1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0644); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 180 /* 181 * Number of grace periods between delays, normalized by the duration of 182 * the delay. The longer the delay, the more the grace periods between 183 * each delay. The reason for this normalization is that it means that, 184 * for non-zero delays, the overall slowdown of grace periods is constant 185 * regardless of the duration of the delay. This arrangement balances 186 * the need for long delays to increase some race probabilities with the 187 * need for fast grace periods to increase other race probabilities. 188 */ 189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 190 191 /* 192 * Track the rcutorture test sequence number and the update version 193 * number within a given test. The rcutorture_testseq is incremented 194 * on every rcutorture module load and unload, so has an odd value 195 * when a test is running. The rcutorture_vernum is set to zero 196 * when rcutorture starts and is incremented on each rcutorture update. 197 * These variables enable correlating rcutorture output with the 198 * RCU tracing information. 199 */ 200 unsigned long rcutorture_testseq; 201 unsigned long rcutorture_vernum; 202 203 /* 204 * Compute the mask of online CPUs for the specified rcu_node structure. 205 * This will not be stable unless the rcu_node structure's ->lock is 206 * held, but the bit corresponding to the current CPU will be stable 207 * in most contexts. 208 */ 209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 210 { 211 return READ_ONCE(rnp->qsmaskinitnext); 212 } 213 214 /* 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s 216 * permit this function to be invoked without holding the root rcu_node 217 * structure's ->lock, but of course results can be subject to change. 218 */ 219 static int rcu_gp_in_progress(struct rcu_state *rsp) 220 { 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 222 } 223 224 /* 225 * Note a quiescent state. Because we do not need to know 226 * how many quiescent states passed, just if there was at least 227 * one since the start of the grace period, this just sets a flag. 228 * The caller must have disabled preemption. 229 */ 230 void rcu_sched_qs(void) 231 { 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 234 return; 235 trace_rcu_grace_period(TPS("rcu_sched"), 236 __this_cpu_read(rcu_sched_data.gpnum), 237 TPS("cpuqs")); 238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 240 return; 241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 242 rcu_report_exp_rdp(&rcu_sched_state, 243 this_cpu_ptr(&rcu_sched_data), true); 244 } 245 246 void rcu_bh_qs(void) 247 { 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 250 trace_rcu_grace_period(TPS("rcu_bh"), 251 __this_cpu_read(rcu_bh_data.gpnum), 252 TPS("cpuqs")); 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 254 } 255 } 256 257 /* 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit 259 * control. Initially this is for TLB flushing. 260 */ 261 #define RCU_DYNTICK_CTRL_MASK 0x1 262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 263 #ifndef rcu_eqs_special_exit 264 #define rcu_eqs_special_exit() do { } while (0) 265 #endif 266 267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 268 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 270 }; 271 272 /* 273 * There's a few places, currently just in the tracing infrastructure, 274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's 275 * a small location where that will not even work. In those cases 276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter() 277 * can be called. 278 */ 279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter); 280 281 bool rcu_irq_enter_disabled(void) 282 { 283 return this_cpu_read(disable_rcu_irq_enter); 284 } 285 286 /* 287 * Record entry into an extended quiescent state. This is only to be 288 * called when not already in an extended quiescent state. 289 */ 290 static void rcu_dynticks_eqs_enter(void) 291 { 292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 293 int seq; 294 295 /* 296 * CPUs seeing atomic_add_return() must see prior RCU read-side 297 * critical sections, and we also must force ordering with the 298 * next idle sojourn. 299 */ 300 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 301 /* Better be in an extended quiescent state! */ 302 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 303 (seq & RCU_DYNTICK_CTRL_CTR)); 304 /* Better not have special action (TLB flush) pending! */ 305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 306 (seq & RCU_DYNTICK_CTRL_MASK)); 307 } 308 309 /* 310 * Record exit from an extended quiescent state. This is only to be 311 * called from an extended quiescent state. 312 */ 313 static void rcu_dynticks_eqs_exit(void) 314 { 315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 316 int seq; 317 318 /* 319 * CPUs seeing atomic_add_return() must see prior idle sojourns, 320 * and we also must force ordering with the next RCU read-side 321 * critical section. 322 */ 323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 324 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 325 !(seq & RCU_DYNTICK_CTRL_CTR)); 326 if (seq & RCU_DYNTICK_CTRL_MASK) { 327 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 328 smp_mb__after_atomic(); /* _exit after clearing mask. */ 329 /* Prefer duplicate flushes to losing a flush. */ 330 rcu_eqs_special_exit(); 331 } 332 } 333 334 /* 335 * Reset the current CPU's ->dynticks counter to indicate that the 336 * newly onlined CPU is no longer in an extended quiescent state. 337 * This will either leave the counter unchanged, or increment it 338 * to the next non-quiescent value. 339 * 340 * The non-atomic test/increment sequence works because the upper bits 341 * of the ->dynticks counter are manipulated only by the corresponding CPU, 342 * or when the corresponding CPU is offline. 343 */ 344 static void rcu_dynticks_eqs_online(void) 345 { 346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 347 348 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 349 return; 350 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 351 } 352 353 /* 354 * Is the current CPU in an extended quiescent state? 355 * 356 * No ordering, as we are sampling CPU-local information. 357 */ 358 bool rcu_dynticks_curr_cpu_in_eqs(void) 359 { 360 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 361 362 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 363 } 364 365 /* 366 * Snapshot the ->dynticks counter with full ordering so as to allow 367 * stable comparison of this counter with past and future snapshots. 368 */ 369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 370 { 371 int snap = atomic_add_return(0, &rdtp->dynticks); 372 373 return snap & ~RCU_DYNTICK_CTRL_MASK; 374 } 375 376 /* 377 * Return true if the snapshot returned from rcu_dynticks_snap() 378 * indicates that RCU is in an extended quiescent state. 379 */ 380 static bool rcu_dynticks_in_eqs(int snap) 381 { 382 return !(snap & RCU_DYNTICK_CTRL_CTR); 383 } 384 385 /* 386 * Return true if the CPU corresponding to the specified rcu_dynticks 387 * structure has spent some time in an extended quiescent state since 388 * rcu_dynticks_snap() returned the specified snapshot. 389 */ 390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 391 { 392 return snap != rcu_dynticks_snap(rdtp); 393 } 394 395 /* 396 * Do a double-increment of the ->dynticks counter to emulate a 397 * momentary idle-CPU quiescent state. 398 */ 399 static void rcu_dynticks_momentary_idle(void) 400 { 401 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 402 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 403 &rdtp->dynticks); 404 405 /* It is illegal to call this from idle state. */ 406 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 407 } 408 409 /* 410 * Set the special (bottom) bit of the specified CPU so that it 411 * will take special action (such as flushing its TLB) on the 412 * next exit from an extended quiescent state. Returns true if 413 * the bit was successfully set, or false if the CPU was not in 414 * an extended quiescent state. 415 */ 416 bool rcu_eqs_special_set(int cpu) 417 { 418 int old; 419 int new; 420 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 421 422 do { 423 old = atomic_read(&rdtp->dynticks); 424 if (old & RCU_DYNTICK_CTRL_CTR) 425 return false; 426 new = old | RCU_DYNTICK_CTRL_MASK; 427 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 428 return true; 429 } 430 431 /* 432 * Let the RCU core know that this CPU has gone through the scheduler, 433 * which is a quiescent state. This is called when the need for a 434 * quiescent state is urgent, so we burn an atomic operation and full 435 * memory barriers to let the RCU core know about it, regardless of what 436 * this CPU might (or might not) do in the near future. 437 * 438 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 439 * 440 * The caller must have disabled interrupts. 441 */ 442 static void rcu_momentary_dyntick_idle(void) 443 { 444 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 445 rcu_dynticks_momentary_idle(); 446 } 447 448 /* 449 * Note a context switch. This is a quiescent state for RCU-sched, 450 * and requires special handling for preemptible RCU. 451 * The caller must have disabled interrupts. 452 */ 453 void rcu_note_context_switch(bool preempt) 454 { 455 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 456 trace_rcu_utilization(TPS("Start context switch")); 457 rcu_sched_qs(); 458 rcu_preempt_note_context_switch(preempt); 459 /* Load rcu_urgent_qs before other flags. */ 460 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 461 goto out; 462 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 463 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 464 rcu_momentary_dyntick_idle(); 465 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 466 if (!preempt) 467 rcu_note_voluntary_context_switch_lite(current); 468 out: 469 trace_rcu_utilization(TPS("End context switch")); 470 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 471 } 472 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 473 474 /* 475 * Register a quiescent state for all RCU flavors. If there is an 476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 477 * dyntick-idle quiescent state visible to other CPUs (but only for those 478 * RCU flavors in desperate need of a quiescent state, which will normally 479 * be none of them). Either way, do a lightweight quiescent state for 480 * all RCU flavors. 481 * 482 * The barrier() calls are redundant in the common case when this is 483 * called externally, but just in case this is called from within this 484 * file. 485 * 486 */ 487 void rcu_all_qs(void) 488 { 489 unsigned long flags; 490 491 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 492 return; 493 preempt_disable(); 494 /* Load rcu_urgent_qs before other flags. */ 495 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 496 preempt_enable(); 497 return; 498 } 499 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 500 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 501 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 502 local_irq_save(flags); 503 rcu_momentary_dyntick_idle(); 504 local_irq_restore(flags); 505 } 506 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 507 rcu_sched_qs(); 508 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 509 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 510 preempt_enable(); 511 } 512 EXPORT_SYMBOL_GPL(rcu_all_qs); 513 514 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 515 static long blimit = DEFAULT_RCU_BLIMIT; 516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 517 static long qhimark = DEFAULT_RCU_QHIMARK; 518 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 519 static long qlowmark = DEFAULT_RCU_QLOMARK; 520 521 module_param(blimit, long, 0444); 522 module_param(qhimark, long, 0444); 523 module_param(qlowmark, long, 0444); 524 525 static ulong jiffies_till_first_fqs = ULONG_MAX; 526 static ulong jiffies_till_next_fqs = ULONG_MAX; 527 static bool rcu_kick_kthreads; 528 529 module_param(jiffies_till_first_fqs, ulong, 0644); 530 module_param(jiffies_till_next_fqs, ulong, 0644); 531 module_param(rcu_kick_kthreads, bool, 0644); 532 533 /* 534 * How long the grace period must be before we start recruiting 535 * quiescent-state help from rcu_note_context_switch(). 536 */ 537 static ulong jiffies_till_sched_qs = HZ / 20; 538 module_param(jiffies_till_sched_qs, ulong, 0644); 539 540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 541 struct rcu_data *rdp); 542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 543 static void force_quiescent_state(struct rcu_state *rsp); 544 static int rcu_pending(void); 545 546 /* 547 * Return the number of RCU batches started thus far for debug & stats. 548 */ 549 unsigned long rcu_batches_started(void) 550 { 551 return rcu_state_p->gpnum; 552 } 553 EXPORT_SYMBOL_GPL(rcu_batches_started); 554 555 /* 556 * Return the number of RCU-sched batches started thus far for debug & stats. 557 */ 558 unsigned long rcu_batches_started_sched(void) 559 { 560 return rcu_sched_state.gpnum; 561 } 562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 563 564 /* 565 * Return the number of RCU BH batches started thus far for debug & stats. 566 */ 567 unsigned long rcu_batches_started_bh(void) 568 { 569 return rcu_bh_state.gpnum; 570 } 571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 572 573 /* 574 * Return the number of RCU batches completed thus far for debug & stats. 575 */ 576 unsigned long rcu_batches_completed(void) 577 { 578 return rcu_state_p->completed; 579 } 580 EXPORT_SYMBOL_GPL(rcu_batches_completed); 581 582 /* 583 * Return the number of RCU-sched batches completed thus far for debug & stats. 584 */ 585 unsigned long rcu_batches_completed_sched(void) 586 { 587 return rcu_sched_state.completed; 588 } 589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 590 591 /* 592 * Return the number of RCU BH batches completed thus far for debug & stats. 593 */ 594 unsigned long rcu_batches_completed_bh(void) 595 { 596 return rcu_bh_state.completed; 597 } 598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 599 600 /* 601 * Return the number of RCU expedited batches completed thus far for 602 * debug & stats. Odd numbers mean that a batch is in progress, even 603 * numbers mean idle. The value returned will thus be roughly double 604 * the cumulative batches since boot. 605 */ 606 unsigned long rcu_exp_batches_completed(void) 607 { 608 return rcu_state_p->expedited_sequence; 609 } 610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 611 612 /* 613 * Return the number of RCU-sched expedited batches completed thus far 614 * for debug & stats. Similar to rcu_exp_batches_completed(). 615 */ 616 unsigned long rcu_exp_batches_completed_sched(void) 617 { 618 return rcu_sched_state.expedited_sequence; 619 } 620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 621 622 /* 623 * Force a quiescent state. 624 */ 625 void rcu_force_quiescent_state(void) 626 { 627 force_quiescent_state(rcu_state_p); 628 } 629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 630 631 /* 632 * Force a quiescent state for RCU BH. 633 */ 634 void rcu_bh_force_quiescent_state(void) 635 { 636 force_quiescent_state(&rcu_bh_state); 637 } 638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 639 640 /* 641 * Force a quiescent state for RCU-sched. 642 */ 643 void rcu_sched_force_quiescent_state(void) 644 { 645 force_quiescent_state(&rcu_sched_state); 646 } 647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 648 649 /* 650 * Show the state of the grace-period kthreads. 651 */ 652 void show_rcu_gp_kthreads(void) 653 { 654 struct rcu_state *rsp; 655 656 for_each_rcu_flavor(rsp) { 657 pr_info("%s: wait state: %d ->state: %#lx\n", 658 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 659 /* sched_show_task(rsp->gp_kthread); */ 660 } 661 } 662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 663 664 /* 665 * Record the number of times rcutorture tests have been initiated and 666 * terminated. This information allows the debugfs tracing stats to be 667 * correlated to the rcutorture messages, even when the rcutorture module 668 * is being repeatedly loaded and unloaded. In other words, we cannot 669 * store this state in rcutorture itself. 670 */ 671 void rcutorture_record_test_transition(void) 672 { 673 rcutorture_testseq++; 674 rcutorture_vernum = 0; 675 } 676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 677 678 /* 679 * Send along grace-period-related data for rcutorture diagnostics. 680 */ 681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 682 unsigned long *gpnum, unsigned long *completed) 683 { 684 struct rcu_state *rsp = NULL; 685 686 switch (test_type) { 687 case RCU_FLAVOR: 688 rsp = rcu_state_p; 689 break; 690 case RCU_BH_FLAVOR: 691 rsp = &rcu_bh_state; 692 break; 693 case RCU_SCHED_FLAVOR: 694 rsp = &rcu_sched_state; 695 break; 696 default: 697 break; 698 } 699 if (rsp == NULL) 700 return; 701 *flags = READ_ONCE(rsp->gp_flags); 702 *gpnum = READ_ONCE(rsp->gpnum); 703 *completed = READ_ONCE(rsp->completed); 704 } 705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 706 707 /* 708 * Record the number of writer passes through the current rcutorture test. 709 * This is also used to correlate debugfs tracing stats with the rcutorture 710 * messages. 