1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 31 #define pr_fmt(fmt) "rcu: " fmt 32 33 #include <linux/types.h> 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/spinlock.h> 37 #include <linux/smp.h> 38 #include <linux/rcupdate_wait.h> 39 #include <linux/interrupt.h> 40 #include <linux/sched.h> 41 #include <linux/sched/debug.h> 42 #include <linux/nmi.h> 43 #include <linux/atomic.h> 44 #include <linux/bitops.h> 45 #include <linux/export.h> 46 #include <linux/completion.h> 47 #include <linux/moduleparam.h> 48 #include <linux/percpu.h> 49 #include <linux/notifier.h> 50 #include <linux/cpu.h> 51 #include <linux/mutex.h> 52 #include <linux/time.h> 53 #include <linux/kernel_stat.h> 54 #include <linux/wait.h> 55 #include <linux/kthread.h> 56 #include <uapi/linux/sched/types.h> 57 #include <linux/prefetch.h> 58 #include <linux/delay.h> 59 #include <linux/stop_machine.h> 60 #include <linux/random.h> 61 #include <linux/trace_events.h> 62 #include <linux/suspend.h> 63 #include <linux/ftrace.h> 64 #include <linux/tick.h> 65 66 #include "tree.h" 67 #include "rcu.h" 68 69 #ifdef MODULE_PARAM_PREFIX 70 #undef MODULE_PARAM_PREFIX 71 #endif 72 #define MODULE_PARAM_PREFIX "rcutree." 73 74 /* Data structures. */ 75 76 /* 77 * Steal a bit from the bottom of ->dynticks for idle entry/exit 78 * control. Initially this is for TLB flushing. 79 */ 80 #define RCU_DYNTICK_CTRL_MASK 0x1 81 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 82 #ifndef rcu_eqs_special_exit 83 #define rcu_eqs_special_exit() do { } while (0) 84 #endif 85 86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 87 .dynticks_nesting = 1, 88 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 89 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 90 }; 91 struct rcu_state rcu_state = { 92 .level = { &rcu_state.node[0] }, 93 .gp_state = RCU_GP_IDLE, 94 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 95 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 96 .name = RCU_NAME, 97 .abbr = RCU_ABBR, 98 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 99 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 100 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 101 }; 102 103 /* Dump rcu_node combining tree at boot to verify correct setup. */ 104 static bool dump_tree; 105 module_param(dump_tree, bool, 0444); 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 /* panic() on RCU Stall sysctl. */ 117 int sysctl_panic_on_rcu_stall __read_mostly; 118 119 /* 120 * The rcu_scheduler_active variable is initialized to the value 121 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 122 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 123 * RCU can assume that there is but one task, allowing RCU to (for example) 124 * optimize synchronize_rcu() to a simple barrier(). When this variable 125 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 126 * to detect real grace periods. This variable is also used to suppress 127 * boot-time false positives from lockdep-RCU error checking. Finally, it 128 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 129 * is fully initialized, including all of its kthreads having been spawned. 130 */ 131 int rcu_scheduler_active __read_mostly; 132 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 133 134 /* 135 * The rcu_scheduler_fully_active variable transitions from zero to one 136 * during the early_initcall() processing, which is after the scheduler 137 * is capable of creating new tasks. So RCU processing (for example, 138 * creating tasks for RCU priority boosting) must be delayed until after 139 * rcu_scheduler_fully_active transitions from zero to one. We also 140 * currently delay invocation of any RCU callbacks until after this point. 141 * 142 * It might later prove better for people registering RCU callbacks during 143 * early boot to take responsibility for these callbacks, but one step at 144 * a time. 145 */ 146 static int rcu_scheduler_fully_active __read_mostly; 147 148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 149 unsigned long gps, unsigned long flags); 150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 153 static void invoke_rcu_core(void); 154 static void invoke_rcu_callbacks(struct rcu_data *rdp); 155 static void rcu_report_exp_rdp(struct rcu_data *rdp); 156 static void sync_sched_exp_online_cleanup(int cpu); 157 158 /* rcuc/rcub kthread realtime priority */ 159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 160 module_param(kthread_prio, int, 0644); 161 162 /* Delay in jiffies for grace-period initialization delays, debug only. */ 163 164 static int gp_preinit_delay; 165 module_param(gp_preinit_delay, int, 0444); 166 static int gp_init_delay; 167 module_param(gp_init_delay, int, 0444); 168 static int gp_cleanup_delay; 169 module_param(gp_cleanup_delay, int, 0444); 170 171 /* Retrieve RCU kthreads priority for rcutorture */ 172 int rcu_get_gp_kthreads_prio(void) 173 { 174 return kthread_prio; 175 } 176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 177 178 /* 179 * Number of grace periods between delays, normalized by the duration of 180 * the delay. The longer the delay, the more the grace periods between 181 * each delay. The reason for this normalization is that it means that, 182 * for non-zero delays, the overall slowdown of grace periods is constant 183 * regardless of the duration of the delay. This arrangement balances 184 * the need for long delays to increase some race probabilities with the 185 * need for fast grace periods to increase other race probabilities. 186 */ 187 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 188 189 /* 190 * Compute the mask of online CPUs for the specified rcu_node structure. 191 * This will not be stable unless the rcu_node structure's ->lock is 192 * held, but the bit corresponding to the current CPU will be stable 193 * in most contexts. 194 */ 195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 196 { 197 return READ_ONCE(rnp->qsmaskinitnext); 198 } 199 200 /* 201 * Return true if an RCU grace period is in progress. The READ_ONCE()s 202 * permit this function to be invoked without holding the root rcu_node 203 * structure's ->lock, but of course results can be subject to change. 204 */ 205 static int rcu_gp_in_progress(void) 206 { 207 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 208 } 209 210 /* 211 * Return the number of callbacks queued on the specified CPU. 212 * Handles both the nocbs and normal cases. 213 */ 214 static long rcu_get_n_cbs_cpu(int cpu) 215 { 216 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 217 218 if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */ 219 return rcu_segcblist_n_cbs(&rdp->cblist); 220 return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */ 221 } 222 223 void rcu_softirq_qs(void) 224 { 225 rcu_qs(); 226 rcu_preempt_deferred_qs(current); 227 } 228 229 /* 230 * Record entry into an extended quiescent state. This is only to be 231 * called when not already in an extended quiescent state. 232 */ 233 static void rcu_dynticks_eqs_enter(void) 234 { 235 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 236 int seq; 237 238 /* 239 * CPUs seeing atomic_add_return() must see prior RCU read-side 240 * critical sections, and we also must force ordering with the 241 * next idle sojourn. 242 */ 243 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 244 /* Better be in an extended quiescent state! */ 245 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 246 (seq & RCU_DYNTICK_CTRL_CTR)); 247 /* Better not have special action (TLB flush) pending! */ 248 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 249 (seq & RCU_DYNTICK_CTRL_MASK)); 250 } 251 252 /* 253 * Record exit from an extended quiescent state. This is only to be 254 * called from an extended quiescent state. 255 */ 256 static void rcu_dynticks_eqs_exit(void) 257 { 258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 259 int seq; 260 261 /* 262 * CPUs seeing atomic_add_return() must see prior idle sojourns, 263 * and we also must force ordering with the next RCU read-side 264 * critical section. 265 */ 266 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 268 !(seq & RCU_DYNTICK_CTRL_CTR)); 269 if (seq & RCU_DYNTICK_CTRL_MASK) { 270 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 271 smp_mb__after_atomic(); /* _exit after clearing mask. */ 272 /* Prefer duplicate flushes to losing a flush. */ 273 rcu_eqs_special_exit(); 274 } 275 } 276 277 /* 278 * Reset the current CPU's ->dynticks counter to indicate that the 279 * newly onlined CPU is no longer in an extended quiescent state. 280 * This will either leave the counter unchanged, or increment it 281 * to the next non-quiescent value. 282 * 283 * The non-atomic test/increment sequence works because the upper bits 284 * of the ->dynticks counter are manipulated only by the corresponding CPU, 285 * or when the corresponding CPU is offline. 286 */ 287 static void rcu_dynticks_eqs_online(void) 288 { 289 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 290 291 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 292 return; 293 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 294 } 295 296 /* 297 * Is the current CPU in an extended quiescent state? 298 * 299 * No ordering, as we are sampling CPU-local information. 300 */ 301 bool rcu_dynticks_curr_cpu_in_eqs(void) 302 { 303 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 304 305 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 306 } 307 308 /* 309 * Snapshot the ->dynticks counter with full ordering so as to allow 310 * stable comparison of this counter with past and future snapshots. 311 */ 312 int rcu_dynticks_snap(struct rcu_data *rdp) 313 { 314 int snap = atomic_add_return(0, &rdp->dynticks); 315 316 return snap & ~RCU_DYNTICK_CTRL_MASK; 317 } 318 319 /* 320 * Return true if the snapshot returned from rcu_dynticks_snap() 321 * indicates that RCU is in an extended quiescent state. 322 */ 323 static bool rcu_dynticks_in_eqs(int snap) 324 { 325 return !(snap & RCU_DYNTICK_CTRL_CTR); 326 } 327 328 /* 329 * Return true if the CPU corresponding to the specified rcu_data 330 * structure has spent some time in an extended quiescent state since 331 * rcu_dynticks_snap() returned the specified snapshot. 332 */ 333 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 334 { 335 return snap != rcu_dynticks_snap(rdp); 336 } 337 338 /* 339 * Set the special (bottom) bit of the specified CPU so that it 340 * will take special action (such as flushing its TLB) on the 341 * next exit from an extended quiescent state. Returns true if 342 * the bit was successfully set, or false if the CPU was not in 343 * an extended quiescent state. 344 */ 345 bool rcu_eqs_special_set(int cpu) 346 { 347 int old; 348 int new; 349 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 350 351 do { 352 old = atomic_read(&rdp->dynticks); 353 if (old & RCU_DYNTICK_CTRL_CTR) 354 return false; 355 new = old | RCU_DYNTICK_CTRL_MASK; 356 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 357 return true; 358 } 359 360 /* 361 * Let the RCU core know that this CPU has gone through the scheduler, 362 * which is a quiescent state. This is called when the need for a 363 * quiescent state is urgent, so we burn an atomic operation and full 364 * memory barriers to let the RCU core know about it, regardless of what 365 * this CPU might (or might not) do in the near future. 366 * 367 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 368 * 369 * The caller must have disabled interrupts and must not be idle. 370 */ 371 static void __maybe_unused rcu_momentary_dyntick_idle(void) 372 { 373 int special; 374 375 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 376 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 377 &this_cpu_ptr(&rcu_data)->dynticks); 378 /* It is illegal to call this from idle state. */ 379 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 380 rcu_preempt_deferred_qs(current); 381 } 382 383 /** 384 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 385 * 386 * If the current CPU is idle or running at a first-level (not nested) 387 * interrupt from idle, return true. The caller must have at least 388 * disabled preemption. 389 */ 390 static int rcu_is_cpu_rrupt_from_idle(void) 391 { 392 return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 && 393 __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1; 394 } 395 396 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 397 static long blimit = DEFAULT_RCU_BLIMIT; 398 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 399 static long qhimark = DEFAULT_RCU_QHIMARK; 400 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 401 static long qlowmark = DEFAULT_RCU_QLOMARK; 402 403 module_param(blimit, long, 0444); 404 module_param(qhimark, long, 0444); 405 module_param(qlowmark, long, 0444); 406 407 static ulong jiffies_till_first_fqs = ULONG_MAX; 408 static ulong jiffies_till_next_fqs = ULONG_MAX; 409 static bool rcu_kick_kthreads; 410 411 /* 412 * How long the grace period must be before we start recruiting 413 * quiescent-state help from rcu_note_context_switch(). 414 */ 415 static ulong jiffies_till_sched_qs = ULONG_MAX; 416 module_param(jiffies_till_sched_qs, ulong, 0444); 417 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */ 418 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 419 420 /* 421 * Make sure that we give the grace-period kthread time to detect any 422 * idle CPUs before taking active measures to force quiescent states. 423 * However, don't go below 100 milliseconds, adjusted upwards for really 424 * large systems. 425 */ 426 static void adjust_jiffies_till_sched_qs(void) 427 { 428 unsigned long j; 429 430 /* If jiffies_till_sched_qs was specified, respect the request. */ 431 if (jiffies_till_sched_qs != ULONG_MAX) { 432 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 433 return; 434 } 435 j = READ_ONCE(jiffies_till_first_fqs) + 436 2 * READ_ONCE(jiffies_till_next_fqs); 437 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 438 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 439 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 440 WRITE_ONCE(jiffies_to_sched_qs, j); 441 } 442 443 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 444 { 445 ulong j; 446 int ret = kstrtoul(val, 0, &j); 447 448 if (!ret) { 449 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 450 adjust_jiffies_till_sched_qs(); 451 } 452 return ret; 453 } 454 455 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 456 { 457 ulong j; 458 int ret = kstrtoul(val, 0, &j); 459 460 if (!ret) { 461 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 462 adjust_jiffies_till_sched_qs(); 463 } 464 return ret; 465 } 466 467 static struct kernel_param_ops first_fqs_jiffies_ops = { 468 .set = param_set_first_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 static struct kernel_param_ops next_fqs_jiffies_ops = { 473 .set = param_set_next_fqs_jiffies, 474 .get = param_get_ulong, 475 }; 476 477 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 478 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 479 module_param(rcu_kick_kthreads, bool, 0644); 480 481 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 482 static void force_quiescent_state(void); 483 static int rcu_pending(void); 484 485 /* 486 * Return the number of RCU GPs completed thus far for debug & stats. 487 */ 488 unsigned long rcu_get_gp_seq(void) 489 { 490 return READ_ONCE(rcu_state.gp_seq); 491 } 492 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 493 494 /* 495 * Return the number of RCU expedited batches completed thus far for 496 * debug & stats. Odd numbers mean that a batch is in progress, even 497 * numbers mean idle. The value returned will thus be roughly double 498 * the cumulative batches since boot. 499 */ 500 unsigned long rcu_exp_batches_completed(void) 501 { 502 return rcu_state.expedited_sequence; 503 } 504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 505 506 /* 507 * Force a quiescent state. 508 */ 509 void rcu_force_quiescent_state(void) 510 { 511 force_quiescent_state(); 512 } 513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 514 515 /* 516 * Convert a ->gp_state value to a character string. 