1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 155 156 /* 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 158 * real-time priority(enabling/disabling) is controlled by 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 160 */ 161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 162 module_param(kthread_prio, int, 0444); 163 164 /* Delay in jiffies for grace-period initialization delays, debug only. */ 165 166 static int gp_preinit_delay; 167 module_param(gp_preinit_delay, int, 0444); 168 static int gp_init_delay; 169 module_param(gp_init_delay, int, 0444); 170 static int gp_cleanup_delay; 171 module_param(gp_cleanup_delay, int, 0444); 172 173 // Add delay to rcu_read_unlock() for strict grace periods. 174 static int rcu_unlock_delay; 175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 176 module_param(rcu_unlock_delay, int, 0444); 177 #endif 178 179 /* 180 * This rcu parameter is runtime-read-only. It reflects 181 * a minimum allowed number of objects which can be cached 182 * per-CPU. Object size is equal to one page. This value 183 * can be changed at boot time. 184 */ 185 static int rcu_min_cached_objs = 5; 186 module_param(rcu_min_cached_objs, int, 0444); 187 188 // A page shrinker can ask for pages to be freed to make them 189 // available for other parts of the system. This usually happens 190 // under low memory conditions, and in that case we should also 191 // defer page-cache filling for a short time period. 192 // 193 // The default value is 5 seconds, which is long enough to reduce 194 // interference with the shrinker while it asks other systems to 195 // drain their caches. 196 static int rcu_delay_page_cache_fill_msec = 5000; 197 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 198 199 /* Retrieve RCU kthreads priority for rcutorture */ 200 int rcu_get_gp_kthreads_prio(void) 201 { 202 return kthread_prio; 203 } 204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 205 206 /* 207 * Number of grace periods between delays, normalized by the duration of 208 * the delay. The longer the delay, the more the grace periods between 209 * each delay. The reason for this normalization is that it means that, 210 * for non-zero delays, the overall slowdown of grace periods is constant 211 * regardless of the duration of the delay. This arrangement balances 212 * the need for long delays to increase some race probabilities with the 213 * need for fast grace periods to increase other race probabilities. 214 */ 215 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 216 217 /* 218 * Compute the mask of online CPUs for the specified rcu_node structure. 219 * This will not be stable unless the rcu_node structure's ->lock is 220 * held, but the bit corresponding to the current CPU will be stable 221 * in most contexts. 222 */ 223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 224 { 225 return READ_ONCE(rnp->qsmaskinitnext); 226 } 227 228 /* 229 * Is the CPU corresponding to the specified rcu_data structure online 230 * from RCU's perspective? This perspective is given by that structure's 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 232 */ 233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 234 { 235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 236 } 237 238 /* 239 * Return true if an RCU grace period is in progress. The READ_ONCE()s 240 * permit this function to be invoked without holding the root rcu_node 241 * structure's ->lock, but of course results can be subject to change. 242 */ 243 static int rcu_gp_in_progress(void) 244 { 245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 246 } 247 248 /* 249 * Return the number of callbacks queued on the specified CPU. 250 * Handles both the nocbs and normal cases. 251 */ 252 static long rcu_get_n_cbs_cpu(int cpu) 253 { 254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 255 256 if (rcu_segcblist_is_enabled(&rdp->cblist)) 257 return rcu_segcblist_n_cbs(&rdp->cblist); 258 return 0; 259 } 260 261 void rcu_softirq_qs(void) 262 { 263 rcu_qs(); 264 rcu_preempt_deferred_qs(current); 265 rcu_tasks_qs(current, false); 266 } 267 268 /* 269 * Reset the current CPU's ->dynticks counter to indicate that the 270 * newly onlined CPU is no longer in an extended quiescent state. 271 * This will either leave the counter unchanged, or increment it 272 * to the next non-quiescent value. 273 * 274 * The non-atomic test/increment sequence works because the upper bits 275 * of the ->dynticks counter are manipulated only by the corresponding CPU, 276 * or when the corresponding CPU is offline. 277 */ 278 static void rcu_dynticks_eqs_online(void) 279 { 280 if (ct_dynticks() & RCU_DYNTICKS_IDX) 281 return; 282 ct_state_inc(RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Snapshot the ->dynticks counter with full ordering so as to allow 287 * stable comparison of this counter with past and future snapshots. 288 */ 289 static int rcu_dynticks_snap(int cpu) 290 { 291 smp_mb(); // Fundamental RCU ordering guarantee. 292 return ct_dynticks_cpu_acquire(cpu); 293 } 294 295 /* 296 * Return true if the snapshot returned from rcu_dynticks_snap() 297 * indicates that RCU is in an extended quiescent state. 298 */ 299 static bool rcu_dynticks_in_eqs(int snap) 300 { 301 return !(snap & RCU_DYNTICKS_IDX); 302 } 303 304 /* 305 * Return true if the CPU corresponding to the specified rcu_data 306 * structure has spent some time in an extended quiescent state since 307 * rcu_dynticks_snap() returned the specified snapshot. 308 */ 309 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 310 { 311 return snap != rcu_dynticks_snap(rdp->cpu); 312 } 313 314 /* 315 * Return true if the referenced integer is zero while the specified 316 * CPU remains within a single extended quiescent state. 317 */ 318 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 319 { 320 int snap; 321 322 // If not quiescent, force back to earlier extended quiescent state. 323 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 324 smp_rmb(); // Order ->dynticks and *vp reads. 325 if (READ_ONCE(*vp)) 326 return false; // Non-zero, so report failure; 327 smp_rmb(); // Order *vp read and ->dynticks re-read. 328 329 // If still in the same extended quiescent state, we are good! 330 return snap == ct_dynticks_cpu(cpu); 331 } 332 333 /* 334 * Let the RCU core know that this CPU has gone through the scheduler, 335 * which is a quiescent state. This is called when the need for a 336 * quiescent state is urgent, so we burn an atomic operation and full 337 * memory barriers to let the RCU core know about it, regardless of what 338 * this CPU might (or might not) do in the near future. 339 * 340 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 341 * 342 * The caller must have disabled interrupts and must not be idle. 343 */ 344 notrace void rcu_momentary_dyntick_idle(void) 345 { 346 int seq; 347 348 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 349 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 350 /* It is illegal to call this from idle state. */ 351 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 352 rcu_preempt_deferred_qs(current); 353 } 354 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 355 356 /** 357 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 358 * 359 * If the current CPU is idle and running at a first-level (not nested) 360 * interrupt, or directly, from idle, return true. 361 * 362 * The caller must have at least disabled IRQs. 363 */ 364 static int rcu_is_cpu_rrupt_from_idle(void) 365 { 366 long nesting; 367 368 /* 369 * Usually called from the tick; but also used from smp_function_call() 370 * for expedited grace periods. This latter can result in running from 371 * the idle task, instead of an actual IPI. 372 */ 373 lockdep_assert_irqs_disabled(); 374 375 /* Check for counter underflows */ 376 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 377 "RCU dynticks_nesting counter underflow!"); 378 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 379 "RCU dynticks_nmi_nesting counter underflow/zero!"); 380 381 /* Are we at first interrupt nesting level? */ 382 nesting = ct_dynticks_nmi_nesting(); 383 if (nesting > 1) 384 return false; 385 386 /* 387 * If we're not in an interrupt, we must be in the idle task! 388 */ 389 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 390 391 /* Does CPU appear to be idle from an RCU standpoint? */ 392 return ct_dynticks_nesting() == 0; 393 } 394 395 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 396 // Maximum callbacks per rcu_do_batch ... 397 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 398 static long blimit = DEFAULT_RCU_BLIMIT; 399 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 400 static long qhimark = DEFAULT_RCU_QHIMARK; 401 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 402 static long qlowmark = DEFAULT_RCU_QLOMARK; 403 #define DEFAULT_RCU_QOVLD_MULT 2 404 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 405 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 406 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 407 408 module_param(blimit, long, 0444); 409 module_param(qhimark, long, 0444); 410 module_param(qlowmark, long, 0444); 411 module_param(qovld, long, 0444); 412 413 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 414 static ulong jiffies_till_next_fqs = ULONG_MAX; 415 static bool rcu_kick_kthreads; 416 static int rcu_divisor = 7; 417 module_param(rcu_divisor, int, 0644); 418 419 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 420 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 421 module_param(rcu_resched_ns, long, 0644); 422 423 /* 424 * How long the grace period must be before we start recruiting 425 * quiescent-state help from rcu_note_context_switch(). 426 */ 427 static ulong jiffies_till_sched_qs = ULONG_MAX; 428 module_param(jiffies_till_sched_qs, ulong, 0444); 429 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 430 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 431 432 /* 433 * Make sure that we give the grace-period kthread time to detect any 434 * idle CPUs before taking active measures to force quiescent states. 435 * However, don't go below 100 milliseconds, adjusted upwards for really 436 * large systems. 437 */ 438 static void adjust_jiffies_till_sched_qs(void) 439 { 440 unsigned long j; 441 442 /* If jiffies_till_sched_qs was specified, respect the request. */ 443 if (jiffies_till_sched_qs != ULONG_MAX) { 444 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 445 return; 446 } 447 /* Otherwise, set to third fqs scan, but bound below on large system. */ 448 j = READ_ONCE(jiffies_till_first_fqs) + 449 2 * READ_ONCE(jiffies_till_next_fqs); 450 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 451 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 452 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 453 WRITE_ONCE(jiffies_to_sched_qs, j); 454 } 455 456 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 457 { 458 ulong j; 459 int ret = kstrtoul(val, 0, &j); 460 461 if (!ret) { 462 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 463 adjust_jiffies_till_sched_qs(); 464 } 465 return ret; 466 } 467 468 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 469 { 470 ulong j; 471 int ret = kstrtoul(val, 0, &j); 472 473 if (!ret) { 474 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 475 adjust_jiffies_till_sched_qs(); 476 } 477 return ret; 478 } 479 480 static const struct kernel_param_ops first_fqs_jiffies_ops = { 481 .set = param_set_first_fqs_jiffies, 482 .get = param_get_ulong, 483 }; 484 485 static const struct kernel_param_ops next_fqs_jiffies_ops = { 486 .set = param_set_next_fqs_jiffies, 487 .get = param_get_ulong, 488 }; 489 490 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 491 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 492 module_param(rcu_kick_kthreads, bool, 0644); 493 494 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 495 static int rcu_pending(int user); 496 497 /* 498 * Return the number of RCU GPs completed thus far for debug & stats. 499 */ 500 unsigned long rcu_get_gp_seq(void) 501 { 502 return READ_ONCE(rcu_state.gp_seq); 503 } 504 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 505 506 /* 507 * Return the number of RCU expedited batches completed thus far for 508 * debug & stats. Odd numbers mean that a batch is in progress, even 509 * numbers mean idle. The value returned will thus be roughly double 510 * the cumulative batches since boot. 511 */ 512 unsigned long rcu_exp_batches_completed(void) 513 { 514 return rcu_state.expedited_sequence; 515 } 516 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 517 518 /* 519 * Return the root node of the rcu_state structure. 520 */ 521 static struct rcu_node *rcu_get_root(void) 522 { 523 return &rcu_state.node[0]; 524 } 525 526 /* 527 * Send along grace-period-related data for rcutorture diagnostics. 528 */ 529 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 530 unsigned long *gp_seq) 531 { 532 switch (test_type) { 533 case RCU_FLAVOR: 534 *flags = READ_ONCE(rcu_state.gp_flags); 535 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 536 break; 537 default: 538 break; 539 } 540 } 541 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 542 543 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 544 /* 545 * An empty function that will trigger a reschedule on 546 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 547 */ 548 static void late_wakeup_func(struct irq_work *work) 549 { 550 } 551 552 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 553 IRQ_WORK_INIT(late_wakeup_func); 554 555 /* 556 * If either: 557 * 558 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 559 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 560 * 561 * In these cases the late RCU wake ups aren't supported in the resched loops and our 562 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 563 * get re-enabled again. 