711 */ 712 void rcutorture_record_progress(unsigned long vernum) 713 { 714 rcutorture_vernum++; 715 } 716 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 717 718 /* 719 * Return the root node of the specified rcu_state structure. 720 */ 721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 722 { 723 return &rsp->node[0]; 724 } 725 726 /* 727 * Is there any need for future grace periods? 728 * Interrupts must be disabled. If the caller does not hold the root 729 * rnp_node structure's ->lock, the results are advisory only. 730 */ 731 static int rcu_future_needs_gp(struct rcu_state *rsp) 732 { 733 struct rcu_node *rnp = rcu_get_root(rsp); 734 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 735 int *fp = &rnp->need_future_gp[idx]; 736 737 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!"); 738 return READ_ONCE(*fp); 739 } 740 741 /* 742 * Does the current CPU require a not-yet-started grace period? 743 * The caller must have disabled interrupts to prevent races with 744 * normal callback registry. 745 */ 746 static bool 747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 748 { 749 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!"); 750 if (rcu_gp_in_progress(rsp)) 751 return false; /* No, a grace period is already in progress. */ 752 if (rcu_future_needs_gp(rsp)) 753 return true; /* Yes, a no-CBs CPU needs one. */ 754 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 755 return false; /* No, this is a no-CBs (or offline) CPU. */ 756 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 757 return true; /* Yes, CPU has newly registered callbacks. */ 758 if (rcu_segcblist_future_gp_needed(&rdp->cblist, 759 READ_ONCE(rsp->completed))) 760 return true; /* Yes, CBs for future grace period. */ 761 return false; /* No grace period needed. */ 762 } 763 764 /* 765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state 766 * 767 * Enter idle, doing appropriate accounting. The caller must have 768 * disabled interrupts. 769 */ 770 static void rcu_eqs_enter_common(bool user) 771 { 772 struct rcu_state *rsp; 773 struct rcu_data *rdp; 774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 775 776 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!"); 777 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0); 778 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 779 !user && !is_idle_task(current)) { 780 struct task_struct *idle __maybe_unused = 781 idle_task(smp_processor_id()); 782 783 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0); 784 rcu_ftrace_dump(DUMP_ORIG); 785 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 786 current->pid, current->comm, 787 idle->pid, idle->comm); /* must be idle task! */ 788 } 789 for_each_rcu_flavor(rsp) { 790 rdp = this_cpu_ptr(rsp->rda); 791 do_nocb_deferred_wakeup(rdp); 792 } 793 rcu_prepare_for_idle(); 794 __this_cpu_inc(disable_rcu_irq_enter); 795 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */ 796 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */ 797 __this_cpu_dec(disable_rcu_irq_enter); 798 rcu_dynticks_task_enter(); 799 800 /* 801 * It is illegal to enter an extended quiescent state while 802 * in an RCU read-side critical section. 803 */ 804 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 805 "Illegal idle entry in RCU read-side critical section."); 806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 807 "Illegal idle entry in RCU-bh read-side critical section."); 808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 809 "Illegal idle entry in RCU-sched read-side critical section."); 810 } 811 812 /* 813 * Enter an RCU extended quiescent state, which can be either the 814 * idle loop or adaptive-tickless usermode execution. 815 */ 816 static void rcu_eqs_enter(bool user) 817 { 818 struct rcu_dynticks *rdtp; 819 820 rdtp = this_cpu_ptr(&rcu_dynticks); 821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 822 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0); 823 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 824 rcu_eqs_enter_common(user); 825 else 826 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 827 } 828 829 /** 830 * rcu_idle_enter - inform RCU that current CPU is entering idle 831 * 832 * Enter idle mode, in other words, -leave- the mode in which RCU 833 * read-side critical sections can occur. (Though RCU read-side 834 * critical sections can occur in irq handlers in idle, a possibility 835 * handled by irq_enter() and irq_exit().) 836 * 837 * We crowbar the ->dynticks_nesting field to zero to allow for 838 * the possibility of usermode upcalls having messed up our count 839 * of interrupt nesting level during the prior busy period. 840 */ 841 void rcu_idle_enter(void) 842 { 843 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!"); 844 rcu_eqs_enter(false); 845 } 846 847 #ifdef CONFIG_NO_HZ_FULL 848 /** 849 * rcu_user_enter - inform RCU that we are resuming userspace. 850 * 851 * Enter RCU idle mode right before resuming userspace. No use of RCU 852 * is permitted between this call and rcu_user_exit(). This way the 853 * CPU doesn't need to maintain the tick for RCU maintenance purposes 854 * when the CPU runs in userspace. 855 */ 856 void rcu_user_enter(void) 857 { 858 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!"); 859 rcu_eqs_enter(true); 860 } 861 #endif /* CONFIG_NO_HZ_FULL */ 862 863 /** 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 865 * 866 * Exit from an interrupt handler, which might possibly result in entering 867 * idle mode, in other words, leaving the mode in which read-side critical 868 * sections can occur. The caller must have disabled interrupts. 869 * 870 * This code assumes that the idle loop never does anything that might 871 * result in unbalanced calls to irq_enter() and irq_exit(). If your 872 * architecture violates this assumption, RCU will give you what you 873 * deserve, good and hard. But very infrequently and irreproducibly. 874 * 875 * Use things like work queues to work around this limitation. 876 * 877 * You have been warned. 878 */ 879 void rcu_irq_exit(void) 880 { 881 struct rcu_dynticks *rdtp; 882 883 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 884 rdtp = this_cpu_ptr(&rcu_dynticks); 885 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 886 rdtp->dynticks_nesting < 1); 887 if (rdtp->dynticks_nesting <= 1) { 888 rcu_eqs_enter_common(true); 889 } else { 890 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1); 891 rdtp->dynticks_nesting--; 892 } 893 } 894 895 /* 896 * Wrapper for rcu_irq_exit() where interrupts are enabled. 897 */ 898 void rcu_irq_exit_irqson(void) 899 { 900 unsigned long flags; 901 902 local_irq_save(flags); 903 rcu_irq_exit(); 904 local_irq_restore(flags); 905 } 906 907 /* 908 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 909 * 910 * If the new value of the ->dynticks_nesting counter was previously zero, 911 * we really have exited idle, and must do the appropriate accounting. 912 * The caller must have disabled interrupts. 913 */ 914 static void rcu_eqs_exit_common(long long oldval, int user) 915 { 916 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 917 918 rcu_dynticks_task_exit(); 919 rcu_dynticks_eqs_exit(); 920 rcu_cleanup_after_idle(); 921 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 922 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 923 !user && !is_idle_task(current)) { 924 struct task_struct *idle __maybe_unused = 925 idle_task(smp_processor_id()); 926 927 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 928 oldval, rdtp->dynticks_nesting); 929 rcu_ftrace_dump(DUMP_ORIG); 930 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 931 current->pid, current->comm, 932 idle->pid, idle->comm); /* must be idle task! */ 933 } 934 } 935 936 /* 937 * Exit an RCU extended quiescent state, which can be either the 938 * idle loop or adaptive-tickless usermode execution. 939 */ 940 static void rcu_eqs_exit(bool user) 941 { 942 struct rcu_dynticks *rdtp; 943 long long oldval; 944 945 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!"); 946 rdtp = this_cpu_ptr(&rcu_dynticks); 947 oldval = rdtp->dynticks_nesting; 948 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 949 if (oldval & DYNTICK_TASK_NEST_MASK) { 950 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 951 } else { 952 __this_cpu_inc(disable_rcu_irq_enter); 953 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 954 rcu_eqs_exit_common(oldval, user); 955 __this_cpu_dec(disable_rcu_irq_enter); 956 } 957 } 958 959 /** 960 * rcu_idle_exit - inform RCU that current CPU is leaving idle 961 * 962 * Exit idle mode, in other words, -enter- the mode in which RCU 963 * read-side critical sections can occur. 964 * 965 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 966 * allow for the possibility of usermode upcalls messing up our count 967 * of interrupt nesting level during the busy period that is just 968 * now starting. 969 */ 970 void rcu_idle_exit(void) 971 { 972 unsigned long flags; 973 974 local_irq_save(flags); 975 rcu_eqs_exit(false); 976 local_irq_restore(flags); 977 } 978 979 #ifdef CONFIG_NO_HZ_FULL 980 /** 981 * rcu_user_exit - inform RCU that we are exiting userspace. 982 * 983 * Exit RCU idle mode while entering the kernel because it can 984 * run a RCU read side critical section anytime. 985 */ 986 void rcu_user_exit(void) 987 { 988 rcu_eqs_exit(1); 989 } 990 #endif /* CONFIG_NO_HZ_FULL */ 991 992 /** 993 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 994 * 995 * Enter an interrupt handler, which might possibly result in exiting 996 * idle mode, in other words, entering the mode in which read-side critical 997 * sections can occur. The caller must have disabled interrupts. 998 * 999 * Note that the Linux kernel is fully capable of entering an interrupt 1000 * handler that it never exits, for example when doing upcalls to 1001 * user mode! This code assumes that the idle loop never does upcalls to 1002 * user mode. If your architecture does do upcalls from the idle loop (or 1003 * does anything else that results in unbalanced calls to the irq_enter() 1004 * and irq_exit() functions), RCU will give you what you deserve, good 1005 * and hard. But very infrequently and irreproducibly. 1006 * 1007 * Use things like work queues to work around this limitation. 1008 * 1009 * You have been warned. 1010 */ 1011 void rcu_irq_enter(void) 1012 { 1013 struct rcu_dynticks *rdtp; 1014 long long oldval; 1015 1016 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 1017 rdtp = this_cpu_ptr(&rcu_dynticks); 1018 oldval = rdtp->dynticks_nesting; 1019 rdtp->dynticks_nesting++; 1020 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1021 rdtp->dynticks_nesting == 0); 1022 if (oldval) 1023 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1024 else 1025 rcu_eqs_exit_common(oldval, true); 1026 } 1027 1028 /* 1029 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1030 */ 1031 void rcu_irq_enter_irqson(void) 1032 { 1033 unsigned long flags; 1034 1035 local_irq_save(flags); 1036 rcu_irq_enter(); 1037 local_irq_restore(flags); 1038 } 1039 1040 /** 1041 * rcu_nmi_enter - inform RCU of entry to NMI context 1042 * 1043 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1044 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1045 * that the CPU is active. This implementation permits nested NMIs, as 1046 * long as the nesting level does not overflow an int. (You will probably 1047 * run out of stack space first.) 1048 */ 1049 void rcu_nmi_enter(void) 1050 { 1051 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1052 int incby = 2; 1053 1054 /* Complain about underflow. */ 1055 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1056 1057 /* 1058 * If idle from RCU viewpoint, atomically increment ->dynticks 1059 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1060 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1061 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1062 * to be in the outermost NMI handler that interrupted an RCU-idle 1063 * period (observation due to Andy Lutomirski). 1064 */ 1065 if (rcu_dynticks_curr_cpu_in_eqs()) { 1066 rcu_dynticks_eqs_exit(); 1067 incby = 1; 1068 } 1069 rdtp->dynticks_nmi_nesting += incby; 1070 barrier(); 1071 } 1072 1073 /** 1074 * rcu_nmi_exit - inform RCU of exit from NMI context 1075 * 1076 * If we are returning from the outermost NMI handler that interrupted an 1077 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1078 * to let the RCU grace-period handling know that the CPU is back to 1079 * being RCU-idle. 1080 */ 1081 void rcu_nmi_exit(void) 1082 { 1083 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1084 1085 /* 1086 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1087 * (We are exiting an NMI handler, so RCU better be paying attention 1088 * to us!) 1089 */ 1090 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1091 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1092 1093 /* 1094 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1095 * leave it in non-RCU-idle state. 1096 */ 1097 if (rdtp->dynticks_nmi_nesting != 1) { 1098 rdtp->dynticks_nmi_nesting -= 2; 1099 return; 1100 } 1101 1102 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1103 rdtp->dynticks_nmi_nesting = 0; 1104 rcu_dynticks_eqs_enter(); 1105 } 1106 1107 /** 1108 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1109 * 1110 * Return true if RCU is watching the running CPU, which means that this 1111 * CPU can safely enter RCU read-side critical sections. In other words, 1112 * if the current CPU is in its idle loop and is neither in an interrupt 1113 * or NMI handler, return true. 1114 */ 1115 bool notrace rcu_is_watching(void) 1116 { 1117 bool ret; 1118 1119 preempt_disable_notrace(); 1120 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1121 preempt_enable_notrace(); 1122 return ret; 1123 } 1124 EXPORT_SYMBOL_GPL(rcu_is_watching); 1125 1126 /* 1127 * If a holdout task is actually running, request an urgent quiescent 1128 * state from its CPU. This is unsynchronized, so migrations can cause 1129 * the request to go to the wrong CPU. Which is OK, all that will happen 1130 * is that the CPU's next context switch will be a bit slower and next 1131 * time around this task will generate another request. 1132 */ 1133 void rcu_request_urgent_qs_task(struct task_struct *t) 1134 { 1135 int cpu; 1136 1137 barrier(); 1138 cpu = task_cpu(t); 1139 if (!task_curr(t)) 1140 return; /* This task is not running on that CPU. */ 1141 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1142 } 1143 1144 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1145 1146 /* 1147 * Is the current CPU online? Disable preemption to avoid false positives 1148 * that could otherwise happen due to the current CPU number being sampled, 1149 * this task being preempted, its old CPU being taken offline, resuming 1150 * on some other CPU, then determining that its old CPU is now offline. 1151 * It is OK to use RCU on an offline processor during initial boot, hence 1152 * the check for rcu_scheduler_fully_active. Note also that it is OK 1153 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1154 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1155 * offline to continue to use RCU for one jiffy after marking itself 1156 * offline in the cpu_online_mask. This leniency is necessary given the 1157 * non-atomic nature of the online and offline processing, for example, 1158 * the fact that a CPU enters the scheduler after completing the teardown 1159 * of the CPU. 1160 * 1161 * This is also why RCU internally marks CPUs online during in the 1162 * preparation phase and offline after the CPU has been taken down. 1163 * 1164 * Disable checking if in an NMI handler because we cannot safely report 1165 * errors from NMI handlers anyway. 1166 */ 1167 bool rcu_lockdep_current_cpu_online(void) 1168 { 1169 struct rcu_data *rdp; 1170 struct rcu_node *rnp; 1171 bool ret; 1172 1173 if (in_nmi()) 1174 return true; 1175 preempt_disable(); 1176 rdp = this_cpu_ptr(&rcu_sched_data); 1177 rnp = rdp->mynode; 1178 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1179 !rcu_scheduler_fully_active; 1180 preempt_enable(); 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1184 1185 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1186 1187 /** 1188 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1189 * 1190 * If the current CPU is idle or running at a first-level (not nested) 1191 * interrupt from idle, return true. The caller must have at least 1192 * disabled preemption. 