517 */ 518 static const char *gp_state_getname(short gs) 519 { 520 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 521 return "???"; 522 return gp_state_names[gs]; 523 } 524 525 /* 526 * Show the state of the grace-period kthreads. 527 */ 528 void show_rcu_gp_kthreads(void) 529 { 530 int cpu; 531 unsigned long j; 532 struct rcu_data *rdp; 533 struct rcu_node *rnp; 534 535 j = jiffies - READ_ONCE(rcu_state.gp_activity); 536 pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n", 537 rcu_state.name, gp_state_getname(rcu_state.gp_state), 538 rcu_state.gp_state, rcu_state.gp_kthread->state, j); 539 rcu_for_each_node_breadth_first(rnp) { 540 if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed)) 541 continue; 542 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n", 543 rnp->grplo, rnp->grphi, rnp->gp_seq, 544 rnp->gp_seq_needed); 545 if (!rcu_is_leaf_node(rnp)) 546 continue; 547 for_each_leaf_node_possible_cpu(rnp, cpu) { 548 rdp = per_cpu_ptr(&rcu_data, cpu); 549 if (rdp->gpwrap || 550 ULONG_CMP_GE(rcu_state.gp_seq, 551 rdp->gp_seq_needed)) 552 continue; 553 pr_info("\tcpu %d ->gp_seq_needed %lu\n", 554 cpu, rdp->gp_seq_needed); 555 } 556 } 557 /* sched_show_task(rcu_state.gp_kthread); */ 558 } 559 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 560 561 /* 562 * Send along grace-period-related data for rcutorture diagnostics. 563 */ 564 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 565 unsigned long *gp_seq) 566 { 567 switch (test_type) { 568 case RCU_FLAVOR: 569 case RCU_BH_FLAVOR: 570 case RCU_SCHED_FLAVOR: 571 *flags = READ_ONCE(rcu_state.gp_flags); 572 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 573 break; 574 default: 575 break; 576 } 577 } 578 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 579 580 /* 581 * Return the root node of the rcu_state structure. 582 */ 583 static struct rcu_node *rcu_get_root(void) 584 { 585 return &rcu_state.node[0]; 586 } 587 588 /* 589 * Enter an RCU extended quiescent state, which can be either the 590 * idle loop or adaptive-tickless usermode execution. 591 * 592 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 593 * the possibility of usermode upcalls having messed up our count 594 * of interrupt nesting level during the prior busy period. 595 */ 596 static void rcu_eqs_enter(bool user) 597 { 598 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 599 600 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 601 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 602 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 603 rdp->dynticks_nesting == 0); 604 if (rdp->dynticks_nesting != 1) { 605 rdp->dynticks_nesting--; 606 return; 607 } 608 609 lockdep_assert_irqs_disabled(); 610 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 611 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 612 rdp = this_cpu_ptr(&rcu_data); 613 do_nocb_deferred_wakeup(rdp); 614 rcu_prepare_for_idle(); 615 rcu_preempt_deferred_qs(current); 616 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 617 rcu_dynticks_eqs_enter(); 618 rcu_dynticks_task_enter(); 619 } 620 621 /** 622 * rcu_idle_enter - inform RCU that current CPU is entering idle 623 * 624 * Enter idle mode, in other words, -leave- the mode in which RCU 625 * read-side critical sections can occur. (Though RCU read-side 626 * critical sections can occur in irq handlers in idle, a possibility 627 * handled by irq_enter() and irq_exit().) 628 * 629 * If you add or remove a call to rcu_idle_enter(), be sure to test with 630 * CONFIG_RCU_EQS_DEBUG=y. 631 */ 632 void rcu_idle_enter(void) 633 { 634 lockdep_assert_irqs_disabled(); 635 rcu_eqs_enter(false); 636 } 637 638 #ifdef CONFIG_NO_HZ_FULL 639 /** 640 * rcu_user_enter - inform RCU that we are resuming userspace. 641 * 642 * Enter RCU idle mode right before resuming userspace. No use of RCU 643 * is permitted between this call and rcu_user_exit(). This way the 644 * CPU doesn't need to maintain the tick for RCU maintenance purposes 645 * when the CPU runs in userspace. 646 * 647 * If you add or remove a call to rcu_user_enter(), be sure to test with 648 * CONFIG_RCU_EQS_DEBUG=y. 649 */ 650 void rcu_user_enter(void) 651 { 652 lockdep_assert_irqs_disabled(); 653 rcu_eqs_enter(true); 654 } 655 #endif /* CONFIG_NO_HZ_FULL */ 656 657 /* 658 * If we are returning from the outermost NMI handler that interrupted an 659 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 660 * to let the RCU grace-period handling know that the CPU is back to 661 * being RCU-idle. 662 * 663 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 664 * with CONFIG_RCU_EQS_DEBUG=y. 665 */ 666 static __always_inline void rcu_nmi_exit_common(bool irq) 667 { 668 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 669 670 /* 671 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 672 * (We are exiting an NMI handler, so RCU better be paying attention 673 * to us!) 674 */ 675 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 676 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 677 678 /* 679 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 680 * leave it in non-RCU-idle state. 681 */ 682 if (rdp->dynticks_nmi_nesting != 1) { 683 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 684 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 685 rdp->dynticks_nmi_nesting - 2); 686 return; 687 } 688 689 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 690 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 691 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 692 693 if (irq) 694 rcu_prepare_for_idle(); 695 696 rcu_dynticks_eqs_enter(); 697 698 if (irq) 699 rcu_dynticks_task_enter(); 700 } 701 702 /** 703 * rcu_nmi_exit - inform RCU of exit from NMI context 704 * @irq: Is this call from rcu_irq_exit? 705 * 706 * If you add or remove a call to rcu_nmi_exit(), be sure to test 707 * with CONFIG_RCU_EQS_DEBUG=y. 708 */ 709 void rcu_nmi_exit(void) 710 { 711 rcu_nmi_exit_common(false); 712 } 713 714 /** 715 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 716 * 717 * Exit from an interrupt handler, which might possibly result in entering 718 * idle mode, in other words, leaving the mode in which read-side critical 719 * sections can occur. The caller must have disabled interrupts. 720 * 721 * This code assumes that the idle loop never does anything that might 722 * result in unbalanced calls to irq_enter() and irq_exit(). If your 723 * architecture's idle loop violates this assumption, RCU will give you what 724 * you deserve, good and hard. But very infrequently and irreproducibly. 725 * 726 * Use things like work queues to work around this limitation. 727 * 728 * You have been warned. 729 * 730 * If you add or remove a call to rcu_irq_exit(), be sure to test with 731 * CONFIG_RCU_EQS_DEBUG=y. 732 */ 733 void rcu_irq_exit(void) 734 { 735 lockdep_assert_irqs_disabled(); 736 rcu_nmi_exit_common(true); 737 } 738 739 /* 740 * Wrapper for rcu_irq_exit() where interrupts are enabled. 741 * 742 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 743 * with CONFIG_RCU_EQS_DEBUG=y. 744 */ 745 void rcu_irq_exit_irqson(void) 746 { 747 unsigned long flags; 748 749 local_irq_save(flags); 750 rcu_irq_exit(); 751 local_irq_restore(flags); 752 } 753 754 /* 755 * Exit an RCU extended quiescent state, which can be either the 756 * idle loop or adaptive-tickless usermode execution. 757 * 758 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 759 * allow for the possibility of usermode upcalls messing up our count of 760 * interrupt nesting level during the busy period that is just now starting. 761 */ 762 static void rcu_eqs_exit(bool user) 763 { 764 struct rcu_data *rdp; 765 long oldval; 766 767 lockdep_assert_irqs_disabled(); 768 rdp = this_cpu_ptr(&rcu_data); 769 oldval = rdp->dynticks_nesting; 770 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 771 if (oldval) { 772 rdp->dynticks_nesting++; 773 return; 774 } 775 rcu_dynticks_task_exit(); 776 rcu_dynticks_eqs_exit(); 777 rcu_cleanup_after_idle(); 778 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 779 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 780 WRITE_ONCE(rdp->dynticks_nesting, 1); 781 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 782 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 783 } 784 785 /** 786 * rcu_idle_exit - inform RCU that current CPU is leaving idle 787 * 788 * Exit idle mode, in other words, -enter- the mode in which RCU 789 * read-side critical sections can occur. 790 * 791 * If you add or remove a call to rcu_idle_exit(), be sure to test with 792 * CONFIG_RCU_EQS_DEBUG=y. 793 */ 794 void rcu_idle_exit(void) 795 { 796 unsigned long flags; 797 798 local_irq_save(flags); 799 rcu_eqs_exit(false); 800 local_irq_restore(flags); 801 } 802 803 #ifdef CONFIG_NO_HZ_FULL 804 /** 805 * rcu_user_exit - inform RCU that we are exiting userspace. 806 * 807 * Exit RCU idle mode while entering the kernel because it can 808 * run a RCU read side critical section anytime. 809 * 810 * If you add or remove a call to rcu_user_exit(), be sure to test with 811 * CONFIG_RCU_EQS_DEBUG=y. 812 */ 813 void rcu_user_exit(void) 814 { 815 rcu_eqs_exit(1); 816 } 817 #endif /* CONFIG_NO_HZ_FULL */ 818 819 /** 820 * rcu_nmi_enter_common - inform RCU of entry to NMI context 821 * @irq: Is this call from rcu_irq_enter? 822 * 823 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 824 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 825 * that the CPU is active. This implementation permits nested NMIs, as 826 * long as the nesting level does not overflow an int. (You will probably 827 * run out of stack space first.) 828 * 829 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 830 * with CONFIG_RCU_EQS_DEBUG=y. 831 */ 832 static __always_inline void rcu_nmi_enter_common(bool irq) 833 { 834 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 835 long incby = 2; 836 837 /* Complain about underflow. */ 838 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 839 840 /* 841 * If idle from RCU viewpoint, atomically increment ->dynticks 842 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 843 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 844 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 845 * to be in the outermost NMI handler that interrupted an RCU-idle 846 * period (observation due to Andy Lutomirski). 847 */ 848 if (rcu_dynticks_curr_cpu_in_eqs()) { 849 850 if (irq) 851 rcu_dynticks_task_exit(); 852 853 rcu_dynticks_eqs_exit(); 854 855 if (irq) 856 rcu_cleanup_after_idle(); 857 858 incby = 1; 859 } 860 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 861 rdp->dynticks_nmi_nesting, 862 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 863 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 864 rdp->dynticks_nmi_nesting + incby); 865 barrier(); 866 } 867 868 /** 869 * rcu_nmi_enter - inform RCU of entry to NMI context 870 */ 871 void rcu_nmi_enter(void) 872 { 873 rcu_nmi_enter_common(false); 874 } 875 876 /** 877 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 878 * 879 * Enter an interrupt handler, which might possibly result in exiting 880 * idle mode, in other words, entering the mode in which read-side critical 881 * sections can occur. The caller must have disabled interrupts. 882 * 883 * Note that the Linux kernel is fully capable of entering an interrupt 884 * handler that it never exits, for example when doing upcalls to user mode! 885 * This code assumes that the idle loop never does upcalls to user mode. 886 * If your architecture's idle loop does do upcalls to user mode (or does 887 * anything else that results in unbalanced calls to the irq_enter() and 888 * irq_exit() functions), RCU will give you what you deserve, good and hard. 889 * But very infrequently and irreproducibly. 890 * 891 * Use things like work queues to work around this limitation. 892 * 893 * You have been warned. 894 * 895 * If you add or remove a call to rcu_irq_enter(), be sure to test with 896 * CONFIG_RCU_EQS_DEBUG=y. 897 */ 898 void rcu_irq_enter(void) 899 { 900 lockdep_assert_irqs_disabled(); 901 rcu_nmi_enter_common(true); 902 } 903 904 /* 905 * Wrapper for rcu_irq_enter() where interrupts are enabled. 906 * 907 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 908 * with CONFIG_RCU_EQS_DEBUG=y. 909 */ 910 void rcu_irq_enter_irqson(void) 911 { 912 unsigned long flags; 913 914 local_irq_save(flags); 915 rcu_irq_enter(); 916 local_irq_restore(flags); 917 } 918 919 /** 920 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 921 * 922 * Return true if RCU is watching the running CPU, which means that this 923 * CPU can safely enter RCU read-side critical sections. In other words, 924 * if the current CPU is not in its idle loop or is in an interrupt or 925 * NMI handler, return true. 926 */ 927 bool notrace rcu_is_watching(void) 928 { 929 bool ret; 930 931 preempt_disable_notrace(); 932 ret = !rcu_dynticks_curr_cpu_in_eqs(); 933 preempt_enable_notrace(); 934 return ret; 935 } 936 EXPORT_SYMBOL_GPL(rcu_is_watching); 937 938 /* 939 * If a holdout task is actually running, request an urgent quiescent 940 * state from its CPU. This is unsynchronized, so migrations can cause 941 * the request to go to the wrong CPU. Which is OK, all that will happen 942 * is that the CPU's next context switch will be a bit slower and next 943 * time around this task will generate another request. 944 */ 945 void rcu_request_urgent_qs_task(struct task_struct *t) 946 { 947 int cpu; 948 949 barrier(); 950 cpu = task_cpu(t); 951 if (!task_curr(t)) 952 return; /* This task is not running on that CPU. */ 953 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 954 } 955 956 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 957 958 /* 959 * Is the current CPU online as far as RCU is concerned? 960 * 961 * Disable preemption to avoid false positives that could otherwise 962 * happen due to the current CPU number being sampled, this task being 963 * preempted, its old CPU being taken offline, resuming on some other CPU, 964 * then determining that its old CPU is now offline. 965 * 966 * Disable checking if in an NMI handler because we cannot safely 967 * report errors from NMI handlers anyway. In addition, it is OK to use 968 * RCU on an offline processor during initial boot, hence the check for 969 * rcu_scheduler_fully_active. 970 */ 971 bool rcu_lockdep_current_cpu_online(void) 972 { 973 struct rcu_data *rdp; 974 struct rcu_node *rnp; 975 bool ret = false; 976 977 if (in_nmi() || !rcu_scheduler_fully_active) 978 return true; 979 preempt_disable(); 980 rdp = this_cpu_ptr(&rcu_data); 981 rnp = rdp->mynode; 982 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 983 ret = true; 984 preempt_enable(); 985 return ret; 986 } 987 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 988 989 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 990 991 /* 992 * We are reporting a quiescent state on behalf of some other CPU, so 993 * it is our responsibility to check for and handle potential overflow 994 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 995 * After all, the CPU might be in deep idle state, and thus executing no 996 * code whatsoever. 997 */ 998 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 999 { 1000 raw_lockdep_assert_held_rcu_node(rnp); 1001 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1002 rnp->gp_seq)) 1003 WRITE_ONCE(rdp->gpwrap, true); 1004 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1005 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1006 } 1007 1008 /* 1009 * Snapshot the specified CPU's dynticks counter so that we can later 1010 * credit them with an implicit quiescent state. Return 1 if this CPU 1011 * is in dynticks idle mode, which is an extended quiescent state. 1012 */ 1013 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1014 { 1015 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1016 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1017 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1018 rcu_gpnum_ovf(rdp->mynode, rdp); 1019 return 1; 1020 } 1021 return 0; 1022 } 1023 1024 /* 1025 * Handler for the irq_work request posted when a grace period has 1026 * gone on for too long, but not yet long enough for an RCU CPU 1027 * stall warning. Set state appropriately, but just complain if 1028 * there is unexpected state on entry. 