1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include <linux/vmalloc.h> 61 #include <linux/mm.h> 62 #include <linux/kasan.h> 63 #include "../time/tick-internal.h" 64 65 #include "tree.h" 66 #include "rcu.h" 67 68 #ifdef MODULE_PARAM_PREFIX 69 #undef MODULE_PARAM_PREFIX 70 #endif 71 #define MODULE_PARAM_PREFIX "rcutree." 72 73 /* Data structures. */ 74 75 /* 76 * Steal a bit from the bottom of ->dynticks for idle entry/exit 77 * control. Initially this is for TLB flushing. 78 */ 79 #define RCU_DYNTICK_CTRL_MASK 0x1 80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 #ifdef CONFIG_RCU_NOCB_CPU 87 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 88 #endif 89 }; 90 static struct rcu_state rcu_state = { 91 .level = { &rcu_state.node[0] }, 92 .gp_state = RCU_GP_IDLE, 93 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 94 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 95 .name = RCU_NAME, 96 .abbr = RCU_ABBR, 97 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 98 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 99 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 100 }; 101 102 /* Dump rcu_node combining tree at boot to verify correct setup. */ 103 static bool dump_tree; 104 module_param(dump_tree, bool, 0444); 105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 107 #ifndef CONFIG_PREEMPT_RT 108 module_param(use_softirq, bool, 0444); 109 #endif 110 /* Control rcu_node-tree auto-balancing at boot time. */ 111 static bool rcu_fanout_exact; 112 module_param(rcu_fanout_exact, bool, 0444); 113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 115 module_param(rcu_fanout_leaf, int, 0444); 116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 117 /* Number of rcu_nodes at specified level. */ 118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 120 121 /* 122 * The rcu_scheduler_active variable is initialized to the value 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 124 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 125 * RCU can assume that there is but one task, allowing RCU to (for example) 126 * optimize synchronize_rcu() to a simple barrier(). When this variable 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 128 * to detect real grace periods. This variable is also used to suppress 129 * boot-time false positives from lockdep-RCU error checking. Finally, it 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 131 * is fully initialized, including all of its kthreads having been spawned. 132 */ 133 int rcu_scheduler_active __read_mostly; 134 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 135 136 /* 137 * The rcu_scheduler_fully_active variable transitions from zero to one 138 * during the early_initcall() processing, which is after the scheduler 139 * is capable of creating new tasks. So RCU processing (for example, 140 * creating tasks for RCU priority boosting) must be delayed until after 141 * rcu_scheduler_fully_active transitions from zero to one. We also 142 * currently delay invocation of any RCU callbacks until after this point. 143 * 144 * It might later prove better for people registering RCU callbacks during 145 * early boot to take responsibility for these callbacks, but one step at 146 * a time. 147 */ 148 static int rcu_scheduler_fully_active __read_mostly; 149 150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 151 unsigned long gps, unsigned long flags); 152 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 153 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 154 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 155 static void invoke_rcu_core(void); 156 static void rcu_report_exp_rdp(struct rcu_data *rdp); 157 static void sync_sched_exp_online_cleanup(int cpu); 158 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 159 160 /* rcuc/rcub kthread realtime priority */ 161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 162 module_param(kthread_prio, int, 0444); 163 164 /* Delay in jiffies for grace-period initialization delays, debug only. */ 165 166 static int gp_preinit_delay; 167 module_param(gp_preinit_delay, int, 0444); 168 static int gp_init_delay; 169 module_param(gp_init_delay, int, 0444); 170 static int gp_cleanup_delay; 171 module_param(gp_cleanup_delay, int, 0444); 172 173 // Add delay to rcu_read_unlock() for strict grace periods. 174 static int rcu_unlock_delay; 175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 176 module_param(rcu_unlock_delay, int, 0444); 177 #endif 178 179 /* 180 * This rcu parameter is runtime-read-only. It reflects 181 * a minimum allowed number of objects which can be cached 182 * per-CPU. Object size is equal to one page. This value 183 * can be changed at boot time. 184 */ 185 static int rcu_min_cached_objs = 5; 186 module_param(rcu_min_cached_objs, int, 0444); 187 188 /* Retrieve RCU kthreads priority for rcutorture */ 189 int rcu_get_gp_kthreads_prio(void) 190 { 191 return kthread_prio; 192 } 193 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 194 195 /* 196 * Number of grace periods between delays, normalized by the duration of 197 * the delay. The longer the delay, the more the grace periods between 198 * each delay. The reason for this normalization is that it means that, 199 * for non-zero delays, the overall slowdown of grace periods is constant 200 * regardless of the duration of the delay. This arrangement balances 201 * the need for long delays to increase some race probabilities with the 202 * need for fast grace periods to increase other race probabilities. 203 */ 204 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 205 206 /* 207 * Compute the mask of online CPUs for the specified rcu_node structure. 208 * This will not be stable unless the rcu_node structure's ->lock is 209 * held, but the bit corresponding to the current CPU will be stable 210 * in most contexts. 211 */ 212 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 213 { 214 return READ_ONCE(rnp->qsmaskinitnext); 215 } 216 217 /* 218 * Return true if an RCU grace period is in progress. The READ_ONCE()s 219 * permit this function to be invoked without holding the root rcu_node 220 * structure's ->lock, but of course results can be subject to change. 221 */ 222 static int rcu_gp_in_progress(void) 223 { 224 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 225 } 226 227 /* 228 * Return the number of callbacks queued on the specified CPU. 229 * Handles both the nocbs and normal cases. 230 */ 231 static long rcu_get_n_cbs_cpu(int cpu) 232 { 233 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 234 235 if (rcu_segcblist_is_enabled(&rdp->cblist)) 236 return rcu_segcblist_n_cbs(&rdp->cblist); 237 return 0; 238 } 239 240 void rcu_softirq_qs(void) 241 { 242 rcu_qs(); 243 rcu_preempt_deferred_qs(current); 244 } 245 246 /* 247 * Record entry into an extended quiescent state. This is only to be 248 * called when not already in an extended quiescent state, that is, 249 * RCU is watching prior to the call to this function and is no longer 250 * watching upon return. 251 */ 252 static noinstr void rcu_dynticks_eqs_enter(void) 253 { 254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 255 int seq; 256 257 /* 258 * CPUs seeing atomic_add_return() must see prior RCU read-side 259 * critical sections, and we also must force ordering with the 260 * next idle sojourn. 261 */ 262 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 263 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 264 // RCU is no longer watching. Better be in extended quiescent state! 265 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 266 (seq & RCU_DYNTICK_CTRL_CTR)); 267 /* Better not have special action (TLB flush) pending! */ 268 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 269 (seq & RCU_DYNTICK_CTRL_MASK)); 270 } 271 272 /* 273 * Record exit from an extended quiescent state. This is only to be 274 * called from an extended quiescent state, that is, RCU is not watching 275 * prior to the call to this function and is watching upon return. 276 */ 277 static noinstr void rcu_dynticks_eqs_exit(void) 278 { 279 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 280 int seq; 281 282 /* 283 * CPUs seeing atomic_add_return() must see prior idle sojourns, 284 * and we also must force ordering with the next RCU read-side 285 * critical section. 286 */ 287 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 288 // RCU is now watching. Better not be in an extended quiescent state! 289 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 291 !(seq & RCU_DYNTICK_CTRL_CTR)); 292 if (seq & RCU_DYNTICK_CTRL_MASK) { 293 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 294 smp_mb__after_atomic(); /* _exit after clearing mask. */ 295 } 296 } 297 298 /* 299 * Reset the current CPU's ->dynticks counter to indicate that the 300 * newly onlined CPU is no longer in an extended quiescent state. 301 * This will either leave the counter unchanged, or increment it 302 * to the next non-quiescent value. 303 * 304 * The non-atomic test/increment sequence works because the upper bits 305 * of the ->dynticks counter are manipulated only by the corresponding CPU, 306 * or when the corresponding CPU is offline. 307 */ 308 static void rcu_dynticks_eqs_online(void) 309 { 310 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 311 312 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 313 return; 314 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 315 } 316 317 /* 318 * Is the current CPU in an extended quiescent state? 319 * 320 * No ordering, as we are sampling CPU-local information. 321 */ 322 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 323 { 324 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 325 326 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 327 } 328 329 /* 330 * Snapshot the ->dynticks counter with full ordering so as to allow 331 * stable comparison of this counter with past and future snapshots. 332 */ 333 static int rcu_dynticks_snap(struct rcu_data *rdp) 334 { 335 int snap = atomic_add_return(0, &rdp->dynticks); 336 337 return snap & ~RCU_DYNTICK_CTRL_MASK; 338 } 339 340 /* 341 * Return true if the snapshot returned from rcu_dynticks_snap() 342 * indicates that RCU is in an extended quiescent state. 343 */ 344 static bool rcu_dynticks_in_eqs(int snap) 345 { 346 return !(snap & RCU_DYNTICK_CTRL_CTR); 347 } 348 349 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 350 bool rcu_is_idle_cpu(int cpu) 351 { 352 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 353 354 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 355 } 356 357 /* 358 * Return true if the CPU corresponding to the specified rcu_data 359 * structure has spent some time in an extended quiescent state since 360 * rcu_dynticks_snap() returned the specified snapshot. 361 */ 362 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 363 { 364 return snap != rcu_dynticks_snap(rdp); 365 } 366 367 /* 368 * Return true if the referenced integer is zero while the specified 369 * CPU remains within a single extended quiescent state. 370 */ 371 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 372 { 373 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 374 int snap; 375 376 // If not quiescent, force back to earlier extended quiescent state. 377 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 378 RCU_DYNTICK_CTRL_CTR); 379 380 smp_rmb(); // Order ->dynticks and *vp reads. 381 if (READ_ONCE(*vp)) 382 return false; // Non-zero, so report failure; 383 smp_rmb(); // Order *vp read and ->dynticks re-read. 384 385 // If still in the same extended quiescent state, we are good! 386 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 387 } 388 389 /* 390 * Set the special (bottom) bit of the specified CPU so that it 391 * will take special action (such as flushing its TLB) on the 392 * next exit from an extended quiescent state. Returns true if 393 * the bit was successfully set, or false if the CPU was not in 394 * an extended quiescent state. 395 */ 396 bool rcu_eqs_special_set(int cpu) 397 { 398 int old; 399 int new; 400 int new_old; 401 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 402 403 new_old = atomic_read(&rdp->dynticks); 404 do { 405 old = new_old; 406 if (old & RCU_DYNTICK_CTRL_CTR) 407 return false; 408 new = old | RCU_DYNTICK_CTRL_MASK; 409 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 410 } while (new_old != old); 411 return true; 412 } 413 414 /* 415 * Let the RCU core know that this CPU has gone through the scheduler, 416 * which is a quiescent state. This is called when the need for a 417 * quiescent state is urgent, so we burn an atomic operation and full 418 * memory barriers to let the RCU core know about it, regardless of what 419 * this CPU might (or might not) do in the near future. 420 * 421 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 422 * 423 * The caller must have disabled interrupts and must not be idle. 424 */ 425 notrace void rcu_momentary_dyntick_idle(void) 426 { 427 int special; 428 429 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 430 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 431 &this_cpu_ptr(&rcu_data)->dynticks); 432 /* It is illegal to call this from idle state. */ 433 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 434 rcu_preempt_deferred_qs(current); 435 } 436 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 437 438 /** 439 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 440 * 441 * If the current CPU is idle and running at a first-level (not nested) 442 * interrupt, or directly, from idle, return true. 443 * 444 * The caller must have at least disabled IRQs. 445 */ 446 static int rcu_is_cpu_rrupt_from_idle(void) 447 { 448 long nesting; 449 450 /* 451 * Usually called from the tick; but also used from smp_function_call() 452 * for expedited grace periods. This latter can result in running from 453 * the idle task, instead of an actual IPI. 454 */ 455 lockdep_assert_irqs_disabled(); 456 457 /* Check for counter underflows */ 458 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 459 "RCU dynticks_nesting counter underflow!"); 460 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 461 "RCU dynticks_nmi_nesting counter underflow/zero!"); 462 463 /* Are we at first interrupt nesting level? */ 464 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 465 if (nesting > 1) 466 return false; 467 468 /* 469 * If we're not in an interrupt, we must be in the idle task! 470 */ 471 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 472 473 /* Does CPU appear to be idle from an RCU standpoint? */ 474 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 475 } 476 477 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 478 // Maximum callbacks per rcu_do_batch ... 479 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 480 static long blimit = DEFAULT_RCU_BLIMIT; 481 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 482 static long qhimark = DEFAULT_RCU_QHIMARK; 483 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 484 static long qlowmark = DEFAULT_RCU_QLOMARK; 485 #define DEFAULT_RCU_QOVLD_MULT 2 486 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 487 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 488 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 489 490 module_param(blimit, long, 0444); 491 module_param(qhimark, long, 0444); 492 module_param(qlowmark, long, 0444); 493 module_param(qovld, long, 0444); 494 495 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 496 static ulong jiffies_till_next_fqs = ULONG_MAX; 497 static bool rcu_kick_kthreads; 498 static int rcu_divisor = 7; 499 module_param(rcu_divisor, int, 0644); 500 501 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 502 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 503 module_param(rcu_resched_ns, long, 0644); 504 505 /* 506 * How long the grace period must be before we start recruiting 507 * quiescent-state help from rcu_note_context_switch(). 508 */ 509 static ulong jiffies_till_sched_qs = ULONG_MAX; 510 module_param(jiffies_till_sched_qs, ulong, 0444); 511 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 512 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 513 514 /* 515 * Make sure that we give the grace-period kthread time to detect any 516 * idle CPUs before taking active measures to force quiescent states. 517 * However, don't go below 100 milliseconds, adjusted upwards for really 518 * large systems. 519 */ 520 static void adjust_jiffies_till_sched_qs(void) 521 { 522 unsigned long j; 523 524 /* If jiffies_till_sched_qs was specified, respect the request. */ 525 if (jiffies_till_sched_qs != ULONG_MAX) { 526 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 527 return; 528 } 529 /* Otherwise, set to third fqs scan, but bound below on large system. */ 530 j = READ_ONCE(jiffies_till_first_fqs) + 531 2 * READ_ONCE(jiffies_till_next_fqs); 532 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 533 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 534 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 535 WRITE_ONCE(jiffies_to_sched_qs, j); 536 } 537 538 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 539 { 540 ulong j; 541 int ret = kstrtoul(val, 0, &j); 542 543 if (!ret) { 544 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 545 adjust_jiffies_till_sched_qs(); 546 } 547 return ret; 548 } 549 550 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 551 { 552 ulong j; 553 int ret = kstrtoul(val, 0, &j); 554 555 if (!ret) { 556 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 557 adjust_jiffies_till_sched_qs(); 558 } 559 return ret; 560 } 561 562 static const struct kernel_param_ops first_fqs_jiffies_ops = { 563 .set = param_set_first_fqs_jiffies, 564 .get = param_get_ulong, 565 }; 566 567 static const struct kernel_param_ops next_fqs_jiffies_ops = { 568 .set = param_set_next_fqs_jiffies, 569 .get = param_get_ulong, 570 }; 571 572 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 573 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 574 module_param(rcu_kick_kthreads, bool, 0644); 575 576 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 577 static int rcu_pending(int user); 578 579 /* 580 * Return the number of RCU GPs completed thus far for debug & stats. 581 */ 582 unsigned long rcu_get_gp_seq(void) 583 { 584 return READ_ONCE(rcu_state.gp_seq); 585 } 586 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 587 588 /* 589 * Return the number of RCU expedited batches completed thus far for 590 * debug & stats. Odd numbers mean that a batch is in progress, even 591 * numbers mean idle. The value returned will thus be roughly double 592 * the cumulative batches since boot. 593 */ 594 unsigned long rcu_exp_batches_completed(void) 595 { 596 return rcu_state.expedited_sequence; 597 } 598 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 599 600 /* 601 * Return the root node of the rcu_state structure. 602 */ 603 static struct rcu_node *rcu_get_root(void) 604 { 605 return &rcu_state.node[0]; 606 } 607 608 /* 609 * Send along grace-period-related data for rcutorture diagnostics. 610 */ 611 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 612 unsigned long *gp_seq) 613 { 614 switch (test_type) { 615 case RCU_FLAVOR: 616 *flags = READ_ONCE(rcu_state.gp_flags); 617 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 618 break; 619 default: 620 break; 621 } 622 } 623 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 624 625 /* 626 * Enter an RCU extended quiescent state, which can be either the 627 * idle loop or adaptive-tickless usermode execution. 628 * 629 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 630 * the possibility of usermode upcalls having messed up our count 631 * of interrupt nesting level during the prior busy period. 632 */ 633 static noinstr void rcu_eqs_enter(bool user) 634 { 635 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 636 637 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 638 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 639 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 640 rdp->dynticks_nesting == 0); 641 if (rdp->dynticks_nesting != 1) { 642 // RCU will still be watching, so just do accounting and leave. 