xref: /openbmc/linux/kernel/rcu/tree.c (revision 711aab1d)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170 
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179 
180 /*
181  * Number of grace periods between delays, normalized by the duration of
182  * the delay.  The longer the delay, the more the grace periods between
183  * each delay.  The reason for this normalization is that it means that,
184  * for non-zero delays, the overall slowdown of grace periods is constant
185  * regardless of the duration of the delay.  This arrangement balances
186  * the need for long delays to increase some race probabilities with the
187  * need for fast grace periods to increase other race probabilities.
188  */
189 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
190 
191 /*
192  * Track the rcutorture test sequence number and the update version
193  * number within a given test.  The rcutorture_testseq is incremented
194  * on every rcutorture module load and unload, so has an odd value
195  * when a test is running.  The rcutorture_vernum is set to zero
196  * when rcutorture starts and is incremented on each rcutorture update.
197  * These variables enable correlating rcutorture output with the
198  * RCU tracing information.
199  */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202 
203 /*
204  * Compute the mask of online CPUs for the specified rcu_node structure.
205  * This will not be stable unless the rcu_node structure's ->lock is
206  * held, but the bit corresponding to the current CPU will be stable
207  * in most contexts.
208  */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 	return READ_ONCE(rnp->qsmaskinitnext);
212 }
213 
214 /*
215  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
216  * permit this function to be invoked without holding the root rcu_node
217  * structure's ->lock, but of course results can be subject to change.
218  */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223 
224 /*
225  * Note a quiescent state.  Because we do not need to know
226  * how many quiescent states passed, just if there was at least
227  * one since the start of the grace period, this just sets a flag.
228  * The caller must have disabled preemption.
229  */
230 void rcu_sched_qs(void)
231 {
232 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 		return;
235 	trace_rcu_grace_period(TPS("rcu_sched"),
236 			       __this_cpu_read(rcu_sched_data.gpnum),
237 			       TPS("cpuqs"));
238 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 		return;
241 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 	rcu_report_exp_rdp(&rcu_sched_state,
243 			   this_cpu_ptr(&rcu_sched_data), true);
244 }
245 
246 void rcu_bh_qs(void)
247 {
248 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 		trace_rcu_grace_period(TPS("rcu_bh"),
251 				       __this_cpu_read(rcu_bh_data.gpnum),
252 				       TPS("cpuqs"));
253 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 	}
255 }
256 
257 /*
258  * Steal a bit from the bottom of ->dynticks for idle entry/exit
259  * control.  Initially this is for TLB flushing.
260  */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266 
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
269 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
270 };
271 
272 /*
273  * There's a few places, currently just in the tracing infrastructure,
274  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275  * a small location where that will not even work. In those cases
276  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277  * can be called.
278  */
279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280 
281 bool rcu_irq_enter_disabled(void)
282 {
283 	return this_cpu_read(disable_rcu_irq_enter);
284 }
285 
286 /*
287  * Record entry into an extended quiescent state.  This is only to be
288  * called when not already in an extended quiescent state.
289  */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 	int seq;
294 
295 	/*
296 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
297 	 * critical sections, and we also must force ordering with the
298 	 * next idle sojourn.
299 	 */
300 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 	/* Better be in an extended quiescent state! */
302 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 		     (seq & RCU_DYNTICK_CTRL_CTR));
304 	/* Better not have special action (TLB flush) pending! */
305 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 		     (seq & RCU_DYNTICK_CTRL_MASK));
307 }
308 
309 /*
310  * Record exit from an extended quiescent state.  This is only to be
311  * called from an extended quiescent state.
312  */
313 static void rcu_dynticks_eqs_exit(void)
314 {
315 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 	int seq;
317 
318 	/*
319 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
320 	 * and we also must force ordering with the next RCU read-side
321 	 * critical section.
322 	 */
323 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 		     !(seq & RCU_DYNTICK_CTRL_CTR));
326 	if (seq & RCU_DYNTICK_CTRL_MASK) {
327 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 		smp_mb__after_atomic(); /* _exit after clearing mask. */
329 		/* Prefer duplicate flushes to losing a flush. */
330 		rcu_eqs_special_exit();
331 	}
332 }
333 
334 /*
335  * Reset the current CPU's ->dynticks counter to indicate that the
336  * newly onlined CPU is no longer in an extended quiescent state.
337  * This will either leave the counter unchanged, or increment it
338  * to the next non-quiescent value.
339  *
340  * The non-atomic test/increment sequence works because the upper bits
341  * of the ->dynticks counter are manipulated only by the corresponding CPU,
342  * or when the corresponding CPU is offline.
343  */
344 static void rcu_dynticks_eqs_online(void)
345 {
346 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347 
348 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
349 		return;
350 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
351 }
352 
353 /*
354  * Is the current CPU in an extended quiescent state?
355  *
356  * No ordering, as we are sampling CPU-local information.
357  */
358 bool rcu_dynticks_curr_cpu_in_eqs(void)
359 {
360 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361 
362 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
363 }
364 
365 /*
366  * Snapshot the ->dynticks counter with full ordering so as to allow
367  * stable comparison of this counter with past and future snapshots.
368  */
369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
370 {
371 	int snap = atomic_add_return(0, &rdtp->dynticks);
372 
373 	return snap & ~RCU_DYNTICK_CTRL_MASK;
374 }
375 
376 /*
377  * Return true if the snapshot returned from rcu_dynticks_snap()
378  * indicates that RCU is in an extended quiescent state.
379  */
380 static bool rcu_dynticks_in_eqs(int snap)
381 {
382 	return !(snap & RCU_DYNTICK_CTRL_CTR);
383 }
384 
385 /*
386  * Return true if the CPU corresponding to the specified rcu_dynticks
387  * structure has spent some time in an extended quiescent state since
388  * rcu_dynticks_snap() returned the specified snapshot.
389  */
390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391 {
392 	return snap != rcu_dynticks_snap(rdtp);
393 }
394 
395 /*
396  * Do a double-increment of the ->dynticks counter to emulate a
397  * momentary idle-CPU quiescent state.
398  */
399 static void rcu_dynticks_momentary_idle(void)
400 {
401 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
402 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 					&rdtp->dynticks);
404 
405 	/* It is illegal to call this from idle state. */
406 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
407 }
408 
409 /*
410  * Set the special (bottom) bit of the specified CPU so that it
411  * will take special action (such as flushing its TLB) on the
412  * next exit from an extended quiescent state.  Returns true if
413  * the bit was successfully set, or false if the CPU was not in
414  * an extended quiescent state.
415  */
416 bool rcu_eqs_special_set(int cpu)
417 {
418 	int old;
419 	int new;
420 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421 
422 	do {
423 		old = atomic_read(&rdtp->dynticks);
424 		if (old & RCU_DYNTICK_CTRL_CTR)
425 			return false;
426 		new = old | RCU_DYNTICK_CTRL_MASK;
427 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 	return true;
429 }
430 
431 /*
432  * Let the RCU core know that this CPU has gone through the scheduler,
433  * which is a quiescent state.  This is called when the need for a
434  * quiescent state is urgent, so we burn an atomic operation and full
435  * memory barriers to let the RCU core know about it, regardless of what
436  * this CPU might (or might not) do in the near future.
437  *
438  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
439  *
440  * The caller must have disabled interrupts.
441  */
442 static void rcu_momentary_dyntick_idle(void)
443 {
444 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 	rcu_dynticks_momentary_idle();
446 }
447 
448 /*
449  * Note a context switch.  This is a quiescent state for RCU-sched,
450  * and requires special handling for preemptible RCU.
451  * The caller must have disabled interrupts.
452  */
453 void rcu_note_context_switch(bool preempt)
454 {
455 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
456 	trace_rcu_utilization(TPS("Start context switch"));
457 	rcu_sched_qs();
458 	rcu_preempt_note_context_switch(preempt);
459 	/* Load rcu_urgent_qs before other flags. */
460 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 		goto out;
462 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
463 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
464 		rcu_momentary_dyntick_idle();
465 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
466 	if (!preempt)
467 		rcu_note_voluntary_context_switch_lite(current);
468 out:
469 	trace_rcu_utilization(TPS("End context switch"));
470 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
471 }
472 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473 
474 /*
475  * Register a quiescent state for all RCU flavors.  If there is an
476  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477  * dyntick-idle quiescent state visible to other CPUs (but only for those
478  * RCU flavors in desperate need of a quiescent state, which will normally
479  * be none of them).  Either way, do a lightweight quiescent state for
480  * all RCU flavors.
481  *
482  * The barrier() calls are redundant in the common case when this is
483  * called externally, but just in case this is called from within this
484  * file.
485  *
486  */
487 void rcu_all_qs(void)
488 {
489 	unsigned long flags;
490 
491 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 		return;
493 	preempt_disable();
494 	/* Load rcu_urgent_qs before other flags. */
495 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 		preempt_enable();
497 		return;
498 	}
499 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
500 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
501 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
502 		local_irq_save(flags);
503 		rcu_momentary_dyntick_idle();
504 		local_irq_restore(flags);
505 	}
506 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
507 		rcu_sched_qs();
508 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
509 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
510 	preempt_enable();
511 }
512 EXPORT_SYMBOL_GPL(rcu_all_qs);
513 
514 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
515 static long blimit = DEFAULT_RCU_BLIMIT;
516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517 static long qhimark = DEFAULT_RCU_QHIMARK;
518 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
519 static long qlowmark = DEFAULT_RCU_QLOMARK;
520 
521 module_param(blimit, long, 0444);
522 module_param(qhimark, long, 0444);
523 module_param(qlowmark, long, 0444);
524 
525 static ulong jiffies_till_first_fqs = ULONG_MAX;
526 static ulong jiffies_till_next_fqs = ULONG_MAX;
527 static bool rcu_kick_kthreads;
528 
529 module_param(jiffies_till_first_fqs, ulong, 0644);
530 module_param(jiffies_till_next_fqs, ulong, 0644);
531 module_param(rcu_kick_kthreads, bool, 0644);
532 
533 /*
534  * How long the grace period must be before we start recruiting
535  * quiescent-state help from rcu_note_context_switch().
536  */
537 static ulong jiffies_till_sched_qs = HZ / 20;
538 module_param(jiffies_till_sched_qs, ulong, 0644);
539 
540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541 				  struct rcu_data *rdp);
542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
543 static void force_quiescent_state(struct rcu_state *rsp);
544 static int rcu_pending(void);
545 
546 /*
547  * Return the number of RCU batches started thus far for debug & stats.
548  */
549 unsigned long rcu_batches_started(void)
550 {
551 	return rcu_state_p->gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started);
554 
555 /*
556  * Return the number of RCU-sched batches started thus far for debug & stats.
557  */
558 unsigned long rcu_batches_started_sched(void)
559 {
560 	return rcu_sched_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563 
564 /*
565  * Return the number of RCU BH batches started thus far for debug & stats.
566  */
567 unsigned long rcu_batches_started_bh(void)
568 {
569 	return rcu_bh_state.gpnum;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572 
573 /*
574  * Return the number of RCU batches completed thus far for debug & stats.
575  */
576 unsigned long rcu_batches_completed(void)
577 {
578 	return rcu_state_p->completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed);
581 
582 /*
583  * Return the number of RCU-sched batches completed thus far for debug & stats.
584  */
585 unsigned long rcu_batches_completed_sched(void)
586 {
587 	return rcu_sched_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
590 
591 /*
592  * Return the number of RCU BH batches completed thus far for debug & stats.
593  */
594 unsigned long rcu_batches_completed_bh(void)
595 {
596 	return rcu_bh_state.completed;
597 }
598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599 
600 /*
601  * Return the number of RCU expedited batches completed thus far for
602  * debug & stats.  Odd numbers mean that a batch is in progress, even
603  * numbers mean idle.  The value returned will thus be roughly double
604  * the cumulative batches since boot.
605  */
606 unsigned long rcu_exp_batches_completed(void)
607 {
608 	return rcu_state_p->expedited_sequence;
609 }
610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611 
612 /*
613  * Return the number of RCU-sched expedited batches completed thus far
614  * for debug & stats.  Similar to rcu_exp_batches_completed().
615  */
616 unsigned long rcu_exp_batches_completed_sched(void)
617 {
618 	return rcu_sched_state.expedited_sequence;
619 }
620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621 
622 /*
623  * Force a quiescent state.
624  */
625 void rcu_force_quiescent_state(void)
626 {
627 	force_quiescent_state(rcu_state_p);
628 }
629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630 
631 /*
632  * Force a quiescent state for RCU BH.
633  */
634 void rcu_bh_force_quiescent_state(void)
635 {
636 	force_quiescent_state(&rcu_bh_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639 
640 /*
641  * Force a quiescent state for RCU-sched.
642  */
643 void rcu_sched_force_quiescent_state(void)
644 {
645 	force_quiescent_state(&rcu_sched_state);
646 }
647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648 
649 /*
650  * Show the state of the grace-period kthreads.
651  */
652 void show_rcu_gp_kthreads(void)
653 {
654 	struct rcu_state *rsp;
655 
656 	for_each_rcu_flavor(rsp) {
657 		pr_info("%s: wait state: %d ->state: %#lx\n",
658 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 		/* sched_show_task(rsp->gp_kthread); */
660 	}
661 }
662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663 
664 /*
665  * Record the number of times rcutorture tests have been initiated and
666  * terminated.  This information allows the debugfs tracing stats to be
667  * correlated to the rcutorture messages, even when the rcutorture module
668  * is being repeatedly loaded and unloaded.  In other words, we cannot
669  * store this state in rcutorture itself.
670  */
671 void rcutorture_record_test_transition(void)
672 {
673 	rcutorture_testseq++;
674 	rcutorture_vernum = 0;
675 }
676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677 
678 /*
679  * Send along grace-period-related data for rcutorture diagnostics.
680  */
681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 			    unsigned long *gpnum, unsigned long *completed)
683 {
684 	struct rcu_state *rsp = NULL;
685 
686 	switch (test_type) {
687 	case RCU_FLAVOR:
688 		rsp = rcu_state_p;
689 		break;
690 	case RCU_BH_FLAVOR:
691 		rsp = &rcu_bh_state;
692 		break;
693 	case RCU_SCHED_FLAVOR:
694 		rsp = &rcu_sched_state;
695 		break;
696 	default:
697 		break;
698 	}
699 	if (rsp == NULL)
700 		return;
701 	*flags = READ_ONCE(rsp->gp_flags);
702 	*gpnum = READ_ONCE(rsp->gpnum);
703 	*completed = READ_ONCE(rsp->completed);
704 }
705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706 
707 /*
708  * Record the number of writer passes through the current rcutorture test.
709  * This is also used to correlate debugfs tracing stats with the rcutorture
710  * messages.
711  */
712 void rcutorture_record_progress(unsigned long vernum)
713 {
714 	rcutorture_vernum++;
715 }
716 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717 
718 /*
719  * Return the root node of the specified rcu_state structure.
720  */
721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722 {
723 	return &rsp->node[0];
724 }
725 
726 /*
727  * Is there any need for future grace periods?
728  * Interrupts must be disabled.  If the caller does not hold the root
729  * rnp_node structure's ->lock, the results are advisory only.
730  */
731 static int rcu_future_needs_gp(struct rcu_state *rsp)
732 {
733 	struct rcu_node *rnp = rcu_get_root(rsp);
734 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
735 	int *fp = &rnp->need_future_gp[idx];
736 
737 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
738 	return READ_ONCE(*fp);
739 }
740 
741 /*
742  * Does the current CPU require a not-yet-started grace period?
743  * The caller must have disabled interrupts to prevent races with
744  * normal callback registry.