1193 */ 1194 static int rcu_is_cpu_rrupt_from_idle(void) 1195 { 1196 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1197 } 1198 1199 /* 1200 * Snapshot the specified CPU's dynticks counter so that we can later 1201 * credit them with an implicit quiescent state. Return 1 if this CPU 1202 * is in dynticks idle mode, which is an extended quiescent state. 1203 */ 1204 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1205 { 1206 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1207 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1208 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1209 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1210 rdp->mynode->gpnum)) 1211 WRITE_ONCE(rdp->gpwrap, true); 1212 return 1; 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * Return true if the specified CPU has passed through a quiescent 1219 * state by virtue of being in or having passed through an dynticks 1220 * idle state since the last call to dyntick_save_progress_counter() 1221 * for this same CPU, or by virtue of having been offline. 1222 */ 1223 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1224 { 1225 unsigned long jtsq; 1226 bool *rnhqp; 1227 bool *ruqp; 1228 unsigned long rjtsc; 1229 struct rcu_node *rnp; 1230 1231 /* 1232 * If the CPU passed through or entered a dynticks idle phase with 1233 * no active irq/NMI handlers, then we can safely pretend that the CPU 1234 * already acknowledged the request to pass through a quiescent 1235 * state. Either way, that CPU cannot possibly be in an RCU 1236 * read-side critical section that started before the beginning 1237 * of the current RCU grace period. 1238 */ 1239 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1240 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1241 rdp->dynticks_fqs++; 1242 return 1; 1243 } 1244 1245 /* Compute and saturate jiffies_till_sched_qs. */ 1246 jtsq = jiffies_till_sched_qs; 1247 rjtsc = rcu_jiffies_till_stall_check(); 1248 if (jtsq > rjtsc / 2) { 1249 WRITE_ONCE(jiffies_till_sched_qs, rjtsc); 1250 jtsq = rjtsc / 2; 1251 } else if (jtsq < 1) { 1252 WRITE_ONCE(jiffies_till_sched_qs, 1); 1253 jtsq = 1; 1254 } 1255 1256 /* 1257 * Has this CPU encountered a cond_resched_rcu_qs() since the 1258 * beginning of the grace period? For this to be the case, 1259 * the CPU has to have noticed the current grace period. This 1260 * might not be the case for nohz_full CPUs looping in the kernel. 1261 */ 1262 rnp = rdp->mynode; 1263 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1264 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1265 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1266 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1267 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1268 return 1; 1269 } else { 1270 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1271 smp_store_release(ruqp, true); 1272 } 1273 1274 /* Check for the CPU being offline. */ 1275 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1276 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1277 rdp->offline_fqs++; 1278 return 1; 1279 } 1280 1281 /* 1282 * A CPU running for an extended time within the kernel can 1283 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1284 * even context-switching back and forth between a pair of 1285 * in-kernel CPU-bound tasks cannot advance grace periods. 1286 * So if the grace period is old enough, make the CPU pay attention. 1287 * Note that the unsynchronized assignments to the per-CPU 1288 * rcu_need_heavy_qs variable are safe. Yes, setting of 1289 * bits can be lost, but they will be set again on the next 1290 * force-quiescent-state pass. So lost bit sets do not result 1291 * in incorrect behavior, merely in a grace period lasting 1292 * a few jiffies longer than it might otherwise. Because 1293 * there are at most four threads involved, and because the 1294 * updates are only once every few jiffies, the probability of 1295 * lossage (and thus of slight grace-period extension) is 1296 * quite low. 1297 * 1298 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1299 * is set too high, we override with half of the RCU CPU stall 1300 * warning delay. 1301 */ 1302 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1303 if (!READ_ONCE(*rnhqp) && 1304 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1305 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1306 WRITE_ONCE(*rnhqp, true); 1307 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1308 smp_store_release(ruqp, true); 1309 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1310 } 1311 1312 /* 1313 * If more than halfway to RCU CPU stall-warning time, do 1314 * a resched_cpu() to try to loosen things up a bit. 1315 */ 1316 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) 1317 resched_cpu(rdp->cpu); 1318 1319 return 0; 1320 } 1321 1322 static void record_gp_stall_check_time(struct rcu_state *rsp) 1323 { 1324 unsigned long j = jiffies; 1325 unsigned long j1; 1326 1327 rsp->gp_start = j; 1328 smp_wmb(); /* Record start time before stall time. */ 1329 j1 = rcu_jiffies_till_stall_check(); 1330 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1331 rsp->jiffies_resched = j + j1 / 2; 1332 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1333 } 1334 1335 /* 1336 * Convert a ->gp_state value to a character string. 1337 */ 1338 static const char *gp_state_getname(short gs) 1339 { 1340 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1341 return "???"; 1342 return gp_state_names[gs]; 1343 } 1344 1345 /* 1346 * Complain about starvation of grace-period kthread. 1347 */ 1348 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1349 { 1350 unsigned long gpa; 1351 unsigned long j; 1352 1353 j = jiffies; 1354 gpa = READ_ONCE(rsp->gp_activity); 1355 if (j - gpa > 2 * HZ) { 1356 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1357 rsp->name, j - gpa, 1358 rsp->gpnum, rsp->completed, 1359 rsp->gp_flags, 1360 gp_state_getname(rsp->gp_state), rsp->gp_state, 1361 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1362 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1363 if (rsp->gp_kthread) { 1364 sched_show_task(rsp->gp_kthread); 1365 wake_up_process(rsp->gp_kthread); 1366 } 1367 } 1368 } 1369 1370 /* 1371 * Dump stacks of all tasks running on stalled CPUs. First try using 1372 * NMIs, but fall back to manual remote stack tracing on architectures 1373 * that don't support NMI-based stack dumps. The NMI-triggered stack 1374 * traces are more accurate because they are printed by the target CPU. 1375 */ 1376 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1377 { 1378 int cpu; 1379 unsigned long flags; 1380 struct rcu_node *rnp; 1381 1382 rcu_for_each_leaf_node(rsp, rnp) { 1383 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1384 for_each_leaf_node_possible_cpu(rnp, cpu) 1385 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1386 if (!trigger_single_cpu_backtrace(cpu)) 1387 dump_cpu_task(cpu); 1388 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1389 } 1390 } 1391 1392 /* 1393 * If too much time has passed in the current grace period, and if 1394 * so configured, go kick the relevant kthreads. 1395 */ 1396 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1397 { 1398 unsigned long j; 1399 1400 if (!rcu_kick_kthreads) 1401 return; 1402 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1403 if (time_after(jiffies, j) && rsp->gp_kthread && 1404 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1405 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1406 rcu_ftrace_dump(DUMP_ALL); 1407 wake_up_process(rsp->gp_kthread); 1408 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1409 } 1410 } 1411 1412 static inline void panic_on_rcu_stall(void) 1413 { 1414 if (sysctl_panic_on_rcu_stall) 1415 panic("RCU Stall\n"); 1416 } 1417 1418 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1419 { 1420 int cpu; 1421 long delta; 1422 unsigned long flags; 1423 unsigned long gpa; 1424 unsigned long j; 1425 int ndetected = 0; 1426 struct rcu_node *rnp = rcu_get_root(rsp); 1427 long totqlen = 0; 1428 1429 /* Kick and suppress, if so configured. */ 1430 rcu_stall_kick_kthreads(rsp); 1431 if (rcu_cpu_stall_suppress) 1432 return; 1433 1434 /* Only let one CPU complain about others per time interval. */ 1435 1436 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1437 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1438 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1439 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1440 return; 1441 } 1442 WRITE_ONCE(rsp->jiffies_stall, 1443 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1444 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1445 1446 /* 1447 * OK, time to rat on our buddy... 1448 * See Documentation/RCU/stallwarn.txt for info on how to debug 1449 * RCU CPU stall warnings. 1450 */ 1451 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1452 rsp->name); 1453 print_cpu_stall_info_begin(); 1454 rcu_for_each_leaf_node(rsp, rnp) { 1455 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1456 ndetected += rcu_print_task_stall(rnp); 1457 if (rnp->qsmask != 0) { 1458 for_each_leaf_node_possible_cpu(rnp, cpu) 1459 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1460 print_cpu_stall_info(rsp, cpu); 1461 ndetected++; 1462 } 1463 } 1464 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1465 } 1466 1467 print_cpu_stall_info_end(); 1468 for_each_possible_cpu(cpu) 1469 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1470 cpu)->cblist); 1471 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1472 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1473 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1474 if (ndetected) { 1475 rcu_dump_cpu_stacks(rsp); 1476 1477 /* Complain about tasks blocking the grace period. */ 1478 rcu_print_detail_task_stall(rsp); 1479 } else { 1480 if (READ_ONCE(rsp->gpnum) != gpnum || 1481 READ_ONCE(rsp->completed) == gpnum) { 1482 pr_err("INFO: Stall ended before state dump start\n"); 1483 } else { 1484 j = jiffies; 1485 gpa = READ_ONCE(rsp->gp_activity); 1486 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1487 rsp->name, j - gpa, j, gpa, 1488 jiffies_till_next_fqs, 1489 rcu_get_root(rsp)->qsmask); 1490 /* In this case, the current CPU might be at fault. */ 1491 sched_show_task(current); 1492 } 1493 } 1494 1495 rcu_check_gp_kthread_starvation(rsp); 1496 1497 panic_on_rcu_stall(); 1498 1499 force_quiescent_state(rsp); /* Kick them all. */ 1500 } 1501 1502 static void print_cpu_stall(struct rcu_state *rsp) 1503 { 1504 int cpu; 1505 unsigned long flags; 1506 struct rcu_node *rnp = rcu_get_root(rsp); 1507 long totqlen = 0; 1508 1509 /* Kick and suppress, if so configured. */ 1510 rcu_stall_kick_kthreads(rsp); 1511 if (rcu_cpu_stall_suppress) 1512 return; 1513 1514 /* 1515 * OK, time to rat on ourselves... 1516 * See Documentation/RCU/stallwarn.txt for info on how to debug 1517 * RCU CPU stall warnings. 1518 */ 1519 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1520 print_cpu_stall_info_begin(); 1521 print_cpu_stall_info(rsp, smp_processor_id()); 1522 print_cpu_stall_info_end(); 1523 for_each_possible_cpu(cpu) 1524 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1525 cpu)->cblist); 1526 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1527 jiffies - rsp->gp_start, 1528 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1529 1530 rcu_check_gp_kthread_starvation(rsp); 1531 1532 rcu_dump_cpu_stacks(rsp); 1533 1534 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1535 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1536 WRITE_ONCE(rsp->jiffies_stall, 1537 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1538 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1539 1540 panic_on_rcu_stall(); 1541 1542 /* 1543 * Attempt to revive the RCU machinery by forcing a context switch. 1544 * 1545 * A context switch would normally allow the RCU state machine to make 1546 * progress and it could be we're stuck in kernel space without context 1547 * switches for an entirely unreasonable amount of time. 1548 */ 1549 resched_cpu(smp_processor_id()); 1550 } 1551 1552 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1553 { 1554 unsigned long completed; 1555 unsigned long gpnum; 1556 unsigned long gps; 1557 unsigned long j; 1558 unsigned long js; 1559 struct rcu_node *rnp; 1560 1561 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1562 !rcu_gp_in_progress(rsp)) 1563 return; 1564 rcu_stall_kick_kthreads(rsp); 1565 j = jiffies; 1566 1567 /* 1568 * Lots of memory barriers to reject false positives. 1569 * 1570 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1571 * then rsp->gp_start, and finally rsp->completed. These values 1572 * are updated in the opposite order with memory barriers (or 1573 * equivalent) during grace-period initialization and cleanup. 1574 * Now, a false positive can occur if we get an new value of 1575 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1576 * the memory barriers, the only way that this can happen is if one 1577 * grace period ends and another starts between these two fetches. 1578 * Detect this by comparing rsp->completed with the previous fetch 1579 * from rsp->gpnum. 1580 * 1581 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1582 * and rsp->gp_start suffice to forestall false positives. 1583 */ 1584 gpnum = READ_ONCE(rsp->gpnum); 1585 smp_rmb(); /* Pick up ->gpnum first... */ 1586 js = READ_ONCE(rsp->jiffies_stall); 1587 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1588 gps = READ_ONCE(rsp->gp_start); 1589 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1590 completed = READ_ONCE(rsp->completed); 1591 if (ULONG_CMP_GE(completed, gpnum) || 1592 ULONG_CMP_LT(j, js) || 1593 ULONG_CMP_GE(gps, js)) 1594 return; /* No stall or GP completed since entering function. */ 1595 rnp = rdp->mynode; 1596 if (rcu_gp_in_progress(rsp) && 1597 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1598 1599 /* We haven't checked in, so go dump stack. */ 1600 print_cpu_stall(rsp); 1601 1602 } else if (rcu_gp_in_progress(rsp) && 1603 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1604 1605 /* They had a few time units to dump stack, so complain. */ 1606 print_other_cpu_stall(rsp, gpnum); 1607 } 1608 } 1609 1610 /** 1611 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1612 * 1613 * Set the stall-warning timeout way off into the future, thus preventing 1614 * any RCU CPU stall-warning messages from appearing in the current set of 1615 * RCU grace periods. 1616 * 1617 * The caller must disable hard irqs. 1618 */ 1619 void rcu_cpu_stall_reset(void) 1620 { 1621 struct rcu_state *rsp; 1622 1623 for_each_rcu_flavor(rsp) 1624 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1625 } 1626 1627 /* 1628 * Determine the value that ->completed will have at the end of the 1629 * next subsequent grace period. This is used to tag callbacks so that 1630 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1631 * been dyntick-idle for an extended period with callbacks under the 1632 * influence of RCU_FAST_NO_HZ. 1633 * 1634 * The caller must hold rnp->lock with interrupts disabled. 1635 */ 1636 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1637 struct rcu_node *rnp) 1638 { 1639 lockdep_assert_held(&rnp->lock); 1640 1641 /* 1642 * If RCU is idle, we just wait for the next grace period. 1643 * But we can only be sure that RCU is idle if we are looking 1644 * at the root rcu_node structure -- otherwise, a new grace 1645 * period might have started, but just not yet gotten around 1646 * to initializing the current non-root rcu_node structure. 1647 */ 1648 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1649 return rnp->completed + 1; 1650 1651 /* 1652 * Otherwise, wait for a possible partial grace period and 1653 * then the subsequent full grace period. 1654 */ 1655 return rnp->completed + 2; 1656 } 1657 1658 /* 1659 * Trace-event helper function for rcu_start_future_gp() and 1660 * rcu_nocb_wait_gp(). 1661 */ 1662 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1663 unsigned long c, const char *s) 1664 { 1665 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1666 rnp->completed, c, rnp->level, 1667 rnp->grplo, rnp->grphi, s); 1668 } 1669 1670 /* 1671 * Start some future grace period, as needed to handle newly arrived 1672 * callbacks. The required future grace periods are recorded in each 1673 * rcu_node structure's ->need_future_gp field. Returns true if there 1674 * is reason to awaken the grace-period kthread. 1675 * 1676 * The caller must hold the specified rcu_node structure's ->lock. 1677 */ 1678 static bool __maybe_unused 1679 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1680 unsigned long *c_out) 1681 { 1682 unsigned long c; 1683 bool ret = false; 1684 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1685 1686 lockdep_assert_held(&rnp->lock); 1687 1688 /* 1689 * Pick up grace-period number for new callbacks. If this 1690 * grace period is already marked as needed, return to the caller. 