xref: /openbmc/linux/kernel/rcu/tree.c (revision 6cbefbdc)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170 
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179 
180 /*
181  * Number of grace periods between delays, normalized by the duration of
182  * the delay.  The longer the delay, the more the grace periods between
183  * each delay.  The reason for this normalization is that it means that,
184  * for non-zero delays, the overall slowdown of grace periods is constant
185  * regardless of the duration of the delay.  This arrangement balances
186  * the need for long delays to increase some race probabilities with the
187  * need for fast grace periods to increase other race probabilities.
188  */
189 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
190 
191 /*
192  * Track the rcutorture test sequence number and the update version
193  * number within a given test.  The rcutorture_testseq is incremented
194  * on every rcutorture module load and unload, so has an odd value
195  * when a test is running.  The rcutorture_vernum is set to zero
196  * when rcutorture starts and is incremented on each rcutorture update.
197  * These variables enable correlating rcutorture output with the
198  * RCU tracing information.
199  */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202 
203 /*
204  * Compute the mask of online CPUs for the specified rcu_node structure.
205  * This will not be stable unless the rcu_node structure's ->lock is
206  * held, but the bit corresponding to the current CPU will be stable
207  * in most contexts.
208  */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 	return READ_ONCE(rnp->qsmaskinitnext);
212 }
213 
214 /*
215  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
216  * permit this function to be invoked without holding the root rcu_node
217  * structure's ->lock, but of course results can be subject to change.
218  */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223 
224 /*
225  * Note a quiescent state.  Because we do not need to know
226  * how many quiescent states passed, just if there was at least
227  * one since the start of the grace period, this just sets a flag.
228  * The caller must have disabled preemption.
229  */
230 void rcu_sched_qs(void)
231 {
232 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 		return;
235 	trace_rcu_grace_period(TPS("rcu_sched"),
236 			       __this_cpu_read(rcu_sched_data.gpnum),
237 			       TPS("cpuqs"));
238 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 		return;
241 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 	rcu_report_exp_rdp(&rcu_sched_state,
243 			   this_cpu_ptr(&rcu_sched_data), true);
244 }
245 
246 void rcu_bh_qs(void)
247 {
248 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 		trace_rcu_grace_period(TPS("rcu_bh"),
251 				       __this_cpu_read(rcu_bh_data.gpnum),
252 				       TPS("cpuqs"));
253 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 	}
255 }
256 
257 /*
258  * Steal a bit from the bottom of ->dynticks for idle entry/exit
259  * control.  Initially this is for TLB flushing.
260  */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266 
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
269 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
270 };
271 
272 /*
273  * There's a few places, currently just in the tracing infrastructure,
274  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
275  * a small location where that will not even work. In those cases
276  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
277  * can be called.
278  */
279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
280 
281 bool rcu_irq_enter_disabled(void)
282 {
283 	return this_cpu_read(disable_rcu_irq_enter);
284 }
285 
286 /*
287  * Record entry into an extended quiescent state.  This is only to be
288  * called when not already in an extended quiescent state.
289  */
290 static void rcu_dynticks_eqs_enter(void)
291 {
292 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
293 	int seq;
294 
295 	/*
296 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
297 	 * critical sections, and we also must force ordering with the
298 	 * next idle sojourn.
299 	 */
300 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
301 	/* Better be in an extended quiescent state! */
302 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
303 		     (seq & RCU_DYNTICK_CTRL_CTR));
304 	/* Better not have special action (TLB flush) pending! */
305 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 		     (seq & RCU_DYNTICK_CTRL_MASK));
307 }
308 
309 /*
310  * Record exit from an extended quiescent state.  This is only to be
311  * called from an extended quiescent state.
312  */
313 static void rcu_dynticks_eqs_exit(void)
314 {
315 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
316 	int seq;
317 
318 	/*
319 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
320 	 * and we also must force ordering with the next RCU read-side
321 	 * critical section.
322 	 */
323 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
324 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
325 		     !(seq & RCU_DYNTICK_CTRL_CTR));
326 	if (seq & RCU_DYNTICK_CTRL_MASK) {
327 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
328 		smp_mb__after_atomic(); /* _exit after clearing mask. */
329 		/* Prefer duplicate flushes to losing a flush. */
330 		rcu_eqs_special_exit();
331 	}
332 }
333 
334 /*
335  * Reset the current CPU's ->dynticks counter to indicate that the
336  * newly onlined CPU is no longer in an extended quiescent state.
337  * This will either leave the counter unchanged, or increment it
338  * to the next non-quiescent value.
339  *
340  * The non-atomic test/increment sequence works because the upper bits
341  * of the ->dynticks counter are manipulated only by the corresponding CPU,
342  * or when the corresponding CPU is offline.
343  */
344 static void rcu_dynticks_eqs_online(void)
345 {
346 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
347 
348 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
349 		return;
350 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
351 }
352 
353 /*
354  * Is the current CPU in an extended quiescent state?
355  *
356  * No ordering, as we are sampling CPU-local information.
357  */
358 bool rcu_dynticks_curr_cpu_in_eqs(void)
359 {
360 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
361 
362 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
363 }
364 
365 /*
366  * Snapshot the ->dynticks counter with full ordering so as to allow
367  * stable comparison of this counter with past and future snapshots.
368  */
369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
370 {
371 	int snap = atomic_add_return(0, &rdtp->dynticks);
372 
373 	return snap & ~RCU_DYNTICK_CTRL_MASK;
374 }
375 
376 /*
377  * Return true if the snapshot returned from rcu_dynticks_snap()
378  * indicates that RCU is in an extended quiescent state.
379  */
380 static bool rcu_dynticks_in_eqs(int snap)
381 {
382 	return !(snap & RCU_DYNTICK_CTRL_CTR);
383 }
384 
385 /*
386  * Return true if the CPU corresponding to the specified rcu_dynticks
387  * structure has spent some time in an extended quiescent state since
388  * rcu_dynticks_snap() returned the specified snapshot.
389  */
390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
391 {
392 	return snap != rcu_dynticks_snap(rdtp);
393 }
394 
395 /*
396  * Do a double-increment of the ->dynticks counter to emulate a
397  * momentary idle-CPU quiescent state.
398  */
399 static void rcu_dynticks_momentary_idle(void)
400 {
401 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
402 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
403 					&rdtp->dynticks);
404 
405 	/* It is illegal to call this from idle state. */
406 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
407 }
408 
409 /*
410  * Set the special (bottom) bit of the specified CPU so that it
411  * will take special action (such as flushing its TLB) on the
412  * next exit from an extended quiescent state.  Returns true if
413  * the bit was successfully set, or false if the CPU was not in
414  * an extended quiescent state.
415  */
416 bool rcu_eqs_special_set(int cpu)
417 {
418 	int old;
419 	int new;
420 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
421 
422 	do {
423 		old = atomic_read(&rdtp->dynticks);
424 		if (old & RCU_DYNTICK_CTRL_CTR)
425 			return false;
426 		new = old | RCU_DYNTICK_CTRL_MASK;
427 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
428 	return true;
429 }
430 
431 /*
432  * Let the RCU core know that this CPU has gone through the scheduler,
433  * which is a quiescent state.  This is called when the need for a
434  * quiescent state is urgent, so we burn an atomic operation and full
435  * memory barriers to let the RCU core know about it, regardless of what
436  * this CPU might (or might not) do in the near future.
437  *
438  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
439  *
440  * The caller must have disabled interrupts.
441  */
442 static void rcu_momentary_dyntick_idle(void)
443 {
444 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
445 	rcu_dynticks_momentary_idle();
446 }
447 
448 /*
449  * Note a context switch.  This is a quiescent state for RCU-sched,
450  * and requires special handling for preemptible RCU.
451  * The caller must have disabled interrupts.
452  */
453 void rcu_note_context_switch(bool preempt)
454 {
455 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
456 	trace_rcu_utilization(TPS("Start context switch"));
457 	rcu_sched_qs();
458 	rcu_preempt_note_context_switch(preempt);
459 	/* Load rcu_urgent_qs before other flags. */
460 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
461 		goto out;
462 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
463 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
464 		rcu_momentary_dyntick_idle();
465 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
466 	if (!preempt)
467 		rcu_note_voluntary_context_switch_lite(current);
468 out:
469 	trace_rcu_utilization(TPS("End context switch"));
470 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
471 }
472 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
473 
474 /*
475  * Register a quiescent state for all RCU flavors.  If there is an
476  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
477  * dyntick-idle quiescent state visible to other CPUs (but only for those
478  * RCU flavors in desperate need of a quiescent state, which will normally
479  * be none of them).  Either way, do a lightweight quiescent state for
480  * all RCU flavors.
481  *
482  * The barrier() calls are redundant in the common case when this is
483  * called externally, but just in case this is called from within this
484  * file.
485  *
486  */
487 void rcu_all_qs(void)
488 {
489 	unsigned long flags;
490 
491 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
492 		return;
493 	preempt_disable();
494 	/* Load rcu_urgent_qs before other flags. */
495 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
496 		preempt_enable();
497 		return;
498 	}
499 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
500 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
501 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
502 		local_irq_save(flags);
503 		rcu_momentary_dyntick_idle();
504 		local_irq_restore(flags);
505 	}
506 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
507 		rcu_sched_qs();
508 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
509 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
510 	preempt_enable();
511 }
512 EXPORT_SYMBOL_GPL(rcu_all_qs);
513 
514 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
515 static long blimit = DEFAULT_RCU_BLIMIT;
516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
517 static long qhimark = DEFAULT_RCU_QHIMARK;
518 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
519 static long qlowmark = DEFAULT_RCU_QLOMARK;
520 
521 module_param(blimit, long, 0444);
522 module_param(qhimark, long, 0444);
523 module_param(qlowmark, long, 0444);
524 
525 static ulong jiffies_till_first_fqs = ULONG_MAX;
526 static ulong jiffies_till_next_fqs = ULONG_MAX;
527 static bool rcu_kick_kthreads;
528 
529 module_param(jiffies_till_first_fqs, ulong, 0644);
530 module_param(jiffies_till_next_fqs, ulong, 0644);
531 module_param(rcu_kick_kthreads, bool, 0644);
532 
533 /*
534  * How long the grace period must be before we start recruiting
535  * quiescent-state help from rcu_note_context_switch().
536  */
537 static ulong jiffies_till_sched_qs = HZ / 10;
538 module_param(jiffies_till_sched_qs, ulong, 0444);
539 
540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
541 				  struct rcu_data *rdp);
542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
543 static void force_quiescent_state(struct rcu_state *rsp);
544 static int rcu_pending(void);
545 
546 /*
547  * Return the number of RCU batches started thus far for debug & stats.
548  */
549 unsigned long rcu_batches_started(void)
550 {
551 	return rcu_state_p->gpnum;
552 }
553 EXPORT_SYMBOL_GPL(rcu_batches_started);
554 
555 /*
556  * Return the number of RCU-sched batches started thus far for debug & stats.
557  */
558 unsigned long rcu_batches_started_sched(void)
559 {
560 	return rcu_sched_state.gpnum;
561 }
562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
563 
564 /*
565  * Return the number of RCU BH batches started thus far for debug & stats.
566  */
567 unsigned long rcu_batches_started_bh(void)
568 {
569 	return rcu_bh_state.gpnum;
570 }
571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
572 
573 /*
574  * Return the number of RCU batches completed thus far for debug & stats.
575  */
576 unsigned long rcu_batches_completed(void)
577 {
578 	return rcu_state_p->completed;
579 }
580 EXPORT_SYMBOL_GPL(rcu_batches_completed);
581 
582 /*
583  * Return the number of RCU-sched batches completed thus far for debug & stats.
584  */
585 unsigned long rcu_batches_completed_sched(void)
586 {
587 	return rcu_sched_state.completed;
588 }
589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
590 
591 /*
592  * Return the number of RCU BH batches completed thus far for debug & stats.
593  */
594 unsigned long rcu_batches_completed_bh(void)
595 {
596 	return rcu_bh_state.completed;
597 }
598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
599 
600 /*
601  * Return the number of RCU expedited batches completed thus far for
602  * debug & stats.  Odd numbers mean that a batch is in progress, even
603  * numbers mean idle.  The value returned will thus be roughly double
604  * the cumulative batches since boot.
605  */
606 unsigned long rcu_exp_batches_completed(void)
607 {
608 	return rcu_state_p->expedited_sequence;
609 }
610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
611 
612 /*
613  * Return the number of RCU-sched expedited batches completed thus far
614  * for debug & stats.  Similar to rcu_exp_batches_completed().
615  */
616 unsigned long rcu_exp_batches_completed_sched(void)
617 {
618 	return rcu_sched_state.expedited_sequence;
619 }
620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
621 
622 /*
623  * Force a quiescent state.
624  */
625 void rcu_force_quiescent_state(void)
626 {
627 	force_quiescent_state(rcu_state_p);
628 }
629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
630 
631 /*
632  * Force a quiescent state for RCU BH.
633  */
634 void rcu_bh_force_quiescent_state(void)
635 {
636 	force_quiescent_state(&rcu_bh_state);
637 }
638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
639 
640 /*
641  * Force a quiescent state for RCU-sched.
642  */
643 void rcu_sched_force_quiescent_state(void)
644 {
645 	force_quiescent_state(&rcu_sched_state);
646 }
647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
648 
649 /*
650  * Show the state of the grace-period kthreads.
651  */
652 void show_rcu_gp_kthreads(void)
653 {
654 	struct rcu_state *rsp;
655 
656 	for_each_rcu_flavor(rsp) {
657 		pr_info("%s: wait state: %d ->state: %#lx\n",
658 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
659 		/* sched_show_task(rsp->gp_kthread); */
660 	}
661 }
662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
663 
664 /*
665  * Record the number of times rcutorture tests have been initiated and
666  * terminated.  This information allows the debugfs tracing stats to be
667  * correlated to the rcutorture messages, even when the rcutorture module
668  * is being repeatedly loaded and unloaded.  In other words, we cannot
669  * store this state in rcutorture itself.
670  */
671 void rcutorture_record_test_transition(void)
672 {
673 	rcutorture_testseq++;
674 	rcutorture_vernum = 0;
675 }
676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
677 
678 /*
679  * Send along grace-period-related data for rcutorture diagnostics.
680  */
681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
682 			    unsigned long *gpnum, unsigned long *completed)
683 {
684 	struct rcu_state *rsp = NULL;
685 
686 	switch (test_type) {
687 	case RCU_FLAVOR:
688 		rsp = rcu_state_p;
689 		break;
690 	case RCU_BH_FLAVOR:
691 		rsp = &rcu_bh_state;
692 		break;
693 	case RCU_SCHED_FLAVOR:
694 		rsp = &rcu_sched_state;
695 		break;
696 	default:
697 		break;
698 	}
699 	if (rsp == NULL)
700 		return;
701 	*flags = READ_ONCE(rsp->gp_flags);
702 	*gpnum = READ_ONCE(rsp->gpnum);
703 	*completed = READ_ONCE(rsp->completed);
704 }
705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
706 
707 /*
708  * Record the number of writer passes through the current rcutorture test.
709  * This is also used to correlate debugfs tracing stats with the rcutorture
710  * messages.
711  */
712 void rcutorture_record_progress(unsigned long vernum)
713 {
714 	rcutorture_vernum++;
715 }
716 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
717 
718 /*
719  * Return the root node of the specified rcu_state structure.
720  */
721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
722 {
723 	return &rsp->node[0];
724 }
725 
726 /*
727  * Is there any need for future grace periods?
728  * Interrupts must be disabled.  If the caller does not hold the root
729  * rnp_node structure's ->lock, the results are advisory only.
730  */
731 static int rcu_future_needs_gp(struct rcu_state *rsp)
732 {
733 	struct rcu_node *rnp = rcu_get_root(rsp);
734 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
735 	int *fp = &rnp->need_future_gp[idx];
736 
737 	lockdep_assert_irqs_disabled();
738 	return READ_ONCE(*fp);
739 }
740 
741 /*
742  * Does the current CPU require a not-yet-started grace period?
743  * The caller must have disabled interrupts to prevent races with
744  * normal callback registry.