643 rdp->dynticks_nesting--; 644 return; 645 } 646 647 lockdep_assert_irqs_disabled(); 648 instrumentation_begin(); 649 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 650 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 651 rdp = this_cpu_ptr(&rcu_data); 652 rcu_prepare_for_idle(); 653 rcu_preempt_deferred_qs(current); 654 655 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 656 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 657 658 instrumentation_end(); 659 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 660 // RCU is watching here ... 661 rcu_dynticks_eqs_enter(); 662 // ... but is no longer watching here. 663 rcu_dynticks_task_enter(); 664 } 665 666 /** 667 * rcu_idle_enter - inform RCU that current CPU is entering idle 668 * 669 * Enter idle mode, in other words, -leave- the mode in which RCU 670 * read-side critical sections can occur. (Though RCU read-side 671 * critical sections can occur in irq handlers in idle, a possibility 672 * handled by irq_enter() and irq_exit().) 673 * 674 * If you add or remove a call to rcu_idle_enter(), be sure to test with 675 * CONFIG_RCU_EQS_DEBUG=y. 676 */ 677 void rcu_idle_enter(void) 678 { 679 lockdep_assert_irqs_disabled(); 680 rcu_eqs_enter(false); 681 } 682 EXPORT_SYMBOL_GPL(rcu_idle_enter); 683 684 #ifdef CONFIG_NO_HZ_FULL 685 686 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 687 /* 688 * An empty function that will trigger a reschedule on 689 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 690 */ 691 static void late_wakeup_func(struct irq_work *work) 692 { 693 } 694 695 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 696 IRQ_WORK_INIT(late_wakeup_func); 697 698 /* 699 * If either: 700 * 701 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 702 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 703 * 704 * In these cases the late RCU wake ups aren't supported in the resched loops and our 705 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 706 * get re-enabled again. 707 */ 708 noinstr static void rcu_irq_work_resched(void) 709 { 710 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 711 712 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 713 return; 714 715 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 716 return; 717 718 instrumentation_begin(); 719 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 720 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 721 } 722 instrumentation_end(); 723 } 724 725 #else 726 static inline void rcu_irq_work_resched(void) { } 727 #endif 728 729 /** 730 * rcu_user_enter - inform RCU that we are resuming userspace. 731 * 732 * Enter RCU idle mode right before resuming userspace. No use of RCU 733 * is permitted between this call and rcu_user_exit(). This way the 734 * CPU doesn't need to maintain the tick for RCU maintenance purposes 735 * when the CPU runs in userspace. 736 * 737 * If you add or remove a call to rcu_user_enter(), be sure to test with 738 * CONFIG_RCU_EQS_DEBUG=y. 739 */ 740 noinstr void rcu_user_enter(void) 741 { 742 lockdep_assert_irqs_disabled(); 743 744 /* 745 * Other than generic entry implementation, we may be past the last 746 * rescheduling opportunity in the entry code. Trigger a self IPI 747 * that will fire and reschedule once we resume in user/guest mode. 748 */ 749 rcu_irq_work_resched(); 750 rcu_eqs_enter(true); 751 } 752 753 #endif /* CONFIG_NO_HZ_FULL */ 754 755 /** 756 * rcu_nmi_exit - inform RCU of exit from NMI context 757 * 758 * If we are returning from the outermost NMI handler that interrupted an 759 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 760 * to let the RCU grace-period handling know that the CPU is back to 761 * being RCU-idle. 762 * 763 * If you add or remove a call to rcu_nmi_exit(), be sure to test 764 * with CONFIG_RCU_EQS_DEBUG=y. 765 */ 766 noinstr void rcu_nmi_exit(void) 767 { 768 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 769 770 instrumentation_begin(); 771 /* 772 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 773 * (We are exiting an NMI handler, so RCU better be paying attention 774 * to us!) 775 */ 776 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 777 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 778 779 /* 780 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 781 * leave it in non-RCU-idle state. 782 */ 783 if (rdp->dynticks_nmi_nesting != 1) { 784 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 785 atomic_read(&rdp->dynticks)); 786 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 787 rdp->dynticks_nmi_nesting - 2); 788 instrumentation_end(); 789 return; 790 } 791 792 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 793 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 794 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 795 796 if (!in_nmi()) 797 rcu_prepare_for_idle(); 798 799 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 800 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 801 instrumentation_end(); 802 803 // RCU is watching here ... 804 rcu_dynticks_eqs_enter(); 805 // ... but is no longer watching here. 806 807 if (!in_nmi()) 808 rcu_dynticks_task_enter(); 809 } 810 811 /** 812 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 813 * 814 * Exit from an interrupt handler, which might possibly result in entering 815 * idle mode, in other words, leaving the mode in which read-side critical 816 * sections can occur. The caller must have disabled interrupts. 817 * 818 * This code assumes that the idle loop never does anything that might 819 * result in unbalanced calls to irq_enter() and irq_exit(). If your 820 * architecture's idle loop violates this assumption, RCU will give you what 821 * you deserve, good and hard. But very infrequently and irreproducibly. 822 * 823 * Use things like work queues to work around this limitation. 824 * 825 * You have been warned. 826 * 827 * If you add or remove a call to rcu_irq_exit(), be sure to test with 828 * CONFIG_RCU_EQS_DEBUG=y. 829 */ 830 void noinstr rcu_irq_exit(void) 831 { 832 lockdep_assert_irqs_disabled(); 833 rcu_nmi_exit(); 834 } 835 836 /** 837 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq 838 * towards in kernel preemption 839 * 840 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe 841 * from RCU point of view. Invoked from return from interrupt before kernel 842 * preemption. 843 */ 844 void rcu_irq_exit_preempt(void) 845 { 846 lockdep_assert_irqs_disabled(); 847 rcu_nmi_exit(); 848 849 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 850 "RCU dynticks_nesting counter underflow/zero!"); 851 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 852 DYNTICK_IRQ_NONIDLE, 853 "Bad RCU dynticks_nmi_nesting counter\n"); 854 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 855 "RCU in extended quiescent state!"); 856 } 857 858 #ifdef CONFIG_PROVE_RCU 859 /** 860 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 861 */ 862 void rcu_irq_exit_check_preempt(void) 863 { 864 lockdep_assert_irqs_disabled(); 865 866 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 867 "RCU dynticks_nesting counter underflow/zero!"); 868 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 869 DYNTICK_IRQ_NONIDLE, 870 "Bad RCU dynticks_nmi_nesting counter\n"); 871 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 872 "RCU in extended quiescent state!"); 873 } 874 #endif /* #ifdef CONFIG_PROVE_RCU */ 875 876 /* 877 * Wrapper for rcu_irq_exit() where interrupts are enabled. 878 * 879 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 880 * with CONFIG_RCU_EQS_DEBUG=y. 881 */ 882 void rcu_irq_exit_irqson(void) 883 { 884 unsigned long flags; 885 886 local_irq_save(flags); 887 rcu_irq_exit(); 888 local_irq_restore(flags); 889 } 890 891 /* 892 * Exit an RCU extended quiescent state, which can be either the 893 * idle loop or adaptive-tickless usermode execution. 894 * 895 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 896 * allow for the possibility of usermode upcalls messing up our count of 897 * interrupt nesting level during the busy period that is just now starting. 898 */ 899 static void noinstr rcu_eqs_exit(bool user) 900 { 901 struct rcu_data *rdp; 902 long oldval; 903 904 lockdep_assert_irqs_disabled(); 905 rdp = this_cpu_ptr(&rcu_data); 906 oldval = rdp->dynticks_nesting; 907 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 908 if (oldval) { 909 // RCU was already watching, so just do accounting and leave. 910 rdp->dynticks_nesting++; 911 return; 912 } 913 rcu_dynticks_task_exit(); 914 // RCU is not watching here ... 915 rcu_dynticks_eqs_exit(); 916 // ... but is watching here. 917 instrumentation_begin(); 918 919 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 920 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 921 922 rcu_cleanup_after_idle(); 923 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 924 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 925 WRITE_ONCE(rdp->dynticks_nesting, 1); 926 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 927 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 928 instrumentation_end(); 929 } 930 931 /** 932 * rcu_idle_exit - inform RCU that current CPU is leaving idle 933 * 934 * Exit idle mode, in other words, -enter- the mode in which RCU 935 * read-side critical sections can occur. 936 * 937 * If you add or remove a call to rcu_idle_exit(), be sure to test with 938 * CONFIG_RCU_EQS_DEBUG=y. 939 */ 940 void rcu_idle_exit(void) 941 { 942 unsigned long flags; 943 944 local_irq_save(flags); 945 rcu_eqs_exit(false); 946 local_irq_restore(flags); 947 } 948 EXPORT_SYMBOL_GPL(rcu_idle_exit); 949 950 #ifdef CONFIG_NO_HZ_FULL 951 /** 952 * rcu_user_exit - inform RCU that we are exiting userspace. 953 * 954 * Exit RCU idle mode while entering the kernel because it can 955 * run a RCU read side critical section anytime. 956 * 957 * If you add or remove a call to rcu_user_exit(), be sure to test with 958 * CONFIG_RCU_EQS_DEBUG=y. 959 */ 960 void noinstr rcu_user_exit(void) 961 { 962 rcu_eqs_exit(1); 963 } 964 965 /** 966 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 967 * 968 * The scheduler tick is not normally enabled when CPUs enter the kernel 969 * from nohz_full userspace execution. After all, nohz_full userspace 970 * execution is an RCU quiescent state and the time executing in the kernel 971 * is quite short. Except of course when it isn't. And it is not hard to 972 * cause a large system to spend tens of seconds or even minutes looping 973 * in the kernel, which can cause a number of problems, include RCU CPU 974 * stall warnings. 975 * 976 * Therefore, if a nohz_full CPU fails to report a quiescent state 977 * in a timely manner, the RCU grace-period kthread sets that CPU's 978 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 979 * exception will invoke this function, which will turn on the scheduler 980 * tick, which will enable RCU to detect that CPU's quiescent states, 981 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 982 * The tick will be disabled once a quiescent state is reported for 983 * this CPU. 984 * 985 * Of course, in carefully tuned systems, there might never be an 986 * interrupt or exception. In that case, the RCU grace-period kthread 987 * will eventually cause one to happen. However, in less carefully 988 * controlled environments, this function allows RCU to get what it 989 * needs without creating otherwise useless interruptions. 990 */ 991 void __rcu_irq_enter_check_tick(void) 992 { 993 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 994 995 // If we're here from NMI there's nothing to do. 996 if (in_nmi()) 997 return; 998 999 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 1000 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 1001 1002 if (!tick_nohz_full_cpu(rdp->cpu) || 1003 !READ_ONCE(rdp->rcu_urgent_qs) || 1004 READ_ONCE(rdp->rcu_forced_tick)) { 1005 // RCU doesn't need nohz_full help from this CPU, or it is 1006 // already getting that help. 1007 return; 1008 } 1009 1010 // We get here only when not in an extended quiescent state and 1011 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 1012 // already watching and (2) The fact that we are in an interrupt 1013 // handler and that the rcu_node lock is an irq-disabled lock 1014 // prevents self-deadlock. So we can safely recheck under the lock. 1015 // Note that the nohz_full state currently cannot change. 1016 raw_spin_lock_rcu_node(rdp->mynode); 1017 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 1018 // A nohz_full CPU is in the kernel and RCU needs a 1019 // quiescent state. Turn on the tick! 1020 WRITE_ONCE(rdp->rcu_forced_tick, true); 1021 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1022 } 1023 raw_spin_unlock_rcu_node(rdp->mynode); 1024 } 1025 #endif /* CONFIG_NO_HZ_FULL */ 1026 1027 /** 1028 * rcu_nmi_enter - inform RCU of entry to NMI context 1029 * 1030 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 1031 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 1032 * that the CPU is active. This implementation permits nested NMIs, as 1033 * long as the nesting level does not overflow an int. (You will probably 1034 * run out of stack space first.) 1035 * 1036 * If you add or remove a call to rcu_nmi_enter(), be sure to test 1037 * with CONFIG_RCU_EQS_DEBUG=y. 1038 */ 1039 noinstr void rcu_nmi_enter(void) 1040 { 1041 long incby = 2; 1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1043 1044 /* Complain about underflow. */ 1045 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 1046 1047 /* 1048 * If idle from RCU viewpoint, atomically increment ->dynticks 1049 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1050 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1051 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1052 * to be in the outermost NMI handler that interrupted an RCU-idle 1053 * period (observation due to Andy Lutomirski). 1054 */ 1055 if (rcu_dynticks_curr_cpu_in_eqs()) { 1056 1057 if (!in_nmi()) 1058 rcu_dynticks_task_exit(); 1059 1060 // RCU is not watching here ... 1061 rcu_dynticks_eqs_exit(); 1062 // ... but is watching here. 1063 1064 if (!in_nmi()) { 1065 instrumentation_begin(); 1066 rcu_cleanup_after_idle(); 1067 instrumentation_end(); 1068 } 1069 1070 instrumentation_begin(); 1071 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1072 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1073 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1074 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1075 1076 incby = 1; 1077 } else if (!in_nmi()) { 1078 instrumentation_begin(); 1079 rcu_irq_enter_check_tick(); 1080 instrumentation_end(); 1081 } else { 1082 instrumentation_begin(); 1083 } 1084 1085 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1086 rdp->dynticks_nmi_nesting, 1087 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1088 instrumentation_end(); 1089 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1090 rdp->dynticks_nmi_nesting + incby); 1091 barrier(); 1092 } 1093 1094 /** 1095 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1096 * 1097 * Enter an interrupt handler, which might possibly result in exiting 1098 * idle mode, in other words, entering the mode in which read-side critical 1099 * sections can occur. The caller must have disabled interrupts. 1100 * 1101 * Note that the Linux kernel is fully capable of entering an interrupt 1102 * handler that it never exits, for example when doing upcalls to user mode! 1103 * This code assumes that the idle loop never does upcalls to user mode. 1104 * If your architecture's idle loop does do upcalls to user mode (or does 1105 * anything else that results in unbalanced calls to the irq_enter() and 1106 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1107 * But very infrequently and irreproducibly. 1108 * 1109 * Use things like work queues to work around this limitation. 1110 * 1111 * You have been warned. 1112 * 1113 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1114 * CONFIG_RCU_EQS_DEBUG=y. 1115 */ 1116 noinstr void rcu_irq_enter(void) 1117 { 1118 lockdep_assert_irqs_disabled(); 1119 rcu_nmi_enter(); 1120 } 1121 1122 /* 1123 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1124 * 1125 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1126 * with CONFIG_RCU_EQS_DEBUG=y. 1127 */ 1128 void rcu_irq_enter_irqson(void) 1129 { 1130 unsigned long flags; 1131 1132 local_irq_save(flags); 1133 rcu_irq_enter(); 1134 local_irq_restore(flags); 1135 } 1136 1137 /* 1138 * If any sort of urgency was applied to the current CPU (for example, 1139 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1140 * to get to a quiescent state, disable it. 1141 */ 1142 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1143 { 1144 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1145 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1146 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1147 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1148 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1149 WRITE_ONCE(rdp->rcu_forced_tick, false); 1150 } 1151 } 1152 1153 /** 1154 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1155 * 1156 * Return true if RCU is watching the running CPU, which means that this 1157 * CPU can safely enter RCU read-side critical sections. In other words, 1158 * if the current CPU is not in its idle loop or is in an interrupt or 1159 * NMI handler, return true. 1160 * 1161 * Make notrace because it can be called by the internal functions of 1162 * ftrace, and making this notrace removes unnecessary recursion calls. 1163 */ 1164 notrace bool rcu_is_watching(void) 1165 { 1166 bool ret; 1167 1168 preempt_disable_notrace(); 1169 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1170 preempt_enable_notrace(); 1171 return ret; 1172 } 1173 EXPORT_SYMBOL_GPL(rcu_is_watching); 1174 1175 /* 1176 * If a holdout task is actually running, request an urgent quiescent 1177 * state from its CPU. This is unsynchronized, so migrations can cause 1178 * the request to go to the wrong CPU. Which is OK, all that will happen 1179 * is that the CPU's next context switch will be a bit slower and next 1180 * time around this task will generate another request. 1181 */ 1182 void rcu_request_urgent_qs_task(struct task_struct *t) 1183 { 1184 int cpu; 1185 1186 barrier(); 1187 cpu = task_cpu(t); 1188 if (!task_curr(t)) 1189 return; /* This task is not running on that CPU. */ 1190 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1191 } 1192 1193 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1194 1195 /* 1196 * Is the current CPU online as far as RCU is concerned? 1197 * 1198 * Disable preemption to avoid false positives that could otherwise 1199 * happen due to the current CPU number being sampled, this task being 1200 * preempted, its old CPU being taken offline, resuming on some other CPU, 1201 * then determining that its old CPU is now offline. 1202 * 1203 * Disable checking if in an NMI handler because we cannot safely 1204 * report errors from NMI handlers anyway. In addition, it is OK to use 1205 * RCU on an offline processor during initial boot, hence the check for 1206 * rcu_scheduler_fully_active. 1207 */ 1208 bool rcu_lockdep_current_cpu_online(void) 1209 { 1210 struct rcu_data *rdp; 1211 struct rcu_node *rnp; 1212 bool ret = false; 1213 1214 if (in_nmi() || !rcu_scheduler_fully_active) 1215 return true; 1216 preempt_disable_notrace(); 1217 rdp = this_cpu_ptr(&rcu_data); 1218 rnp = rdp->mynode; 1219 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1220 ret = true; 1221 preempt_enable_notrace(); 1222 return ret; 1223 } 1224 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1225 1226 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1227 1228 /* 1229 * We are reporting a quiescent state on behalf of some other CPU, so 1230 * it is our responsibility to check for and handle potential overflow 1231 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1232 * After all, the CPU might be in deep idle state, and thus executing no 1233 * code whatsoever. 