1691 */ 1692 c = rcu_cbs_completed(rdp->rsp, rnp); 1693 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1694 if (rnp->need_future_gp[c & 0x1]) { 1695 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1696 goto out; 1697 } 1698 1699 /* 1700 * If either this rcu_node structure or the root rcu_node structure 1701 * believe that a grace period is in progress, then we must wait 1702 * for the one following, which is in "c". Because our request 1703 * will be noticed at the end of the current grace period, we don't 1704 * need to explicitly start one. We only do the lockless check 1705 * of rnp_root's fields if the current rcu_node structure thinks 1706 * there is no grace period in flight, and because we hold rnp->lock, 1707 * the only possible change is when rnp_root's two fields are 1708 * equal, in which case rnp_root->gpnum might be concurrently 1709 * incremented. But that is OK, as it will just result in our 1710 * doing some extra useless work. 1711 */ 1712 if (rnp->gpnum != rnp->completed || 1713 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1714 rnp->need_future_gp[c & 0x1]++; 1715 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1716 goto out; 1717 } 1718 1719 /* 1720 * There might be no grace period in progress. If we don't already 1721 * hold it, acquire the root rcu_node structure's lock in order to 1722 * start one (if needed). 1723 */ 1724 if (rnp != rnp_root) 1725 raw_spin_lock_rcu_node(rnp_root); 1726 1727 /* 1728 * Get a new grace-period number. If there really is no grace 1729 * period in progress, it will be smaller than the one we obtained 1730 * earlier. Adjust callbacks as needed. 1731 */ 1732 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1733 if (!rcu_is_nocb_cpu(rdp->cpu)) 1734 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1735 1736 /* 1737 * If the needed for the required grace period is already 1738 * recorded, trace and leave. 1739 */ 1740 if (rnp_root->need_future_gp[c & 0x1]) { 1741 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1742 goto unlock_out; 1743 } 1744 1745 /* Record the need for the future grace period. */ 1746 rnp_root->need_future_gp[c & 0x1]++; 1747 1748 /* If a grace period is not already in progress, start one. */ 1749 if (rnp_root->gpnum != rnp_root->completed) { 1750 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1751 } else { 1752 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1753 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1754 } 1755 unlock_out: 1756 if (rnp != rnp_root) 1757 raw_spin_unlock_rcu_node(rnp_root); 1758 out: 1759 if (c_out != NULL) 1760 *c_out = c; 1761 return ret; 1762 } 1763 1764 /* 1765 * Clean up any old requests for the just-ended grace period. Also return 1766 * whether any additional grace periods have been requested. 1767 */ 1768 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1769 { 1770 int c = rnp->completed; 1771 int needmore; 1772 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1773 1774 rnp->need_future_gp[c & 0x1] = 0; 1775 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1776 trace_rcu_future_gp(rnp, rdp, c, 1777 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1778 return needmore; 1779 } 1780 1781 /* 1782 * Awaken the grace-period kthread for the specified flavor of RCU. 1783 * Don't do a self-awaken, and don't bother awakening when there is 1784 * nothing for the grace-period kthread to do (as in several CPUs 1785 * raced to awaken, and we lost), and finally don't try to awaken 1786 * a kthread that has not yet been created. 1787 */ 1788 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1789 { 1790 if (current == rsp->gp_kthread || 1791 !READ_ONCE(rsp->gp_flags) || 1792 !rsp->gp_kthread) 1793 return; 1794 swake_up(&rsp->gp_wq); 1795 } 1796 1797 /* 1798 * If there is room, assign a ->completed number to any callbacks on 1799 * this CPU that have not already been assigned. Also accelerate any 1800 * callbacks that were previously assigned a ->completed number that has 1801 * since proven to be too conservative, which can happen if callbacks get 1802 * assigned a ->completed number while RCU is idle, but with reference to 1803 * a non-root rcu_node structure. This function is idempotent, so it does 1804 * not hurt to call it repeatedly. Returns an flag saying that we should 1805 * awaken the RCU grace-period kthread. 1806 * 1807 * The caller must hold rnp->lock with interrupts disabled. 1808 */ 1809 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1810 struct rcu_data *rdp) 1811 { 1812 bool ret = false; 1813 1814 lockdep_assert_held(&rnp->lock); 1815 1816 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1817 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1818 return false; 1819 1820 /* 1821 * Callbacks are often registered with incomplete grace-period 1822 * information. Something about the fact that getting exact 1823 * information requires acquiring a global lock... RCU therefore 1824 * makes a conservative estimate of the grace period number at which 1825 * a given callback will become ready to invoke. The following 1826 * code checks this estimate and improves it when possible, thus 1827 * accelerating callback invocation to an earlier grace-period 1828 * number. 1829 */ 1830 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp))) 1831 ret = rcu_start_future_gp(rnp, rdp, NULL); 1832 1833 /* Trace depending on how much we were able to accelerate. */ 1834 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1835 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1836 else 1837 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1838 return ret; 1839 } 1840 1841 /* 1842 * Move any callbacks whose grace period has completed to the 1843 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1844 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1845 * sublist. This function is idempotent, so it does not hurt to 1846 * invoke it repeatedly. As long as it is not invoked -too- often... 1847 * Returns true if the RCU grace-period kthread needs to be awakened. 1848 * 1849 * The caller must hold rnp->lock with interrupts disabled. 1850 */ 1851 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1852 struct rcu_data *rdp) 1853 { 1854 lockdep_assert_held(&rnp->lock); 1855 1856 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1857 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1858 return false; 1859 1860 /* 1861 * Find all callbacks whose ->completed numbers indicate that they 1862 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1863 */ 1864 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1865 1866 /* Classify any remaining callbacks. */ 1867 return rcu_accelerate_cbs(rsp, rnp, rdp); 1868 } 1869 1870 /* 1871 * Update CPU-local rcu_data state to record the beginnings and ends of 1872 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1873 * structure corresponding to the current CPU, and must have irqs disabled. 1874 * Returns true if the grace-period kthread needs to be awakened. 1875 */ 1876 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1877 struct rcu_data *rdp) 1878 { 1879 bool ret; 1880 bool need_gp; 1881 1882 lockdep_assert_held(&rnp->lock); 1883 1884 /* Handle the ends of any preceding grace periods first. */ 1885 if (rdp->completed == rnp->completed && 1886 !unlikely(READ_ONCE(rdp->gpwrap))) { 1887 1888 /* No grace period end, so just accelerate recent callbacks. */ 1889 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1890 1891 } else { 1892 1893 /* Advance callbacks. */ 1894 ret = rcu_advance_cbs(rsp, rnp, rdp); 1895 1896 /* Remember that we saw this grace-period completion. */ 1897 rdp->completed = rnp->completed; 1898 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1899 } 1900 1901 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1902 /* 1903 * If the current grace period is waiting for this CPU, 1904 * set up to detect a quiescent state, otherwise don't 1905 * go looking for one. 1906 */ 1907 rdp->gpnum = rnp->gpnum; 1908 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1909 need_gp = !!(rnp->qsmask & rdp->grpmask); 1910 rdp->cpu_no_qs.b.norm = need_gp; 1911 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1912 rdp->core_needs_qs = need_gp; 1913 zero_cpu_stall_ticks(rdp); 1914 WRITE_ONCE(rdp->gpwrap, false); 1915 } 1916 return ret; 1917 } 1918 1919 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1920 { 1921 unsigned long flags; 1922 bool needwake; 1923 struct rcu_node *rnp; 1924 1925 local_irq_save(flags); 1926 rnp = rdp->mynode; 1927 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1928 rdp->completed == READ_ONCE(rnp->completed) && 1929 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1930 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1931 local_irq_restore(flags); 1932 return; 1933 } 1934 needwake = __note_gp_changes(rsp, rnp, rdp); 1935 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1936 if (needwake) 1937 rcu_gp_kthread_wake(rsp); 1938 } 1939 1940 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1941 { 1942 if (delay > 0 && 1943 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1944 schedule_timeout_uninterruptible(delay); 1945 } 1946 1947 /* 1948 * Initialize a new grace period. Return false if no grace period required. 1949 */ 1950 static bool rcu_gp_init(struct rcu_state *rsp) 1951 { 1952 unsigned long oldmask; 1953 struct rcu_data *rdp; 1954 struct rcu_node *rnp = rcu_get_root(rsp); 1955 1956 WRITE_ONCE(rsp->gp_activity, jiffies); 1957 raw_spin_lock_irq_rcu_node(rnp); 1958 if (!READ_ONCE(rsp->gp_flags)) { 1959 /* Spurious wakeup, tell caller to go back to sleep. */ 1960 raw_spin_unlock_irq_rcu_node(rnp); 1961 return false; 1962 } 1963 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1964 1965 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1966 /* 1967 * Grace period already in progress, don't start another. 1968 * Not supposed to be able to happen. 1969 */ 1970 raw_spin_unlock_irq_rcu_node(rnp); 1971 return false; 1972 } 1973 1974 /* Advance to a new grace period and initialize state. */ 1975 record_gp_stall_check_time(rsp); 1976 /* Record GP times before starting GP, hence smp_store_release(). */ 1977 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1978 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1979 raw_spin_unlock_irq_rcu_node(rnp); 1980 1981 /* 1982 * Apply per-leaf buffered online and offline operations to the 1983 * rcu_node tree. Note that this new grace period need not wait 1984 * for subsequent online CPUs, and that quiescent-state forcing 1985 * will handle subsequent offline CPUs. 1986 */ 1987 rcu_for_each_leaf_node(rsp, rnp) { 1988 rcu_gp_slow(rsp, gp_preinit_delay); 1989 raw_spin_lock_irq_rcu_node(rnp); 1990 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1991 !rnp->wait_blkd_tasks) { 1992 /* Nothing to do on this leaf rcu_node structure. */ 1993 raw_spin_unlock_irq_rcu_node(rnp); 1994 continue; 1995 } 1996 1997 /* Record old state, apply changes to ->qsmaskinit field. */ 1998 oldmask = rnp->qsmaskinit; 1999 rnp->qsmaskinit = rnp->qsmaskinitnext; 2000 2001 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2002 if (!oldmask != !rnp->qsmaskinit) { 2003 if (!oldmask) /* First online CPU for this rcu_node. */ 2004 rcu_init_new_rnp(rnp); 2005 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2006 rnp->wait_blkd_tasks = true; 2007 else /* Last offline CPU and can propagate. */ 2008 rcu_cleanup_dead_rnp(rnp); 2009 } 2010 2011 /* 2012 * If all waited-on tasks from prior grace period are 2013 * done, and if all this rcu_node structure's CPUs are 2014 * still offline, propagate up the rcu_node tree and 2015 * clear ->wait_blkd_tasks. Otherwise, if one of this 2016 * rcu_node structure's CPUs has since come back online, 2017 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2018 * checks for this, so just call it unconditionally). 2019 */ 2020 if (rnp->wait_blkd_tasks && 2021 (!rcu_preempt_has_tasks(rnp) || 2022 rnp->qsmaskinit)) { 2023 rnp->wait_blkd_tasks = false; 2024 rcu_cleanup_dead_rnp(rnp); 2025 } 2026 2027 raw_spin_unlock_irq_rcu_node(rnp); 2028 } 2029 2030 /* 2031 * Set the quiescent-state-needed bits in all the rcu_node 2032 * structures for all currently online CPUs in breadth-first order, 2033 * starting from the root rcu_node structure, relying on the layout 2034 * of the tree within the rsp->node[] array. Note that other CPUs 2035 * will access only the leaves of the hierarchy, thus seeing that no 2036 * grace period is in progress, at least until the corresponding 2037 * leaf node has been initialized. 2038 * 2039 * The grace period cannot complete until the initialization 2040 * process finishes, because this kthread handles both. 2041 */ 2042 rcu_for_each_node_breadth_first(rsp, rnp) { 2043 rcu_gp_slow(rsp, gp_init_delay); 2044 raw_spin_lock_irq_rcu_node(rnp); 2045 rdp = this_cpu_ptr(rsp->rda); 2046 rcu_preempt_check_blocked_tasks(rnp); 2047 rnp->qsmask = rnp->qsmaskinit; 2048 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2049 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2050 WRITE_ONCE(rnp->completed, rsp->completed); 2051 if (rnp == rdp->mynode) 2052 (void)__note_gp_changes(rsp, rnp, rdp); 2053 rcu_preempt_boost_start_gp(rnp); 2054 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2055 rnp->level, rnp->grplo, 2056 rnp->grphi, rnp->qsmask); 2057 raw_spin_unlock_irq_rcu_node(rnp); 2058 cond_resched_rcu_qs(); 2059 WRITE_ONCE(rsp->gp_activity, jiffies); 2060 } 2061 2062 return true; 2063 } 2064 2065 /* 2066 * Helper function for swait_event_idle() wakeup at force-quiescent-state 2067 * time. 2068 */ 2069 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2070 { 2071 struct rcu_node *rnp = rcu_get_root(rsp); 2072 2073 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2074 *gfp = READ_ONCE(rsp->gp_flags); 2075 if (*gfp & RCU_GP_FLAG_FQS) 2076 return true; 2077 2078 /* The current grace period has completed. */ 2079 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2080 return true; 2081 2082 return false; 2083 } 2084 2085 /* 2086 * Do one round of quiescent-state forcing. 2087 */ 2088 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2089 { 2090 struct rcu_node *rnp = rcu_get_root(rsp); 2091 2092 WRITE_ONCE(rsp->gp_activity, jiffies); 2093 rsp->n_force_qs++; 2094 if (first_time) { 2095 /* Collect dyntick-idle snapshots. */ 2096 force_qs_rnp(rsp, dyntick_save_progress_counter); 2097 } else { 2098 /* Handle dyntick-idle and offline CPUs. */ 2099 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2100 } 2101 /* Clear flag to prevent immediate re-entry. */ 2102 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2103 raw_spin_lock_irq_rcu_node(rnp); 2104 WRITE_ONCE(rsp->gp_flags, 2105 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2106 raw_spin_unlock_irq_rcu_node(rnp); 2107 } 2108 } 2109 2110 /* 2111 * Clean up after the old grace period. 2112 */ 2113 static void rcu_gp_cleanup(struct rcu_state *rsp) 2114 { 2115 unsigned long gp_duration; 2116 bool needgp = false; 2117 int nocb = 0; 2118 struct rcu_data *rdp; 2119 struct rcu_node *rnp = rcu_get_root(rsp); 2120 struct swait_queue_head *sq; 2121 2122 WRITE_ONCE(rsp->gp_activity, jiffies); 2123 raw_spin_lock_irq_rcu_node(rnp); 2124 gp_duration = jiffies - rsp->gp_start; 2125 if (gp_duration > rsp->gp_max) 2126 rsp->gp_max = gp_duration; 2127 2128 /* 2129 * We know the grace period is complete, but to everyone else 2130 * it appears to still be ongoing. But it is also the case 2131 * that to everyone else it looks like there is nothing that 2132 * they can do to advance the grace period. It is therefore 2133 * safe for us to drop the lock in order to mark the grace 2134 * period as completed in all of the rcu_node structures. 2135 */ 2136 raw_spin_unlock_irq_rcu_node(rnp); 2137 2138 /* 2139 * Propagate new ->completed value to rcu_node structures so 2140 * that other CPUs don't have to wait until the start of the next 2141 * grace period to process their callbacks. This also avoids 2142 * some nasty RCU grace-period initialization races by forcing 2143 * the end of the current grace period to be completely recorded in 2144 * all of the rcu_node structures before the beginning of the next 2145 * grace period is recorded in any of the rcu_node structures. 2146 */ 2147 rcu_for_each_node_breadth_first(rsp, rnp) { 2148 raw_spin_lock_irq_rcu_node(rnp); 2149 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2150 WARN_ON_ONCE(rnp->qsmask); 2151 WRITE_ONCE(rnp->completed, rsp->gpnum); 2152 rdp = this_cpu_ptr(rsp->rda); 2153 if (rnp == rdp->mynode) 2154 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2155 /* smp_mb() provided by prior unlock-lock pair. */ 2156 nocb += rcu_future_gp_cleanup(rsp, rnp); 2157 sq = rcu_nocb_gp_get(rnp); 2158 raw_spin_unlock_irq_rcu_node(rnp); 2159 rcu_nocb_gp_cleanup(sq); 2160 cond_resched_rcu_qs(); 2161 WRITE_ONCE(rsp->gp_activity, jiffies); 2162 rcu_gp_slow(rsp, gp_cleanup_delay); 2163 } 2164 rnp = rcu_get_root(rsp); 2165 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2166 rcu_nocb_gp_set(rnp, nocb); 2167 2168 /* Declare grace period done. */ 2169 WRITE_ONCE(rsp->completed, rsp->gpnum); 2170 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2171 rsp->gp_state = RCU_GP_IDLE; 2172 rdp = this_cpu_ptr(rsp->rda); 2173 /* Advance CBs to reduce false positives below. */ 2174 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2175 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2176 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2177 trace_rcu_grace_period(rsp->name, 2178 READ_ONCE(rsp->gpnum), 2179 TPS("newreq")); 2180 } 2181 raw_spin_unlock_irq_rcu_node(rnp); 2182 } 2183 2184 /* 2185 * Body of kthread that handles grace periods. 