564 */ 565 noinstr void rcu_irq_work_resched(void) 566 { 567 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 568 569 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 570 return; 571 572 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 573 return; 574 575 instrumentation_begin(); 576 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 577 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 578 } 579 instrumentation_end(); 580 } 581 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 582 583 #ifdef CONFIG_PROVE_RCU 584 /** 585 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 586 */ 587 void rcu_irq_exit_check_preempt(void) 588 { 589 lockdep_assert_irqs_disabled(); 590 591 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 592 "RCU dynticks_nesting counter underflow/zero!"); 593 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 594 DYNTICK_IRQ_NONIDLE, 595 "Bad RCU dynticks_nmi_nesting counter\n"); 596 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 597 "RCU in extended quiescent state!"); 598 } 599 #endif /* #ifdef CONFIG_PROVE_RCU */ 600 601 #ifdef CONFIG_NO_HZ_FULL 602 /** 603 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 604 * 605 * The scheduler tick is not normally enabled when CPUs enter the kernel 606 * from nohz_full userspace execution. After all, nohz_full userspace 607 * execution is an RCU quiescent state and the time executing in the kernel 608 * is quite short. Except of course when it isn't. And it is not hard to 609 * cause a large system to spend tens of seconds or even minutes looping 610 * in the kernel, which can cause a number of problems, include RCU CPU 611 * stall warnings. 612 * 613 * Therefore, if a nohz_full CPU fails to report a quiescent state 614 * in a timely manner, the RCU grace-period kthread sets that CPU's 615 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 616 * exception will invoke this function, which will turn on the scheduler 617 * tick, which will enable RCU to detect that CPU's quiescent states, 618 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 619 * The tick will be disabled once a quiescent state is reported for 620 * this CPU. 621 * 622 * Of course, in carefully tuned systems, there might never be an 623 * interrupt or exception. In that case, the RCU grace-period kthread 624 * will eventually cause one to happen. However, in less carefully 625 * controlled environments, this function allows RCU to get what it 626 * needs without creating otherwise useless interruptions. 627 */ 628 void __rcu_irq_enter_check_tick(void) 629 { 630 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 631 632 // If we're here from NMI there's nothing to do. 633 if (in_nmi()) 634 return; 635 636 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 637 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 638 639 if (!tick_nohz_full_cpu(rdp->cpu) || 640 !READ_ONCE(rdp->rcu_urgent_qs) || 641 READ_ONCE(rdp->rcu_forced_tick)) { 642 // RCU doesn't need nohz_full help from this CPU, or it is 643 // already getting that help. 644 return; 645 } 646 647 // We get here only when not in an extended quiescent state and 648 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 649 // already watching and (2) The fact that we are in an interrupt 650 // handler and that the rcu_node lock is an irq-disabled lock 651 // prevents self-deadlock. So we can safely recheck under the lock. 652 // Note that the nohz_full state currently cannot change. 653 raw_spin_lock_rcu_node(rdp->mynode); 654 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 655 // A nohz_full CPU is in the kernel and RCU needs a 656 // quiescent state. Turn on the tick! 657 WRITE_ONCE(rdp->rcu_forced_tick, true); 658 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 659 } 660 raw_spin_unlock_rcu_node(rdp->mynode); 661 } 662 #endif /* CONFIG_NO_HZ_FULL */ 663 664 /* 665 * Check to see if any future non-offloaded RCU-related work will need 666 * to be done by the current CPU, even if none need be done immediately, 667 * returning 1 if so. This function is part of the RCU implementation; 668 * it is -not- an exported member of the RCU API. This is used by 669 * the idle-entry code to figure out whether it is safe to disable the 670 * scheduler-clock interrupt. 671 * 672 * Just check whether or not this CPU has non-offloaded RCU callbacks 673 * queued. 674 */ 675 int rcu_needs_cpu(void) 676 { 677 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 678 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 679 } 680 681 /* 682 * If any sort of urgency was applied to the current CPU (for example, 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 684 * to get to a quiescent state, disable it. 685 */ 686 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 687 { 688 raw_lockdep_assert_held_rcu_node(rdp->mynode); 689 WRITE_ONCE(rdp->rcu_urgent_qs, false); 690 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 691 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 692 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 693 WRITE_ONCE(rdp->rcu_forced_tick, false); 694 } 695 } 696 697 /** 698 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 699 * 700 * Return true if RCU is watching the running CPU, which means that this 701 * CPU can safely enter RCU read-side critical sections. In other words, 702 * if the current CPU is not in its idle loop or is in an interrupt or 703 * NMI handler, return true. 704 * 705 * Make notrace because it can be called by the internal functions of 706 * ftrace, and making this notrace removes unnecessary recursion calls. 707 */ 708 notrace bool rcu_is_watching(void) 709 { 710 bool ret; 711 712 preempt_disable_notrace(); 713 ret = !rcu_dynticks_curr_cpu_in_eqs(); 714 preempt_enable_notrace(); 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(rcu_is_watching); 718 719 /* 720 * If a holdout task is actually running, request an urgent quiescent 721 * state from its CPU. This is unsynchronized, so migrations can cause 722 * the request to go to the wrong CPU. Which is OK, all that will happen 723 * is that the CPU's next context switch will be a bit slower and next 724 * time around this task will generate another request. 725 */ 726 void rcu_request_urgent_qs_task(struct task_struct *t) 727 { 728 int cpu; 729 730 barrier(); 731 cpu = task_cpu(t); 732 if (!task_curr(t)) 733 return; /* This task is not running on that CPU. */ 734 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 735 } 736 737 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 738 739 /* 740 * Is the current CPU online as far as RCU is concerned? 741 * 742 * Disable preemption to avoid false positives that could otherwise 743 * happen due to the current CPU number being sampled, this task being 744 * preempted, its old CPU being taken offline, resuming on some other CPU, 745 * then determining that its old CPU is now offline. 746 * 747 * Disable checking if in an NMI handler because we cannot safely 748 * report errors from NMI handlers anyway. In addition, it is OK to use 749 * RCU on an offline processor during initial boot, hence the check for 750 * rcu_scheduler_fully_active. 751 */ 752 bool rcu_lockdep_current_cpu_online(void) 753 { 754 struct rcu_data *rdp; 755 bool ret = false; 756 757 if (in_nmi() || !rcu_scheduler_fully_active) 758 return true; 759 preempt_disable_notrace(); 760 rdp = this_cpu_ptr(&rcu_data); 761 /* 762 * Strictly, we care here about the case where the current CPU is 763 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 764 * not being up to date. So arch_spin_is_locked() might have a 765 * false positive if it's held by some *other* CPU, but that's 766 * OK because that just means a false *negative* on the warning. 767 */ 768 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 769 ret = true; 770 preempt_enable_notrace(); 771 return ret; 772 } 773 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 774 775 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 776 777 /* 778 * When trying to report a quiescent state on behalf of some other CPU, 779 * it is our responsibility to check for and handle potential overflow 780 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 781 * After all, the CPU might be in deep idle state, and thus executing no 782 * code whatsoever. 783 */ 784 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 785 { 786 raw_lockdep_assert_held_rcu_node(rnp); 787 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 788 rnp->gp_seq)) 789 WRITE_ONCE(rdp->gpwrap, true); 790 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 791 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 792 } 793 794 /* 795 * Snapshot the specified CPU's dynticks counter so that we can later 796 * credit them with an implicit quiescent state. Return 1 if this CPU 797 * is in dynticks idle mode, which is an extended quiescent state. 798 */ 799 static int dyntick_save_progress_counter(struct rcu_data *rdp) 800 { 801 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 802 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 803 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 804 rcu_gpnum_ovf(rdp->mynode, rdp); 805 return 1; 806 } 807 return 0; 808 } 809 810 /* 811 * Return true if the specified CPU has passed through a quiescent 812 * state by virtue of being in or having passed through an dynticks 813 * idle state since the last call to dyntick_save_progress_counter() 814 * for this same CPU, or by virtue of having been offline. 815 */ 816 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 817 { 818 unsigned long jtsq; 819 struct rcu_node *rnp = rdp->mynode; 820 821 /* 822 * If the CPU passed through or entered a dynticks idle phase with 823 * no active irq/NMI handlers, then we can safely pretend that the CPU 824 * already acknowledged the request to pass through a quiescent 825 * state. Either way, that CPU cannot possibly be in an RCU 826 * read-side critical section that started before the beginning 827 * of the current RCU grace period. 828 */ 829 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 830 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 831 rcu_gpnum_ovf(rnp, rdp); 832 return 1; 833 } 834 835 /* 836 * Complain if a CPU that is considered to be offline from RCU's 837 * perspective has not yet reported a quiescent state. After all, 838 * the offline CPU should have reported a quiescent state during 839 * the CPU-offline process, or, failing that, by rcu_gp_init() 840 * if it ran concurrently with either the CPU going offline or the 841 * last task on a leaf rcu_node structure exiting its RCU read-side 842 * critical section while all CPUs corresponding to that structure 843 * are offline. This added warning detects bugs in any of these 844 * code paths. 845 * 846 * The rcu_node structure's ->lock is held here, which excludes 847 * the relevant portions the CPU-hotplug code, the grace-period 848 * initialization code, and the rcu_read_unlock() code paths. 849 * 850 * For more detail, please refer to the "Hotplug CPU" section 851 * of RCU's Requirements documentation. 852 */ 853 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 854 struct rcu_node *rnp1; 855 856 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 857 __func__, rnp->grplo, rnp->grphi, rnp->level, 858 (long)rnp->gp_seq, (long)rnp->completedqs); 859 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 860 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 861 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 862 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 863 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 864 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 865 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 866 return 1; /* Break things loose after complaining. */ 867 } 868 869 /* 870 * A CPU running for an extended time within the kernel can 871 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 872 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 873 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 874 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 875 * variable are safe because the assignments are repeated if this 876 * CPU failed to pass through a quiescent state. This code 877 * also checks .jiffies_resched in case jiffies_to_sched_qs 878 * is set way high. 879 */ 880 jtsq = READ_ONCE(jiffies_to_sched_qs); 881 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 882 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 883 time_after(jiffies, rcu_state.jiffies_resched) || 884 rcu_state.cbovld)) { 885 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 886 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 887 smp_store_release(&rdp->rcu_urgent_qs, true); 888 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 889 WRITE_ONCE(rdp->rcu_urgent_qs, true); 890 } 891 892 /* 893 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 894 * The above code handles this, but only for straight cond_resched(). 