745  */
746 static bool
747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748 {
749 	RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
750 	if (rcu_gp_in_progress(rsp))
751 		return false;  /* No, a grace period is already in progress. */
752 	if (rcu_future_needs_gp(rsp))
753 		return true;  /* Yes, a no-CBs CPU needs one. */
754 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
755 		return false;  /* No, this is a no-CBs (or offline) CPU. */
756 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
757 		return true;  /* Yes, CPU has newly registered callbacks. */
758 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 					   READ_ONCE(rsp->completed)))
760 		return true;  /* Yes, CBs for future grace period. */
761 	return false; /* No grace period needed. */
762 }
763 
764 /*
765  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
766  *
767  * Enter idle, doing appropriate accounting.  The caller must have
768  * disabled interrupts.
769  */
770 static void rcu_eqs_enter_common(bool user)
771 {
772 	struct rcu_state *rsp;
773 	struct rcu_data *rdp;
774 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775 
776 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
777 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
778 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 	    !user && !is_idle_task(current)) {
780 		struct task_struct *idle __maybe_unused =
781 			idle_task(smp_processor_id());
782 
783 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
784 		rcu_ftrace_dump(DUMP_ORIG);
785 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 			  current->pid, current->comm,
787 			  idle->pid, idle->comm); /* must be idle task! */
788 	}
789 	for_each_rcu_flavor(rsp) {
790 		rdp = this_cpu_ptr(rsp->rda);
791 		do_nocb_deferred_wakeup(rdp);
792 	}
793 	rcu_prepare_for_idle();
794 	__this_cpu_inc(disable_rcu_irq_enter);
795 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
797 	__this_cpu_dec(disable_rcu_irq_enter);
798 	rcu_dynticks_task_enter();
799 
800 	/*
801 	 * It is illegal to enter an extended quiescent state while
802 	 * in an RCU read-side critical section.
803 	 */
804 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 			 "Illegal idle entry in RCU read-side critical section.");
806 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 			 "Illegal idle entry in RCU-bh read-side critical section.");
808 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 			 "Illegal idle entry in RCU-sched read-side critical section.");
810 }
811 
812 /*
813  * Enter an RCU extended quiescent state, which can be either the
814  * idle loop or adaptive-tickless usermode execution.
815  */
816 static void rcu_eqs_enter(bool user)
817 {
818 	struct rcu_dynticks *rdtp;
819 
820 	rdtp = this_cpu_ptr(&rcu_dynticks);
821 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
822 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 		rcu_eqs_enter_common(user);
825 	else
826 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
827 }
828 
829 /**
830  * rcu_idle_enter - inform RCU that current CPU is entering idle
831  *
832  * Enter idle mode, in other words, -leave- the mode in which RCU
833  * read-side critical sections can occur.  (Though RCU read-side
834  * critical sections can occur in irq handlers in idle, a possibility
835  * handled by irq_enter() and irq_exit().)
836  *
837  * We crowbar the ->dynticks_nesting field to zero to allow for
838  * the possibility of usermode upcalls having messed up our count
839  * of interrupt nesting level during the prior busy period.
840  */
841 void rcu_idle_enter(void)
842 {
843 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_idle_enter() invoked with irqs enabled!!!");
844 	rcu_eqs_enter(false);
845 }
846 
847 #ifdef CONFIG_NO_HZ_FULL
848 /**
849  * rcu_user_enter - inform RCU that we are resuming userspace.
850  *
851  * Enter RCU idle mode right before resuming userspace.  No use of RCU
852  * is permitted between this call and rcu_user_exit(). This way the
853  * CPU doesn't need to maintain the tick for RCU maintenance purposes
854  * when the CPU runs in userspace.
855  */
856 void rcu_user_enter(void)
857 {
858 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_user_enter() invoked with irqs enabled!!!");
859 	rcu_eqs_enter(true);
860 }
861 #endif /* CONFIG_NO_HZ_FULL */
862 
863 /**
864  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865  *
866  * Exit from an interrupt handler, which might possibly result in entering
867  * idle mode, in other words, leaving the mode in which read-side critical
868  * sections can occur.  The caller must have disabled interrupts.
869  *
870  * This code assumes that the idle loop never does anything that might
871  * result in unbalanced calls to irq_enter() and irq_exit().  If your
872  * architecture violates this assumption, RCU will give you what you
873  * deserve, good and hard.  But very infrequently and irreproducibly.
874  *
875  * Use things like work queues to work around this limitation.
876  *
877  * You have been warned.
878  */
879 void rcu_irq_exit(void)
880 {
881 	struct rcu_dynticks *rdtp;
882 
883 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
884 	rdtp = this_cpu_ptr(&rcu_dynticks);
885 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
886 		     rdtp->dynticks_nesting < 1);
887 	if (rdtp->dynticks_nesting <= 1) {
888 		rcu_eqs_enter_common(true);
889 	} else {
890 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
891 		rdtp->dynticks_nesting--;
892 	}
893 }
894 
895 /*
896  * Wrapper for rcu_irq_exit() where interrupts are enabled.
897  */
898 void rcu_irq_exit_irqson(void)
899 {
900 	unsigned long flags;
901 
902 	local_irq_save(flags);
903 	rcu_irq_exit();
904 	local_irq_restore(flags);
905 }
906 
907 /*
908  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
909  *
910  * If the new value of the ->dynticks_nesting counter was previously zero,
911  * we really have exited idle, and must do the appropriate accounting.
912  * The caller must have disabled interrupts.
913  */
914 static void rcu_eqs_exit_common(long long oldval, int user)
915 {
916 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
917 
918 	rcu_dynticks_task_exit();
919 	rcu_dynticks_eqs_exit();
920 	rcu_cleanup_after_idle();
921 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
922 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
923 	    !user && !is_idle_task(current)) {
924 		struct task_struct *idle __maybe_unused =
925 			idle_task(smp_processor_id());
926 
927 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
928 				  oldval, rdtp->dynticks_nesting);
929 		rcu_ftrace_dump(DUMP_ORIG);
930 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
931 			  current->pid, current->comm,
932 			  idle->pid, idle->comm); /* must be idle task! */
933 	}
934 }
935 
936 /*
937  * Exit an RCU extended quiescent state, which can be either the
938  * idle loop or adaptive-tickless usermode execution.
939  */
940 static void rcu_eqs_exit(bool user)
941 {
942 	struct rcu_dynticks *rdtp;
943 	long long oldval;
944 
945 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
946 	rdtp = this_cpu_ptr(&rcu_dynticks);
947 	oldval = rdtp->dynticks_nesting;
948 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
949 	if (oldval & DYNTICK_TASK_NEST_MASK) {
950 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
951 	} else {
952 		__this_cpu_inc(disable_rcu_irq_enter);
953 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
954 		rcu_eqs_exit_common(oldval, user);
955 		__this_cpu_dec(disable_rcu_irq_enter);
956 	}
957 }
958 
959 /**
960  * rcu_idle_exit - inform RCU that current CPU is leaving idle
961  *
962  * Exit idle mode, in other words, -enter- the mode in which RCU
963  * read-side critical sections can occur.
964  *
965  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
966  * allow for the possibility of usermode upcalls messing up our count
967  * of interrupt nesting level during the busy period that is just
968  * now starting.
969  */
970 void rcu_idle_exit(void)
971 {
972 	unsigned long flags;
973 
974 	local_irq_save(flags);
975 	rcu_eqs_exit(false);
976 	local_irq_restore(flags);
977 }
978 
979 #ifdef CONFIG_NO_HZ_FULL
980 /**
981  * rcu_user_exit - inform RCU that we are exiting userspace.
982  *
983  * Exit RCU idle mode while entering the kernel because it can
984  * run a RCU read side critical section anytime.
985  */
986 void rcu_user_exit(void)
987 {
988 	rcu_eqs_exit(1);
989 }
990 #endif /* CONFIG_NO_HZ_FULL */
991 
992 /**
993  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
994  *
995  * Enter an interrupt handler, which might possibly result in exiting
996  * idle mode, in other words, entering the mode in which read-side critical
997  * sections can occur.  The caller must have disabled interrupts.
998  *
999  * Note that the Linux kernel is fully capable of entering an interrupt
1000  * handler that it never exits, for example when doing upcalls to
1001  * user mode!  This code assumes that the idle loop never does upcalls to
1002  * user mode.  If your architecture does do upcalls from the idle loop (or
1003  * does anything else that results in unbalanced calls to the irq_enter()
1004  * and irq_exit() functions), RCU will give you what you deserve, good
1005  * and hard.  But very infrequently and irreproducibly.
1006  *
1007  * Use things like work queues to work around this limitation.
1008  *
1009  * You have been warned.
1010  */
1011 void rcu_irq_enter(void)
1012 {
1013 	struct rcu_dynticks *rdtp;
1014 	long long oldval;
1015 
1016 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1017 	rdtp = this_cpu_ptr(&rcu_dynticks);
1018 	oldval = rdtp->dynticks_nesting;
1019 	rdtp->dynticks_nesting++;
1020 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1021 		     rdtp->dynticks_nesting == 0);
1022 	if (oldval)
1023 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1024 	else
1025 		rcu_eqs_exit_common(oldval, true);
1026 }
1027 
1028 /*
1029  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1030  */
1031 void rcu_irq_enter_irqson(void)
1032 {
1033 	unsigned long flags;
1034 
1035 	local_irq_save(flags);
1036 	rcu_irq_enter();
1037 	local_irq_restore(flags);
1038 }
1039 
1040 /**
1041  * rcu_nmi_enter - inform RCU of entry to NMI context
1042  *
1043  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1044  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1045  * that the CPU is active.  This implementation permits nested NMIs, as
1046  * long as the nesting level does not overflow an int.  (You will probably
1047  * run out of stack space first.)
1048  */
1049 void rcu_nmi_enter(void)
1050 {
1051 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1052 	int incby = 2;
1053 
1054 	/* Complain about underflow. */
1055 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1056 
1057 	/*
1058 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1059 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1060 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1061 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1062 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1063 	 * period (observation due to Andy Lutomirski).
1064 	 */
1065 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1066 		rcu_dynticks_eqs_exit();
1067 		incby = 1;
1068 	}
1069 	rdtp->dynticks_nmi_nesting += incby;
1070 	barrier();
1071 }
1072 
1073 /**
1074  * rcu_nmi_exit - inform RCU of exit from NMI context
1075  *
1076  * If we are returning from the outermost NMI handler that interrupted an
1077  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1078  * to let the RCU grace-period handling know that the CPU is back to
1079  * being RCU-idle.
1080  */
1081 void rcu_nmi_exit(void)
1082 {
1083 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1084 
1085 	/*
1086 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1087 	 * (We are exiting an NMI handler, so RCU better be paying attention
1088 	 * to us!)
1089 	 */
1090 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1091 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1092 
1093 	/*
1094 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1095 	 * leave it in non-RCU-idle state.
1096 	 */
1097 	if (rdtp->dynticks_nmi_nesting != 1) {
1098 		rdtp->dynticks_nmi_nesting -= 2;
1099 		return;
1100 	}
1101 
1102 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1103 	rdtp->dynticks_nmi_nesting = 0;
1104 	rcu_dynticks_eqs_enter();
1105 }
1106 
1107 /**
1108  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1109  *
1110  * Return true if RCU is watching the running CPU, which means that this
1111  * CPU can safely enter RCU read-side critical sections.  In other words,
1112  * if the current CPU is in its idle loop and is neither in an interrupt
1113  * or NMI handler, return true.
1114  */
1115 bool notrace rcu_is_watching(void)
1116 {
1117 	bool ret;
1118 
1119 	preempt_disable_notrace();
1120 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1121 	preempt_enable_notrace();
1122 	return ret;
1123 }
1124 EXPORT_SYMBOL_GPL(rcu_is_watching);
1125 
1126 /*
1127  * If a holdout task is actually running, request an urgent quiescent
1128  * state from its CPU.  This is unsynchronized, so migrations can cause
1129  * the request to go to the wrong CPU.  Which is OK, all that will happen
1130  * is that the CPU's next context switch will be a bit slower and next
1131  * time around this task will generate another request.
1132  */
1133 void rcu_request_urgent_qs_task(struct task_struct *t)
1134 {
1135 	int cpu;
1136 
1137 	barrier();
1138 	cpu = task_cpu(t);
1139 	if (!task_curr(t))
1140 		return; /* This task is not running on that CPU. */
1141 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1142 }
1143 
1144 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1145 
1146 /*
1147  * Is the current CPU online?  Disable preemption to avoid false positives
1148  * that could otherwise happen due to the current CPU number being sampled,
1149  * this task being preempted, its old CPU being taken offline, resuming
1150  * on some other CPU, then determining that its old CPU is now offline.
1151  * It is OK to use RCU on an offline processor during initial boot, hence
1152  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1153  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1154  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1155  * offline to continue to use RCU for one jiffy after marking itself
1156  * offline in the cpu_online_mask.  This leniency is necessary given the
1157  * non-atomic nature of the online and offline processing, for example,
1158  * the fact that a CPU enters the scheduler after completing the teardown
1159  * of the CPU.
1160  *
1161  * This is also why RCU internally marks CPUs online during in the
1162  * preparation phase and offline after the CPU has been taken down.
1163  *
1164  * Disable checking if in an NMI handler because we cannot safely report
1165  * errors from NMI handlers anyway.
1166  */
1167 bool rcu_lockdep_current_cpu_online(void)
1168 {
1169 	struct rcu_data *rdp;
1170 	struct rcu_node *rnp;
1171 	bool ret;
1172 
1173 	if (in_nmi())
1174 		return true;
1175 	preempt_disable();
1176 	rdp = this_cpu_ptr(&rcu_sched_data);
1177 	rnp = rdp->mynode;
1178 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1179 	      !rcu_scheduler_fully_active;
1180 	preempt_enable();
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1184 
1185 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1186 
1187 /**
1188  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1189  *
1190  * If the current CPU is idle or running at a first-level (not nested)
1191  * interrupt from idle, return true.  The caller must have at least
1192  * disabled preemption.
1193  */
1194 static int rcu_is_cpu_rrupt_from_idle(void)
1195 {
1196 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1197 }
1198 
1199 /*
1200  * Snapshot the specified CPU's dynticks counter so that we can later
1201  * credit them with an implicit quiescent state.  Return 1 if this CPU
1202  * is in dynticks idle mode, which is an extended quiescent state.
1203  */
1204 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1205 {
1206 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1207 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1208 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1209 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1210 				 rdp->mynode->gpnum))
1211 			WRITE_ONCE(rdp->gpwrap, true);
1212 		return 1;
1213 	}
1214 	return 0;
1215 }
1216 
1217 /*
1218  * Return true if the specified CPU has passed through a quiescent
1219  * state by virtue of being in or having passed through an dynticks
1220  * idle state since the last call to dyntick_save_progress_counter()
1221  * for this same CPU, or by virtue of having been offline.
1222  */
1223 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1224 {
1225 	unsigned long jtsq;
1226 	bool *rnhqp;
1227 	bool *ruqp;
1228 	unsigned long rjtsc;
1229 	struct rcu_node *rnp;
1230 
1231 	/*
1232 	 * If the CPU passed through or entered a dynticks idle phase with
1233 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1234 	 * already acknowledged the request to pass through a quiescent
1235 	 * state.  Either way, that CPU cannot possibly be in an RCU
1236 	 * read-side critical section that started before the beginning
1237 	 * of the current RCU grace period.
1238 	 */
1239 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1240 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1241 		rdp->dynticks_fqs++;
1242 		return 1;
1243 	}
1244 
1245 	/* Compute and saturate jiffies_till_sched_qs. */
1246 	jtsq = jiffies_till_sched_qs;
1247 	rjtsc = rcu_jiffies_till_stall_check();
1248 	if (jtsq > rjtsc / 2) {
1249 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1250 		jtsq = rjtsc / 2;
1251 	} else if (jtsq < 1) {
1252 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1253 		jtsq = 1;
1254 	}
1255 
1256 	/*
1257 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1258 	 * beginning of the grace period?  For this to be the case,
1259 	 * the CPU has to have noticed the current grace period.  This
1260 	 * might not be the case for nohz_full CPUs looping in the kernel.