2186 */ 2187 static int __noreturn rcu_gp_kthread(void *arg) 2188 { 2189 bool first_gp_fqs; 2190 int gf; 2191 unsigned long j; 2192 int ret; 2193 struct rcu_state *rsp = arg; 2194 struct rcu_node *rnp = rcu_get_root(rsp); 2195 2196 rcu_bind_gp_kthread(); 2197 for (;;) { 2198 2199 /* Handle grace-period start. */ 2200 for (;;) { 2201 trace_rcu_grace_period(rsp->name, 2202 READ_ONCE(rsp->gpnum), 2203 TPS("reqwait")); 2204 rsp->gp_state = RCU_GP_WAIT_GPS; 2205 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2206 RCU_GP_FLAG_INIT); 2207 rsp->gp_state = RCU_GP_DONE_GPS; 2208 /* Locking provides needed memory barrier. */ 2209 if (rcu_gp_init(rsp)) 2210 break; 2211 cond_resched_rcu_qs(); 2212 WRITE_ONCE(rsp->gp_activity, jiffies); 2213 WARN_ON(signal_pending(current)); 2214 trace_rcu_grace_period(rsp->name, 2215 READ_ONCE(rsp->gpnum), 2216 TPS("reqwaitsig")); 2217 } 2218 2219 /* Handle quiescent-state forcing. */ 2220 first_gp_fqs = true; 2221 j = jiffies_till_first_fqs; 2222 if (j > HZ) { 2223 j = HZ; 2224 jiffies_till_first_fqs = HZ; 2225 } 2226 ret = 0; 2227 for (;;) { 2228 if (!ret) { 2229 rsp->jiffies_force_qs = jiffies + j; 2230 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2231 jiffies + 3 * j); 2232 } 2233 trace_rcu_grace_period(rsp->name, 2234 READ_ONCE(rsp->gpnum), 2235 TPS("fqswait")); 2236 rsp->gp_state = RCU_GP_WAIT_FQS; 2237 ret = swait_event_idle_timeout(rsp->gp_wq, 2238 rcu_gp_fqs_check_wake(rsp, &gf), j); 2239 rsp->gp_state = RCU_GP_DOING_FQS; 2240 /* Locking provides needed memory barriers. */ 2241 /* If grace period done, leave loop. */ 2242 if (!READ_ONCE(rnp->qsmask) && 2243 !rcu_preempt_blocked_readers_cgp(rnp)) 2244 break; 2245 /* If time for quiescent-state forcing, do it. */ 2246 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2247 (gf & RCU_GP_FLAG_FQS)) { 2248 trace_rcu_grace_period(rsp->name, 2249 READ_ONCE(rsp->gpnum), 2250 TPS("fqsstart")); 2251 rcu_gp_fqs(rsp, first_gp_fqs); 2252 first_gp_fqs = false; 2253 trace_rcu_grace_period(rsp->name, 2254 READ_ONCE(rsp->gpnum), 2255 TPS("fqsend")); 2256 cond_resched_rcu_qs(); 2257 WRITE_ONCE(rsp->gp_activity, jiffies); 2258 ret = 0; /* Force full wait till next FQS. */ 2259 j = jiffies_till_next_fqs; 2260 if (j > HZ) { 2261 j = HZ; 2262 jiffies_till_next_fqs = HZ; 2263 } else if (j < 1) { 2264 j = 1; 2265 jiffies_till_next_fqs = 1; 2266 } 2267 } else { 2268 /* Deal with stray signal. */ 2269 cond_resched_rcu_qs(); 2270 WRITE_ONCE(rsp->gp_activity, jiffies); 2271 WARN_ON(signal_pending(current)); 2272 trace_rcu_grace_period(rsp->name, 2273 READ_ONCE(rsp->gpnum), 2274 TPS("fqswaitsig")); 2275 ret = 1; /* Keep old FQS timing. */ 2276 j = jiffies; 2277 if (time_after(jiffies, rsp->jiffies_force_qs)) 2278 j = 1; 2279 else 2280 j = rsp->jiffies_force_qs - j; 2281 } 2282 } 2283 2284 /* Handle grace-period end. */ 2285 rsp->gp_state = RCU_GP_CLEANUP; 2286 rcu_gp_cleanup(rsp); 2287 rsp->gp_state = RCU_GP_CLEANED; 2288 } 2289 } 2290 2291 /* 2292 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2293 * in preparation for detecting the next grace period. The caller must hold 2294 * the root node's ->lock and hard irqs must be disabled. 2295 * 2296 * Note that it is legal for a dying CPU (which is marked as offline) to 2297 * invoke this function. This can happen when the dying CPU reports its 2298 * quiescent state. 2299 * 2300 * Returns true if the grace-period kthread must be awakened. 2301 */ 2302 static bool 2303 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2304 struct rcu_data *rdp) 2305 { 2306 lockdep_assert_held(&rnp->lock); 2307 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2308 /* 2309 * Either we have not yet spawned the grace-period 2310 * task, this CPU does not need another grace period, 2311 * or a grace period is already in progress. 2312 * Either way, don't start a new grace period. 2313 */ 2314 return false; 2315 } 2316 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2317 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2318 TPS("newreq")); 2319 2320 /* 2321 * We can't do wakeups while holding the rnp->lock, as that 2322 * could cause possible deadlocks with the rq->lock. Defer 2323 * the wakeup to our caller. 2324 */ 2325 return true; 2326 } 2327 2328 /* 2329 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2330 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2331 * is invoked indirectly from rcu_advance_cbs(), which would result in 2332 * endless recursion -- or would do so if it wasn't for the self-deadlock 2333 * that is encountered beforehand. 2334 * 2335 * Returns true if the grace-period kthread needs to be awakened. 2336 */ 2337 static bool rcu_start_gp(struct rcu_state *rsp) 2338 { 2339 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2340 struct rcu_node *rnp = rcu_get_root(rsp); 2341 bool ret = false; 2342 2343 /* 2344 * If there is no grace period in progress right now, any 2345 * callbacks we have up to this point will be satisfied by the 2346 * next grace period. Also, advancing the callbacks reduces the 2347 * probability of false positives from cpu_needs_another_gp() 2348 * resulting in pointless grace periods. So, advance callbacks 2349 * then start the grace period! 2350 */ 2351 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2352 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2353 return ret; 2354 } 2355 2356 /* 2357 * Report a full set of quiescent states to the specified rcu_state data 2358 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2359 * kthread if another grace period is required. Whether we wake 2360 * the grace-period kthread or it awakens itself for the next round 2361 * of quiescent-state forcing, that kthread will clean up after the 2362 * just-completed grace period. Note that the caller must hold rnp->lock, 2363 * which is released before return. 2364 */ 2365 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2366 __releases(rcu_get_root(rsp)->lock) 2367 { 2368 lockdep_assert_held(&rcu_get_root(rsp)->lock); 2369 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2370 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2371 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2372 rcu_gp_kthread_wake(rsp); 2373 } 2374 2375 /* 2376 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2377 * Allows quiescent states for a group of CPUs to be reported at one go 2378 * to the specified rcu_node structure, though all the CPUs in the group 2379 * must be represented by the same rcu_node structure (which need not be a 2380 * leaf rcu_node structure, though it often will be). The gps parameter 2381 * is the grace-period snapshot, which means that the quiescent states 2382 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2383 * must be held upon entry, and it is released before return. 2384 */ 2385 static void 2386 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2387 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2388 __releases(rnp->lock) 2389 { 2390 unsigned long oldmask = 0; 2391 struct rcu_node *rnp_c; 2392 2393 lockdep_assert_held(&rnp->lock); 2394 2395 /* Walk up the rcu_node hierarchy. */ 2396 for (;;) { 2397 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2398 2399 /* 2400 * Our bit has already been cleared, or the 2401 * relevant grace period is already over, so done. 2402 */ 2403 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2404 return; 2405 } 2406 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2407 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 && 2408 rcu_preempt_blocked_readers_cgp(rnp)); 2409 rnp->qsmask &= ~mask; 2410 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2411 mask, rnp->qsmask, rnp->level, 2412 rnp->grplo, rnp->grphi, 2413 !!rnp->gp_tasks); 2414 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2415 2416 /* Other bits still set at this level, so done. */ 2417 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2418 return; 2419 } 2420 mask = rnp->grpmask; 2421 if (rnp->parent == NULL) { 2422 2423 /* No more levels. Exit loop holding root lock. */ 2424 2425 break; 2426 } 2427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2428 rnp_c = rnp; 2429 rnp = rnp->parent; 2430 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2431 oldmask = rnp_c->qsmask; 2432 } 2433 2434 /* 2435 * Get here if we are the last CPU to pass through a quiescent 2436 * state for this grace period. Invoke rcu_report_qs_rsp() 2437 * to clean up and start the next grace period if one is needed. 2438 */ 2439 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2440 } 2441 2442 /* 2443 * Record a quiescent state for all tasks that were previously queued 2444 * on the specified rcu_node structure and that were blocking the current 2445 * RCU grace period. The caller must hold the specified rnp->lock with 2446 * irqs disabled, and this lock is released upon return, but irqs remain 2447 * disabled. 2448 */ 2449 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2450 struct rcu_node *rnp, unsigned long flags) 2451 __releases(rnp->lock) 2452 { 2453 unsigned long gps; 2454 unsigned long mask; 2455 struct rcu_node *rnp_p; 2456 2457 lockdep_assert_held(&rnp->lock); 2458 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2459 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2460 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2461 return; /* Still need more quiescent states! */ 2462 } 2463 2464 rnp_p = rnp->parent; 2465 if (rnp_p == NULL) { 2466 /* 2467 * Only one rcu_node structure in the tree, so don't 2468 * try to report up to its nonexistent parent! 2469 */ 2470 rcu_report_qs_rsp(rsp, flags); 2471 return; 2472 } 2473 2474 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2475 gps = rnp->gpnum; 2476 mask = rnp->grpmask; 2477 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2478 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2479 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2480 } 2481 2482 /* 2483 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2484 * structure. This must be called from the specified CPU. 2485 */ 2486 static void 2487 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2488 { 2489 unsigned long flags; 2490 unsigned long mask; 2491 bool needwake; 2492 struct rcu_node *rnp; 2493 2494 rnp = rdp->mynode; 2495 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2496 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2497 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2498 2499 /* 2500 * The grace period in which this quiescent state was 2501 * recorded has ended, so don't report it upwards. 2502 * We will instead need a new quiescent state that lies 2503 * within the current grace period. 2504 */ 2505 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2506 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2507 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2508 return; 2509 } 2510 mask = rdp->grpmask; 2511 if ((rnp->qsmask & mask) == 0) { 2512 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2513 } else { 2514 rdp->core_needs_qs = false; 2515 2516 /* 2517 * This GP can't end until cpu checks in, so all of our 2518 * callbacks can be processed during the next GP. 2519 */ 2520 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2521 2522 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2523 /* ^^^ Released rnp->lock */ 2524 if (needwake) 2525 rcu_gp_kthread_wake(rsp); 2526 } 2527 } 2528 2529 /* 2530 * Check to see if there is a new grace period of which this CPU 2531 * is not yet aware, and if so, set up local rcu_data state for it. 2532 * Otherwise, see if this CPU has just passed through its first 2533 * quiescent state for this grace period, and record that fact if so. 2534 */ 2535 static void 2536 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2537 { 2538 /* Check for grace-period ends and beginnings. */ 2539 note_gp_changes(rsp, rdp); 2540 2541 /* 2542 * Does this CPU still need to do its part for current grace period? 2543 * If no, return and let the other CPUs do their part as well. 2544 */ 2545 if (!rdp->core_needs_qs) 2546 return; 2547 2548 /* 2549 * Was there a quiescent state since the beginning of the grace 2550 * period? If no, then exit and wait for the next call. 2551 */ 2552 if (rdp->cpu_no_qs.b.norm) 2553 return; 2554 2555 /* 2556 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2557 * judge of that). 2558 */ 2559 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2560 } 2561 2562 /* 2563 * Trace the fact that this CPU is going offline. 2564 */ 2565 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2566 { 2567 RCU_TRACE(unsigned long mask;) 2568 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2569 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2570 2571 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2572 return; 2573 2574 RCU_TRACE(mask = rdp->grpmask;) 2575 trace_rcu_grace_period(rsp->name, 2576 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2577 TPS("cpuofl")); 2578 } 2579 2580 /* 2581 * All CPUs for the specified rcu_node structure have gone offline, 2582 * and all tasks that were preempted within an RCU read-side critical 2583 * section while running on one of those CPUs have since exited their RCU 2584 * read-side critical section. Some other CPU is reporting this fact with 2585 * the specified rcu_node structure's ->lock held and interrupts disabled. 2586 * This function therefore goes up the tree of rcu_node structures, 2587 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2588 * the leaf rcu_node structure's ->qsmaskinit field has already been 2589 * updated 2590 * 2591 * This function does check that the specified rcu_node structure has 2592 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2593 * prematurely. That said, invoking it after the fact will cost you 2594 * a needless lock acquisition. So once it has done its work, don't 2595 * invoke it again. 2596 */ 2597 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2598 { 2599 long mask; 2600 struct rcu_node *rnp = rnp_leaf; 2601 2602 lockdep_assert_held(&rnp->lock); 2603 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2604 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2605 return; 2606 for (;;) { 2607 mask = rnp->grpmask; 2608 rnp = rnp->parent; 2609 if (!rnp) 2610 break; 2611 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2612 rnp->qsmaskinit &= ~mask; 2613 rnp->qsmask &= ~mask; 2614 if (rnp->qsmaskinit) { 2615 raw_spin_unlock_rcu_node(rnp); 2616 /* irqs remain disabled. */ 2617 return; 2618 } 2619 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2620 } 2621 } 2622 2623 /* 2624 * The CPU has been completely removed, and some other CPU is reporting 2625 * this fact from process context. Do the remainder of the cleanup. 2626 * There can only be one CPU hotplug operation at a time, so no need for 2627 * explicit locking. 2628 */ 2629 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2630 { 2631 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2632 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2633 2634 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2635 return; 2636 2637 /* Adjust any no-longer-needed kthreads. */ 2638 rcu_boost_kthread_setaffinity(rnp, -1); 2639 } 2640 2641 /* 2642 * Invoke any RCU callbacks that have made it to the end of their grace 2643 * period. Thottle as specified by rdp->blimit. 2644 */ 2645 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2646 { 2647 unsigned long flags; 2648 struct rcu_head *rhp; 2649 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2650 long bl, count; 2651 2652 /* If no callbacks are ready, just return. */ 2653 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2654 trace_rcu_batch_start(rsp->name, 2655 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2656 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2657 trace_rcu_batch_end(rsp->name, 0, 2658 !rcu_segcblist_empty(&rdp->cblist), 2659 need_resched(), is_idle_task(current), 2660 rcu_is_callbacks_kthread()); 2661 return; 2662 } 2663 2664 /* 2665 * Extract the list of ready callbacks, disabling to prevent 2666 * races with call_rcu() from interrupt handlers. Leave the 2667 * callback counts, as rcu_barrier() needs to be conservative. 