895 * And some in-kernel loops check need_resched() before calling 896 * cond_resched(), which defeats the above code for CPUs that are 897 * running in-kernel with scheduling-clock interrupts disabled. 898 * So hit them over the head with the resched_cpu() hammer! 899 */ 900 if (tick_nohz_full_cpu(rdp->cpu) && 901 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 902 rcu_state.cbovld)) { 903 WRITE_ONCE(rdp->rcu_urgent_qs, true); 904 resched_cpu(rdp->cpu); 905 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 906 } 907 908 /* 909 * If more than halfway to RCU CPU stall-warning time, invoke 910 * resched_cpu() more frequently to try to loosen things up a bit. 911 * Also check to see if the CPU is getting hammered with interrupts, 912 * but only once per grace period, just to keep the IPIs down to 913 * a dull roar. 914 */ 915 if (time_after(jiffies, rcu_state.jiffies_resched)) { 916 if (time_after(jiffies, 917 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 918 resched_cpu(rdp->cpu); 919 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 920 } 921 if (IS_ENABLED(CONFIG_IRQ_WORK) && 922 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 923 (rnp->ffmask & rdp->grpmask)) { 924 rdp->rcu_iw_pending = true; 925 rdp->rcu_iw_gp_seq = rnp->gp_seq; 926 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 927 } 928 } 929 930 return 0; 931 } 932 933 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 934 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 935 unsigned long gp_seq_req, const char *s) 936 { 937 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 938 gp_seq_req, rnp->level, 939 rnp->grplo, rnp->grphi, s); 940 } 941 942 /* 943 * rcu_start_this_gp - Request the start of a particular grace period 944 * @rnp_start: The leaf node of the CPU from which to start. 945 * @rdp: The rcu_data corresponding to the CPU from which to start. 946 * @gp_seq_req: The gp_seq of the grace period to start. 947 * 948 * Start the specified grace period, as needed to handle newly arrived 949 * callbacks. The required future grace periods are recorded in each 950 * rcu_node structure's ->gp_seq_needed field. Returns true if there 951 * is reason to awaken the grace-period kthread. 952 * 953 * The caller must hold the specified rcu_node structure's ->lock, which 954 * is why the caller is responsible for waking the grace-period kthread. 955 * 956 * Returns true if the GP thread needs to be awakened else false. 957 */ 958 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 959 unsigned long gp_seq_req) 960 { 961 bool ret = false; 962 struct rcu_node *rnp; 963 964 /* 965 * Use funnel locking to either acquire the root rcu_node 966 * structure's lock or bail out if the need for this grace period 967 * has already been recorded -- or if that grace period has in 968 * fact already started. If there is already a grace period in 969 * progress in a non-leaf node, no recording is needed because the 970 * end of the grace period will scan the leaf rcu_node structures. 971 * Note that rnp_start->lock must not be released. 972 */ 973 raw_lockdep_assert_held_rcu_node(rnp_start); 974 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 975 for (rnp = rnp_start; 1; rnp = rnp->parent) { 976 if (rnp != rnp_start) 977 raw_spin_lock_rcu_node(rnp); 978 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 979 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 980 (rnp != rnp_start && 981 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 982 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 983 TPS("Prestarted")); 984 goto unlock_out; 985 } 986 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 987 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 988 /* 989 * We just marked the leaf or internal node, and a 990 * grace period is in progress, which means that 991 * rcu_gp_cleanup() will see the marking. Bail to 992 * reduce contention. 993 */ 994 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 995 TPS("Startedleaf")); 996 goto unlock_out; 997 } 998 if (rnp != rnp_start && rnp->parent != NULL) 999 raw_spin_unlock_rcu_node(rnp); 1000 if (!rnp->parent) 1001 break; /* At root, and perhaps also leaf. */ 1002 } 1003 1004 /* If GP already in progress, just leave, otherwise start one. */ 1005 if (rcu_gp_in_progress()) { 1006 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1007 goto unlock_out; 1008 } 1009 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1010 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1011 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1012 if (!READ_ONCE(rcu_state.gp_kthread)) { 1013 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1014 goto unlock_out; 1015 } 1016 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1017 ret = true; /* Caller must wake GP kthread. */ 1018 unlock_out: 1019 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1020 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1021 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1022 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1023 } 1024 if (rnp != rnp_start) 1025 raw_spin_unlock_rcu_node(rnp); 1026 return ret; 1027 } 1028 1029 /* 1030 * Clean up any old requests for the just-ended grace period. Also return 1031 * whether any additional grace periods have been requested. 1032 */ 1033 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1034 { 1035 bool needmore; 1036 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1037 1038 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1039 if (!needmore) 1040 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1041 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1042 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1043 return needmore; 1044 } 1045 1046 /* 1047 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1048 * interrupt or softirq handler, in which case we just might immediately 1049 * sleep upon return, resulting in a grace-period hang), and don't bother 1050 * awakening when there is nothing for the grace-period kthread to do 1051 * (as in several CPUs raced to awaken, we lost), and finally don't try 1052 * to awaken a kthread that has not yet been created. If all those checks 1053 * are passed, track some debug information and awaken. 1054 * 1055 * So why do the self-wakeup when in an interrupt or softirq handler 1056 * in the grace-period kthread's context? Because the kthread might have 1057 * been interrupted just as it was going to sleep, and just after the final 1058 * pre-sleep check of the awaken condition. In this case, a wakeup really 1059 * is required, and is therefore supplied. 1060 */ 1061 static void rcu_gp_kthread_wake(void) 1062 { 1063 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1064 1065 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1066 !READ_ONCE(rcu_state.gp_flags) || !t) 1067 return; 1068 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1069 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1070 swake_up_one(&rcu_state.gp_wq); 1071 } 1072 1073 /* 1074 * If there is room, assign a ->gp_seq number to any callbacks on this 1075 * CPU that have not already been assigned. Also accelerate any callbacks 1076 * that were previously assigned a ->gp_seq number that has since proven 1077 * to be too conservative, which can happen if callbacks get assigned a 1078 * ->gp_seq number while RCU is idle, but with reference to a non-root 1079 * rcu_node structure. This function is idempotent, so it does not hurt 1080 * to call it repeatedly. Returns an flag saying that we should awaken 1081 * the RCU grace-period kthread. 1082 * 1083 * The caller must hold rnp->lock with interrupts disabled. 1084 */ 1085 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1086 { 1087 unsigned long gp_seq_req; 1088 bool ret = false; 1089 1090 rcu_lockdep_assert_cblist_protected(rdp); 1091 raw_lockdep_assert_held_rcu_node(rnp); 1092 1093 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1094 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1095 return false; 1096 1097 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1098 1099 /* 1100 * Callbacks are often registered with incomplete grace-period 1101 * information. Something about the fact that getting exact 1102 * information requires acquiring a global lock... RCU therefore 1103 * makes a conservative estimate of the grace period number at which 1104 * a given callback will become ready to invoke. The following 1105 * code checks this estimate and improves it when possible, thus 1106 * accelerating callback invocation to an earlier grace-period 1107 * number. 1108 */ 1109 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1110 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1111 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1112 1113 /* Trace depending on how much we were able to accelerate. */ 1114 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1115 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1116 else 1117 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1118 1119 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1120 1121 return ret; 1122 } 1123 1124 /* 1125 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1126 * rcu_node structure's ->lock be held. It consults the cached value 1127 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1128 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1129 * while holding the leaf rcu_node structure's ->lock. 1130 */ 1131 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1132 struct rcu_data *rdp) 1133 { 1134 unsigned long c; 1135 bool needwake; 1136 1137 rcu_lockdep_assert_cblist_protected(rdp); 1138 c = rcu_seq_snap(&rcu_state.gp_seq); 1139 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1140 /* Old request still live, so mark recent callbacks. */ 1141 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1142 return; 1143 } 1144 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1145 needwake = rcu_accelerate_cbs(rnp, rdp); 1146 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1147 if (needwake) 1148 rcu_gp_kthread_wake(); 1149 } 1150 1151 /* 1152 * Move any callbacks whose grace period has completed to the 1153 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1154 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1155 * sublist. This function is idempotent, so it does not hurt to 1156 * invoke it repeatedly. As long as it is not invoked -too- often... 1157 * Returns true if the RCU grace-period kthread needs to be awakened. 1158 * 1159 * The caller must hold rnp->lock with interrupts disabled. 1160 */ 1161 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1162 { 1163 rcu_lockdep_assert_cblist_protected(rdp); 1164 raw_lockdep_assert_held_rcu_node(rnp); 1165 1166 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1167 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1168 return false; 1169 1170 /* 1171 * Find all callbacks whose ->gp_seq numbers indicate that they 1172 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1173 */ 1174 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1175 1176 /* Classify any remaining callbacks. */ 1177 return rcu_accelerate_cbs(rnp, rdp); 1178 } 1179 1180 /* 1181 * Move and classify callbacks, but only if doing so won't require 1182 * that the RCU grace-period kthread be awakened. 1183 */ 1184 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1185 struct rcu_data *rdp) 1186 { 1187 rcu_lockdep_assert_cblist_protected(rdp); 1188 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1189 return; 1190 // The grace period cannot end while we hold the rcu_node lock. 1191 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1192 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1193 raw_spin_unlock_rcu_node(rnp); 1194 } 1195 1196 /* 1197 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1198 * quiescent state. This is intended to be invoked when the CPU notices 1199 * a new grace period. 1200 */ 1201 static void rcu_strict_gp_check_qs(void) 1202 { 1203 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1204 rcu_read_lock(); 1205 rcu_read_unlock(); 1206 } 1207 } 1208 1209 /* 1210 * Update CPU-local rcu_data state to record the beginnings and ends of 1211 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1212 * structure corresponding to the current CPU, and must have irqs disabled. 1213 * Returns true if the grace-period kthread needs to be awakened. 1214 */ 1215 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1216 { 1217 bool ret = false; 1218 bool need_qs; 1219 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1220 1221 raw_lockdep_assert_held_rcu_node(rnp); 1222 1223 if (rdp->gp_seq == rnp->gp_seq) 1224 return false; /* Nothing to do. */ 1225 1226 /* Handle the ends of any preceding grace periods first. */ 1227 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1228 unlikely(READ_ONCE(rdp->gpwrap))) { 1229 if (!offloaded) 1230 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1231 rdp->core_needs_qs = false; 1232 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1233 } else { 1234 if (!offloaded) 1235 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1236 if (rdp->core_needs_qs) 1237 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1238 } 1239 1240 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1241 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1242 unlikely(READ_ONCE(rdp->gpwrap))) { 1243 /* 1244 * If the current grace period is waiting for this CPU, 1245 * set up to detect a quiescent state, otherwise don't 1246 * go looking for one. 1247 */ 1248 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1249 need_qs = !!