1261 	 */
1262 	rnp = rdp->mynode;
1263 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1264 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1265 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1266 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1267 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1268 		return 1;
1269 	} else {
1270 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1271 		smp_store_release(ruqp, true);
1272 	}
1273 
1274 	/* Check for the CPU being offline. */
1275 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1276 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1277 		rdp->offline_fqs++;
1278 		return 1;
1279 	}
1280 
1281 	/*
1282 	 * A CPU running for an extended time within the kernel can
1283 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1284 	 * even context-switching back and forth between a pair of
1285 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1286 	 * So if the grace period is old enough, make the CPU pay attention.
1287 	 * Note that the unsynchronized assignments to the per-CPU
1288 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1289 	 * bits can be lost, but they will be set again on the next
1290 	 * force-quiescent-state pass.  So lost bit sets do not result
1291 	 * in incorrect behavior, merely in a grace period lasting
1292 	 * a few jiffies longer than it might otherwise.  Because
1293 	 * there are at most four threads involved, and because the
1294 	 * updates are only once every few jiffies, the probability of
1295 	 * lossage (and thus of slight grace-period extension) is
1296 	 * quite low.
1297 	 *
1298 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1299 	 * is set too high, we override with half of the RCU CPU stall
1300 	 * warning delay.
1301 	 */
1302 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1303 	if (!READ_ONCE(*rnhqp) &&
1304 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1305 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1306 		WRITE_ONCE(*rnhqp, true);
1307 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1308 		smp_store_release(ruqp, true);
1309 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1310 	}
1311 
1312 	/*
1313 	 * If more than halfway to RCU CPU stall-warning time, do
1314 	 * a resched_cpu() to try to loosen things up a bit.
1315 	 */
1316 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1317 		resched_cpu(rdp->cpu);
1318 
1319 	return 0;
1320 }
1321 
1322 static void record_gp_stall_check_time(struct rcu_state *rsp)
1323 {
1324 	unsigned long j = jiffies;
1325 	unsigned long j1;
1326 
1327 	rsp->gp_start = j;
1328 	smp_wmb(); /* Record start time before stall time. */
1329 	j1 = rcu_jiffies_till_stall_check();
1330 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1331 	rsp->jiffies_resched = j + j1 / 2;
1332 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1333 }
1334 
1335 /*
1336  * Convert a ->gp_state value to a character string.
1337  */
1338 static const char *gp_state_getname(short gs)
1339 {
1340 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1341 		return "???";
1342 	return gp_state_names[gs];
1343 }
1344 
1345 /*
1346  * Complain about starvation of grace-period kthread.
1347  */
1348 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1349 {
1350 	unsigned long gpa;
1351 	unsigned long j;
1352 
1353 	j = jiffies;
1354 	gpa = READ_ONCE(rsp->gp_activity);
1355 	if (j - gpa > 2 * HZ) {
1356 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1357 		       rsp->name, j - gpa,
1358 		       rsp->gpnum, rsp->completed,
1359 		       rsp->gp_flags,
1360 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1361 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1362 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1363 		if (rsp->gp_kthread) {
1364 			sched_show_task(rsp->gp_kthread);
1365 			wake_up_process(rsp->gp_kthread);
1366 		}
1367 	}
1368 }
1369 
1370 /*
1371  * Dump stacks of all tasks running on stalled CPUs.  First try using
1372  * NMIs, but fall back to manual remote stack tracing on architectures
1373  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1374  * traces are more accurate because they are printed by the target CPU.
1375  */
1376 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1377 {
1378 	int cpu;
1379 	unsigned long flags;
1380 	struct rcu_node *rnp;
1381 
1382 	rcu_for_each_leaf_node(rsp, rnp) {
1383 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1384 		for_each_leaf_node_possible_cpu(rnp, cpu)
1385 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1386 				if (!trigger_single_cpu_backtrace(cpu))
1387 					dump_cpu_task(cpu);
1388 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1389 	}
1390 }
1391 
1392 /*
1393  * If too much time has passed in the current grace period, and if
1394  * so configured, go kick the relevant kthreads.
1395  */
1396 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1397 {
1398 	unsigned long j;
1399 
1400 	if (!rcu_kick_kthreads)
1401 		return;
1402 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1403 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1404 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1405 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1406 		rcu_ftrace_dump(DUMP_ALL);
1407 		wake_up_process(rsp->gp_kthread);
1408 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1409 	}
1410 }
1411 
1412 static inline void panic_on_rcu_stall(void)
1413 {
1414 	if (sysctl_panic_on_rcu_stall)
1415 		panic("RCU Stall\n");
1416 }
1417 
1418 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1419 {
1420 	int cpu;
1421 	long delta;
1422 	unsigned long flags;
1423 	unsigned long gpa;
1424 	unsigned long j;
1425 	int ndetected = 0;
1426 	struct rcu_node *rnp = rcu_get_root(rsp);
1427 	long totqlen = 0;
1428 
1429 	/* Kick and suppress, if so configured. */
1430 	rcu_stall_kick_kthreads(rsp);
1431 	if (rcu_cpu_stall_suppress)
1432 		return;
1433 
1434 	/* Only let one CPU complain about others per time interval. */
1435 
1436 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1437 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1438 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1439 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1440 		return;
1441 	}
1442 	WRITE_ONCE(rsp->jiffies_stall,
1443 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1444 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1445 
1446 	/*
1447 	 * OK, time to rat on our buddy...
1448 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1449 	 * RCU CPU stall warnings.
1450 	 */
1451 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1452 	       rsp->name);
1453 	print_cpu_stall_info_begin();
1454 	rcu_for_each_leaf_node(rsp, rnp) {
1455 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1456 		ndetected += rcu_print_task_stall(rnp);
1457 		if (rnp->qsmask != 0) {
1458 			for_each_leaf_node_possible_cpu(rnp, cpu)
1459 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1460 					print_cpu_stall_info(rsp, cpu);
1461 					ndetected++;
1462 				}
1463 		}
1464 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1465 	}
1466 
1467 	print_cpu_stall_info_end();
1468 	for_each_possible_cpu(cpu)
1469 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1470 							    cpu)->cblist);
1471 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1472 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1473 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1474 	if (ndetected) {
1475 		rcu_dump_cpu_stacks(rsp);
1476 
1477 		/* Complain about tasks blocking the grace period. */
1478 		rcu_print_detail_task_stall(rsp);
1479 	} else {
1480 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1481 		    READ_ONCE(rsp->completed) == gpnum) {
1482 			pr_err("INFO: Stall ended before state dump start\n");
1483 		} else {
1484 			j = jiffies;
1485 			gpa = READ_ONCE(rsp->gp_activity);
1486 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1487 			       rsp->name, j - gpa, j, gpa,
1488 			       jiffies_till_next_fqs,
1489 			       rcu_get_root(rsp)->qsmask);
1490 			/* In this case, the current CPU might be at fault. */
1491 			sched_show_task(current);
1492 		}
1493 	}
1494 
1495 	rcu_check_gp_kthread_starvation(rsp);
1496 
1497 	panic_on_rcu_stall();
1498 
1499 	force_quiescent_state(rsp);  /* Kick them all. */
1500 }
1501 
1502 static void print_cpu_stall(struct rcu_state *rsp)
1503 {
1504 	int cpu;
1505 	unsigned long flags;
1506 	struct rcu_node *rnp = rcu_get_root(rsp);
1507 	long totqlen = 0;
1508 
1509 	/* Kick and suppress, if so configured. */
1510 	rcu_stall_kick_kthreads(rsp);
1511 	if (rcu_cpu_stall_suppress)
1512 		return;
1513 
1514 	/*
1515 	 * OK, time to rat on ourselves...
1516 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1517 	 * RCU CPU stall warnings.
1518 	 */
1519 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1520 	print_cpu_stall_info_begin();
1521 	print_cpu_stall_info(rsp, smp_processor_id());
1522 	print_cpu_stall_info_end();
1523 	for_each_possible_cpu(cpu)
1524 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1525 							    cpu)->cblist);
1526 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1527 		jiffies - rsp->gp_start,
1528 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1529 
1530 	rcu_check_gp_kthread_starvation(rsp);
1531 
1532 	rcu_dump_cpu_stacks(rsp);
1533 
1534 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1535 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1536 		WRITE_ONCE(rsp->jiffies_stall,
1537 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1538 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1539 
1540 	panic_on_rcu_stall();
1541 
1542 	/*
1543 	 * Attempt to revive the RCU machinery by forcing a context switch.
1544 	 *
1545 	 * A context switch would normally allow the RCU state machine to make
1546 	 * progress and it could be we're stuck in kernel space without context
1547 	 * switches for an entirely unreasonable amount of time.
1548 	 */
1549 	resched_cpu(smp_processor_id());
1550 }
1551 
1552 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1553 {
1554 	unsigned long completed;
1555 	unsigned long gpnum;
1556 	unsigned long gps;
1557 	unsigned long j;
1558 	unsigned long js;
1559 	struct rcu_node *rnp;
1560 
1561 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1562 	    !rcu_gp_in_progress(rsp))
1563 		return;
1564 	rcu_stall_kick_kthreads(rsp);
1565 	j = jiffies;
1566 
1567 	/*
1568 	 * Lots of memory barriers to reject false positives.
1569 	 *
1570 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1571 	 * then rsp->gp_start, and finally rsp->completed.  These values
1572 	 * are updated in the opposite order with memory barriers (or
1573 	 * equivalent) during grace-period initialization and cleanup.
1574 	 * Now, a false positive can occur if we get an new value of
1575 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1576 	 * the memory barriers, the only way that this can happen is if one
1577 	 * grace period ends and another starts between these two fetches.
1578 	 * Detect this by comparing rsp->completed with the previous fetch
1579 	 * from rsp->gpnum.
1580 	 *
1581 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1582 	 * and rsp->gp_start suffice to forestall false positives.
1583 	 */
1584 	gpnum = READ_ONCE(rsp->gpnum);
1585 	smp_rmb(); /* Pick up ->gpnum first... */
1586 	js = READ_ONCE(rsp->jiffies_stall);
1587 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1588 	gps = READ_ONCE(rsp->gp_start);
1589 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1590 	completed = READ_ONCE(rsp->completed);
1591 	if (ULONG_CMP_GE(completed, gpnum) ||
1592 	    ULONG_CMP_LT(j, js) ||
1593 	    ULONG_CMP_GE(gps, js))
1594 		return; /* No stall or GP completed since entering function. */
1595 	rnp = rdp->mynode;
1596 	if (rcu_gp_in_progress(rsp) &&
1597 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1598 
1599 		/* We haven't checked in, so go dump stack. */
1600 		print_cpu_stall(rsp);
1601 
1602 	} else if (rcu_gp_in_progress(rsp) &&
1603 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1604 
1605 		/* They had a few time units to dump stack, so complain. */
1606 		print_other_cpu_stall(rsp, gpnum);
1607 	}
1608 }
1609 
1610 /**
1611  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1612  *
1613  * Set the stall-warning timeout way off into the future, thus preventing
1614  * any RCU CPU stall-warning messages from appearing in the current set of
1615  * RCU grace periods.
1616  *
1617  * The caller must disable hard irqs.
1618  */
1619 void rcu_cpu_stall_reset(void)
1620 {
1621 	struct rcu_state *rsp;
1622 
1623 	for_each_rcu_flavor(rsp)
1624 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1625 }
1626 
1627 /*
1628  * Determine the value that ->completed will have at the end of the
1629  * next subsequent grace period.  This is used to tag callbacks so that
1630  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1631  * been dyntick-idle for an extended period with callbacks under the
1632  * influence of RCU_FAST_NO_HZ.
1633  *
1634  * The caller must hold rnp->lock with interrupts disabled.
1635  */
1636 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1637 				       struct rcu_node *rnp)
1638 {
1639 	lockdep_assert_held(&rnp->lock);
1640 
1641 	/*
1642 	 * If RCU is idle, we just wait for the next grace period.
1643 	 * But we can only be sure that RCU is idle if we are looking
1644 	 * at the root rcu_node structure -- otherwise, a new grace
1645 	 * period might have started, but just not yet gotten around
1646 	 * to initializing the current non-root rcu_node structure.
1647 	 */
1648 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1649 		return rnp->completed + 1;
1650 
1651 	/*
1652 	 * Otherwise, wait for a possible partial grace period and
1653 	 * then the subsequent full grace period.
1654 	 */
1655 	return rnp->completed + 2;
1656 }
1657 
1658 /*
1659  * Trace-event helper function for rcu_start_future_gp() and
1660  * rcu_nocb_wait_gp().
1661  */
1662 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1663 				unsigned long c, const char *s)
1664 {
1665 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1666 				      rnp->completed, c, rnp->level,
1667 				      rnp->grplo, rnp->grphi, s);
1668 }
1669 
1670 /*
1671  * Start some future grace period, as needed to handle newly arrived
1672  * callbacks.  The required future grace periods are recorded in each
1673  * rcu_node structure's ->need_future_gp field.  Returns true if there
1674  * is reason to awaken the grace-period kthread.
1675  *
1676  * The caller must hold the specified rcu_node structure's ->lock.
1677  */
1678 static bool __maybe_unused
1679 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1680 		    unsigned long *c_out)
1681 {
1682 	unsigned long c;
1683 	bool ret = false;
1684 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1685 
1686 	lockdep_assert_held(&rnp->lock);
1687 
1688 	/*
1689 	 * Pick up grace-period number for new callbacks.  If this
1690 	 * grace period is already marked as needed, return to the caller.
1691 	 */
1692 	c = rcu_cbs_completed(rdp->rsp, rnp);
1693 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1694 	if (rnp->need_future_gp[c & 0x1]) {
1695 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1696 		goto out;
1697 	}
1698 
1699 	/*
1700 	 * If either this rcu_node structure or the root rcu_node structure
1701 	 * believe that a grace period is in progress, then we must wait
1702 	 * for the one following, which is in "c".  Because our request
1703 	 * will be noticed at the end of the current grace period, we don't
1704 	 * need to explicitly start one.  We only do the lockless check
1705 	 * of rnp_root's fields if the current rcu_node structure thinks
1706 	 * there is no grace period in flight, and because we hold rnp->lock,
1707 	 * the only possible change is when rnp_root's two fields are
1708 	 * equal, in which case rnp_root->gpnum might be concurrently
1709 	 * incremented.  But that is OK, as it will just result in our
1710 	 * doing some extra useless work.
1711 	 */
1712 	if (rnp->gpnum != rnp->completed ||
1713 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1714 		rnp->need_future_gp[c & 0x1]++;
1715 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1716 		goto out;
1717 	}
1718 
1719 	/*
1720 	 * There might be no grace period in progress.  If we don't already
1721 	 * hold it, acquire the root rcu_node structure's lock in order to
1722 	 * start one (if needed).
1723 	 */
1724 	if (rnp != rnp_root)
1725 		raw_spin_lock_rcu_node(rnp_root);
1726 
1727 	/*
1728 	 * Get a new grace-period number.  If there really is no grace
1729 	 * period in progress, it will be smaller than the one we obtained
1730 	 * earlier.  Adjust callbacks as needed.
1731 	 */
1732 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1733 	if (!rcu_is_nocb_cpu(rdp->cpu))
1734 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1735 
1736 	/*
1737 	 * If the needed for the required grace period is already
1738 	 * recorded, trace and leave.
1739 	 */
1740 	if (rnp_root->need_future_gp[c & 0x1]) {
1741 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1742 		goto unlock_out;
1743 	}
1744 
1745 	/* Record the need for the future grace period. */
1746 	rnp_root->need_future_gp[c & 0x1]++;
1747 
1748 	/* If a grace period is not already in progress, start one. */
1749 	if (rnp_root->gpnum != rnp_root->completed) {
1750 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1751 	} else {
1752 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1753 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1754 	}
1755 unlock_out:
1756 	if (rnp != rnp_root)
1757 		raw_spin_unlock_rcu_node(rnp_root);
1758 out:
1759 	if (c_out != NULL)
1760 		*c_out = c;
1761 	return ret;
1762 }
1763 
1764 /*
1765  * Clean up any old requests for the just-ended grace period.  Also return
1766  * whether any additional grace periods have been requested.