2668 */ 2669 local_irq_save(flags); 2670 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2671 bl = rdp->blimit; 2672 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2673 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2674 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2675 local_irq_restore(flags); 2676 2677 /* Invoke callbacks. */ 2678 rhp = rcu_cblist_dequeue(&rcl); 2679 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2680 debug_rcu_head_unqueue(rhp); 2681 if (__rcu_reclaim(rsp->name, rhp)) 2682 rcu_cblist_dequeued_lazy(&rcl); 2683 /* 2684 * Stop only if limit reached and CPU has something to do. 2685 * Note: The rcl structure counts down from zero. 2686 */ 2687 if (-rcl.len >= bl && 2688 (need_resched() || 2689 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2690 break; 2691 } 2692 2693 local_irq_save(flags); 2694 count = -rcl.len; 2695 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2696 is_idle_task(current), rcu_is_callbacks_kthread()); 2697 2698 /* Update counts and requeue any remaining callbacks. */ 2699 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2700 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2701 rdp->n_cbs_invoked += count; 2702 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2703 2704 /* Reinstate batch limit if we have worked down the excess. */ 2705 count = rcu_segcblist_n_cbs(&rdp->cblist); 2706 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2707 rdp->blimit = blimit; 2708 2709 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2710 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2711 rdp->qlen_last_fqs_check = 0; 2712 rdp->n_force_qs_snap = rsp->n_force_qs; 2713 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2714 rdp->qlen_last_fqs_check = count; 2715 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2716 2717 local_irq_restore(flags); 2718 2719 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2720 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2721 invoke_rcu_core(); 2722 } 2723 2724 /* 2725 * Check to see if this CPU is in a non-context-switch quiescent state 2726 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2727 * Also schedule RCU core processing. 2728 * 2729 * This function must be called from hardirq context. It is normally 2730 * invoked from the scheduling-clock interrupt. 2731 */ 2732 void rcu_check_callbacks(int user) 2733 { 2734 trace_rcu_utilization(TPS("Start scheduler-tick")); 2735 increment_cpu_stall_ticks(); 2736 if (user || rcu_is_cpu_rrupt_from_idle()) { 2737 2738 /* 2739 * Get here if this CPU took its interrupt from user 2740 * mode or from the idle loop, and if this is not a 2741 * nested interrupt. In this case, the CPU is in 2742 * a quiescent state, so note it. 2743 * 2744 * No memory barrier is required here because both 2745 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2746 * variables that other CPUs neither access nor modify, 2747 * at least not while the corresponding CPU is online. 2748 */ 2749 2750 rcu_sched_qs(); 2751 rcu_bh_qs(); 2752 2753 } else if (!in_softirq()) { 2754 2755 /* 2756 * Get here if this CPU did not take its interrupt from 2757 * softirq, in other words, if it is not interrupting 2758 * a rcu_bh read-side critical section. This is an _bh 2759 * critical section, so note it. 2760 */ 2761 2762 rcu_bh_qs(); 2763 } 2764 rcu_preempt_check_callbacks(); 2765 if (rcu_pending()) 2766 invoke_rcu_core(); 2767 if (user) 2768 rcu_note_voluntary_context_switch(current); 2769 trace_rcu_utilization(TPS("End scheduler-tick")); 2770 } 2771 2772 /* 2773 * Scan the leaf rcu_node structures, processing dyntick state for any that 2774 * have not yet encountered a quiescent state, using the function specified. 2775 * Also initiate boosting for any threads blocked on the root rcu_node. 2776 * 2777 * The caller must have suppressed start of new grace periods. 2778 */ 2779 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2780 { 2781 int cpu; 2782 unsigned long flags; 2783 unsigned long mask; 2784 struct rcu_node *rnp; 2785 2786 rcu_for_each_leaf_node(rsp, rnp) { 2787 cond_resched_rcu_qs(); 2788 mask = 0; 2789 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2790 if (rnp->qsmask == 0) { 2791 if (rcu_state_p == &rcu_sched_state || 2792 rsp != rcu_state_p || 2793 rcu_preempt_blocked_readers_cgp(rnp)) { 2794 /* 2795 * No point in scanning bits because they 2796 * are all zero. But we might need to 2797 * priority-boost blocked readers. 2798 */ 2799 rcu_initiate_boost(rnp, flags); 2800 /* rcu_initiate_boost() releases rnp->lock */ 2801 continue; 2802 } 2803 if (rnp->parent && 2804 (rnp->parent->qsmask & rnp->grpmask)) { 2805 /* 2806 * Race between grace-period 2807 * initialization and task exiting RCU 2808 * read-side critical section: Report. 2809 */ 2810 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2811 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2812 continue; 2813 } 2814 } 2815 for_each_leaf_node_possible_cpu(rnp, cpu) { 2816 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2817 if ((rnp->qsmask & bit) != 0) { 2818 if (f(per_cpu_ptr(rsp->rda, cpu))) 2819 mask |= bit; 2820 } 2821 } 2822 if (mask != 0) { 2823 /* Idle/offline CPUs, report (releases rnp->lock. */ 2824 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2825 } else { 2826 /* Nothing to do here, so just drop the lock. */ 2827 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2828 } 2829 } 2830 } 2831 2832 /* 2833 * Force quiescent states on reluctant CPUs, and also detect which 2834 * CPUs are in dyntick-idle mode. 2835 */ 2836 static void force_quiescent_state(struct rcu_state *rsp) 2837 { 2838 unsigned long flags; 2839 bool ret; 2840 struct rcu_node *rnp; 2841 struct rcu_node *rnp_old = NULL; 2842 2843 /* Funnel through hierarchy to reduce memory contention. */ 2844 rnp = __this_cpu_read(rsp->rda->mynode); 2845 for (; rnp != NULL; rnp = rnp->parent) { 2846 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2847 !raw_spin_trylock(&rnp->fqslock); 2848 if (rnp_old != NULL) 2849 raw_spin_unlock(&rnp_old->fqslock); 2850 if (ret) { 2851 rsp->n_force_qs_lh++; 2852 return; 2853 } 2854 rnp_old = rnp; 2855 } 2856 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2857 2858 /* Reached the root of the rcu_node tree, acquire lock. */ 2859 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2860 raw_spin_unlock(&rnp_old->fqslock); 2861 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2862 rsp->n_force_qs_lh++; 2863 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2864 return; /* Someone beat us to it. */ 2865 } 2866 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2867 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2868 rcu_gp_kthread_wake(rsp); 2869 } 2870 2871 /* 2872 * This does the RCU core processing work for the specified rcu_state 2873 * and rcu_data structures. This may be called only from the CPU to 2874 * whom the rdp belongs. 2875 */ 2876 static void 2877 __rcu_process_callbacks(struct rcu_state *rsp) 2878 { 2879 unsigned long flags; 2880 bool needwake; 2881 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2882 2883 WARN_ON_ONCE(!rdp->beenonline); 2884 2885 /* Update RCU state based on any recent quiescent states. */ 2886 rcu_check_quiescent_state(rsp, rdp); 2887 2888 /* Does this CPU require a not-yet-started grace period? */ 2889 local_irq_save(flags); 2890 if (cpu_needs_another_gp(rsp, rdp)) { 2891 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2892 needwake = rcu_start_gp(rsp); 2893 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2894 if (needwake) 2895 rcu_gp_kthread_wake(rsp); 2896 } else { 2897 local_irq_restore(flags); 2898 } 2899 2900 /* If there are callbacks ready, invoke them. */ 2901 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2902 invoke_rcu_callbacks(rsp, rdp); 2903 2904 /* Do any needed deferred wakeups of rcuo kthreads. */ 2905 do_nocb_deferred_wakeup(rdp); 2906 } 2907 2908 /* 2909 * Do RCU core processing for the current CPU. 2910 */ 2911 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2912 { 2913 struct rcu_state *rsp; 2914 2915 if (cpu_is_offline(smp_processor_id())) 2916 return; 2917 trace_rcu_utilization(TPS("Start RCU core")); 2918 for_each_rcu_flavor(rsp) 2919 __rcu_process_callbacks(rsp); 2920 trace_rcu_utilization(TPS("End RCU core")); 2921 } 2922 2923 /* 2924 * Schedule RCU callback invocation. If the specified type of RCU 2925 * does not support RCU priority boosting, just do a direct call, 2926 * otherwise wake up the per-CPU kernel kthread. Note that because we 2927 * are running on the current CPU with softirqs disabled, the 2928 * rcu_cpu_kthread_task cannot disappear out from under us. 2929 */ 2930 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2931 { 2932 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2933 return; 2934 if (likely(!rsp->boost)) { 2935 rcu_do_batch(rsp, rdp); 2936 return; 2937 } 2938 invoke_rcu_callbacks_kthread(); 2939 } 2940 2941 static void invoke_rcu_core(void) 2942 { 2943 if (cpu_online(smp_processor_id())) 2944 raise_softirq(RCU_SOFTIRQ); 2945 } 2946 2947 /* 2948 * Handle any core-RCU processing required by a call_rcu() invocation. 2949 */ 2950 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2951 struct rcu_head *head, unsigned long flags) 2952 { 2953 bool needwake; 2954 2955 /* 2956 * If called from an extended quiescent state, invoke the RCU 2957 * core in order to force a re-evaluation of RCU's idleness. 2958 */ 2959 if (!rcu_is_watching()) 2960 invoke_rcu_core(); 2961 2962 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2963 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2964 return; 2965 2966 /* 2967 * Force the grace period if too many callbacks or too long waiting. 2968 * Enforce hysteresis, and don't invoke force_quiescent_state() 2969 * if some other CPU has recently done so. Also, don't bother 2970 * invoking force_quiescent_state() if the newly enqueued callback 2971 * is the only one waiting for a grace period to complete. 2972 */ 2973 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2974 rdp->qlen_last_fqs_check + qhimark)) { 2975 2976 /* Are we ignoring a completed grace period? */ 2977 note_gp_changes(rsp, rdp); 2978 2979 /* Start a new grace period if one not already started. */ 2980 if (!rcu_gp_in_progress(rsp)) { 2981 struct rcu_node *rnp_root = rcu_get_root(rsp); 2982 2983 raw_spin_lock_rcu_node(rnp_root); 2984 needwake = rcu_start_gp(rsp); 2985 raw_spin_unlock_rcu_node(rnp_root); 2986 if (needwake) 2987 rcu_gp_kthread_wake(rsp); 2988 } else { 2989 /* Give the grace period a kick. */ 2990 rdp->blimit = LONG_MAX; 2991 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2992 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2993 force_quiescent_state(rsp); 2994 rdp->n_force_qs_snap = rsp->n_force_qs; 2995 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2996 } 2997 } 2998 } 2999 3000 /* 3001 * RCU callback function to leak a callback. 3002 */ 3003 static void rcu_leak_callback(struct rcu_head *rhp) 3004 { 3005 } 3006 3007 /* 3008 * Helper function for call_rcu() and friends. The cpu argument will 3009 * normally be -1, indicating "currently running CPU". It may specify 3010 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3011 * is expected to specify a CPU. 3012 */ 3013 static void 3014 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3015 struct rcu_state *rsp, int cpu, bool lazy) 3016 { 3017 unsigned long flags; 3018 struct rcu_data *rdp; 3019 3020 /* Misaligned rcu_head! */ 3021 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3022 3023 if (debug_rcu_head_queue(head)) { 3024 /* 3025 * Probable double call_rcu(), so leak the callback. 3026 * Use rcu:rcu_callback trace event to find the previous 3027 * time callback was passed to __call_rcu(). 3028 */ 3029 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 3030 head, head->func); 3031 WRITE_ONCE(head->func, rcu_leak_callback); 3032 return; 3033 } 3034 head->func = func; 3035 head->next = NULL; 3036 local_irq_save(flags); 3037 rdp = this_cpu_ptr(rsp->rda); 3038 3039 /* Add the callback to our list. */ 3040 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 3041 int offline; 3042 3043 if (cpu != -1) 3044 rdp = per_cpu_ptr(rsp->rda, cpu); 3045 if (likely(rdp->mynode)) { 3046 /* Post-boot, so this should be for a no-CBs CPU. */ 3047 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3048 WARN_ON_ONCE(offline); 3049 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3050 local_irq_restore(flags); 3051 return; 3052 } 3053 /* 3054 * Very early boot, before rcu_init(). Initialize if needed 3055 * and then drop through to queue the callback. 3056 */ 3057 BUG_ON(cpu != -1); 3058 WARN_ON_ONCE(!rcu_is_watching()); 3059 if (rcu_segcblist_empty(&rdp->cblist)) 3060 rcu_segcblist_init(&rdp->cblist); 3061 } 3062 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3063 if (!lazy) 3064 rcu_idle_count_callbacks_posted(); 3065 3066 if (__is_kfree_rcu_offset((unsigned long)func)) 3067 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3068 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3069 rcu_segcblist_n_cbs(&rdp->cblist)); 3070 else 3071 trace_rcu_callback(rsp->name, head, 3072 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3073 rcu_segcblist_n_cbs(&rdp->cblist)); 3074 3075 /* Go handle any RCU core processing required. */ 3076 __call_rcu_core(rsp, rdp, head, flags); 3077 local_irq_restore(flags); 3078 } 3079 3080 /** 3081 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 3082 * @head: structure to be used for queueing the RCU updates. 3083 * @func: actual callback function to be invoked after the grace period 3084 * 3085 * The callback function will be invoked some time after a full grace 3086 * period elapses, in other words after all currently executing RCU 3087 * read-side critical sections have completed. call_rcu_sched() assumes 3088 * that the read-side critical sections end on enabling of preemption 3089 * or on voluntary preemption. 3090 * RCU read-side critical sections are delimited by : 3091 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 3092 * - anything that disables preemption. 3093 * 3094 * These may be nested. 3095 * 3096 * See the description of call_rcu() for more detailed information on 3097 * memory ordering guarantees. 3098 */ 3099 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3100 { 3101 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3102 } 3103 EXPORT_SYMBOL_GPL(call_rcu_sched); 3104 3105 /** 3106 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3107 * @head: structure to be used for queueing the RCU updates. 3108 * @func: actual callback function to be invoked after the grace period 3109 * 3110 * The callback function will be invoked some time after a full grace 3111 * period elapses, in other words after all currently executing RCU 3112 * read-side critical sections have completed. call_rcu_bh() assumes 3113 * that the read-side critical sections end on completion of a softirq 3114 * handler. This means that read-side critical sections in process 3115 * context must not be interrupted by softirqs. This interface is to be 3116 * used when most of the read-side critical sections are in softirq context. 3117 * RCU read-side critical sections are delimited by : 3118 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 3119 * OR 3120 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3121 * These may be nested. 3122 * 3123 * See the description of call_rcu() for more detailed information on 3124 * memory ordering guarantees. 3125 */ 3126 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3127 { 3128 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3129 } 3130 EXPORT_SYMBOL_GPL(call_rcu_bh); 3131 3132 /* 3133 * Queue an RCU callback for lazy invocation after a grace period. 3134 * This will likely be later named something like "call_rcu_lazy()", 3135 * but this change will require some way of tagging the lazy RCU 3136 * callbacks in the list of pending callbacks. Until then, this 3137 * function may only be called from __kfree_rcu(). 3138 */ 3139 void kfree_call_rcu(struct rcu_head *head, 3140 rcu_callback_t func) 3141 { 3142 __call_rcu(head, func, rcu_state_p, -1, 1); 3143 } 3144 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3145 3146 /* 3147 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3148 * any blocking grace-period wait automatically implies a grace period 3149 * if there is only one CPU online at any point time during execution 3150 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3151 * occasionally incorrectly indicate that there are multiple CPUs online 3152 * when there was in fact only one the whole time, as this just adds 3153 * some overhead: RCU still operates correctly. 3154 */ 3155 static inline int rcu_blocking_is_gp(void) 3156 { 3157 int ret; 3158 3159 might_sleep(); /* Check for RCU read-side critical section. */ 3160 preempt_disable(); 3161 ret = num_online_cpus() <= 1; 3162 preempt_enable(); 3163 return ret; 3164 } 3165 3166 /** 3167 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3168 * 3169 * Control will return to the caller some time after a full rcu-sched 3170 * grace period has elapsed, in other words after all currently executing 3171 * rcu-sched read-side critical sections have completed. These read-side 3172 * critical sections are delimited by rcu_read_lock_sched() and 3173 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3174 * local_irq_disable(), and so on may be used in place of 3175 * rcu_read_lock_sched(). 