745  */
746 static bool
747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
748 {
749 	lockdep_assert_irqs_disabled();
750 	if (rcu_gp_in_progress(rsp))
751 		return false;  /* No, a grace period is already in progress. */
752 	if (rcu_future_needs_gp(rsp))
753 		return true;  /* Yes, a no-CBs CPU needs one. */
754 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
755 		return false;  /* No, this is a no-CBs (or offline) CPU. */
756 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
757 		return true;  /* Yes, CPU has newly registered callbacks. */
758 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
759 					   READ_ONCE(rsp->completed)))
760 		return true;  /* Yes, CBs for future grace period. */
761 	return false; /* No grace period needed. */
762 }
763 
764 /*
765  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
766  *
767  * Enter idle, doing appropriate accounting.  The caller must have
768  * disabled interrupts.
769  */
770 static void rcu_eqs_enter_common(bool user)
771 {
772 	struct rcu_state *rsp;
773 	struct rcu_data *rdp;
774 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
775 
776 	lockdep_assert_irqs_disabled();
777 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
778 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
779 	    !user && !is_idle_task(current)) {
780 		struct task_struct *idle __maybe_unused =
781 			idle_task(smp_processor_id());
782 
783 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
784 		rcu_ftrace_dump(DUMP_ORIG);
785 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
786 			  current->pid, current->comm,
787 			  idle->pid, idle->comm); /* must be idle task! */
788 	}
789 	for_each_rcu_flavor(rsp) {
790 		rdp = this_cpu_ptr(rsp->rda);
791 		do_nocb_deferred_wakeup(rdp);
792 	}
793 	rcu_prepare_for_idle();
794 	__this_cpu_inc(disable_rcu_irq_enter);
795 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
796 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
797 	__this_cpu_dec(disable_rcu_irq_enter);
798 	rcu_dynticks_task_enter();
799 
800 	/*
801 	 * It is illegal to enter an extended quiescent state while
802 	 * in an RCU read-side critical section.
803 	 */
804 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
805 			 "Illegal idle entry in RCU read-side critical section.");
806 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
807 			 "Illegal idle entry in RCU-bh read-side critical section.");
808 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
809 			 "Illegal idle entry in RCU-sched read-side critical section.");
810 }
811 
812 /*
813  * Enter an RCU extended quiescent state, which can be either the
814  * idle loop or adaptive-tickless usermode execution.
815  */
816 static void rcu_eqs_enter(bool user)
817 {
818 	struct rcu_dynticks *rdtp;
819 
820 	rdtp = this_cpu_ptr(&rcu_dynticks);
821 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
822 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
823 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
824 		rcu_eqs_enter_common(user);
825 	else
826 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
827 }
828 
829 /**
830  * rcu_idle_enter - inform RCU that current CPU is entering idle
831  *
832  * Enter idle mode, in other words, -leave- the mode in which RCU
833  * read-side critical sections can occur.  (Though RCU read-side
834  * critical sections can occur in irq handlers in idle, a possibility
835  * handled by irq_enter() and irq_exit().)
836  *
837  * We crowbar the ->dynticks_nesting field to zero to allow for
838  * the possibility of usermode upcalls having messed up our count
839  * of interrupt nesting level during the prior busy period.
840  *
841  * If you add or remove a call to rcu_idle_enter(), be sure to test with
842  * CONFIG_RCU_EQS_DEBUG=y.
843  */
844 void rcu_idle_enter(void)
845 {
846 	lockdep_assert_irqs_disabled();
847 	rcu_eqs_enter(false);
848 }
849 
850 #ifdef CONFIG_NO_HZ_FULL
851 /**
852  * rcu_user_enter - inform RCU that we are resuming userspace.
853  *
854  * Enter RCU idle mode right before resuming userspace.  No use of RCU
855  * is permitted between this call and rcu_user_exit(). This way the
856  * CPU doesn't need to maintain the tick for RCU maintenance purposes
857  * when the CPU runs in userspace.
858  *
859  * If you add or remove a call to rcu_user_enter(), be sure to test with
860  * CONFIG_RCU_EQS_DEBUG=y.
861  */
862 void rcu_user_enter(void)
863 {
864 	lockdep_assert_irqs_disabled();
865 	rcu_eqs_enter(true);
866 }
867 #endif /* CONFIG_NO_HZ_FULL */
868 
869 /**
870  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871  *
872  * Exit from an interrupt handler, which might possibly result in entering
873  * idle mode, in other words, leaving the mode in which read-side critical
874  * sections can occur.  The caller must have disabled interrupts.
875  *
876  * This code assumes that the idle loop never does anything that might
877  * result in unbalanced calls to irq_enter() and irq_exit().  If your
878  * architecture violates this assumption, RCU will give you what you
879  * deserve, good and hard.  But very infrequently and irreproducibly.
880  *
881  * Use things like work queues to work around this limitation.
882  *
883  * You have been warned.
884  *
885  * If you add or remove a call to rcu_irq_exit(), be sure to test with
886  * CONFIG_RCU_EQS_DEBUG=y.
887  */
888 void rcu_irq_exit(void)
889 {
890 	struct rcu_dynticks *rdtp;
891 
892 	lockdep_assert_irqs_disabled();
893 	rdtp = this_cpu_ptr(&rcu_dynticks);
894 
895 	/* Page faults can happen in NMI handlers, so check... */
896 	if (rdtp->dynticks_nmi_nesting)
897 		return;
898 
899 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
900 		     rdtp->dynticks_nesting < 1);
901 	if (rdtp->dynticks_nesting <= 1) {
902 		rcu_eqs_enter_common(true);
903 	} else {
904 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
905 		rdtp->dynticks_nesting--;
906 	}
907 }
908 
909 /*
910  * Wrapper for rcu_irq_exit() where interrupts are enabled.
911  *
912  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
913  * with CONFIG_RCU_EQS_DEBUG=y.
914  */
915 void rcu_irq_exit_irqson(void)
916 {
917 	unsigned long flags;
918 
919 	local_irq_save(flags);
920 	rcu_irq_exit();
921 	local_irq_restore(flags);
922 }
923 
924 /*
925  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
926  *
927  * If the new value of the ->dynticks_nesting counter was previously zero,
928  * we really have exited idle, and must do the appropriate accounting.
929  * The caller must have disabled interrupts.
930  */
931 static void rcu_eqs_exit_common(long long oldval, int user)
932 {
933 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
934 
935 	rcu_dynticks_task_exit();
936 	rcu_dynticks_eqs_exit();
937 	rcu_cleanup_after_idle();
938 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
939 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
940 	    !user && !is_idle_task(current)) {
941 		struct task_struct *idle __maybe_unused =
942 			idle_task(smp_processor_id());
943 
944 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
945 				  oldval, rdtp->dynticks_nesting);
946 		rcu_ftrace_dump(DUMP_ORIG);
947 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
948 			  current->pid, current->comm,
949 			  idle->pid, idle->comm); /* must be idle task! */
950 	}
951 }
952 
953 /*
954  * Exit an RCU extended quiescent state, which can be either the
955  * idle loop or adaptive-tickless usermode execution.
956  */
957 static void rcu_eqs_exit(bool user)
958 {
959 	struct rcu_dynticks *rdtp;
960 	long long oldval;
961 
962 	lockdep_assert_irqs_disabled();
963 	rdtp = this_cpu_ptr(&rcu_dynticks);
964 	oldval = rdtp->dynticks_nesting;
965 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
966 	if (oldval & DYNTICK_TASK_NEST_MASK) {
967 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
968 	} else {
969 		__this_cpu_inc(disable_rcu_irq_enter);
970 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
971 		rcu_eqs_exit_common(oldval, user);
972 		__this_cpu_dec(disable_rcu_irq_enter);
973 	}
974 }
975 
976 /**
977  * rcu_idle_exit - inform RCU that current CPU is leaving idle
978  *
979  * Exit idle mode, in other words, -enter- the mode in which RCU
980  * read-side critical sections can occur.
981  *
982  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
983  * allow for the possibility of usermode upcalls messing up our count
984  * of interrupt nesting level during the busy period that is just
985  * now starting.
986  *
987  * If you add or remove a call to rcu_idle_exit(), be sure to test with
988  * CONFIG_RCU_EQS_DEBUG=y.
989  */
990 void rcu_idle_exit(void)
991 {
992 	unsigned long flags;
993 
994 	local_irq_save(flags);
995 	rcu_eqs_exit(false);
996 	local_irq_restore(flags);
997 }
998 
999 #ifdef CONFIG_NO_HZ_FULL
1000 /**
1001  * rcu_user_exit - inform RCU that we are exiting userspace.
1002  *
1003  * Exit RCU idle mode while entering the kernel because it can
1004  * run a RCU read side critical section anytime.
1005  *
1006  * If you add or remove a call to rcu_user_exit(), be sure to test with
1007  * CONFIG_RCU_EQS_DEBUG=y.
1008  */
1009 void rcu_user_exit(void)
1010 {
1011 	rcu_eqs_exit(1);
1012 }
1013 #endif /* CONFIG_NO_HZ_FULL */
1014 
1015 /**
1016  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1017  *
1018  * Enter an interrupt handler, which might possibly result in exiting
1019  * idle mode, in other words, entering the mode in which read-side critical
1020  * sections can occur.  The caller must have disabled interrupts.
1021  *
1022  * Note that the Linux kernel is fully capable of entering an interrupt
1023  * handler that it never exits, for example when doing upcalls to
1024  * user mode!  This code assumes that the idle loop never does upcalls to
1025  * user mode.  If your architecture does do upcalls from the idle loop (or
1026  * does anything else that results in unbalanced calls to the irq_enter()
1027  * and irq_exit() functions), RCU will give you what you deserve, good
1028  * and hard.  But very infrequently and irreproducibly.
1029  *
1030  * Use things like work queues to work around this limitation.
1031  *
1032  * You have been warned.
1033  *
1034  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1035  * CONFIG_RCU_EQS_DEBUG=y.
1036  */
1037 void rcu_irq_enter(void)
1038 {
1039 	struct rcu_dynticks *rdtp;
1040 	long long oldval;
1041 
1042 	lockdep_assert_irqs_disabled();
1043 	rdtp = this_cpu_ptr(&rcu_dynticks);
1044 
1045 	/* Page faults can happen in NMI handlers, so check... */
1046 	if (rdtp->dynticks_nmi_nesting)
1047 		return;
1048 
1049 	oldval = rdtp->dynticks_nesting;
1050 	rdtp->dynticks_nesting++;
1051 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1052 		     rdtp->dynticks_nesting == 0);
1053 	if (oldval)
1054 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1055 	else
1056 		rcu_eqs_exit_common(oldval, true);
1057 }
1058 
1059 /*
1060  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1061  *
1062  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1063  * with CONFIG_RCU_EQS_DEBUG=y.
1064  */
1065 void rcu_irq_enter_irqson(void)
1066 {
1067 	unsigned long flags;
1068 
1069 	local_irq_save(flags);
1070 	rcu_irq_enter();
1071 	local_irq_restore(flags);
1072 }
1073 
1074 /**
1075  * rcu_nmi_enter - inform RCU of entry to NMI context
1076  *
1077  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1078  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1079  * that the CPU is active.  This implementation permits nested NMIs, as
1080  * long as the nesting level does not overflow an int.  (You will probably
1081  * run out of stack space first.)
1082  *
1083  * If you add or remove a call to rcu_nmi_enter(), be sure to test
1084  * with CONFIG_RCU_EQS_DEBUG=y.
1085  */
1086 void rcu_nmi_enter(void)
1087 {
1088 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1089 	int incby = 2;
1090 
1091 	/* Complain about underflow. */
1092 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1093 
1094 	/*
1095 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1096 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1097 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1098 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1099 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1100 	 * period (observation due to Andy Lutomirski).
1101 	 */
1102 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1103 		rcu_dynticks_eqs_exit();
1104 		incby = 1;
1105 	}
1106 	rdtp->dynticks_nmi_nesting += incby;
1107 	barrier();
1108 }
1109 
1110 /**
1111  * rcu_nmi_exit - inform RCU of exit from NMI context
1112  *
1113  * If we are returning from the outermost NMI handler that interrupted an
1114  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1115  * to let the RCU grace-period handling know that the CPU is back to
1116  * being RCU-idle.
1117  *
1118  * If you add or remove a call to rcu_nmi_exit(), be sure to test
1119  * with CONFIG_RCU_EQS_DEBUG=y.
1120  */
1121 void rcu_nmi_exit(void)
1122 {
1123 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1124 
1125 	/*
1126 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1127 	 * (We are exiting an NMI handler, so RCU better be paying attention
1128 	 * to us!)
1129 	 */
1130 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1131 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1132 
1133 	/*
1134 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1135 	 * leave it in non-RCU-idle state.
1136 	 */
1137 	if (rdtp->dynticks_nmi_nesting != 1) {
1138 		rdtp->dynticks_nmi_nesting -= 2;
1139 		return;
1140 	}
1141 
1142 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1143 	rdtp->dynticks_nmi_nesting = 0;
1144 	rcu_dynticks_eqs_enter();
1145 }
1146 
1147 /**
1148  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1149  *
1150  * Return true if RCU is watching the running CPU, which means that this
1151  * CPU can safely enter RCU read-side critical sections.  In other words,
1152  * if the current CPU is in its idle loop and is neither in an interrupt
1153  * or NMI handler, return true.
1154  */
1155 bool notrace rcu_is_watching(void)
1156 {
1157 	bool ret;
1158 
1159 	preempt_disable_notrace();
1160 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1161 	preempt_enable_notrace();
1162 	return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(rcu_is_watching);
1165 
1166 /*
1167  * If a holdout task is actually running, request an urgent quiescent
1168  * state from its CPU.  This is unsynchronized, so migrations can cause
1169  * the request to go to the wrong CPU.  Which is OK, all that will happen
1170  * is that the CPU's next context switch will be a bit slower and next
1171  * time around this task will generate another request.
1172  */
1173 void rcu_request_urgent_qs_task(struct task_struct *t)
1174 {
1175 	int cpu;
1176 
1177 	barrier();
1178 	cpu = task_cpu(t);
1179 	if (!task_curr(t))
1180 		return; /* This task is not running on that CPU. */
1181 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1182 }
1183 
1184 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1185 
1186 /*
1187  * Is the current CPU online?  Disable preemption to avoid false positives
1188  * that could otherwise happen due to the current CPU number being sampled,
1189  * this task being preempted, its old CPU being taken offline, resuming
1190  * on some other CPU, then determining that its old CPU is now offline.
1191  * It is OK to use RCU on an offline processor during initial boot, hence
1192  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1193  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1194  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1195  * offline to continue to use RCU for one jiffy after marking itself
1196  * offline in the cpu_online_mask.  This leniency is necessary given the
1197  * non-atomic nature of the online and offline processing, for example,
1198  * the fact that a CPU enters the scheduler after completing the teardown
1199  * of the CPU.
1200  *
1201  * This is also why RCU internally marks CPUs online during in the
1202  * preparation phase and offline after the CPU has been taken down.
1203  *
1204  * Disable checking if in an NMI handler because we cannot safely report
1205  * errors from NMI handlers anyway.
1206  */
1207 bool rcu_lockdep_current_cpu_online(void)
1208 {
1209 	struct rcu_data *rdp;
1210 	struct rcu_node *rnp;
1211 	bool ret;
1212 
1213 	if (in_nmi())
1214 		return true;
1215 	preempt_disable();
1216 	rdp = this_cpu_ptr(&rcu_sched_data);
1217 	rnp = rdp->mynode;
1218 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1219 	      !rcu_scheduler_fully_active;
1220 	preempt_enable();
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1224 
1225 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1226 
1227 /**
1228  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1229  *
1230  * If the current CPU is idle or running at a first-level (not nested)
1231  * interrupt from idle, return true.  The caller must have at least
1232  * disabled preemption.
1233  */
1234 static int rcu_is_cpu_rrupt_from_idle(void)
1235 {
1236 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1237 }
1238 
1239 /*
1240  * We are reporting a quiescent state on behalf of some other CPU, so
1241  * it is our responsibility to check for and handle potential overflow
1242  * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1243  * After all, the CPU might be in deep idle state, and thus executing no
1244  * code whatsoever.
1245  */
1246 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1247 {
1248 	lockdep_assert_held(&rnp->lock);
1249 	if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1250 		WRITE_ONCE(rdp->gpwrap, true);
1251 	if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1252 		rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1253 }
1254 
1255 /*
1256  * Snapshot the specified CPU's dynticks counter so that we can later
1257  * credit them with an implicit quiescent state.  Return 1 if this CPU
1258  * is in dynticks idle mode, which is an extended quiescent state.
1259  */
1260 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1261 {
1262 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1263 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1264 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1265 		rcu_gpnum_ovf(rdp->mynode, rdp);
1266 		return 1;
1267 	}
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Handler for the irq_work request posted when a grace period has
1273  * gone on for too long, but not yet long enough for an RCU CPU
1274  * stall warning.  Set state appropriately, but just complain if
1275  * there is unexpected state on entry.