1767  */
1768 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1769 {
1770 	int c = rnp->completed;
1771 	int needmore;
1772 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1773 
1774 	rnp->need_future_gp[c & 0x1] = 0;
1775 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1776 	trace_rcu_future_gp(rnp, rdp, c,
1777 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1778 	return needmore;
1779 }
1780 
1781 /*
1782  * Awaken the grace-period kthread for the specified flavor of RCU.
1783  * Don't do a self-awaken, and don't bother awakening when there is
1784  * nothing for the grace-period kthread to do (as in several CPUs
1785  * raced to awaken, and we lost), and finally don't try to awaken
1786  * a kthread that has not yet been created.
1787  */
1788 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1789 {
1790 	if (current == rsp->gp_kthread ||
1791 	    !READ_ONCE(rsp->gp_flags) ||
1792 	    !rsp->gp_kthread)
1793 		return;
1794 	swake_up(&rsp->gp_wq);
1795 }
1796 
1797 /*
1798  * If there is room, assign a ->completed number to any callbacks on
1799  * this CPU that have not already been assigned.  Also accelerate any
1800  * callbacks that were previously assigned a ->completed number that has
1801  * since proven to be too conservative, which can happen if callbacks get
1802  * assigned a ->completed number while RCU is idle, but with reference to
1803  * a non-root rcu_node structure.  This function is idempotent, so it does
1804  * not hurt to call it repeatedly.  Returns an flag saying that we should
1805  * awaken the RCU grace-period kthread.
1806  *
1807  * The caller must hold rnp->lock with interrupts disabled.
1808  */
1809 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1810 			       struct rcu_data *rdp)
1811 {
1812 	bool ret = false;
1813 
1814 	lockdep_assert_held(&rnp->lock);
1815 
1816 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1817 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1818 		return false;
1819 
1820 	/*
1821 	 * Callbacks are often registered with incomplete grace-period
1822 	 * information.  Something about the fact that getting exact
1823 	 * information requires acquiring a global lock...  RCU therefore
1824 	 * makes a conservative estimate of the grace period number at which
1825 	 * a given callback will become ready to invoke.	The following
1826 	 * code checks this estimate and improves it when possible, thus
1827 	 * accelerating callback invocation to an earlier grace-period
1828 	 * number.
1829 	 */
1830 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1831 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1832 
1833 	/* Trace depending on how much we were able to accelerate. */
1834 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1835 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1836 	else
1837 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1838 	return ret;
1839 }
1840 
1841 /*
1842  * Move any callbacks whose grace period has completed to the
1843  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1844  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1845  * sublist.  This function is idempotent, so it does not hurt to
1846  * invoke it repeatedly.  As long as it is not invoked -too- often...
1847  * Returns true if the RCU grace-period kthread needs to be awakened.
1848  *
1849  * The caller must hold rnp->lock with interrupts disabled.
1850  */
1851 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1852 			    struct rcu_data *rdp)
1853 {
1854 	lockdep_assert_held(&rnp->lock);
1855 
1856 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1857 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1858 		return false;
1859 
1860 	/*
1861 	 * Find all callbacks whose ->completed numbers indicate that they
1862 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1863 	 */
1864 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1865 
1866 	/* Classify any remaining callbacks. */
1867 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1868 }
1869 
1870 /*
1871  * Update CPU-local rcu_data state to record the beginnings and ends of
1872  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1873  * structure corresponding to the current CPU, and must have irqs disabled.
1874  * Returns true if the grace-period kthread needs to be awakened.
1875  */
1876 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1877 			      struct rcu_data *rdp)
1878 {
1879 	bool ret;
1880 	bool need_gp;
1881 
1882 	lockdep_assert_held(&rnp->lock);
1883 
1884 	/* Handle the ends of any preceding grace periods first. */
1885 	if (rdp->completed == rnp->completed &&
1886 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1887 
1888 		/* No grace period end, so just accelerate recent callbacks. */
1889 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1890 
1891 	} else {
1892 
1893 		/* Advance callbacks. */
1894 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1895 
1896 		/* Remember that we saw this grace-period completion. */
1897 		rdp->completed = rnp->completed;
1898 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1899 	}
1900 
1901 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1902 		/*
1903 		 * If the current grace period is waiting for this CPU,
1904 		 * set up to detect a quiescent state, otherwise don't
1905 		 * go looking for one.
1906 		 */
1907 		rdp->gpnum = rnp->gpnum;
1908 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1909 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1910 		rdp->cpu_no_qs.b.norm = need_gp;
1911 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1912 		rdp->core_needs_qs = need_gp;
1913 		zero_cpu_stall_ticks(rdp);
1914 		WRITE_ONCE(rdp->gpwrap, false);
1915 	}
1916 	return ret;
1917 }
1918 
1919 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1920 {
1921 	unsigned long flags;
1922 	bool needwake;
1923 	struct rcu_node *rnp;
1924 
1925 	local_irq_save(flags);
1926 	rnp = rdp->mynode;
1927 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1928 	     rdp->completed == READ_ONCE(rnp->completed) &&
1929 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1930 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1931 		local_irq_restore(flags);
1932 		return;
1933 	}
1934 	needwake = __note_gp_changes(rsp, rnp, rdp);
1935 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1936 	if (needwake)
1937 		rcu_gp_kthread_wake(rsp);
1938 }
1939 
1940 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1941 {
1942 	if (delay > 0 &&
1943 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1944 		schedule_timeout_uninterruptible(delay);
1945 }
1946 
1947 /*
1948  * Initialize a new grace period.  Return false if no grace period required.
1949  */
1950 static bool rcu_gp_init(struct rcu_state *rsp)
1951 {
1952 	unsigned long oldmask;
1953 	struct rcu_data *rdp;
1954 	struct rcu_node *rnp = rcu_get_root(rsp);
1955 
1956 	WRITE_ONCE(rsp->gp_activity, jiffies);
1957 	raw_spin_lock_irq_rcu_node(rnp);
1958 	if (!READ_ONCE(rsp->gp_flags)) {
1959 		/* Spurious wakeup, tell caller to go back to sleep.  */
1960 		raw_spin_unlock_irq_rcu_node(rnp);
1961 		return false;
1962 	}
1963 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1964 
1965 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1966 		/*
1967 		 * Grace period already in progress, don't start another.
1968 		 * Not supposed to be able to happen.
1969 		 */
1970 		raw_spin_unlock_irq_rcu_node(rnp);
1971 		return false;
1972 	}
1973 
1974 	/* Advance to a new grace period and initialize state. */
1975 	record_gp_stall_check_time(rsp);
1976 	/* Record GP times before starting GP, hence smp_store_release(). */
1977 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1978 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1979 	raw_spin_unlock_irq_rcu_node(rnp);
1980 
1981 	/*
1982 	 * Apply per-leaf buffered online and offline operations to the
1983 	 * rcu_node tree.  Note that this new grace period need not wait
1984 	 * for subsequent online CPUs, and that quiescent-state forcing
1985 	 * will handle subsequent offline CPUs.
1986 	 */
1987 	rcu_for_each_leaf_node(rsp, rnp) {
1988 		rcu_gp_slow(rsp, gp_preinit_delay);
1989 		raw_spin_lock_irq_rcu_node(rnp);
1990 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1991 		    !rnp->wait_blkd_tasks) {
1992 			/* Nothing to do on this leaf rcu_node structure. */
1993 			raw_spin_unlock_irq_rcu_node(rnp);
1994 			continue;
1995 		}
1996 
1997 		/* Record old state, apply changes to ->qsmaskinit field. */
1998 		oldmask = rnp->qsmaskinit;
1999 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2000 
2001 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2002 		if (!oldmask != !rnp->qsmaskinit) {
2003 			if (!oldmask) /* First online CPU for this rcu_node. */
2004 				rcu_init_new_rnp(rnp);
2005 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2006 				rnp->wait_blkd_tasks = true;
2007 			else /* Last offline CPU and can propagate. */
2008 				rcu_cleanup_dead_rnp(rnp);
2009 		}
2010 
2011 		/*
2012 		 * If all waited-on tasks from prior grace period are
2013 		 * done, and if all this rcu_node structure's CPUs are
2014 		 * still offline, propagate up the rcu_node tree and
2015 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2016 		 * rcu_node structure's CPUs has since come back online,
2017 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2018 		 * checks for this, so just call it unconditionally).
2019 		 */
2020 		if (rnp->wait_blkd_tasks &&
2021 		    (!rcu_preempt_has_tasks(rnp) ||
2022 		     rnp->qsmaskinit)) {
2023 			rnp->wait_blkd_tasks = false;
2024 			rcu_cleanup_dead_rnp(rnp);
2025 		}
2026 
2027 		raw_spin_unlock_irq_rcu_node(rnp);
2028 	}
2029 
2030 	/*
2031 	 * Set the quiescent-state-needed bits in all the rcu_node
2032 	 * structures for all currently online CPUs in breadth-first order,
2033 	 * starting from the root rcu_node structure, relying on the layout
2034 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2035 	 * will access only the leaves of the hierarchy, thus seeing that no
2036 	 * grace period is in progress, at least until the corresponding
2037 	 * leaf node has been initialized.
2038 	 *
2039 	 * The grace period cannot complete until the initialization
2040 	 * process finishes, because this kthread handles both.
2041 	 */
2042 	rcu_for_each_node_breadth_first(rsp, rnp) {
2043 		rcu_gp_slow(rsp, gp_init_delay);
2044 		raw_spin_lock_irq_rcu_node(rnp);
2045 		rdp = this_cpu_ptr(rsp->rda);
2046 		rcu_preempt_check_blocked_tasks(rnp);
2047 		rnp->qsmask = rnp->qsmaskinit;
2048 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2049 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2050 			WRITE_ONCE(rnp->completed, rsp->completed);
2051 		if (rnp == rdp->mynode)
2052 			(void)__note_gp_changes(rsp, rnp, rdp);
2053 		rcu_preempt_boost_start_gp(rnp);
2054 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2055 					    rnp->level, rnp->grplo,
2056 					    rnp->grphi, rnp->qsmask);
2057 		raw_spin_unlock_irq_rcu_node(rnp);
2058 		cond_resched_rcu_qs();
2059 		WRITE_ONCE(rsp->gp_activity, jiffies);
2060 	}
2061 
2062 	return true;
2063 }
2064 
2065 /*
2066  * Helper function for swait_event_idle() wakeup at force-quiescent-state
2067  * time.
2068  */
2069 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2070 {
2071 	struct rcu_node *rnp = rcu_get_root(rsp);
2072 
2073 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2074 	*gfp = READ_ONCE(rsp->gp_flags);
2075 	if (*gfp & RCU_GP_FLAG_FQS)
2076 		return true;
2077 
2078 	/* The current grace period has completed. */
2079 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2080 		return true;
2081 
2082 	return false;
2083 }
2084 
2085 /*
2086  * Do one round of quiescent-state forcing.
2087  */
2088 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2089 {
2090 	struct rcu_node *rnp = rcu_get_root(rsp);
2091 
2092 	WRITE_ONCE(rsp->gp_activity, jiffies);
2093 	rsp->n_force_qs++;
2094 	if (first_time) {
2095 		/* Collect dyntick-idle snapshots. */
2096 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2097 	} else {
2098 		/* Handle dyntick-idle and offline CPUs. */
2099 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2100 	}
2101 	/* Clear flag to prevent immediate re-entry. */
2102 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2103 		raw_spin_lock_irq_rcu_node(rnp);
2104 		WRITE_ONCE(rsp->gp_flags,
2105 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2106 		raw_spin_unlock_irq_rcu_node(rnp);
2107 	}
2108 }
2109 
2110 /*
2111  * Clean up after the old grace period.
2112  */
2113 static void rcu_gp_cleanup(struct rcu_state *rsp)
2114 {
2115 	unsigned long gp_duration;
2116 	bool needgp = false;
2117 	int nocb = 0;
2118 	struct rcu_data *rdp;
2119 	struct rcu_node *rnp = rcu_get_root(rsp);
2120 	struct swait_queue_head *sq;
2121 
2122 	WRITE_ONCE(rsp->gp_activity, jiffies);
2123 	raw_spin_lock_irq_rcu_node(rnp);
2124 	gp_duration = jiffies - rsp->gp_start;
2125 	if (gp_duration > rsp->gp_max)
2126 		rsp->gp_max = gp_duration;
2127 
2128 	/*
2129 	 * We know the grace period is complete, but to everyone else
2130 	 * it appears to still be ongoing.  But it is also the case
2131 	 * that to everyone else it looks like there is nothing that
2132 	 * they can do to advance the grace period.  It is therefore
2133 	 * safe for us to drop the lock in order to mark the grace
2134 	 * period as completed in all of the rcu_node structures.
2135 	 */
2136 	raw_spin_unlock_irq_rcu_node(rnp);
2137 
2138 	/*
2139 	 * Propagate new ->completed value to rcu_node structures so
2140 	 * that other CPUs don't have to wait until the start of the next
2141 	 * grace period to process their callbacks.  This also avoids
2142 	 * some nasty RCU grace-period initialization races by forcing
2143 	 * the end of the current grace period to be completely recorded in
2144 	 * all of the rcu_node structures before the beginning of the next
2145 	 * grace period is recorded in any of the rcu_node structures.
2146 	 */
2147 	rcu_for_each_node_breadth_first(rsp, rnp) {
2148 		raw_spin_lock_irq_rcu_node(rnp);
2149 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2150 		WARN_ON_ONCE(rnp->qsmask);
2151 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2152 		rdp = this_cpu_ptr(rsp->rda);
2153 		if (rnp == rdp->mynode)
2154 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2155 		/* smp_mb() provided by prior unlock-lock pair. */
2156 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2157 		sq = rcu_nocb_gp_get(rnp);
2158 		raw_spin_unlock_irq_rcu_node(rnp);
2159 		rcu_nocb_gp_cleanup(sq);
2160 		cond_resched_rcu_qs();
2161 		WRITE_ONCE(rsp->gp_activity, jiffies);
2162 		rcu_gp_slow(rsp, gp_cleanup_delay);
2163 	}
2164 	rnp = rcu_get_root(rsp);
2165 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2166 	rcu_nocb_gp_set(rnp, nocb);
2167 
2168 	/* Declare grace period done. */
2169 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2170 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2171 	rsp->gp_state = RCU_GP_IDLE;
2172 	rdp = this_cpu_ptr(rsp->rda);
2173 	/* Advance CBs to reduce false positives below. */
2174 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2175 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2176 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2177 		trace_rcu_grace_period(rsp->name,
2178 				       READ_ONCE(rsp->gpnum),
2179 				       TPS("newreq"));
2180 	}
2181 	raw_spin_unlock_irq_rcu_node(rnp);
2182 }
2183 
2184 /*
2185  * Body of kthread that handles grace periods.