1234 */ 1235 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1236 { 1237 raw_lockdep_assert_held_rcu_node(rnp); 1238 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1239 rnp->gp_seq)) 1240 WRITE_ONCE(rdp->gpwrap, true); 1241 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1242 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1243 } 1244 1245 /* 1246 * Snapshot the specified CPU's dynticks counter so that we can later 1247 * credit them with an implicit quiescent state. Return 1 if this CPU 1248 * is in dynticks idle mode, which is an extended quiescent state. 1249 */ 1250 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1251 { 1252 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1253 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1254 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1255 rcu_gpnum_ovf(rdp->mynode, rdp); 1256 return 1; 1257 } 1258 return 0; 1259 } 1260 1261 /* 1262 * Return true if the specified CPU has passed through a quiescent 1263 * state by virtue of being in or having passed through an dynticks 1264 * idle state since the last call to dyntick_save_progress_counter() 1265 * for this same CPU, or by virtue of having been offline. 1266 */ 1267 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1268 { 1269 unsigned long jtsq; 1270 bool *rnhqp; 1271 bool *ruqp; 1272 struct rcu_node *rnp = rdp->mynode; 1273 1274 /* 1275 * If the CPU passed through or entered a dynticks idle phase with 1276 * no active irq/NMI handlers, then we can safely pretend that the CPU 1277 * already acknowledged the request to pass through a quiescent 1278 * state. Either way, that CPU cannot possibly be in an RCU 1279 * read-side critical section that started before the beginning 1280 * of the current RCU grace period. 1281 */ 1282 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1283 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1284 rcu_gpnum_ovf(rnp, rdp); 1285 return 1; 1286 } 1287 1288 /* 1289 * Complain if a CPU that is considered to be offline from RCU's 1290 * perspective has not yet reported a quiescent state. After all, 1291 * the offline CPU should have reported a quiescent state during 1292 * the CPU-offline process, or, failing that, by rcu_gp_init() 1293 * if it ran concurrently with either the CPU going offline or the 1294 * last task on a leaf rcu_node structure exiting its RCU read-side 1295 * critical section while all CPUs corresponding to that structure 1296 * are offline. This added warning detects bugs in any of these 1297 * code paths. 1298 * 1299 * The rcu_node structure's ->lock is held here, which excludes 1300 * the relevant portions the CPU-hotplug code, the grace-period 1301 * initialization code, and the rcu_read_unlock() code paths. 1302 * 1303 * For more detail, please refer to the "Hotplug CPU" section 1304 * of RCU's Requirements documentation. 1305 */ 1306 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1307 bool onl; 1308 struct rcu_node *rnp1; 1309 1310 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1311 __func__, rnp->grplo, rnp->grphi, rnp->level, 1312 (long)rnp->gp_seq, (long)rnp->completedqs); 1313 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1314 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1315 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1316 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1317 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1318 __func__, rdp->cpu, ".o"[onl], 1319 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1320 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1321 return 1; /* Break things loose after complaining. */ 1322 } 1323 1324 /* 1325 * A CPU running for an extended time within the kernel can 1326 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1327 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1328 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1329 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1330 * variable are safe because the assignments are repeated if this 1331 * CPU failed to pass through a quiescent state. This code 1332 * also checks .jiffies_resched in case jiffies_to_sched_qs 1333 * is set way high. 1334 */ 1335 jtsq = READ_ONCE(jiffies_to_sched_qs); 1336 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1337 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1338 if (!READ_ONCE(*rnhqp) && 1339 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1340 time_after(jiffies, rcu_state.jiffies_resched) || 1341 rcu_state.cbovld)) { 1342 WRITE_ONCE(*rnhqp, true); 1343 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1344 smp_store_release(ruqp, true); 1345 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1346 WRITE_ONCE(*ruqp, true); 1347 } 1348 1349 /* 1350 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1351 * The above code handles this, but only for straight cond_resched(). 1352 * And some in-kernel loops check need_resched() before calling 1353 * cond_resched(), which defeats the above code for CPUs that are 1354 * running in-kernel with scheduling-clock interrupts disabled. 1355 * So hit them over the head with the resched_cpu() hammer! 1356 */ 1357 if (tick_nohz_full_cpu(rdp->cpu) && 1358 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1359 rcu_state.cbovld)) { 1360 WRITE_ONCE(*ruqp, true); 1361 resched_cpu(rdp->cpu); 1362 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1363 } 1364 1365 /* 1366 * If more than halfway to RCU CPU stall-warning time, invoke 1367 * resched_cpu() more frequently to try to loosen things up a bit. 1368 * Also check to see if the CPU is getting hammered with interrupts, 1369 * but only once per grace period, just to keep the IPIs down to 1370 * a dull roar. 1371 */ 1372 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1373 if (time_after(jiffies, 1374 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1375 resched_cpu(rdp->cpu); 1376 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1377 } 1378 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1379 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1380 (rnp->ffmask & rdp->grpmask)) { 1381 rdp->rcu_iw_pending = true; 1382 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1383 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1384 } 1385 } 1386 1387 return 0; 1388 } 1389 1390 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1391 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1392 unsigned long gp_seq_req, const char *s) 1393 { 1394 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1395 gp_seq_req, rnp->level, 1396 rnp->grplo, rnp->grphi, s); 1397 } 1398 1399 /* 1400 * rcu_start_this_gp - Request the start of a particular grace period 1401 * @rnp_start: The leaf node of the CPU from which to start. 1402 * @rdp: The rcu_data corresponding to the CPU from which to start. 1403 * @gp_seq_req: The gp_seq of the grace period to start. 1404 * 1405 * Start the specified grace period, as needed to handle newly arrived 1406 * callbacks. The required future grace periods are recorded in each 1407 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1408 * is reason to awaken the grace-period kthread. 1409 * 1410 * The caller must hold the specified rcu_node structure's ->lock, which 1411 * is why the caller is responsible for waking the grace-period kthread. 1412 * 1413 * Returns true if the GP thread needs to be awakened else false. 1414 */ 1415 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1416 unsigned long gp_seq_req) 1417 { 1418 bool ret = false; 1419 struct rcu_node *rnp; 1420 1421 /* 1422 * Use funnel locking to either acquire the root rcu_node 1423 * structure's lock or bail out if the need for this grace period 1424 * has already been recorded -- or if that grace period has in 1425 * fact already started. If there is already a grace period in 1426 * progress in a non-leaf node, no recording is needed because the 1427 * end of the grace period will scan the leaf rcu_node structures. 1428 * Note that rnp_start->lock must not be released. 1429 */ 1430 raw_lockdep_assert_held_rcu_node(rnp_start); 1431 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1432 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1433 if (rnp != rnp_start) 1434 raw_spin_lock_rcu_node(rnp); 1435 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1436 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1437 (rnp != rnp_start && 1438 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1439 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1440 TPS("Prestarted")); 1441 goto unlock_out; 1442 } 1443 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1444 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1445 /* 1446 * We just marked the leaf or internal node, and a 1447 * grace period is in progress, which means that 1448 * rcu_gp_cleanup() will see the marking. Bail to 1449 * reduce contention. 1450 */ 1451 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1452 TPS("Startedleaf")); 1453 goto unlock_out; 1454 } 1455 if (rnp != rnp_start && rnp->parent != NULL) 1456 raw_spin_unlock_rcu_node(rnp); 1457 if (!rnp->parent) 1458 break; /* At root, and perhaps also leaf. */ 1459 } 1460 1461 /* If GP already in progress, just leave, otherwise start one. */ 1462 if (rcu_gp_in_progress()) { 1463 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1464 goto unlock_out; 1465 } 1466 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1467 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1468 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1469 if (!READ_ONCE(rcu_state.gp_kthread)) { 1470 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1471 goto unlock_out; 1472 } 1473 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1474 ret = true; /* Caller must wake GP kthread. */ 1475 unlock_out: 1476 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1477 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1478 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1479 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1480 } 1481 if (rnp != rnp_start) 1482 raw_spin_unlock_rcu_node(rnp); 1483 return ret; 1484 } 1485 1486 /* 1487 * Clean up any old requests for the just-ended grace period. Also return 1488 * whether any additional grace periods have been requested. 1489 */ 1490 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1491 { 1492 bool needmore; 1493 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1494 1495 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1496 if (!needmore) 1497 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1498 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1499 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1500 return needmore; 1501 } 1502 1503 /* 1504 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1505 * interrupt or softirq handler, in which case we just might immediately 1506 * sleep upon return, resulting in a grace-period hang), and don't bother 1507 * awakening when there is nothing for the grace-period kthread to do 1508 * (as in several CPUs raced to awaken, we lost), and finally don't try 1509 * to awaken a kthread that has not yet been created. If all those checks 1510 * are passed, track some debug information and awaken. 1511 * 1512 * So why do the self-wakeup when in an interrupt or softirq handler 1513 * in the grace-period kthread's context? Because the kthread might have 1514 * been interrupted just as it was going to sleep, and just after the final 1515 * pre-sleep check of the awaken condition. In this case, a wakeup really 1516 * is required, and is therefore supplied. 1517 */ 1518 static void rcu_gp_kthread_wake(void) 1519 { 1520 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1521 1522 if ((current == t && !in_irq() && !in_serving_softirq()) || 1523 !READ_ONCE(rcu_state.gp_flags) || !t) 1524 return; 1525 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1526 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1527 swake_up_one(&rcu_state.gp_wq); 1528 } 1529 1530 /* 1531 * If there is room, assign a ->gp_seq number to any callbacks on this 1532 * CPU that have not already been assigned. Also accelerate any callbacks 1533 * that were previously assigned a ->gp_seq number that has since proven 1534 * to be too conservative, which can happen if callbacks get assigned a 1535 * ->gp_seq number while RCU is idle, but with reference to a non-root 1536 * rcu_node structure. This function is idempotent, so it does not hurt 1537 * to call it repeatedly. Returns an flag saying that we should awaken 1538 * the RCU grace-period kthread. 1539 * 1540 * The caller must hold rnp->lock with interrupts disabled. 1541 */ 1542 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1543 { 1544 unsigned long gp_seq_req; 1545 bool ret = false; 1546 1547 rcu_lockdep_assert_cblist_protected(rdp); 1548 raw_lockdep_assert_held_rcu_node(rnp); 1549 1550 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1551 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1552 return false; 1553 1554 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1555 1556 /* 1557 * Callbacks are often registered with incomplete grace-period 1558 * information. Something about the fact that getting exact 1559 * information requires acquiring a global lock... RCU therefore 1560 * makes a conservative estimate of the grace period number at which 1561 * a given callback will become ready to invoke. The following 1562 * code checks this estimate and improves it when possible, thus 1563 * accelerating callback invocation to an earlier grace-period 1564 * number. 1565 */ 1566 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1567 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1568 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1569 1570 /* Trace depending on how much we were able to accelerate. */ 1571 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1572 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1573 else 1574 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1575 1576 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1577 1578 return ret; 1579 } 1580 1581 /* 1582 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1583 * rcu_node structure's ->lock be held. It consults the cached value 1584 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1585 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1586 * while holding the leaf rcu_node structure's ->lock. 1587 */ 1588 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1589 struct rcu_data *rdp) 1590 { 1591 unsigned long c; 1592 bool needwake; 1593 1594 rcu_lockdep_assert_cblist_protected(rdp); 1595 c = rcu_seq_snap(&rcu_state.gp_seq); 1596 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1597 /* Old request still live, so mark recent callbacks. */ 1598 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1599 return; 1600 } 1601 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1602 needwake = rcu_accelerate_cbs(rnp, rdp); 1603 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1604 if (needwake) 1605 rcu_gp_kthread_wake(); 1606 } 1607 1608 /* 1609 * Move any callbacks whose grace period has completed to the 1610 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1611 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1612 * sublist. This function is idempotent, so it does not hurt to 1613 * invoke it repeatedly. As long as it is not invoked -too- often... 1614 * Returns true if the RCU grace-period kthread needs to be awakened. 1615 * 1616 * The caller must hold rnp->lock with interrupts disabled. 1617 */ 1618 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1619 { 1620 rcu_lockdep_assert_cblist_protected(rdp); 1621 raw_lockdep_assert_held_rcu_node(rnp); 1622 1623 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1624 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1625 return false; 1626 1627 /* 1628 * Find all callbacks whose ->gp_seq numbers indicate that they 1629 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1630 */ 1631 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1632 1633 /* Classify any remaining callbacks. */ 1634 return rcu_accelerate_cbs(rnp, rdp); 1635 } 1636 1637 /* 1638 * Move and classify callbacks, but only if doing so won't require 1639 * that the RCU grace-period kthread be awakened. 1640 */ 1641 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1642 struct rcu_data *rdp) 1643 { 1644 rcu_lockdep_assert_cblist_protected(rdp); 1645 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1646 !raw_spin_trylock_rcu_node(rnp)) 1647 return; 1648 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1649 raw_spin_unlock_rcu_node(rnp); 1650 } 1651 1652 /* 1653 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1654 * quiescent state. This is intended to be invoked when the CPU notices 1655 * a new grace period. 1656 */ 1657 static void rcu_strict_gp_check_qs(void) 1658 { 1659 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1660 rcu_read_lock(); 1661 rcu_read_unlock(); 1662 } 1663 } 1664 1665 /* 1666 * Update CPU-local rcu_data state to record the beginnings and ends of 1667 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1668 * structure corresponding to the current CPU, and must have irqs disabled. 1669 * Returns true if the grace-period kthread needs to be awakened. 1670 */ 1671 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1672 { 1673 bool ret = false; 1674 bool need_qs; 1675 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist); 1676 1677 raw_lockdep_assert_held_rcu_node(rnp); 1678 1679 if (rdp->gp_seq == rnp->gp_seq) 1680 return false; /* Nothing to do. */ 1681 1682 /* Handle the ends of any preceding grace periods first. */ 1683 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1684 unlikely(READ_ONCE(rdp->gpwrap))) { 1685 if (!offloaded) 1686 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1687 rdp->core_needs_qs = false; 1688 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1689 } else { 1690 if (!offloaded) 1691 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1692 if (rdp->core_needs_qs) 1693 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1694 } 1695 1696 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1697 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1698 unlikely(READ_ONCE(rdp->gpwrap))) { 1699 /* 1700 * If the current grace period is waiting for this CPU, 1701 * set up to detect a quiescent state, otherwise don't 1702 * go looking for one. 1703 */ 1704 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1705 need_qs = !!(rnp->qsmask & rdp->grpmask); 1706 rdp->cpu_no_qs.b.norm = need_qs; 1707 rdp->core_needs_qs = need_qs; 1708 zero_cpu_stall_ticks(rdp); 1709 } 1710 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1711 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1712 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1713 WRITE_ONCE(rdp->gpwrap, false); 1714 rcu_gpnum_ovf(rnp, rdp); 1715 return ret; 1716 } 1717 1718 static void note_gp_changes(struct rcu_data *rdp) 1719 { 1720 unsigned long flags; 1721 bool needwake; 1722 struct rcu_node *rnp; 1723 1724 local_irq_save(flags); 1725 rnp = rdp->mynode; 1726 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1727 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1728 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1729 local_irq_restore(flags); 1730 return; 1731 } 1732 needwake = __note_gp_changes(rnp, rdp); 1733 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1734 rcu_strict_gp_check_qs(); 1735 if (needwake) 1736 rcu_gp_kthread_wake(); 1737 } 1738 1739 static void rcu_gp_slow(int delay) 1740 { 1741 if (delay > 0 && 1742 !