1029 */ 1030 static void rcu_iw_handler(struct irq_work *iwp) 1031 { 1032 struct rcu_data *rdp; 1033 struct rcu_node *rnp; 1034 1035 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1036 rnp = rdp->mynode; 1037 raw_spin_lock_rcu_node(rnp); 1038 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1039 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1040 rdp->rcu_iw_pending = false; 1041 } 1042 raw_spin_unlock_rcu_node(rnp); 1043 } 1044 1045 /* 1046 * Return true if the specified CPU has passed through a quiescent 1047 * state by virtue of being in or having passed through an dynticks 1048 * idle state since the last call to dyntick_save_progress_counter() 1049 * for this same CPU, or by virtue of having been offline. 1050 */ 1051 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1052 { 1053 unsigned long jtsq; 1054 bool *rnhqp; 1055 bool *ruqp; 1056 struct rcu_node *rnp = rdp->mynode; 1057 1058 /* 1059 * If the CPU passed through or entered a dynticks idle phase with 1060 * no active irq/NMI handlers, then we can safely pretend that the CPU 1061 * already acknowledged the request to pass through a quiescent 1062 * state. Either way, that CPU cannot possibly be in an RCU 1063 * read-side critical section that started before the beginning 1064 * of the current RCU grace period. 1065 */ 1066 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1067 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1068 rcu_gpnum_ovf(rnp, rdp); 1069 return 1; 1070 } 1071 1072 /* If waiting too long on an offline CPU, complain. */ 1073 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1074 time_after(jiffies, rcu_state.gp_start + HZ)) { 1075 bool onl; 1076 struct rcu_node *rnp1; 1077 1078 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1079 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1080 __func__, rnp->grplo, rnp->grphi, rnp->level, 1081 (long)rnp->gp_seq, (long)rnp->completedqs); 1082 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1083 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1084 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1085 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1086 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1087 __func__, rdp->cpu, ".o"[onl], 1088 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1089 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1090 return 1; /* Break things loose after complaining. */ 1091 } 1092 1093 /* 1094 * A CPU running for an extended time within the kernel can 1095 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1096 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1097 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1098 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1099 * variable are safe because the assignments are repeated if this 1100 * CPU failed to pass through a quiescent state. This code 1101 * also checks .jiffies_resched in case jiffies_to_sched_qs 1102 * is set way high. 1103 */ 1104 jtsq = READ_ONCE(jiffies_to_sched_qs); 1105 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1106 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1107 if (!READ_ONCE(*rnhqp) && 1108 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1109 time_after(jiffies, rcu_state.jiffies_resched))) { 1110 WRITE_ONCE(*rnhqp, true); 1111 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1112 smp_store_release(ruqp, true); 1113 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1114 WRITE_ONCE(*ruqp, true); 1115 } 1116 1117 /* 1118 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks! 1119 * The above code handles this, but only for straight cond_resched(). 1120 * And some in-kernel loops check need_resched() before calling 1121 * cond_resched(), which defeats the above code for CPUs that are 1122 * running in-kernel with scheduling-clock interrupts disabled. 1123 * So hit them over the head with the resched_cpu() hammer! 1124 */ 1125 if (tick_nohz_full_cpu(rdp->cpu) && 1126 time_after(jiffies, 1127 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1128 resched_cpu(rdp->cpu); 1129 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1130 } 1131 1132 /* 1133 * If more than halfway to RCU CPU stall-warning time, invoke 1134 * resched_cpu() more frequently to try to loosen things up a bit. 1135 * Also check to see if the CPU is getting hammered with interrupts, 1136 * but only once per grace period, just to keep the IPIs down to 1137 * a dull roar. 1138 */ 1139 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1140 if (time_after(jiffies, 1141 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1142 resched_cpu(rdp->cpu); 1143 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1144 } 1145 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1146 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1147 (rnp->ffmask & rdp->grpmask)) { 1148 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1149 rdp->rcu_iw_pending = true; 1150 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1151 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1152 } 1153 } 1154 1155 return 0; 1156 } 1157 1158 static void record_gp_stall_check_time(void) 1159 { 1160 unsigned long j = jiffies; 1161 unsigned long j1; 1162 1163 rcu_state.gp_start = j; 1164 j1 = rcu_jiffies_till_stall_check(); 1165 /* Record ->gp_start before ->jiffies_stall. */ 1166 smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */ 1167 rcu_state.jiffies_resched = j + j1 / 2; 1168 rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs); 1169 } 1170 1171 /* 1172 * Complain about starvation of grace-period kthread. 1173 */ 1174 static void rcu_check_gp_kthread_starvation(void) 1175 { 1176 struct task_struct *gpk = rcu_state.gp_kthread; 1177 unsigned long j; 1178 1179 j = jiffies - READ_ONCE(rcu_state.gp_activity); 1180 if (j > 2 * HZ) { 1181 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1182 rcu_state.name, j, 1183 (long)rcu_seq_current(&rcu_state.gp_seq), 1184 rcu_state.gp_flags, 1185 gp_state_getname(rcu_state.gp_state), rcu_state.gp_state, 1186 gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1); 1187 if (gpk) { 1188 pr_err("RCU grace-period kthread stack dump:\n"); 1189 sched_show_task(gpk); 1190 wake_up_process(gpk); 1191 } 1192 } 1193 } 1194 1195 /* 1196 * Dump stacks of all tasks running on stalled CPUs. First try using 1197 * NMIs, but fall back to manual remote stack tracing on architectures 1198 * that don't support NMI-based stack dumps. The NMI-triggered stack 1199 * traces are more accurate because they are printed by the target CPU. 1200 */ 1201 static void rcu_dump_cpu_stacks(void) 1202 { 1203 int cpu; 1204 unsigned long flags; 1205 struct rcu_node *rnp; 1206 1207 rcu_for_each_leaf_node(rnp) { 1208 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1209 for_each_leaf_node_possible_cpu(rnp, cpu) 1210 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1211 if (!trigger_single_cpu_backtrace(cpu)) 1212 dump_cpu_task(cpu); 1213 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1214 } 1215 } 1216 1217 /* 1218 * If too much time has passed in the current grace period, and if 1219 * so configured, go kick the relevant kthreads. 1220 */ 1221 static void rcu_stall_kick_kthreads(void) 1222 { 1223 unsigned long j; 1224 1225 if (!rcu_kick_kthreads) 1226 return; 1227 j = READ_ONCE(rcu_state.jiffies_kick_kthreads); 1228 if (time_after(jiffies, j) && rcu_state.gp_kthread && 1229 (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) { 1230 WARN_ONCE(1, "Kicking %s grace-period kthread\n", 1231 rcu_state.name); 1232 rcu_ftrace_dump(DUMP_ALL); 1233 wake_up_process(rcu_state.gp_kthread); 1234 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ); 1235 } 1236 } 1237 1238 static void panic_on_rcu_stall(void) 1239 { 1240 if (sysctl_panic_on_rcu_stall) 1241 panic("RCU Stall\n"); 1242 } 1243 1244 static void print_other_cpu_stall(unsigned long gp_seq) 1245 { 1246 int cpu; 1247 unsigned long flags; 1248 unsigned long gpa; 1249 unsigned long j; 1250 int ndetected = 0; 1251 struct rcu_node *rnp = rcu_get_root(); 1252 long totqlen = 0; 1253 1254 /* Kick and suppress, if so configured. */ 1255 rcu_stall_kick_kthreads(); 1256 if (rcu_cpu_stall_suppress) 1257 return; 1258 1259 /* 1260 * OK, time to rat on our buddy... 1261 * See Documentation/RCU/stallwarn.txt for info on how to debug 1262 * RCU CPU stall warnings. 1263 */ 1264 pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name); 1265 print_cpu_stall_info_begin(); 1266 rcu_for_each_leaf_node(rnp) { 1267 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1268 ndetected += rcu_print_task_stall(rnp); 1269 if (rnp->qsmask != 0) { 1270 for_each_leaf_node_possible_cpu(rnp, cpu) 1271 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1272 print_cpu_stall_info(cpu); 1273 ndetected++; 1274 } 1275 } 1276 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1277 } 1278 1279 print_cpu_stall_info_end(); 1280 for_each_possible_cpu(cpu) 1281 totqlen += rcu_get_n_cbs_cpu(cpu); 1282 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", 1283 smp_processor_id(), (long)(jiffies - rcu_state.gp_start), 1284 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1285 if (ndetected) { 1286 rcu_dump_cpu_stacks(); 1287 1288 /* Complain about tasks blocking the grace period. */ 1289 rcu_print_detail_task_stall(); 1290 } else { 1291 if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) { 1292 pr_err("INFO: Stall ended before state dump start\n"); 1293 } else { 1294 j = jiffies; 1295 gpa = READ_ONCE(rcu_state.gp_activity); 1296 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1297 rcu_state.name, j - gpa, j, gpa, 1298 READ_ONCE(jiffies_till_next_fqs), 1299 rcu_get_root()->qsmask); 1300 /* In this case, the current CPU might be at fault. */ 1301 sched_show_task(current); 1302 } 1303 } 1304 /* Rewrite if needed in case of slow consoles. */ 1305 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1306 WRITE_ONCE(rcu_state.jiffies_stall, 1307 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1308 1309 rcu_check_gp_kthread_starvation(); 1310 1311 panic_on_rcu_stall(); 1312 1313 force_quiescent_state(); /* Kick them all. */ 1314 } 1315 1316 static void print_cpu_stall(void) 1317 { 1318 int cpu; 1319 unsigned long flags; 1320 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1321 struct rcu_node *rnp = rcu_get_root(); 1322 long totqlen = 0; 1323 1324 /* Kick and suppress, if so configured. */ 1325 rcu_stall_kick_kthreads(); 1326 if (rcu_cpu_stall_suppress) 1327 return; 1328 1329 /* 1330 * OK, time to rat on ourselves... 1331 * See Documentation/RCU/stallwarn.txt for info on how to debug 1332 * RCU CPU stall warnings. 1333 */ 1334 pr_err("INFO: %s self-detected stall on CPU", rcu_state.name); 1335 print_cpu_stall_info_begin(); 1336 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1337 print_cpu_stall_info(smp_processor_id()); 1338 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1339 print_cpu_stall_info_end(); 1340 for_each_possible_cpu(cpu) 1341 totqlen += rcu_get_n_cbs_cpu(cpu); 1342 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", 1343 jiffies - rcu_state.gp_start, 1344 (long)rcu_seq_current(&rcu_state.gp_seq), totqlen); 1345 1346 rcu_check_gp_kthread_starvation(); 1347 1348 rcu_dump_cpu_stacks(); 1349 1350 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1351 /* Rewrite if needed in case of slow consoles. */ 1352 if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall))) 1353 WRITE_ONCE(rcu_state.jiffies_stall, 1354 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1356 1357 panic_on_rcu_stall(); 1358 1359 /* 1360 * Attempt to revive the RCU machinery by forcing a context switch. 1361 * 1362 * A context switch would normally allow the RCU state machine to make 1363 * progress and it could be we're stuck in kernel space without context 1364 * switches for an entirely unreasonable amount of time. 1365 */ 1366 set_tsk_need_resched(current); 1367 set_preempt_need_resched(); 1368 } 1369 1370 static void check_cpu_stall(struct rcu_data *rdp) 1371 { 1372 unsigned long gs1; 1373 unsigned long gs2; 1374 unsigned long gps; 1375 unsigned long j; 1376 unsigned long jn; 1377 unsigned long js; 1378 struct rcu_node *rnp; 1379 1380 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1381 !rcu_gp_in_progress()) 1382 return; 1383 rcu_stall_kick_kthreads(); 1384 j = jiffies; 1385 1386 /* 1387 * Lots of memory barriers to reject false positives. 1388 * 1389 * The idea is to pick up rcu_state.gp_seq, then 1390 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally 1391 * another copy of rcu_state.gp_seq. These values are updated in 1392 * the opposite order with memory barriers (or equivalent) during 1393 * grace-period initialization and cleanup. Now, a false positive 1394 * can occur if we get an new value of rcu_state.gp_start and a old 1395 * value of rcu_state.jiffies_stall. But given the memory barriers, 1396 * the only way that this can happen is if one grace period ends 1397 * and another starts between these two fetches. This is detected 1398 * by comparing the second fetch of rcu_state.gp_seq with the 1399 * previous fetch from rcu_state.gp_seq. 1400 * 1401 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall, 1402 * and rcu_state.gp_start suffice to forestall false positives. 1403 */ 1404 gs1 = READ_ONCE(rcu_state.gp_seq); 1405 smp_rmb(); /* Pick up ->gp_seq first... */ 1406 js = READ_ONCE(rcu_state.jiffies_stall); 1407 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1408 gps = READ_ONCE(rcu_state.gp_start); 1409 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ 1410 gs2 = READ_ONCE(rcu_state.gp_seq); 1411 if (gs1 != gs2 || 1412 ULONG_CMP_LT(j, js) || 1413 ULONG_CMP_GE(gps, js)) 1414 return; /* No stall or GP completed since entering function. */ 1415 rnp = rdp->mynode; 1416 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1417 if (rcu_gp_in_progress() && 1418 (READ_ONCE(rnp->qsmask) & rdp->grpmask) && 1419 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1420 1421 /* We haven't checked in, so go dump stack. */ 1422 print_cpu_stall(); 1423 1424 } else if (rcu_gp_in_progress() && 1425 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && 1426 cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) { 1427 1428 /* They had a few time units to dump stack, so complain. */ 1429 print_other_cpu_stall(gs2); 1430 } 1431 } 1432 1433 /** 1434 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1435 * 1436 * Set the stall-warning timeout way off into the future, thus preventing 1437 * any RCU CPU stall-warning messages from appearing in the current set of 1438 * RCU grace periods. 1439 * 1440 * The caller must disable hard irqs. 1441 */ 1442 void rcu_cpu_stall_reset(void) 1443 { 1444 WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2); 1445 } 1446 1447 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1448 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1449 unsigned long gp_seq_req, const char *s) 1450 { 1451 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1452 rnp->level, rnp->grplo, rnp->grphi, s); 1453 } 1454 1455 /* 1456 * rcu_start_this_gp - Request the start of a particular grace period 1457 * @rnp_start: The leaf node of the CPU from which to start. 1458 * @rdp: The rcu_data corresponding to the CPU from which to start. 1459 * @gp_seq_req: The gp_seq of the grace period to start. 1460 * 1461 * Start the specified grace period, as needed to handle newly arrived 1462 * callbacks. The required future grace periods are recorded in each 1463 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1464 * is reason to awaken the grace-period kthread. 1465 * 1466 * The caller must hold the specified rcu_node structure's ->lock, which 1467 * is why the caller is responsible for waking the grace-period kthread. 1468 * 1469 * Returns true if the GP thread needs to be awakened else false. 1470 */ 1471 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1472 unsigned long gp_seq_req) 1473 { 1474 bool ret = false; 1475 struct rcu_node *rnp; 1476 1477 /* 1478 * Use funnel locking to either acquire the root rcu_node 1479 * structure's lock or bail out if the need for this grace period 1480 * has already been recorded -- or if that grace period has in 1481 * fact already started. If there is already a grace period in 1482 * progress in a non-leaf node, no recording is needed because the 1483 * end of the grace period will scan the leaf rcu_node structures. 