2186  */
2187 static int __noreturn rcu_gp_kthread(void *arg)
2188 {
2189 	bool first_gp_fqs;
2190 	int gf;
2191 	unsigned long j;
2192 	int ret;
2193 	struct rcu_state *rsp = arg;
2194 	struct rcu_node *rnp = rcu_get_root(rsp);
2195 
2196 	rcu_bind_gp_kthread();
2197 	for (;;) {
2198 
2199 		/* Handle grace-period start. */
2200 		for (;;) {
2201 			trace_rcu_grace_period(rsp->name,
2202 					       READ_ONCE(rsp->gpnum),
2203 					       TPS("reqwait"));
2204 			rsp->gp_state = RCU_GP_WAIT_GPS;
2205 			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2206 						     RCU_GP_FLAG_INIT);
2207 			rsp->gp_state = RCU_GP_DONE_GPS;
2208 			/* Locking provides needed memory barrier. */
2209 			if (rcu_gp_init(rsp))
2210 				break;
2211 			cond_resched_rcu_qs();
2212 			WRITE_ONCE(rsp->gp_activity, jiffies);
2213 			WARN_ON(signal_pending(current));
2214 			trace_rcu_grace_period(rsp->name,
2215 					       READ_ONCE(rsp->gpnum),
2216 					       TPS("reqwaitsig"));
2217 		}
2218 
2219 		/* Handle quiescent-state forcing. */
2220 		first_gp_fqs = true;
2221 		j = jiffies_till_first_fqs;
2222 		if (j > HZ) {
2223 			j = HZ;
2224 			jiffies_till_first_fqs = HZ;
2225 		}
2226 		ret = 0;
2227 		for (;;) {
2228 			if (!ret) {
2229 				rsp->jiffies_force_qs = jiffies + j;
2230 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2231 					   jiffies + 3 * j);
2232 			}
2233 			trace_rcu_grace_period(rsp->name,
2234 					       READ_ONCE(rsp->gpnum),
2235 					       TPS("fqswait"));
2236 			rsp->gp_state = RCU_GP_WAIT_FQS;
2237 			ret = swait_event_idle_timeout(rsp->gp_wq,
2238 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2239 			rsp->gp_state = RCU_GP_DOING_FQS;
2240 			/* Locking provides needed memory barriers. */
2241 			/* If grace period done, leave loop. */
2242 			if (!READ_ONCE(rnp->qsmask) &&
2243 			    !rcu_preempt_blocked_readers_cgp(rnp))
2244 				break;
2245 			/* If time for quiescent-state forcing, do it. */
2246 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2247 			    (gf & RCU_GP_FLAG_FQS)) {
2248 				trace_rcu_grace_period(rsp->name,
2249 						       READ_ONCE(rsp->gpnum),
2250 						       TPS("fqsstart"));
2251 				rcu_gp_fqs(rsp, first_gp_fqs);
2252 				first_gp_fqs = false;
2253 				trace_rcu_grace_period(rsp->name,
2254 						       READ_ONCE(rsp->gpnum),
2255 						       TPS("fqsend"));
2256 				cond_resched_rcu_qs();
2257 				WRITE_ONCE(rsp->gp_activity, jiffies);
2258 				ret = 0; /* Force full wait till next FQS. */
2259 				j = jiffies_till_next_fqs;
2260 				if (j > HZ) {
2261 					j = HZ;
2262 					jiffies_till_next_fqs = HZ;
2263 				} else if (j < 1) {
2264 					j = 1;
2265 					jiffies_till_next_fqs = 1;
2266 				}
2267 			} else {
2268 				/* Deal with stray signal. */
2269 				cond_resched_rcu_qs();
2270 				WRITE_ONCE(rsp->gp_activity, jiffies);
2271 				WARN_ON(signal_pending(current));
2272 				trace_rcu_grace_period(rsp->name,
2273 						       READ_ONCE(rsp->gpnum),
2274 						       TPS("fqswaitsig"));
2275 				ret = 1; /* Keep old FQS timing. */
2276 				j = jiffies;
2277 				if (time_after(jiffies, rsp->jiffies_force_qs))
2278 					j = 1;
2279 				else
2280 					j = rsp->jiffies_force_qs - j;
2281 			}
2282 		}
2283 
2284 		/* Handle grace-period end. */
2285 		rsp->gp_state = RCU_GP_CLEANUP;
2286 		rcu_gp_cleanup(rsp);
2287 		rsp->gp_state = RCU_GP_CLEANED;
2288 	}
2289 }
2290 
2291 /*
2292  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2293  * in preparation for detecting the next grace period.  The caller must hold
2294  * the root node's ->lock and hard irqs must be disabled.
2295  *
2296  * Note that it is legal for a dying CPU (which is marked as offline) to
2297  * invoke this function.  This can happen when the dying CPU reports its
2298  * quiescent state.
2299  *
2300  * Returns true if the grace-period kthread must be awakened.
2301  */
2302 static bool
2303 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2304 		      struct rcu_data *rdp)
2305 {
2306 	lockdep_assert_held(&rnp->lock);
2307 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2308 		/*
2309 		 * Either we have not yet spawned the grace-period
2310 		 * task, this CPU does not need another grace period,
2311 		 * or a grace period is already in progress.
2312 		 * Either way, don't start a new grace period.
2313 		 */
2314 		return false;
2315 	}
2316 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2317 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2318 			       TPS("newreq"));
2319 
2320 	/*
2321 	 * We can't do wakeups while holding the rnp->lock, as that
2322 	 * could cause possible deadlocks with the rq->lock. Defer
2323 	 * the wakeup to our caller.
2324 	 */
2325 	return true;
2326 }
2327 
2328 /*
2329  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2330  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2331  * is invoked indirectly from rcu_advance_cbs(), which would result in
2332  * endless recursion -- or would do so if it wasn't for the self-deadlock
2333  * that is encountered beforehand.
2334  *
2335  * Returns true if the grace-period kthread needs to be awakened.
2336  */
2337 static bool rcu_start_gp(struct rcu_state *rsp)
2338 {
2339 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2340 	struct rcu_node *rnp = rcu_get_root(rsp);
2341 	bool ret = false;
2342 
2343 	/*
2344 	 * If there is no grace period in progress right now, any
2345 	 * callbacks we have up to this point will be satisfied by the
2346 	 * next grace period.  Also, advancing the callbacks reduces the
2347 	 * probability of false positives from cpu_needs_another_gp()
2348 	 * resulting in pointless grace periods.  So, advance callbacks
2349 	 * then start the grace period!
2350 	 */
2351 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2352 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2353 	return ret;
2354 }
2355 
2356 /*
2357  * Report a full set of quiescent states to the specified rcu_state data
2358  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2359  * kthread if another grace period is required.  Whether we wake
2360  * the grace-period kthread or it awakens itself for the next round
2361  * of quiescent-state forcing, that kthread will clean up after the
2362  * just-completed grace period.  Note that the caller must hold rnp->lock,
2363  * which is released before return.
2364  */
2365 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2366 	__releases(rcu_get_root(rsp)->lock)
2367 {
2368 	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2369 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2370 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2371 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2372 	rcu_gp_kthread_wake(rsp);
2373 }
2374 
2375 /*
2376  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2377  * Allows quiescent states for a group of CPUs to be reported at one go
2378  * to the specified rcu_node structure, though all the CPUs in the group
2379  * must be represented by the same rcu_node structure (which need not be a
2380  * leaf rcu_node structure, though it often will be).  The gps parameter
2381  * is the grace-period snapshot, which means that the quiescent states
2382  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2383  * must be held upon entry, and it is released before return.
2384  */
2385 static void
2386 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2387 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2388 	__releases(rnp->lock)
2389 {
2390 	unsigned long oldmask = 0;
2391 	struct rcu_node *rnp_c;
2392 
2393 	lockdep_assert_held(&rnp->lock);
2394 
2395 	/* Walk up the rcu_node hierarchy. */
2396 	for (;;) {
2397 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2398 
2399 			/*
2400 			 * Our bit has already been cleared, or the
2401 			 * relevant grace period is already over, so done.
2402 			 */
2403 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2404 			return;
2405 		}
2406 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2407 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2408 			     rcu_preempt_blocked_readers_cgp(rnp));
2409 		rnp->qsmask &= ~mask;
2410 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2411 						 mask, rnp->qsmask, rnp->level,
2412 						 rnp->grplo, rnp->grphi,
2413 						 !!rnp->gp_tasks);
2414 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2415 
2416 			/* Other bits still set at this level, so done. */
2417 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2418 			return;
2419 		}
2420 		mask = rnp->grpmask;
2421 		if (rnp->parent == NULL) {
2422 
2423 			/* No more levels.  Exit loop holding root lock. */
2424 
2425 			break;
2426 		}
2427 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2428 		rnp_c = rnp;
2429 		rnp = rnp->parent;
2430 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2431 		oldmask = rnp_c->qsmask;
2432 	}
2433 
2434 	/*
2435 	 * Get here if we are the last CPU to pass through a quiescent
2436 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2437 	 * to clean up and start the next grace period if one is needed.
2438 	 */
2439 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2440 }
2441 
2442 /*
2443  * Record a quiescent state for all tasks that were previously queued
2444  * on the specified rcu_node structure and that were blocking the current
2445  * RCU grace period.  The caller must hold the specified rnp->lock with
2446  * irqs disabled, and this lock is released upon return, but irqs remain
2447  * disabled.
2448  */
2449 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2450 				      struct rcu_node *rnp, unsigned long flags)
2451 	__releases(rnp->lock)
2452 {
2453 	unsigned long gps;
2454 	unsigned long mask;
2455 	struct rcu_node *rnp_p;
2456 
2457 	lockdep_assert_held(&rnp->lock);
2458 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2459 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2460 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2461 		return;  /* Still need more quiescent states! */
2462 	}
2463 
2464 	rnp_p = rnp->parent;
2465 	if (rnp_p == NULL) {
2466 		/*
2467 		 * Only one rcu_node structure in the tree, so don't
2468 		 * try to report up to its nonexistent parent!
2469 		 */
2470 		rcu_report_qs_rsp(rsp, flags);
2471 		return;
2472 	}
2473 
2474 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2475 	gps = rnp->gpnum;
2476 	mask = rnp->grpmask;
2477 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2478 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2479 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2480 }
2481 
2482 /*
2483  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2484  * structure.  This must be called from the specified CPU.
2485  */
2486 static void
2487 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2488 {
2489 	unsigned long flags;
2490 	unsigned long mask;
2491 	bool needwake;
2492 	struct rcu_node *rnp;
2493 
2494 	rnp = rdp->mynode;
2495 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2496 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2497 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2498 
2499 		/*
2500 		 * The grace period in which this quiescent state was
2501 		 * recorded has ended, so don't report it upwards.
2502 		 * We will instead need a new quiescent state that lies
2503 		 * within the current grace period.
2504 		 */
2505 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2506 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2507 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2508 		return;
2509 	}
2510 	mask = rdp->grpmask;
2511 	if ((rnp->qsmask & mask) == 0) {
2512 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2513 	} else {
2514 		rdp->core_needs_qs = false;
2515 
2516 		/*
2517 		 * This GP can't end until cpu checks in, so all of our
2518 		 * callbacks can be processed during the next GP.
2519 		 */
2520 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2521 
2522 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2523 		/* ^^^ Released rnp->lock */
2524 		if (needwake)
2525 			rcu_gp_kthread_wake(rsp);
2526 	}
2527 }
2528 
2529 /*
2530  * Check to see if there is a new grace period of which this CPU
2531  * is not yet aware, and if so, set up local rcu_data state for it.
2532  * Otherwise, see if this CPU has just passed through its first
2533  * quiescent state for this grace period, and record that fact if so.
2534  */
2535 static void
2536 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2537 {
2538 	/* Check for grace-period ends and beginnings. */
2539 	note_gp_changes(rsp, rdp);
2540 
2541 	/*
2542 	 * Does this CPU still need to do its part for current grace period?
2543 	 * If no, return and let the other CPUs do their part as well.
2544 	 */
2545 	if (!rdp->core_needs_qs)
2546 		return;
2547 
2548 	/*
2549 	 * Was there a quiescent state since the beginning of the grace
2550 	 * period? If no, then exit and wait for the next call.
2551 	 */
2552 	if (rdp->cpu_no_qs.b.norm)
2553 		return;
2554 
2555 	/*
2556 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2557 	 * judge of that).
2558 	 */
2559 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2560 }
2561 
2562 /*
2563  * Trace the fact that this CPU is going offline.
2564  */
2565 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2566 {
2567 	RCU_TRACE(unsigned long mask;)
2568 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2569 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2570 
2571 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2572 		return;
2573 
2574 	RCU_TRACE(mask = rdp->grpmask;)
2575 	trace_rcu_grace_period(rsp->name,
2576 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2577 			       TPS("cpuofl"));
2578 }
2579 
2580 /*
2581  * All CPUs for the specified rcu_node structure have gone offline,
2582  * and all tasks that were preempted within an RCU read-side critical
2583  * section while running on one of those CPUs have since exited their RCU
2584  * read-side critical section.  Some other CPU is reporting this fact with
2585  * the specified rcu_node structure's ->lock held and interrupts disabled.
2586  * This function therefore goes up the tree of rcu_node structures,
2587  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2588  * the leaf rcu_node structure's ->qsmaskinit field has already been
2589  * updated
2590  *
2591  * This function does check that the specified rcu_node structure has
2592  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2593  * prematurely.  That said, invoking it after the fact will cost you
2594  * a needless lock acquisition.  So once it has done its work, don't
2595  * invoke it again.
2596  */
2597 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2598 {
2599 	long mask;
2600 	struct rcu_node *rnp = rnp_leaf;
2601 
2602 	lockdep_assert_held(&rnp->lock);
2603 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2604 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2605 		return;
2606 	for (;;) {
2607 		mask = rnp->grpmask;
2608 		rnp = rnp->parent;
2609 		if (!rnp)
2610 			break;
2611 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2612 		rnp->qsmaskinit &= ~mask;
2613 		rnp->qsmask &= ~mask;
2614 		if (rnp->qsmaskinit) {
2615 			raw_spin_unlock_rcu_node(rnp);
2616 			/* irqs remain disabled. */
2617 			return;
2618 		}
2619 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2620 	}
2621 }
2622 
2623 /*
2624  * The CPU has been completely removed, and some other CPU is reporting
2625  * this fact from process context.  Do the remainder of the cleanup.
2626  * There can only be one CPU hotplug operation at a time, so no need for
2627  * explicit locking.
2628  */
2629 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2630 {
2631 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2632 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2633 
2634 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2635 		return;
2636 
2637 	/* Adjust any no-longer-needed kthreads. */
2638 	rcu_boost_kthread_setaffinity(rnp, -1);
2639 }
2640 
2641 /*
2642  * Invoke any RCU callbacks that have made it to the end of their grace
2643  * period.  Thottle as specified by rdp->blimit.
2644  */
2645 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2646 {
2647 	unsigned long flags;
2648 	struct rcu_head *rhp;
2649 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2650 	long bl, count;
2651 
2652 	/* If no callbacks are ready, just return. */
2653 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2654 		trace_rcu_batch_start(rsp->name,
2655 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2656 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2657 		trace_rcu_batch_end(rsp->name, 0,
2658 				    !rcu_segcblist_empty(&rdp->cblist),
2659 				    need_resched(), is_idle_task(current),
2660 				    rcu_is_callbacks_kthread());
2661 		return;
2662 	}
2663 
2664 	/*
2665 	 * Extract the list of ready callbacks, disabling to prevent
2666 	 * races with call_rcu() from interrupt handlers.  Leave the
2667 	 * callback counts, as rcu_barrier() needs to be conservative.
2668 	 */
2669 	local_irq_save(flags);
2670 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2671 	bl = rdp->blimit;
2672 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2673 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2674 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2675 	local_irq_restore(flags);
2676 
2677 	/* Invoke callbacks. */
2678 	rhp = rcu_cblist_dequeue(&rcl);
2679 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2680 		debug_rcu_head_unqueue(rhp);
2681 		if (__rcu_reclaim(rsp->name, rhp))
2682 			rcu_cblist_dequeued_lazy(&rcl);
2683 		/*
2684 		 * Stop only if limit reached and CPU has something to do.
2685 		 * Note: The rcl structure counts down from zero.
2686 		 */
2687 		if (-rcl.len >= bl &&
2688 		    (need_resched() ||
2689 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2690 			break;
2691 	}
2692 
2693 	local_irq_save(flags);
2694 	count = -rcl.len;
2695 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2696 			    is_idle_task(current), rcu_is_callbacks_kthread());
2697 
2698 	/* Update counts and requeue any remaining callbacks. */
2699 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2700 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2701 	rdp->n_cbs_invoked += count;
2702 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2703 
2704 	/* Reinstate batch limit if we have worked down the excess. */
2705 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2706 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2707 		rdp->blimit = blimit;
2708 
2709 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2710 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2711 		rdp->qlen_last_fqs_check = 0;
2712 		rdp->n_force_qs_snap = rsp->n_force_qs;
2713 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2714 		rdp->qlen_last_fqs_check = count;
2715 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2716 
2717 	local_irq_restore(flags);
2718 
2719 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2720 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2721 		invoke_rcu_core();
2722 }
2723 
2724 /*
2725  * Check to see if this CPU is in a non-context-switch quiescent state
2726  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2727  * Also schedule RCU core processing.