(rnp->qsmask & rdp->grpmask); 1250 rdp->cpu_no_qs.b.norm = need_qs; 1251 rdp->core_needs_qs = need_qs; 1252 zero_cpu_stall_ticks(rdp); 1253 } 1254 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1255 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1256 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1257 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1258 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1259 WRITE_ONCE(rdp->gpwrap, false); 1260 rcu_gpnum_ovf(rnp, rdp); 1261 return ret; 1262 } 1263 1264 static void note_gp_changes(struct rcu_data *rdp) 1265 { 1266 unsigned long flags; 1267 bool needwake; 1268 struct rcu_node *rnp; 1269 1270 local_irq_save(flags); 1271 rnp = rdp->mynode; 1272 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1273 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1274 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1275 local_irq_restore(flags); 1276 return; 1277 } 1278 needwake = __note_gp_changes(rnp, rdp); 1279 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1280 rcu_strict_gp_check_qs(); 1281 if (needwake) 1282 rcu_gp_kthread_wake(); 1283 } 1284 1285 static atomic_t *rcu_gp_slow_suppress; 1286 1287 /* Register a counter to suppress debugging grace-period delays. */ 1288 void rcu_gp_slow_register(atomic_t *rgssp) 1289 { 1290 WARN_ON_ONCE(rcu_gp_slow_suppress); 1291 1292 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1293 } 1294 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1295 1296 /* Unregister a counter, with NULL for not caring which. */ 1297 void rcu_gp_slow_unregister(atomic_t *rgssp) 1298 { 1299 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1300 1301 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1302 } 1303 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1304 1305 static bool rcu_gp_slow_is_suppressed(void) 1306 { 1307 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1308 1309 return rgssp && atomic_read(rgssp); 1310 } 1311 1312 static void rcu_gp_slow(int delay) 1313 { 1314 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1315 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1316 schedule_timeout_idle(delay); 1317 } 1318 1319 static unsigned long sleep_duration; 1320 1321 /* Allow rcutorture to stall the grace-period kthread. */ 1322 void rcu_gp_set_torture_wait(int duration) 1323 { 1324 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1325 WRITE_ONCE(sleep_duration, duration); 1326 } 1327 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1328 1329 /* Actually implement the aforementioned wait. */ 1330 static void rcu_gp_torture_wait(void) 1331 { 1332 unsigned long duration; 1333 1334 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1335 return; 1336 duration = xchg(&sleep_duration, 0UL); 1337 if (duration > 0) { 1338 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1339 schedule_timeout_idle(duration); 1340 pr_alert("%s: Wait complete\n", __func__); 1341 } 1342 } 1343 1344 /* 1345 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1346 * processing. 1347 */ 1348 static void rcu_strict_gp_boundary(void *unused) 1349 { 1350 invoke_rcu_core(); 1351 } 1352 1353 // Has rcu_init() been invoked? This is used (for example) to determine 1354 // whether spinlocks may be acquired safely. 1355 static bool rcu_init_invoked(void) 1356 { 1357 return !!rcu_state.n_online_cpus; 1358 } 1359 1360 // Make the polled API aware of the beginning of a grace period. 1361 static void rcu_poll_gp_seq_start(unsigned long *snap) 1362 { 1363 struct rcu_node *rnp = rcu_get_root(); 1364 1365 if (rcu_init_invoked()) 1366 raw_lockdep_assert_held_rcu_node(rnp); 1367 1368 // If RCU was idle, note beginning of GP. 1369 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1370 rcu_seq_start(&rcu_state.gp_seq_polled); 1371 1372 // Either way, record current state. 1373 *snap = rcu_state.gp_seq_polled; 1374 } 1375 1376 // Make the polled API aware of the end of a grace period. 1377 static void rcu_poll_gp_seq_end(unsigned long *snap) 1378 { 1379 struct rcu_node *rnp = rcu_get_root(); 1380 1381 if (rcu_init_invoked()) 1382 raw_lockdep_assert_held_rcu_node(rnp); 1383 1384 // If the previously noted GP is still in effect, record the 1385 // end of that GP. Either way, zero counter to avoid counter-wrap 1386 // problems. 1387 if (*snap && *snap == rcu_state.gp_seq_polled) { 1388 rcu_seq_end(&rcu_state.gp_seq_polled); 1389 rcu_state.gp_seq_polled_snap = 0; 1390 rcu_state.gp_seq_polled_exp_snap = 0; 1391 } else { 1392 *snap = 0; 1393 } 1394 } 1395 1396 // Make the polled API aware of the beginning of a grace period, but 1397 // where caller does not hold the root rcu_node structure's lock. 1398 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1399 { 1400 unsigned long flags; 1401 struct rcu_node *rnp = rcu_get_root(); 1402 1403 if (rcu_init_invoked()) { 1404 lockdep_assert_irqs_enabled(); 1405 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1406 } 1407 rcu_poll_gp_seq_start(snap); 1408 if (rcu_init_invoked()) 1409 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1410 } 1411 1412 // Make the polled API aware of the end of a grace period, but where 1413 // caller does not hold the root rcu_node structure's lock. 1414 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1415 { 1416 unsigned long flags; 1417 struct rcu_node *rnp = rcu_get_root(); 1418 1419 if (rcu_init_invoked()) { 1420 lockdep_assert_irqs_enabled(); 1421 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1422 } 1423 rcu_poll_gp_seq_end(snap); 1424 if (rcu_init_invoked()) 1425 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1426 } 1427 1428 /* 1429 * Initialize a new grace period. Return false if no grace period required. 1430 */ 1431 static noinline_for_stack bool rcu_gp_init(void) 1432 { 1433 unsigned long flags; 1434 unsigned long oldmask; 1435 unsigned long mask; 1436 struct rcu_data *rdp; 1437 struct rcu_node *rnp = rcu_get_root(); 1438 1439 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1440 raw_spin_lock_irq_rcu_node(rnp); 1441 if (!READ_ONCE(rcu_state.gp_flags)) { 1442 /* Spurious wakeup, tell caller to go back to sleep. */ 1443 raw_spin_unlock_irq_rcu_node(rnp); 1444 return false; 1445 } 1446 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1447 1448 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1449 /* 1450 * Grace period already in progress, don't start another. 1451 * Not supposed to be able to happen. 1452 */ 1453 raw_spin_unlock_irq_rcu_node(rnp); 1454 return false; 1455 } 1456 1457 /* Advance to a new grace period and initialize state. */ 1458 record_gp_stall_check_time(); 1459 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1460 rcu_seq_start(&rcu_state.gp_seq); 1461 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1462 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1463 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1464 raw_spin_unlock_irq_rcu_node(rnp); 1465 1466 /* 1467 * Apply per-leaf buffered online and offline operations to 1468 * the rcu_node tree. Note that this new grace period need not 1469 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1470 * offlining path, when combined with checks in this function, 1471 * will handle CPUs that are currently going offline or that will 1472 * go offline later. Please also refer to "Hotplug CPU" section 1473 * of RCU's Requirements documentation. 1474 */ 1475 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1476 /* Exclude CPU hotplug operations. */ 1477 rcu_for_each_leaf_node(rnp) { 1478 local_irq_save(flags); 1479 arch_spin_lock(&rcu_state.ofl_lock); 1480 raw_spin_lock_rcu_node(rnp); 1481 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1482 !rnp->wait_blkd_tasks) { 1483 /* Nothing to do on this leaf rcu_node structure. */ 1484 raw_spin_unlock_rcu_node(rnp); 1485 arch_spin_unlock(&rcu_state.ofl_lock); 1486 local_irq_restore(flags); 1487 continue; 1488 } 1489 1490 /* Record old state, apply changes to ->qsmaskinit field. */ 1491 oldmask = rnp->qsmaskinit; 1492 rnp->qsmaskinit = rnp->qsmaskinitnext; 1493 1494 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1495 if (!oldmask != !rnp->qsmaskinit) { 1496 if (!oldmask) { /* First online CPU for rcu_node. */ 1497 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1498 rcu_init_new_rnp(rnp); 1499 } else if (rcu_preempt_has_tasks(rnp)) { 1500 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1501 } else { /* Last offline CPU and can propagate. */ 1502 rcu_cleanup_dead_rnp(rnp); 1503 } 1504 } 1505 1506 /* 1507 * If all waited-on tasks from prior grace period are 1508 * done, and if all this rcu_node structure's CPUs are 1509 * still offline, propagate up the rcu_node tree and 1510 * clear ->wait_blkd_tasks. Otherwise, if one of this 1511 * rcu_node structure's CPUs has since come back online, 1512 * simply clear ->wait_blkd_tasks. 1513 */ 1514 if (rnp->wait_blkd_tasks && 1515 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1516 rnp->wait_blkd_tasks = false; 1517 if (!rnp->qsmaskinit) 1518 rcu_cleanup_dead_rnp(rnp); 1519 } 1520 1521 raw_spin_unlock_rcu_node(rnp); 1522 arch_spin_unlock(&rcu_state.ofl_lock); 1523 local_irq_restore(flags); 1524 } 1525 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1526 1527 /* 1528 * Set the quiescent-state-needed bits in all the rcu_node 1529 * structures for all currently online CPUs in breadth-first 1530 * order, starting from the root rcu_node structure, relying on the 1531 * layout of the tree within the rcu_state.node[] array. Note that 1532 * other CPUs will access only the leaves of the hierarchy, thus 1533 * seeing that no grace period is in progress, at least until the 1534 * corresponding leaf node has been initialized. 1535 * 1536 * The grace period cannot complete until the initialization 1537 * process finishes, because this kthread handles both. 1538 */ 1539 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1540 rcu_for_each_node_breadth_first(rnp) { 1541 rcu_gp_slow(gp_init_delay); 1542 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1543 rdp = this_cpu_ptr(&rcu_data); 1544 rcu_preempt_check_blocked_tasks(rnp); 1545 rnp->qsmask = rnp->qsmaskinit; 1546 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1547 if (rnp == rdp->mynode) 1548 (void)__note_gp_changes(rnp, rdp); 1549 rcu_preempt_boost_start_gp(rnp); 1550 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1551 rnp->level, rnp->grplo, 1552 rnp->grphi, rnp->qsmask); 1553 /* Quiescent states for tasks on any now-offline CPUs. */ 1554 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1555 rnp->rcu_gp_init_mask = mask; 1556 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1557 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1558 else 1559 raw_spin_unlock_irq_rcu_node(rnp); 1560 cond_resched_tasks_rcu_qs(); 1561 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1562 } 1563 1564 // If strict, make all CPUs aware of new grace period. 1565 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1566 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1567 1568 return true; 1569 } 1570 1571 /* 1572 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1573 * time. 1574 */ 1575 static bool rcu_gp_fqs_check_wake(int *gfp) 1576 { 1577 struct rcu_node *rnp = rcu_get_root(); 1578 1579 // If under overload conditions, force an immediate FQS scan. 1580 if (*gfp & RCU_GP_FLAG_OVLD) 1581 return true; 1582 1583 // Someone like call_rcu() requested a force-quiescent-state scan. 1584 *gfp = READ_ONCE(rcu_state.gp_flags); 1585 if (*gfp & RCU_GP_FLAG_FQS) 1586 return true; 1587 1588 // The current grace period has completed. 1589 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1590 return true; 1591 1592 return false; 1593 } 1594 1595 /* 1596 * Do one round of quiescent-state forcing. 1597 */ 1598 static void rcu_gp_fqs(bool first_time) 1599 { 1600 struct rcu_node *rnp = rcu_get_root(); 1601 1602 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1603 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1604 if (first_time) { 1605 /* Collect dyntick-idle snapshots. */ 1606 force_qs_rnp(dyntick_save_progress_counter); 1607 } else { 1608 /* Handle dyntick-idle and offline CPUs. */ 1609 force_qs_rnp(rcu_implicit_dynticks_qs); 1610 } 1611 /* Clear flag to prevent immediate re-entry. */ 1612 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1613 raw_spin_lock_irq_rcu_node(rnp); 1614 WRITE_ONCE(rcu_state.gp_flags, 1615 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1616 raw_spin_unlock_irq_rcu_node(rnp); 1617 } 1618 } 1619 1620 /* 1621 * Loop doing repeated quiescent-state forcing until the grace period ends. 1622 */ 1623 static noinline_for_stack void rcu_gp_fqs_loop(void) 1624 { 1625 bool first_gp_fqs = true; 1626 int gf = 0; 1627 unsigned long j; 1628 int ret; 1629 struct rcu_node *rnp = rcu_get_root(); 1630 1631 j = READ_ONCE(jiffies_till_first_fqs); 1632 if (rcu_state.cbovld) 1633 gf = RCU_GP_FLAG_OVLD; 1634 ret = 0; 1635 for (;;) { 1636 if (rcu_state.cbovld) { 1637 j = (j + 2) / 3; 1638 if (j <= 0) 1639 j = 1; 1640 } 1641 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1642 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1643 /* 1644 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1645 * update; required for stall checks. 1646 */ 1647 smp_wmb(); 1648 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1649 jiffies + (j ? 