1276  */
1277 static void rcu_iw_handler(struct irq_work *iwp)
1278 {
1279 	struct rcu_data *rdp;
1280 	struct rcu_node *rnp;
1281 
1282 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1283 	rnp = rdp->mynode;
1284 	raw_spin_lock_rcu_node(rnp);
1285 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1286 		rdp->rcu_iw_gpnum = rnp->gpnum;
1287 		rdp->rcu_iw_pending = false;
1288 	}
1289 	raw_spin_unlock_rcu_node(rnp);
1290 }
1291 
1292 /*
1293  * Return true if the specified CPU has passed through a quiescent
1294  * state by virtue of being in or having passed through an dynticks
1295  * idle state since the last call to dyntick_save_progress_counter()
1296  * for this same CPU, or by virtue of having been offline.
1297  */
1298 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1299 {
1300 	unsigned long jtsq;
1301 	bool *rnhqp;
1302 	bool *ruqp;
1303 	struct rcu_node *rnp = rdp->mynode;
1304 
1305 	/*
1306 	 * If the CPU passed through or entered a dynticks idle phase with
1307 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1308 	 * already acknowledged the request to pass through a quiescent
1309 	 * state.  Either way, that CPU cannot possibly be in an RCU
1310 	 * read-side critical section that started before the beginning
1311 	 * of the current RCU grace period.
1312 	 */
1313 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1314 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1315 		rdp->dynticks_fqs++;
1316 		rcu_gpnum_ovf(rnp, rdp);
1317 		return 1;
1318 	}
1319 
1320 	/*
1321 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1322 	 * beginning of the grace period?  For this to be the case,
1323 	 * the CPU has to have noticed the current grace period.  This
1324 	 * might not be the case for nohz_full CPUs looping in the kernel.
1325 	 */
1326 	jtsq = jiffies_till_sched_qs;
1327 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1328 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1329 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1330 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1331 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1332 		rcu_gpnum_ovf(rnp, rdp);
1333 		return 1;
1334 	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1335 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1336 		smp_store_release(ruqp, true);
1337 	}
1338 
1339 	/* Check for the CPU being offline. */
1340 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1341 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1342 		rdp->offline_fqs++;
1343 		rcu_gpnum_ovf(rnp, rdp);
1344 		return 1;
1345 	}
1346 
1347 	/*
1348 	 * A CPU running for an extended time within the kernel can
1349 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1350 	 * even context-switching back and forth between a pair of
1351 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1352 	 * So if the grace period is old enough, make the CPU pay attention.
1353 	 * Note that the unsynchronized assignments to the per-CPU
1354 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1355 	 * bits can be lost, but they will be set again on the next
1356 	 * force-quiescent-state pass.  So lost bit sets do not result
1357 	 * in incorrect behavior, merely in a grace period lasting
1358 	 * a few jiffies longer than it might otherwise.  Because
1359 	 * there are at most four threads involved, and because the
1360 	 * updates are only once every few jiffies, the probability of
1361 	 * lossage (and thus of slight grace-period extension) is
1362 	 * quite low.
1363 	 */
1364 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1365 	if (!READ_ONCE(*rnhqp) &&
1366 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1367 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1368 		WRITE_ONCE(*rnhqp, true);
1369 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1370 		smp_store_release(ruqp, true);
1371 		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1372 	}
1373 
1374 	/*
1375 	 * If more than halfway to RCU CPU stall-warning time, do a
1376 	 * resched_cpu() to try to loosen things up a bit.  Also check to
1377 	 * see if the CPU is getting hammered with interrupts, but only
1378 	 * once per grace period, just to keep the IPIs down to a dull roar.
1379 	 */
1380 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1381 		resched_cpu(rdp->cpu);
1382 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1383 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1384 		    (rnp->ffmask & rdp->grpmask)) {
1385 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1386 			rdp->rcu_iw_pending = true;
1387 			rdp->rcu_iw_gpnum = rnp->gpnum;
1388 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1389 		}
1390 	}
1391 
1392 	return 0;
1393 }
1394 
1395 static void record_gp_stall_check_time(struct rcu_state *rsp)
1396 {
1397 	unsigned long j = jiffies;
1398 	unsigned long j1;
1399 
1400 	rsp->gp_start = j;
1401 	smp_wmb(); /* Record start time before stall time. */
1402 	j1 = rcu_jiffies_till_stall_check();
1403 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1404 	rsp->jiffies_resched = j + j1 / 2;
1405 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1406 }
1407 
1408 /*
1409  * Convert a ->gp_state value to a character string.
1410  */
1411 static const char *gp_state_getname(short gs)
1412 {
1413 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1414 		return "???";
1415 	return gp_state_names[gs];
1416 }
1417 
1418 /*
1419  * Complain about starvation of grace-period kthread.
1420  */
1421 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1422 {
1423 	unsigned long gpa;
1424 	unsigned long j;
1425 
1426 	j = jiffies;
1427 	gpa = READ_ONCE(rsp->gp_activity);
1428 	if (j - gpa > 2 * HZ) {
1429 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1430 		       rsp->name, j - gpa,
1431 		       rsp->gpnum, rsp->completed,
1432 		       rsp->gp_flags,
1433 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1434 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1435 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1436 		if (rsp->gp_kthread) {
1437 			sched_show_task(rsp->gp_kthread);
1438 			wake_up_process(rsp->gp_kthread);
1439 		}
1440 	}
1441 }
1442 
1443 /*
1444  * Dump stacks of all tasks running on stalled CPUs.  First try using
1445  * NMIs, but fall back to manual remote stack tracing on architectures
1446  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1447  * traces are more accurate because they are printed by the target CPU.
1448  */
1449 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1450 {
1451 	int cpu;
1452 	unsigned long flags;
1453 	struct rcu_node *rnp;
1454 
1455 	rcu_for_each_leaf_node(rsp, rnp) {
1456 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1457 		for_each_leaf_node_possible_cpu(rnp, cpu)
1458 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1459 				if (!trigger_single_cpu_backtrace(cpu))
1460 					dump_cpu_task(cpu);
1461 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1462 	}
1463 }
1464 
1465 /*
1466  * If too much time has passed in the current grace period, and if
1467  * so configured, go kick the relevant kthreads.
1468  */
1469 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1470 {
1471 	unsigned long j;
1472 
1473 	if (!rcu_kick_kthreads)
1474 		return;
1475 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1476 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1477 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1478 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1479 		rcu_ftrace_dump(DUMP_ALL);
1480 		wake_up_process(rsp->gp_kthread);
1481 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1482 	}
1483 }
1484 
1485 static inline void panic_on_rcu_stall(void)
1486 {
1487 	if (sysctl_panic_on_rcu_stall)
1488 		panic("RCU Stall\n");
1489 }
1490 
1491 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1492 {
1493 	int cpu;
1494 	long delta;
1495 	unsigned long flags;
1496 	unsigned long gpa;
1497 	unsigned long j;
1498 	int ndetected = 0;
1499 	struct rcu_node *rnp = rcu_get_root(rsp);
1500 	long totqlen = 0;
1501 
1502 	/* Kick and suppress, if so configured. */
1503 	rcu_stall_kick_kthreads(rsp);
1504 	if (rcu_cpu_stall_suppress)
1505 		return;
1506 
1507 	/* Only let one CPU complain about others per time interval. */
1508 
1509 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1510 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1511 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1512 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1513 		return;
1514 	}
1515 	WRITE_ONCE(rsp->jiffies_stall,
1516 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1517 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1518 
1519 	/*
1520 	 * OK, time to rat on our buddy...
1521 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1522 	 * RCU CPU stall warnings.
1523 	 */
1524 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1525 	       rsp->name);
1526 	print_cpu_stall_info_begin();
1527 	rcu_for_each_leaf_node(rsp, rnp) {
1528 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1529 		ndetected += rcu_print_task_stall(rnp);
1530 		if (rnp->qsmask != 0) {
1531 			for_each_leaf_node_possible_cpu(rnp, cpu)
1532 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1533 					print_cpu_stall_info(rsp, cpu);
1534 					ndetected++;
1535 				}
1536 		}
1537 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1538 	}
1539 
1540 	print_cpu_stall_info_end();
1541 	for_each_possible_cpu(cpu)
1542 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1543 							    cpu)->cblist);
1544 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1545 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1546 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1547 	if (ndetected) {
1548 		rcu_dump_cpu_stacks(rsp);
1549 
1550 		/* Complain about tasks blocking the grace period. */
1551 		rcu_print_detail_task_stall(rsp);
1552 	} else {
1553 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1554 		    READ_ONCE(rsp->completed) == gpnum) {
1555 			pr_err("INFO: Stall ended before state dump start\n");
1556 		} else {
1557 			j = jiffies;
1558 			gpa = READ_ONCE(rsp->gp_activity);
1559 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1560 			       rsp->name, j - gpa, j, gpa,
1561 			       jiffies_till_next_fqs,
1562 			       rcu_get_root(rsp)->qsmask);
1563 			/* In this case, the current CPU might be at fault. */
1564 			sched_show_task(current);
1565 		}
1566 	}
1567 
1568 	rcu_check_gp_kthread_starvation(rsp);
1569 
1570 	panic_on_rcu_stall();
1571 
1572 	force_quiescent_state(rsp);  /* Kick them all. */
1573 }
1574 
1575 static void print_cpu_stall(struct rcu_state *rsp)
1576 {
1577 	int cpu;
1578 	unsigned long flags;
1579 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1580 	struct rcu_node *rnp = rcu_get_root(rsp);
1581 	long totqlen = 0;
1582 
1583 	/* Kick and suppress, if so configured. */
1584 	rcu_stall_kick_kthreads(rsp);
1585 	if (rcu_cpu_stall_suppress)
1586 		return;
1587 
1588 	/*
1589 	 * OK, time to rat on ourselves...
1590 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1591 	 * RCU CPU stall warnings.
1592 	 */
1593 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1594 	print_cpu_stall_info_begin();
1595 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1596 	print_cpu_stall_info(rsp, smp_processor_id());
1597 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1598 	print_cpu_stall_info_end();
1599 	for_each_possible_cpu(cpu)
1600 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1601 							    cpu)->cblist);
1602 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1603 		jiffies - rsp->gp_start,
1604 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1605 
1606 	rcu_check_gp_kthread_starvation(rsp);
1607 
1608 	rcu_dump_cpu_stacks(rsp);
1609 
1610 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1611 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1612 		WRITE_ONCE(rsp->jiffies_stall,
1613 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1614 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1615 
1616 	panic_on_rcu_stall();
1617 
1618 	/*
1619 	 * Attempt to revive the RCU machinery by forcing a context switch.
1620 	 *
1621 	 * A context switch would normally allow the RCU state machine to make
1622 	 * progress and it could be we're stuck in kernel space without context
1623 	 * switches for an entirely unreasonable amount of time.
1624 	 */
1625 	resched_cpu(smp_processor_id());
1626 }
1627 
1628 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1629 {
1630 	unsigned long completed;
1631 	unsigned long gpnum;
1632 	unsigned long gps;
1633 	unsigned long j;
1634 	unsigned long js;
1635 	struct rcu_node *rnp;
1636 
1637 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1638 	    !rcu_gp_in_progress(rsp))
1639 		return;
1640 	rcu_stall_kick_kthreads(rsp);
1641 	j = jiffies;
1642 
1643 	/*
1644 	 * Lots of memory barriers to reject false positives.
1645 	 *
1646 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1647 	 * then rsp->gp_start, and finally rsp->completed.  These values
1648 	 * are updated in the opposite order with memory barriers (or
1649 	 * equivalent) during grace-period initialization and cleanup.
1650 	 * Now, a false positive can occur if we get an new value of
1651 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1652 	 * the memory barriers, the only way that this can happen is if one
1653 	 * grace period ends and another starts between these two fetches.
1654 	 * Detect this by comparing rsp->completed with the previous fetch
1655 	 * from rsp->gpnum.
1656 	 *
1657 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1658 	 * and rsp->gp_start suffice to forestall false positives.
1659 	 */
1660 	gpnum = READ_ONCE(rsp->gpnum);
1661 	smp_rmb(); /* Pick up ->gpnum first... */
1662 	js = READ_ONCE(rsp->jiffies_stall);
1663 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1664 	gps = READ_ONCE(rsp->gp_start);
1665 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1666 	completed = READ_ONCE(rsp->completed);
1667 	if (ULONG_CMP_GE(completed, gpnum) ||
1668 	    ULONG_CMP_LT(j, js) ||
1669 	    ULONG_CMP_GE(gps, js))
1670 		return; /* No stall or GP completed since entering function. */
1671 	rnp = rdp->mynode;
1672 	if (rcu_gp_in_progress(rsp) &&
1673 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1674 
1675 		/* We haven't checked in, so go dump stack. */
1676 		print_cpu_stall(rsp);
1677 
1678 	} else if (rcu_gp_in_progress(rsp) &&
1679 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1680 
1681 		/* They had a few time units to dump stack, so complain. */
1682 		print_other_cpu_stall(rsp, gpnum);
1683 	}
1684 }
1685 
1686 /**
1687  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1688  *
1689  * Set the stall-warning timeout way off into the future, thus preventing
1690  * any RCU CPU stall-warning messages from appearing in the current set of
1691  * RCU grace periods.
1692  *
1693  * The caller must disable hard irqs.
1694  */
1695 void rcu_cpu_stall_reset(void)
1696 {
1697 	struct rcu_state *rsp;
1698 
1699 	for_each_rcu_flavor(rsp)
1700 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1701 }
1702 
1703 /*
1704  * Determine the value that ->completed will have at the end of the
1705  * next subsequent grace period.  This is used to tag callbacks so that
1706  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1707  * been dyntick-idle for an extended period with callbacks under the
1708  * influence of RCU_FAST_NO_HZ.
1709  *
1710  * The caller must hold rnp->lock with interrupts disabled.
1711  */
1712 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1713 				       struct rcu_node *rnp)
1714 {
1715 	lockdep_assert_held(&rnp->lock);
1716 
1717 	/*
1718 	 * If RCU is idle, we just wait for the next grace period.
1719 	 * But we can only be sure that RCU is idle if we are looking
1720 	 * at the root rcu_node structure -- otherwise, a new grace
1721 	 * period might have started, but just not yet gotten around
1722 	 * to initializing the current non-root rcu_node structure.
1723 	 */
1724 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1725 		return rnp->completed + 1;
1726 
1727 	/*
1728 	 * Otherwise, wait for a possible partial grace period and
1729 	 * then the subsequent full grace period.
1730 	 */
1731 	return rnp->completed + 2;
1732 }
1733 
1734 /*
1735  * Trace-event helper function for rcu_start_future_gp() and
1736  * rcu_nocb_wait_gp().
1737  */
1738 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1739 				unsigned long c, const char *s)
1740 {
1741 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1742 				      rnp->completed, c, rnp->level,
1743 				      rnp->grplo, rnp->grphi, s);
1744 }
1745 
1746 /*
1747  * Start some future grace period, as needed to handle newly arrived
1748  * callbacks.  The required future grace periods are recorded in each
1749  * rcu_node structure's ->need_future_gp field.  Returns true if there
1750  * is reason to awaken the grace-period kthread.
1751  *
1752  * The caller must hold the specified rcu_node structure's ->lock.
1753  */
1754 static bool __maybe_unused
1755 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1756 		    unsigned long *c_out)
1757 {
1758 	unsigned long c;
1759 	bool ret = false;
1760 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1761 
1762 	lockdep_assert_held(&rnp->lock);
1763 
1764 	/*
1765 	 * Pick up grace-period number for new callbacks.  If this
1766 	 * grace period is already marked as needed, return to the caller.
1767 	 */
1768 	c = rcu_cbs_completed(rdp->rsp, rnp);
1769 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1770 	if (rnp->need_future_gp[c & 0x1]) {
1771 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1772 		goto out;
1773 	}
1774 
1775 	/*
1776 	 * If either this rcu_node structure or the root rcu_node structure
1777 	 * believe that a grace period is in progress, then we must wait
1778 	 * for the one following, which is in "c".  Because our request
1779 	 * will be noticed at the end of the current grace period, we don't
1780 	 * need to explicitly start one.  We only do the lockless check
1781 	 * of rnp_root's fields if the current rcu_node structure thinks
1782 	 * there is no grace period in flight, and because we hold rnp->lock,
1783 	 * the only possible change is when rnp_root's two fields are
1784 	 * equal, in which case rnp_root->gpnum might be concurrently
1785 	 * incremented.  But that is OK, as it will just result in our
1786 	 * doing some extra useless work.