2728  *
2729  * This function must be called from hardirq context.  It is normally
2730  * invoked from the scheduling-clock interrupt.
2731  */
2732 void rcu_check_callbacks(int user)
2733 {
2734 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2735 	increment_cpu_stall_ticks();
2736 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2737 
2738 		/*
2739 		 * Get here if this CPU took its interrupt from user
2740 		 * mode or from the idle loop, and if this is not a
2741 		 * nested interrupt.  In this case, the CPU is in
2742 		 * a quiescent state, so note it.
2743 		 *
2744 		 * No memory barrier is required here because both
2745 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2746 		 * variables that other CPUs neither access nor modify,
2747 		 * at least not while the corresponding CPU is online.
2748 		 */
2749 
2750 		rcu_sched_qs();
2751 		rcu_bh_qs();
2752 
2753 	} else if (!in_softirq()) {
2754 
2755 		/*
2756 		 * Get here if this CPU did not take its interrupt from
2757 		 * softirq, in other words, if it is not interrupting
2758 		 * a rcu_bh read-side critical section.  This is an _bh
2759 		 * critical section, so note it.
2760 		 */
2761 
2762 		rcu_bh_qs();
2763 	}
2764 	rcu_preempt_check_callbacks();
2765 	if (rcu_pending())
2766 		invoke_rcu_core();
2767 	if (user)
2768 		rcu_note_voluntary_context_switch(current);
2769 	trace_rcu_utilization(TPS("End scheduler-tick"));
2770 }
2771 
2772 /*
2773  * Scan the leaf rcu_node structures, processing dyntick state for any that
2774  * have not yet encountered a quiescent state, using the function specified.
2775  * Also initiate boosting for any threads blocked on the root rcu_node.
2776  *
2777  * The caller must have suppressed start of new grace periods.
2778  */
2779 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2780 {
2781 	int cpu;
2782 	unsigned long flags;
2783 	unsigned long mask;
2784 	struct rcu_node *rnp;
2785 
2786 	rcu_for_each_leaf_node(rsp, rnp) {
2787 		cond_resched_rcu_qs();
2788 		mask = 0;
2789 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2790 		if (rnp->qsmask == 0) {
2791 			if (rcu_state_p == &rcu_sched_state ||
2792 			    rsp != rcu_state_p ||
2793 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2794 				/*
2795 				 * No point in scanning bits because they
2796 				 * are all zero.  But we might need to
2797 				 * priority-boost blocked readers.
2798 				 */
2799 				rcu_initiate_boost(rnp, flags);
2800 				/* rcu_initiate_boost() releases rnp->lock */
2801 				continue;
2802 			}
2803 			if (rnp->parent &&
2804 			    (rnp->parent->qsmask & rnp->grpmask)) {
2805 				/*
2806 				 * Race between grace-period
2807 				 * initialization and task exiting RCU
2808 				 * read-side critical section: Report.
2809 				 */
2810 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2811 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2812 				continue;
2813 			}
2814 		}
2815 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2816 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2817 			if ((rnp->qsmask & bit) != 0) {
2818 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2819 					mask |= bit;
2820 			}
2821 		}
2822 		if (mask != 0) {
2823 			/* Idle/offline CPUs, report (releases rnp->lock. */
2824 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2825 		} else {
2826 			/* Nothing to do here, so just drop the lock. */
2827 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2828 		}
2829 	}
2830 }
2831 
2832 /*
2833  * Force quiescent states on reluctant CPUs, and also detect which
2834  * CPUs are in dyntick-idle mode.
2835  */
2836 static void force_quiescent_state(struct rcu_state *rsp)
2837 {
2838 	unsigned long flags;
2839 	bool ret;
2840 	struct rcu_node *rnp;
2841 	struct rcu_node *rnp_old = NULL;
2842 
2843 	/* Funnel through hierarchy to reduce memory contention. */
2844 	rnp = __this_cpu_read(rsp->rda->mynode);
2845 	for (; rnp != NULL; rnp = rnp->parent) {
2846 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2847 		      !raw_spin_trylock(&rnp->fqslock);
2848 		if (rnp_old != NULL)
2849 			raw_spin_unlock(&rnp_old->fqslock);
2850 		if (ret) {
2851 			rsp->n_force_qs_lh++;
2852 			return;
2853 		}
2854 		rnp_old = rnp;
2855 	}
2856 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2857 
2858 	/* Reached the root of the rcu_node tree, acquire lock. */
2859 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2860 	raw_spin_unlock(&rnp_old->fqslock);
2861 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2862 		rsp->n_force_qs_lh++;
2863 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2864 		return;  /* Someone beat us to it. */
2865 	}
2866 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2867 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2868 	rcu_gp_kthread_wake(rsp);
2869 }
2870 
2871 /*
2872  * This does the RCU core processing work for the specified rcu_state
2873  * and rcu_data structures.  This may be called only from the CPU to
2874  * whom the rdp belongs.
2875  */
2876 static void
2877 __rcu_process_callbacks(struct rcu_state *rsp)
2878 {
2879 	unsigned long flags;
2880 	bool needwake;
2881 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2882 
2883 	WARN_ON_ONCE(!rdp->beenonline);
2884 
2885 	/* Update RCU state based on any recent quiescent states. */
2886 	rcu_check_quiescent_state(rsp, rdp);
2887 
2888 	/* Does this CPU require a not-yet-started grace period? */
2889 	local_irq_save(flags);
2890 	if (cpu_needs_another_gp(rsp, rdp)) {
2891 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2892 		needwake = rcu_start_gp(rsp);
2893 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2894 		if (needwake)
2895 			rcu_gp_kthread_wake(rsp);
2896 	} else {
2897 		local_irq_restore(flags);
2898 	}
2899 
2900 	/* If there are callbacks ready, invoke them. */
2901 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2902 		invoke_rcu_callbacks(rsp, rdp);
2903 
2904 	/* Do any needed deferred wakeups of rcuo kthreads. */
2905 	do_nocb_deferred_wakeup(rdp);
2906 }
2907 
2908 /*
2909  * Do RCU core processing for the current CPU.
2910  */
2911 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2912 {
2913 	struct rcu_state *rsp;
2914 
2915 	if (cpu_is_offline(smp_processor_id()))
2916 		return;
2917 	trace_rcu_utilization(TPS("Start RCU core"));
2918 	for_each_rcu_flavor(rsp)
2919 		__rcu_process_callbacks(rsp);
2920 	trace_rcu_utilization(TPS("End RCU core"));
2921 }
2922 
2923 /*
2924  * Schedule RCU callback invocation.  If the specified type of RCU
2925  * does not support RCU priority boosting, just do a direct call,
2926  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2927  * are running on the current CPU with softirqs disabled, the
2928  * rcu_cpu_kthread_task cannot disappear out from under us.
2929  */
2930 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2931 {
2932 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2933 		return;
2934 	if (likely(!rsp->boost)) {
2935 		rcu_do_batch(rsp, rdp);
2936 		return;
2937 	}
2938 	invoke_rcu_callbacks_kthread();
2939 }
2940 
2941 static void invoke_rcu_core(void)
2942 {
2943 	if (cpu_online(smp_processor_id()))
2944 		raise_softirq(RCU_SOFTIRQ);
2945 }
2946 
2947 /*
2948  * Handle any core-RCU processing required by a call_rcu() invocation.
2949  */
2950 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2951 			    struct rcu_head *head, unsigned long flags)
2952 {
2953 	bool needwake;
2954 
2955 	/*
2956 	 * If called from an extended quiescent state, invoke the RCU
2957 	 * core in order to force a re-evaluation of RCU's idleness.
2958 	 */
2959 	if (!rcu_is_watching())
2960 		invoke_rcu_core();
2961 
2962 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2963 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2964 		return;
2965 
2966 	/*
2967 	 * Force the grace period if too many callbacks or too long waiting.
2968 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2969 	 * if some other CPU has recently done so.  Also, don't bother
2970 	 * invoking force_quiescent_state() if the newly enqueued callback
2971 	 * is the only one waiting for a grace period to complete.
2972 	 */
2973 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2974 		     rdp->qlen_last_fqs_check + qhimark)) {
2975 
2976 		/* Are we ignoring a completed grace period? */
2977 		note_gp_changes(rsp, rdp);
2978 
2979 		/* Start a new grace period if one not already started. */
2980 		if (!rcu_gp_in_progress(rsp)) {
2981 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2982 
2983 			raw_spin_lock_rcu_node(rnp_root);
2984 			needwake = rcu_start_gp(rsp);
2985 			raw_spin_unlock_rcu_node(rnp_root);
2986 			if (needwake)
2987 				rcu_gp_kthread_wake(rsp);
2988 		} else {
2989 			/* Give the grace period a kick. */
2990 			rdp->blimit = LONG_MAX;
2991 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2992 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2993 				force_quiescent_state(rsp);
2994 			rdp->n_force_qs_snap = rsp->n_force_qs;
2995 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2996 		}
2997 	}
2998 }
2999 
3000 /*
3001  * RCU callback function to leak a callback.
3002  */
3003 static void rcu_leak_callback(struct rcu_head *rhp)
3004 {
3005 }
3006 
3007 /*
3008  * Helper function for call_rcu() and friends.  The cpu argument will
3009  * normally be -1, indicating "currently running CPU".  It may specify
3010  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3011  * is expected to specify a CPU.
3012  */
3013 static void
3014 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3015 	   struct rcu_state *rsp, int cpu, bool lazy)
3016 {
3017 	unsigned long flags;
3018 	struct rcu_data *rdp;
3019 
3020 	/* Misaligned rcu_head! */
3021 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3022 
3023 	if (debug_rcu_head_queue(head)) {
3024 		/*
3025 		 * Probable double call_rcu(), so leak the callback.
3026 		 * Use rcu:rcu_callback trace event to find the previous
3027 		 * time callback was passed to __call_rcu().
3028 		 */
3029 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3030 			  head, head->func);
3031 		WRITE_ONCE(head->func, rcu_leak_callback);
3032 		return;
3033 	}
3034 	head->func = func;
3035 	head->next = NULL;
3036 	local_irq_save(flags);
3037 	rdp = this_cpu_ptr(rsp->rda);
3038 
3039 	/* Add the callback to our list. */
3040 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3041 		int offline;
3042 
3043 		if (cpu != -1)
3044 			rdp = per_cpu_ptr(rsp->rda, cpu);
3045 		if (likely(rdp->mynode)) {
3046 			/* Post-boot, so this should be for a no-CBs CPU. */
3047 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3048 			WARN_ON_ONCE(offline);
3049 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3050 			local_irq_restore(flags);
3051 			return;
3052 		}
3053 		/*
3054 		 * Very early boot, before rcu_init().  Initialize if needed
3055 		 * and then drop through to queue the callback.
3056 		 */
3057 		BUG_ON(cpu != -1);
3058 		WARN_ON_ONCE(!rcu_is_watching());
3059 		if (rcu_segcblist_empty(&rdp->cblist))
3060 			rcu_segcblist_init(&rdp->cblist);
3061 	}
3062 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3063 	if (!lazy)
3064 		rcu_idle_count_callbacks_posted();
3065 
3066 	if (__is_kfree_rcu_offset((unsigned long)func))
3067 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3068 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3069 					 rcu_segcblist_n_cbs(&rdp->cblist));
3070 	else
3071 		trace_rcu_callback(rsp->name, head,
3072 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3073 				   rcu_segcblist_n_cbs(&rdp->cblist));
3074 
3075 	/* Go handle any RCU core processing required. */
3076 	__call_rcu_core(rsp, rdp, head, flags);
3077 	local_irq_restore(flags);
3078 }
3079 
3080 /**
3081  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3082  * @head: structure to be used for queueing the RCU updates.
3083  * @func: actual callback function to be invoked after the grace period
3084  *
3085  * The callback function will be invoked some time after a full grace
3086  * period elapses, in other words after all currently executing RCU
3087  * read-side critical sections have completed. call_rcu_sched() assumes
3088  * that the read-side critical sections end on enabling of preemption
3089  * or on voluntary preemption.
3090  * RCU read-side critical sections are delimited by :
3091  *  - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3092  *  - anything that disables preemption.
3093  *
3094  *  These may be nested.
3095  *
3096  * See the description of call_rcu() for more detailed information on
3097  * memory ordering guarantees.
3098  */
3099 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3100 {
3101 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3102 }
3103 EXPORT_SYMBOL_GPL(call_rcu_sched);
3104 
3105 /**
3106  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3107  * @head: structure to be used for queueing the RCU updates.
3108  * @func: actual callback function to be invoked after the grace period
3109  *
3110  * The callback function will be invoked some time after a full grace
3111  * period elapses, in other words after all currently executing RCU
3112  * read-side critical sections have completed. call_rcu_bh() assumes
3113  * that the read-side critical sections end on completion of a softirq
3114  * handler. This means that read-side critical sections in process
3115  * context must not be interrupted by softirqs. This interface is to be
3116  * used when most of the read-side critical sections are in softirq context.
3117  * RCU read-side critical sections are delimited by :
3118  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
3119  *  OR
3120  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3121  *  These may be nested.
3122  *
3123  * See the description of call_rcu() for more detailed information on
3124  * memory ordering guarantees.
3125  */
3126 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3127 {
3128 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3129 }
3130 EXPORT_SYMBOL_GPL(call_rcu_bh);
3131 
3132 /*
3133  * Queue an RCU callback for lazy invocation after a grace period.
3134  * This will likely be later named something like "call_rcu_lazy()",
3135  * but this change will require some way of tagging the lazy RCU
3136  * callbacks in the list of pending callbacks. Until then, this
3137  * function may only be called from __kfree_rcu().
3138  */
3139 void kfree_call_rcu(struct rcu_head *head,
3140 		    rcu_callback_t func)
3141 {
3142 	__call_rcu(head, func, rcu_state_p, -1, 1);
3143 }
3144 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3145 
3146 /*
3147  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3148  * any blocking grace-period wait automatically implies a grace period
3149  * if there is only one CPU online at any point time during execution
3150  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3151  * occasionally incorrectly indicate that there are multiple CPUs online
3152  * when there was in fact only one the whole time, as this just adds
3153  * some overhead: RCU still operates correctly.
3154  */
3155 static inline int rcu_blocking_is_gp(void)
3156 {
3157 	int ret;
3158 
3159 	might_sleep();  /* Check for RCU read-side critical section. */
3160 	preempt_disable();
3161 	ret = num_online_cpus() <= 1;
3162 	preempt_enable();
3163 	return ret;
3164 }
3165 
3166 /**
3167  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3168  *
3169  * Control will return to the caller some time after a full rcu-sched
3170  * grace period has elapsed, in other words after all currently executing
3171  * rcu-sched read-side critical sections have completed.   These read-side
3172  * critical sections are delimited by rcu_read_lock_sched() and
3173  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3174  * local_irq_disable(), and so on may be used in place of
3175  * rcu_read_lock_sched().
3176  *
3177  * This means that all preempt_disable code sequences, including NMI and
3178  * non-threaded hardware-interrupt handlers, in progress on entry will
3179  * have completed before this primitive returns.  However, this does not
3180  * guarantee that softirq handlers will have completed, since in some
3181  * kernels, these handlers can run in process context, and can block.
3182  *
3183  * Note that this guarantee implies further memory-ordering guarantees.