(rcu_seq_ctr(rcu_state.gp_seq) % 1743 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1744 schedule_timeout_idle(delay); 1745 } 1746 1747 static unsigned long sleep_duration; 1748 1749 /* Allow rcutorture to stall the grace-period kthread. */ 1750 void rcu_gp_set_torture_wait(int duration) 1751 { 1752 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1753 WRITE_ONCE(sleep_duration, duration); 1754 } 1755 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1756 1757 /* Actually implement the aforementioned wait. */ 1758 static void rcu_gp_torture_wait(void) 1759 { 1760 unsigned long duration; 1761 1762 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1763 return; 1764 duration = xchg(&sleep_duration, 0UL); 1765 if (duration > 0) { 1766 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1767 schedule_timeout_idle(duration); 1768 pr_alert("%s: Wait complete\n", __func__); 1769 } 1770 } 1771 1772 /* 1773 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1774 * processing. 1775 */ 1776 static void rcu_strict_gp_boundary(void *unused) 1777 { 1778 invoke_rcu_core(); 1779 } 1780 1781 /* 1782 * Initialize a new grace period. Return false if no grace period required. 1783 */ 1784 static bool rcu_gp_init(void) 1785 { 1786 unsigned long firstseq; 1787 unsigned long flags; 1788 unsigned long oldmask; 1789 unsigned long mask; 1790 struct rcu_data *rdp; 1791 struct rcu_node *rnp = rcu_get_root(); 1792 1793 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1794 raw_spin_lock_irq_rcu_node(rnp); 1795 if (!READ_ONCE(rcu_state.gp_flags)) { 1796 /* Spurious wakeup, tell caller to go back to sleep. */ 1797 raw_spin_unlock_irq_rcu_node(rnp); 1798 return false; 1799 } 1800 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1801 1802 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1803 /* 1804 * Grace period already in progress, don't start another. 1805 * Not supposed to be able to happen. 1806 */ 1807 raw_spin_unlock_irq_rcu_node(rnp); 1808 return false; 1809 } 1810 1811 /* Advance to a new grace period and initialize state. */ 1812 record_gp_stall_check_time(); 1813 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1814 rcu_seq_start(&rcu_state.gp_seq); 1815 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1816 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1817 raw_spin_unlock_irq_rcu_node(rnp); 1818 1819 /* 1820 * Apply per-leaf buffered online and offline operations to 1821 * the rcu_node tree. Note that this new grace period need not 1822 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1823 * offlining path, when combined with checks in this function, 1824 * will handle CPUs that are currently going offline or that will 1825 * go offline later. Please also refer to "Hotplug CPU" section 1826 * of RCU's Requirements documentation. 1827 */ 1828 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1829 rcu_for_each_leaf_node(rnp) { 1830 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1831 firstseq = READ_ONCE(rnp->ofl_seq); 1832 if (firstseq & 0x1) 1833 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1834 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1835 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1836 raw_spin_lock(&rcu_state.ofl_lock); 1837 raw_spin_lock_irq_rcu_node(rnp); 1838 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1839 !rnp->wait_blkd_tasks) { 1840 /* Nothing to do on this leaf rcu_node structure. */ 1841 raw_spin_unlock_irq_rcu_node(rnp); 1842 raw_spin_unlock(&rcu_state.ofl_lock); 1843 continue; 1844 } 1845 1846 /* Record old state, apply changes to ->qsmaskinit field. */ 1847 oldmask = rnp->qsmaskinit; 1848 rnp->qsmaskinit = rnp->qsmaskinitnext; 1849 1850 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1851 if (!oldmask != !rnp->qsmaskinit) { 1852 if (!oldmask) { /* First online CPU for rcu_node. */ 1853 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1854 rcu_init_new_rnp(rnp); 1855 } else if (rcu_preempt_has_tasks(rnp)) { 1856 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1857 } else { /* Last offline CPU and can propagate. */ 1858 rcu_cleanup_dead_rnp(rnp); 1859 } 1860 } 1861 1862 /* 1863 * If all waited-on tasks from prior grace period are 1864 * done, and if all this rcu_node structure's CPUs are 1865 * still offline, propagate up the rcu_node tree and 1866 * clear ->wait_blkd_tasks. Otherwise, if one of this 1867 * rcu_node structure's CPUs has since come back online, 1868 * simply clear ->wait_blkd_tasks. 1869 */ 1870 if (rnp->wait_blkd_tasks && 1871 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1872 rnp->wait_blkd_tasks = false; 1873 if (!rnp->qsmaskinit) 1874 rcu_cleanup_dead_rnp(rnp); 1875 } 1876 1877 raw_spin_unlock_irq_rcu_node(rnp); 1878 raw_spin_unlock(&rcu_state.ofl_lock); 1879 } 1880 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1881 1882 /* 1883 * Set the quiescent-state-needed bits in all the rcu_node 1884 * structures for all currently online CPUs in breadth-first 1885 * order, starting from the root rcu_node structure, relying on the 1886 * layout of the tree within the rcu_state.node[] array. Note that 1887 * other CPUs will access only the leaves of the hierarchy, thus 1888 * seeing that no grace period is in progress, at least until the 1889 * corresponding leaf node has been initialized. 1890 * 1891 * The grace period cannot complete until the initialization 1892 * process finishes, because this kthread handles both. 1893 */ 1894 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1895 rcu_for_each_node_breadth_first(rnp) { 1896 rcu_gp_slow(gp_init_delay); 1897 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1898 rdp = this_cpu_ptr(&rcu_data); 1899 rcu_preempt_check_blocked_tasks(rnp); 1900 rnp->qsmask = rnp->qsmaskinit; 1901 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1902 if (rnp == rdp->mynode) 1903 (void)__note_gp_changes(rnp, rdp); 1904 rcu_preempt_boost_start_gp(rnp); 1905 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1906 rnp->level, rnp->grplo, 1907 rnp->grphi, rnp->qsmask); 1908 /* Quiescent states for tasks on any now-offline CPUs. */ 1909 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1910 rnp->rcu_gp_init_mask = mask; 1911 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1912 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1913 else 1914 raw_spin_unlock_irq_rcu_node(rnp); 1915 cond_resched_tasks_rcu_qs(); 1916 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1917 } 1918 1919 // If strict, make all CPUs aware of new grace period. 1920 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1921 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1922 1923 return true; 1924 } 1925 1926 /* 1927 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1928 * time. 1929 */ 1930 static bool rcu_gp_fqs_check_wake(int *gfp) 1931 { 1932 struct rcu_node *rnp = rcu_get_root(); 1933 1934 // If under overload conditions, force an immediate FQS scan. 1935 if (*gfp & RCU_GP_FLAG_OVLD) 1936 return true; 1937 1938 // Someone like call_rcu() requested a force-quiescent-state scan. 1939 *gfp = READ_ONCE(rcu_state.gp_flags); 1940 if (*gfp & RCU_GP_FLAG_FQS) 1941 return true; 1942 1943 // The current grace period has completed. 1944 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1945 return true; 1946 1947 return false; 1948 } 1949 1950 /* 1951 * Do one round of quiescent-state forcing. 1952 */ 1953 static void rcu_gp_fqs(bool first_time) 1954 { 1955 struct rcu_node *rnp = rcu_get_root(); 1956 1957 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1958 rcu_state.n_force_qs++; 1959 if (first_time) { 1960 /* Collect dyntick-idle snapshots. */ 1961 force_qs_rnp(dyntick_save_progress_counter); 1962 } else { 1963 /* Handle dyntick-idle and offline CPUs. */ 1964 force_qs_rnp(rcu_implicit_dynticks_qs); 1965 } 1966 /* Clear flag to prevent immediate re-entry. */ 1967 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1968 raw_spin_lock_irq_rcu_node(rnp); 1969 WRITE_ONCE(rcu_state.gp_flags, 1970 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1971 raw_spin_unlock_irq_rcu_node(rnp); 1972 } 1973 } 1974 1975 /* 1976 * Loop doing repeated quiescent-state forcing until the grace period ends. 1977 */ 1978 static void rcu_gp_fqs_loop(void) 1979 { 1980 bool first_gp_fqs; 1981 int gf = 0; 1982 unsigned long j; 1983 int ret; 1984 struct rcu_node *rnp = rcu_get_root(); 1985 1986 first_gp_fqs = true; 1987 j = READ_ONCE(jiffies_till_first_fqs); 1988 if (rcu_state.cbovld) 1989 gf = RCU_GP_FLAG_OVLD; 1990 ret = 0; 1991 for (;;) { 1992 if (!ret) { 1993 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1994 /* 1995 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1996 * update; required for stall checks. 1997 */ 1998 smp_wmb(); 1999 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2000 jiffies + (j ? 3 * j : 2)); 2001 } 2002 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2003 TPS("fqswait")); 2004 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2005 ret = swait_event_idle_timeout_exclusive( 2006 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 2007 rcu_gp_torture_wait(); 2008 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2009 /* Locking provides needed memory barriers. */ 2010 /* If grace period done, leave loop. */ 2011 if (!READ_ONCE(rnp->qsmask) && 2012 !rcu_preempt_blocked_readers_cgp(rnp)) 2013 break; 2014 /* If time for quiescent-state forcing, do it. */ 2015 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2016 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2017 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2018 TPS("fqsstart")); 2019 rcu_gp_fqs(first_gp_fqs); 2020 gf = 0; 2021 if (first_gp_fqs) { 2022 first_gp_fqs = false; 2023 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2024 } 2025 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2026 TPS("fqsend")); 2027 cond_resched_tasks_rcu_qs(); 2028 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2029 ret = 0; /* Force full wait till next FQS. */ 2030 j = READ_ONCE(jiffies_till_next_fqs); 2031 } else { 2032 /* Deal with stray signal. */ 2033 cond_resched_tasks_rcu_qs(); 2034 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2035 WARN_ON(signal_pending(current)); 2036 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2037 TPS("fqswaitsig")); 2038 ret = 1; /* Keep old FQS timing. */ 2039 j = jiffies; 2040 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2041 j = 1; 2042 else 2043 j = rcu_state.jiffies_force_qs - j; 2044 gf = 0; 2045 } 2046 } 2047 } 2048 2049 /* 2050 * Clean up after the old grace period. 2051 */ 2052 static void rcu_gp_cleanup(void) 2053 { 2054 int cpu; 2055 bool needgp = false; 2056 unsigned long gp_duration; 2057 unsigned long new_gp_seq; 2058 bool offloaded; 2059 struct rcu_data *rdp; 2060 struct rcu_node *rnp = rcu_get_root(); 2061 struct swait_queue_head *sq; 2062 2063 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2064 raw_spin_lock_irq_rcu_node(rnp); 2065 rcu_state.gp_end = jiffies; 2066 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2067 if (gp_duration > rcu_state.gp_max) 2068 rcu_state.gp_max = gp_duration; 2069 2070 /* 2071 * We know the grace period is complete, but to everyone else 2072 * it appears to still be ongoing. But it is also the case 2073 * that to everyone else it looks like there is nothing that 2074 * they can do to advance the grace period. It is therefore 2075 * safe for us to drop the lock in order to mark the grace 2076 * period as completed in all of the rcu_node structures. 2077 */ 2078 raw_spin_unlock_irq_rcu_node(rnp); 2079 2080 /* 2081 * Propagate new ->gp_seq value to rcu_node structures so that 2082 * other CPUs don't have to wait until the start of the next grace 2083 * period to process their callbacks. This also avoids some nasty 2084 * RCU grace-period initialization races by forcing the end of 2085 * the current grace period to be completely recorded in all of 2086 * the rcu_node structures before the beginning of the next grace 2087 * period is recorded in any of the rcu_node structures. 2088 */ 2089 new_gp_seq = rcu_state.gp_seq; 2090 rcu_seq_end(&new_gp_seq); 2091 rcu_for_each_node_breadth_first(rnp) { 2092 raw_spin_lock_irq_rcu_node(rnp); 2093 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2094 dump_blkd_tasks(rnp, 10); 2095 WARN_ON_ONCE(rnp->qsmask); 2096 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2097 rdp = this_cpu_ptr(&rcu_data); 2098 if (rnp == rdp->mynode) 2099 needgp = __note_gp_changes(rnp, rdp) || needgp; 2100 /* smp_mb() provided by prior unlock-lock pair. */ 2101 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2102 // Reset overload indication for CPUs no longer overloaded 2103 if (rcu_is_leaf_node(rnp)) 2104 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2105 rdp = per_cpu_ptr(&rcu_data, cpu); 2106 check_cb_ovld_locked(rdp, rnp); 2107 } 2108 sq = rcu_nocb_gp_get(rnp); 2109 raw_spin_unlock_irq_rcu_node(rnp); 2110 rcu_nocb_gp_cleanup(sq); 2111 cond_resched_tasks_rcu_qs(); 2112 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2113 rcu_gp_slow(gp_cleanup_delay); 2114 } 2115 rnp = rcu_get_root(); 2116 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2117 2118 /* Declare grace period done, trace first to use old GP number. */ 2119 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2120 rcu_seq_end(&rcu_state.gp_seq); 2121 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2122 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2123 /* Check for GP requests since above loop. */ 2124 rdp = this_cpu_ptr(&rcu_data); 2125 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2126 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2127 TPS("CleanupMore")); 2128 needgp = true; 2129 } 2130 /* Advance CBs to reduce false positives below. */ 2131 offloaded = rcu_segcblist_is_offloaded(&rdp->cblist); 2132 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2133 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2134 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2135 trace_rcu_grace_period(rcu_state.name, 2136 rcu_state.gp_seq, 2137 TPS("newreq")); 2138 } else { 2139 WRITE_ONCE(rcu_state.gp_flags, 2140 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2141 } 2142 raw_spin_unlock_irq_rcu_node(rnp); 2143 2144 // If strict, make all CPUs aware of the end of the old grace period. 2145 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2146 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2147 } 2148 2149 /* 2150 * Body of kthread that handles grace periods. 2151 */ 2152 static int __noreturn rcu_gp_kthread(void *unused) 2153 { 2154 rcu_bind_gp_kthread(); 2155 for (;;) { 2156 2157 /* Handle grace-period start. */ 2158 for (;;) { 2159 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2160 TPS("reqwait")); 2161 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2162 swait_event_idle_exclusive(rcu_state.gp_wq, 2163 READ_ONCE(rcu_state.gp_flags) & 2164 RCU_GP_FLAG_INIT); 2165 rcu_gp_torture_wait(); 2166 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2167 /* Locking provides needed memory barrier. */ 2168 if (rcu_gp_init()) 2169 break; 2170 cond_resched_tasks_rcu_qs(); 2171 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2172 WARN_ON(signal_pending(current)); 2173 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2174 TPS("reqwaitsig")); 2175 } 2176 2177 /* Handle quiescent-state forcing. */ 2178 rcu_gp_fqs_loop(); 2179 2180 /* Handle grace-period end. */ 2181 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2182 rcu_gp_cleanup(); 2183 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2184 } 2185 } 2186 2187 /* 2188 * Report a full set of quiescent states to the rcu_state data structure. 2189 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2190 * another grace period is required. Whether we wake the grace-period 2191 * kthread or it awakens itself for the next round of quiescent-state 2192 * forcing, that kthread will clean up after the just-completed grace 2193 * period. Note that the caller must hold rnp->lock, which is released 2194 * before return. 2195 */ 2196 static void rcu_report_qs_rsp(unsigned long flags) 2197 __releases(rcu_get_root()->lock) 2198 { 2199 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2200 WARN_ON_ONCE(!rcu_gp_in_progress()); 2201 WRITE_ONCE(rcu_state.gp_flags, 2202 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2203 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2204 rcu_gp_kthread_wake(); 2205 } 2206 2207 /* 2208 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2209 * Allows quiescent states for a group of CPUs to be reported at one go 2210 * to the specified rcu_node structure, though all the CPUs in the group 2211 * must be represented by the same rcu_node structure (which need not be a 2212 * leaf rcu_node structure, though it often will be). The gps parameter 2213 * is the grace-period snapshot, which means that the quiescent states 2214 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2215 * must be held upon entry, and it is released before return. 2216 * 2217 * As a special case, if mask is zero, the bit-already-cleared check is 2218 * disabled. This allows propagating quiescent state due to resumed tasks 2219 * during grace-period initialization. 2220 */ 2221 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2222 unsigned long gps, unsigned long flags) 2223 __releases(rnp->lock) 2224 { 2225 unsigned long oldmask = 0; 2226 struct rcu_node *rnp_c; 2227 2228 raw_lockdep_assert_held_rcu_node(rnp); 2229 2230 /* Walk up the rcu_node hierarchy. */ 2231 for (;;) { 2232 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2233 2234 /* 2235 * Our bit has already been cleared, or the 2236 * relevant grace period is already over, so done. 2237 */ 2238 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2239 return; 2240 } 2241 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2242 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2243 rcu_preempt_blocked_readers_cgp(rnp)); 2244 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2245 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2246 mask, rnp->qsmask, rnp->level, 2247 rnp->grplo, rnp->grphi, 2248 !!rnp->gp_tasks); 2249 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2250 2251 /* Other bits still set at this level, so done. */ 2252 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2253 return; 2254 } 2255 rnp->completedqs = rnp->gp_seq; 2256 mask = rnp->grpmask; 2257 if (rnp->parent == NULL) { 2258 2259 /* No more levels. Exit loop holding root lock. */ 2260 2261 break; 2262 } 2263 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2264 rnp_c = rnp; 2265 rnp = rnp->parent; 2266 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2267 oldmask = READ_ONCE(rnp_c->qsmask); 2268 } 2269 2270 /* 2271 * Get here if we are the last CPU to pass through a quiescent 2272 * state for this grace period. Invoke rcu_report_qs_rsp() 2273 * to clean up and start the next grace period if one is needed. 2274 */ 2275 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2276 } 2277 2278 /* 2279 * Record a quiescent state for all tasks that were previously queued 2280 * on the specified rcu_node structure and that were blocking the current 2281 * RCU grace period. The caller must hold the corresponding rnp->lock with 2282 * irqs disabled, and this lock is released upon return, but irqs remain 2283 * disabled. 2284 */ 2285 static void __maybe_unused 2286 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2287 __releases(rnp->lock) 2288 { 2289 unsigned long gps; 2290 unsigned long mask; 2291 struct rcu_node *rnp_p; 2292 2293 raw_lockdep_assert_held_rcu_node(rnp); 2294 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2295 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2296 rnp->qsmask != 0) { 2297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2298 return; /* Still need more quiescent states! */ 2299 } 2300 2301 rnp->completedqs = rnp->gp_seq; 2302 rnp_p = rnp->parent; 2303 if (rnp_p == NULL) { 2304 /* 2305 * Only one rcu_node structure in the tree, so don't 2306 * try to report up to its nonexistent parent! 