3176 * 3177 * This means that all preempt_disable code sequences, including NMI and 3178 * non-threaded hardware-interrupt handlers, in progress on entry will 3179 * have completed before this primitive returns. However, this does not 3180 * guarantee that softirq handlers will have completed, since in some 3181 * kernels, these handlers can run in process context, and can block. 3182 * 3183 * Note that this guarantee implies further memory-ordering guarantees. 3184 * On systems with more than one CPU, when synchronize_sched() returns, 3185 * each CPU is guaranteed to have executed a full memory barrier since the 3186 * end of its last RCU-sched read-side critical section whose beginning 3187 * preceded the call to synchronize_sched(). In addition, each CPU having 3188 * an RCU read-side critical section that extends beyond the return from 3189 * synchronize_sched() is guaranteed to have executed a full memory barrier 3190 * after the beginning of synchronize_sched() and before the beginning of 3191 * that RCU read-side critical section. Note that these guarantees include 3192 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3193 * that are executing in the kernel. 3194 * 3195 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3196 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3197 * to have executed a full memory barrier during the execution of 3198 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3199 * again only if the system has more than one CPU). 3200 */ 3201 void synchronize_sched(void) 3202 { 3203 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3204 lock_is_held(&rcu_lock_map) || 3205 lock_is_held(&rcu_sched_lock_map), 3206 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3207 if (rcu_blocking_is_gp()) 3208 return; 3209 if (rcu_gp_is_expedited()) 3210 synchronize_sched_expedited(); 3211 else 3212 wait_rcu_gp(call_rcu_sched); 3213 } 3214 EXPORT_SYMBOL_GPL(synchronize_sched); 3215 3216 /** 3217 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3218 * 3219 * Control will return to the caller some time after a full rcu_bh grace 3220 * period has elapsed, in other words after all currently executing rcu_bh 3221 * read-side critical sections have completed. RCU read-side critical 3222 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3223 * and may be nested. 3224 * 3225 * See the description of synchronize_sched() for more detailed information 3226 * on memory ordering guarantees. 3227 */ 3228 void synchronize_rcu_bh(void) 3229 { 3230 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3231 lock_is_held(&rcu_lock_map) || 3232 lock_is_held(&rcu_sched_lock_map), 3233 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3234 if (rcu_blocking_is_gp()) 3235 return; 3236 if (rcu_gp_is_expedited()) 3237 synchronize_rcu_bh_expedited(); 3238 else 3239 wait_rcu_gp(call_rcu_bh); 3240 } 3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3242 3243 /** 3244 * get_state_synchronize_rcu - Snapshot current RCU state 3245 * 3246 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3247 * to determine whether or not a full grace period has elapsed in the 3248 * meantime. 3249 */ 3250 unsigned long get_state_synchronize_rcu(void) 3251 { 3252 /* 3253 * Any prior manipulation of RCU-protected data must happen 3254 * before the load from ->gpnum. 3255 */ 3256 smp_mb(); /* ^^^ */ 3257 3258 /* 3259 * Make sure this load happens before the purportedly 3260 * time-consuming work between get_state_synchronize_rcu() 3261 * and cond_synchronize_rcu(). 3262 */ 3263 return smp_load_acquire(&rcu_state_p->gpnum); 3264 } 3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3266 3267 /** 3268 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3269 * 3270 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3271 * 3272 * If a full RCU grace period has elapsed since the earlier call to 3273 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3274 * synchronize_rcu() to wait for a full grace period. 3275 * 3276 * Yes, this function does not take counter wrap into account. But 3277 * counter wrap is harmless. If the counter wraps, we have waited for 3278 * more than 2 billion grace periods (and way more on a 64-bit system!), 3279 * so waiting for one additional grace period should be just fine. 3280 */ 3281 void cond_synchronize_rcu(unsigned long oldstate) 3282 { 3283 unsigned long newstate; 3284 3285 /* 3286 * Ensure that this load happens before any RCU-destructive 3287 * actions the caller might carry out after we return. 3288 */ 3289 newstate = smp_load_acquire(&rcu_state_p->completed); 3290 if (ULONG_CMP_GE(oldstate, newstate)) 3291 synchronize_rcu(); 3292 } 3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3294 3295 /** 3296 * get_state_synchronize_sched - Snapshot current RCU-sched state 3297 * 3298 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3299 * to determine whether or not a full grace period has elapsed in the 3300 * meantime. 3301 */ 3302 unsigned long get_state_synchronize_sched(void) 3303 { 3304 /* 3305 * Any prior manipulation of RCU-protected data must happen 3306 * before the load from ->gpnum. 3307 */ 3308 smp_mb(); /* ^^^ */ 3309 3310 /* 3311 * Make sure this load happens before the purportedly 3312 * time-consuming work between get_state_synchronize_sched() 3313 * and cond_synchronize_sched(). 3314 */ 3315 return smp_load_acquire(&rcu_sched_state.gpnum); 3316 } 3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3318 3319 /** 3320 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3321 * 3322 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3323 * 3324 * If a full RCU-sched grace period has elapsed since the earlier call to 3325 * get_state_synchronize_sched(), just return. Otherwise, invoke 3326 * synchronize_sched() to wait for a full grace period. 3327 * 3328 * Yes, this function does not take counter wrap into account. But 3329 * counter wrap is harmless. If the counter wraps, we have waited for 3330 * more than 2 billion grace periods (and way more on a 64-bit system!), 3331 * so waiting for one additional grace period should be just fine. 3332 */ 3333 void cond_synchronize_sched(unsigned long oldstate) 3334 { 3335 unsigned long newstate; 3336 3337 /* 3338 * Ensure that this load happens before any RCU-destructive 3339 * actions the caller might carry out after we return. 3340 */ 3341 newstate = smp_load_acquire(&rcu_sched_state.completed); 3342 if (ULONG_CMP_GE(oldstate, newstate)) 3343 synchronize_sched(); 3344 } 3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3346 3347 /* 3348 * Check to see if there is any immediate RCU-related work to be done 3349 * by the current CPU, for the specified type of RCU, returning 1 if so. 3350 * The checks are in order of increasing expense: checks that can be 3351 * carried out against CPU-local state are performed first. However, 3352 * we must check for CPU stalls first, else we might not get a chance. 3353 */ 3354 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3355 { 3356 struct rcu_node *rnp = rdp->mynode; 3357 3358 rdp->n_rcu_pending++; 3359 3360 /* Check for CPU stalls, if enabled. */ 3361 check_cpu_stall(rsp, rdp); 3362 3363 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3364 if (rcu_nohz_full_cpu(rsp)) 3365 return 0; 3366 3367 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3368 if (rcu_scheduler_fully_active && 3369 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3370 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) { 3371 rdp->n_rp_core_needs_qs++; 3372 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3373 rdp->n_rp_report_qs++; 3374 return 1; 3375 } 3376 3377 /* Does this CPU have callbacks ready to invoke? */ 3378 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 3379 rdp->n_rp_cb_ready++; 3380 return 1; 3381 } 3382 3383 /* Has RCU gone idle with this CPU needing another grace period? */ 3384 if (cpu_needs_another_gp(rsp, rdp)) { 3385 rdp->n_rp_cpu_needs_gp++; 3386 return 1; 3387 } 3388 3389 /* Has another RCU grace period completed? */ 3390 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3391 rdp->n_rp_gp_completed++; 3392 return 1; 3393 } 3394 3395 /* Has a new RCU grace period started? */ 3396 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3397 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3398 rdp->n_rp_gp_started++; 3399 return 1; 3400 } 3401 3402 /* Does this CPU need a deferred NOCB wakeup? */ 3403 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3404 rdp->n_rp_nocb_defer_wakeup++; 3405 return 1; 3406 } 3407 3408 /* nothing to do */ 3409 rdp->n_rp_need_nothing++; 3410 return 0; 3411 } 3412 3413 /* 3414 * Check to see if there is any immediate RCU-related work to be done 3415 * by the current CPU, returning 1 if so. This function is part of the 3416 * RCU implementation; it is -not- an exported member of the RCU API. 3417 */ 3418 static int rcu_pending(void) 3419 { 3420 struct rcu_state *rsp; 3421 3422 for_each_rcu_flavor(rsp) 3423 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3424 return 1; 3425 return 0; 3426 } 3427 3428 /* 3429 * Return true if the specified CPU has any callback. If all_lazy is 3430 * non-NULL, store an indication of whether all callbacks are lazy. 3431 * (If there are no callbacks, all of them are deemed to be lazy.) 3432 */ 3433 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3434 { 3435 bool al = true; 3436 bool hc = false; 3437 struct rcu_data *rdp; 3438 struct rcu_state *rsp; 3439 3440 for_each_rcu_flavor(rsp) { 3441 rdp = this_cpu_ptr(rsp->rda); 3442 if (rcu_segcblist_empty(&rdp->cblist)) 3443 continue; 3444 hc = true; 3445 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3446 al = false; 3447 break; 3448 } 3449 } 3450 if (all_lazy) 3451 *all_lazy = al; 3452 return hc; 3453 } 3454 3455 /* 3456 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3457 * the compiler is expected to optimize this away. 3458 */ 3459 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3460 int cpu, unsigned long done) 3461 { 3462 trace_rcu_barrier(rsp->name, s, cpu, 3463 atomic_read(&rsp->barrier_cpu_count), done); 3464 } 3465 3466 /* 3467 * RCU callback function for _rcu_barrier(). If we are last, wake 3468 * up the task executing _rcu_barrier(). 3469 */ 3470 static void rcu_barrier_callback(struct rcu_head *rhp) 3471 { 3472 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3473 struct rcu_state *rsp = rdp->rsp; 3474 3475 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3476 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3477 rsp->barrier_sequence); 3478 complete(&rsp->barrier_completion); 3479 } else { 3480 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3481 } 3482 } 3483 3484 /* 3485 * Called with preemption disabled, and from cross-cpu IRQ context. 3486 */ 3487 static void rcu_barrier_func(void *type) 3488 { 3489 struct rcu_state *rsp = type; 3490 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3491 3492 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3493 rdp->barrier_head.func = rcu_barrier_callback; 3494 debug_rcu_head_queue(&rdp->barrier_head); 3495 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3496 atomic_inc(&rsp->barrier_cpu_count); 3497 } else { 3498 debug_rcu_head_unqueue(&rdp->barrier_head); 3499 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3500 rsp->barrier_sequence); 3501 } 3502 } 3503 3504 /* 3505 * Orchestrate the specified type of RCU barrier, waiting for all 3506 * RCU callbacks of the specified type to complete. 3507 */ 3508 static void _rcu_barrier(struct rcu_state *rsp) 3509 { 3510 int cpu; 3511 struct rcu_data *rdp; 3512 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3513 3514 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3515 3516 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3517 mutex_lock(&rsp->barrier_mutex); 3518 3519 /* Did someone else do our work for us? */ 3520 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3521 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3522 rsp->barrier_sequence); 3523 smp_mb(); /* caller's subsequent code after above check. */ 3524 mutex_unlock(&rsp->barrier_mutex); 3525 return; 3526 } 3527 3528 /* Mark the start of the barrier operation. */ 3529 rcu_seq_start(&rsp->barrier_sequence); 3530 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3531 3532 /* 3533 * Initialize the count to one rather than to zero in order to 3534 * avoid a too-soon return to zero in case of a short grace period 3535 * (or preemption of this task). Exclude CPU-hotplug operations 3536 * to ensure that no offline CPU has callbacks queued. 3537 */ 3538 init_completion(&rsp->barrier_completion); 3539 atomic_set(&rsp->barrier_cpu_count, 1); 3540 get_online_cpus(); 3541 3542 /* 3543 * Force each CPU with callbacks to register a new callback. 3544 * When that callback is invoked, we will know that all of the 3545 * corresponding CPU's preceding callbacks have been invoked. 3546 */ 3547 for_each_possible_cpu(cpu) { 3548 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3549 continue; 3550 rdp = per_cpu_ptr(rsp->rda, cpu); 3551 if (rcu_is_nocb_cpu(cpu)) { 3552 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3553 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3554 rsp->barrier_sequence); 3555 } else { 3556 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3557 rsp->barrier_sequence); 3558 smp_mb__before_atomic(); 3559 atomic_inc(&rsp->barrier_cpu_count); 3560 __call_rcu(&rdp->barrier_head, 3561 rcu_barrier_callback, rsp, cpu, 0); 3562 } 3563 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3564 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3565 rsp->barrier_sequence); 3566 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3567 } else { 3568 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3569 rsp->barrier_sequence); 3570 } 3571 } 3572 put_online_cpus(); 3573 3574 /* 3575 * Now that we have an rcu_barrier_callback() callback on each 3576 * CPU, and thus each counted, remove the initial count. 3577 */ 3578 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3579 complete(&rsp->barrier_completion); 3580 3581 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3582 wait_for_completion(&rsp->barrier_completion); 3583 3584 /* Mark the end of the barrier operation. */ 3585 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3586 rcu_seq_end(&rsp->barrier_sequence); 3587 3588 /* Other rcu_barrier() invocations can now safely proceed. */ 3589 mutex_unlock(&rsp->barrier_mutex); 3590 } 3591 3592 /** 3593 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3594 */ 3595 void rcu_barrier_bh(void) 3596 { 3597 _rcu_barrier(&rcu_bh_state); 3598 } 3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3600 3601 /** 3602 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3603 */ 3604 void rcu_barrier_sched(void) 3605 { 3606 _rcu_barrier(&rcu_sched_state); 3607 } 3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3609 3610 /* 3611 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3612 * first CPU in a given leaf rcu_node structure coming online. The caller 3613 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3614 * disabled. 3615 */ 3616 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3617 { 3618 long mask; 3619 struct rcu_node *rnp = rnp_leaf; 3620 3621 lockdep_assert_held(&rnp->lock); 3622 for (;;) { 3623 mask = rnp->grpmask; 3624 rnp = rnp->parent; 3625 if (rnp == NULL) 3626 return; 3627 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3628 rnp->qsmaskinit |= mask; 3629 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3630 } 3631 } 3632 3633 /* 3634 * Do boot-time initialization of a CPU's per-CPU RCU data. 3635 */ 3636 static void __init 3637 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3638 { 3639 unsigned long flags; 3640 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3641 struct rcu_node *rnp = rcu_get_root(rsp); 3642 3643 /* Set up local state, ensuring consistent view of global state. */ 3644 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3645 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3646 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3647 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3648 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3649 rdp->cpu = cpu; 3650 rdp->rsp = rsp; 3651 rcu_boot_init_nocb_percpu_data(rdp); 3652 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3653 } 3654 3655 /* 3656 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3657 * offline event can be happening at a given time. Note also that we 3658 * can accept some slop in the rsp->completed access due to the fact 3659 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3660 */ 3661 static void 3662 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3663 { 3664 unsigned long flags; 3665 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3666 struct rcu_node *rnp = rcu_get_root(rsp); 3667 3668 /* Set up local state, ensuring consistent view of global state. */ 3669 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3670 rdp->qlen_last_fqs_check = 0; 3671 rdp->n_force_qs_snap = rsp->n_force_qs; 3672 rdp->blimit = blimit; 3673 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3674 !init_nocb_callback_list(rdp)) 3675 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3676 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3677 rcu_dynticks_eqs_online(); 3678 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3679 3680 /* 3681 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3682 * propagation up the rcu_node tree will happen at the beginning 3683 * of the next grace period. 