3184  * On systems with more than one CPU, when synchronize_sched() returns,
3185  * each CPU is guaranteed to have executed a full memory barrier since the
3186  * end of its last RCU-sched read-side critical section whose beginning
3187  * preceded the call to synchronize_sched().  In addition, each CPU having
3188  * an RCU read-side critical section that extends beyond the return from
3189  * synchronize_sched() is guaranteed to have executed a full memory barrier
3190  * after the beginning of synchronize_sched() and before the beginning of
3191  * that RCU read-side critical section.  Note that these guarantees include
3192  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3193  * that are executing in the kernel.
3194  *
3195  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3196  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3197  * to have executed a full memory barrier during the execution of
3198  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3199  * again only if the system has more than one CPU).
3200  */
3201 void synchronize_sched(void)
3202 {
3203 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3204 			 lock_is_held(&rcu_lock_map) ||
3205 			 lock_is_held(&rcu_sched_lock_map),
3206 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 	if (rcu_blocking_is_gp())
3208 		return;
3209 	if (rcu_gp_is_expedited())
3210 		synchronize_sched_expedited();
3211 	else
3212 		wait_rcu_gp(call_rcu_sched);
3213 }
3214 EXPORT_SYMBOL_GPL(synchronize_sched);
3215 
3216 /**
3217  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3218  *
3219  * Control will return to the caller some time after a full rcu_bh grace
3220  * period has elapsed, in other words after all currently executing rcu_bh
3221  * read-side critical sections have completed.  RCU read-side critical
3222  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223  * and may be nested.
3224  *
3225  * See the description of synchronize_sched() for more detailed information
3226  * on memory ordering guarantees.
3227  */
3228 void synchronize_rcu_bh(void)
3229 {
3230 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3231 			 lock_is_held(&rcu_lock_map) ||
3232 			 lock_is_held(&rcu_sched_lock_map),
3233 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 	if (rcu_blocking_is_gp())
3235 		return;
3236 	if (rcu_gp_is_expedited())
3237 		synchronize_rcu_bh_expedited();
3238 	else
3239 		wait_rcu_gp(call_rcu_bh);
3240 }
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3242 
3243 /**
3244  * get_state_synchronize_rcu - Snapshot current RCU state
3245  *
3246  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247  * to determine whether or not a full grace period has elapsed in the
3248  * meantime.
3249  */
3250 unsigned long get_state_synchronize_rcu(void)
3251 {
3252 	/*
3253 	 * Any prior manipulation of RCU-protected data must happen
3254 	 * before the load from ->gpnum.
3255 	 */
3256 	smp_mb();  /* ^^^ */
3257 
3258 	/*
3259 	 * Make sure this load happens before the purportedly
3260 	 * time-consuming work between get_state_synchronize_rcu()
3261 	 * and cond_synchronize_rcu().
3262 	 */
3263 	return smp_load_acquire(&rcu_state_p->gpnum);
3264 }
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3266 
3267 /**
3268  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3269  *
3270  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3271  *
3272  * If a full RCU grace period has elapsed since the earlier call to
3273  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3274  * synchronize_rcu() to wait for a full grace period.
3275  *
3276  * Yes, this function does not take counter wrap into account.  But
3277  * counter wrap is harmless.  If the counter wraps, we have waited for
3278  * more than 2 billion grace periods (and way more on a 64-bit system!),
3279  * so waiting for one additional grace period should be just fine.
3280  */
3281 void cond_synchronize_rcu(unsigned long oldstate)
3282 {
3283 	unsigned long newstate;
3284 
3285 	/*
3286 	 * Ensure that this load happens before any RCU-destructive
3287 	 * actions the caller might carry out after we return.
3288 	 */
3289 	newstate = smp_load_acquire(&rcu_state_p->completed);
3290 	if (ULONG_CMP_GE(oldstate, newstate))
3291 		synchronize_rcu();
3292 }
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3294 
3295 /**
3296  * get_state_synchronize_sched - Snapshot current RCU-sched state
3297  *
3298  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299  * to determine whether or not a full grace period has elapsed in the
3300  * meantime.
3301  */
3302 unsigned long get_state_synchronize_sched(void)
3303 {
3304 	/*
3305 	 * Any prior manipulation of RCU-protected data must happen
3306 	 * before the load from ->gpnum.
3307 	 */
3308 	smp_mb();  /* ^^^ */
3309 
3310 	/*
3311 	 * Make sure this load happens before the purportedly
3312 	 * time-consuming work between get_state_synchronize_sched()
3313 	 * and cond_synchronize_sched().
3314 	 */
3315 	return smp_load_acquire(&rcu_sched_state.gpnum);
3316 }
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3318 
3319 /**
3320  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3321  *
3322  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3323  *
3324  * If a full RCU-sched grace period has elapsed since the earlier call to
3325  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3326  * synchronize_sched() to wait for a full grace period.
3327  *
3328  * Yes, this function does not take counter wrap into account.  But
3329  * counter wrap is harmless.  If the counter wraps, we have waited for
3330  * more than 2 billion grace periods (and way more on a 64-bit system!),
3331  * so waiting for one additional grace period should be just fine.
3332  */
3333 void cond_synchronize_sched(unsigned long oldstate)
3334 {
3335 	unsigned long newstate;
3336 
3337 	/*
3338 	 * Ensure that this load happens before any RCU-destructive
3339 	 * actions the caller might carry out after we return.
3340 	 */
3341 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3342 	if (ULONG_CMP_GE(oldstate, newstate))
3343 		synchronize_sched();
3344 }
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3346 
3347 /*
3348  * Check to see if there is any immediate RCU-related work to be done
3349  * by the current CPU, for the specified type of RCU, returning 1 if so.
3350  * The checks are in order of increasing expense: checks that can be
3351  * carried out against CPU-local state are performed first.  However,
3352  * we must check for CPU stalls first, else we might not get a chance.
3353  */
3354 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3355 {
3356 	struct rcu_node *rnp = rdp->mynode;
3357 
3358 	rdp->n_rcu_pending++;
3359 
3360 	/* Check for CPU stalls, if enabled. */
3361 	check_cpu_stall(rsp, rdp);
3362 
3363 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3364 	if (rcu_nohz_full_cpu(rsp))
3365 		return 0;
3366 
3367 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3368 	if (rcu_scheduler_fully_active &&
3369 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3370 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3371 		rdp->n_rp_core_needs_qs++;
3372 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3373 		rdp->n_rp_report_qs++;
3374 		return 1;
3375 	}
3376 
3377 	/* Does this CPU have callbacks ready to invoke? */
3378 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3379 		rdp->n_rp_cb_ready++;
3380 		return 1;
3381 	}
3382 
3383 	/* Has RCU gone idle with this CPU needing another grace period? */
3384 	if (cpu_needs_another_gp(rsp, rdp)) {
3385 		rdp->n_rp_cpu_needs_gp++;
3386 		return 1;
3387 	}
3388 
3389 	/* Has another RCU grace period completed?  */
3390 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3391 		rdp->n_rp_gp_completed++;
3392 		return 1;
3393 	}
3394 
3395 	/* Has a new RCU grace period started? */
3396 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3397 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3398 		rdp->n_rp_gp_started++;
3399 		return 1;
3400 	}
3401 
3402 	/* Does this CPU need a deferred NOCB wakeup? */
3403 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3404 		rdp->n_rp_nocb_defer_wakeup++;
3405 		return 1;
3406 	}
3407 
3408 	/* nothing to do */
3409 	rdp->n_rp_need_nothing++;
3410 	return 0;
3411 }
3412 
3413 /*
3414  * Check to see if there is any immediate RCU-related work to be done
3415  * by the current CPU, returning 1 if so.  This function is part of the
3416  * RCU implementation; it is -not- an exported member of the RCU API.
3417  */
3418 static int rcu_pending(void)
3419 {
3420 	struct rcu_state *rsp;
3421 
3422 	for_each_rcu_flavor(rsp)
3423 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3424 			return 1;
3425 	return 0;
3426 }
3427 
3428 /*
3429  * Return true if the specified CPU has any callback.  If all_lazy is
3430  * non-NULL, store an indication of whether all callbacks are lazy.
3431  * (If there are no callbacks, all of them are deemed to be lazy.)
3432  */
3433 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3434 {
3435 	bool al = true;
3436 	bool hc = false;
3437 	struct rcu_data *rdp;
3438 	struct rcu_state *rsp;
3439 
3440 	for_each_rcu_flavor(rsp) {
3441 		rdp = this_cpu_ptr(rsp->rda);
3442 		if (rcu_segcblist_empty(&rdp->cblist))
3443 			continue;
3444 		hc = true;
3445 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3446 			al = false;
3447 			break;
3448 		}
3449 	}
3450 	if (all_lazy)
3451 		*all_lazy = al;
3452 	return hc;
3453 }
3454 
3455 /*
3456  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3457  * the compiler is expected to optimize this away.
3458  */
3459 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3460 			       int cpu, unsigned long done)
3461 {
3462 	trace_rcu_barrier(rsp->name, s, cpu,
3463 			  atomic_read(&rsp->barrier_cpu_count), done);
3464 }
3465 
3466 /*
3467  * RCU callback function for _rcu_barrier().  If we are last, wake
3468  * up the task executing _rcu_barrier().
3469  */
3470 static void rcu_barrier_callback(struct rcu_head *rhp)
3471 {
3472 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3473 	struct rcu_state *rsp = rdp->rsp;
3474 
3475 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3476 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3477 				   rsp->barrier_sequence);
3478 		complete(&rsp->barrier_completion);
3479 	} else {
3480 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3481 	}
3482 }
3483 
3484 /*
3485  * Called with preemption disabled, and from cross-cpu IRQ context.
3486  */
3487 static void rcu_barrier_func(void *type)
3488 {
3489 	struct rcu_state *rsp = type;
3490 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3491 
3492 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3493 	rdp->barrier_head.func = rcu_barrier_callback;
3494 	debug_rcu_head_queue(&rdp->barrier_head);
3495 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3496 		atomic_inc(&rsp->barrier_cpu_count);
3497 	} else {
3498 		debug_rcu_head_unqueue(&rdp->barrier_head);
3499 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3500 				   rsp->barrier_sequence);
3501 	}
3502 }
3503 
3504 /*
3505  * Orchestrate the specified type of RCU barrier, waiting for all
3506  * RCU callbacks of the specified type to complete.
3507  */
3508 static void _rcu_barrier(struct rcu_state *rsp)
3509 {
3510 	int cpu;
3511 	struct rcu_data *rdp;
3512 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3513 
3514 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3515 
3516 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3517 	mutex_lock(&rsp->barrier_mutex);
3518 
3519 	/* Did someone else do our work for us? */
3520 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3521 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3522 				   rsp->barrier_sequence);
3523 		smp_mb(); /* caller's subsequent code after above check. */
3524 		mutex_unlock(&rsp->barrier_mutex);
3525 		return;
3526 	}
3527 
3528 	/* Mark the start of the barrier operation. */
3529 	rcu_seq_start(&rsp->barrier_sequence);
3530 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3531 
3532 	/*
3533 	 * Initialize the count to one rather than to zero in order to
3534 	 * avoid a too-soon return to zero in case of a short grace period
3535 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3536 	 * to ensure that no offline CPU has callbacks queued.
3537 	 */
3538 	init_completion(&rsp->barrier_completion);
3539 	atomic_set(&rsp->barrier_cpu_count, 1);
3540 	get_online_cpus();
3541 
3542 	/*
3543 	 * Force each CPU with callbacks to register a new callback.
3544 	 * When that callback is invoked, we will know that all of the
3545 	 * corresponding CPU's preceding callbacks have been invoked.
3546 	 */
3547 	for_each_possible_cpu(cpu) {
3548 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3549 			continue;
3550 		rdp = per_cpu_ptr(rsp->rda, cpu);
3551 		if (rcu_is_nocb_cpu(cpu)) {
3552 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3553 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3554 						   rsp->barrier_sequence);
3555 			} else {
3556 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3557 						   rsp->barrier_sequence);
3558 				smp_mb__before_atomic();
3559 				atomic_inc(&rsp->barrier_cpu_count);
3560 				__call_rcu(&rdp->barrier_head,
3561 					   rcu_barrier_callback, rsp, cpu, 0);
3562 			}
3563 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3564 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3565 					   rsp->barrier_sequence);
3566 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3567 		} else {
3568 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3569 					   rsp->barrier_sequence);
3570 		}
3571 	}
3572 	put_online_cpus();
3573 
3574 	/*
3575 	 * Now that we have an rcu_barrier_callback() callback on each
3576 	 * CPU, and thus each counted, remove the initial count.
3577 	 */
3578 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3579 		complete(&rsp->barrier_completion);
3580 
3581 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3582 	wait_for_completion(&rsp->barrier_completion);
3583 
3584 	/* Mark the end of the barrier operation. */
3585 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3586 	rcu_seq_end(&rsp->barrier_sequence);
3587 
3588 	/* Other rcu_barrier() invocations can now safely proceed. */
3589 	mutex_unlock(&rsp->barrier_mutex);
3590 }
3591 
3592 /**
3593  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3594  */
3595 void rcu_barrier_bh(void)
3596 {
3597 	_rcu_barrier(&rcu_bh_state);
3598 }
3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3600 
3601 /**
3602  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3603  */
3604 void rcu_barrier_sched(void)
3605 {
3606 	_rcu_barrier(&rcu_sched_state);
3607 }
3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3609 
3610 /*
3611  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3612  * first CPU in a given leaf rcu_node structure coming online.  The caller
3613  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3614  * disabled.
3615  */
3616 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3617 {
3618 	long mask;
3619 	struct rcu_node *rnp = rnp_leaf;
3620 
3621 	lockdep_assert_held(&rnp->lock);
3622 	for (;;) {
3623 		mask = rnp->grpmask;
3624 		rnp = rnp->parent;
3625 		if (rnp == NULL)
3626 			return;
3627 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3628 		rnp->qsmaskinit |= mask;
3629 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3630 	}
3631 }
3632 
3633 /*
3634  * Do boot-time initialization of a CPU's per-CPU RCU data.
3635  */
3636 static void __init
3637 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3638 {
3639 	unsigned long flags;
3640 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3641 	struct rcu_node *rnp = rcu_get_root(rsp);
3642 
3643 	/* Set up local state, ensuring consistent view of global state. */
3644 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3645 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3646 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3647 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3648 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3649 	rdp->cpu = cpu;
3650 	rdp->rsp = rsp;
3651 	rcu_boot_init_nocb_percpu_data(rdp);
3652 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3653 }
3654 
3655 /*
3656  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3657  * offline event can be happening at a given time.  Note also that we
3658  * can accept some slop in the rsp->completed access due to the fact
3659  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3660  */
3661 static void
3662 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3663 {
3664 	unsigned long flags;
3665 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3666 	struct rcu_node *rnp = rcu_get_root(rsp);
3667 
3668 	/* Set up local state, ensuring consistent view of global state. */
3669 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3670 	rdp->qlen_last_fqs_check = 0;
3671 	rdp->n_force_qs_snap = rsp->n_force_qs;
3672 	rdp->blimit = blimit;
3673 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3674 	    !init_nocb_callback_list(rdp))
3675 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3676 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3677 	rcu_dynticks_eqs_online();
3678 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3679 
3680 	/*
3681 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3682 	 * propagation up the rcu_node tree will happen at the beginning
3683 	 * of the next grace period.
3684 	 */
3685 	rnp = rdp->mynode;
3686 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3687 	rdp->beenonline = true;	 /* We have now been online. */
3688 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3689 	rdp->completed = rnp->completed;
3690 	rdp->cpu_no_qs.b.norm = true;
3691 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3692 	rdp->core_needs_qs = false;
3693 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3694 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3695 }
3696 
3697 /*
3698  * Invoked early in the CPU-online process, when pretty much all
3699  * services are available.  The incoming CPU is not present.