3 * j : 2)); 1650 } 1651 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1652 TPS("fqswait")); 1653 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1654 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1655 rcu_gp_fqs_check_wake(&gf), j); 1656 rcu_gp_torture_wait(); 1657 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1658 /* Locking provides needed memory barriers. */ 1659 /* 1660 * Exit the loop if the root rcu_node structure indicates that the grace period 1661 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1662 * is required only for single-node rcu_node trees because readers blocking 1663 * the current grace period are queued only on leaf rcu_node structures. 1664 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1665 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1666 * the corresponding leaf nodes have passed through their quiescent state. 1667 */ 1668 if (!READ_ONCE(rnp->qsmask) && 1669 !rcu_preempt_blocked_readers_cgp(rnp)) 1670 break; 1671 /* If time for quiescent-state forcing, do it. */ 1672 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1673 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1674 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1675 TPS("fqsstart")); 1676 rcu_gp_fqs(first_gp_fqs); 1677 gf = 0; 1678 if (first_gp_fqs) { 1679 first_gp_fqs = false; 1680 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1681 } 1682 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1683 TPS("fqsend")); 1684 cond_resched_tasks_rcu_qs(); 1685 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1686 ret = 0; /* Force full wait till next FQS. */ 1687 j = READ_ONCE(jiffies_till_next_fqs); 1688 } else { 1689 /* Deal with stray signal. */ 1690 cond_resched_tasks_rcu_qs(); 1691 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1692 WARN_ON(signal_pending(current)); 1693 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1694 TPS("fqswaitsig")); 1695 ret = 1; /* Keep old FQS timing. */ 1696 j = jiffies; 1697 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1698 j = 1; 1699 else 1700 j = rcu_state.jiffies_force_qs - j; 1701 gf = 0; 1702 } 1703 } 1704 } 1705 1706 /* 1707 * Clean up after the old grace period. 1708 */ 1709 static noinline void rcu_gp_cleanup(void) 1710 { 1711 int cpu; 1712 bool needgp = false; 1713 unsigned long gp_duration; 1714 unsigned long new_gp_seq; 1715 bool offloaded; 1716 struct rcu_data *rdp; 1717 struct rcu_node *rnp = rcu_get_root(); 1718 struct swait_queue_head *sq; 1719 1720 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1721 raw_spin_lock_irq_rcu_node(rnp); 1722 rcu_state.gp_end = jiffies; 1723 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1724 if (gp_duration > rcu_state.gp_max) 1725 rcu_state.gp_max = gp_duration; 1726 1727 /* 1728 * We know the grace period is complete, but to everyone else 1729 * it appears to still be ongoing. But it is also the case 1730 * that to everyone else it looks like there is nothing that 1731 * they can do to advance the grace period. It is therefore 1732 * safe for us to drop the lock in order to mark the grace 1733 * period as completed in all of the rcu_node structures. 1734 */ 1735 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1736 raw_spin_unlock_irq_rcu_node(rnp); 1737 1738 /* 1739 * Propagate new ->gp_seq value to rcu_node structures so that 1740 * other CPUs don't have to wait until the start of the next grace 1741 * period to process their callbacks. This also avoids some nasty 1742 * RCU grace-period initialization races by forcing the end of 1743 * the current grace period to be completely recorded in all of 1744 * the rcu_node structures before the beginning of the next grace 1745 * period is recorded in any of the rcu_node structures. 1746 */ 1747 new_gp_seq = rcu_state.gp_seq; 1748 rcu_seq_end(&new_gp_seq); 1749 rcu_for_each_node_breadth_first(rnp) { 1750 raw_spin_lock_irq_rcu_node(rnp); 1751 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1752 dump_blkd_tasks(rnp, 10); 1753 WARN_ON_ONCE(rnp->qsmask); 1754 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1755 if (!rnp->parent) 1756 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1757 rdp = this_cpu_ptr(&rcu_data); 1758 if (rnp == rdp->mynode) 1759 needgp = __note_gp_changes(rnp, rdp) || needgp; 1760 /* smp_mb() provided by prior unlock-lock pair. */ 1761 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1762 // Reset overload indication for CPUs no longer overloaded 1763 if (rcu_is_leaf_node(rnp)) 1764 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1765 rdp = per_cpu_ptr(&rcu_data, cpu); 1766 check_cb_ovld_locked(rdp, rnp); 1767 } 1768 sq = rcu_nocb_gp_get(rnp); 1769 raw_spin_unlock_irq_rcu_node(rnp); 1770 rcu_nocb_gp_cleanup(sq); 1771 cond_resched_tasks_rcu_qs(); 1772 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1773 rcu_gp_slow(gp_cleanup_delay); 1774 } 1775 rnp = rcu_get_root(); 1776 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1777 1778 /* Declare grace period done, trace first to use old GP number. */ 1779 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1780 rcu_seq_end(&rcu_state.gp_seq); 1781 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1782 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1783 /* Check for GP requests since above loop. */ 1784 rdp = this_cpu_ptr(&rcu_data); 1785 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1786 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1787 TPS("CleanupMore")); 1788 needgp = true; 1789 } 1790 /* Advance CBs to reduce false positives below. */ 1791 offloaded = rcu_rdp_is_offloaded(rdp); 1792 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1793 1794 // We get here if a grace period was needed (“needgp”) 1795 // and the above call to rcu_accelerate_cbs() did not set 1796 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1797 // the need for another grace period). The purpose 1798 // of the “offloaded” check is to avoid invoking 1799 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1800 // hold the ->nocb_lock needed to safely access an offloaded 1801 // ->cblist. We do not want to acquire that lock because 1802 // it can be heavily contended during callback floods. 1803 1804 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1805 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1806 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1807 } else { 1808 1809 // We get here either if there is no need for an 1810 // additional grace period or if rcu_accelerate_cbs() has 1811 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1812 // So all we need to do is to clear all of the other 1813 // ->gp_flags bits. 1814 1815 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1816 } 1817 raw_spin_unlock_irq_rcu_node(rnp); 1818 1819 // If strict, make all CPUs aware of the end of the old grace period. 1820 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1821 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1822 } 1823 1824 /* 1825 * Body of kthread that handles grace periods. 1826 */ 1827 static int __noreturn rcu_gp_kthread(void *unused) 1828 { 1829 rcu_bind_gp_kthread(); 1830 for (;;) { 1831 1832 /* Handle grace-period start. */ 1833 for (;;) { 1834 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1835 TPS("reqwait")); 1836 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1837 swait_event_idle_exclusive(rcu_state.gp_wq, 1838 READ_ONCE(rcu_state.gp_flags) & 1839 RCU_GP_FLAG_INIT); 1840 rcu_gp_torture_wait(); 1841 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1842 /* Locking provides needed memory barrier. */ 1843 if (rcu_gp_init()) 1844 break; 1845 cond_resched_tasks_rcu_qs(); 1846 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1847 WARN_ON(signal_pending(current)); 1848 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1849 TPS("reqwaitsig")); 1850 } 1851 1852 /* Handle quiescent-state forcing. */ 1853 rcu_gp_fqs_loop(); 1854 1855 /* Handle grace-period end. */ 1856 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1857 rcu_gp_cleanup(); 1858 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1859 } 1860 } 1861 1862 /* 1863 * Report a full set of quiescent states to the rcu_state data structure. 1864 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1865 * another grace period is required. Whether we wake the grace-period 1866 * kthread or it awakens itself for the next round of quiescent-state 1867 * forcing, that kthread will clean up after the just-completed grace 1868 * period. Note that the caller must hold rnp->lock, which is released 1869 * before return. 1870 */ 1871 static void rcu_report_qs_rsp(unsigned long flags) 1872 __releases(rcu_get_root()->lock) 1873 { 1874 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1875 WARN_ON_ONCE(!rcu_gp_in_progress()); 1876 WRITE_ONCE(rcu_state.gp_flags, 1877 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1878 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1879 rcu_gp_kthread_wake(); 1880 } 1881 1882 /* 1883 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1884 * Allows quiescent states for a group of CPUs to be reported at one go 1885 * to the specified rcu_node structure, though all the CPUs in the group 1886 * must be represented by the same rcu_node structure (which need not be a 1887 * leaf rcu_node structure, though it often will be). The gps parameter 1888 * is the grace-period snapshot, which means that the quiescent states 1889 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1890 * must be held upon entry, and it is released before return. 1891 * 1892 * As a special case, if mask is zero, the bit-already-cleared check is 1893 * disabled. This allows propagating quiescent state due to resumed tasks 1894 * during grace-period initialization. 1895 */ 1896 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1897 unsigned long gps, unsigned long flags) 1898 __releases(rnp->lock) 1899 { 1900 unsigned long oldmask = 0; 1901 struct rcu_node *rnp_c; 1902 1903 raw_lockdep_assert_held_rcu_node(rnp); 1904 1905 /* Walk up the rcu_node hierarchy. */ 1906 for (;;) { 1907 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1908 1909 /* 1910 * Our bit has already been cleared, or the 1911 * relevant grace period is already over, so done. 1912 */ 1913 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1914 return; 1915 } 1916 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1917 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1918 rcu_preempt_blocked_readers_cgp(rnp)); 1919 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1920 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1921 mask, rnp->qsmask, rnp->level, 1922 rnp->grplo, rnp->grphi, 1923 !!rnp->gp_tasks); 1924 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1925 1926 /* Other bits still set at this level, so done. */ 1927 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1928 return; 1929 } 1930 rnp->completedqs = rnp->gp_seq; 1931 mask = rnp->grpmask; 1932 if (rnp->parent == NULL) { 1933 1934 /* No more levels. Exit loop holding root lock. */ 1935 1936 break; 1937 } 1938 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1939 rnp_c = rnp; 1940 rnp = rnp->parent; 1941 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1942 oldmask = READ_ONCE(rnp_c->qsmask); 1943 } 1944 1945 /* 1946 * Get here if we are the last CPU to pass through a quiescent 1947 * state for this grace period. Invoke rcu_report_qs_rsp() 1948 * to clean up and start the next grace period if one is needed. 1949 */ 1950 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1951 } 1952 1953 /* 1954 * Record a quiescent state for all tasks that were previously queued 1955 * on the specified rcu_node structure and that were blocking the current 1956 * RCU grace period. The caller must hold the corresponding rnp->lock with 1957 * irqs disabled, and this lock is released upon return, but irqs remain 1958 * disabled. 1959 */ 1960 static void __maybe_unused 1961 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1962 __releases(rnp->lock) 1963 { 1964 unsigned long gps; 1965 unsigned long mask; 1966 struct rcu_node *rnp_p; 1967 1968 raw_lockdep_assert_held_rcu_node(rnp); 1969 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1970 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1971 rnp->qsmask != 0) { 1972 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1973 return; /* Still need more quiescent states! */ 1974 } 1975 1976 rnp->completedqs = rnp->gp_seq; 1977 rnp_p = rnp->parent; 1978 if (rnp_p == NULL) { 1979 /* 1980 * Only one rcu_node structure in the tree, so don't 1981 * try to report up to its nonexistent parent! 1982 */ 1983 rcu_report_qs_rsp(flags); 1984 return; 1985 } 1986 1987 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1988 gps = rnp->gp_seq; 1989 mask = rnp->grpmask; 1990 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1991 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1992 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1993 } 1994 1995 /* 1996 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1997 * structure. This must be called from the specified CPU. 1998 */ 1999 static void 2000 rcu_report_qs_rdp(struct rcu_data *rdp) 2001 { 2002 unsigned long flags; 2003 unsigned long mask; 2004 bool needwake = false; 2005 bool needacc = false; 2006 struct rcu_node *rnp; 2007 2008 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2009 rnp = rdp->mynode; 2010 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2011 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2012 rdp->gpwrap) { 2013 2014 /* 2015 * The grace period in which this quiescent state was 2016 * recorded has ended, so don't report it upwards. 