2307 */ 2308 rcu_report_qs_rsp(flags); 2309 return; 2310 } 2311 2312 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2313 gps = rnp->gp_seq; 2314 mask = rnp->grpmask; 2315 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2316 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2317 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2318 } 2319 2320 /* 2321 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2322 * structure. This must be called from the specified CPU. 2323 */ 2324 static void 2325 rcu_report_qs_rdp(struct rcu_data *rdp) 2326 { 2327 unsigned long flags; 2328 unsigned long mask; 2329 bool needwake = false; 2330 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist); 2331 struct rcu_node *rnp; 2332 2333 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2334 rnp = rdp->mynode; 2335 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2336 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2337 rdp->gpwrap) { 2338 2339 /* 2340 * The grace period in which this quiescent state was 2341 * recorded has ended, so don't report it upwards. 2342 * We will instead need a new quiescent state that lies 2343 * within the current grace period. 2344 */ 2345 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2346 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2347 return; 2348 } 2349 mask = rdp->grpmask; 2350 rdp->core_needs_qs = false; 2351 if ((rnp->qsmask & mask) == 0) { 2352 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2353 } else { 2354 /* 2355 * This GP can't end until cpu checks in, so all of our 2356 * callbacks can be processed during the next GP. 2357 */ 2358 if (!offloaded) 2359 needwake = rcu_accelerate_cbs(rnp, rdp); 2360 2361 rcu_disable_urgency_upon_qs(rdp); 2362 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2363 /* ^^^ Released rnp->lock */ 2364 if (needwake) 2365 rcu_gp_kthread_wake(); 2366 } 2367 } 2368 2369 /* 2370 * Check to see if there is a new grace period of which this CPU 2371 * is not yet aware, and if so, set up local rcu_data state for it. 2372 * Otherwise, see if this CPU has just passed through its first 2373 * quiescent state for this grace period, and record that fact if so. 2374 */ 2375 static void 2376 rcu_check_quiescent_state(struct rcu_data *rdp) 2377 { 2378 /* Check for grace-period ends and beginnings. */ 2379 note_gp_changes(rdp); 2380 2381 /* 2382 * Does this CPU still need to do its part for current grace period? 2383 * If no, return and let the other CPUs do their part as well. 2384 */ 2385 if (!rdp->core_needs_qs) 2386 return; 2387 2388 /* 2389 * Was there a quiescent state since the beginning of the grace 2390 * period? If no, then exit and wait for the next call. 2391 */ 2392 if (rdp->cpu_no_qs.b.norm) 2393 return; 2394 2395 /* 2396 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2397 * judge of that). 2398 */ 2399 rcu_report_qs_rdp(rdp); 2400 } 2401 2402 /* 2403 * Near the end of the offline process. Trace the fact that this CPU 2404 * is going offline. 2405 */ 2406 int rcutree_dying_cpu(unsigned int cpu) 2407 { 2408 bool blkd; 2409 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2410 struct rcu_node *rnp = rdp->mynode; 2411 2412 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2413 return 0; 2414 2415 blkd = !!(rnp->qsmask & rdp->grpmask); 2416 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2417 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2418 return 0; 2419 } 2420 2421 /* 2422 * All CPUs for the specified rcu_node structure have gone offline, 2423 * and all tasks that were preempted within an RCU read-side critical 2424 * section while running on one of those CPUs have since exited their RCU 2425 * read-side critical section. Some other CPU is reporting this fact with 2426 * the specified rcu_node structure's ->lock held and interrupts disabled. 2427 * This function therefore goes up the tree of rcu_node structures, 2428 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2429 * the leaf rcu_node structure's ->qsmaskinit field has already been 2430 * updated. 2431 * 2432 * This function does check that the specified rcu_node structure has 2433 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2434 * prematurely. That said, invoking it after the fact will cost you 2435 * a needless lock acquisition. So once it has done its work, don't 2436 * invoke it again. 2437 */ 2438 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2439 { 2440 long mask; 2441 struct rcu_node *rnp = rnp_leaf; 2442 2443 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2444 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2445 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2446 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2447 return; 2448 for (;;) { 2449 mask = rnp->grpmask; 2450 rnp = rnp->parent; 2451 if (!rnp) 2452 break; 2453 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2454 rnp->qsmaskinit &= ~mask; 2455 /* Between grace periods, so better already be zero! */ 2456 WARN_ON_ONCE(rnp->qsmask); 2457 if (rnp->qsmaskinit) { 2458 raw_spin_unlock_rcu_node(rnp); 2459 /* irqs remain disabled. */ 2460 return; 2461 } 2462 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2463 } 2464 } 2465 2466 /* 2467 * The CPU has been completely removed, and some other CPU is reporting 2468 * this fact from process context. Do the remainder of the cleanup. 2469 * There can only be one CPU hotplug operation at a time, so no need for 2470 * explicit locking. 2471 */ 2472 int rcutree_dead_cpu(unsigned int cpu) 2473 { 2474 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2475 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2476 2477 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2478 return 0; 2479 2480 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2481 /* Adjust any no-longer-needed kthreads. */ 2482 rcu_boost_kthread_setaffinity(rnp, -1); 2483 /* Do any needed no-CB deferred wakeups from this CPU. */ 2484 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2485 2486 // Stop-machine done, so allow nohz_full to disable tick. 2487 tick_dep_clear(TICK_DEP_BIT_RCU); 2488 return 0; 2489 } 2490 2491 /* 2492 * Invoke any RCU callbacks that have made it to the end of their grace 2493 * period. Thottle as specified by rdp->blimit. 2494 */ 2495 static void rcu_do_batch(struct rcu_data *rdp) 2496 { 2497 int div; 2498 bool __maybe_unused empty; 2499 unsigned long flags; 2500 const bool offloaded = rcu_segcblist_is_offloaded(&rdp->cblist); 2501 struct rcu_head *rhp; 2502 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2503 long bl, count = 0; 2504 long pending, tlimit = 0; 2505 2506 /* If no callbacks are ready, just return. */ 2507 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2508 trace_rcu_batch_start(rcu_state.name, 2509 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2510 trace_rcu_batch_end(rcu_state.name, 0, 2511 !rcu_segcblist_empty(&rdp->cblist), 2512 need_resched(), is_idle_task(current), 2513 rcu_is_callbacks_kthread()); 2514 return; 2515 } 2516 2517 /* 2518 * Extract the list of ready callbacks, disabling to prevent 2519 * races with call_rcu() from interrupt handlers. Leave the 2520 * callback counts, as rcu_barrier() needs to be conservative. 2521 */ 2522 local_irq_save(flags); 2523 rcu_nocb_lock(rdp); 2524 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2525 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2526 div = READ_ONCE(rcu_divisor); 2527 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2528 bl = max(rdp->blimit, pending >> div); 2529 if (unlikely(bl > 100)) { 2530 long rrn = READ_ONCE(rcu_resched_ns); 2531 2532 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2533 tlimit = local_clock() + rrn; 2534 } 2535 trace_rcu_batch_start(rcu_state.name, 2536 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2537 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2538 if (offloaded) 2539 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2540 2541 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2542 rcu_nocb_unlock_irqrestore(rdp, flags); 2543 2544 /* Invoke callbacks. */ 2545 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2546 rhp = rcu_cblist_dequeue(&rcl); 2547 2548 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2549 rcu_callback_t f; 2550 2551 count++; 2552 debug_rcu_head_unqueue(rhp); 2553 2554 rcu_lock_acquire(&rcu_callback_map); 2555 trace_rcu_invoke_callback(rcu_state.name, rhp); 2556 2557 f = rhp->func; 2558 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2559 f(rhp); 2560 2561 rcu_lock_release(&rcu_callback_map); 2562 2563 /* 2564 * Stop only if limit reached and CPU has something to do. 2565 */ 2566 if (count >= bl && !offloaded && 2567 (need_resched() || 2568 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2569 break; 2570 if (unlikely(tlimit)) { 2571 /* only call local_clock() every 32 callbacks */ 2572 if (likely((count & 31) || local_clock() < tlimit)) 2573 continue; 2574 /* Exceeded the time limit, so leave. */ 2575 break; 2576 } 2577 if (!in_serving_softirq()) { 2578 local_bh_enable(); 2579 lockdep_assert_irqs_enabled(); 2580 cond_resched_tasks_rcu_qs(); 2581 lockdep_assert_irqs_enabled(); 2582 local_bh_disable(); 2583 } 2584 } 2585 2586 local_irq_save(flags); 2587 rcu_nocb_lock(rdp); 2588 rdp->n_cbs_invoked += count; 2589 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2590 is_idle_task(current), rcu_is_callbacks_kthread()); 2591 2592 /* Update counts and requeue any remaining callbacks. */ 2593 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2594 rcu_segcblist_add_len(&rdp->cblist, -count); 2595 2596 /* Reinstate batch limit if we have worked down the excess. */ 2597 count = rcu_segcblist_n_cbs(&rdp->cblist); 2598 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2599 rdp->blimit = blimit; 2600 2601 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2602 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2603 rdp->qlen_last_fqs_check = 0; 2604 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2605 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2606 rdp->qlen_last_fqs_check = count; 2607 2608 /* 2609 * The following usually indicates a double call_rcu(). To track 2610 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2611 */ 2612 empty = rcu_segcblist_empty(&rdp->cblist); 2613 WARN_ON_ONCE(count == 0 && !empty); 2614 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2615 count != 0 && empty); 2616 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2617 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2618 2619 rcu_nocb_unlock_irqrestore(rdp, flags); 2620 2621 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2622 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2623 invoke_rcu_core(); 2624 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2625 } 2626 2627 /* 2628 * This function is invoked from each scheduling-clock interrupt, 2629 * and checks to see if this CPU is in a non-context-switch quiescent 2630 * state, for example, user mode or idle loop. It also schedules RCU 2631 * core processing. If the current grace period has gone on too long, 2632 * it will ask the scheduler to manufacture a context switch for the sole 2633 * purpose of providing a providing the needed quiescent state. 2634 */ 2635 void rcu_sched_clock_irq(int user) 2636 { 2637 trace_rcu_utilization(TPS("Start scheduler-tick")); 2638 lockdep_assert_irqs_disabled(); 2639 raw_cpu_inc(rcu_data.ticks_this_gp); 2640 /* The load-acquire pairs with the store-release setting to true. */ 2641 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2642 /* Idle and userspace execution already are quiescent states. */ 2643 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2644 set_tsk_need_resched(current); 2645 set_preempt_need_resched(); 2646 } 2647 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2648 } 2649 rcu_flavor_sched_clock_irq(user); 2650 if (rcu_pending(user)) 2651 invoke_rcu_core(); 2652 lockdep_assert_irqs_disabled(); 2653 2654 trace_rcu_utilization(TPS("End scheduler-tick")); 2655 } 2656 2657 /* 2658 * Scan the leaf rcu_node structures. For each structure on which all 2659 * CPUs have reported a quiescent state and on which there are tasks 2660 * blocking the current grace period, initiate RCU priority boosting. 2661 * Otherwise, invoke the specified function to check dyntick state for 2662 * each CPU that has not yet reported a quiescent state. 2663 */ 2664 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2665 { 2666 int cpu; 2667 unsigned long flags; 2668 unsigned long mask; 2669 struct rcu_data *rdp; 2670 struct rcu_node *rnp; 2671 2672 rcu_state.cbovld = rcu_state.cbovldnext; 2673 rcu_state.cbovldnext = false; 2674 rcu_for_each_leaf_node(rnp) { 2675 cond_resched_tasks_rcu_qs(); 2676 mask = 0; 2677 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2678 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2679 if (rnp->qsmask == 0) { 2680 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2681 /* 2682 * No point in scanning bits because they 2683 * are all zero. But we might need to 2684 * priority-boost blocked readers. 2685 */ 2686 rcu_initiate_boost(rnp, flags); 2687 /* rcu_initiate_boost() releases rnp->lock */ 2688 continue; 2689 } 2690 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2691 continue; 2692 } 2693 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2694 rdp = per_cpu_ptr(&rcu_data, cpu); 2695 if (f(rdp)) { 2696 mask |= rdp->grpmask; 2697 rcu_disable_urgency_upon_qs(rdp); 2698 } 2699 } 2700 if (mask != 0) { 2701 /* Idle/offline CPUs, report (releases rnp->lock). */ 2702 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2703 } else { 2704 /* Nothing to do here, so just drop the lock. */ 2705 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2706 } 2707 } 2708 } 2709 2710 /* 2711 * Force quiescent states on reluctant CPUs, and also detect which 2712 * CPUs are in dyntick-idle mode. 2713 */ 2714 void rcu_force_quiescent_state(void) 2715 { 2716 unsigned long flags; 2717 bool ret; 2718 struct rcu_node *rnp; 2719 struct rcu_node *rnp_old = NULL; 2720 2721 /* Funnel through hierarchy to reduce memory contention. */ 2722 rnp = __this_cpu_read(rcu_data.mynode); 2723 for (; rnp != NULL; rnp = rnp->parent) { 2724 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2725 !raw_spin_trylock(&rnp->fqslock); 2726 if (rnp_old != NULL) 2727 raw_spin_unlock(&rnp_old->fqslock); 2728 if (ret) 2729 return; 2730 rnp_old = rnp; 2731 } 2732 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2733 2734 /* Reached the root of the rcu_node tree, acquire lock. */ 2735 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2736 raw_spin_unlock(&rnp_old->fqslock); 2737 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2738 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2739 return; /* Someone beat us to it. */ 2740 } 2741 WRITE_ONCE(rcu_state.gp_flags, 2742 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2743 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2744 rcu_gp_kthread_wake(); 2745 } 2746 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2747 2748 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2749 // grace periods. 2750 static void strict_work_handler(struct work_struct *work) 2751 { 2752 rcu_read_lock(); 2753 rcu_read_unlock(); 2754 } 2755 2756 /* Perform RCU core processing work for the current CPU. */ 2757 static __latent_entropy void rcu_core(void) 2758 { 2759 unsigned long flags; 2760 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2761 struct rcu_node *rnp = rdp->mynode; 2762 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2763 2764 if (cpu_is_offline(smp_processor_id())) 2765 return; 2766 trace_rcu_utilization(TPS("Start RCU core")); 2767 WARN_ON_ONCE(!rdp->beenonline); 2768 2769 /* Report any deferred quiescent states if preemption enabled. */ 2770 if (!(preempt_count() & PREEMPT_MASK)) { 2771 rcu_preempt_deferred_qs(current); 2772 } else if (rcu_preempt_need_deferred_qs(current)) { 2773 set_tsk_need_resched(current); 2774 set_preempt_need_resched(); 2775 } 2776 2777 /* Update RCU state based on any recent quiescent states. */ 2778 rcu_check_quiescent_state(rdp); 2779 2780 /* No grace period and unregistered callbacks? */ 2781 if (!rcu_gp_in_progress() && 2782 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2783 rcu_nocb_lock_irqsave(rdp, flags); 2784 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2785 rcu_accelerate_cbs_unlocked(rnp, rdp); 2786 rcu_nocb_unlock_irqrestore(rdp, flags); 2787 } 2788 2789 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2790 2791 /* If there are callbacks ready, invoke them. */ 2792 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2793 likely(READ_ONCE(rcu_scheduler_fully_active))) 2794 rcu_do_batch(rdp); 2795 2796 /* Do any needed deferred wakeups of rcuo kthreads. */ 2797 do_nocb_deferred_wakeup(rdp); 2798 trace_rcu_utilization(TPS("End RCU core")); 2799 2800 // If strict GPs, schedule an RCU reader in a clean environment. 2801 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2802 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2803 } 2804 2805 static void rcu_core_si(struct softirq_action *h) 2806 { 2807 rcu_core(); 2808 } 2809 2810 static void rcu_wake_cond(struct task_struct *t, int status) 2811 { 2812 /* 2813 * If the thread is yielding, only wake it when this 2814 * is invoked from idle 2815 */ 2816 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2817 wake_up_process(t); 2818 } 2819 2820 static void invoke_rcu_core_kthread(void) 2821 { 2822 struct task_struct *t; 2823 unsigned long flags; 2824 2825 local_irq_save(flags); 2826 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2827 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2828 if (t != NULL && t != current) 2829 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2830 local_irq_restore(flags); 2831 } 2832 2833 /* 2834 * Wake up this CPU's rcuc kthread to do RCU core processing. 2835 */ 2836 static void invoke_rcu_core(void) 2837 { 2838 if (!cpu_online(smp_processor_id())) 2839 return; 2840 if (use_softirq) 2841 raise_softirq(RCU_SOFTIRQ); 2842 else 2843 invoke_rcu_core_kthread(); 2844 } 2845 2846 static void rcu_cpu_kthread_park(unsigned int cpu) 2847 { 2848 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2849 } 2850 2851 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2852 { 2853 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2854 } 2855 2856 /* 2857 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2858 * the RCU softirq used in configurations of RCU that do not support RCU 2859 * priority boosting. 2860 */ 2861 static void rcu_cpu_kthread(unsigned int cpu) 2862 { 2863 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2864 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2865 int spincnt; 2866 2867 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2868 for (spincnt = 0; spincnt < 10; spincnt++) { 2869 local_bh_disable(); 2870 *statusp = RCU_KTHREAD_RUNNING; 2871 local_irq_disable(); 2872 work = *workp; 2873 *workp = 0; 2874 local_irq_enable(); 2875 if (work) 2876 rcu_core(); 2877 local_bh_enable(); 2878 if (*workp == 0) { 2879 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2880 *statusp = RCU_KTHREAD_WAITING; 2881 return; 2882 } 2883 } 2884 *statusp = RCU_KTHREAD_YIELDING; 2885 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2886 schedule_timeout_idle(2); 2887 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2888 *statusp = RCU_KTHREAD_WAITING; 2889 } 2890 2891 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2892 .store = &rcu_data.rcu_cpu_kthread_task, 2893 .thread_should_run = rcu_cpu_kthread_should_run, 2894 .thread_fn = rcu_cpu_kthread, 2895 .thread_comm = "rcuc/%u", 2896 .setup = rcu_cpu_kthread_setup, 2897 .park = rcu_cpu_kthread_park, 2898 }; 2899 2900 /* 2901 * Spawn per-CPU RCU core processing kthreads. 2902 */ 2903 static int __init rcu_spawn_core_kthreads(void) 2904 { 2905 int cpu; 2906 2907 for_each_possible_cpu(cpu) 2908 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2909 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2910 return 0; 2911 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2912 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2913 return 0; 2914 } 2915 early_initcall(rcu_spawn_core_kthreads); 2916 2917 /* 2918 * Handle any core-RCU processing required by a call_rcu() invocation. 2919 */ 2920 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2921 unsigned long flags) 2922 { 2923 /* 2924 * If called from an extended quiescent state, invoke the RCU 2925 * core in order to force a re-evaluation of RCU's idleness. 