3700  */
3701 int rcutree_prepare_cpu(unsigned int cpu)
3702 {
3703 	struct rcu_state *rsp;
3704 
3705 	for_each_rcu_flavor(rsp)
3706 		rcu_init_percpu_data(cpu, rsp);
3707 
3708 	rcu_prepare_kthreads(cpu);
3709 	rcu_spawn_all_nocb_kthreads(cpu);
3710 
3711 	return 0;
3712 }
3713 
3714 /*
3715  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3716  */
3717 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3718 {
3719 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3720 
3721 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3722 }
3723 
3724 /*
3725  * Near the end of the CPU-online process.  Pretty much all services
3726  * enabled, and the CPU is now very much alive.
3727  */
3728 int rcutree_online_cpu(unsigned int cpu)
3729 {
3730 	sync_sched_exp_online_cleanup(cpu);
3731 	rcutree_affinity_setting(cpu, -1);
3732 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3733 		srcu_online_cpu(cpu);
3734 	return 0;
3735 }
3736 
3737 /*
3738  * Near the beginning of the process.  The CPU is still very much alive
3739  * with pretty much all services enabled.
3740  */
3741 int rcutree_offline_cpu(unsigned int cpu)
3742 {
3743 	rcutree_affinity_setting(cpu, cpu);
3744 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 		srcu_offline_cpu(cpu);
3746 	return 0;
3747 }
3748 
3749 /*
3750  * Near the end of the offline process.  We do only tracing here.
3751  */
3752 int rcutree_dying_cpu(unsigned int cpu)
3753 {
3754 	struct rcu_state *rsp;
3755 
3756 	for_each_rcu_flavor(rsp)
3757 		rcu_cleanup_dying_cpu(rsp);
3758 	return 0;
3759 }
3760 
3761 /*
3762  * The outgoing CPU is gone and we are running elsewhere.
3763  */
3764 int rcutree_dead_cpu(unsigned int cpu)
3765 {
3766 	struct rcu_state *rsp;
3767 
3768 	for_each_rcu_flavor(rsp) {
3769 		rcu_cleanup_dead_cpu(cpu, rsp);
3770 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3771 	}
3772 	return 0;
3773 }
3774 
3775 /*
3776  * Mark the specified CPU as being online so that subsequent grace periods
3777  * (both expedited and normal) will wait on it.  Note that this means that
3778  * incoming CPUs are not allowed to use RCU read-side critical sections
3779  * until this function is called.  Failing to observe this restriction
3780  * will result in lockdep splats.
3781  *
3782  * Note that this function is special in that it is invoked directly
3783  * from the incoming CPU rather than from the cpuhp_step mechanism.
3784  * This is because this function must be invoked at a precise location.
3785  */
3786 void rcu_cpu_starting(unsigned int cpu)
3787 {
3788 	unsigned long flags;
3789 	unsigned long mask;
3790 	int nbits;
3791 	unsigned long oldmask;
3792 	struct rcu_data *rdp;
3793 	struct rcu_node *rnp;
3794 	struct rcu_state *rsp;
3795 
3796 	for_each_rcu_flavor(rsp) {
3797 		rdp = per_cpu_ptr(rsp->rda, cpu);
3798 		rnp = rdp->mynode;
3799 		mask = rdp->grpmask;
3800 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3801 		rnp->qsmaskinitnext |= mask;
3802 		oldmask = rnp->expmaskinitnext;
3803 		rnp->expmaskinitnext |= mask;
3804 		oldmask ^= rnp->expmaskinitnext;
3805 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3806 		/* Allow lockless access for expedited grace periods. */
3807 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3808 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3809 	}
3810 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3811 }
3812 
3813 #ifdef CONFIG_HOTPLUG_CPU
3814 /*
3815  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3816  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3817  * bit masks.
3818  */
3819 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3820 {
3821 	unsigned long flags;
3822 	unsigned long mask;
3823 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3824 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3825 
3826 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3827 	mask = rdp->grpmask;
3828 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3829 	rnp->qsmaskinitnext &= ~mask;
3830 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3831 }
3832 
3833 /*
3834  * The outgoing function has no further need of RCU, so remove it from
3835  * the list of CPUs that RCU must track.
3836  *
3837  * Note that this function is special in that it is invoked directly
3838  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3839  * This is because this function must be invoked at a precise location.
3840  */
3841 void rcu_report_dead(unsigned int cpu)
3842 {
3843 	struct rcu_state *rsp;
3844 
3845 	/* QS for any half-done expedited RCU-sched GP. */
3846 	preempt_disable();
3847 	rcu_report_exp_rdp(&rcu_sched_state,
3848 			   this_cpu_ptr(rcu_sched_state.rda), true);
3849 	preempt_enable();
3850 	for_each_rcu_flavor(rsp)
3851 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3852 }
3853 
3854 /* Migrate the dead CPU's callbacks to the current CPU. */
3855 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3856 {
3857 	unsigned long flags;
3858 	struct rcu_data *my_rdp;
3859 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3860 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3861 
3862 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3863 		return;  /* No callbacks to migrate. */
3864 
3865 	local_irq_save(flags);
3866 	my_rdp = this_cpu_ptr(rsp->rda);
3867 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3868 		local_irq_restore(flags);
3869 		return;
3870 	}
3871 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3872 	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3873 	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3874 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3875 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3876 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3877 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3878 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3879 		  !rcu_segcblist_empty(&rdp->cblist),
3880 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3881 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3882 		  rcu_segcblist_first_cb(&rdp->cblist));
3883 }
3884 
3885 /*
3886  * The outgoing CPU has just passed through the dying-idle state,
3887  * and we are being invoked from the CPU that was IPIed to continue the
3888  * offline operation.  We need to migrate the outgoing CPU's callbacks.
3889  */
3890 void rcutree_migrate_callbacks(int cpu)
3891 {
3892 	struct rcu_state *rsp;
3893 
3894 	for_each_rcu_flavor(rsp)
3895 		rcu_migrate_callbacks(cpu, rsp);
3896 }
3897 #endif
3898 
3899 /*
3900  * On non-huge systems, use expedited RCU grace periods to make suspend
3901  * and hibernation run faster.
3902  */
3903 static int rcu_pm_notify(struct notifier_block *self,
3904 			 unsigned long action, void *hcpu)
3905 {
3906 	switch (action) {
3907 	case PM_HIBERNATION_PREPARE:
3908 	case PM_SUSPEND_PREPARE:
3909 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3910 			rcu_expedite_gp();
3911 		break;
3912 	case PM_POST_HIBERNATION:
3913 	case PM_POST_SUSPEND:
3914 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3915 			rcu_unexpedite_gp();
3916 		break;
3917 	default:
3918 		break;
3919 	}
3920 	return NOTIFY_OK;
3921 }
3922 
3923 /*
3924  * Spawn the kthreads that handle each RCU flavor's grace periods.
3925  */
3926 static int __init rcu_spawn_gp_kthread(void)
3927 {
3928 	unsigned long flags;
3929 	int kthread_prio_in = kthread_prio;
3930 	struct rcu_node *rnp;
3931 	struct rcu_state *rsp;
3932 	struct sched_param sp;
3933 	struct task_struct *t;
3934 
3935 	/* Force priority into range. */
3936 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3937 		kthread_prio = 1;
3938 	else if (kthread_prio < 0)
3939 		kthread_prio = 0;
3940 	else if (kthread_prio > 99)
3941 		kthread_prio = 99;
3942 	if (kthread_prio != kthread_prio_in)
3943 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3944 			 kthread_prio, kthread_prio_in);
3945 
3946 	rcu_scheduler_fully_active = 1;
3947 	for_each_rcu_flavor(rsp) {
3948 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3949 		BUG_ON(IS_ERR(t));
3950 		rnp = rcu_get_root(rsp);
3951 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3952 		rsp->gp_kthread = t;
3953 		if (kthread_prio) {
3954 			sp.sched_priority = kthread_prio;
3955 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3956 		}
3957 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3958 		wake_up_process(t);
3959 	}
3960 	rcu_spawn_nocb_kthreads();
3961 	rcu_spawn_boost_kthreads();
3962 	return 0;
3963 }
3964 early_initcall(rcu_spawn_gp_kthread);
3965 
3966 /*
3967  * This function is invoked towards the end of the scheduler's
3968  * initialization process.  Before this is called, the idle task might
3969  * contain synchronous grace-period primitives (during which time, this idle
3970  * task is booting the system, and such primitives are no-ops).  After this
3971  * function is called, any synchronous grace-period primitives are run as
3972  * expedited, with the requesting task driving the grace period forward.
3973  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3974  * runtime RCU functionality.
3975  */
3976 void rcu_scheduler_starting(void)
3977 {
3978 	WARN_ON(num_online_cpus() != 1);
3979 	WARN_ON(nr_context_switches() > 0);
3980 	rcu_test_sync_prims();
3981 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3982 	rcu_test_sync_prims();
3983 }
3984 
3985 /*
3986  * Helper function for rcu_init() that initializes one rcu_state structure.
3987  */
3988 static void __init rcu_init_one(struct rcu_state *rsp)
3989 {
3990 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3991 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3992 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3993 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3994 
3995 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3996 	int cpustride = 1;
3997 	int i;
3998 	int j;
3999 	struct rcu_node *rnp;
4000 
4001 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4002 
4003 	/* Silence gcc 4.8 false positive about array index out of range. */
4004 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4005 		panic("rcu_init_one: rcu_num_lvls out of range");
4006 
4007 	/* Initialize the level-tracking arrays. */
4008 
4009 	for (i = 1; i < rcu_num_lvls; i++)
4010 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4011 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4012 
4013 	/* Initialize the elements themselves, starting from the leaves. */
4014 
4015 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4016 		cpustride *= levelspread[i];
4017 		rnp = rsp->level[i];
4018 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4019 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4020 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4021 						   &rcu_node_class[i], buf[i]);
4022 			raw_spin_lock_init(&rnp->fqslock);
4023 			lockdep_set_class_and_name(&rnp->fqslock,
4024 						   &rcu_fqs_class[i], fqs[i]);
4025 			rnp->gpnum = rsp->gpnum;
4026 			rnp->completed = rsp->completed;
4027 			rnp->qsmask = 0;
4028 			rnp->qsmaskinit = 0;
4029 			rnp->grplo = j * cpustride;
4030 			rnp->grphi = (j + 1) * cpustride - 1;
4031 			if (rnp->grphi >= nr_cpu_ids)
4032 				rnp->grphi = nr_cpu_ids - 1;
4033 			if (i == 0) {
4034 				rnp->grpnum = 0;
4035 				rnp->grpmask = 0;
4036 				rnp->parent = NULL;
4037 			} else {
4038 				rnp->grpnum = j % levelspread[i - 1];
4039 				rnp->grpmask = 1UL << rnp->grpnum;
4040 				rnp->parent = rsp->level[i - 1] +
4041 					      j / levelspread[i - 1];
4042 			}
4043 			rnp->level = i;
4044 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4045 			rcu_init_one_nocb(rnp);
4046 			init_waitqueue_head(&rnp->exp_wq[0]);
4047 			init_waitqueue_head(&rnp->exp_wq[1]);
4048 			init_waitqueue_head(&rnp->exp_wq[2]);
4049 			init_waitqueue_head(&rnp->exp_wq[3]);
4050 			spin_lock_init(&rnp->exp_lock);
4051 		}
4052 	}
4053 
4054 	init_swait_queue_head(&rsp->gp_wq);
4055 	init_swait_queue_head(&rsp->expedited_wq);
4056 	rnp = rsp->level[rcu_num_lvls - 1];
4057 	for_each_possible_cpu(i) {
4058 		while (i > rnp->grphi)
4059 			rnp++;
4060 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4061 		rcu_boot_init_percpu_data(i, rsp);
4062 	}
4063 	list_add(&rsp->flavors, &rcu_struct_flavors);
4064 }
4065 
4066 /*
4067  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4068  * replace the definitions in tree.h because those are needed to size
4069  * the ->node array in the rcu_state structure.
4070  */
4071 static void __init rcu_init_geometry(void)
4072 {
4073 	ulong d;
4074 	int i;
4075 	int rcu_capacity[RCU_NUM_LVLS];
4076 
4077 	/*
4078 	 * Initialize any unspecified boot parameters.
4079 	 * The default values of jiffies_till_first_fqs and
4080 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4081 	 * value, which is a function of HZ, then adding one for each
4082 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4083 	 */
4084 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4085 	if (jiffies_till_first_fqs == ULONG_MAX)
4086 		jiffies_till_first_fqs = d;
4087 	if (jiffies_till_next_fqs == ULONG_MAX)
4088 		jiffies_till_next_fqs = d;
4089 
4090 	/* If the compile-time values are accurate, just leave. */
4091 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4092 	    nr_cpu_ids == NR_CPUS)
4093 		return;
4094 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4095 		rcu_fanout_leaf, nr_cpu_ids);
4096 
4097 	/*
4098 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4099 	 * and cannot exceed the number of bits in the rcu_node masks.
4100 	 * Complain and fall back to the compile-time values if this
4101 	 * limit is exceeded.
4102 	 */
4103 	if (rcu_fanout_leaf < 2 ||
4104 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4105 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4106 		WARN_ON(1);
4107 		return;
4108 	}
4109 
4110 	/*
4111 	 * Compute number of nodes that can be handled an rcu_node tree
4112 	 * with the given number of levels.
4113 	 */
4114 	rcu_capacity[0] = rcu_fanout_leaf;
4115 	for (i = 1; i < RCU_NUM_LVLS; i++)
4116 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4117 
4118 	/*
4119 	 * The tree must be able to accommodate the configured number of CPUs.
4120 	 * If this limit is exceeded, fall back to the compile-time values.
4121 	 */
4122 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4123 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4124 		WARN_ON(1);
4125 		return;
4126 	}
4127 
4128 	/* Calculate the number of levels in the tree. */
4129 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4130 	}
4131 	rcu_num_lvls = i + 1;
4132 
4133 	/* Calculate the number of rcu_nodes at each level of the tree. */
4134 	for (i = 0; i < rcu_num_lvls; i++) {
4135 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4136 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4137 	}
4138 
4139 	/* Calculate the total number of rcu_node structures. */
4140 	rcu_num_nodes = 0;
4141 	for (i = 0; i < rcu_num_lvls; i++)
4142 		rcu_num_nodes += num_rcu_lvl[i];
4143 }
4144 
4145 /*
4146  * Dump out the structure of the rcu_node combining tree associated
4147  * with the rcu_state structure referenced by rsp.
4148  */
4149 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4150 {
4151 	int level = 0;
4152 	struct rcu_node *rnp;
4153 
4154 	pr_info("rcu_node tree layout dump\n");
4155 	pr_info(" ");
4156 	rcu_for_each_node_breadth_first(rsp, rnp) {
4157 		if (rnp->level != level) {
4158 			pr_cont("\n");
4159 			pr_info(" ");
4160 			level = rnp->level;
4161 		}
4162 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4163 	}
4164 	pr_cont("\n");
4165 }
4166 
4167 void __init rcu_init(void)
4168 {
4169 	int cpu;
4170 
4171 	rcu_early_boot_tests();
4172 
4173 	rcu_bootup_announce();
4174 	rcu_init_geometry();
4175 	rcu_init_one(&rcu_bh_state);
4176 	rcu_init_one(&rcu_sched_state);
4177 	if (dump_tree)
4178 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4179 	__rcu_init_preempt();
4180 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4181 
4182 	/*
4183 	 * We don't need protection against CPU-hotplug here because
4184 	 * this is called early in boot, before either interrupts
4185 	 * or the scheduler are operational.
4186 	 */
4187 	pm_notifier(rcu_pm_notify, 0);
4188 	for_each_online_cpu(cpu) {
4189 		rcutree_prepare_cpu(cpu);
4190 		rcu_cpu_starting(cpu);
4191 		if (IS_ENABLED(CONFIG_TREE_SRCU))
4192 			srcu_online_cpu(cpu);
4193 	}
4194 }
4195 
4196 #include "tree_exp.h"
4197 #include "tree_plugin.h"
4198