1484 * Note that rnp_start->lock must not be released. 1485 */ 1486 raw_lockdep_assert_held_rcu_node(rnp_start); 1487 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1488 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1489 if (rnp != rnp_start) 1490 raw_spin_lock_rcu_node(rnp); 1491 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1492 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1493 (rnp != rnp_start && 1494 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1495 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1496 TPS("Prestarted")); 1497 goto unlock_out; 1498 } 1499 rnp->gp_seq_needed = gp_seq_req; 1500 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1501 /* 1502 * We just marked the leaf or internal node, and a 1503 * grace period is in progress, which means that 1504 * rcu_gp_cleanup() will see the marking. Bail to 1505 * reduce contention. 1506 */ 1507 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1508 TPS("Startedleaf")); 1509 goto unlock_out; 1510 } 1511 if (rnp != rnp_start && rnp->parent != NULL) 1512 raw_spin_unlock_rcu_node(rnp); 1513 if (!rnp->parent) 1514 break; /* At root, and perhaps also leaf. */ 1515 } 1516 1517 /* If GP already in progress, just leave, otherwise start one. */ 1518 if (rcu_gp_in_progress()) { 1519 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1520 goto unlock_out; 1521 } 1522 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1523 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1524 rcu_state.gp_req_activity = jiffies; 1525 if (!rcu_state.gp_kthread) { 1526 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1527 goto unlock_out; 1528 } 1529 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1530 ret = true; /* Caller must wake GP kthread. */ 1531 unlock_out: 1532 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1533 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1534 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1535 rdp->gp_seq_needed = rnp->gp_seq_needed; 1536 } 1537 if (rnp != rnp_start) 1538 raw_spin_unlock_rcu_node(rnp); 1539 return ret; 1540 } 1541 1542 /* 1543 * Clean up any old requests for the just-ended grace period. Also return 1544 * whether any additional grace periods have been requested. 1545 */ 1546 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1547 { 1548 bool needmore; 1549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1550 1551 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1552 if (!needmore) 1553 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1554 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1555 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1556 return needmore; 1557 } 1558 1559 /* 1560 * Awaken the grace-period kthread. Don't do a self-awaken, and don't 1561 * bother awakening when there is nothing for the grace-period kthread 1562 * to do (as in several CPUs raced to awaken, and we lost), and finally 1563 * don't try to awaken a kthread that has not yet been created. 1564 */ 1565 static void rcu_gp_kthread_wake(void) 1566 { 1567 if (current == rcu_state.gp_kthread || 1568 !READ_ONCE(rcu_state.gp_flags) || 1569 !rcu_state.gp_kthread) 1570 return; 1571 swake_up_one(&rcu_state.gp_wq); 1572 } 1573 1574 /* 1575 * If there is room, assign a ->gp_seq number to any callbacks on this 1576 * CPU that have not already been assigned. Also accelerate any callbacks 1577 * that were previously assigned a ->gp_seq number that has since proven 1578 * to be too conservative, which can happen if callbacks get assigned a 1579 * ->gp_seq number while RCU is idle, but with reference to a non-root 1580 * rcu_node structure. This function is idempotent, so it does not hurt 1581 * to call it repeatedly. Returns an flag saying that we should awaken 1582 * the RCU grace-period kthread. 1583 * 1584 * The caller must hold rnp->lock with interrupts disabled. 1585 */ 1586 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1587 { 1588 unsigned long gp_seq_req; 1589 bool ret = false; 1590 1591 raw_lockdep_assert_held_rcu_node(rnp); 1592 1593 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1594 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1595 return false; 1596 1597 /* 1598 * Callbacks are often registered with incomplete grace-period 1599 * information. Something about the fact that getting exact 1600 * information requires acquiring a global lock... RCU therefore 1601 * makes a conservative estimate of the grace period number at which 1602 * a given callback will become ready to invoke. The following 1603 * code checks this estimate and improves it when possible, thus 1604 * accelerating callback invocation to an earlier grace-period 1605 * number. 1606 */ 1607 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1608 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1609 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1610 1611 /* Trace depending on how much we were able to accelerate. */ 1612 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1613 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1614 else 1615 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1616 return ret; 1617 } 1618 1619 /* 1620 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1621 * rcu_node structure's ->lock be held. It consults the cached value 1622 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1623 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1624 * while holding the leaf rcu_node structure's ->lock. 1625 */ 1626 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1627 struct rcu_data *rdp) 1628 { 1629 unsigned long c; 1630 bool needwake; 1631 1632 lockdep_assert_irqs_disabled(); 1633 c = rcu_seq_snap(&rcu_state.gp_seq); 1634 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1635 /* Old request still live, so mark recent callbacks. */ 1636 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1637 return; 1638 } 1639 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1640 needwake = rcu_accelerate_cbs(rnp, rdp); 1641 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1642 if (needwake) 1643 rcu_gp_kthread_wake(); 1644 } 1645 1646 /* 1647 * Move any callbacks whose grace period has completed to the 1648 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1649 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1650 * sublist. This function is idempotent, so it does not hurt to 1651 * invoke it repeatedly. As long as it is not invoked -too- often... 1652 * Returns true if the RCU grace-period kthread needs to be awakened. 1653 * 1654 * The caller must hold rnp->lock with interrupts disabled. 1655 */ 1656 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1657 { 1658 raw_lockdep_assert_held_rcu_node(rnp); 1659 1660 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1661 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1662 return false; 1663 1664 /* 1665 * Find all callbacks whose ->gp_seq numbers indicate that they 1666 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1667 */ 1668 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1669 1670 /* Classify any remaining callbacks. */ 1671 return rcu_accelerate_cbs(rnp, rdp); 1672 } 1673 1674 /* 1675 * Update CPU-local rcu_data state to record the beginnings and ends of 1676 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1677 * structure corresponding to the current CPU, and must have irqs disabled. 1678 * Returns true if the grace-period kthread needs to be awakened. 1679 */ 1680 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1681 { 1682 bool ret; 1683 bool need_gp; 1684 1685 raw_lockdep_assert_held_rcu_node(rnp); 1686 1687 if (rdp->gp_seq == rnp->gp_seq) 1688 return false; /* Nothing to do. */ 1689 1690 /* Handle the ends of any preceding grace periods first. */ 1691 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1692 unlikely(READ_ONCE(rdp->gpwrap))) { 1693 ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */ 1694 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1695 } else { 1696 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */ 1697 } 1698 1699 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1700 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1701 unlikely(READ_ONCE(rdp->gpwrap))) { 1702 /* 1703 * If the current grace period is waiting for this CPU, 1704 * set up to detect a quiescent state, otherwise don't 1705 * go looking for one. 1706 */ 1707 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1708 need_gp = !!(rnp->qsmask & rdp->grpmask); 1709 rdp->cpu_no_qs.b.norm = need_gp; 1710 rdp->core_needs_qs = need_gp; 1711 zero_cpu_stall_ticks(rdp); 1712 } 1713 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1714 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap) 1715 rdp->gp_seq_needed = rnp->gp_seq_needed; 1716 WRITE_ONCE(rdp->gpwrap, false); 1717 rcu_gpnum_ovf(rnp, rdp); 1718 return ret; 1719 } 1720 1721 static void note_gp_changes(struct rcu_data *rdp) 1722 { 1723 unsigned long flags; 1724 bool needwake; 1725 struct rcu_node *rnp; 1726 1727 local_irq_save(flags); 1728 rnp = rdp->mynode; 1729 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1730 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1731 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1732 local_irq_restore(flags); 1733 return; 1734 } 1735 needwake = __note_gp_changes(rnp, rdp); 1736 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1737 if (needwake) 1738 rcu_gp_kthread_wake(); 1739 } 1740 1741 static void rcu_gp_slow(int delay) 1742 { 1743 if (delay > 0 && 1744 !(rcu_seq_ctr(rcu_state.gp_seq) % 1745 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1746 schedule_timeout_uninterruptible(delay); 1747 } 1748 1749 /* 1750 * Initialize a new grace period. Return false if no grace period required. 1751 */ 1752 static bool rcu_gp_init(void) 1753 { 1754 unsigned long flags; 1755 unsigned long oldmask; 1756 unsigned long mask; 1757 struct rcu_data *rdp; 1758 struct rcu_node *rnp = rcu_get_root(); 1759 1760 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1761 raw_spin_lock_irq_rcu_node(rnp); 1762 if (!READ_ONCE(rcu_state.gp_flags)) { 1763 /* Spurious wakeup, tell caller to go back to sleep. */ 1764 raw_spin_unlock_irq_rcu_node(rnp); 1765 return false; 1766 } 1767 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1768 1769 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1770 /* 1771 * Grace period already in progress, don't start another. 1772 * Not supposed to be able to happen. 1773 */ 1774 raw_spin_unlock_irq_rcu_node(rnp); 1775 return false; 1776 } 1777 1778 /* Advance to a new grace period and initialize state. */ 1779 record_gp_stall_check_time(); 1780 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1781 rcu_seq_start(&rcu_state.gp_seq); 1782 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1783 raw_spin_unlock_irq_rcu_node(rnp); 1784 1785 /* 1786 * Apply per-leaf buffered online and offline operations to the 1787 * rcu_node tree. Note that this new grace period need not wait 1788 * for subsequent online CPUs, and that quiescent-state forcing 1789 * will handle subsequent offline CPUs. 1790 */ 1791 rcu_state.gp_state = RCU_GP_ONOFF; 1792 rcu_for_each_leaf_node(rnp) { 1793 raw_spin_lock(&rcu_state.ofl_lock); 1794 raw_spin_lock_irq_rcu_node(rnp); 1795 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1796 !rnp->wait_blkd_tasks) { 1797 /* Nothing to do on this leaf rcu_node structure. */ 1798 raw_spin_unlock_irq_rcu_node(rnp); 1799 raw_spin_unlock(&rcu_state.ofl_lock); 1800 continue; 1801 } 1802 1803 /* Record old state, apply changes to ->qsmaskinit field. */ 1804 oldmask = rnp->qsmaskinit; 1805 rnp->qsmaskinit = rnp->qsmaskinitnext; 1806 1807 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1808 if (!oldmask != !rnp->qsmaskinit) { 1809 if (!oldmask) { /* First online CPU for rcu_node. */ 1810 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1811 rcu_init_new_rnp(rnp); 1812 } else if (rcu_preempt_has_tasks(rnp)) { 1813 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1814 } else { /* Last offline CPU and can propagate. */ 1815 rcu_cleanup_dead_rnp(rnp); 1816 } 1817 } 1818 1819 /* 1820 * If all waited-on tasks from prior grace period are 1821 * done, and if all this rcu_node structure's CPUs are 1822 * still offline, propagate up the rcu_node tree and 1823 * clear ->wait_blkd_tasks. Otherwise, if one of this 1824 * rcu_node structure's CPUs has since come back online, 1825 * simply clear ->wait_blkd_tasks. 1826 */ 1827 if (rnp->wait_blkd_tasks && 1828 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1829 rnp->wait_blkd_tasks = false; 1830 if (!rnp->qsmaskinit) 1831 rcu_cleanup_dead_rnp(rnp); 1832 } 1833 1834 raw_spin_unlock_irq_rcu_node(rnp); 1835 raw_spin_unlock(&rcu_state.ofl_lock); 1836 } 1837 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1838 1839 /* 1840 * Set the quiescent-state-needed bits in all the rcu_node 1841 * structures for all currently online CPUs in breadth-first 1842 * order, starting from the root rcu_node structure, relying on the 1843 * layout of the tree within the rcu_state.node[] array. Note that 1844 * other CPUs will access only the leaves of the hierarchy, thus 1845 * seeing that no grace period is in progress, at least until the 1846 * corresponding leaf node has been initialized. 1847 * 1848 * The grace period cannot complete until the initialization 1849 * process finishes, because this kthread handles both. 1850 */ 1851 rcu_state.gp_state = RCU_GP_INIT; 1852 rcu_for_each_node_breadth_first(rnp) { 1853 rcu_gp_slow(gp_init_delay); 1854 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1855 rdp = this_cpu_ptr(&rcu_data); 1856 rcu_preempt_check_blocked_tasks(rnp); 1857 rnp->qsmask = rnp->qsmaskinit; 1858 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1859 if (rnp == rdp->mynode) 1860 (void)__note_gp_changes(rnp, rdp); 1861 rcu_preempt_boost_start_gp(rnp); 1862 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1863 rnp->level, rnp->grplo, 1864 rnp->grphi, rnp->qsmask); 1865 /* Quiescent states for tasks on any now-offline CPUs. */ 1866 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1867 rnp->rcu_gp_init_mask = mask; 1868 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1869 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1870 else 1871 raw_spin_unlock_irq_rcu_node(rnp); 1872 cond_resched_tasks_rcu_qs(); 1873 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1874 } 1875 1876 return true; 1877 } 1878 1879 /* 1880 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1881 * time. 1882 */ 1883 static bool rcu_gp_fqs_check_wake(int *gfp) 1884 { 1885 struct rcu_node *rnp = rcu_get_root(); 1886 1887 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1888 *gfp = READ_ONCE(rcu_state.gp_flags); 1889 if (*gfp & RCU_GP_FLAG_FQS) 1890 return true; 1891 1892 /* The current grace period has completed. */ 1893 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1894 return true; 1895 1896 return false; 1897 } 1898 1899 /* 1900 * Do one round of quiescent-state forcing. 