2017 * We will instead need a new quiescent state that lies 2018 * within the current grace period. 2019 */ 2020 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2021 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2022 return; 2023 } 2024 mask = rdp->grpmask; 2025 rdp->core_needs_qs = false; 2026 if ((rnp->qsmask & mask) == 0) { 2027 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2028 } else { 2029 /* 2030 * This GP can't end until cpu checks in, so all of our 2031 * callbacks can be processed during the next GP. 2032 * 2033 * NOCB kthreads have their own way to deal with that... 2034 */ 2035 if (!rcu_rdp_is_offloaded(rdp)) { 2036 needwake = rcu_accelerate_cbs(rnp, rdp); 2037 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2038 /* 2039 * ...but NOCB kthreads may miss or delay callbacks acceleration 2040 * if in the middle of a (de-)offloading process. 2041 */ 2042 needacc = true; 2043 } 2044 2045 rcu_disable_urgency_upon_qs(rdp); 2046 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2047 /* ^^^ Released rnp->lock */ 2048 if (needwake) 2049 rcu_gp_kthread_wake(); 2050 2051 if (needacc) { 2052 rcu_nocb_lock_irqsave(rdp, flags); 2053 rcu_accelerate_cbs_unlocked(rnp, rdp); 2054 rcu_nocb_unlock_irqrestore(rdp, flags); 2055 } 2056 } 2057 } 2058 2059 /* 2060 * Check to see if there is a new grace period of which this CPU 2061 * is not yet aware, and if so, set up local rcu_data state for it. 2062 * Otherwise, see if this CPU has just passed through its first 2063 * quiescent state for this grace period, and record that fact if so. 2064 */ 2065 static void 2066 rcu_check_quiescent_state(struct rcu_data *rdp) 2067 { 2068 /* Check for grace-period ends and beginnings. */ 2069 note_gp_changes(rdp); 2070 2071 /* 2072 * Does this CPU still need to do its part for current grace period? 2073 * If no, return and let the other CPUs do their part as well. 2074 */ 2075 if (!rdp->core_needs_qs) 2076 return; 2077 2078 /* 2079 * Was there a quiescent state since the beginning of the grace 2080 * period? If no, then exit and wait for the next call. 2081 */ 2082 if (rdp->cpu_no_qs.b.norm) 2083 return; 2084 2085 /* 2086 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2087 * judge of that). 2088 */ 2089 rcu_report_qs_rdp(rdp); 2090 } 2091 2092 /* 2093 * Near the end of the offline process. Trace the fact that this CPU 2094 * is going offline. 2095 */ 2096 int rcutree_dying_cpu(unsigned int cpu) 2097 { 2098 bool blkd; 2099 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2100 struct rcu_node *rnp = rdp->mynode; 2101 2102 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2103 return 0; 2104 2105 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 2106 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2107 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2108 return 0; 2109 } 2110 2111 /* 2112 * All CPUs for the specified rcu_node structure have gone offline, 2113 * and all tasks that were preempted within an RCU read-side critical 2114 * section while running on one of those CPUs have since exited their RCU 2115 * read-side critical section. Some other CPU is reporting this fact with 2116 * the specified rcu_node structure's ->lock held and interrupts disabled. 2117 * This function therefore goes up the tree of rcu_node structures, 2118 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2119 * the leaf rcu_node structure's ->qsmaskinit field has already been 2120 * updated. 2121 * 2122 * This function does check that the specified rcu_node structure has 2123 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2124 * prematurely. That said, invoking it after the fact will cost you 2125 * a needless lock acquisition. So once it has done its work, don't 2126 * invoke it again. 2127 */ 2128 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2129 { 2130 long mask; 2131 struct rcu_node *rnp = rnp_leaf; 2132 2133 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2134 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2135 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2136 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2137 return; 2138 for (;;) { 2139 mask = rnp->grpmask; 2140 rnp = rnp->parent; 2141 if (!rnp) 2142 break; 2143 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2144 rnp->qsmaskinit &= ~mask; 2145 /* Between grace periods, so better already be zero! */ 2146 WARN_ON_ONCE(rnp->qsmask); 2147 if (rnp->qsmaskinit) { 2148 raw_spin_unlock_rcu_node(rnp); 2149 /* irqs remain disabled. */ 2150 return; 2151 } 2152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2153 } 2154 } 2155 2156 /* 2157 * The CPU has been completely removed, and some other CPU is reporting 2158 * this fact from process context. Do the remainder of the cleanup. 2159 * There can only be one CPU hotplug operation at a time, so no need for 2160 * explicit locking. 2161 */ 2162 int rcutree_dead_cpu(unsigned int cpu) 2163 { 2164 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2165 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2166 2167 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2168 return 0; 2169 2170 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2171 /* Adjust any no-longer-needed kthreads. */ 2172 rcu_boost_kthread_setaffinity(rnp, -1); 2173 // Stop-machine done, so allow nohz_full to disable tick. 2174 tick_dep_clear(TICK_DEP_BIT_RCU); 2175 return 0; 2176 } 2177 2178 /* 2179 * Invoke any RCU callbacks that have made it to the end of their grace 2180 * period. Throttle as specified by rdp->blimit. 2181 */ 2182 static void rcu_do_batch(struct rcu_data *rdp) 2183 { 2184 int div; 2185 bool __maybe_unused empty; 2186 unsigned long flags; 2187 struct rcu_head *rhp; 2188 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2189 long bl, count = 0; 2190 long pending, tlimit = 0; 2191 2192 /* If no callbacks are ready, just return. */ 2193 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2194 trace_rcu_batch_start(rcu_state.name, 2195 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2196 trace_rcu_batch_end(rcu_state.name, 0, 2197 !rcu_segcblist_empty(&rdp->cblist), 2198 need_resched(), is_idle_task(current), 2199 rcu_is_callbacks_kthread(rdp)); 2200 return; 2201 } 2202 2203 /* 2204 * Extract the list of ready callbacks, disabling IRQs to prevent 2205 * races with call_rcu() from interrupt handlers. Leave the 2206 * callback counts, as rcu_barrier() needs to be conservative. 2207 */ 2208 rcu_nocb_lock_irqsave(rdp, flags); 2209 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2210 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2211 div = READ_ONCE(rcu_divisor); 2212 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2213 bl = max(rdp->blimit, pending >> div); 2214 if (in_serving_softirq() && unlikely(bl > 100)) { 2215 long rrn = READ_ONCE(rcu_resched_ns); 2216 2217 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2218 tlimit = local_clock() + rrn; 2219 } 2220 trace_rcu_batch_start(rcu_state.name, 2221 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2222 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2223 if (rcu_rdp_is_offloaded(rdp)) 2224 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2225 2226 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2227 rcu_nocb_unlock_irqrestore(rdp, flags); 2228 2229 /* Invoke callbacks. */ 2230 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2231 rhp = rcu_cblist_dequeue(&rcl); 2232 2233 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2234 rcu_callback_t f; 2235 2236 count++; 2237 debug_rcu_head_unqueue(rhp); 2238 2239 rcu_lock_acquire(&rcu_callback_map); 2240 trace_rcu_invoke_callback(rcu_state.name, rhp); 2241 2242 f = rhp->func; 2243 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2244 f(rhp); 2245 2246 rcu_lock_release(&rcu_callback_map); 2247 2248 /* 2249 * Stop only if limit reached and CPU has something to do. 2250 */ 2251 if (in_serving_softirq()) { 2252 if (count >= bl && (need_resched() || !is_idle_task(current))) 2253 break; 2254 /* 2255 * Make sure we don't spend too much time here and deprive other 2256 * softirq vectors of CPU cycles. 2257 */ 2258 if (unlikely(tlimit)) { 2259 /* only call local_clock() every 32 callbacks */ 2260 if (likely((count & 31) || local_clock() < tlimit)) 2261 continue; 2262 /* Exceeded the time limit, so leave. */ 2263 break; 2264 } 2265 } else { 2266 local_bh_enable(); 2267 lockdep_assert_irqs_enabled(); 2268 cond_resched_tasks_rcu_qs(); 2269 lockdep_assert_irqs_enabled(); 2270 local_bh_disable(); 2271 } 2272 } 2273 2274 rcu_nocb_lock_irqsave(rdp, flags); 2275 rdp->n_cbs_invoked += count; 2276 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2277 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2278 2279 /* Update counts and requeue any remaining callbacks. */ 2280 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2281 rcu_segcblist_add_len(&rdp->cblist, -count); 2282 2283 /* Reinstate batch limit if we have worked down the excess. */ 2284 count = rcu_segcblist_n_cbs(&rdp->cblist); 2285 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2286 rdp->blimit = blimit; 2287 2288 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2289 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2290 rdp->qlen_last_fqs_check = 0; 2291 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2292 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2293 rdp->qlen_last_fqs_check = count; 2294 2295 /* 2296 * The following usually indicates a double call_rcu(). To track 2297 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2298 */ 2299 empty = rcu_segcblist_empty(&rdp->cblist); 2300 WARN_ON_ONCE(count == 0 && !empty); 2301 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2302 count != 0 && empty); 2303 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2304 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2305 2306 rcu_nocb_unlock_irqrestore(rdp, flags); 2307 2308 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2309 } 2310 2311 /* 2312 * This function is invoked from each scheduling-clock interrupt, 2313 * and checks to see if this CPU is in a non-context-switch quiescent 2314 * state, for example, user mode or idle loop. It also schedules RCU 2315 * core processing. If the current grace period has gone on too long, 2316 * it will ask the scheduler to manufacture a context switch for the sole 2317 * purpose of providing the needed quiescent state. 2318 */ 2319 void rcu_sched_clock_irq(int user) 2320 { 2321 unsigned long j; 2322 2323 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2324 j = jiffies; 2325 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2326 __this_cpu_write(rcu_data.last_sched_clock, j); 2327 } 2328 trace_rcu_utilization(TPS("Start scheduler-tick")); 2329 lockdep_assert_irqs_disabled(); 2330 raw_cpu_inc(rcu_data.ticks_this_gp); 2331 /* The load-acquire pairs with the store-release setting to true. */ 2332 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2333 /* Idle and userspace execution already are quiescent states. */ 2334 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2335 set_tsk_need_resched(current); 2336 set_preempt_need_resched(); 2337 } 2338 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2339 } 2340 rcu_flavor_sched_clock_irq(user); 2341 if (rcu_pending(user)) 2342 invoke_rcu_core(); 2343 if (user || rcu_is_cpu_rrupt_from_idle()) 2344 rcu_note_voluntary_context_switch(current); 2345 lockdep_assert_irqs_disabled(); 2346 2347 trace_rcu_utilization(TPS("End scheduler-tick")); 2348 } 2349 2350 /* 2351 * Scan the leaf rcu_node structures. For each structure on which all 2352 * CPUs have reported a quiescent state and on which there are tasks 2353 * blocking the current grace period, initiate RCU priority boosting. 2354 * Otherwise, invoke the specified function to check dyntick state for 2355 * each CPU that has not yet reported a quiescent state. 2356 */ 2357 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2358 { 2359 int cpu; 2360 unsigned long flags; 2361 unsigned long mask; 2362 struct rcu_data *rdp; 2363 struct rcu_node *rnp; 2364 2365 rcu_state.cbovld = rcu_state.cbovldnext; 2366 rcu_state.cbovldnext = false; 2367 rcu_for_each_leaf_node(rnp) { 2368 cond_resched_tasks_rcu_qs(); 2369 mask = 0; 2370 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2371 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2372 if (rnp->qsmask == 0) { 2373 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2374 /* 2375 * No point in scanning bits because they 2376 * are all zero. But we might need to 2377 * priority-boost blocked readers. 