1787 	 */
1788 	if (rnp->gpnum != rnp->completed ||
1789 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1790 		rnp->need_future_gp[c & 0x1]++;
1791 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1792 		goto out;
1793 	}
1794 
1795 	/*
1796 	 * There might be no grace period in progress.  If we don't already
1797 	 * hold it, acquire the root rcu_node structure's lock in order to
1798 	 * start one (if needed).
1799 	 */
1800 	if (rnp != rnp_root)
1801 		raw_spin_lock_rcu_node(rnp_root);
1802 
1803 	/*
1804 	 * Get a new grace-period number.  If there really is no grace
1805 	 * period in progress, it will be smaller than the one we obtained
1806 	 * earlier.  Adjust callbacks as needed.
1807 	 */
1808 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1809 	if (!rcu_is_nocb_cpu(rdp->cpu))
1810 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1811 
1812 	/*
1813 	 * If the needed for the required grace period is already
1814 	 * recorded, trace and leave.
1815 	 */
1816 	if (rnp_root->need_future_gp[c & 0x1]) {
1817 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1818 		goto unlock_out;
1819 	}
1820 
1821 	/* Record the need for the future grace period. */
1822 	rnp_root->need_future_gp[c & 0x1]++;
1823 
1824 	/* If a grace period is not already in progress, start one. */
1825 	if (rnp_root->gpnum != rnp_root->completed) {
1826 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1827 	} else {
1828 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1829 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1830 	}
1831 unlock_out:
1832 	if (rnp != rnp_root)
1833 		raw_spin_unlock_rcu_node(rnp_root);
1834 out:
1835 	if (c_out != NULL)
1836 		*c_out = c;
1837 	return ret;
1838 }
1839 
1840 /*
1841  * Clean up any old requests for the just-ended grace period.  Also return
1842  * whether any additional grace periods have been requested.
1843  */
1844 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1845 {
1846 	int c = rnp->completed;
1847 	int needmore;
1848 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1849 
1850 	rnp->need_future_gp[c & 0x1] = 0;
1851 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1852 	trace_rcu_future_gp(rnp, rdp, c,
1853 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1854 	return needmore;
1855 }
1856 
1857 /*
1858  * Awaken the grace-period kthread for the specified flavor of RCU.
1859  * Don't do a self-awaken, and don't bother awakening when there is
1860  * nothing for the grace-period kthread to do (as in several CPUs
1861  * raced to awaken, and we lost), and finally don't try to awaken
1862  * a kthread that has not yet been created.
1863  */
1864 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1865 {
1866 	if (current == rsp->gp_kthread ||
1867 	    !READ_ONCE(rsp->gp_flags) ||
1868 	    !rsp->gp_kthread)
1869 		return;
1870 	swake_up(&rsp->gp_wq);
1871 }
1872 
1873 /*
1874  * If there is room, assign a ->completed number to any callbacks on
1875  * this CPU that have not already been assigned.  Also accelerate any
1876  * callbacks that were previously assigned a ->completed number that has
1877  * since proven to be too conservative, which can happen if callbacks get
1878  * assigned a ->completed number while RCU is idle, but with reference to
1879  * a non-root rcu_node structure.  This function is idempotent, so it does
1880  * not hurt to call it repeatedly.  Returns an flag saying that we should
1881  * awaken the RCU grace-period kthread.
1882  *
1883  * The caller must hold rnp->lock with interrupts disabled.
1884  */
1885 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1886 			       struct rcu_data *rdp)
1887 {
1888 	bool ret = false;
1889 
1890 	lockdep_assert_held(&rnp->lock);
1891 
1892 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1893 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1894 		return false;
1895 
1896 	/*
1897 	 * Callbacks are often registered with incomplete grace-period
1898 	 * information.  Something about the fact that getting exact
1899 	 * information requires acquiring a global lock...  RCU therefore
1900 	 * makes a conservative estimate of the grace period number at which
1901 	 * a given callback will become ready to invoke.	The following
1902 	 * code checks this estimate and improves it when possible, thus
1903 	 * accelerating callback invocation to an earlier grace-period
1904 	 * number.
1905 	 */
1906 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1907 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1908 
1909 	/* Trace depending on how much we were able to accelerate. */
1910 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1911 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1912 	else
1913 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1914 	return ret;
1915 }
1916 
1917 /*
1918  * Move any callbacks whose grace period has completed to the
1919  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1920  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1921  * sublist.  This function is idempotent, so it does not hurt to
1922  * invoke it repeatedly.  As long as it is not invoked -too- often...
1923  * Returns true if the RCU grace-period kthread needs to be awakened.
1924  *
1925  * The caller must hold rnp->lock with interrupts disabled.
1926  */
1927 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1928 			    struct rcu_data *rdp)
1929 {
1930 	lockdep_assert_held(&rnp->lock);
1931 
1932 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1933 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1934 		return false;
1935 
1936 	/*
1937 	 * Find all callbacks whose ->completed numbers indicate that they
1938 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1939 	 */
1940 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1941 
1942 	/* Classify any remaining callbacks. */
1943 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1944 }
1945 
1946 /*
1947  * Update CPU-local rcu_data state to record the beginnings and ends of
1948  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1949  * structure corresponding to the current CPU, and must have irqs disabled.
1950  * Returns true if the grace-period kthread needs to be awakened.
1951  */
1952 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1953 			      struct rcu_data *rdp)
1954 {
1955 	bool ret;
1956 	bool need_gp;
1957 
1958 	lockdep_assert_held(&rnp->lock);
1959 
1960 	/* Handle the ends of any preceding grace periods first. */
1961 	if (rdp->completed == rnp->completed &&
1962 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1963 
1964 		/* No grace period end, so just accelerate recent callbacks. */
1965 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1966 
1967 	} else {
1968 
1969 		/* Advance callbacks. */
1970 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1971 
1972 		/* Remember that we saw this grace-period completion. */
1973 		rdp->completed = rnp->completed;
1974 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1975 	}
1976 
1977 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1978 		/*
1979 		 * If the current grace period is waiting for this CPU,
1980 		 * set up to detect a quiescent state, otherwise don't
1981 		 * go looking for one.
1982 		 */
1983 		rdp->gpnum = rnp->gpnum;
1984 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1985 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1986 		rdp->cpu_no_qs.b.norm = need_gp;
1987 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1988 		rdp->core_needs_qs = need_gp;
1989 		zero_cpu_stall_ticks(rdp);
1990 		WRITE_ONCE(rdp->gpwrap, false);
1991 		rcu_gpnum_ovf(rnp, rdp);
1992 	}
1993 	return ret;
1994 }
1995 
1996 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1997 {
1998 	unsigned long flags;
1999 	bool needwake;
2000 	struct rcu_node *rnp;
2001 
2002 	local_irq_save(flags);
2003 	rnp = rdp->mynode;
2004 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
2005 	     rdp->completed == READ_ONCE(rnp->completed) &&
2006 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2007 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
2008 		local_irq_restore(flags);
2009 		return;
2010 	}
2011 	needwake = __note_gp_changes(rsp, rnp, rdp);
2012 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2013 	if (needwake)
2014 		rcu_gp_kthread_wake(rsp);
2015 }
2016 
2017 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
2018 {
2019 	if (delay > 0 &&
2020 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
2021 		schedule_timeout_uninterruptible(delay);
2022 }
2023 
2024 /*
2025  * Initialize a new grace period.  Return false if no grace period required.
2026  */
2027 static bool rcu_gp_init(struct rcu_state *rsp)
2028 {
2029 	unsigned long oldmask;
2030 	struct rcu_data *rdp;
2031 	struct rcu_node *rnp = rcu_get_root(rsp);
2032 
2033 	WRITE_ONCE(rsp->gp_activity, jiffies);
2034 	raw_spin_lock_irq_rcu_node(rnp);
2035 	if (!READ_ONCE(rsp->gp_flags)) {
2036 		/* Spurious wakeup, tell caller to go back to sleep.  */
2037 		raw_spin_unlock_irq_rcu_node(rnp);
2038 		return false;
2039 	}
2040 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
2041 
2042 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
2043 		/*
2044 		 * Grace period already in progress, don't start another.
2045 		 * Not supposed to be able to happen.
2046 		 */
2047 		raw_spin_unlock_irq_rcu_node(rnp);
2048 		return false;
2049 	}
2050 
2051 	/* Advance to a new grace period and initialize state. */
2052 	record_gp_stall_check_time(rsp);
2053 	/* Record GP times before starting GP, hence smp_store_release(). */
2054 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
2055 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
2056 	raw_spin_unlock_irq_rcu_node(rnp);
2057 
2058 	/*
2059 	 * Apply per-leaf buffered online and offline operations to the
2060 	 * rcu_node tree.  Note that this new grace period need not wait
2061 	 * for subsequent online CPUs, and that quiescent-state forcing
2062 	 * will handle subsequent offline CPUs.
2063 	 */
2064 	rcu_for_each_leaf_node(rsp, rnp) {
2065 		rcu_gp_slow(rsp, gp_preinit_delay);
2066 		raw_spin_lock_irq_rcu_node(rnp);
2067 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
2068 		    !rnp->wait_blkd_tasks) {
2069 			/* Nothing to do on this leaf rcu_node structure. */
2070 			raw_spin_unlock_irq_rcu_node(rnp);
2071 			continue;
2072 		}
2073 
2074 		/* Record old state, apply changes to ->qsmaskinit field. */
2075 		oldmask = rnp->qsmaskinit;
2076 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2077 
2078 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2079 		if (!oldmask != !rnp->qsmaskinit) {
2080 			if (!oldmask) /* First online CPU for this rcu_node. */
2081 				rcu_init_new_rnp(rnp);
2082 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2083 				rnp->wait_blkd_tasks = true;
2084 			else /* Last offline CPU and can propagate. */
2085 				rcu_cleanup_dead_rnp(rnp);
2086 		}
2087 
2088 		/*
2089 		 * If all waited-on tasks from prior grace period are
2090 		 * done, and if all this rcu_node structure's CPUs are
2091 		 * still offline, propagate up the rcu_node tree and
2092 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2093 		 * rcu_node structure's CPUs has since come back online,
2094 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2095 		 * checks for this, so just call it unconditionally).
2096 		 */
2097 		if (rnp->wait_blkd_tasks &&
2098 		    (!rcu_preempt_has_tasks(rnp) ||
2099 		     rnp->qsmaskinit)) {
2100 			rnp->wait_blkd_tasks = false;
2101 			rcu_cleanup_dead_rnp(rnp);
2102 		}
2103 
2104 		raw_spin_unlock_irq_rcu_node(rnp);
2105 	}
2106 
2107 	/*
2108 	 * Set the quiescent-state-needed bits in all the rcu_node
2109 	 * structures for all currently online CPUs in breadth-first order,
2110 	 * starting from the root rcu_node structure, relying on the layout
2111 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2112 	 * will access only the leaves of the hierarchy, thus seeing that no
2113 	 * grace period is in progress, at least until the corresponding
2114 	 * leaf node has been initialized.
2115 	 *
2116 	 * The grace period cannot complete until the initialization
2117 	 * process finishes, because this kthread handles both.
2118 	 */
2119 	rcu_for_each_node_breadth_first(rsp, rnp) {
2120 		rcu_gp_slow(rsp, gp_init_delay);
2121 		raw_spin_lock_irq_rcu_node(rnp);
2122 		rdp = this_cpu_ptr(rsp->rda);
2123 		rcu_preempt_check_blocked_tasks(rnp);
2124 		rnp->qsmask = rnp->qsmaskinit;
2125 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2126 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2127 			WRITE_ONCE(rnp->completed, rsp->completed);
2128 		if (rnp == rdp->mynode)
2129 			(void)__note_gp_changes(rsp, rnp, rdp);
2130 		rcu_preempt_boost_start_gp(rnp);
2131 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2132 					    rnp->level, rnp->grplo,
2133 					    rnp->grphi, rnp->qsmask);
2134 		raw_spin_unlock_irq_rcu_node(rnp);
2135 		cond_resched_rcu_qs();
2136 		WRITE_ONCE(rsp->gp_activity, jiffies);
2137 	}
2138 
2139 	return true;
2140 }
2141 
2142 /*
2143  * Helper function for swait_event_idle() wakeup at force-quiescent-state
2144  * time.
2145  */
2146 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2147 {
2148 	struct rcu_node *rnp = rcu_get_root(rsp);
2149 
2150 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2151 	*gfp = READ_ONCE(rsp->gp_flags);
2152 	if (*gfp & RCU_GP_FLAG_FQS)
2153 		return true;
2154 
2155 	/* The current grace period has completed. */
2156 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2157 		return true;
2158 
2159 	return false;
2160 }
2161 
2162 /*
2163  * Do one round of quiescent-state forcing.
2164  */
2165 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2166 {
2167 	struct rcu_node *rnp = rcu_get_root(rsp);
2168 
2169 	WRITE_ONCE(rsp->gp_activity, jiffies);
2170 	rsp->n_force_qs++;
2171 	if (first_time) {
2172 		/* Collect dyntick-idle snapshots. */
2173 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2174 	} else {
2175 		/* Handle dyntick-idle and offline CPUs. */
2176 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2177 	}
2178 	/* Clear flag to prevent immediate re-entry. */
2179 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2180 		raw_spin_lock_irq_rcu_node(rnp);
2181 		WRITE_ONCE(rsp->gp_flags,
2182 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2183 		raw_spin_unlock_irq_rcu_node(rnp);
2184 	}
2185 }
2186 
2187 /*
2188  * Clean up after the old grace period.
2189  */
2190 static void rcu_gp_cleanup(struct rcu_state *rsp)
2191 {
2192 	unsigned long gp_duration;
2193 	bool needgp = false;
2194 	int nocb = 0;
2195 	struct rcu_data *rdp;
2196 	struct rcu_node *rnp = rcu_get_root(rsp);
2197 	struct swait_queue_head *sq;
2198 
2199 	WRITE_ONCE(rsp->gp_activity, jiffies);
2200 	raw_spin_lock_irq_rcu_node(rnp);
2201 	gp_duration = jiffies - rsp->gp_start;
2202 	if (gp_duration > rsp->gp_max)
2203 		rsp->gp_max = gp_duration;
2204 
2205 	/*
2206 	 * We know the grace period is complete, but to everyone else
2207 	 * it appears to still be ongoing.  But it is also the case
2208 	 * that to everyone else it looks like there is nothing that
2209 	 * they can do to advance the grace period.  It is therefore
2210 	 * safe for us to drop the lock in order to mark the grace
2211 	 * period as completed in all of the rcu_node structures.
2212 	 */
2213 	raw_spin_unlock_irq_rcu_node(rnp);
2214 
2215 	/*
2216 	 * Propagate new ->completed value to rcu_node structures so
2217 	 * that other CPUs don't have to wait until the start of the next
2218 	 * grace period to process their callbacks.  This also avoids
2219 	 * some nasty RCU grace-period initialization races by forcing
2220 	 * the end of the current grace period to be completely recorded in
2221 	 * all of the rcu_node structures before the beginning of the next
2222 	 * grace period is recorded in any of the rcu_node structures.
2223 	 */
2224 	rcu_for_each_node_breadth_first(rsp, rnp) {
2225 		raw_spin_lock_irq_rcu_node(rnp);
2226 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2227 		WARN_ON_ONCE(rnp->qsmask);
2228 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2229 		rdp = this_cpu_ptr(rsp->rda);
2230 		if (rnp == rdp->mynode)
2231 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2232 		/* smp_mb() provided by prior unlock-lock pair. */
2233 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2234 		sq = rcu_nocb_gp_get(rnp);
2235 		raw_spin_unlock_irq_rcu_node(rnp);
2236 		rcu_nocb_gp_cleanup(sq);
2237 		cond_resched_rcu_qs();
2238 		WRITE_ONCE(rsp->gp_activity, jiffies);
2239 		rcu_gp_slow(rsp, gp_cleanup_delay);
2240 	}
2241 	rnp = rcu_get_root(rsp);
2242 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2243 	rcu_nocb_gp_set(rnp, nocb);
2244 
2245 	/* Declare grace period done. */
2246 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2247 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2248 	rsp->gp_state = RCU_GP_IDLE;
2249 	rdp = this_cpu_ptr(rsp->rda);
2250 	/* Advance CBs to reduce false positives below. */
2251 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2252 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2253 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2254 		trace_rcu_grace_period(rsp->name,
2255 				       READ_ONCE(rsp->gpnum),
2256 				       TPS("newreq"));
2257 	}
2258 	raw_spin_unlock_irq_rcu_node(rnp);
2259 }
2260 
2261 /*
2262  * Body of kthread that handles grace periods.