1901 */ 1902 static void rcu_gp_fqs(bool first_time) 1903 { 1904 struct rcu_node *rnp = rcu_get_root(); 1905 1906 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1907 rcu_state.n_force_qs++; 1908 if (first_time) { 1909 /* Collect dyntick-idle snapshots. */ 1910 force_qs_rnp(dyntick_save_progress_counter); 1911 } else { 1912 /* Handle dyntick-idle and offline CPUs. */ 1913 force_qs_rnp(rcu_implicit_dynticks_qs); 1914 } 1915 /* Clear flag to prevent immediate re-entry. */ 1916 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1917 raw_spin_lock_irq_rcu_node(rnp); 1918 WRITE_ONCE(rcu_state.gp_flags, 1919 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1920 raw_spin_unlock_irq_rcu_node(rnp); 1921 } 1922 } 1923 1924 /* 1925 * Loop doing repeated quiescent-state forcing until the grace period ends. 1926 */ 1927 static void rcu_gp_fqs_loop(void) 1928 { 1929 bool first_gp_fqs; 1930 int gf; 1931 unsigned long j; 1932 int ret; 1933 struct rcu_node *rnp = rcu_get_root(); 1934 1935 first_gp_fqs = true; 1936 j = READ_ONCE(jiffies_till_first_fqs); 1937 ret = 0; 1938 for (;;) { 1939 if (!ret) { 1940 rcu_state.jiffies_force_qs = jiffies + j; 1941 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1942 jiffies + 3 * j); 1943 } 1944 trace_rcu_grace_period(rcu_state.name, 1945 READ_ONCE(rcu_state.gp_seq), 1946 TPS("fqswait")); 1947 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1948 ret = swait_event_idle_timeout_exclusive( 1949 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1950 rcu_state.gp_state = RCU_GP_DOING_FQS; 1951 /* Locking provides needed memory barriers. */ 1952 /* If grace period done, leave loop. */ 1953 if (!READ_ONCE(rnp->qsmask) && 1954 !rcu_preempt_blocked_readers_cgp(rnp)) 1955 break; 1956 /* If time for quiescent-state forcing, do it. */ 1957 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1958 (gf & RCU_GP_FLAG_FQS)) { 1959 trace_rcu_grace_period(rcu_state.name, 1960 READ_ONCE(rcu_state.gp_seq), 1961 TPS("fqsstart")); 1962 rcu_gp_fqs(first_gp_fqs); 1963 first_gp_fqs = false; 1964 trace_rcu_grace_period(rcu_state.name, 1965 READ_ONCE(rcu_state.gp_seq), 1966 TPS("fqsend")); 1967 cond_resched_tasks_rcu_qs(); 1968 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1969 ret = 0; /* Force full wait till next FQS. */ 1970 j = READ_ONCE(jiffies_till_next_fqs); 1971 } else { 1972 /* Deal with stray signal. */ 1973 cond_resched_tasks_rcu_qs(); 1974 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1975 WARN_ON(signal_pending(current)); 1976 trace_rcu_grace_period(rcu_state.name, 1977 READ_ONCE(rcu_state.gp_seq), 1978 TPS("fqswaitsig")); 1979 ret = 1; /* Keep old FQS timing. */ 1980 j = jiffies; 1981 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1982 j = 1; 1983 else 1984 j = rcu_state.jiffies_force_qs - j; 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Clean up after the old grace period. 1991 */ 1992 static void rcu_gp_cleanup(void) 1993 { 1994 unsigned long gp_duration; 1995 bool needgp = false; 1996 unsigned long new_gp_seq; 1997 struct rcu_data *rdp; 1998 struct rcu_node *rnp = rcu_get_root(); 1999 struct swait_queue_head *sq; 2000 2001 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2002 raw_spin_lock_irq_rcu_node(rnp); 2003 rcu_state.gp_end = jiffies; 2004 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2005 if (gp_duration > rcu_state.gp_max) 2006 rcu_state.gp_max = gp_duration; 2007 2008 /* 2009 * We know the grace period is complete, but to everyone else 2010 * it appears to still be ongoing. But it is also the case 2011 * that to everyone else it looks like there is nothing that 2012 * they can do to advance the grace period. It is therefore 2013 * safe for us to drop the lock in order to mark the grace 2014 * period as completed in all of the rcu_node structures. 2015 */ 2016 raw_spin_unlock_irq_rcu_node(rnp); 2017 2018 /* 2019 * Propagate new ->gp_seq value to rcu_node structures so that 2020 * other CPUs don't have to wait until the start of the next grace 2021 * period to process their callbacks. This also avoids some nasty 2022 * RCU grace-period initialization races by forcing the end of 2023 * the current grace period to be completely recorded in all of 2024 * the rcu_node structures before the beginning of the next grace 2025 * period is recorded in any of the rcu_node structures. 2026 */ 2027 new_gp_seq = rcu_state.gp_seq; 2028 rcu_seq_end(&new_gp_seq); 2029 rcu_for_each_node_breadth_first(rnp) { 2030 raw_spin_lock_irq_rcu_node(rnp); 2031 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2032 dump_blkd_tasks(rnp, 10); 2033 WARN_ON_ONCE(rnp->qsmask); 2034 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2035 rdp = this_cpu_ptr(&rcu_data); 2036 if (rnp == rdp->mynode) 2037 needgp = __note_gp_changes(rnp, rdp) || needgp; 2038 /* smp_mb() provided by prior unlock-lock pair. */ 2039 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2040 sq = rcu_nocb_gp_get(rnp); 2041 raw_spin_unlock_irq_rcu_node(rnp); 2042 rcu_nocb_gp_cleanup(sq); 2043 cond_resched_tasks_rcu_qs(); 2044 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2045 rcu_gp_slow(gp_cleanup_delay); 2046 } 2047 rnp = rcu_get_root(); 2048 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2049 2050 /* Declare grace period done, trace first to use old GP number. */ 2051 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2052 rcu_seq_end(&rcu_state.gp_seq); 2053 rcu_state.gp_state = RCU_GP_IDLE; 2054 /* Check for GP requests since above loop. */ 2055 rdp = this_cpu_ptr(&rcu_data); 2056 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2057 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2058 TPS("CleanupMore")); 2059 needgp = true; 2060 } 2061 /* Advance CBs to reduce false positives below. */ 2062 if (!rcu_accelerate_cbs(rnp, rdp) && needgp) { 2063 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2064 rcu_state.gp_req_activity = jiffies; 2065 trace_rcu_grace_period(rcu_state.name, 2066 READ_ONCE(rcu_state.gp_seq), 2067 TPS("newreq")); 2068 } else { 2069 WRITE_ONCE(rcu_state.gp_flags, 2070 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2071 } 2072 raw_spin_unlock_irq_rcu_node(rnp); 2073 } 2074 2075 /* 2076 * Body of kthread that handles grace periods. 2077 */ 2078 static int __noreturn rcu_gp_kthread(void *unused) 2079 { 2080 rcu_bind_gp_kthread(); 2081 for (;;) { 2082 2083 /* Handle grace-period start. */ 2084 for (;;) { 2085 trace_rcu_grace_period(rcu_state.name, 2086 READ_ONCE(rcu_state.gp_seq), 2087 TPS("reqwait")); 2088 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2089 swait_event_idle_exclusive(rcu_state.gp_wq, 2090 READ_ONCE(rcu_state.gp_flags) & 2091 RCU_GP_FLAG_INIT); 2092 rcu_state.gp_state = RCU_GP_DONE_GPS; 2093 /* Locking provides needed memory barrier. */ 2094 if (rcu_gp_init()) 2095 break; 2096 cond_resched_tasks_rcu_qs(); 2097 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2098 WARN_ON(signal_pending(current)); 2099 trace_rcu_grace_period(rcu_state.name, 2100 READ_ONCE(rcu_state.gp_seq), 2101 TPS("reqwaitsig")); 2102 } 2103 2104 /* Handle quiescent-state forcing. */ 2105 rcu_gp_fqs_loop(); 2106 2107 /* Handle grace-period end. */ 2108 rcu_state.gp_state = RCU_GP_CLEANUP; 2109 rcu_gp_cleanup(); 2110 rcu_state.gp_state = RCU_GP_CLEANED; 2111 } 2112 } 2113 2114 /* 2115 * Report a full set of quiescent states to the rcu_state data structure. 2116 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2117 * another grace period is required. Whether we wake the grace-period 2118 * kthread or it awakens itself for the next round of quiescent-state 2119 * forcing, that kthread will clean up after the just-completed grace 2120 * period. Note that the caller must hold rnp->lock, which is released 2121 * before return. 2122 */ 2123 static void rcu_report_qs_rsp(unsigned long flags) 2124 __releases(rcu_get_root()->lock) 2125 { 2126 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2127 WARN_ON_ONCE(!rcu_gp_in_progress()); 2128 WRITE_ONCE(rcu_state.gp_flags, 2129 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2130 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2131 rcu_gp_kthread_wake(); 2132 } 2133 2134 /* 2135 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2136 * Allows quiescent states for a group of CPUs to be reported at one go 2137 * to the specified rcu_node structure, though all the CPUs in the group 2138 * must be represented by the same rcu_node structure (which need not be a 2139 * leaf rcu_node structure, though it often will be). The gps parameter 2140 * is the grace-period snapshot, which means that the quiescent states 2141 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2142 * must be held upon entry, and it is released before return. 2143 * 2144 * As a special case, if mask is zero, the bit-already-cleared check is 2145 * disabled. This allows propagating quiescent state due to resumed tasks 2146 * during grace-period initialization. 2147 */ 2148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2149 unsigned long gps, unsigned long flags) 2150 __releases(rnp->lock) 2151 { 2152 unsigned long oldmask = 0; 2153 struct rcu_node *rnp_c; 2154 2155 raw_lockdep_assert_held_rcu_node(rnp); 2156 2157 /* Walk up the rcu_node hierarchy. */ 2158 for (;;) { 2159 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2160 2161 /* 2162 * Our bit has already been cleared, or the 2163 * relevant grace period is already over, so done. 2164 */ 2165 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2166 return; 2167 } 2168 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2169 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2170 rcu_preempt_blocked_readers_cgp(rnp)); 2171 rnp->qsmask &= ~mask; 2172 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2173 mask, rnp->qsmask, rnp->level, 2174 rnp->grplo, rnp->grphi, 2175 !!rnp->gp_tasks); 2176 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2177 2178 /* Other bits still set at this level, so done. */ 2179 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2180 return; 2181 } 2182 rnp->completedqs = rnp->gp_seq; 2183 mask = rnp->grpmask; 2184 if (rnp->parent == NULL) { 2185 2186 /* No more levels. Exit loop holding root lock. */ 2187 2188 break; 2189 } 2190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2191 rnp_c = rnp; 2192 rnp = rnp->parent; 2193 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2194 oldmask = rnp_c->qsmask; 2195 } 2196 2197 /* 2198 * Get here if we are the last CPU to pass through a quiescent 2199 * state for this grace period. Invoke rcu_report_qs_rsp() 2200 * to clean up and start the next grace period if one is needed. 2201 */ 2202 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2203 } 2204 2205 /* 2206 * Record a quiescent state for all tasks that were previously queued 2207 * on the specified rcu_node structure and that were blocking the current 2208 * RCU grace period. The caller must hold the corresponding rnp->lock with 2209 * irqs disabled, and this lock is released upon return, but irqs remain 2210 * disabled. 2211 */ 2212 static void __maybe_unused 2213 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2214 __releases(rnp->lock) 2215 { 2216 unsigned long gps; 2217 unsigned long mask; 2218 struct rcu_node *rnp_p; 2219 2220 raw_lockdep_assert_held_rcu_node(rnp); 2221 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) || 2222 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2223 rnp->qsmask != 0) { 2224 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2225 return; /* Still need more quiescent states! */ 2226 } 2227 2228 rnp->completedqs = rnp->gp_seq; 2229 rnp_p = rnp->parent; 2230 if (rnp_p == NULL) { 2231 /* 2232 * Only one rcu_node structure in the tree, so don't 2233 * try to report up to its nonexistent parent! 2234 */ 2235 rcu_report_qs_rsp(flags); 2236 return; 2237 } 2238 2239 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2240 gps = rnp->gp_seq; 2241 mask = rnp->grpmask; 2242 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2243 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2244 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2245 } 2246 2247 /* 2248 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2249 * structure. This must be called from the specified CPU. 2250 */ 2251 static void 2252 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2253 { 2254 unsigned long flags; 2255 unsigned long mask; 2256 bool needwake; 2257 struct rcu_node *rnp; 2258 2259 rnp = rdp->mynode; 2260 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2261 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2262 rdp->gpwrap) { 2263 2264 /* 2265 * The grace period in which this quiescent state was 2266 * recorded has ended, so don't report it upwards. 2267 * We will instead need a new quiescent state that lies 2268 * within the current grace period. 2269 */ 2270 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2271 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2272 return; 2273 } 2274 mask = rdp->grpmask; 2275 if ((rnp->qsmask & mask) == 0) { 2276 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2277 } else { 2278 rdp->core_needs_qs = false; 2279 2280 /* 2281 * This GP can't end until cpu checks in, so all of our 2282 * callbacks can be processed during the next GP. 2283 */ 2284 needwake = rcu_accelerate_cbs(rnp, rdp); 2285 2286 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2287 /* ^^^ Released rnp->lock */ 2288 if (needwake) 2289 rcu_gp_kthread_wake(); 2290 } 2291 } 2292 2293 /* 2294 * Check to see if there is a new grace period of which this CPU 2295 * is not yet aware, and if so, set up local rcu_data state for it. 2296 * Otherwise, see if this CPU has just passed through its first 2297 * quiescent state for this grace period, and record that fact if so. 2298 */ 2299 static void 2300 rcu_check_quiescent_state(struct rcu_data *rdp) 2301 { 2302 /* Check for grace-period ends and beginnings. */ 2303 note_gp_changes(rdp); 2304 2305 /* 2306 * Does this CPU still need to do its part for current grace period? 2307 * If no, return and let the other CPUs do their part as well. 2308 */ 2309 if (!rdp->core_needs_qs) 2310 return; 2311 2312 /* 2313 * Was there a quiescent state since the beginning of the grace 2314 * period? If no, then exit and wait for the next call. 2315 */ 2316 if (rdp->cpu_no_qs.b.norm) 2317 return; 2318 2319 /* 2320 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2321 * judge of that). 2322 */ 2323 rcu_report_qs_rdp(rdp->cpu, rdp); 2324 } 2325 2326 /* 2327 * Near the end of the offline process. Trace the fact that this CPU 2328 * is going offline. 2329 */ 2330 int rcutree_dying_cpu(unsigned int cpu) 2331 { 2332 RCU_TRACE(bool blkd;) 2333 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);) 2334 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2335 2336 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2337 return 0; 2338 2339 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);) 2340 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2341 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2342 return 0; 2343 } 2344 2345 /* 2346 * All CPUs for the specified rcu_node structure have gone offline, 2347 * and all tasks that were preempted within an RCU read-side critical 2348 * section while running on one of those CPUs have since exited their RCU 2349 * read-side critical section. Some other CPU is reporting this fact with 2350 * the specified rcu_node structure's ->lock held and interrupts disabled. 2351 * This function therefore goes up the tree of rcu_node structures, 2352 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2353 * the leaf rcu_node structure's ->qsmaskinit field has already been 2354 * updated. 2355 * 2356 * This function does check that the specified rcu_node structure has 2357 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2358 * prematurely. That said, invoking it after the fact will cost you 2359 * a needless lock acquisition. So once it has done its work, don't 2360 * invoke it again. 2361 */ 2362 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2363 { 2364 long mask; 2365 struct rcu_node *rnp = rnp_leaf; 2366 2367 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2368 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2369 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2370 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2371 return; 2372 for (;;) { 2373 mask = rnp->grpmask; 2374 rnp = rnp->parent; 2375 if (!rnp) 2376 break; 2377 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2378 rnp->qsmaskinit &= ~mask; 2379 /* Between grace periods, so better already be zero! */ 2380 WARN_ON_ONCE(rnp->qsmask); 2381 if (rnp->qsmaskinit) { 2382 raw_spin_unlock_rcu_node(rnp); 2383 /* irqs remain disabled. */ 2384 return; 2385 } 2386 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2387 } 2388 } 2389 2390 /* 2391 * The CPU has been completely removed, and some other CPU is reporting 2392 * this fact from process context. Do the remainder of the cleanup. 2393 * There can only be one CPU hotplug operation at a time, so no need for 2394 * explicit locking. 