2378 */ 2379 rcu_initiate_boost(rnp, flags); 2380 /* rcu_initiate_boost() releases rnp->lock */ 2381 continue; 2382 } 2383 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2384 continue; 2385 } 2386 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2387 rdp = per_cpu_ptr(&rcu_data, cpu); 2388 if (f(rdp)) { 2389 mask |= rdp->grpmask; 2390 rcu_disable_urgency_upon_qs(rdp); 2391 } 2392 } 2393 if (mask != 0) { 2394 /* Idle/offline CPUs, report (releases rnp->lock). */ 2395 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2396 } else { 2397 /* Nothing to do here, so just drop the lock. */ 2398 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2399 } 2400 } 2401 } 2402 2403 /* 2404 * Force quiescent states on reluctant CPUs, and also detect which 2405 * CPUs are in dyntick-idle mode. 2406 */ 2407 void rcu_force_quiescent_state(void) 2408 { 2409 unsigned long flags; 2410 bool ret; 2411 struct rcu_node *rnp; 2412 struct rcu_node *rnp_old = NULL; 2413 2414 /* Funnel through hierarchy to reduce memory contention. */ 2415 rnp = raw_cpu_read(rcu_data.mynode); 2416 for (; rnp != NULL; rnp = rnp->parent) { 2417 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2418 !raw_spin_trylock(&rnp->fqslock); 2419 if (rnp_old != NULL) 2420 raw_spin_unlock(&rnp_old->fqslock); 2421 if (ret) 2422 return; 2423 rnp_old = rnp; 2424 } 2425 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2426 2427 /* Reached the root of the rcu_node tree, acquire lock. */ 2428 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2429 raw_spin_unlock(&rnp_old->fqslock); 2430 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2431 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2432 return; /* Someone beat us to it. */ 2433 } 2434 WRITE_ONCE(rcu_state.gp_flags, 2435 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2436 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2437 rcu_gp_kthread_wake(); 2438 } 2439 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2440 2441 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2442 // grace periods. 2443 static void strict_work_handler(struct work_struct *work) 2444 { 2445 rcu_read_lock(); 2446 rcu_read_unlock(); 2447 } 2448 2449 /* Perform RCU core processing work for the current CPU. */ 2450 static __latent_entropy void rcu_core(void) 2451 { 2452 unsigned long flags; 2453 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2454 struct rcu_node *rnp = rdp->mynode; 2455 /* 2456 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2457 * Therefore this function can race with concurrent NOCB (de-)offloading 2458 * on this CPU and the below condition must be considered volatile. 2459 * However if we race with: 2460 * 2461 * _ Offloading: In the worst case we accelerate or process callbacks 2462 * concurrently with NOCB kthreads. We are guaranteed to 2463 * call rcu_nocb_lock() if that happens. 2464 * 2465 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2466 * processing. This is fine because the early stage 2467 * of deoffloading invokes rcu_core() after setting 2468 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2469 * what could have been dismissed without the need to wait 2470 * for the next rcu_pending() check in the next jiffy. 2471 */ 2472 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2473 2474 if (cpu_is_offline(smp_processor_id())) 2475 return; 2476 trace_rcu_utilization(TPS("Start RCU core")); 2477 WARN_ON_ONCE(!rdp->beenonline); 2478 2479 /* Report any deferred quiescent states if preemption enabled. */ 2480 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2481 rcu_preempt_deferred_qs(current); 2482 } else if (rcu_preempt_need_deferred_qs(current)) { 2483 set_tsk_need_resched(current); 2484 set_preempt_need_resched(); 2485 } 2486 2487 /* Update RCU state based on any recent quiescent states. */ 2488 rcu_check_quiescent_state(rdp); 2489 2490 /* No grace period and unregistered callbacks? */ 2491 if (!rcu_gp_in_progress() && 2492 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2493 rcu_nocb_lock_irqsave(rdp, flags); 2494 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2495 rcu_accelerate_cbs_unlocked(rnp, rdp); 2496 rcu_nocb_unlock_irqrestore(rdp, flags); 2497 } 2498 2499 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2500 2501 /* If there are callbacks ready, invoke them. */ 2502 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2503 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2504 rcu_do_batch(rdp); 2505 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2506 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2507 invoke_rcu_core(); 2508 } 2509 2510 /* Do any needed deferred wakeups of rcuo kthreads. */ 2511 do_nocb_deferred_wakeup(rdp); 2512 trace_rcu_utilization(TPS("End RCU core")); 2513 2514 // If strict GPs, schedule an RCU reader in a clean environment. 2515 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2516 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2517 } 2518 2519 static void rcu_core_si(struct softirq_action *h) 2520 { 2521 rcu_core(); 2522 } 2523 2524 static void rcu_wake_cond(struct task_struct *t, int status) 2525 { 2526 /* 2527 * If the thread is yielding, only wake it when this 2528 * is invoked from idle 2529 */ 2530 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2531 wake_up_process(t); 2532 } 2533 2534 static void invoke_rcu_core_kthread(void) 2535 { 2536 struct task_struct *t; 2537 unsigned long flags; 2538 2539 local_irq_save(flags); 2540 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2541 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2542 if (t != NULL && t != current) 2543 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2544 local_irq_restore(flags); 2545 } 2546 2547 /* 2548 * Wake up this CPU's rcuc kthread to do RCU core processing. 2549 */ 2550 static void invoke_rcu_core(void) 2551 { 2552 if (!cpu_online(smp_processor_id())) 2553 return; 2554 if (use_softirq) 2555 raise_softirq(RCU_SOFTIRQ); 2556 else 2557 invoke_rcu_core_kthread(); 2558 } 2559 2560 static void rcu_cpu_kthread_park(unsigned int cpu) 2561 { 2562 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2563 } 2564 2565 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2566 { 2567 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2568 } 2569 2570 /* 2571 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2572 * the RCU softirq used in configurations of RCU that do not support RCU 2573 * priority boosting. 2574 */ 2575 static void rcu_cpu_kthread(unsigned int cpu) 2576 { 2577 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2578 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2579 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2580 int spincnt; 2581 2582 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2583 for (spincnt = 0; spincnt < 10; spincnt++) { 2584 WRITE_ONCE(*j, jiffies); 2585 local_bh_disable(); 2586 *statusp = RCU_KTHREAD_RUNNING; 2587 local_irq_disable(); 2588 work = *workp; 2589 *workp = 0; 2590 local_irq_enable(); 2591 if (work) 2592 rcu_core(); 2593 local_bh_enable(); 2594 if (*workp == 0) { 2595 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2596 *statusp = RCU_KTHREAD_WAITING; 2597 return; 2598 } 2599 } 2600 *statusp = RCU_KTHREAD_YIELDING; 2601 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2602 schedule_timeout_idle(2); 2603 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2604 *statusp = RCU_KTHREAD_WAITING; 2605 WRITE_ONCE(*j, jiffies); 2606 } 2607 2608 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2609 .store = &rcu_data.rcu_cpu_kthread_task, 2610 .thread_should_run = rcu_cpu_kthread_should_run, 2611 .thread_fn = rcu_cpu_kthread, 2612 .thread_comm = "rcuc/%u", 2613 .setup = rcu_cpu_kthread_setup, 2614 .park = rcu_cpu_kthread_park, 2615 }; 2616 2617 /* 2618 * Spawn per-CPU RCU core processing kthreads. 2619 */ 2620 static int __init rcu_spawn_core_kthreads(void) 2621 { 2622 int cpu; 2623 2624 for_each_possible_cpu(cpu) 2625 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2626 if (use_softirq) 2627 return 0; 2628 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2629 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2630 return 0; 2631 } 2632 2633 /* 2634 * Handle any core-RCU processing required by a call_rcu() invocation. 2635 */ 2636 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2637 unsigned long flags) 2638 { 2639 /* 2640 * If called from an extended quiescent state, invoke the RCU 2641 * core in order to force a re-evaluation of RCU's idleness. 2642 */ 2643 if (!rcu_is_watching()) 2644 invoke_rcu_core(); 2645 2646 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2647 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2648 return; 2649 2650 /* 2651 * Force the grace period if too many callbacks or too long waiting. 2652 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2653 * if some other CPU has recently done so. Also, don't bother 2654 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2655 * is the only one waiting for a grace period to complete. 2656 */ 2657 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2658 rdp->qlen_last_fqs_check + qhimark)) { 2659 2660 /* Are we ignoring a completed grace period? */ 2661 note_gp_changes(rdp); 2662 2663 /* Start a new grace period if one not already started. */ 2664 if (!rcu_gp_in_progress()) { 2665 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2666 } else { 2667 /* Give the grace period a kick. */ 2668 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2669 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2670 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2671 rcu_force_quiescent_state(); 2672 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2673 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2674 } 2675 } 2676 } 2677 2678 /* 2679 * RCU callback function to leak a callback. 2680 */ 2681 static void rcu_leak_callback(struct rcu_head *rhp) 2682 { 2683 } 2684 2685 /* 2686 * Check and if necessary update the leaf rcu_node structure's 2687 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2688 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2689 * structure's ->lock. 2690 */ 2691 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2692 { 2693 raw_lockdep_assert_held_rcu_node(rnp); 2694 if (qovld_calc <= 0) 2695 return; // Early boot and wildcard value set. 2696 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2697 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2698 else 2699 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2700 } 2701 2702 /* 2703 * Check and if necessary update the leaf rcu_node structure's 2704 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2705 * number of queued RCU callbacks. No locks need be held, but the 2706 * caller must have disabled interrupts. 2707 * 2708 * Note that this function ignores the possibility that there are a lot 2709 * of callbacks all of which have already seen the end of their respective 2710 * grace periods. This omission is due to the need for no-CBs CPUs to 2711 * be holding ->nocb_lock to do this check, which is too heavy for a 2712 * common-case operation. 2713 */ 2714 static void check_cb_ovld(struct rcu_data *rdp) 2715 { 2716 struct rcu_node *const rnp = rdp->mynode; 2717 2718 if (qovld_calc <= 0 || 2719 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2720 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2721 return; // Early boot wildcard value or already set correctly. 2722 raw_spin_lock_rcu_node(rnp); 2723 check_cb_ovld_locked(rdp, rnp); 2724 raw_spin_unlock_rcu_node(rnp); 2725 } 2726 2727 static void 2728 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy) 2729 { 2730 static atomic_t doublefrees; 2731 unsigned long flags; 2732 struct rcu_data *rdp; 2733 bool was_alldone; 2734 2735 /* Misaligned rcu_head! */ 2736 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2737 2738 if (debug_rcu_head_queue(head)) { 2739 /* 2740 * Probable double call_rcu(), so leak the callback. 2741 * Use rcu:rcu_callback trace event to find the previous 2742 * time callback was passed to call_rcu(). 2743 */ 2744 if (atomic_inc_return(&doublefrees) < 4) { 2745 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2746 mem_dump_obj(head); 2747 } 2748 WRITE_ONCE(head->func, rcu_leak_callback); 2749 return; 2750 } 2751 head->func = func; 2752 head->next = NULL; 2753 kasan_record_aux_stack_noalloc(head); 2754 local_irq_save(flags); 2755 rdp = this_cpu_ptr(&rcu_data); 2756 2757 /* Add the callback to our list. */ 2758 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2759 // This can trigger due to call_rcu() from offline CPU: 2760 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2761 WARN_ON_ONCE(!rcu_is_watching()); 2762 // Very early boot, before rcu_init(). Initialize if needed 2763 // and then drop through to queue the callback. 2764 if (rcu_segcblist_empty(&rdp->cblist)) 2765 rcu_segcblist_init(&rdp->cblist); 2766 } 2767 2768 check_cb_ovld(rdp); 2769 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2770 return; // Enqueued onto ->nocb_bypass, so just leave. 2771 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2772 rcu_segcblist_enqueue(&rdp->cblist, head); 2773 if (__is_kvfree_rcu_offset((unsigned long)func)) 2774 trace_rcu_kvfree_callback(rcu_state.name, head, 2775 (unsigned long)func, 2776 rcu_segcblist_n_cbs(&rdp->cblist)); 2777 else 2778 trace_rcu_callback(rcu_state.name, head, 2779 rcu_segcblist_n_cbs(&rdp->cblist)); 2780 2781 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2782 2783 /* Go handle any RCU core processing required. */ 2784 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2785 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2786 } else { 2787 __call_rcu_core(rdp, head, flags); 2788 local_irq_restore(flags); 2789 } 2790 } 2791 2792 #ifdef CONFIG_RCU_LAZY 2793 /** 2794 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2795 * flush all lazy callbacks (including the new one) to the main ->cblist while 2796 * doing so. 2797 * 2798 * @head: structure to be used for queueing the RCU updates. 