2263  */
2264 static int __noreturn rcu_gp_kthread(void *arg)
2265 {
2266 	bool first_gp_fqs;
2267 	int gf;
2268 	unsigned long j;
2269 	int ret;
2270 	struct rcu_state *rsp = arg;
2271 	struct rcu_node *rnp = rcu_get_root(rsp);
2272 
2273 	rcu_bind_gp_kthread();
2274 	for (;;) {
2275 
2276 		/* Handle grace-period start. */
2277 		for (;;) {
2278 			trace_rcu_grace_period(rsp->name,
2279 					       READ_ONCE(rsp->gpnum),
2280 					       TPS("reqwait"));
2281 			rsp->gp_state = RCU_GP_WAIT_GPS;
2282 			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2283 						     RCU_GP_FLAG_INIT);
2284 			rsp->gp_state = RCU_GP_DONE_GPS;
2285 			/* Locking provides needed memory barrier. */
2286 			if (rcu_gp_init(rsp))
2287 				break;
2288 			cond_resched_rcu_qs();
2289 			WRITE_ONCE(rsp->gp_activity, jiffies);
2290 			WARN_ON(signal_pending(current));
2291 			trace_rcu_grace_period(rsp->name,
2292 					       READ_ONCE(rsp->gpnum),
2293 					       TPS("reqwaitsig"));
2294 		}
2295 
2296 		/* Handle quiescent-state forcing. */
2297 		first_gp_fqs = true;
2298 		j = jiffies_till_first_fqs;
2299 		if (j > HZ) {
2300 			j = HZ;
2301 			jiffies_till_first_fqs = HZ;
2302 		}
2303 		ret = 0;
2304 		for (;;) {
2305 			if (!ret) {
2306 				rsp->jiffies_force_qs = jiffies + j;
2307 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2308 					   jiffies + 3 * j);
2309 			}
2310 			trace_rcu_grace_period(rsp->name,
2311 					       READ_ONCE(rsp->gpnum),
2312 					       TPS("fqswait"));
2313 			rsp->gp_state = RCU_GP_WAIT_FQS;
2314 			ret = swait_event_idle_timeout(rsp->gp_wq,
2315 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2316 			rsp->gp_state = RCU_GP_DOING_FQS;
2317 			/* Locking provides needed memory barriers. */
2318 			/* If grace period done, leave loop. */
2319 			if (!READ_ONCE(rnp->qsmask) &&
2320 			    !rcu_preempt_blocked_readers_cgp(rnp))
2321 				break;
2322 			/* If time for quiescent-state forcing, do it. */
2323 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2324 			    (gf & RCU_GP_FLAG_FQS)) {
2325 				trace_rcu_grace_period(rsp->name,
2326 						       READ_ONCE(rsp->gpnum),
2327 						       TPS("fqsstart"));
2328 				rcu_gp_fqs(rsp, first_gp_fqs);
2329 				first_gp_fqs = false;
2330 				trace_rcu_grace_period(rsp->name,
2331 						       READ_ONCE(rsp->gpnum),
2332 						       TPS("fqsend"));
2333 				cond_resched_rcu_qs();
2334 				WRITE_ONCE(rsp->gp_activity, jiffies);
2335 				ret = 0; /* Force full wait till next FQS. */
2336 				j = jiffies_till_next_fqs;
2337 				if (j > HZ) {
2338 					j = HZ;
2339 					jiffies_till_next_fqs = HZ;
2340 				} else if (j < 1) {
2341 					j = 1;
2342 					jiffies_till_next_fqs = 1;
2343 				}
2344 			} else {
2345 				/* Deal with stray signal. */
2346 				cond_resched_rcu_qs();
2347 				WRITE_ONCE(rsp->gp_activity, jiffies);
2348 				WARN_ON(signal_pending(current));
2349 				trace_rcu_grace_period(rsp->name,
2350 						       READ_ONCE(rsp->gpnum),
2351 						       TPS("fqswaitsig"));
2352 				ret = 1; /* Keep old FQS timing. */
2353 				j = jiffies;
2354 				if (time_after(jiffies, rsp->jiffies_force_qs))
2355 					j = 1;
2356 				else
2357 					j = rsp->jiffies_force_qs - j;
2358 			}
2359 		}
2360 
2361 		/* Handle grace-period end. */
2362 		rsp->gp_state = RCU_GP_CLEANUP;
2363 		rcu_gp_cleanup(rsp);
2364 		rsp->gp_state = RCU_GP_CLEANED;
2365 	}
2366 }
2367 
2368 /*
2369  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2370  * in preparation for detecting the next grace period.  The caller must hold
2371  * the root node's ->lock and hard irqs must be disabled.
2372  *
2373  * Note that it is legal for a dying CPU (which is marked as offline) to
2374  * invoke this function.  This can happen when the dying CPU reports its
2375  * quiescent state.
2376  *
2377  * Returns true if the grace-period kthread must be awakened.
2378  */
2379 static bool
2380 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2381 		      struct rcu_data *rdp)
2382 {
2383 	lockdep_assert_held(&rnp->lock);
2384 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2385 		/*
2386 		 * Either we have not yet spawned the grace-period
2387 		 * task, this CPU does not need another grace period,
2388 		 * or a grace period is already in progress.
2389 		 * Either way, don't start a new grace period.
2390 		 */
2391 		return false;
2392 	}
2393 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2394 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2395 			       TPS("newreq"));
2396 
2397 	/*
2398 	 * We can't do wakeups while holding the rnp->lock, as that
2399 	 * could cause possible deadlocks with the rq->lock. Defer
2400 	 * the wakeup to our caller.
2401 	 */
2402 	return true;
2403 }
2404 
2405 /*
2406  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2407  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2408  * is invoked indirectly from rcu_advance_cbs(), which would result in
2409  * endless recursion -- or would do so if it wasn't for the self-deadlock
2410  * that is encountered beforehand.
2411  *
2412  * Returns true if the grace-period kthread needs to be awakened.
2413  */
2414 static bool rcu_start_gp(struct rcu_state *rsp)
2415 {
2416 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2417 	struct rcu_node *rnp = rcu_get_root(rsp);
2418 	bool ret = false;
2419 
2420 	/*
2421 	 * If there is no grace period in progress right now, any
2422 	 * callbacks we have up to this point will be satisfied by the
2423 	 * next grace period.  Also, advancing the callbacks reduces the
2424 	 * probability of false positives from cpu_needs_another_gp()
2425 	 * resulting in pointless grace periods.  So, advance callbacks
2426 	 * then start the grace period!
2427 	 */
2428 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2429 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2430 	return ret;
2431 }
2432 
2433 /*
2434  * Report a full set of quiescent states to the specified rcu_state data
2435  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2436  * kthread if another grace period is required.  Whether we wake
2437  * the grace-period kthread or it awakens itself for the next round
2438  * of quiescent-state forcing, that kthread will clean up after the
2439  * just-completed grace period.  Note that the caller must hold rnp->lock,
2440  * which is released before return.
2441  */
2442 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2443 	__releases(rcu_get_root(rsp)->lock)
2444 {
2445 	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2446 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2447 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2448 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2449 	rcu_gp_kthread_wake(rsp);
2450 }
2451 
2452 /*
2453  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2454  * Allows quiescent states for a group of CPUs to be reported at one go
2455  * to the specified rcu_node structure, though all the CPUs in the group
2456  * must be represented by the same rcu_node structure (which need not be a
2457  * leaf rcu_node structure, though it often will be).  The gps parameter
2458  * is the grace-period snapshot, which means that the quiescent states
2459  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2460  * must be held upon entry, and it is released before return.
2461  */
2462 static void
2463 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2464 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2465 	__releases(rnp->lock)
2466 {
2467 	unsigned long oldmask = 0;
2468 	struct rcu_node *rnp_c;
2469 
2470 	lockdep_assert_held(&rnp->lock);
2471 
2472 	/* Walk up the rcu_node hierarchy. */
2473 	for (;;) {
2474 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2475 
2476 			/*
2477 			 * Our bit has already been cleared, or the
2478 			 * relevant grace period is already over, so done.
2479 			 */
2480 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2481 			return;
2482 		}
2483 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2484 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2485 			     rcu_preempt_blocked_readers_cgp(rnp));
2486 		rnp->qsmask &= ~mask;
2487 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2488 						 mask, rnp->qsmask, rnp->level,
2489 						 rnp->grplo, rnp->grphi,
2490 						 !!rnp->gp_tasks);
2491 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2492 
2493 			/* Other bits still set at this level, so done. */
2494 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2495 			return;
2496 		}
2497 		mask = rnp->grpmask;
2498 		if (rnp->parent == NULL) {
2499 
2500 			/* No more levels.  Exit loop holding root lock. */
2501 
2502 			break;
2503 		}
2504 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2505 		rnp_c = rnp;
2506 		rnp = rnp->parent;
2507 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2508 		oldmask = rnp_c->qsmask;
2509 	}
2510 
2511 	/*
2512 	 * Get here if we are the last CPU to pass through a quiescent
2513 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2514 	 * to clean up and start the next grace period if one is needed.
2515 	 */
2516 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2517 }
2518 
2519 /*
2520  * Record a quiescent state for all tasks that were previously queued
2521  * on the specified rcu_node structure and that were blocking the current
2522  * RCU grace period.  The caller must hold the specified rnp->lock with
2523  * irqs disabled, and this lock is released upon return, but irqs remain
2524  * disabled.
2525  */
2526 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2527 				      struct rcu_node *rnp, unsigned long flags)
2528 	__releases(rnp->lock)
2529 {
2530 	unsigned long gps;
2531 	unsigned long mask;
2532 	struct rcu_node *rnp_p;
2533 
2534 	lockdep_assert_held(&rnp->lock);
2535 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2536 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2537 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2538 		return;  /* Still need more quiescent states! */
2539 	}
2540 
2541 	rnp_p = rnp->parent;
2542 	if (rnp_p == NULL) {
2543 		/*
2544 		 * Only one rcu_node structure in the tree, so don't
2545 		 * try to report up to its nonexistent parent!
2546 		 */
2547 		rcu_report_qs_rsp(rsp, flags);
2548 		return;
2549 	}
2550 
2551 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2552 	gps = rnp->gpnum;
2553 	mask = rnp->grpmask;
2554 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2555 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2556 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2557 }
2558 
2559 /*
2560  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2561  * structure.  This must be called from the specified CPU.
2562  */
2563 static void
2564 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2565 {
2566 	unsigned long flags;
2567 	unsigned long mask;
2568 	bool needwake;
2569 	struct rcu_node *rnp;
2570 
2571 	rnp = rdp->mynode;
2572 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2573 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2574 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2575 
2576 		/*
2577 		 * The grace period in which this quiescent state was
2578 		 * recorded has ended, so don't report it upwards.
2579 		 * We will instead need a new quiescent state that lies
2580 		 * within the current grace period.
2581 		 */
2582 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2583 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2584 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2585 		return;
2586 	}
2587 	mask = rdp->grpmask;
2588 	if ((rnp->qsmask & mask) == 0) {
2589 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2590 	} else {
2591 		rdp->core_needs_qs = false;
2592 
2593 		/*
2594 		 * This GP can't end until cpu checks in, so all of our
2595 		 * callbacks can be processed during the next GP.
2596 		 */
2597 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2598 
2599 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2600 		/* ^^^ Released rnp->lock */
2601 		if (needwake)
2602 			rcu_gp_kthread_wake(rsp);
2603 	}
2604 }
2605 
2606 /*
2607  * Check to see if there is a new grace period of which this CPU
2608  * is not yet aware, and if so, set up local rcu_data state for it.
2609  * Otherwise, see if this CPU has just passed through its first
2610  * quiescent state for this grace period, and record that fact if so.
2611  */
2612 static void
2613 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2614 {
2615 	/* Check for grace-period ends and beginnings. */
2616 	note_gp_changes(rsp, rdp);
2617 
2618 	/*
2619 	 * Does this CPU still need to do its part for current grace period?
2620 	 * If no, return and let the other CPUs do their part as well.
2621 	 */
2622 	if (!rdp->core_needs_qs)
2623 		return;
2624 
2625 	/*
2626 	 * Was there a quiescent state since the beginning of the grace
2627 	 * period? If no, then exit and wait for the next call.
2628 	 */
2629 	if (rdp->cpu_no_qs.b.norm)
2630 		return;
2631 
2632 	/*
2633 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2634 	 * judge of that).
2635 	 */
2636 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2637 }
2638 
2639 /*
2640  * Trace the fact that this CPU is going offline.
2641  */
2642 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2643 {
2644 	RCU_TRACE(unsigned long mask;)
2645 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2646 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2647 
2648 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2649 		return;
2650 
2651 	RCU_TRACE(mask = rdp->grpmask;)
2652 	trace_rcu_grace_period(rsp->name,
2653 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2654 			       TPS("cpuofl"));
2655 }
2656 
2657 /*
2658  * All CPUs for the specified rcu_node structure have gone offline,
2659  * and all tasks that were preempted within an RCU read-side critical
2660  * section while running on one of those CPUs have since exited their RCU
2661  * read-side critical section.  Some other CPU is reporting this fact with
2662  * the specified rcu_node structure's ->lock held and interrupts disabled.
2663  * This function therefore goes up the tree of rcu_node structures,
2664  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2665  * the leaf rcu_node structure's ->qsmaskinit field has already been
2666  * updated
2667  *
2668  * This function does check that the specified rcu_node structure has
2669  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2670  * prematurely.  That said, invoking it after the fact will cost you
2671  * a needless lock acquisition.  So once it has done its work, don't
2672  * invoke it again.
2673  */
2674 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2675 {
2676 	long mask;
2677 	struct rcu_node *rnp = rnp_leaf;
2678 
2679 	lockdep_assert_held(&rnp->lock);
2680 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2681 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2682 		return;
2683 	for (;;) {
2684 		mask = rnp->grpmask;
2685 		rnp = rnp->parent;
2686 		if (!rnp)
2687 			break;
2688 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2689 		rnp->qsmaskinit &= ~mask;
2690 		rnp->qsmask &= ~mask;
2691 		if (rnp->qsmaskinit) {
2692 			raw_spin_unlock_rcu_node(rnp);
2693 			/* irqs remain disabled. */
2694 			return;
2695 		}
2696 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2697 	}
2698 }
2699 
2700 /*
2701  * The CPU has been completely removed, and some other CPU is reporting
2702  * this fact from process context.  Do the remainder of the cleanup.
2703  * There can only be one CPU hotplug operation at a time, so no need for
2704  * explicit locking.
2705  */
2706 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2707 {
2708 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2709 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2710 
2711 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2712 		return;
2713 
2714 	/* Adjust any no-longer-needed kthreads. */
2715 	rcu_boost_kthread_setaffinity(rnp, -1);
2716 }
2717 
2718 /*
2719  * Invoke any RCU callbacks that have made it to the end of their grace
2720  * period.  Thottle as specified by rdp->blimit.
2721  */
2722 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2723 {
2724 	unsigned long flags;
2725 	struct rcu_head *rhp;
2726 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2727 	long bl, count;
2728 
2729 	/* If no callbacks are ready, just return. */
2730 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2731 		trace_rcu_batch_start(rsp->name,
2732 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2733 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2734 		trace_rcu_batch_end(rsp->name, 0,
2735 				    !rcu_segcblist_empty(&rdp->cblist),
2736 				    need_resched(), is_idle_task(current),
2737 				    rcu_is_callbacks_kthread());
2738 		return;
2739 	}
2740 
2741 	/*
2742 	 * Extract the list of ready callbacks, disabling to prevent
2743 	 * races with call_rcu() from interrupt handlers.  Leave the
2744 	 * callback counts, as rcu_barrier() needs to be conservative.
2745 	 */
2746 	local_irq_save(flags);
2747 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2748 	bl = rdp->blimit;
2749 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2750 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2751 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2752 	local_irq_restore(flags);
2753 
2754 	/* Invoke callbacks. */
2755 	rhp = rcu_cblist_dequeue(&rcl);
2756 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2757 		debug_rcu_head_unqueue(rhp);
2758 		if (__rcu_reclaim(rsp->name, rhp))
2759 			rcu_cblist_dequeued_lazy(&rcl);
2760 		/*
2761 		 * Stop only if limit reached and CPU has something to do.