3684 */ 3685 rnp = rdp->mynode; 3686 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3687 rdp->beenonline = true; /* We have now been online. */ 3688 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3689 rdp->completed = rnp->completed; 3690 rdp->cpu_no_qs.b.norm = true; 3691 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3692 rdp->core_needs_qs = false; 3693 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3694 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3695 } 3696 3697 /* 3698 * Invoked early in the CPU-online process, when pretty much all 3699 * services are available. The incoming CPU is not present. 3700 */ 3701 int rcutree_prepare_cpu(unsigned int cpu) 3702 { 3703 struct rcu_state *rsp; 3704 3705 for_each_rcu_flavor(rsp) 3706 rcu_init_percpu_data(cpu, rsp); 3707 3708 rcu_prepare_kthreads(cpu); 3709 rcu_spawn_all_nocb_kthreads(cpu); 3710 3711 return 0; 3712 } 3713 3714 /* 3715 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3716 */ 3717 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3718 { 3719 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3720 3721 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3722 } 3723 3724 /* 3725 * Near the end of the CPU-online process. Pretty much all services 3726 * enabled, and the CPU is now very much alive. 3727 */ 3728 int rcutree_online_cpu(unsigned int cpu) 3729 { 3730 sync_sched_exp_online_cleanup(cpu); 3731 rcutree_affinity_setting(cpu, -1); 3732 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3733 srcu_online_cpu(cpu); 3734 return 0; 3735 } 3736 3737 /* 3738 * Near the beginning of the process. The CPU is still very much alive 3739 * with pretty much all services enabled. 3740 */ 3741 int rcutree_offline_cpu(unsigned int cpu) 3742 { 3743 rcutree_affinity_setting(cpu, cpu); 3744 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3745 srcu_offline_cpu(cpu); 3746 return 0; 3747 } 3748 3749 /* 3750 * Near the end of the offline process. We do only tracing here. 3751 */ 3752 int rcutree_dying_cpu(unsigned int cpu) 3753 { 3754 struct rcu_state *rsp; 3755 3756 for_each_rcu_flavor(rsp) 3757 rcu_cleanup_dying_cpu(rsp); 3758 return 0; 3759 } 3760 3761 /* 3762 * The outgoing CPU is gone and we are running elsewhere. 3763 */ 3764 int rcutree_dead_cpu(unsigned int cpu) 3765 { 3766 struct rcu_state *rsp; 3767 3768 for_each_rcu_flavor(rsp) { 3769 rcu_cleanup_dead_cpu(cpu, rsp); 3770 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3771 } 3772 return 0; 3773 } 3774 3775 /* 3776 * Mark the specified CPU as being online so that subsequent grace periods 3777 * (both expedited and normal) will wait on it. Note that this means that 3778 * incoming CPUs are not allowed to use RCU read-side critical sections 3779 * until this function is called. Failing to observe this restriction 3780 * will result in lockdep splats. 3781 * 3782 * Note that this function is special in that it is invoked directly 3783 * from the incoming CPU rather than from the cpuhp_step mechanism. 3784 * This is because this function must be invoked at a precise location. 3785 */ 3786 void rcu_cpu_starting(unsigned int cpu) 3787 { 3788 unsigned long flags; 3789 unsigned long mask; 3790 int nbits; 3791 unsigned long oldmask; 3792 struct rcu_data *rdp; 3793 struct rcu_node *rnp; 3794 struct rcu_state *rsp; 3795 3796 for_each_rcu_flavor(rsp) { 3797 rdp = per_cpu_ptr(rsp->rda, cpu); 3798 rnp = rdp->mynode; 3799 mask = rdp->grpmask; 3800 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3801 rnp->qsmaskinitnext |= mask; 3802 oldmask = rnp->expmaskinitnext; 3803 rnp->expmaskinitnext |= mask; 3804 oldmask ^= rnp->expmaskinitnext; 3805 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3806 /* Allow lockless access for expedited grace periods. */ 3807 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3808 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3809 } 3810 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3811 } 3812 3813 #ifdef CONFIG_HOTPLUG_CPU 3814 /* 3815 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3816 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3817 * bit masks. 3818 */ 3819 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3820 { 3821 unsigned long flags; 3822 unsigned long mask; 3823 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3824 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3825 3826 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3827 mask = rdp->grpmask; 3828 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3829 rnp->qsmaskinitnext &= ~mask; 3830 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3831 } 3832 3833 /* 3834 * The outgoing function has no further need of RCU, so remove it from 3835 * the list of CPUs that RCU must track. 3836 * 3837 * Note that this function is special in that it is invoked directly 3838 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3839 * This is because this function must be invoked at a precise location. 3840 */ 3841 void rcu_report_dead(unsigned int cpu) 3842 { 3843 struct rcu_state *rsp; 3844 3845 /* QS for any half-done expedited RCU-sched GP. */ 3846 preempt_disable(); 3847 rcu_report_exp_rdp(&rcu_sched_state, 3848 this_cpu_ptr(rcu_sched_state.rda), true); 3849 preempt_enable(); 3850 for_each_rcu_flavor(rsp) 3851 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3852 } 3853 3854 /* Migrate the dead CPU's callbacks to the current CPU. */ 3855 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3856 { 3857 unsigned long flags; 3858 struct rcu_data *my_rdp; 3859 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3860 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3861 3862 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3863 return; /* No callbacks to migrate. */ 3864 3865 local_irq_save(flags); 3866 my_rdp = this_cpu_ptr(rsp->rda); 3867 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3868 local_irq_restore(flags); 3869 return; 3870 } 3871 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3872 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */ 3873 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */ 3874 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3875 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3876 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3877 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3878 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3879 !rcu_segcblist_empty(&rdp->cblist), 3880 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3881 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3882 rcu_segcblist_first_cb(&rdp->cblist)); 3883 } 3884 3885 /* 3886 * The outgoing CPU has just passed through the dying-idle state, 3887 * and we are being invoked from the CPU that was IPIed to continue the 3888 * offline operation. We need to migrate the outgoing CPU's callbacks. 3889 */ 3890 void rcutree_migrate_callbacks(int cpu) 3891 { 3892 struct rcu_state *rsp; 3893 3894 for_each_rcu_flavor(rsp) 3895 rcu_migrate_callbacks(cpu, rsp); 3896 } 3897 #endif 3898 3899 /* 3900 * On non-huge systems, use expedited RCU grace periods to make suspend 3901 * and hibernation run faster. 3902 */ 3903 static int rcu_pm_notify(struct notifier_block *self, 3904 unsigned long action, void *hcpu) 3905 { 3906 switch (action) { 3907 case PM_HIBERNATION_PREPARE: 3908 case PM_SUSPEND_PREPARE: 3909 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3910 rcu_expedite_gp(); 3911 break; 3912 case PM_POST_HIBERNATION: 3913 case PM_POST_SUSPEND: 3914 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3915 rcu_unexpedite_gp(); 3916 break; 3917 default: 3918 break; 3919 } 3920 return NOTIFY_OK; 3921 } 3922 3923 /* 3924 * Spawn the kthreads that handle each RCU flavor's grace periods. 3925 */ 3926 static int __init rcu_spawn_gp_kthread(void) 3927 { 3928 unsigned long flags; 3929 int kthread_prio_in = kthread_prio; 3930 struct rcu_node *rnp; 3931 struct rcu_state *rsp; 3932 struct sched_param sp; 3933 struct task_struct *t; 3934 3935 /* Force priority into range. */ 3936 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3937 kthread_prio = 1; 3938 else if (kthread_prio < 0) 3939 kthread_prio = 0; 3940 else if (kthread_prio > 99) 3941 kthread_prio = 99; 3942 if (kthread_prio != kthread_prio_in) 3943 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3944 kthread_prio, kthread_prio_in); 3945 3946 rcu_scheduler_fully_active = 1; 3947 for_each_rcu_flavor(rsp) { 3948 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3949 BUG_ON(IS_ERR(t)); 3950 rnp = rcu_get_root(rsp); 3951 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3952 rsp->gp_kthread = t; 3953 if (kthread_prio) { 3954 sp.sched_priority = kthread_prio; 3955 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3956 } 3957 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3958 wake_up_process(t); 3959 } 3960 rcu_spawn_nocb_kthreads(); 3961 rcu_spawn_boost_kthreads(); 3962 return 0; 3963 } 3964 early_initcall(rcu_spawn_gp_kthread); 3965 3966 /* 3967 * This function is invoked towards the end of the scheduler's 3968 * initialization process. Before this is called, the idle task might 3969 * contain synchronous grace-period primitives (during which time, this idle 3970 * task is booting the system, and such primitives are no-ops). After this 3971 * function is called, any synchronous grace-period primitives are run as 3972 * expedited, with the requesting task driving the grace period forward. 3973 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3974 * runtime RCU functionality. 3975 */ 3976 void rcu_scheduler_starting(void) 3977 { 3978 WARN_ON(num_online_cpus() != 1); 3979 WARN_ON(nr_context_switches() > 0); 3980 rcu_test_sync_prims(); 3981 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3982 rcu_test_sync_prims(); 3983 } 3984 3985 /* 3986 * Helper function for rcu_init() that initializes one rcu_state structure. 3987 */ 3988 static void __init rcu_init_one(struct rcu_state *rsp) 3989 { 3990 static const char * const buf[] = RCU_NODE_NAME_INIT; 3991 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3992 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3993 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3994 3995 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3996 int cpustride = 1; 3997 int i; 3998 int j; 3999 struct rcu_node *rnp; 4000 4001 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4002 4003 /* Silence gcc 4.8 false positive about array index out of range. */ 4004 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4005 panic("rcu_init_one: rcu_num_lvls out of range"); 4006 4007 /* Initialize the level-tracking arrays. */ 4008 4009 for (i = 1; i < rcu_num_lvls; i++) 4010 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 4011 rcu_init_levelspread(levelspread, num_rcu_lvl); 4012 4013 /* Initialize the elements themselves, starting from the leaves. */ 4014 4015 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4016 cpustride *= levelspread[i]; 4017 rnp = rsp->level[i]; 4018 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4019 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4020 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4021 &rcu_node_class[i], buf[i]); 4022 raw_spin_lock_init(&rnp->fqslock); 4023 lockdep_set_class_and_name(&rnp->fqslock, 4024 &rcu_fqs_class[i], fqs[i]); 4025 rnp->gpnum = rsp->gpnum; 4026 rnp->completed = rsp->completed; 4027 rnp->qsmask = 0; 4028 rnp->qsmaskinit = 0; 4029 rnp->grplo = j * cpustride; 4030 rnp->grphi = (j + 1) * cpustride - 1; 4031 if (rnp->grphi >= nr_cpu_ids) 4032 rnp->grphi = nr_cpu_ids - 1; 4033 if (i == 0) { 4034 rnp->grpnum = 0; 4035 rnp->grpmask = 0; 4036 rnp->parent = NULL; 4037 } else { 4038 rnp->grpnum = j % levelspread[i - 1]; 4039 rnp->grpmask = 1UL << rnp->grpnum; 4040 rnp->parent = rsp->level[i - 1] + 4041 j / levelspread[i - 1]; 4042 } 4043 rnp->level = i; 4044 INIT_LIST_HEAD(&rnp->blkd_tasks); 4045 rcu_init_one_nocb(rnp); 4046 init_waitqueue_head(&rnp->exp_wq[0]); 4047 init_waitqueue_head(&rnp->exp_wq[1]); 4048 init_waitqueue_head(&rnp->exp_wq[2]); 4049 init_waitqueue_head(&rnp->exp_wq[3]); 4050 spin_lock_init(&rnp->exp_lock); 4051 } 4052 } 4053 4054 init_swait_queue_head(&rsp->gp_wq); 4055 init_swait_queue_head(&rsp->expedited_wq); 4056 rnp = rsp->level[rcu_num_lvls - 1]; 4057 for_each_possible_cpu(i) { 4058 while (i > rnp->grphi) 4059 rnp++; 4060 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4061 rcu_boot_init_percpu_data(i, rsp); 4062 } 4063 list_add(&rsp->flavors, &rcu_struct_flavors); 4064 } 4065 4066 /* 4067 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4068 * replace the definitions in tree.h because those are needed to size 4069 * the ->node array in the rcu_state structure. 4070 */ 4071 static void __init rcu_init_geometry(void) 4072 { 4073 ulong d; 4074 int i; 4075 int rcu_capacity[RCU_NUM_LVLS]; 4076 4077 /* 4078 * Initialize any unspecified boot parameters. 4079 * The default values of jiffies_till_first_fqs and 4080 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4081 * value, which is a function of HZ, then adding one for each 4082 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4083 */ 4084 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4085 if (jiffies_till_first_fqs == ULONG_MAX) 4086 jiffies_till_first_fqs = d; 4087 if (jiffies_till_next_fqs == ULONG_MAX) 4088 jiffies_till_next_fqs = d; 4089 4090 /* If the compile-time values are accurate, just leave. */ 4091 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4092 nr_cpu_ids == NR_CPUS) 4093 return; 4094 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4095 rcu_fanout_leaf, nr_cpu_ids); 4096 4097 /* 4098 * The boot-time rcu_fanout_leaf parameter must be at least two 4099 * and cannot exceed the number of bits in the rcu_node masks. 4100 * Complain and fall back to the compile-time values if this 4101 * limit is exceeded. 4102 */ 4103 if (rcu_fanout_leaf < 2 || 4104 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4105 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4106 WARN_ON(1); 4107 return; 4108 } 4109 4110 /* 4111 * Compute number of nodes that can be handled an rcu_node tree 4112 * with the given number of levels. 4113 */ 4114 rcu_capacity[0] = rcu_fanout_leaf; 4115 for (i = 1; i < RCU_NUM_LVLS; i++) 4116 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4117 4118 /* 4119 * The tree must be able to accommodate the configured number of CPUs. 4120 * If this limit is exceeded, fall back to the compile-time values. 4121 */ 4122 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4123 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4124 WARN_ON(1); 4125 return; 4126 } 4127 4128 /* Calculate the number of levels in the tree. */ 4129 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4130 } 4131 rcu_num_lvls = i + 1; 4132 4133 /* Calculate the number of rcu_nodes at each level of the tree. */ 4134 for (i = 0; i < rcu_num_lvls; i++) { 4135 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4136 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4137 } 4138 4139 /* Calculate the total number of rcu_node structures. */ 4140 rcu_num_nodes = 0; 4141 for (i = 0; i < rcu_num_lvls; i++) 4142 rcu_num_nodes += num_rcu_lvl[i]; 4143 } 4144 4145 /* 4146 * Dump out the structure of the rcu_node combining tree associated 4147 * with the rcu_state structure referenced by rsp. 4148 */ 4149 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4150 { 4151 int level = 0; 4152 struct rcu_node *rnp; 4153 4154 pr_info("rcu_node tree layout dump\n"); 4155 pr_info(" "); 4156 rcu_for_each_node_breadth_first(rsp, rnp) { 4157 if (rnp->level != level) { 4158 pr_cont("\n"); 4159 pr_info(" "); 4160 level = rnp->level; 4161 } 4162 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4163 } 4164 pr_cont("\n"); 4165 } 4166 4167 void __init rcu_init(void) 4168 { 4169 int cpu; 4170 4171 rcu_early_boot_tests(); 4172 4173 rcu_bootup_announce(); 4174 rcu_init_geometry(); 4175 rcu_init_one(&rcu_bh_state); 4176 rcu_init_one(&rcu_sched_state); 4177 if (dump_tree) 4178 rcu_dump_rcu_node_tree(&rcu_sched_state); 4179 __rcu_init_preempt(); 4180 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4181 4182 /* 4183 * We don't need protection against CPU-hotplug here because 4184 * this is called early in boot, before either interrupts 4185 * or the scheduler are operational. 4186 */ 4187 pm_notifier(rcu_pm_notify, 0); 4188 for_each_online_cpu(cpu) { 4189 rcutree_prepare_cpu(cpu); 4190 rcu_cpu_starting(cpu); 4191 if (IS_ENABLED(CONFIG_TREE_SRCU)) 4192 srcu_online_cpu(cpu); 4193 } 4194 } 4195 4196 #include "tree_exp.h" 4197 #include "tree_plugin.h" 4198