2395 */ 2396 int rcutree_dead_cpu(unsigned int cpu) 2397 { 2398 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2399 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2400 2401 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2402 return 0; 2403 2404 /* Adjust any no-longer-needed kthreads. */ 2405 rcu_boost_kthread_setaffinity(rnp, -1); 2406 /* Do any needed no-CB deferred wakeups from this CPU. */ 2407 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2408 return 0; 2409 } 2410 2411 /* 2412 * Invoke any RCU callbacks that have made it to the end of their grace 2413 * period. Thottle as specified by rdp->blimit. 2414 */ 2415 static void rcu_do_batch(struct rcu_data *rdp) 2416 { 2417 unsigned long flags; 2418 struct rcu_head *rhp; 2419 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2420 long bl, count; 2421 2422 /* If no callbacks are ready, just return. */ 2423 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2424 trace_rcu_batch_start(rcu_state.name, 2425 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2426 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2427 trace_rcu_batch_end(rcu_state.name, 0, 2428 !rcu_segcblist_empty(&rdp->cblist), 2429 need_resched(), is_idle_task(current), 2430 rcu_is_callbacks_kthread()); 2431 return; 2432 } 2433 2434 /* 2435 * Extract the list of ready callbacks, disabling to prevent 2436 * races with call_rcu() from interrupt handlers. Leave the 2437 * callback counts, as rcu_barrier() needs to be conservative. 2438 */ 2439 local_irq_save(flags); 2440 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2441 bl = rdp->blimit; 2442 trace_rcu_batch_start(rcu_state.name, 2443 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2444 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2445 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2446 local_irq_restore(flags); 2447 2448 /* Invoke callbacks. */ 2449 rhp = rcu_cblist_dequeue(&rcl); 2450 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2451 debug_rcu_head_unqueue(rhp); 2452 if (__rcu_reclaim(rcu_state.name, rhp)) 2453 rcu_cblist_dequeued_lazy(&rcl); 2454 /* 2455 * Stop only if limit reached and CPU has something to do. 2456 * Note: The rcl structure counts down from zero. 2457 */ 2458 if (-rcl.len >= bl && 2459 (need_resched() || 2460 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2461 break; 2462 } 2463 2464 local_irq_save(flags); 2465 count = -rcl.len; 2466 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2467 is_idle_task(current), rcu_is_callbacks_kthread()); 2468 2469 /* Update counts and requeue any remaining callbacks. */ 2470 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2471 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2472 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2473 2474 /* Reinstate batch limit if we have worked down the excess. */ 2475 count = rcu_segcblist_n_cbs(&rdp->cblist); 2476 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2477 rdp->blimit = blimit; 2478 2479 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2480 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2481 rdp->qlen_last_fqs_check = 0; 2482 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2483 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2484 rdp->qlen_last_fqs_check = count; 2485 2486 /* 2487 * The following usually indicates a double call_rcu(). To track 2488 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2489 */ 2490 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2491 2492 local_irq_restore(flags); 2493 2494 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2495 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2496 invoke_rcu_core(); 2497 } 2498 2499 /* 2500 * Check to see if this CPU is in a non-context-switch quiescent state 2501 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2502 * Also schedule RCU core processing. 2503 * 2504 * This function must be called from hardirq context. It is normally 2505 * invoked from the scheduling-clock interrupt. 2506 */ 2507 void rcu_check_callbacks(int user) 2508 { 2509 trace_rcu_utilization(TPS("Start scheduler-tick")); 2510 raw_cpu_inc(rcu_data.ticks_this_gp); 2511 /* The load-acquire pairs with the store-release setting to true. */ 2512 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2513 /* Idle and userspace execution already are quiescent states. */ 2514 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2515 set_tsk_need_resched(current); 2516 set_preempt_need_resched(); 2517 } 2518 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2519 } 2520 rcu_flavor_check_callbacks(user); 2521 if (rcu_pending()) 2522 invoke_rcu_core(); 2523 2524 trace_rcu_utilization(TPS("End scheduler-tick")); 2525 } 2526 2527 /* 2528 * Scan the leaf rcu_node structures, processing dyntick state for any that 2529 * have not yet encountered a quiescent state, using the function specified. 2530 * Also initiate boosting for any threads blocked on the root rcu_node. 2531 * 2532 * The caller must have suppressed start of new grace periods. 2533 */ 2534 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2535 { 2536 int cpu; 2537 unsigned long flags; 2538 unsigned long mask; 2539 struct rcu_node *rnp; 2540 2541 rcu_for_each_leaf_node(rnp) { 2542 cond_resched_tasks_rcu_qs(); 2543 mask = 0; 2544 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2545 if (rnp->qsmask == 0) { 2546 if (!IS_ENABLED(CONFIG_PREEMPT) || 2547 rcu_preempt_blocked_readers_cgp(rnp)) { 2548 /* 2549 * No point in scanning bits because they 2550 * are all zero. But we might need to 2551 * priority-boost blocked readers. 2552 */ 2553 rcu_initiate_boost(rnp, flags); 2554 /* rcu_initiate_boost() releases rnp->lock */ 2555 continue; 2556 } 2557 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2558 continue; 2559 } 2560 for_each_leaf_node_possible_cpu(rnp, cpu) { 2561 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2562 if ((rnp->qsmask & bit) != 0) { 2563 if (f(per_cpu_ptr(&rcu_data, cpu))) 2564 mask |= bit; 2565 } 2566 } 2567 if (mask != 0) { 2568 /* Idle/offline CPUs, report (releases rnp->lock). */ 2569 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2570 } else { 2571 /* Nothing to do here, so just drop the lock. */ 2572 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2573 } 2574 } 2575 } 2576 2577 /* 2578 * Force quiescent states on reluctant CPUs, and also detect which 2579 * CPUs are in dyntick-idle mode. 2580 */ 2581 static void force_quiescent_state(void) 2582 { 2583 unsigned long flags; 2584 bool ret; 2585 struct rcu_node *rnp; 2586 struct rcu_node *rnp_old = NULL; 2587 2588 /* Funnel through hierarchy to reduce memory contention. */ 2589 rnp = __this_cpu_read(rcu_data.mynode); 2590 for (; rnp != NULL; rnp = rnp->parent) { 2591 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2592 !raw_spin_trylock(&rnp->fqslock); 2593 if (rnp_old != NULL) 2594 raw_spin_unlock(&rnp_old->fqslock); 2595 if (ret) 2596 return; 2597 rnp_old = rnp; 2598 } 2599 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2600 2601 /* Reached the root of the rcu_node tree, acquire lock. */ 2602 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2603 raw_spin_unlock(&rnp_old->fqslock); 2604 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2605 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2606 return; /* Someone beat us to it. */ 2607 } 2608 WRITE_ONCE(rcu_state.gp_flags, 2609 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2610 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2611 rcu_gp_kthread_wake(); 2612 } 2613 2614 /* 2615 * This function checks for grace-period requests that fail to motivate 2616 * RCU to come out of its idle mode. 2617 */ 2618 void 2619 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp, 2620 const unsigned long gpssdelay) 2621 { 2622 unsigned long flags; 2623 unsigned long j; 2624 struct rcu_node *rnp_root = rcu_get_root(); 2625 static atomic_t warned = ATOMIC_INIT(0); 2626 2627 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() || 2628 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed)) 2629 return; 2630 j = jiffies; /* Expensive access, and in common case don't get here. */ 2631 if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2632 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2633 atomic_read(&warned)) 2634 return; 2635 2636 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2637 j = jiffies; 2638 if (rcu_gp_in_progress() || 2639 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2640 time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) || 2641 time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) || 2642 atomic_read(&warned)) { 2643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2644 return; 2645 } 2646 /* Hold onto the leaf lock to make others see warned==1. */ 2647 2648 if (rnp_root != rnp) 2649 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 2650 j = jiffies; 2651 if (rcu_gp_in_progress() || 2652 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) || 2653 time_before(j, rcu_state.gp_req_activity + gpssdelay) || 2654 time_before(j, rcu_state.gp_activity + gpssdelay) || 2655 atomic_xchg(&warned, 1)) { 2656 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ 2657 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2658 return; 2659 } 2660 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n", 2661 __func__, (long)READ_ONCE(rcu_state.gp_seq), 2662 (long)READ_ONCE(rnp_root->gp_seq_needed), 2663 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity, 2664 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name, 2665 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL); 2666 WARN_ON(1); 2667 if (rnp_root != rnp) 2668 raw_spin_unlock_rcu_node(rnp_root); 2669 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2670 } 2671 2672 /* 2673 * Do a forward-progress check for rcutorture. This is normally invoked 2674 * due to an OOM event. The argument "j" gives the time period during 2675 * which rcutorture would like progress to have been made. 2676 */ 2677 void rcu_fwd_progress_check(unsigned long j) 2678 { 2679 unsigned long cbs; 2680 int cpu; 2681 unsigned long max_cbs = 0; 2682 int max_cpu = -1; 2683 struct rcu_data *rdp; 2684 2685 if (rcu_gp_in_progress()) { 2686 pr_info("%s: GP age %lu jiffies\n", 2687 __func__, jiffies - rcu_state.gp_start); 2688 show_rcu_gp_kthreads(); 2689 } else { 2690 pr_info("%s: Last GP end %lu jiffies ago\n", 2691 __func__, jiffies - rcu_state.gp_end); 2692 preempt_disable(); 2693 rdp = this_cpu_ptr(&rcu_data); 2694 rcu_check_gp_start_stall(rdp->mynode, rdp, j); 2695 preempt_enable(); 2696 } 2697 for_each_possible_cpu(cpu) { 2698 cbs = rcu_get_n_cbs_cpu(cpu); 2699 if (!cbs) 2700 continue; 2701 if (max_cpu < 0) 2702 pr_info("%s: callbacks", __func__); 2703 pr_cont(" %d: %lu", cpu, cbs); 2704 if (cbs <= max_cbs) 2705 continue; 2706 max_cbs = cbs; 2707 max_cpu = cpu; 2708 } 2709 if (max_cpu >= 0) 2710 pr_cont("\n"); 2711 } 2712 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check); 2713 2714 /* 2715 * This does the RCU core processing work for the specified rcu_data 2716 * structures. This may be called only from the CPU to whom the rdp 2717 * belongs. 2718 */ 2719 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2720 { 2721 unsigned long flags; 2722 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2723 struct rcu_node *rnp = rdp->mynode; 2724 2725 if (cpu_is_offline(smp_processor_id())) 2726 return; 2727 trace_rcu_utilization(TPS("Start RCU core")); 2728 WARN_ON_ONCE(!rdp->beenonline); 2729 2730 /* Report any deferred quiescent states if preemption enabled. */ 2731 if (!(preempt_count() & PREEMPT_MASK)) { 2732 rcu_preempt_deferred_qs(current); 2733 } else if (rcu_preempt_need_deferred_qs(current)) { 2734 set_tsk_need_resched(current); 2735 set_preempt_need_resched(); 2736 } 2737 2738 /* Update RCU state based on any recent quiescent states. */ 2739 rcu_check_quiescent_state(rdp); 2740 2741 /* No grace period and unregistered callbacks? */ 2742 if (!rcu_gp_in_progress() && 2743 rcu_segcblist_is_enabled(&rdp->cblist)) { 2744 local_irq_save(flags); 2745 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2746 rcu_accelerate_cbs_unlocked(rnp, rdp); 2747 local_irq_restore(flags); 2748 } 2749 2750 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2751 2752 /* If there are callbacks ready, invoke them. */ 2753 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2754 invoke_rcu_callbacks(rdp); 2755 2756 /* Do any needed deferred wakeups of rcuo kthreads. */ 2757 do_nocb_deferred_wakeup(rdp); 2758 trace_rcu_utilization(TPS("End RCU core")); 2759 } 2760 2761 /* 2762 * Schedule RCU callback invocation. If the running implementation of RCU 2763 * does not support RCU priority boosting, just do a direct call, otherwise 2764 * wake up the per-CPU kernel kthread. Note that because we are running 2765 * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task 2766 * cannot disappear out from under us. 2767 */ 2768 static void invoke_rcu_callbacks(struct rcu_data *rdp) 2769 { 2770 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2771 return; 2772 if (likely(!rcu_state.boost)) { 2773 rcu_do_batch(rdp); 2774 return; 2775 } 2776 invoke_rcu_callbacks_kthread(); 2777 } 2778 2779 static void invoke_rcu_core(void) 2780 { 2781 if (cpu_online(smp_processor_id())) 2782 raise_softirq(RCU_SOFTIRQ); 2783 } 2784 2785 /* 2786 * Handle any core-RCU processing required by a call_rcu() invocation. 2787 */ 2788 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2789 unsigned long flags) 2790 { 2791 /* 2792 * If called from an extended quiescent state, invoke the RCU 2793 * core in order to force a re-evaluation of RCU's idleness. 2794 */ 2795 if (!rcu_is_watching()) 2796 invoke_rcu_core(); 2797 2798 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2799 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2800 return; 2801 2802 /* 2803 * Force the grace period if too many callbacks or too long waiting. 2804 * Enforce hysteresis, and don't invoke force_quiescent_state() 2805 * if some other CPU has recently done so. Also, don't bother 2806 * invoking force_quiescent_state() if the newly enqueued callback 2807 * is the only one waiting for a grace period to complete. 2808 */ 2809 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2810 rdp->qlen_last_fqs_check + qhimark)) { 2811 2812 /* Are we ignoring a completed grace period? */ 2813 note_gp_changes(rdp); 2814 2815 /* Start a new grace period if one not already started. */ 2816 if (!rcu_gp_in_progress()) { 2817 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2818 } else { 2819 /* Give the grace period a kick. */ 2820 rdp->blimit = LONG_MAX; 2821 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2822 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2823 force_quiescent_state(); 2824 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2825 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2826 } 2827 } 2828 } 2829 2830 /* 2831 * RCU callback function to leak a callback. 2832 */ 2833 static void rcu_leak_callback(struct rcu_head *rhp) 2834 { 2835 } 2836 2837 /* 2838 * Helper function for call_rcu() and friends. The cpu argument will 2839 * normally be -1, indicating "currently running CPU". It may specify 2840 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2841 * is expected to specify a CPU. 2842 */ 2843 static void 2844 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy) 2845 { 2846 unsigned long flags; 2847 struct rcu_data *rdp; 2848 2849 /* Misaligned rcu_head! */ 2850 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2851 2852 if (debug_rcu_head_queue(head)) { 2853 /* 2854 * Probable double call_rcu(), so leak the callback. 2855 * Use rcu:rcu_callback trace event to find the previous 2856 * time callback was passed to __call_rcu(). 2857 */ 2858 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 2859 head, head->func); 2860 WRITE_ONCE(head->func, rcu_leak_callback); 2861 return; 2862 } 2863 head->func = func; 2864 head->next = NULL; 2865 local_irq_save(flags); 2866 rdp = this_cpu_ptr(&rcu_data); 2867 2868 /* Add the callback to our list. */ 2869 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 2870 int offline; 2871 2872 if (cpu != -1) 2873 rdp = per_cpu_ptr(&rcu_data, cpu); 2874 if (likely(rdp->mynode)) { 2875 /* Post-boot, so this should be for a no-CBs CPU. */ 2876 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2877 WARN_ON_ONCE(offline); 2878 /* Offline CPU, _call_rcu() illegal, leak callback. */ 2879 local_irq_restore(flags); 2880 return; 2881 } 2882 /* 2883 * Very early boot, before rcu_init(). Initialize if needed 2884 * and then drop through to queue the callback. 