2926 */ 2927 if (!rcu_is_watching()) 2928 invoke_rcu_core(); 2929 2930 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2931 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2932 return; 2933 2934 /* 2935 * Force the grace period if too many callbacks or too long waiting. 2936 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2937 * if some other CPU has recently done so. Also, don't bother 2938 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2939 * is the only one waiting for a grace period to complete. 2940 */ 2941 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2942 rdp->qlen_last_fqs_check + qhimark)) { 2943 2944 /* Are we ignoring a completed grace period? */ 2945 note_gp_changes(rdp); 2946 2947 /* Start a new grace period if one not already started. */ 2948 if (!rcu_gp_in_progress()) { 2949 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2950 } else { 2951 /* Give the grace period a kick. */ 2952 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2953 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2954 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2955 rcu_force_quiescent_state(); 2956 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2957 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2958 } 2959 } 2960 } 2961 2962 /* 2963 * RCU callback function to leak a callback. 2964 */ 2965 static void rcu_leak_callback(struct rcu_head *rhp) 2966 { 2967 } 2968 2969 /* 2970 * Check and if necessary update the leaf rcu_node structure's 2971 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2972 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2973 * structure's ->lock. 2974 */ 2975 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2976 { 2977 raw_lockdep_assert_held_rcu_node(rnp); 2978 if (qovld_calc <= 0) 2979 return; // Early boot and wildcard value set. 2980 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2981 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2982 else 2983 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2984 } 2985 2986 /* 2987 * Check and if necessary update the leaf rcu_node structure's 2988 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2989 * number of queued RCU callbacks. No locks need be held, but the 2990 * caller must have disabled interrupts. 2991 * 2992 * Note that this function ignores the possibility that there are a lot 2993 * of callbacks all of which have already seen the end of their respective 2994 * grace periods. This omission is due to the need for no-CBs CPUs to 2995 * be holding ->nocb_lock to do this check, which is too heavy for a 2996 * common-case operation. 2997 */ 2998 static void check_cb_ovld(struct rcu_data *rdp) 2999 { 3000 struct rcu_node *const rnp = rdp->mynode; 3001 3002 if (qovld_calc <= 0 || 3003 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3004 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3005 return; // Early boot wildcard value or already set correctly. 3006 raw_spin_lock_rcu_node(rnp); 3007 check_cb_ovld_locked(rdp, rnp); 3008 raw_spin_unlock_rcu_node(rnp); 3009 } 3010 3011 /* Helper function for call_rcu() and friends. */ 3012 static void 3013 __call_rcu(struct rcu_head *head, rcu_callback_t func) 3014 { 3015 static atomic_t doublefrees; 3016 unsigned long flags; 3017 struct rcu_data *rdp; 3018 bool was_alldone; 3019 3020 /* Misaligned rcu_head! */ 3021 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3022 3023 if (debug_rcu_head_queue(head)) { 3024 /* 3025 * Probable double call_rcu(), so leak the callback. 3026 * Use rcu:rcu_callback trace event to find the previous 3027 * time callback was passed to __call_rcu(). 3028 */ 3029 if (atomic_inc_return(&doublefrees) < 4) { 3030 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3031 mem_dump_obj(head); 3032 } 3033 WRITE_ONCE(head->func, rcu_leak_callback); 3034 return; 3035 } 3036 head->func = func; 3037 head->next = NULL; 3038 local_irq_save(flags); 3039 kasan_record_aux_stack(head); 3040 rdp = this_cpu_ptr(&rcu_data); 3041 3042 /* Add the callback to our list. */ 3043 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3044 // This can trigger due to call_rcu() from offline CPU: 3045 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3046 WARN_ON_ONCE(!rcu_is_watching()); 3047 // Very early boot, before rcu_init(). Initialize if needed 3048 // and then drop through to queue the callback. 3049 if (rcu_segcblist_empty(&rdp->cblist)) 3050 rcu_segcblist_init(&rdp->cblist); 3051 } 3052 3053 check_cb_ovld(rdp); 3054 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3055 return; // Enqueued onto ->nocb_bypass, so just leave. 3056 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3057 rcu_segcblist_enqueue(&rdp->cblist, head); 3058 if (__is_kvfree_rcu_offset((unsigned long)func)) 3059 trace_rcu_kvfree_callback(rcu_state.name, head, 3060 (unsigned long)func, 3061 rcu_segcblist_n_cbs(&rdp->cblist)); 3062 else 3063 trace_rcu_callback(rcu_state.name, head, 3064 rcu_segcblist_n_cbs(&rdp->cblist)); 3065 3066 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3067 3068 /* Go handle any RCU core processing required. */ 3069 if (unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 3070 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3071 } else { 3072 __call_rcu_core(rdp, head, flags); 3073 local_irq_restore(flags); 3074 } 3075 } 3076 3077 /** 3078 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3079 * @head: structure to be used for queueing the RCU updates. 3080 * @func: actual callback function to be invoked after the grace period 3081 * 3082 * The callback function will be invoked some time after a full grace 3083 * period elapses, in other words after all pre-existing RCU read-side 3084 * critical sections have completed. However, the callback function 3085 * might well execute concurrently with RCU read-side critical sections 3086 * that started after call_rcu() was invoked. RCU read-side critical 3087 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 3088 * may be nested. In addition, regions of code across which interrupts, 3089 * preemption, or softirqs have been disabled also serve as RCU read-side 3090 * critical sections. This includes hardware interrupt handlers, softirq 3091 * handlers, and NMI handlers. 3092 * 3093 * Note that all CPUs must agree that the grace period extended beyond 3094 * all pre-existing RCU read-side critical section. On systems with more 3095 * than one CPU, this means that when "func()" is invoked, each CPU is 3096 * guaranteed to have executed a full memory barrier since the end of its 3097 * last RCU read-side critical section whose beginning preceded the call 3098 * to call_rcu(). It also means that each CPU executing an RCU read-side 3099 * critical section that continues beyond the start of "func()" must have 3100 * executed a memory barrier after the call_rcu() but before the beginning 3101 * of that RCU read-side critical section. Note that these guarantees 3102 * include CPUs that are offline, idle, or executing in user mode, as 3103 * well as CPUs that are executing in the kernel. 3104 * 3105 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3106 * resulting RCU callback function "func()", then both CPU A and CPU B are 3107 * guaranteed to execute a full memory barrier during the time interval 3108 * between the call to call_rcu() and the invocation of "func()" -- even 3109 * if CPU A and CPU B are the same CPU (but again only if the system has 3110 * more than one CPU). 3111 */ 3112 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3113 { 3114 __call_rcu(head, func); 3115 } 3116 EXPORT_SYMBOL_GPL(call_rcu); 3117 3118 3119 /* Maximum number of jiffies to wait before draining a batch. */ 3120 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3121 #define KFREE_N_BATCHES 2 3122 #define FREE_N_CHANNELS 2 3123 3124 /** 3125 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3126 * @nr_records: Number of active pointers in the array 3127 * @next: Next bulk object in the block chain 3128 * @records: Array of the kvfree_rcu() pointers 3129 */ 3130 struct kvfree_rcu_bulk_data { 3131 unsigned long nr_records; 3132 struct kvfree_rcu_bulk_data *next; 3133 void *records[]; 3134 }; 3135 3136 /* 3137 * This macro defines how many entries the "records" array 3138 * will contain. It is based on the fact that the size of 3139 * kvfree_rcu_bulk_data structure becomes exactly one page. 3140 */ 3141 #define KVFREE_BULK_MAX_ENTR \ 3142 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3143 3144 /** 3145 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3146 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3147 * @head_free: List of kfree_rcu() objects waiting for a grace period 3148 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3149 * @krcp: Pointer to @kfree_rcu_cpu structure 3150 */ 3151 3152 struct kfree_rcu_cpu_work { 3153 struct rcu_work rcu_work; 3154 struct rcu_head *head_free; 3155 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3156 struct kfree_rcu_cpu *krcp; 3157 }; 3158 3159 /** 3160 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3161 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3162 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3163 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3164 * @lock: Synchronize access to this structure 3165 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3166 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3167 * @initialized: The @rcu_work fields have been initialized 3168 * @count: Number of objects for which GP not started 3169 * @bkvcache: 3170 * A simple cache list that contains objects for reuse purpose. 3171 * In order to save some per-cpu space the list is singular. 3172 * Even though it is lockless an access has to be protected by the 3173 * per-cpu lock. 3174 * @page_cache_work: A work to refill the cache when it is empty 3175 * @work_in_progress: Indicates that page_cache_work is running 3176 * @hrtimer: A hrtimer for scheduling a page_cache_work 3177 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3178 * 3179 * This is a per-CPU structure. The reason that it is not included in 3180 * the rcu_data structure is to permit this code to be extracted from 3181 * the RCU files. Such extraction could allow further optimization of 3182 * the interactions with the slab allocators. 3183 */ 3184 struct kfree_rcu_cpu { 3185 struct rcu_head *head; 3186 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3187 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3188 raw_spinlock_t lock; 3189 struct delayed_work monitor_work; 3190 bool monitor_todo; 3191 bool initialized; 3192 int count; 3193 3194 struct work_struct page_cache_work; 3195 atomic_t work_in_progress; 3196 struct hrtimer hrtimer; 3197 3198 struct llist_head bkvcache; 3199 int nr_bkv_objs; 3200 }; 3201 3202 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3203 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3204 }; 3205 3206 static __always_inline void 3207 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3208 { 3209 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3210 int i; 3211 3212 for (i = 0; i < bhead->nr_records; i++) 3213 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3214 #endif 3215 } 3216 3217 static inline struct kfree_rcu_cpu * 3218 krc_this_cpu_lock(unsigned long *flags) 3219 { 3220 struct kfree_rcu_cpu *krcp; 3221 3222 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3223 krcp = this_cpu_ptr(&krc); 3224 raw_spin_lock(&krcp->lock); 3225 3226 return krcp; 3227 } 3228 3229 static inline void 3230 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3231 { 3232 raw_spin_unlock(&krcp->lock); 3233 local_irq_restore(flags); 3234 } 3235 3236 static inline struct kvfree_rcu_bulk_data * 3237 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3238 { 3239 if (!krcp->nr_bkv_objs) 3240 return NULL; 3241 3242 krcp->nr_bkv_objs--; 3243 return (struct kvfree_rcu_bulk_data *) 3244 llist_del_first(&krcp->bkvcache); 3245 } 3246 3247 static inline bool 3248 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3249 struct kvfree_rcu_bulk_data *bnode) 3250 { 3251 // Check the limit. 3252 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3253 return false; 3254 3255 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3256 krcp->nr_bkv_objs++; 3257 return true; 3258 3259 } 3260 3261 /* 3262 * This function is invoked in workqueue context after a grace period. 3263 * It frees all the objects queued on ->bhead_free or ->head_free. 3264 */ 3265 static void kfree_rcu_work(struct work_struct *work) 3266 { 3267 unsigned long flags; 3268 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3269 struct rcu_head *head, *next; 3270 struct kfree_rcu_cpu *krcp; 3271 struct kfree_rcu_cpu_work *krwp; 3272 int i, j; 3273 3274 krwp = container_of(to_rcu_work(work), 3275 struct kfree_rcu_cpu_work, rcu_work); 3276 krcp = krwp->krcp; 3277 3278 raw_spin_lock_irqsave(&krcp->lock, flags); 3279 // Channels 1 and 2. 3280 for (i = 0; i < FREE_N_CHANNELS; i++) { 3281 bkvhead[i] = krwp->bkvhead_free[i]; 3282 krwp->bkvhead_free[i] = NULL; 3283 } 3284 3285 // Channel 3. 3286 head = krwp->head_free; 3287 krwp->head_free = NULL; 3288 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3289 3290 // Handle two first channels. 3291 for (i = 0; i < FREE_N_CHANNELS; i++) { 3292 for (; bkvhead[i]; bkvhead[i] = bnext) { 3293 bnext = bkvhead[i]->next; 3294 debug_rcu_bhead_unqueue(bkvhead[i]); 3295 3296 rcu_lock_acquire(&rcu_callback_map); 3297 if (i == 0) { // kmalloc() / kfree(). 3298 trace_rcu_invoke_kfree_bulk_callback( 3299 rcu_state.name, bkvhead[i]->nr_records, 3300 bkvhead[i]->records); 3301 3302 kfree_bulk(bkvhead[i]->nr_records, 3303 bkvhead[i]->records); 3304 } else { // vmalloc() / vfree(). 3305 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3306 trace_rcu_invoke_kvfree_callback( 3307 rcu_state.name, 3308 bkvhead[i]->records[j], 0); 3309 3310 vfree(bkvhead[i]->records[j]); 3311 } 3312 } 3313 rcu_lock_release(&rcu_callback_map); 3314 3315 raw_spin_lock_irqsave(&krcp->lock, flags); 3316 if (put_cached_bnode(krcp, bkvhead[i])) 3317 bkvhead[i] = NULL; 3318 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3319 3320 if (bkvhead[i]) 3321 free_page((unsigned long) bkvhead[i]); 3322 3323 cond_resched_tasks_rcu_qs(); 3324 } 3325 } 3326 3327 /* 3328 * Emergency case only. It can happen under low memory 3329 * condition when an allocation gets failed, so the "bulk" 3330 * path can not be temporary maintained. 3331 */ 3332 for (; head; head = next) { 3333 unsigned long offset = (unsigned long)head->func; 3334 void *ptr = (void *)head - offset; 3335 3336 next = head->next; 3337 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3338 rcu_lock_acquire(&rcu_callback_map); 3339 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3340 3341 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3342 kvfree(ptr); 3343 3344 rcu_lock_release(&rcu_callback_map); 3345 cond_resched_tasks_rcu_qs(); 3346 } 3347 } 3348 3349 /* 3350 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 3351 * 3352 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 3353 * timeout has been reached. 3354 */ 3355 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 3356 { 3357 struct kfree_rcu_cpu_work *krwp; 3358 bool repeat = false; 3359 int i, j; 3360 3361 lockdep_assert_held(&krcp->lock); 3362 3363 for (i = 0; i < KFREE_N_BATCHES; i++) { 3364 krwp = &(krcp->krw_arr[i]); 3365 3366 /* 3367 * Try to detach bkvhead or head and attach it over any 3368 * available corresponding free channel. It can be that 3369 * a previous RCU batch is in progress, it means that 3370 * immediately to queue another one is not possible so 3371 * return false to tell caller to retry. 3372 */ 3373 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3374 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3375 (krcp->head && !krwp->head_free)) { 3376 // Channel 1 corresponds to SLAB ptrs. 3377 // Channel 2 corresponds to vmalloc ptrs. 3378 for (j = 0; j < FREE_N_CHANNELS; j++) { 3379 if (!krwp->bkvhead_free[j]) { 3380 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3381 krcp->bkvhead[j] = NULL; 3382 } 3383 } 3384 3385 // Channel 3 corresponds to emergency path. 3386 if (!krwp->head_free) { 3387 krwp->head_free = krcp->head; 3388 krcp->head = NULL; 3389 } 3390 3391 WRITE_ONCE(krcp->count, 0); 3392 3393 /* 3394 * One work is per one batch, so there are three 3395 * "free channels", the batch can handle. It can 3396 * be that the work is in the pending state when 3397 * channels have been detached following by each 3398 * other. 3399 */ 3400 queue_rcu_work(system_wq, &krwp->rcu_work); 3401 } 3402 3403 // Repeat if any "free" corresponding channel is still busy. 3404 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head) 3405 repeat = true; 3406 } 3407 3408 return !repeat; 3409 } 3410 3411 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 3412 unsigned long flags) 3413 { 3414 // Attempt to start a new batch. 3415 krcp->monitor_todo = false; 3416 if (queue_kfree_rcu_work(krcp)) { 3417 // Success! Our job is done here. 3418 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3419 return; 3420 } 3421 3422 // Previous RCU batch still in progress, try again later. 3423 krcp->monitor_todo = true; 3424 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3425 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3426 } 3427 3428 /* 3429 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3430 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 3431 */ 3432 static void kfree_rcu_monitor(struct work_struct *work) 3433 { 3434 unsigned long flags; 3435 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 3436 monitor_work.work); 3437 3438 raw_spin_lock_irqsave(&krcp->lock, flags); 3439 if (krcp->monitor_todo) 3440 kfree_rcu_drain_unlock(krcp, flags); 3441 else 3442 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3443 } 3444 3445 static enum hrtimer_restart 3446 schedule_page_work_fn(struct hrtimer *t) 3447 { 3448 struct kfree_rcu_cpu *krcp = 3449 container_of(t, struct kfree_rcu_cpu, hrtimer); 3450 3451 queue_work(system_highpri_wq, &krcp->page_cache_work); 3452 return HRTIMER_NORESTART; 3453 } 3454 3455 static void fill_page_cache_func(struct work_struct *work) 3456 { 3457 struct kvfree_rcu_bulk_data *bnode; 3458 struct kfree_rcu_cpu *krcp = 3459 container_of(work, struct kfree_rcu_cpu, 3460 page_cache_work); 3461 unsigned long flags; 3462 bool pushed; 3463 int i; 3464 3465 for (i = 0; i < rcu_min_cached_objs; i++) { 3466 bnode = (struct kvfree_rcu_bulk_data *) 3467 __get_free_page(GFP_KERNEL | __GFP_NOWARN); 3468 3469 if (bnode) { 3470 raw_spin_lock_irqsave(&krcp->lock, flags); 3471 pushed = put_cached_bnode(krcp, bnode); 3472 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3473 3474 if (!pushed) { 3475 free_page((unsigned long) bnode); 3476 break; 3477 } 3478 } 3479 } 3480 3481 atomic_set(&krcp->work_in_progress, 0); 3482 } 3483 3484 static void 3485 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3486 { 3487 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3488 !atomic_xchg(&krcp->work_in_progress, 1)) { 3489 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, 3490 HRTIMER_MODE_REL); 3491 krcp->hrtimer.function = schedule_page_work_fn; 3492 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3493 } 3494 } 3495 3496 static inline bool 3497 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr) 3498 { 3499 struct kvfree_rcu_bulk_data *bnode; 3500 int idx; 3501 3502 if (unlikely(!krcp->initialized)) 3503 return false; 3504 3505 lockdep_assert_held(&krcp->lock); 3506 idx = !!is_vmalloc_addr(ptr); 3507 3508 /* Check if a new block is required. */ 3509 if (!krcp->bkvhead[idx] || 3510 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3511 bnode = get_cached_bnode(krcp); 3512 /* Switch to emergency path. */ 3513 if (!bnode) 3514 return false; 3515 3516 /* Initialize the new block. */ 3517 bnode->nr_records = 0; 3518 bnode->next = krcp->bkvhead[idx]; 3519 3520 /* Attach it to the head. */ 3521 krcp->bkvhead[idx] = bnode; 3522 } 3523 3524 /* Finally insert. */ 3525 krcp->bkvhead[idx]->records 3526 [krcp->bkvhead[idx]->nr_records++] = ptr; 3527 3528 return true; 3529 } 3530 3531 /* 3532 * Queue a request for lazy invocation of appropriate free routine after a 3533 * grace period. Please note there are three paths are maintained, two are the 3534 * main ones that use array of pointers interface and third one is emergency 3535 * one, that is used only when the main path can not be maintained temporary, 3536 * due to memory pressure. 