2762 		 * Note: The rcl structure counts down from zero.
2763 		 */
2764 		if (-rcl.len >= bl &&
2765 		    (need_resched() ||
2766 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2767 			break;
2768 	}
2769 
2770 	local_irq_save(flags);
2771 	count = -rcl.len;
2772 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2773 			    is_idle_task(current), rcu_is_callbacks_kthread());
2774 
2775 	/* Update counts and requeue any remaining callbacks. */
2776 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2777 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2778 	rdp->n_cbs_invoked += count;
2779 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2780 
2781 	/* Reinstate batch limit if we have worked down the excess. */
2782 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2783 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2784 		rdp->blimit = blimit;
2785 
2786 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2787 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2788 		rdp->qlen_last_fqs_check = 0;
2789 		rdp->n_force_qs_snap = rsp->n_force_qs;
2790 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2791 		rdp->qlen_last_fqs_check = count;
2792 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2793 
2794 	local_irq_restore(flags);
2795 
2796 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2797 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2798 		invoke_rcu_core();
2799 }
2800 
2801 /*
2802  * Check to see if this CPU is in a non-context-switch quiescent state
2803  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2804  * Also schedule RCU core processing.
2805  *
2806  * This function must be called from hardirq context.  It is normally
2807  * invoked from the scheduling-clock interrupt.
2808  */
2809 void rcu_check_callbacks(int user)
2810 {
2811 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2812 	increment_cpu_stall_ticks();
2813 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2814 
2815 		/*
2816 		 * Get here if this CPU took its interrupt from user
2817 		 * mode or from the idle loop, and if this is not a
2818 		 * nested interrupt.  In this case, the CPU is in
2819 		 * a quiescent state, so note it.
2820 		 *
2821 		 * No memory barrier is required here because both
2822 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2823 		 * variables that other CPUs neither access nor modify,
2824 		 * at least not while the corresponding CPU is online.
2825 		 */
2826 
2827 		rcu_sched_qs();
2828 		rcu_bh_qs();
2829 
2830 	} else if (!in_softirq()) {
2831 
2832 		/*
2833 		 * Get here if this CPU did not take its interrupt from
2834 		 * softirq, in other words, if it is not interrupting
2835 		 * a rcu_bh read-side critical section.  This is an _bh
2836 		 * critical section, so note it.
2837 		 */
2838 
2839 		rcu_bh_qs();
2840 	}
2841 	rcu_preempt_check_callbacks();
2842 	if (rcu_pending())
2843 		invoke_rcu_core();
2844 	if (user)
2845 		rcu_note_voluntary_context_switch(current);
2846 	trace_rcu_utilization(TPS("End scheduler-tick"));
2847 }
2848 
2849 /*
2850  * Scan the leaf rcu_node structures, processing dyntick state for any that
2851  * have not yet encountered a quiescent state, using the function specified.
2852  * Also initiate boosting for any threads blocked on the root rcu_node.
2853  *
2854  * The caller must have suppressed start of new grace periods.
2855  */
2856 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2857 {
2858 	int cpu;
2859 	unsigned long flags;
2860 	unsigned long mask;
2861 	struct rcu_node *rnp;
2862 
2863 	rcu_for_each_leaf_node(rsp, rnp) {
2864 		cond_resched_rcu_qs();
2865 		mask = 0;
2866 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2867 		if (rnp->qsmask == 0) {
2868 			if (rcu_state_p == &rcu_sched_state ||
2869 			    rsp != rcu_state_p ||
2870 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2871 				/*
2872 				 * No point in scanning bits because they
2873 				 * are all zero.  But we might need to
2874 				 * priority-boost blocked readers.
2875 				 */
2876 				rcu_initiate_boost(rnp, flags);
2877 				/* rcu_initiate_boost() releases rnp->lock */
2878 				continue;
2879 			}
2880 			if (rnp->parent &&
2881 			    (rnp->parent->qsmask & rnp->grpmask)) {
2882 				/*
2883 				 * Race between grace-period
2884 				 * initialization and task exiting RCU
2885 				 * read-side critical section: Report.
2886 				 */
2887 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2888 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2889 				continue;
2890 			}
2891 		}
2892 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2893 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2894 			if ((rnp->qsmask & bit) != 0) {
2895 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2896 					mask |= bit;
2897 			}
2898 		}
2899 		if (mask != 0) {
2900 			/* Idle/offline CPUs, report (releases rnp->lock. */
2901 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2902 		} else {
2903 			/* Nothing to do here, so just drop the lock. */
2904 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2905 		}
2906 	}
2907 }
2908 
2909 /*
2910  * Force quiescent states on reluctant CPUs, and also detect which
2911  * CPUs are in dyntick-idle mode.
2912  */
2913 static void force_quiescent_state(struct rcu_state *rsp)
2914 {
2915 	unsigned long flags;
2916 	bool ret;
2917 	struct rcu_node *rnp;
2918 	struct rcu_node *rnp_old = NULL;
2919 
2920 	/* Funnel through hierarchy to reduce memory contention. */
2921 	rnp = __this_cpu_read(rsp->rda->mynode);
2922 	for (; rnp != NULL; rnp = rnp->parent) {
2923 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2924 		      !raw_spin_trylock(&rnp->fqslock);
2925 		if (rnp_old != NULL)
2926 			raw_spin_unlock(&rnp_old->fqslock);
2927 		if (ret) {
2928 			rsp->n_force_qs_lh++;
2929 			return;
2930 		}
2931 		rnp_old = rnp;
2932 	}
2933 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2934 
2935 	/* Reached the root of the rcu_node tree, acquire lock. */
2936 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2937 	raw_spin_unlock(&rnp_old->fqslock);
2938 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2939 		rsp->n_force_qs_lh++;
2940 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2941 		return;  /* Someone beat us to it. */
2942 	}
2943 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2944 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2945 	rcu_gp_kthread_wake(rsp);
2946 }
2947 
2948 /*
2949  * This does the RCU core processing work for the specified rcu_state
2950  * and rcu_data structures.  This may be called only from the CPU to
2951  * whom the rdp belongs.
2952  */
2953 static void
2954 __rcu_process_callbacks(struct rcu_state *rsp)
2955 {
2956 	unsigned long flags;
2957 	bool needwake;
2958 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2959 
2960 	WARN_ON_ONCE(!rdp->beenonline);
2961 
2962 	/* Update RCU state based on any recent quiescent states. */
2963 	rcu_check_quiescent_state(rsp, rdp);
2964 
2965 	/* Does this CPU require a not-yet-started grace period? */
2966 	local_irq_save(flags);
2967 	if (cpu_needs_another_gp(rsp, rdp)) {
2968 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2969 		needwake = rcu_start_gp(rsp);
2970 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2971 		if (needwake)
2972 			rcu_gp_kthread_wake(rsp);
2973 	} else {
2974 		local_irq_restore(flags);
2975 	}
2976 
2977 	/* If there are callbacks ready, invoke them. */
2978 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2979 		invoke_rcu_callbacks(rsp, rdp);
2980 
2981 	/* Do any needed deferred wakeups of rcuo kthreads. */
2982 	do_nocb_deferred_wakeup(rdp);
2983 }
2984 
2985 /*
2986  * Do RCU core processing for the current CPU.
2987  */
2988 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2989 {
2990 	struct rcu_state *rsp;
2991 
2992 	if (cpu_is_offline(smp_processor_id()))
2993 		return;
2994 	trace_rcu_utilization(TPS("Start RCU core"));
2995 	for_each_rcu_flavor(rsp)
2996 		__rcu_process_callbacks(rsp);
2997 	trace_rcu_utilization(TPS("End RCU core"));
2998 }
2999 
3000 /*
3001  * Schedule RCU callback invocation.  If the specified type of RCU
3002  * does not support RCU priority boosting, just do a direct call,
3003  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3004  * are running on the current CPU with softirqs disabled, the
3005  * rcu_cpu_kthread_task cannot disappear out from under us.
3006  */
3007 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3008 {
3009 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3010 		return;
3011 	if (likely(!rsp->boost)) {
3012 		rcu_do_batch(rsp, rdp);
3013 		return;
3014 	}
3015 	invoke_rcu_callbacks_kthread();
3016 }
3017 
3018 static void invoke_rcu_core(void)
3019 {
3020 	if (cpu_online(smp_processor_id()))
3021 		raise_softirq(RCU_SOFTIRQ);
3022 }
3023 
3024 /*
3025  * Handle any core-RCU processing required by a call_rcu() invocation.
3026  */
3027 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3028 			    struct rcu_head *head, unsigned long flags)
3029 {
3030 	bool needwake;
3031 
3032 	/*
3033 	 * If called from an extended quiescent state, invoke the RCU
3034 	 * core in order to force a re-evaluation of RCU's idleness.
3035 	 */
3036 	if (!rcu_is_watching())
3037 		invoke_rcu_core();
3038 
3039 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3040 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3041 		return;
3042 
3043 	/*
3044 	 * Force the grace period if too many callbacks or too long waiting.
3045 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3046 	 * if some other CPU has recently done so.  Also, don't bother
3047 	 * invoking force_quiescent_state() if the newly enqueued callback
3048 	 * is the only one waiting for a grace period to complete.
3049 	 */
3050 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3051 		     rdp->qlen_last_fqs_check + qhimark)) {
3052 
3053 		/* Are we ignoring a completed grace period? */
3054 		note_gp_changes(rsp, rdp);
3055 
3056 		/* Start a new grace period if one not already started. */
3057 		if (!rcu_gp_in_progress(rsp)) {
3058 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3059 
3060 			raw_spin_lock_rcu_node(rnp_root);
3061 			needwake = rcu_start_gp(rsp);
3062 			raw_spin_unlock_rcu_node(rnp_root);
3063 			if (needwake)
3064 				rcu_gp_kthread_wake(rsp);
3065 		} else {
3066 			/* Give the grace period a kick. */
3067 			rdp->blimit = LONG_MAX;
3068 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3069 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3070 				force_quiescent_state(rsp);
3071 			rdp->n_force_qs_snap = rsp->n_force_qs;
3072 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3073 		}
3074 	}
3075 }
3076 
3077 /*
3078  * RCU callback function to leak a callback.
3079  */
3080 static void rcu_leak_callback(struct rcu_head *rhp)
3081 {
3082 }
3083 
3084 /*
3085  * Helper function for call_rcu() and friends.  The cpu argument will
3086  * normally be -1, indicating "currently running CPU".  It may specify
3087  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3088  * is expected to specify a CPU.
3089  */
3090 static void
3091 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3092 	   struct rcu_state *rsp, int cpu, bool lazy)
3093 {
3094 	unsigned long flags;
3095 	struct rcu_data *rdp;
3096 
3097 	/* Misaligned rcu_head! */
3098 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3099 
3100 	if (debug_rcu_head_queue(head)) {
3101 		/*
3102 		 * Probable double call_rcu(), so leak the callback.
3103 		 * Use rcu:rcu_callback trace event to find the previous
3104 		 * time callback was passed to __call_rcu().
3105 		 */
3106 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3107 			  head, head->func);
3108 		WRITE_ONCE(head->func, rcu_leak_callback);
3109 		return;
3110 	}
3111 	head->func = func;
3112 	head->next = NULL;
3113 	local_irq_save(flags);
3114 	rdp = this_cpu_ptr(rsp->rda);
3115 
3116 	/* Add the callback to our list. */
3117 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3118 		int offline;
3119 
3120 		if (cpu != -1)
3121 			rdp = per_cpu_ptr(rsp->rda, cpu);
3122 		if (likely(rdp->mynode)) {
3123 			/* Post-boot, so this should be for a no-CBs CPU. */
3124 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3125 			WARN_ON_ONCE(offline);
3126 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3127 			local_irq_restore(flags);
3128 			return;
3129 		}
3130 		/*
3131 		 * Very early boot, before rcu_init().  Initialize if needed
3132 		 * and then drop through to queue the callback.
3133 		 */
3134 		BUG_ON(cpu != -1);
3135 		WARN_ON_ONCE(!rcu_is_watching());
3136 		if (rcu_segcblist_empty(&rdp->cblist))
3137 			rcu_segcblist_init(&rdp->cblist);
3138 	}
3139 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3140 	if (!lazy)
3141 		rcu_idle_count_callbacks_posted();
3142 
3143 	if (__is_kfree_rcu_offset((unsigned long)func))
3144 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3145 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3146 					 rcu_segcblist_n_cbs(&rdp->cblist));
3147 	else
3148 		trace_rcu_callback(rsp->name, head,
3149 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3150 				   rcu_segcblist_n_cbs(&rdp->cblist));
3151 
3152 	/* Go handle any RCU core processing required. */
3153 	__call_rcu_core(rsp, rdp, head, flags);
3154 	local_irq_restore(flags);
3155 }
3156 
3157 /**
3158  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3159  * @head: structure to be used for queueing the RCU updates.
3160  * @func: actual callback function to be invoked after the grace period
3161  *
3162  * The callback function will be invoked some time after a full grace
3163  * period elapses, in other words after all currently executing RCU
3164  * read-side critical sections have completed. call_rcu_sched() assumes
3165  * that the read-side critical sections end on enabling of preemption
3166  * or on voluntary preemption.
3167  * RCU read-side critical sections are delimited by:
3168  *
3169  * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3170  * - anything that disables preemption.
3171  *
3172  *  These may be nested.
3173  *
3174  * See the description of call_rcu() for more detailed information on
3175  * memory ordering guarantees.
3176  */
3177 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3178 {
3179 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3180 }
3181 EXPORT_SYMBOL_GPL(call_rcu_sched);
3182 
3183 /**
3184  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3185  * @head: structure to be used for queueing the RCU updates.
3186  * @func: actual callback function to be invoked after the grace period
3187  *
3188  * The callback function will be invoked some time after a full grace
3189  * period elapses, in other words after all currently executing RCU
3190  * read-side critical sections have completed. call_rcu_bh() assumes
3191  * that the read-side critical sections end on completion of a softirq
3192  * handler. This means that read-side critical sections in process
3193  * context must not be interrupted by softirqs. This interface is to be
3194  * used when most of the read-side critical sections are in softirq context.
3195  * RCU read-side critical sections are delimited by:
3196  *
3197  * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3198  * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3199  *
3200  * These may be nested.
3201  *
3202  * See the description of call_rcu() for more detailed information on
3203  * memory ordering guarantees.
3204  */
3205 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3206 {
3207 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3208 }
3209 EXPORT_SYMBOL_GPL(call_rcu_bh);
3210 
3211 /*
3212  * Queue an RCU callback for lazy invocation after a grace period.
3213  * This will likely be later named something like "call_rcu_lazy()",
3214  * but this change will require some way of tagging the lazy RCU
3215  * callbacks in the list of pending callbacks. Until then, this
3216  * function may only be called from __kfree_rcu().
3217  */
3218 void kfree_call_rcu(struct rcu_head *head,
3219 		    rcu_callback_t func)
3220 {
3221 	__call_rcu(head, func, rcu_state_p, -1, 1);
3222 }
3223 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3224 
3225 /*
3226  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3227  * any blocking grace-period wait automatically implies a grace period
3228  * if there is only one CPU online at any point time during execution
3229  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3230  * occasionally incorrectly indicate that there are multiple CPUs online
3231  * when there was in fact only one the whole time, as this just adds
3232  * some overhead: RCU still operates correctly.
3233  */
3234 static inline int rcu_blocking_is_gp(void)
3235 {
3236 	int ret;
3237 
3238 	might_sleep();  /* Check for RCU read-side critical section. */
3239 	preempt_disable();
3240 	ret = num_online_cpus() <= 1;
3241 	preempt_enable();
3242 	return ret;
3243 }
3244 
3245 /**
3246  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3247  *
3248  * Control will return to the caller some time after a full rcu-sched
3249  * grace period has elapsed, in other words after all currently executing
3250  * rcu-sched read-side critical sections have completed.   These read-side
3251  * critical sections are delimited by rcu_read_lock_sched() and
3252  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3253  * local_irq_disable(), and so on may be used in place of
3254  * rcu_read_lock_sched().
3255  *
3256  * This means that all preempt_disable code sequences, including NMI and
3257  * non-threaded hardware-interrupt handlers, in progress on entry will
3258  * have completed before this primitive returns.  However, this does not
3259  * guarantee that softirq handlers will have completed, since in some
3260  * kernels, these handlers can run in process context, and can block.