2885 */ 2886 WARN_ON_ONCE(cpu != -1); 2887 WARN_ON_ONCE(!rcu_is_watching()); 2888 if (rcu_segcblist_empty(&rdp->cblist)) 2889 rcu_segcblist_init(&rdp->cblist); 2890 } 2891 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2892 if (!lazy) 2893 rcu_idle_count_callbacks_posted(); 2894 2895 if (__is_kfree_rcu_offset((unsigned long)func)) 2896 trace_rcu_kfree_callback(rcu_state.name, head, 2897 (unsigned long)func, 2898 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2899 rcu_segcblist_n_cbs(&rdp->cblist)); 2900 else 2901 trace_rcu_callback(rcu_state.name, head, 2902 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2903 rcu_segcblist_n_cbs(&rdp->cblist)); 2904 2905 /* Go handle any RCU core processing required. */ 2906 __call_rcu_core(rdp, head, flags); 2907 local_irq_restore(flags); 2908 } 2909 2910 /** 2911 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2912 * @head: structure to be used for queueing the RCU updates. 2913 * @func: actual callback function to be invoked after the grace period 2914 * 2915 * The callback function will be invoked some time after a full grace 2916 * period elapses, in other words after all pre-existing RCU read-side 2917 * critical sections have completed. However, the callback function 2918 * might well execute concurrently with RCU read-side critical sections 2919 * that started after call_rcu() was invoked. RCU read-side critical 2920 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2921 * may be nested. In addition, regions of code across which interrupts, 2922 * preemption, or softirqs have been disabled also serve as RCU read-side 2923 * critical sections. This includes hardware interrupt handlers, softirq 2924 * handlers, and NMI handlers. 2925 * 2926 * Note that all CPUs must agree that the grace period extended beyond 2927 * all pre-existing RCU read-side critical section. On systems with more 2928 * than one CPU, this means that when "func()" is invoked, each CPU is 2929 * guaranteed to have executed a full memory barrier since the end of its 2930 * last RCU read-side critical section whose beginning preceded the call 2931 * to call_rcu(). It also means that each CPU executing an RCU read-side 2932 * critical section that continues beyond the start of "func()" must have 2933 * executed a memory barrier after the call_rcu() but before the beginning 2934 * of that RCU read-side critical section. Note that these guarantees 2935 * include CPUs that are offline, idle, or executing in user mode, as 2936 * well as CPUs that are executing in the kernel. 2937 * 2938 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2939 * resulting RCU callback function "func()", then both CPU A and CPU B are 2940 * guaranteed to execute a full memory barrier during the time interval 2941 * between the call to call_rcu() and the invocation of "func()" -- even 2942 * if CPU A and CPU B are the same CPU (but again only if the system has 2943 * more than one CPU). 2944 */ 2945 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2946 { 2947 __call_rcu(head, func, -1, 0); 2948 } 2949 EXPORT_SYMBOL_GPL(call_rcu); 2950 2951 /* 2952 * Queue an RCU callback for lazy invocation after a grace period. 2953 * This will likely be later named something like "call_rcu_lazy()", 2954 * but this change will require some way of tagging the lazy RCU 2955 * callbacks in the list of pending callbacks. Until then, this 2956 * function may only be called from __kfree_rcu(). 2957 */ 2958 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2959 { 2960 __call_rcu(head, func, -1, 1); 2961 } 2962 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2963 2964 /** 2965 * get_state_synchronize_rcu - Snapshot current RCU state 2966 * 2967 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2968 * to determine whether or not a full grace period has elapsed in the 2969 * meantime. 2970 */ 2971 unsigned long get_state_synchronize_rcu(void) 2972 { 2973 /* 2974 * Any prior manipulation of RCU-protected data must happen 2975 * before the load from ->gp_seq. 2976 */ 2977 smp_mb(); /* ^^^ */ 2978 return rcu_seq_snap(&rcu_state.gp_seq); 2979 } 2980 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2981 2982 /** 2983 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2984 * 2985 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2986 * 2987 * If a full RCU grace period has elapsed since the earlier call to 2988 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2989 * synchronize_rcu() to wait for a full grace period. 2990 * 2991 * Yes, this function does not take counter wrap into account. But 2992 * counter wrap is harmless. If the counter wraps, we have waited for 2993 * more than 2 billion grace periods (and way more on a 64-bit system!), 2994 * so waiting for one additional grace period should be just fine. 2995 */ 2996 void cond_synchronize_rcu(unsigned long oldstate) 2997 { 2998 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2999 synchronize_rcu(); 3000 else 3001 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3002 } 3003 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3004 3005 /* 3006 * Check to see if there is any immediate RCU-related work to be done by 3007 * the current CPU, returning 1 if so and zero otherwise. The checks are 3008 * in order of increasing expense: checks that can be carried out against 3009 * CPU-local state are performed first. However, we must check for CPU 3010 * stalls first, else we might not get a chance. 3011 */ 3012 static int rcu_pending(void) 3013 { 3014 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3015 struct rcu_node *rnp = rdp->mynode; 3016 3017 /* Check for CPU stalls, if enabled. */ 3018 check_cpu_stall(rdp); 3019 3020 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3021 if (rcu_nohz_full_cpu()) 3022 return 0; 3023 3024 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3025 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3026 return 1; 3027 3028 /* Does this CPU have callbacks ready to invoke? */ 3029 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3030 return 1; 3031 3032 /* Has RCU gone idle with this CPU needing another grace period? */ 3033 if (!rcu_gp_in_progress() && 3034 rcu_segcblist_is_enabled(&rdp->cblist) && 3035 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3036 return 1; 3037 3038 /* Have RCU grace period completed or started? */ 3039 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3040 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3041 return 1; 3042 3043 /* Does this CPU need a deferred NOCB wakeup? */ 3044 if (rcu_nocb_need_deferred_wakeup(rdp)) 3045 return 1; 3046 3047 /* nothing to do */ 3048 return 0; 3049 } 3050 3051 /* 3052 * Return true if the specified CPU has any callback. If all_lazy is 3053 * non-NULL, store an indication of whether all callbacks are lazy. 3054 * (If there are no callbacks, all of them are deemed to be lazy.) 3055 */ 3056 static bool rcu_cpu_has_callbacks(bool *all_lazy) 3057 { 3058 bool al = true; 3059 bool hc = false; 3060 struct rcu_data *rdp; 3061 3062 rdp = this_cpu_ptr(&rcu_data); 3063 if (!rcu_segcblist_empty(&rdp->cblist)) { 3064 hc = true; 3065 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist)) 3066 al = false; 3067 } 3068 if (all_lazy) 3069 *all_lazy = al; 3070 return hc; 3071 } 3072 3073 /* 3074 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3075 * the compiler is expected to optimize this away. 3076 */ 3077 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3078 { 3079 trace_rcu_barrier(rcu_state.name, s, cpu, 3080 atomic_read(&rcu_state.barrier_cpu_count), done); 3081 } 3082 3083 /* 3084 * RCU callback function for rcu_barrier(). If we are last, wake 3085 * up the task executing rcu_barrier(). 3086 */ 3087 static void rcu_barrier_callback(struct rcu_head *rhp) 3088 { 3089 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3090 rcu_barrier_trace(TPS("LastCB"), -1, 3091 rcu_state.barrier_sequence); 3092 complete(&rcu_state.barrier_completion); 3093 } else { 3094 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 3095 } 3096 } 3097 3098 /* 3099 * Called with preemption disabled, and from cross-cpu IRQ context. 3100 */ 3101 static void rcu_barrier_func(void *unused) 3102 { 3103 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 3104 3105 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3106 rdp->barrier_head.func = rcu_barrier_callback; 3107 debug_rcu_head_queue(&rdp->barrier_head); 3108 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3109 atomic_inc(&rcu_state.barrier_cpu_count); 3110 } else { 3111 debug_rcu_head_unqueue(&rdp->barrier_head); 3112 rcu_barrier_trace(TPS("IRQNQ"), -1, 3113 rcu_state.barrier_sequence); 3114 } 3115 } 3116 3117 /** 3118 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3119 * 3120 * Note that this primitive does not necessarily wait for an RCU grace period 3121 * to complete. For example, if there are no RCU callbacks queued anywhere 3122 * in the system, then rcu_barrier() is within its rights to return 3123 * immediately, without waiting for anything, much less an RCU grace period. 3124 */ 3125 void rcu_barrier(void) 3126 { 3127 int cpu; 3128 struct rcu_data *rdp; 3129 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3130 3131 rcu_barrier_trace(TPS("Begin"), -1, s); 3132 3133 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3134 mutex_lock(&rcu_state.barrier_mutex); 3135 3136 /* Did someone else do our work for us? */ 3137 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3138 rcu_barrier_trace(TPS("EarlyExit"), -1, 3139 rcu_state.barrier_sequence); 3140 smp_mb(); /* caller's subsequent code after above check. */ 3141 mutex_unlock(&rcu_state.barrier_mutex); 3142 return; 3143 } 3144 3145 /* Mark the start of the barrier operation. */ 3146 rcu_seq_start(&rcu_state.barrier_sequence); 3147 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3148 3149 /* 3150 * Initialize the count to one rather than to zero in order to 3151 * avoid a too-soon return to zero in case of a short grace period 3152 * (or preemption of this task). Exclude CPU-hotplug operations 3153 * to ensure that no offline CPU has callbacks queued. 3154 */ 3155 init_completion(&rcu_state.barrier_completion); 3156 atomic_set(&rcu_state.barrier_cpu_count, 1); 3157 get_online_cpus(); 3158 3159 /* 3160 * Force each CPU with callbacks to register a new callback. 3161 * When that callback is invoked, we will know that all of the 3162 * corresponding CPU's preceding callbacks have been invoked. 3163 */ 3164 for_each_possible_cpu(cpu) { 3165 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3166 continue; 3167 rdp = per_cpu_ptr(&rcu_data, cpu); 3168 if (rcu_is_nocb_cpu(cpu)) { 3169 if (!rcu_nocb_cpu_needs_barrier(cpu)) { 3170 rcu_barrier_trace(TPS("OfflineNoCB"), cpu, 3171 rcu_state.barrier_sequence); 3172 } else { 3173 rcu_barrier_trace(TPS("OnlineNoCB"), cpu, 3174 rcu_state.barrier_sequence); 3175 smp_mb__before_atomic(); 3176 atomic_inc(&rcu_state.barrier_cpu_count); 3177 __call_rcu(&rdp->barrier_head, 3178 rcu_barrier_callback, cpu, 0); 3179 } 3180 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3181 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3182 rcu_state.barrier_sequence); 3183 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 3184 } else { 3185 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3186 rcu_state.barrier_sequence); 3187 } 3188 } 3189 put_online_cpus(); 3190 3191 /* 3192 * Now that we have an rcu_barrier_callback() callback on each 3193 * CPU, and thus each counted, remove the initial count. 3194 */ 3195 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 3196 complete(&rcu_state.barrier_completion); 3197 3198 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3199 wait_for_completion(&rcu_state.barrier_completion); 3200 3201 /* Mark the end of the barrier operation. */ 3202 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3203 rcu_seq_end(&rcu_state.barrier_sequence); 3204 3205 /* Other rcu_barrier() invocations can now safely proceed. */ 3206 mutex_unlock(&rcu_state.barrier_mutex); 3207 } 3208 EXPORT_SYMBOL_GPL(rcu_barrier); 3209 3210 /* 3211 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3212 * first CPU in a given leaf rcu_node structure coming online. The caller 3213 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3214 * disabled. 3215 */ 3216 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3217 { 3218 long mask; 3219 long oldmask; 3220 struct rcu_node *rnp = rnp_leaf; 3221 3222 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3223 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3224 for (;;) { 3225 mask = rnp->grpmask; 3226 rnp = rnp->parent; 3227 if (rnp == NULL) 3228 return; 3229 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3230 oldmask = rnp->qsmaskinit; 3231 rnp->qsmaskinit |= mask; 3232 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3233 if (oldmask) 3234 return; 3235 } 3236 } 3237 3238 /* 3239 * Do boot-time initialization of a CPU's per-CPU RCU data. 3240 */ 3241 static void __init 3242 rcu_boot_init_percpu_data(int cpu) 3243 { 3244 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3245 3246 /* Set up local state, ensuring consistent view of global state. */ 3247 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3248 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3249 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3250 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3251 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3252 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3253 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3254 rdp->cpu = cpu; 3255 rcu_boot_init_nocb_percpu_data(rdp); 3256 } 3257 3258 /* 3259 * Invoked early in the CPU-online process, when pretty much all services 3260 * are available. The incoming CPU is not present. 3261 * 3262 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3263 * offline event can be happening at a given time. Note also that we can 3264 * accept some slop in the rsp->gp_seq access due to the fact that this 3265 * CPU cannot possibly have any RCU callbacks in flight yet. 3266 */ 3267 int rcutree_prepare_cpu(unsigned int cpu) 3268 { 3269 unsigned long flags; 3270 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3271 struct rcu_node *rnp = rcu_get_root(); 3272 3273 /* Set up local state, ensuring consistent view of global state. */ 3274 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3275 rdp->qlen_last_fqs_check = 0; 3276 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3277 rdp->blimit = blimit; 3278 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3279 !init_nocb_callback_list(rdp)) 3280 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3281 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3282 rcu_dynticks_eqs_online(); 3283 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3284 3285 /* 3286 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3287 * propagation up the rcu_node tree will happen at the beginning 3288 * of the next grace period. 3289 */ 3290 rnp = rdp->mynode; 3291 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3292 rdp->beenonline = true; /* We have now been online. */ 3293 rdp->gp_seq = rnp->gp_seq; 3294 rdp->gp_seq_needed = rnp->gp_seq; 3295 rdp->cpu_no_qs.b.norm = true; 3296 rdp->core_needs_qs = false; 3297 rdp->rcu_iw_pending = false; 3298 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3299 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3300 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3301 rcu_prepare_kthreads(cpu); 3302 rcu_spawn_all_nocb_kthreads(cpu); 3303 3304 return 0; 3305 } 3306 3307 /* 3308 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3309 */ 3310 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3311 { 3312 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3313 3314 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3315 } 3316 3317 /* 3318 * Near the end of the CPU-online process. Pretty much all services 3319 * enabled, and the CPU is now very much alive. 