3537 * 3538 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3539 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3540 * be free'd in workqueue context. This allows us to: batch requests together to 3541 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3542 */ 3543 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3544 { 3545 unsigned long flags; 3546 struct kfree_rcu_cpu *krcp; 3547 bool success; 3548 void *ptr; 3549 3550 if (head) { 3551 ptr = (void *) head - (unsigned long) func; 3552 } else { 3553 /* 3554 * Please note there is a limitation for the head-less 3555 * variant, that is why there is a clear rule for such 3556 * objects: it can be used from might_sleep() context 3557 * only. For other places please embed an rcu_head to 3558 * your data. 3559 */ 3560 might_sleep(); 3561 ptr = (unsigned long *) func; 3562 } 3563 3564 krcp = krc_this_cpu_lock(&flags); 3565 3566 // Queue the object but don't yet schedule the batch. 3567 if (debug_rcu_head_queue(ptr)) { 3568 // Probable double kfree_rcu(), just leak. 3569 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3570 __func__, head); 3571 3572 // Mark as success and leave. 3573 success = true; 3574 goto unlock_return; 3575 } 3576 3577 kasan_record_aux_stack(ptr); 3578 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr); 3579 if (!success) { 3580 run_page_cache_worker(krcp); 3581 3582 if (head == NULL) 3583 // Inline if kvfree_rcu(one_arg) call. 3584 goto unlock_return; 3585 3586 head->func = func; 3587 head->next = krcp->head; 3588 krcp->head = head; 3589 success = true; 3590 } 3591 3592 WRITE_ONCE(krcp->count, krcp->count + 1); 3593 3594 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3595 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3596 !krcp->monitor_todo) { 3597 krcp->monitor_todo = true; 3598 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3599 } 3600 3601 unlock_return: 3602 krc_this_cpu_unlock(krcp, flags); 3603 3604 /* 3605 * Inline kvfree() after synchronize_rcu(). We can do 3606 * it from might_sleep() context only, so the current 3607 * CPU can pass the QS state. 3608 */ 3609 if (!success) { 3610 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3611 synchronize_rcu(); 3612 kvfree(ptr); 3613 } 3614 } 3615 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3616 3617 static unsigned long 3618 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3619 { 3620 int cpu; 3621 unsigned long count = 0; 3622 3623 /* Snapshot count of all CPUs */ 3624 for_each_possible_cpu(cpu) { 3625 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3626 3627 count += READ_ONCE(krcp->count); 3628 } 3629 3630 return count; 3631 } 3632 3633 static unsigned long 3634 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3635 { 3636 int cpu, freed = 0; 3637 unsigned long flags; 3638 3639 for_each_possible_cpu(cpu) { 3640 int count; 3641 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3642 3643 count = krcp->count; 3644 raw_spin_lock_irqsave(&krcp->lock, flags); 3645 if (krcp->monitor_todo) 3646 kfree_rcu_drain_unlock(krcp, flags); 3647 else 3648 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3649 3650 sc->nr_to_scan -= count; 3651 freed += count; 3652 3653 if (sc->nr_to_scan <= 0) 3654 break; 3655 } 3656 3657 return freed == 0 ? SHRINK_STOP : freed; 3658 } 3659 3660 static struct shrinker kfree_rcu_shrinker = { 3661 .count_objects = kfree_rcu_shrink_count, 3662 .scan_objects = kfree_rcu_shrink_scan, 3663 .batch = 0, 3664 .seeks = DEFAULT_SEEKS, 3665 }; 3666 3667 void __init kfree_rcu_scheduler_running(void) 3668 { 3669 int cpu; 3670 unsigned long flags; 3671 3672 for_each_possible_cpu(cpu) { 3673 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3674 3675 raw_spin_lock_irqsave(&krcp->lock, flags); 3676 if (!krcp->head || krcp->monitor_todo) { 3677 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3678 continue; 3679 } 3680 krcp->monitor_todo = true; 3681 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3682 KFREE_DRAIN_JIFFIES); 3683 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3684 } 3685 } 3686 3687 /* 3688 * During early boot, any blocking grace-period wait automatically 3689 * implies a grace period. Later on, this is never the case for PREEMPTION. 3690 * 3691 * However, because a context switch is a grace period for !PREEMPTION, any 3692 * blocking grace-period wait automatically implies a grace period if 3693 * there is only one CPU online at any point time during execution of 3694 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3695 * occasionally incorrectly indicate that there are multiple CPUs online 3696 * when there was in fact only one the whole time, as this just adds some 3697 * overhead: RCU still operates correctly. 3698 */ 3699 static int rcu_blocking_is_gp(void) 3700 { 3701 int ret; 3702 3703 if (IS_ENABLED(CONFIG_PREEMPTION)) 3704 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3705 might_sleep(); /* Check for RCU read-side critical section. */ 3706 preempt_disable(); 3707 /* 3708 * If the rcu_state.n_online_cpus counter is equal to one, 3709 * there is only one CPU, and that CPU sees all prior accesses 3710 * made by any CPU that was online at the time of its access. 3711 * Furthermore, if this counter is equal to one, its value cannot 3712 * change until after the preempt_enable() below. 3713 * 3714 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3715 * all later CPUs (both this one and any that come online later 3716 * on) are guaranteed to see all accesses prior to this point 3717 * in the code, without the need for additional memory barriers. 3718 * Those memory barriers are provided by CPU-hotplug code. 3719 */ 3720 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3721 preempt_enable(); 3722 return ret; 3723 } 3724 3725 /** 3726 * synchronize_rcu - wait until a grace period has elapsed. 3727 * 3728 * Control will return to the caller some time after a full grace 3729 * period has elapsed, in other words after all currently executing RCU 3730 * read-side critical sections have completed. Note, however, that 3731 * upon return from synchronize_rcu(), the caller might well be executing 3732 * concurrently with new RCU read-side critical sections that began while 3733 * synchronize_rcu() was waiting. RCU read-side critical sections are 3734 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3735 * In addition, regions of code across which interrupts, preemption, or 3736 * softirqs have been disabled also serve as RCU read-side critical 3737 * sections. This includes hardware interrupt handlers, softirq handlers, 3738 * and NMI handlers. 3739 * 3740 * Note that this guarantee implies further memory-ordering guarantees. 3741 * On systems with more than one CPU, when synchronize_rcu() returns, 3742 * each CPU is guaranteed to have executed a full memory barrier since 3743 * the end of its last RCU read-side critical section whose beginning 3744 * preceded the call to synchronize_rcu(). In addition, each CPU having 3745 * an RCU read-side critical section that extends beyond the return from 3746 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3747 * after the beginning of synchronize_rcu() and before the beginning of 3748 * that RCU read-side critical section. Note that these guarantees include 3749 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3750 * that are executing in the kernel. 3751 * 3752 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3753 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3754 * to have executed a full memory barrier during the execution of 3755 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3756 * again only if the system has more than one CPU). 3757 */ 3758 void synchronize_rcu(void) 3759 { 3760 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3761 lock_is_held(&rcu_lock_map) || 3762 lock_is_held(&rcu_sched_lock_map), 3763 "Illegal synchronize_rcu() in RCU read-side critical section"); 3764 if (rcu_blocking_is_gp()) 3765 return; // Context allows vacuous grace periods. 3766 if (rcu_gp_is_expedited()) 3767 synchronize_rcu_expedited(); 3768 else 3769 wait_rcu_gp(call_rcu); 3770 } 3771 EXPORT_SYMBOL_GPL(synchronize_rcu); 3772 3773 /** 3774 * get_state_synchronize_rcu - Snapshot current RCU state 3775 * 3776 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3777 * to determine whether or not a full grace period has elapsed in the 3778 * meantime. 3779 */ 3780 unsigned long get_state_synchronize_rcu(void) 3781 { 3782 /* 3783 * Any prior manipulation of RCU-protected data must happen 3784 * before the load from ->gp_seq. 3785 */ 3786 smp_mb(); /* ^^^ */ 3787 return rcu_seq_snap(&rcu_state.gp_seq); 3788 } 3789 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3790 3791 /** 3792 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3793 * 3794 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3795 * 3796 * If a full RCU grace period has elapsed since the earlier call to 3797 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3798 * synchronize_rcu() to wait for a full grace period. 3799 * 3800 * Yes, this function does not take counter wrap into account. But 3801 * counter wrap is harmless. If the counter wraps, we have waited for 3802 * more than 2 billion grace periods (and way more on a 64-bit system!), 3803 * so waiting for one additional grace period should be just fine. 3804 */ 3805 void cond_synchronize_rcu(unsigned long oldstate) 3806 { 3807 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3808 synchronize_rcu(); 3809 else 3810 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3811 } 3812 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3813 3814 /* 3815 * Check to see if there is any immediate RCU-related work to be done by 3816 * the current CPU, returning 1 if so and zero otherwise. The checks are 3817 * in order of increasing expense: checks that can be carried out against 3818 * CPU-local state are performed first. However, we must check for CPU 3819 * stalls first, else we might not get a chance. 3820 */ 3821 static int rcu_pending(int user) 3822 { 3823 bool gp_in_progress; 3824 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3825 struct rcu_node *rnp = rdp->mynode; 3826 3827 lockdep_assert_irqs_disabled(); 3828 3829 /* Check for CPU stalls, if enabled. */ 3830 check_cpu_stall(rdp); 3831 3832 /* Does this CPU need a deferred NOCB wakeup? */ 3833 if (rcu_nocb_need_deferred_wakeup(rdp)) 3834 return 1; 3835 3836 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3837 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3838 return 0; 3839 3840 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3841 gp_in_progress = rcu_gp_in_progress(); 3842 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3843 return 1; 3844 3845 /* Does this CPU have callbacks ready to invoke? */ 3846 if (!rcu_segcblist_is_offloaded(&rdp->cblist) && 3847 rcu_segcblist_ready_cbs(&rdp->cblist)) 3848 return 1; 3849 3850 /* Has RCU gone idle with this CPU needing another grace period? */ 3851 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3852 !rcu_segcblist_is_offloaded(&rdp->cblist) && 3853 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3854 return 1; 3855 3856 /* Have RCU grace period completed or started? */ 3857 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3858 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3859 return 1; 3860 3861 /* nothing to do */ 3862 return 0; 3863 } 3864 3865 /* 3866 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3867 * the compiler is expected to optimize this away. 3868 */ 3869 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3870 { 3871 trace_rcu_barrier(rcu_state.name, s, cpu, 3872 atomic_read(&rcu_state.barrier_cpu_count), done); 3873 } 3874 3875 /* 3876 * RCU callback function for rcu_barrier(). If we are last, wake 3877 * up the task executing rcu_barrier(). 3878 * 3879 * Note that the value of rcu_state.barrier_sequence must be captured 3880 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3881 * other CPUs might count the value down to zero before this CPU gets 3882 * around to invoking rcu_barrier_trace(), which might result in bogus 3883 * data from the next instance of rcu_barrier(). 3884 */ 3885 static void rcu_barrier_callback(struct rcu_head *rhp) 3886 { 3887 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3888 3889 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3890 rcu_barrier_trace(TPS("LastCB"), -1, s); 3891 complete(&rcu_state.barrier_completion); 3892 } else { 3893 rcu_barrier_trace(TPS("CB"), -1, s); 3894 } 3895 } 3896 3897 /* 3898 * Called with preemption disabled, and from cross-cpu IRQ context. 3899 */ 3900 static void rcu_barrier_func(void *cpu_in) 3901 { 3902 uintptr_t cpu = (uintptr_t)cpu_in; 3903 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3904 3905 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3906 rdp->barrier_head.func = rcu_barrier_callback; 3907 debug_rcu_head_queue(&rdp->barrier_head); 3908 rcu_nocb_lock(rdp); 3909 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3910 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3911 atomic_inc(&rcu_state.barrier_cpu_count); 3912 } else { 3913 debug_rcu_head_unqueue(&rdp->barrier_head); 3914 rcu_barrier_trace(TPS("IRQNQ"), -1, 3915 rcu_state.barrier_sequence); 3916 } 3917 rcu_nocb_unlock(rdp); 3918 } 3919 3920 /** 3921 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3922 * 3923 * Note that this primitive does not necessarily wait for an RCU grace period 3924 * to complete. For example, if there are no RCU callbacks queued anywhere 3925 * in the system, then rcu_barrier() is within its rights to return 3926 * immediately, without waiting for anything, much less an RCU grace period. 3927 */ 3928 void rcu_barrier(void) 3929 { 3930 uintptr_t cpu; 3931 struct rcu_data *rdp; 3932 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3933 3934 rcu_barrier_trace(TPS("Begin"), -1, s); 3935 3936 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3937 mutex_lock(&rcu_state.barrier_mutex); 3938 3939 /* Did someone else do our work for us? */ 3940 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3941 rcu_barrier_trace(TPS("EarlyExit"), -1, 3942 rcu_state.barrier_sequence); 3943 smp_mb(); /* caller's subsequent code after above check. */ 3944 mutex_unlock(&rcu_state.barrier_mutex); 3945 return; 3946 } 3947 3948 /* Mark the start of the barrier operation. */ 3949 rcu_seq_start(&rcu_state.barrier_sequence); 3950 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3951 3952 /* 3953 * Initialize the count to two rather than to zero in order 3954 * to avoid a too-soon return to zero in case of an immediate 3955 * invocation of the just-enqueued callback (or preemption of 3956 * this task). Exclude CPU-hotplug operations to ensure that no 3957 * offline non-offloaded CPU has callbacks queued. 3958 */ 3959 init_completion(&rcu_state.barrier_completion); 3960 atomic_set(&rcu_state.barrier_cpu_count, 2); 3961 get_online_cpus(); 3962 3963 /* 3964 * Force each CPU with callbacks to register a new callback. 3965 * When that callback is invoked, we will know that all of the 3966 * corresponding CPU's preceding callbacks have been invoked. 3967 */ 3968 for_each_possible_cpu(cpu) { 3969 rdp = per_cpu_ptr(&rcu_data, cpu); 3970 if (cpu_is_offline(cpu) && 3971 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3972 continue; 3973 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 3974 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3975 rcu_state.barrier_sequence); 3976 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 3977 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 3978 cpu_is_offline(cpu)) { 3979 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 3980 rcu_state.barrier_sequence); 3981 local_irq_disable(); 3982 rcu_barrier_func((void *)cpu); 3983 local_irq_enable(); 3984 } else if (cpu_is_offline(cpu)) { 3985 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 3986 rcu_state.barrier_sequence); 3987 } else { 3988 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3989 rcu_state.barrier_sequence); 3990 } 3991 } 3992 put_online_cpus(); 3993 3994 /* 3995 * Now that we have an rcu_barrier_callback() callback on each 3996 * CPU, and thus each counted, remove the initial count. 3997 */ 3998 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3999 complete(&rcu_state.barrier_completion); 4000 4001 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4002 wait_for_completion(&rcu_state.barrier_completion); 4003 4004 /* Mark the end of the barrier operation. */ 4005 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4006 rcu_seq_end(&rcu_state.barrier_sequence); 4007 4008 /* Other rcu_barrier() invocations can now safely proceed. */ 4009 mutex_unlock(&rcu_state.barrier_mutex); 4010 } 4011 EXPORT_SYMBOL_GPL(rcu_barrier); 4012 4013 /* 4014 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4015 * first CPU in a given leaf rcu_node structure coming online. The caller 4016 * must hold the corresponding leaf rcu_node ->lock with interrrupts 4017 * disabled. 4018 */ 4019 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4020 { 4021 long mask; 4022 long oldmask; 4023 struct rcu_node *rnp = rnp_leaf; 4024 4025 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4026 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4027 for (;;) { 4028 mask = rnp->grpmask; 4029 rnp = rnp->parent; 4030 if (rnp == NULL) 4031 return; 4032 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4033 oldmask = rnp->qsmaskinit; 4034 rnp->qsmaskinit |= mask; 4035 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4036 if (oldmask) 4037 return; 4038 } 4039 } 4040 4041 /* 4042 * Do boot-time initialization of a CPU's per-CPU RCU data. 4043 */ 4044 static void __init 4045 rcu_boot_init_percpu_data(int cpu) 4046 { 4047 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4048 4049 /* Set up local state, ensuring consistent view of global state. */ 4050 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4051 INIT_WORK(&rdp->strict_work, strict_work_handler); 4052 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4053 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4054 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4055 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4056 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4057 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4058 rdp->cpu = cpu; 4059 rcu_boot_init_nocb_percpu_data(rdp); 4060 } 4061 4062 /* 4063 * Invoked early in the CPU-online process, when pretty much all services 4064 * are available. The incoming CPU is not present. 4065 * 4066 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4067 * offline event can be happening at a given time. Note also that we can 4068 * accept some slop in the rsp->gp_seq access due to the fact that this 4069 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4070 * And any offloaded callbacks are being numbered elsewhere. 4071 */ 4072 int rcutree_prepare_cpu(unsigned int cpu) 4073 { 4074 unsigned long flags; 4075 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4076 struct rcu_node *rnp = rcu_get_root(); 4077 4078 /* Set up local state, ensuring consistent view of global state. */ 4079 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4080 rdp->qlen_last_fqs_check = 0; 4081 rdp->n_force_qs_snap = rcu_state.n_force_qs; 4082 rdp->blimit = blimit; 4083 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4084 rcu_dynticks_eqs_online(); 4085 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4086 /* 4087 * Lock in case the CB/GP kthreads are still around handling 4088 * old callbacks (longer term we should flush all callbacks 4089 * before completing CPU offline) 4090 */ 4091 rcu_nocb_lock(rdp); 4092 if (rcu_segcblist_empty(&rdp->cblist)) /* No early-boot CBs? */ 4093 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4094 rcu_nocb_unlock(rdp); 4095 4096 /* 4097 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4098 * propagation up the rcu_node tree will happen at the beginning 4099 * of the next grace period. 