3261  *
3262  * Note that this guarantee implies further memory-ordering guarantees.
3263  * On systems with more than one CPU, when synchronize_sched() returns,
3264  * each CPU is guaranteed to have executed a full memory barrier since the
3265  * end of its last RCU-sched read-side critical section whose beginning
3266  * preceded the call to synchronize_sched().  In addition, each CPU having
3267  * an RCU read-side critical section that extends beyond the return from
3268  * synchronize_sched() is guaranteed to have executed a full memory barrier
3269  * after the beginning of synchronize_sched() and before the beginning of
3270  * that RCU read-side critical section.  Note that these guarantees include
3271  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3272  * that are executing in the kernel.
3273  *
3274  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3275  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3276  * to have executed a full memory barrier during the execution of
3277  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3278  * again only if the system has more than one CPU).
3279  */
3280 void synchronize_sched(void)
3281 {
3282 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3283 			 lock_is_held(&rcu_lock_map) ||
3284 			 lock_is_held(&rcu_sched_lock_map),
3285 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3286 	if (rcu_blocking_is_gp())
3287 		return;
3288 	if (rcu_gp_is_expedited())
3289 		synchronize_sched_expedited();
3290 	else
3291 		wait_rcu_gp(call_rcu_sched);
3292 }
3293 EXPORT_SYMBOL_GPL(synchronize_sched);
3294 
3295 /**
3296  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3297  *
3298  * Control will return to the caller some time after a full rcu_bh grace
3299  * period has elapsed, in other words after all currently executing rcu_bh
3300  * read-side critical sections have completed.  RCU read-side critical
3301  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3302  * and may be nested.
3303  *
3304  * See the description of synchronize_sched() for more detailed information
3305  * on memory ordering guarantees.
3306  */
3307 void synchronize_rcu_bh(void)
3308 {
3309 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3310 			 lock_is_held(&rcu_lock_map) ||
3311 			 lock_is_held(&rcu_sched_lock_map),
3312 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3313 	if (rcu_blocking_is_gp())
3314 		return;
3315 	if (rcu_gp_is_expedited())
3316 		synchronize_rcu_bh_expedited();
3317 	else
3318 		wait_rcu_gp(call_rcu_bh);
3319 }
3320 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3321 
3322 /**
3323  * get_state_synchronize_rcu - Snapshot current RCU state
3324  *
3325  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3326  * to determine whether or not a full grace period has elapsed in the
3327  * meantime.
3328  */
3329 unsigned long get_state_synchronize_rcu(void)
3330 {
3331 	/*
3332 	 * Any prior manipulation of RCU-protected data must happen
3333 	 * before the load from ->gpnum.
3334 	 */
3335 	smp_mb();  /* ^^^ */
3336 
3337 	/*
3338 	 * Make sure this load happens before the purportedly
3339 	 * time-consuming work between get_state_synchronize_rcu()
3340 	 * and cond_synchronize_rcu().
3341 	 */
3342 	return smp_load_acquire(&rcu_state_p->gpnum);
3343 }
3344 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3345 
3346 /**
3347  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3348  *
3349  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3350  *
3351  * If a full RCU grace period has elapsed since the earlier call to
3352  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3353  * synchronize_rcu() to wait for a full grace period.
3354  *
3355  * Yes, this function does not take counter wrap into account.  But
3356  * counter wrap is harmless.  If the counter wraps, we have waited for
3357  * more than 2 billion grace periods (and way more on a 64-bit system!),
3358  * so waiting for one additional grace period should be just fine.
3359  */
3360 void cond_synchronize_rcu(unsigned long oldstate)
3361 {
3362 	unsigned long newstate;
3363 
3364 	/*
3365 	 * Ensure that this load happens before any RCU-destructive
3366 	 * actions the caller might carry out after we return.
3367 	 */
3368 	newstate = smp_load_acquire(&rcu_state_p->completed);
3369 	if (ULONG_CMP_GE(oldstate, newstate))
3370 		synchronize_rcu();
3371 }
3372 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3373 
3374 /**
3375  * get_state_synchronize_sched - Snapshot current RCU-sched state
3376  *
3377  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3378  * to determine whether or not a full grace period has elapsed in the
3379  * meantime.
3380  */
3381 unsigned long get_state_synchronize_sched(void)
3382 {
3383 	/*
3384 	 * Any prior manipulation of RCU-protected data must happen
3385 	 * before the load from ->gpnum.
3386 	 */
3387 	smp_mb();  /* ^^^ */
3388 
3389 	/*
3390 	 * Make sure this load happens before the purportedly
3391 	 * time-consuming work between get_state_synchronize_sched()
3392 	 * and cond_synchronize_sched().
3393 	 */
3394 	return smp_load_acquire(&rcu_sched_state.gpnum);
3395 }
3396 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3397 
3398 /**
3399  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3400  *
3401  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3402  *
3403  * If a full RCU-sched grace period has elapsed since the earlier call to
3404  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3405  * synchronize_sched() to wait for a full grace period.
3406  *
3407  * Yes, this function does not take counter wrap into account.  But
3408  * counter wrap is harmless.  If the counter wraps, we have waited for
3409  * more than 2 billion grace periods (and way more on a 64-bit system!),
3410  * so waiting for one additional grace period should be just fine.
3411  */
3412 void cond_synchronize_sched(unsigned long oldstate)
3413 {
3414 	unsigned long newstate;
3415 
3416 	/*
3417 	 * Ensure that this load happens before any RCU-destructive
3418 	 * actions the caller might carry out after we return.
3419 	 */
3420 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3421 	if (ULONG_CMP_GE(oldstate, newstate))
3422 		synchronize_sched();
3423 }
3424 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3425 
3426 /*
3427  * Check to see if there is any immediate RCU-related work to be done
3428  * by the current CPU, for the specified type of RCU, returning 1 if so.
3429  * The checks are in order of increasing expense: checks that can be
3430  * carried out against CPU-local state are performed first.  However,
3431  * we must check for CPU stalls first, else we might not get a chance.
3432  */
3433 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3434 {
3435 	struct rcu_node *rnp = rdp->mynode;
3436 
3437 	rdp->n_rcu_pending++;
3438 
3439 	/* Check for CPU stalls, if enabled. */
3440 	check_cpu_stall(rsp, rdp);
3441 
3442 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3443 	if (rcu_nohz_full_cpu(rsp))
3444 		return 0;
3445 
3446 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3447 	if (rcu_scheduler_fully_active &&
3448 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3449 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3450 		rdp->n_rp_core_needs_qs++;
3451 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3452 		rdp->n_rp_report_qs++;
3453 		return 1;
3454 	}
3455 
3456 	/* Does this CPU have callbacks ready to invoke? */
3457 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3458 		rdp->n_rp_cb_ready++;
3459 		return 1;
3460 	}
3461 
3462 	/* Has RCU gone idle with this CPU needing another grace period? */
3463 	if (cpu_needs_another_gp(rsp, rdp)) {
3464 		rdp->n_rp_cpu_needs_gp++;
3465 		return 1;
3466 	}
3467 
3468 	/* Has another RCU grace period completed?  */
3469 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3470 		rdp->n_rp_gp_completed++;
3471 		return 1;
3472 	}
3473 
3474 	/* Has a new RCU grace period started? */
3475 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3476 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3477 		rdp->n_rp_gp_started++;
3478 		return 1;
3479 	}
3480 
3481 	/* Does this CPU need a deferred NOCB wakeup? */
3482 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3483 		rdp->n_rp_nocb_defer_wakeup++;
3484 		return 1;
3485 	}
3486 
3487 	/* nothing to do */
3488 	rdp->n_rp_need_nothing++;
3489 	return 0;
3490 }
3491 
3492 /*
3493  * Check to see if there is any immediate RCU-related work to be done
3494  * by the current CPU, returning 1 if so.  This function is part of the
3495  * RCU implementation; it is -not- an exported member of the RCU API.
3496  */
3497 static int rcu_pending(void)
3498 {
3499 	struct rcu_state *rsp;
3500 
3501 	for_each_rcu_flavor(rsp)
3502 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3503 			return 1;
3504 	return 0;
3505 }
3506 
3507 /*
3508  * Return true if the specified CPU has any callback.  If all_lazy is
3509  * non-NULL, store an indication of whether all callbacks are lazy.
3510  * (If there are no callbacks, all of them are deemed to be lazy.)
3511  */
3512 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3513 {
3514 	bool al = true;
3515 	bool hc = false;
3516 	struct rcu_data *rdp;
3517 	struct rcu_state *rsp;
3518 
3519 	for_each_rcu_flavor(rsp) {
3520 		rdp = this_cpu_ptr(rsp->rda);
3521 		if (rcu_segcblist_empty(&rdp->cblist))
3522 			continue;
3523 		hc = true;
3524 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3525 			al = false;
3526 			break;
3527 		}
3528 	}
3529 	if (all_lazy)
3530 		*all_lazy = al;
3531 	return hc;
3532 }
3533 
3534 /*
3535  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3536  * the compiler is expected to optimize this away.
3537  */
3538 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3539 			       int cpu, unsigned long done)
3540 {
3541 	trace_rcu_barrier(rsp->name, s, cpu,
3542 			  atomic_read(&rsp->barrier_cpu_count), done);
3543 }
3544 
3545 /*
3546  * RCU callback function for _rcu_barrier().  If we are last, wake
3547  * up the task executing _rcu_barrier().
3548  */
3549 static void rcu_barrier_callback(struct rcu_head *rhp)
3550 {
3551 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3552 	struct rcu_state *rsp = rdp->rsp;
3553 
3554 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3555 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3556 				   rsp->barrier_sequence);
3557 		complete(&rsp->barrier_completion);
3558 	} else {
3559 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3560 	}
3561 }
3562 
3563 /*
3564  * Called with preemption disabled, and from cross-cpu IRQ context.
3565  */
3566 static void rcu_barrier_func(void *type)
3567 {
3568 	struct rcu_state *rsp = type;
3569 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3570 
3571 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3572 	rdp->barrier_head.func = rcu_barrier_callback;
3573 	debug_rcu_head_queue(&rdp->barrier_head);
3574 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3575 		atomic_inc(&rsp->barrier_cpu_count);
3576 	} else {
3577 		debug_rcu_head_unqueue(&rdp->barrier_head);
3578 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3579 				   rsp->barrier_sequence);
3580 	}
3581 }
3582 
3583 /*
3584  * Orchestrate the specified type of RCU barrier, waiting for all
3585  * RCU callbacks of the specified type to complete.
3586  */
3587 static void _rcu_barrier(struct rcu_state *rsp)
3588 {
3589 	int cpu;
3590 	struct rcu_data *rdp;
3591 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3592 
3593 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3594 
3595 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3596 	mutex_lock(&rsp->barrier_mutex);
3597 
3598 	/* Did someone else do our work for us? */
3599 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3600 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3601 				   rsp->barrier_sequence);
3602 		smp_mb(); /* caller's subsequent code after above check. */
3603 		mutex_unlock(&rsp->barrier_mutex);
3604 		return;
3605 	}
3606 
3607 	/* Mark the start of the barrier operation. */
3608 	rcu_seq_start(&rsp->barrier_sequence);
3609 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3610 
3611 	/*
3612 	 * Initialize the count to one rather than to zero in order to
3613 	 * avoid a too-soon return to zero in case of a short grace period
3614 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3615 	 * to ensure that no offline CPU has callbacks queued.
3616 	 */
3617 	init_completion(&rsp->barrier_completion);
3618 	atomic_set(&rsp->barrier_cpu_count, 1);
3619 	get_online_cpus();
3620 
3621 	/*
3622 	 * Force each CPU with callbacks to register a new callback.
3623 	 * When that callback is invoked, we will know that all of the
3624 	 * corresponding CPU's preceding callbacks have been invoked.
3625 	 */
3626 	for_each_possible_cpu(cpu) {
3627 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3628 			continue;
3629 		rdp = per_cpu_ptr(rsp->rda, cpu);
3630 		if (rcu_is_nocb_cpu(cpu)) {
3631 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3632 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3633 						   rsp->barrier_sequence);
3634 			} else {
3635 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3636 						   rsp->barrier_sequence);
3637 				smp_mb__before_atomic();
3638 				atomic_inc(&rsp->barrier_cpu_count);
3639 				__call_rcu(&rdp->barrier_head,
3640 					   rcu_barrier_callback, rsp, cpu, 0);
3641 			}
3642 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3643 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3644 					   rsp->barrier_sequence);
3645 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3646 		} else {
3647 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3648 					   rsp->barrier_sequence);
3649 		}
3650 	}
3651 	put_online_cpus();
3652 
3653 	/*
3654 	 * Now that we have an rcu_barrier_callback() callback on each
3655 	 * CPU, and thus each counted, remove the initial count.
3656 	 */
3657 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3658 		complete(&rsp->barrier_completion);
3659 
3660 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3661 	wait_for_completion(&rsp->barrier_completion);
3662 
3663 	/* Mark the end of the barrier operation. */
3664 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3665 	rcu_seq_end(&rsp->barrier_sequence);
3666 
3667 	/* Other rcu_barrier() invocations can now safely proceed. */
3668 	mutex_unlock(&rsp->barrier_mutex);
3669 }
3670 
3671 /**
3672  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3673  */
3674 void rcu_barrier_bh(void)
3675 {
3676 	_rcu_barrier(&rcu_bh_state);
3677 }
3678 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3679 
3680 /**
3681  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3682  */
3683 void rcu_barrier_sched(void)
3684 {
3685 	_rcu_barrier(&rcu_sched_state);
3686 }
3687 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3688 
3689 /*
3690  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3691  * first CPU in a given leaf rcu_node structure coming online.  The caller
3692  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3693  * disabled.
3694  */
3695 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3696 {
3697 	long mask;
3698 	struct rcu_node *rnp = rnp_leaf;
3699 
3700 	lockdep_assert_held(&rnp->lock);
3701 	for (;;) {
3702 		mask = rnp->grpmask;
3703 		rnp = rnp->parent;
3704 		if (rnp == NULL)
3705 			return;
3706 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3707 		rnp->qsmaskinit |= mask;
3708 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3709 	}
3710 }
3711 
3712 /*
3713  * Do boot-time initialization of a CPU's per-CPU RCU data.
3714  */
3715 static void __init
3716 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3717 {
3718 	unsigned long flags;
3719 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3720 	struct rcu_node *rnp = rcu_get_root(rsp);
3721 
3722 	/* Set up local state, ensuring consistent view of global state. */
3723 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3724 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3725 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3726 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3727 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3728 	rdp->cpu = cpu;
3729 	rdp->rsp = rsp;
3730 	rcu_boot_init_nocb_percpu_data(rdp);
3731 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3732 }
3733 
3734 /*
3735  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3736  * offline event can be happening at a given time.  Note also that we
3737  * can accept some slop in the rsp->completed access due to the fact
3738  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3739  */
3740 static void
3741 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3742 {
3743 	unsigned long flags;
3744 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3745 	struct rcu_node *rnp = rcu_get_root(rsp);
3746 
3747 	/* Set up local state, ensuring consistent view of global state. */
3748 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3749 	rdp->qlen_last_fqs_check = 0;
3750 	rdp->n_force_qs_snap = rsp->n_force_qs;
3751 	rdp->blimit = blimit;
3752 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3753 	    !init_nocb_callback_list(rdp))
3754 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3755 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3756 	rcu_dynticks_eqs_online();
3757 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3758 
3759 	/*
3760 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3761 	 * propagation up the rcu_node tree will happen at the beginning
3762 	 * of the next grace period.
3763 	 */
3764 	rnp = rdp->mynode;
3765 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3766 	rdp->beenonline = true;	 /* We have now been online. */
3767 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3768 	rdp->completed = rnp->completed;
3769 	rdp->cpu_no_qs.b.norm = true;
3770 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3771 	rdp->core_needs_qs = false;
3772 	rdp->rcu_iw_pending = false;
3773 	rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3774 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3775 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3776 }
3777 
3778 /*
3779  * Invoked early in the CPU-online process, when pretty much all
3780  * services are available.  The incoming CPU is not present.
3781  */
3782 int rcutree_prepare_cpu(unsigned int cpu)
3783 {
3784 	struct rcu_state *rsp;
3785 
3786 	for_each_rcu_flavor(rsp)
3787 		rcu_init_percpu_data(cpu, rsp);
3788 
3789 	rcu_prepare_kthreads(cpu);
3790 	rcu_spawn_all_nocb_kthreads(cpu);
3791 
3792 	return 0;
3793 }
3794 
3795 /*
3796  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3797  */
3798 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3799 {
3800 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3801 
3802 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3803 }
3804 
3805 /*
3806  * Near the end of the CPU-online process.  Pretty much all services
3807  * enabled, and the CPU is now very much alive.