3320 */ 3321 int rcutree_online_cpu(unsigned int cpu) 3322 { 3323 unsigned long flags; 3324 struct rcu_data *rdp; 3325 struct rcu_node *rnp; 3326 3327 rdp = per_cpu_ptr(&rcu_data, cpu); 3328 rnp = rdp->mynode; 3329 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3330 rnp->ffmask |= rdp->grpmask; 3331 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3332 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3333 srcu_online_cpu(cpu); 3334 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3335 return 0; /* Too early in boot for scheduler work. */ 3336 sync_sched_exp_online_cleanup(cpu); 3337 rcutree_affinity_setting(cpu, -1); 3338 return 0; 3339 } 3340 3341 /* 3342 * Near the beginning of the process. The CPU is still very much alive 3343 * with pretty much all services enabled. 3344 */ 3345 int rcutree_offline_cpu(unsigned int cpu) 3346 { 3347 unsigned long flags; 3348 struct rcu_data *rdp; 3349 struct rcu_node *rnp; 3350 3351 rdp = per_cpu_ptr(&rcu_data, cpu); 3352 rnp = rdp->mynode; 3353 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3354 rnp->ffmask &= ~rdp->grpmask; 3355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3356 3357 rcutree_affinity_setting(cpu, cpu); 3358 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3359 srcu_offline_cpu(cpu); 3360 return 0; 3361 } 3362 3363 static DEFINE_PER_CPU(int, rcu_cpu_started); 3364 3365 /* 3366 * Mark the specified CPU as being online so that subsequent grace periods 3367 * (both expedited and normal) will wait on it. Note that this means that 3368 * incoming CPUs are not allowed to use RCU read-side critical sections 3369 * until this function is called. Failing to observe this restriction 3370 * will result in lockdep splats. 3371 * 3372 * Note that this function is special in that it is invoked directly 3373 * from the incoming CPU rather than from the cpuhp_step mechanism. 3374 * This is because this function must be invoked at a precise location. 3375 */ 3376 void rcu_cpu_starting(unsigned int cpu) 3377 { 3378 unsigned long flags; 3379 unsigned long mask; 3380 int nbits; 3381 unsigned long oldmask; 3382 struct rcu_data *rdp; 3383 struct rcu_node *rnp; 3384 3385 if (per_cpu(rcu_cpu_started, cpu)) 3386 return; 3387 3388 per_cpu(rcu_cpu_started, cpu) = 1; 3389 3390 rdp = per_cpu_ptr(&rcu_data, cpu); 3391 rnp = rdp->mynode; 3392 mask = rdp->grpmask; 3393 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3394 rnp->qsmaskinitnext |= mask; 3395 oldmask = rnp->expmaskinitnext; 3396 rnp->expmaskinitnext |= mask; 3397 oldmask ^= rnp->expmaskinitnext; 3398 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3399 /* Allow lockless access for expedited grace periods. */ 3400 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3401 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3402 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3403 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3404 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3405 /* Report QS -after- changing ->qsmaskinitnext! */ 3406 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3407 } else { 3408 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3409 } 3410 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3411 } 3412 3413 #ifdef CONFIG_HOTPLUG_CPU 3414 /* 3415 * The outgoing function has no further need of RCU, so remove it from 3416 * the rcu_node tree's ->qsmaskinitnext bit masks. 3417 * 3418 * Note that this function is special in that it is invoked directly 3419 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3420 * This is because this function must be invoked at a precise location. 3421 */ 3422 void rcu_report_dead(unsigned int cpu) 3423 { 3424 unsigned long flags; 3425 unsigned long mask; 3426 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3427 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3428 3429 /* QS for any half-done expedited grace period. */ 3430 preempt_disable(); 3431 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3432 preempt_enable(); 3433 rcu_preempt_deferred_qs(current); 3434 3435 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3436 mask = rdp->grpmask; 3437 raw_spin_lock(&rcu_state.ofl_lock); 3438 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3439 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3440 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3441 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3442 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3443 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3444 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3445 } 3446 rnp->qsmaskinitnext &= ~mask; 3447 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3448 raw_spin_unlock(&rcu_state.ofl_lock); 3449 3450 per_cpu(rcu_cpu_started, cpu) = 0; 3451 } 3452 3453 /* 3454 * The outgoing CPU has just passed through the dying-idle state, and we 3455 * are being invoked from the CPU that was IPIed to continue the offline 3456 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3457 */ 3458 void rcutree_migrate_callbacks(int cpu) 3459 { 3460 unsigned long flags; 3461 struct rcu_data *my_rdp; 3462 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3463 struct rcu_node *rnp_root = rcu_get_root(); 3464 bool needwake; 3465 3466 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3467 return; /* No callbacks to migrate. */ 3468 3469 local_irq_save(flags); 3470 my_rdp = this_cpu_ptr(&rcu_data); 3471 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3472 local_irq_restore(flags); 3473 return; 3474 } 3475 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3476 /* Leverage recent GPs and set GP for new callbacks. */ 3477 needwake = rcu_advance_cbs(rnp_root, rdp) || 3478 rcu_advance_cbs(rnp_root, my_rdp); 3479 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3480 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3481 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3482 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3483 if (needwake) 3484 rcu_gp_kthread_wake(); 3485 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3486 !rcu_segcblist_empty(&rdp->cblist), 3487 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3488 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3489 rcu_segcblist_first_cb(&rdp->cblist)); 3490 } 3491 #endif 3492 3493 /* 3494 * On non-huge systems, use expedited RCU grace periods to make suspend 3495 * and hibernation run faster. 3496 */ 3497 static int rcu_pm_notify(struct notifier_block *self, 3498 unsigned long action, void *hcpu) 3499 { 3500 switch (action) { 3501 case PM_HIBERNATION_PREPARE: 3502 case PM_SUSPEND_PREPARE: 3503 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3504 rcu_expedite_gp(); 3505 break; 3506 case PM_POST_HIBERNATION: 3507 case PM_POST_SUSPEND: 3508 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3509 rcu_unexpedite_gp(); 3510 break; 3511 default: 3512 break; 3513 } 3514 return NOTIFY_OK; 3515 } 3516 3517 /* 3518 * Spawn the kthreads that handle RCU's grace periods. 3519 */ 3520 static int __init rcu_spawn_gp_kthread(void) 3521 { 3522 unsigned long flags; 3523 int kthread_prio_in = kthread_prio; 3524 struct rcu_node *rnp; 3525 struct sched_param sp; 3526 struct task_struct *t; 3527 3528 /* Force priority into range. */ 3529 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3530 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3531 kthread_prio = 2; 3532 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3533 kthread_prio = 1; 3534 else if (kthread_prio < 0) 3535 kthread_prio = 0; 3536 else if (kthread_prio > 99) 3537 kthread_prio = 99; 3538 3539 if (kthread_prio != kthread_prio_in) 3540 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3541 kthread_prio, kthread_prio_in); 3542 3543 rcu_scheduler_fully_active = 1; 3544 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3545 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3546 return 0; 3547 rnp = rcu_get_root(); 3548 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3549 rcu_state.gp_kthread = t; 3550 if (kthread_prio) { 3551 sp.sched_priority = kthread_prio; 3552 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3553 } 3554 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3555 wake_up_process(t); 3556 rcu_spawn_nocb_kthreads(); 3557 rcu_spawn_boost_kthreads(); 3558 return 0; 3559 } 3560 early_initcall(rcu_spawn_gp_kthread); 3561 3562 /* 3563 * This function is invoked towards the end of the scheduler's 3564 * initialization process. Before this is called, the idle task might 3565 * contain synchronous grace-period primitives (during which time, this idle 3566 * task is booting the system, and such primitives are no-ops). After this 3567 * function is called, any synchronous grace-period primitives are run as 3568 * expedited, with the requesting task driving the grace period forward. 3569 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3570 * runtime RCU functionality. 3571 */ 3572 void rcu_scheduler_starting(void) 3573 { 3574 WARN_ON(num_online_cpus() != 1); 3575 WARN_ON(nr_context_switches() > 0); 3576 rcu_test_sync_prims(); 3577 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3578 rcu_test_sync_prims(); 3579 } 3580 3581 /* 3582 * Helper function for rcu_init() that initializes the rcu_state structure. 3583 */ 3584 static void __init rcu_init_one(void) 3585 { 3586 static const char * const buf[] = RCU_NODE_NAME_INIT; 3587 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3588 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3589 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3590 3591 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3592 int cpustride = 1; 3593 int i; 3594 int j; 3595 struct rcu_node *rnp; 3596 3597 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3598 3599 /* Silence gcc 4.8 false positive about array index out of range. */ 3600 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3601 panic("rcu_init_one: rcu_num_lvls out of range"); 3602 3603 /* Initialize the level-tracking arrays. */ 3604 3605 for (i = 1; i < rcu_num_lvls; i++) 3606 rcu_state.level[i] = 3607 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3608 rcu_init_levelspread(levelspread, num_rcu_lvl); 3609 3610 /* Initialize the elements themselves, starting from the leaves. */ 3611 3612 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3613 cpustride *= levelspread[i]; 3614 rnp = rcu_state.level[i]; 3615 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3616 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3617 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3618 &rcu_node_class[i], buf[i]); 3619 raw_spin_lock_init(&rnp->fqslock); 3620 lockdep_set_class_and_name(&rnp->fqslock, 3621 &rcu_fqs_class[i], fqs[i]); 3622 rnp->gp_seq = rcu_state.gp_seq; 3623 rnp->gp_seq_needed = rcu_state.gp_seq; 3624 rnp->completedqs = rcu_state.gp_seq; 3625 rnp->qsmask = 0; 3626 rnp->qsmaskinit = 0; 3627 rnp->grplo = j * cpustride; 3628 rnp->grphi = (j + 1) * cpustride - 1; 3629 if (rnp->grphi >= nr_cpu_ids) 3630 rnp->grphi = nr_cpu_ids - 1; 3631 if (i == 0) { 3632 rnp->grpnum = 0; 3633 rnp->grpmask = 0; 3634 rnp->parent = NULL; 3635 } else { 3636 rnp->grpnum = j % levelspread[i - 1]; 3637 rnp->grpmask = BIT(rnp->grpnum); 3638 rnp->parent = rcu_state.level[i - 1] + 3639 j / levelspread[i - 1]; 3640 } 3641 rnp->level = i; 3642 INIT_LIST_HEAD(&rnp->blkd_tasks); 3643 rcu_init_one_nocb(rnp); 3644 init_waitqueue_head(&rnp->exp_wq[0]); 3645 init_waitqueue_head(&rnp->exp_wq[1]); 3646 init_waitqueue_head(&rnp->exp_wq[2]); 3647 init_waitqueue_head(&rnp->exp_wq[3]); 3648 spin_lock_init(&rnp->exp_lock); 3649 } 3650 } 3651 3652 init_swait_queue_head(&rcu_state.gp_wq); 3653 init_swait_queue_head(&rcu_state.expedited_wq); 3654 rnp = rcu_first_leaf_node(); 3655 for_each_possible_cpu(i) { 3656 while (i > rnp->grphi) 3657 rnp++; 3658 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3659 rcu_boot_init_percpu_data(i); 3660 } 3661 } 3662 3663 /* 3664 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3665 * replace the definitions in tree.h because those are needed to size 3666 * the ->node array in the rcu_state structure. 3667 */ 3668 static void __init rcu_init_geometry(void) 3669 { 3670 ulong d; 3671 int i; 3672 int rcu_capacity[RCU_NUM_LVLS]; 3673 3674 /* 3675 * Initialize any unspecified boot parameters. 3676 * The default values of jiffies_till_first_fqs and 3677 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3678 * value, which is a function of HZ, then adding one for each 3679 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3680 */ 3681 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3682 if (jiffies_till_first_fqs == ULONG_MAX) 3683 jiffies_till_first_fqs = d; 3684 if (jiffies_till_next_fqs == ULONG_MAX) 3685 jiffies_till_next_fqs = d; 3686 if (jiffies_till_sched_qs == ULONG_MAX) 3687 adjust_jiffies_till_sched_qs(); 3688 3689 /* If the compile-time values are accurate, just leave. */ 3690 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3691 nr_cpu_ids == NR_CPUS) 3692 return; 3693 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3694 rcu_fanout_leaf, nr_cpu_ids); 3695 3696 /* 3697 * The boot-time rcu_fanout_leaf parameter must be at least two 3698 * and cannot exceed the number of bits in the rcu_node masks. 3699 * Complain and fall back to the compile-time values if this 3700 * limit is exceeded. 3701 */ 3702 if (rcu_fanout_leaf < 2 || 3703 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3704 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3705 WARN_ON(1); 3706 return; 3707 } 3708 3709 /* 3710 * Compute number of nodes that can be handled an rcu_node tree 3711 * with the given number of levels. 3712 */ 3713 rcu_capacity[0] = rcu_fanout_leaf; 3714 for (i = 1; i < RCU_NUM_LVLS; i++) 3715 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3716 3717 /* 3718 * The tree must be able to accommodate the configured number of CPUs. 3719 * If this limit is exceeded, fall back to the compile-time values. 3720 */ 3721 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3722 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3723 WARN_ON(1); 3724 return; 3725 } 3726 3727 /* Calculate the number of levels in the tree. */ 3728 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3729 } 3730 rcu_num_lvls = i + 1; 3731 3732 /* Calculate the number of rcu_nodes at each level of the tree. */ 3733 for (i = 0; i < rcu_num_lvls; i++) { 3734 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3735 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3736 } 3737 3738 /* Calculate the total number of rcu_node structures. */ 3739 rcu_num_nodes = 0; 3740 for (i = 0; i < rcu_num_lvls; i++) 3741 rcu_num_nodes += num_rcu_lvl[i]; 3742 } 3743 3744 /* 3745 * Dump out the structure of the rcu_node combining tree associated 3746 * with the rcu_state structure. 3747 */ 3748 static void __init rcu_dump_rcu_node_tree(void) 3749 { 3750 int level = 0; 3751 struct rcu_node *rnp; 3752 3753 pr_info("rcu_node tree layout dump\n"); 3754 pr_info(" "); 3755 rcu_for_each_node_breadth_first(rnp) { 3756 if (rnp->level != level) { 3757 pr_cont("\n"); 3758 pr_info(" "); 3759 level = rnp->level; 3760 } 3761 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3762 } 3763 pr_cont("\n"); 3764 } 3765 3766 struct workqueue_struct *rcu_gp_wq; 3767 struct workqueue_struct *rcu_par_gp_wq; 3768 3769 void __init rcu_init(void) 3770 { 3771 int cpu; 3772 3773 rcu_early_boot_tests(); 3774 3775 rcu_bootup_announce(); 3776 rcu_init_geometry(); 3777 rcu_init_one(); 3778 if (dump_tree) 3779 rcu_dump_rcu_node_tree(); 3780 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3781 3782 /* 3783 * We don't need protection against CPU-hotplug here because 3784 * this is called early in boot, before either interrupts 3785 * or the scheduler are operational. 3786 */ 3787 pm_notifier(rcu_pm_notify, 0); 3788 for_each_online_cpu(cpu) { 3789 rcutree_prepare_cpu(cpu); 3790 rcu_cpu_starting(cpu); 3791 rcutree_online_cpu(cpu); 3792 } 3793 3794 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3795 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3796 WARN_ON(!rcu_gp_wq); 3797 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3798 WARN_ON(!rcu_par_gp_wq); 3799 srcu_init(); 3800 } 3801 3802 #include "tree_exp.h" 3803 #include "tree_plugin.h" 3804