4100 */ 4101 rnp = rdp->mynode; 4102 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4103 rdp->beenonline = true; /* We have now been online. */ 4104 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4105 rdp->gp_seq_needed = rdp->gp_seq; 4106 rdp->cpu_no_qs.b.norm = true; 4107 rdp->core_needs_qs = false; 4108 rdp->rcu_iw_pending = false; 4109 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4110 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4111 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4112 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4113 rcu_prepare_kthreads(cpu); 4114 rcu_spawn_cpu_nocb_kthread(cpu); 4115 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4116 4117 return 0; 4118 } 4119 4120 /* 4121 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4122 */ 4123 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4124 { 4125 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4126 4127 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4128 } 4129 4130 /* 4131 * Near the end of the CPU-online process. Pretty much all services 4132 * enabled, and the CPU is now very much alive. 4133 */ 4134 int rcutree_online_cpu(unsigned int cpu) 4135 { 4136 unsigned long flags; 4137 struct rcu_data *rdp; 4138 struct rcu_node *rnp; 4139 4140 rdp = per_cpu_ptr(&rcu_data, cpu); 4141 rnp = rdp->mynode; 4142 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4143 rnp->ffmask |= rdp->grpmask; 4144 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4145 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4146 return 0; /* Too early in boot for scheduler work. */ 4147 sync_sched_exp_online_cleanup(cpu); 4148 rcutree_affinity_setting(cpu, -1); 4149 4150 // Stop-machine done, so allow nohz_full to disable tick. 4151 tick_dep_clear(TICK_DEP_BIT_RCU); 4152 return 0; 4153 } 4154 4155 /* 4156 * Near the beginning of the process. The CPU is still very much alive 4157 * with pretty much all services enabled. 4158 */ 4159 int rcutree_offline_cpu(unsigned int cpu) 4160 { 4161 unsigned long flags; 4162 struct rcu_data *rdp; 4163 struct rcu_node *rnp; 4164 4165 rdp = per_cpu_ptr(&rcu_data, cpu); 4166 rnp = rdp->mynode; 4167 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4168 rnp->ffmask &= ~rdp->grpmask; 4169 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4170 4171 rcutree_affinity_setting(cpu, cpu); 4172 4173 // nohz_full CPUs need the tick for stop-machine to work quickly 4174 tick_dep_set(TICK_DEP_BIT_RCU); 4175 return 0; 4176 } 4177 4178 /* 4179 * Mark the specified CPU as being online so that subsequent grace periods 4180 * (both expedited and normal) will wait on it. Note that this means that 4181 * incoming CPUs are not allowed to use RCU read-side critical sections 4182 * until this function is called. Failing to observe this restriction 4183 * will result in lockdep splats. 4184 * 4185 * Note that this function is special in that it is invoked directly 4186 * from the incoming CPU rather than from the cpuhp_step mechanism. 4187 * This is because this function must be invoked at a precise location. 4188 */ 4189 void rcu_cpu_starting(unsigned int cpu) 4190 { 4191 unsigned long flags; 4192 unsigned long mask; 4193 struct rcu_data *rdp; 4194 struct rcu_node *rnp; 4195 bool newcpu; 4196 4197 rdp = per_cpu_ptr(&rcu_data, cpu); 4198 if (rdp->cpu_started) 4199 return; 4200 rdp->cpu_started = true; 4201 4202 rnp = rdp->mynode; 4203 mask = rdp->grpmask; 4204 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4205 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4206 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4207 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4208 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4209 newcpu = !(rnp->expmaskinitnext & mask); 4210 rnp->expmaskinitnext |= mask; 4211 /* Allow lockless access for expedited grace periods. */ 4212 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4213 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4214 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4215 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4216 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4217 4218 /* An incoming CPU should never be blocking a grace period. */ 4219 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4220 rcu_disable_urgency_upon_qs(rdp); 4221 /* Report QS -after- changing ->qsmaskinitnext! */ 4222 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4223 } else { 4224 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4225 } 4226 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4227 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4228 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4229 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4230 } 4231 4232 /* 4233 * The outgoing function has no further need of RCU, so remove it from 4234 * the rcu_node tree's ->qsmaskinitnext bit masks. 4235 * 4236 * Note that this function is special in that it is invoked directly 4237 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4238 * This is because this function must be invoked at a precise location. 4239 */ 4240 void rcu_report_dead(unsigned int cpu) 4241 { 4242 unsigned long flags; 4243 unsigned long mask; 4244 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4245 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4246 4247 // Do any dangling deferred wakeups. 4248 do_nocb_deferred_wakeup(rdp); 4249 4250 /* QS for any half-done expedited grace period. */ 4251 preempt_disable(); 4252 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4253 preempt_enable(); 4254 rcu_preempt_deferred_qs(current); 4255 4256 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4257 mask = rdp->grpmask; 4258 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4259 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4260 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4261 raw_spin_lock(&rcu_state.ofl_lock); 4262 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4263 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4264 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4265 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4266 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4267 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4268 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4269 } 4270 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4271 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4272 raw_spin_unlock(&rcu_state.ofl_lock); 4273 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4274 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4275 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4276 4277 rdp->cpu_started = false; 4278 } 4279 4280 #ifdef CONFIG_HOTPLUG_CPU 4281 /* 4282 * The outgoing CPU has just passed through the dying-idle state, and we 4283 * are being invoked from the CPU that was IPIed to continue the offline 4284 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4285 */ 4286 void rcutree_migrate_callbacks(int cpu) 4287 { 4288 unsigned long flags; 4289 struct rcu_data *my_rdp; 4290 struct rcu_node *my_rnp; 4291 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4292 bool needwake; 4293 4294 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 4295 rcu_segcblist_empty(&rdp->cblist)) 4296 return; /* No callbacks to migrate. */ 4297 4298 local_irq_save(flags); 4299 my_rdp = this_cpu_ptr(&rcu_data); 4300 my_rnp = my_rdp->mynode; 4301 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4302 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4303 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4304 /* Leverage recent GPs and set GP for new callbacks. */ 4305 needwake = rcu_advance_cbs(my_rnp, rdp) || 4306 rcu_advance_cbs(my_rnp, my_rdp); 4307 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4308 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4309 rcu_segcblist_disable(&rdp->cblist); 4310 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4311 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4312 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 4313 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4314 __call_rcu_nocb_wake(my_rdp, true, flags); 4315 } else { 4316 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4317 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4318 } 4319 if (needwake) 4320 rcu_gp_kthread_wake(); 4321 lockdep_assert_irqs_enabled(); 4322 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4323 !rcu_segcblist_empty(&rdp->cblist), 4324 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4325 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4326 rcu_segcblist_first_cb(&rdp->cblist)); 4327 } 4328 #endif 4329 4330 /* 4331 * On non-huge systems, use expedited RCU grace periods to make suspend 4332 * and hibernation run faster. 4333 */ 4334 static int rcu_pm_notify(struct notifier_block *self, 4335 unsigned long action, void *hcpu) 4336 { 4337 switch (action) { 4338 case PM_HIBERNATION_PREPARE: 4339 case PM_SUSPEND_PREPARE: 4340 rcu_expedite_gp(); 4341 break; 4342 case PM_POST_HIBERNATION: 4343 case PM_POST_SUSPEND: 4344 rcu_unexpedite_gp(); 4345 break; 4346 default: 4347 break; 4348 } 4349 return NOTIFY_OK; 4350 } 4351 4352 /* 4353 * Spawn the kthreads that handle RCU's grace periods. 4354 */ 4355 static int __init rcu_spawn_gp_kthread(void) 4356 { 4357 unsigned long flags; 4358 int kthread_prio_in = kthread_prio; 4359 struct rcu_node *rnp; 4360 struct sched_param sp; 4361 struct task_struct *t; 4362 4363 /* Force priority into range. */ 4364 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4365 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4366 kthread_prio = 2; 4367 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4368 kthread_prio = 1; 4369 else if (kthread_prio < 0) 4370 kthread_prio = 0; 4371 else if (kthread_prio > 99) 4372 kthread_prio = 99; 4373 4374 if (kthread_prio != kthread_prio_in) 4375 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4376 kthread_prio, kthread_prio_in); 4377 4378 rcu_scheduler_fully_active = 1; 4379 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4380 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4381 return 0; 4382 if (kthread_prio) { 4383 sp.sched_priority = kthread_prio; 4384 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4385 } 4386 rnp = rcu_get_root(); 4387 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4388 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4389 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4390 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4391 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4393 wake_up_process(t); 4394 rcu_spawn_nocb_kthreads(); 4395 rcu_spawn_boost_kthreads(); 4396 return 0; 4397 } 4398 early_initcall(rcu_spawn_gp_kthread); 4399 4400 /* 4401 * This function is invoked towards the end of the scheduler's 4402 * initialization process. Before this is called, the idle task might 4403 * contain synchronous grace-period primitives (during which time, this idle 4404 * task is booting the system, and such primitives are no-ops). After this 4405 * function is called, any synchronous grace-period primitives are run as 4406 * expedited, with the requesting task driving the grace period forward. 4407 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4408 * runtime RCU functionality. 4409 */ 4410 void rcu_scheduler_starting(void) 4411 { 4412 WARN_ON(num_online_cpus() != 1); 4413 WARN_ON(nr_context_switches() > 0); 4414 rcu_test_sync_prims(); 4415 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4416 rcu_test_sync_prims(); 4417 } 4418 4419 /* 4420 * Helper function for rcu_init() that initializes the rcu_state structure. 4421 */ 4422 static void __init rcu_init_one(void) 4423 { 4424 static const char * const buf[] = RCU_NODE_NAME_INIT; 4425 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4426 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4427 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4428 4429 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4430 int cpustride = 1; 4431 int i; 4432 int j; 4433 struct rcu_node *rnp; 4434 4435 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4436 4437 /* Silence gcc 4.8 false positive about array index out of range. */ 4438 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4439 panic("rcu_init_one: rcu_num_lvls out of range"); 4440 4441 /* Initialize the level-tracking arrays. */ 4442 4443 for (i = 1; i < rcu_num_lvls; i++) 4444 rcu_state.level[i] = 4445 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4446 rcu_init_levelspread(levelspread, num_rcu_lvl); 4447 4448 /* Initialize the elements themselves, starting from the leaves. */ 4449 4450 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4451 cpustride *= levelspread[i]; 4452 rnp = rcu_state.level[i]; 4453 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4454 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4455 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4456 &rcu_node_class[i], buf[i]); 4457 raw_spin_lock_init(&rnp->fqslock); 4458 lockdep_set_class_and_name(&rnp->fqslock, 4459 &rcu_fqs_class[i], fqs[i]); 4460 rnp->gp_seq = rcu_state.gp_seq; 4461 rnp->gp_seq_needed = rcu_state.gp_seq; 4462 rnp->completedqs = rcu_state.gp_seq; 4463 rnp->qsmask = 0; 4464 rnp->qsmaskinit = 0; 4465 rnp->grplo = j * cpustride; 4466 rnp->grphi = (j + 1) * cpustride - 1; 4467 if (rnp->grphi >= nr_cpu_ids) 4468 rnp->grphi = nr_cpu_ids - 1; 4469 if (i == 0) { 4470 rnp->grpnum = 0; 4471 rnp->grpmask = 0; 4472 rnp->parent = NULL; 4473 } else { 4474 rnp->grpnum = j % levelspread[i - 1]; 4475 rnp->grpmask = BIT(rnp->grpnum); 4476 rnp->parent = rcu_state.level[i - 1] + 4477 j / levelspread[i - 1]; 4478 } 4479 rnp->level = i; 4480 INIT_LIST_HEAD(&rnp->blkd_tasks); 4481 rcu_init_one_nocb(rnp); 4482 init_waitqueue_head(&rnp->exp_wq[0]); 4483 init_waitqueue_head(&rnp->exp_wq[1]); 4484 init_waitqueue_head(&rnp->exp_wq[2]); 4485 init_waitqueue_head(&rnp->exp_wq[3]); 4486 spin_lock_init(&rnp->exp_lock); 4487 } 4488 } 4489 4490 init_swait_queue_head(&rcu_state.gp_wq); 4491 init_swait_queue_head(&rcu_state.expedited_wq); 4492 rnp = rcu_first_leaf_node(); 4493 for_each_possible_cpu(i) { 4494 while (i > rnp->grphi) 4495 rnp++; 4496 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4497 rcu_boot_init_percpu_data(i); 4498 } 4499 } 4500 4501 /* 4502 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4503 * replace the definitions in tree.h because those are needed to size 4504 * the ->node array in the rcu_state structure. 4505 */ 4506 static void __init rcu_init_geometry(void) 4507 { 4508 ulong d; 4509 int i; 4510 int rcu_capacity[RCU_NUM_LVLS]; 4511 4512 /* 4513 * Initialize any unspecified boot parameters. 4514 * The default values of jiffies_till_first_fqs and 4515 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4516 * value, which is a function of HZ, then adding one for each 4517 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4518 */ 4519 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4520 if (jiffies_till_first_fqs == ULONG_MAX) 4521 jiffies_till_first_fqs = d; 4522 if (jiffies_till_next_fqs == ULONG_MAX) 4523 jiffies_till_next_fqs = d; 4524 adjust_jiffies_till_sched_qs(); 4525 4526 /* If the compile-time values are accurate, just leave. */ 4527 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4528 nr_cpu_ids == NR_CPUS) 4529 return; 4530 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4531 rcu_fanout_leaf, nr_cpu_ids); 4532 4533 /* 4534 * The boot-time rcu_fanout_leaf parameter must be at least two 4535 * and cannot exceed the number of bits in the rcu_node masks. 4536 * Complain and fall back to the compile-time values if this 4537 * limit is exceeded. 4538 */ 4539 if (rcu_fanout_leaf < 2 || 4540 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4541 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4542 WARN_ON(1); 4543 return; 4544 } 4545 4546 /* 4547 * Compute number of nodes that can be handled an rcu_node tree 4548 * with the given number of levels. 4549 */ 4550 rcu_capacity[0] = rcu_fanout_leaf; 4551 for (i = 1; i < RCU_NUM_LVLS; i++) 4552 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4553 4554 /* 4555 * The tree must be able to accommodate the configured number of CPUs. 4556 * If this limit is exceeded, fall back to the compile-time values. 4557 */ 4558 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4559 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4560 WARN_ON(1); 4561 return; 4562 } 4563 4564 /* Calculate the number of levels in the tree. */ 4565 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4566 } 4567 rcu_num_lvls = i + 1; 4568 4569 /* Calculate the number of rcu_nodes at each level of the tree. */ 4570 for (i = 0; i < rcu_num_lvls; i++) { 4571 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4572 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4573 } 4574 4575 /* Calculate the total number of rcu_node structures. */ 4576 rcu_num_nodes = 0; 4577 for (i = 0; i < rcu_num_lvls; i++) 4578 rcu_num_nodes += num_rcu_lvl[i]; 4579 } 4580 4581 /* 4582 * Dump out the structure of the rcu_node combining tree associated 4583 * with the rcu_state structure. 4584 */ 4585 static void __init rcu_dump_rcu_node_tree(void) 4586 { 4587 int level = 0; 4588 struct rcu_node *rnp; 4589 4590 pr_info("rcu_node tree layout dump\n"); 4591 pr_info(" "); 4592 rcu_for_each_node_breadth_first(rnp) { 4593 if (rnp->level != level) { 4594 pr_cont("\n"); 4595 pr_info(" "); 4596 level = rnp->level; 4597 } 4598 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4599 } 4600 pr_cont("\n"); 4601 } 4602 4603 struct workqueue_struct *rcu_gp_wq; 4604 struct workqueue_struct *rcu_par_gp_wq; 4605 4606 static void __init kfree_rcu_batch_init(void) 4607 { 4608 int cpu; 4609 int i; 4610 4611 for_each_possible_cpu(cpu) { 4612 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4613 4614 for (i = 0; i < KFREE_N_BATCHES; i++) { 4615 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4616 krcp->krw_arr[i].krcp = krcp; 4617 } 4618 4619 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4620 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func); 4621 krcp->initialized = true; 4622 } 4623 if (register_shrinker(&kfree_rcu_shrinker)) 4624 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4625 } 4626 4627 void __init rcu_init(void) 4628 { 4629 int cpu; 4630 4631 rcu_early_boot_tests(); 4632 4633 kfree_rcu_batch_init(); 4634 rcu_bootup_announce(); 4635 rcu_init_geometry(); 4636 rcu_init_one(); 4637 if (dump_tree) 4638 rcu_dump_rcu_node_tree(); 4639 if (use_softirq) 4640 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4641 4642 /* 4643 * We don't need protection against CPU-hotplug here because 4644 * this is called early in boot, before either interrupts 4645 * or the scheduler are operational. 4646 */ 4647 pm_notifier(rcu_pm_notify, 0); 4648 for_each_online_cpu(cpu) { 4649 rcutree_prepare_cpu(cpu); 4650 rcu_cpu_starting(cpu); 4651 rcutree_online_cpu(cpu); 4652 } 4653 4654 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4655 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4656 WARN_ON(!rcu_gp_wq); 4657 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4658 WARN_ON(!rcu_par_gp_wq); 4659 srcu_init(); 4660 4661 /* Fill in default value for rcutree.qovld boot parameter. */ 4662 /* -After- the rcu_node ->lock fields are initialized! */ 4663 if (qovld < 0) 4664 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4665 else 4666 qovld_calc = qovld; 4667 } 4668 4669 #include "tree_stall.h" 4670 #include "tree_exp.h" 4671 #include "tree_plugin.h" 4672