcp->initialized = true; 4960 } 4961 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4962 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4963 } 4964 4965 void __init rcu_init(void) 4966 { 4967 int cpu = smp_processor_id(); 4968 4969 rcu_early_boot_tests(); 4970 4971 kfree_rcu_batch_init(); 4972 rcu_bootup_announce(); 4973 sanitize_kthread_prio(); 4974 rcu_init_geometry(); 4975 rcu_init_one(); 4976 if (dump_tree) 4977 rcu_dump_rcu_node_tree(); 4978 if (use_softirq) 4979 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4980 4981 /* 4982 * We don't need protection against CPU-hotplug here because 4983 * this is called early in boot, before either interrupts 4984 * or the scheduler are operational. 4985 */ 4986 pm_notifier(rcu_pm_notify, 0); 4987 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4988 rcutree_prepare_cpu(cpu); 4989 rcu_cpu_starting(cpu); 4990 rcutree_online_cpu(cpu); 4991 4992 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4993 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4994 WARN_ON(!rcu_gp_wq); 4995 rcu_alloc_par_gp_wq(); 4996 4997 /* Fill in default value for rcutree.qovld boot parameter. */ 4998 /* -After- the rcu_node ->lock fields are initialized! */ 4999 if (qovld < 0) 5000 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5001 else 5002 qovld_calc = qovld; 5003 5004 // Kick-start in case any polled grace periods started early. 5005 (void)start_poll_synchronize_rcu_expedited(); 5006 5007 rcu_test_sync_prims(); 5008 } 5009 5010 #include "tree_stall.h" 5011 #include "tree_exp.h" 5012 #include "tree_nocb.h" 5013 #include "tree_plugin.h" 5014