3808  */
3809 int rcutree_online_cpu(unsigned int cpu)
3810 {
3811 	unsigned long flags;
3812 	struct rcu_data *rdp;
3813 	struct rcu_node *rnp;
3814 	struct rcu_state *rsp;
3815 
3816 	for_each_rcu_flavor(rsp) {
3817 		rdp = per_cpu_ptr(rsp->rda, cpu);
3818 		rnp = rdp->mynode;
3819 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3820 		rnp->ffmask |= rdp->grpmask;
3821 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3822 	}
3823 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3824 		srcu_online_cpu(cpu);
3825 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3826 		return 0; /* Too early in boot for scheduler work. */
3827 	sync_sched_exp_online_cleanup(cpu);
3828 	rcutree_affinity_setting(cpu, -1);
3829 	return 0;
3830 }
3831 
3832 /*
3833  * Near the beginning of the process.  The CPU is still very much alive
3834  * with pretty much all services enabled.
3835  */
3836 int rcutree_offline_cpu(unsigned int cpu)
3837 {
3838 	unsigned long flags;
3839 	struct rcu_data *rdp;
3840 	struct rcu_node *rnp;
3841 	struct rcu_state *rsp;
3842 
3843 	for_each_rcu_flavor(rsp) {
3844 		rdp = per_cpu_ptr(rsp->rda, cpu);
3845 		rnp = rdp->mynode;
3846 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3847 		rnp->ffmask &= ~rdp->grpmask;
3848 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3849 	}
3850 
3851 	rcutree_affinity_setting(cpu, cpu);
3852 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3853 		srcu_offline_cpu(cpu);
3854 	return 0;
3855 }
3856 
3857 /*
3858  * Near the end of the offline process.  We do only tracing here.
3859  */
3860 int rcutree_dying_cpu(unsigned int cpu)
3861 {
3862 	struct rcu_state *rsp;
3863 
3864 	for_each_rcu_flavor(rsp)
3865 		rcu_cleanup_dying_cpu(rsp);
3866 	return 0;
3867 }
3868 
3869 /*
3870  * The outgoing CPU is gone and we are running elsewhere.
3871  */
3872 int rcutree_dead_cpu(unsigned int cpu)
3873 {
3874 	struct rcu_state *rsp;
3875 
3876 	for_each_rcu_flavor(rsp) {
3877 		rcu_cleanup_dead_cpu(cpu, rsp);
3878 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3879 	}
3880 	return 0;
3881 }
3882 
3883 /*
3884  * Mark the specified CPU as being online so that subsequent grace periods
3885  * (both expedited and normal) will wait on it.  Note that this means that
3886  * incoming CPUs are not allowed to use RCU read-side critical sections
3887  * until this function is called.  Failing to observe this restriction
3888  * will result in lockdep splats.
3889  *
3890  * Note that this function is special in that it is invoked directly
3891  * from the incoming CPU rather than from the cpuhp_step mechanism.
3892  * This is because this function must be invoked at a precise location.
3893  */
3894 void rcu_cpu_starting(unsigned int cpu)
3895 {
3896 	unsigned long flags;
3897 	unsigned long mask;
3898 	int nbits;
3899 	unsigned long oldmask;
3900 	struct rcu_data *rdp;
3901 	struct rcu_node *rnp;
3902 	struct rcu_state *rsp;
3903 
3904 	for_each_rcu_flavor(rsp) {
3905 		rdp = per_cpu_ptr(rsp->rda, cpu);
3906 		rnp = rdp->mynode;
3907 		mask = rdp->grpmask;
3908 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3909 		rnp->qsmaskinitnext |= mask;
3910 		oldmask = rnp->expmaskinitnext;
3911 		rnp->expmaskinitnext |= mask;
3912 		oldmask ^= rnp->expmaskinitnext;
3913 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3914 		/* Allow lockless access for expedited grace periods. */
3915 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3916 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3917 	}
3918 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3919 }
3920 
3921 #ifdef CONFIG_HOTPLUG_CPU
3922 /*
3923  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3924  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3925  * bit masks.
3926  */
3927 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3928 {
3929 	unsigned long flags;
3930 	unsigned long mask;
3931 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3932 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3933 
3934 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3935 	mask = rdp->grpmask;
3936 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3937 	rnp->qsmaskinitnext &= ~mask;
3938 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3939 }
3940 
3941 /*
3942  * The outgoing function has no further need of RCU, so remove it from
3943  * the list of CPUs that RCU must track.
3944  *
3945  * Note that this function is special in that it is invoked directly
3946  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3947  * This is because this function must be invoked at a precise location.
3948  */
3949 void rcu_report_dead(unsigned int cpu)
3950 {
3951 	struct rcu_state *rsp;
3952 
3953 	/* QS for any half-done expedited RCU-sched GP. */
3954 	preempt_disable();
3955 	rcu_report_exp_rdp(&rcu_sched_state,
3956 			   this_cpu_ptr(rcu_sched_state.rda), true);
3957 	preempt_enable();
3958 	for_each_rcu_flavor(rsp)
3959 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3960 }
3961 
3962 /* Migrate the dead CPU's callbacks to the current CPU. */
3963 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3964 {
3965 	unsigned long flags;
3966 	struct rcu_data *my_rdp;
3967 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3968 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3969 
3970 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3971 		return;  /* No callbacks to migrate. */
3972 
3973 	local_irq_save(flags);
3974 	my_rdp = this_cpu_ptr(rsp->rda);
3975 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3976 		local_irq_restore(flags);
3977 		return;
3978 	}
3979 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3980 	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3981 	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3982 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3983 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3984 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3985 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3986 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3987 		  !rcu_segcblist_empty(&rdp->cblist),
3988 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3989 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3990 		  rcu_segcblist_first_cb(&rdp->cblist));
3991 }
3992 
3993 /*
3994  * The outgoing CPU has just passed through the dying-idle state,
3995  * and we are being invoked from the CPU that was IPIed to continue the
3996  * offline operation.  We need to migrate the outgoing CPU's callbacks.
3997  */
3998 void rcutree_migrate_callbacks(int cpu)
3999 {
4000 	struct rcu_state *rsp;
4001 
4002 	for_each_rcu_flavor(rsp)
4003 		rcu_migrate_callbacks(cpu, rsp);
4004 }
4005 #endif
4006 
4007 /*
4008  * On non-huge systems, use expedited RCU grace periods to make suspend
4009  * and hibernation run faster.
4010  */
4011 static int rcu_pm_notify(struct notifier_block *self,
4012 			 unsigned long action, void *hcpu)
4013 {
4014 	switch (action) {
4015 	case PM_HIBERNATION_PREPARE:
4016 	case PM_SUSPEND_PREPARE:
4017 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4018 			rcu_expedite_gp();
4019 		break;
4020 	case PM_POST_HIBERNATION:
4021 	case PM_POST_SUSPEND:
4022 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
4023 			rcu_unexpedite_gp();
4024 		break;
4025 	default:
4026 		break;
4027 	}
4028 	return NOTIFY_OK;
4029 }
4030 
4031 /*
4032  * Spawn the kthreads that handle each RCU flavor's grace periods.
4033  */
4034 static int __init rcu_spawn_gp_kthread(void)
4035 {
4036 	unsigned long flags;
4037 	int kthread_prio_in = kthread_prio;
4038 	struct rcu_node *rnp;
4039 	struct rcu_state *rsp;
4040 	struct sched_param sp;
4041 	struct task_struct *t;
4042 
4043 	/* Force priority into range. */
4044 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4045 		kthread_prio = 1;
4046 	else if (kthread_prio < 0)
4047 		kthread_prio = 0;
4048 	else if (kthread_prio > 99)
4049 		kthread_prio = 99;
4050 	if (kthread_prio != kthread_prio_in)
4051 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4052 			 kthread_prio, kthread_prio_in);
4053 
4054 	rcu_scheduler_fully_active = 1;
4055 	for_each_rcu_flavor(rsp) {
4056 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
4057 		BUG_ON(IS_ERR(t));
4058 		rnp = rcu_get_root(rsp);
4059 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4060 		rsp->gp_kthread = t;
4061 		if (kthread_prio) {
4062 			sp.sched_priority = kthread_prio;
4063 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4064 		}
4065 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4066 		wake_up_process(t);
4067 	}
4068 	rcu_spawn_nocb_kthreads();
4069 	rcu_spawn_boost_kthreads();
4070 	return 0;
4071 }
4072 early_initcall(rcu_spawn_gp_kthread);
4073 
4074 /*
4075  * This function is invoked towards the end of the scheduler's
4076  * initialization process.  Before this is called, the idle task might
4077  * contain synchronous grace-period primitives (during which time, this idle
4078  * task is booting the system, and such primitives are no-ops).  After this
4079  * function is called, any synchronous grace-period primitives are run as
4080  * expedited, with the requesting task driving the grace period forward.
4081  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4082  * runtime RCU functionality.
4083  */
4084 void rcu_scheduler_starting(void)
4085 {
4086 	WARN_ON(num_online_cpus() != 1);
4087 	WARN_ON(nr_context_switches() > 0);
4088 	rcu_test_sync_prims();
4089 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4090 	rcu_test_sync_prims();
4091 }
4092 
4093 /*
4094  * Helper function for rcu_init() that initializes one rcu_state structure.
4095  */
4096 static void __init rcu_init_one(struct rcu_state *rsp)
4097 {
4098 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4099 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4100 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4101 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4102 
4103 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4104 	int cpustride = 1;
4105 	int i;
4106 	int j;
4107 	struct rcu_node *rnp;
4108 
4109 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4110 
4111 	/* Silence gcc 4.8 false positive about array index out of range. */
4112 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4113 		panic("rcu_init_one: rcu_num_lvls out of range");
4114 
4115 	/* Initialize the level-tracking arrays. */
4116 
4117 	for (i = 1; i < rcu_num_lvls; i++)
4118 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4119 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4120 
4121 	/* Initialize the elements themselves, starting from the leaves. */
4122 
4123 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4124 		cpustride *= levelspread[i];
4125 		rnp = rsp->level[i];
4126 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4127 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4128 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4129 						   &rcu_node_class[i], buf[i]);
4130 			raw_spin_lock_init(&rnp->fqslock);
4131 			lockdep_set_class_and_name(&rnp->fqslock,
4132 						   &rcu_fqs_class[i], fqs[i]);
4133 			rnp->gpnum = rsp->gpnum;
4134 			rnp->completed = rsp->completed;
4135 			rnp->qsmask = 0;
4136 			rnp->qsmaskinit = 0;
4137 			rnp->grplo = j * cpustride;
4138 			rnp->grphi = (j + 1) * cpustride - 1;
4139 			if (rnp->grphi >= nr_cpu_ids)
4140 				rnp->grphi = nr_cpu_ids - 1;
4141 			if (i == 0) {
4142 				rnp->grpnum = 0;
4143 				rnp->grpmask = 0;
4144 				rnp->parent = NULL;
4145 			} else {
4146 				rnp->grpnum = j % levelspread[i - 1];
4147 				rnp->grpmask = 1UL << rnp->grpnum;
4148 				rnp->parent = rsp->level[i - 1] +
4149 					      j / levelspread[i - 1];
4150 			}
4151 			rnp->level = i;
4152 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4153 			rcu_init_one_nocb(rnp);
4154 			init_waitqueue_head(&rnp->exp_wq[0]);
4155 			init_waitqueue_head(&rnp->exp_wq[1]);
4156 			init_waitqueue_head(&rnp->exp_wq[2]);
4157 			init_waitqueue_head(&rnp->exp_wq[3]);
4158 			spin_lock_init(&rnp->exp_lock);
4159 		}
4160 	}
4161 
4162 	init_swait_queue_head(&rsp->gp_wq);
4163 	init_swait_queue_head(&rsp->expedited_wq);
4164 	rnp = rsp->level[rcu_num_lvls - 1];
4165 	for_each_possible_cpu(i) {
4166 		while (i > rnp->grphi)
4167 			rnp++;
4168 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4169 		rcu_boot_init_percpu_data(i, rsp);
4170 	}
4171 	list_add(&rsp->flavors, &rcu_struct_flavors);
4172 }
4173 
4174 /*
4175  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4176  * replace the definitions in tree.h because those are needed to size
4177  * the ->node array in the rcu_state structure.
4178  */
4179 static void __init rcu_init_geometry(void)
4180 {
4181 	ulong d;
4182 	int i;
4183 	int rcu_capacity[RCU_NUM_LVLS];
4184 
4185 	/*
4186 	 * Initialize any unspecified boot parameters.
4187 	 * The default values of jiffies_till_first_fqs and
4188 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4189 	 * value, which is a function of HZ, then adding one for each
4190 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4191 	 */
4192 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4193 	if (jiffies_till_first_fqs == ULONG_MAX)
4194 		jiffies_till_first_fqs = d;
4195 	if (jiffies_till_next_fqs == ULONG_MAX)
4196 		jiffies_till_next_fqs = d;
4197 
4198 	/* If the compile-time values are accurate, just leave. */
4199 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4200 	    nr_cpu_ids == NR_CPUS)
4201 		return;
4202 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4203 		rcu_fanout_leaf, nr_cpu_ids);
4204 
4205 	/*
4206 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4207 	 * and cannot exceed the number of bits in the rcu_node masks.
4208 	 * Complain and fall back to the compile-time values if this
4209 	 * limit is exceeded.
4210 	 */
4211 	if (rcu_fanout_leaf < 2 ||
4212 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4213 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4214 		WARN_ON(1);
4215 		return;
4216 	}
4217 
4218 	/*
4219 	 * Compute number of nodes that can be handled an rcu_node tree
4220 	 * with the given number of levels.
4221 	 */
4222 	rcu_capacity[0] = rcu_fanout_leaf;
4223 	for (i = 1; i < RCU_NUM_LVLS; i++)
4224 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4225 
4226 	/*
4227 	 * The tree must be able to accommodate the configured number of CPUs.
4228 	 * If this limit is exceeded, fall back to the compile-time values.
4229 	 */
4230 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4231 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4232 		WARN_ON(1);
4233 		return;
4234 	}
4235 
4236 	/* Calculate the number of levels in the tree. */
4237 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4238 	}
4239 	rcu_num_lvls = i + 1;
4240 
4241 	/* Calculate the number of rcu_nodes at each level of the tree. */
4242 	for (i = 0; i < rcu_num_lvls; i++) {
4243 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4244 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4245 	}
4246 
4247 	/* Calculate the total number of rcu_node structures. */
4248 	rcu_num_nodes = 0;
4249 	for (i = 0; i < rcu_num_lvls; i++)
4250 		rcu_num_nodes += num_rcu_lvl[i];
4251 }
4252 
4253 /*
4254  * Dump out the structure of the rcu_node combining tree associated
4255  * with the rcu_state structure referenced by rsp.
4256  */
4257 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4258 {
4259 	int level = 0;
4260 	struct rcu_node *rnp;
4261 
4262 	pr_info("rcu_node tree layout dump\n");
4263 	pr_info(" ");
4264 	rcu_for_each_node_breadth_first(rsp, rnp) {
4265 		if (rnp->level != level) {
4266 			pr_cont("\n");
4267 			pr_info(" ");
4268 			level = rnp->level;
4269 		}
4270 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4271 	}
4272 	pr_cont("\n");
4273 }
4274 
4275 void __init rcu_init(void)
4276 {
4277 	int cpu;
4278 
4279 	rcu_early_boot_tests();
4280 
4281 	rcu_bootup_announce();
4282 	rcu_init_geometry();
4283 	rcu_init_one(&rcu_bh_state);
4284 	rcu_init_one(&rcu_sched_state);
4285 	if (dump_tree)
4286 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4287 	__rcu_init_preempt();
4288 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4289 
4290 	/*
4291 	 * We don't need protection against CPU-hotplug here because
4292 	 * this is called early in boot, before either interrupts
4293 	 * or the scheduler are operational.
4294 	 */
4295 	pm_notifier(rcu_pm_notify, 0);
4296 	for_each_online_cpu(cpu) {
4297 		rcutree_prepare_cpu(cpu);
4298 		rcu_cpu_starting(cpu);
4299 		rcutree_online_cpu(cpu);
4300 	}
4301 }
4302 
4303 #include "tree_exp.h"
4304 #include "tree_plugin.h"
4305