2799 * @func: actual callback function to be invoked after the grace period 2800 * 2801 * The callback function will be invoked some time after a full grace 2802 * period elapses, in other words after all pre-existing RCU read-side 2803 * critical sections have completed. 2804 * 2805 * Use this API instead of call_rcu() if you don't want the callback to be 2806 * invoked after very long periods of time, which can happen on systems without 2807 * memory pressure and on systems which are lightly loaded or mostly idle. 2808 * This function will cause callbacks to be invoked sooner than later at the 2809 * expense of extra power. Other than that, this function is identical to, and 2810 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2811 * ordering and other functionality. 2812 */ 2813 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2814 { 2815 return __call_rcu_common(head, func, false); 2816 } 2817 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2818 #endif 2819 2820 /** 2821 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2822 * By default the callbacks are 'lazy' and are kept hidden from the main 2823 * ->cblist to prevent starting of grace periods too soon. 2824 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2825 * 2826 * @head: structure to be used for queueing the RCU updates. 2827 * @func: actual callback function to be invoked after the grace period 2828 * 2829 * The callback function will be invoked some time after a full grace 2830 * period elapses, in other words after all pre-existing RCU read-side 2831 * critical sections have completed. However, the callback function 2832 * might well execute concurrently with RCU read-side critical sections 2833 * that started after call_rcu() was invoked. 2834 * 2835 * RCU read-side critical sections are delimited by rcu_read_lock() 2836 * and rcu_read_unlock(), and may be nested. In addition, but only in 2837 * v5.0 and later, regions of code across which interrupts, preemption, 2838 * or softirqs have been disabled also serve as RCU read-side critical 2839 * sections. This includes hardware interrupt handlers, softirq handlers, 2840 * and NMI handlers. 2841 * 2842 * Note that all CPUs must agree that the grace period extended beyond 2843 * all pre-existing RCU read-side critical section. On systems with more 2844 * than one CPU, this means that when "func()" is invoked, each CPU is 2845 * guaranteed to have executed a full memory barrier since the end of its 2846 * last RCU read-side critical section whose beginning preceded the call 2847 * to call_rcu(). It also means that each CPU executing an RCU read-side 2848 * critical section that continues beyond the start of "func()" must have 2849 * executed a memory barrier after the call_rcu() but before the beginning 2850 * of that RCU read-side critical section. Note that these guarantees 2851 * include CPUs that are offline, idle, or executing in user mode, as 2852 * well as CPUs that are executing in the kernel. 2853 * 2854 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2855 * resulting RCU callback function "func()", then both CPU A and CPU B are 2856 * guaranteed to execute a full memory barrier during the time interval 2857 * between the call to call_rcu() and the invocation of "func()" -- even 2858 * if CPU A and CPU B are the same CPU (but again only if the system has 2859 * more than one CPU). 2860 * 2861 * Implementation of these memory-ordering guarantees is described here: 2862 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2863 */ 2864 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2865 { 2866 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2867 } 2868 EXPORT_SYMBOL_GPL(call_rcu); 2869 2870 /* Maximum number of jiffies to wait before draining a batch. */ 2871 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2872 #define KFREE_N_BATCHES 2 2873 #define FREE_N_CHANNELS 2 2874 2875 /** 2876 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2877 * @nr_records: Number of active pointers in the array 2878 * @next: Next bulk object in the block chain 2879 * @records: Array of the kvfree_rcu() pointers 2880 */ 2881 struct kvfree_rcu_bulk_data { 2882 unsigned long nr_records; 2883 struct kvfree_rcu_bulk_data *next; 2884 void *records[]; 2885 }; 2886 2887 /* 2888 * This macro defines how many entries the "records" array 2889 * will contain. It is based on the fact that the size of 2890 * kvfree_rcu_bulk_data structure becomes exactly one page. 2891 */ 2892 #define KVFREE_BULK_MAX_ENTR \ 2893 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2894 2895 /** 2896 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2897 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2898 * @head_free: List of kfree_rcu() objects waiting for a grace period 2899 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2900 * @krcp: Pointer to @kfree_rcu_cpu structure 2901 */ 2902 2903 struct kfree_rcu_cpu_work { 2904 struct rcu_work rcu_work; 2905 struct rcu_head *head_free; 2906 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 2907 struct kfree_rcu_cpu *krcp; 2908 }; 2909 2910 /** 2911 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2912 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2913 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2914 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2915 * @lock: Synchronize access to this structure 2916 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2917 * @initialized: The @rcu_work fields have been initialized 2918 * @count: Number of objects for which GP not started 2919 * @bkvcache: 2920 * A simple cache list that contains objects for reuse purpose. 2921 * In order to save some per-cpu space the list is singular. 2922 * Even though it is lockless an access has to be protected by the 2923 * per-cpu lock. 2924 * @page_cache_work: A work to refill the cache when it is empty 2925 * @backoff_page_cache_fill: Delay cache refills 2926 * @work_in_progress: Indicates that page_cache_work is running 2927 * @hrtimer: A hrtimer for scheduling a page_cache_work 2928 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2929 * 2930 * This is a per-CPU structure. The reason that it is not included in 2931 * the rcu_data structure is to permit this code to be extracted from 2932 * the RCU files. Such extraction could allow further optimization of 2933 * the interactions with the slab allocators. 2934 */ 2935 struct kfree_rcu_cpu { 2936 struct rcu_head *head; 2937 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 2938 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2939 raw_spinlock_t lock; 2940 struct delayed_work monitor_work; 2941 bool initialized; 2942 int count; 2943 2944 struct delayed_work page_cache_work; 2945 atomic_t backoff_page_cache_fill; 2946 atomic_t work_in_progress; 2947 struct hrtimer hrtimer; 2948 2949 struct llist_head bkvcache; 2950 int nr_bkv_objs; 2951 }; 2952 2953 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2954 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2955 }; 2956 2957 static __always_inline void 2958 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2959 { 2960 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2961 int i; 2962 2963 for (i = 0; i < bhead->nr_records; i++) 2964 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2965 #endif 2966 } 2967 2968 static inline struct kfree_rcu_cpu * 2969 krc_this_cpu_lock(unsigned long *flags) 2970 { 2971 struct kfree_rcu_cpu *krcp; 2972 2973 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2974 krcp = this_cpu_ptr(&krc); 2975 raw_spin_lock(&krcp->lock); 2976 2977 return krcp; 2978 } 2979 2980 static inline void 2981 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2982 { 2983 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2984 } 2985 2986 static inline struct kvfree_rcu_bulk_data * 2987 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2988 { 2989 if (!krcp->nr_bkv_objs) 2990 return NULL; 2991 2992 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2993 return (struct kvfree_rcu_bulk_data *) 2994 llist_del_first(&krcp->bkvcache); 2995 } 2996 2997 static inline bool 2998 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2999 struct kvfree_rcu_bulk_data *bnode) 3000 { 3001 // Check the limit. 3002 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3003 return false; 3004 3005 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3006 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3007 return true; 3008 } 3009 3010 static int 3011 drain_page_cache(struct kfree_rcu_cpu *krcp) 3012 { 3013 unsigned long flags; 3014 struct llist_node *page_list, *pos, *n; 3015 int freed = 0; 3016 3017 raw_spin_lock_irqsave(&krcp->lock, flags); 3018 page_list = llist_del_all(&krcp->bkvcache); 3019 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3020 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3021 3022 llist_for_each_safe(pos, n, page_list) { 3023 free_page((unsigned long)pos); 3024 freed++; 3025 } 3026 3027 return freed; 3028 } 3029 3030 /* 3031 * This function is invoked in workqueue context after a grace period. 3032 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3033 */ 3034 static void kfree_rcu_work(struct work_struct *work) 3035 { 3036 unsigned long flags; 3037 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3038 struct rcu_head *head, *next; 3039 struct kfree_rcu_cpu *krcp; 3040 struct kfree_rcu_cpu_work *krwp; 3041 int i, j; 3042 3043 krwp = container_of(to_rcu_work(work), 3044 struct kfree_rcu_cpu_work, rcu_work); 3045 krcp = krwp->krcp; 3046 3047 raw_spin_lock_irqsave(&krcp->lock, flags); 3048 // Channels 1 and 2. 3049 for (i = 0; i < FREE_N_CHANNELS; i++) { 3050 bkvhead[i] = krwp->bkvhead_free[i]; 3051 krwp->bkvhead_free[i] = NULL; 3052 } 3053 3054 // Channel 3. 3055 head = krwp->head_free; 3056 krwp->head_free = NULL; 3057 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3058 3059 // Handle the first two channels. 3060 for (i = 0; i < FREE_N_CHANNELS; i++) { 3061 for (; bkvhead[i]; bkvhead[i] = bnext) { 3062 bnext = bkvhead[i]->next; 3063 debug_rcu_bhead_unqueue(bkvhead[i]); 3064 3065 rcu_lock_acquire(&rcu_callback_map); 3066 if (i == 0) { // kmalloc() / kfree(). 3067 trace_rcu_invoke_kfree_bulk_callback( 3068 rcu_state.name, bkvhead[i]->nr_records, 3069 bkvhead[i]->records); 3070 3071 kfree_bulk(bkvhead[i]->nr_records, 3072 bkvhead[i]->records); 3073 } else { // vmalloc() / vfree(). 3074 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3075 trace_rcu_invoke_kvfree_callback( 3076 rcu_state.name, 3077 bkvhead[i]->records[j], 0); 3078 3079 vfree(bkvhead[i]->records[j]); 3080 } 3081 } 3082 rcu_lock_release(&rcu_callback_map); 3083 3084 raw_spin_lock_irqsave(&krcp->lock, flags); 3085 if (put_cached_bnode(krcp, bkvhead[i])) 3086 bkvhead[i] = NULL; 3087 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3088 3089 if (bkvhead[i]) 3090 free_page((unsigned long) bkvhead[i]); 3091 3092 cond_resched_tasks_rcu_qs(); 3093 } 3094 } 3095 3096 /* 3097 * This is used when the "bulk" path can not be used for the 3098 * double-argument of kvfree_rcu(). This happens when the 3099 * page-cache is empty, which means that objects are instead 3100 * queued on a linked list through their rcu_head structures. 3101 * This list is named "Channel 3". 3102 */ 3103 for (; head; head = next) { 3104 unsigned long offset = (unsigned long)head->func; 3105 void *ptr = (void *)head - offset; 3106 3107 next = head->next; 3108 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3109 rcu_lock_acquire(&rcu_callback_map); 3110 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3111 3112 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3113 kvfree(ptr); 3114 3115 rcu_lock_release(&rcu_callback_map); 3116 cond_resched_tasks_rcu_qs(); 3117 } 3118 } 3119 3120 static bool 3121 need_offload_krc(struct kfree_rcu_cpu *krcp) 3122 { 3123 int i; 3124 3125 for (i = 0; i < FREE_N_CHANNELS; i++) 3126 if (krcp->bkvhead[i]) 3127 return true; 3128 3129 return !!krcp->head; 3130 } 3131 3132 static void 3133 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3134 { 3135 long delay, delay_left; 3136 3137 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3138 if (delayed_work_pending(&krcp->monitor_work)) { 3139 delay_left = krcp->monitor_work.timer.expires - jiffies; 3140 if (delay < delay_left) 3141 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3142 return; 3143 } 3144 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3145 } 3146 3147 /* 3148 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3149 */ 3150 static void kfree_rcu_monitor(struct work_struct *work) 3151 { 3152 struct kfree_rcu_cpu *krcp = container_of(work, 3153 struct kfree_rcu_cpu, monitor_work.work); 3154 unsigned long flags; 3155 int i, j; 3156 3157 raw_spin_lock_irqsave(&krcp->lock, flags); 3158 3159 // Attempt to start a new batch. 3160 for (i = 0; i < KFREE_N_BATCHES; i++) { 3161 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3162 3163 // Try to detach bkvhead or head and attach it over any 3164 // available corresponding free channel. It can be that 3165 // a previous RCU batch is in progress, it means that 3166 // immediately to queue another one is not possible so 3167 // in that case the monitor work is rearmed. 3168 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3169 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3170 (krcp->head && !krwp->head_free)) { 3171 // Channel 1 corresponds to the SLAB-pointer bulk path. 3172 // Channel 2 corresponds to vmalloc-pointer bulk path. 3173 for (j = 0; j < FREE_N_CHANNELS; j++) { 3174 if (!krwp->bkvhead_free[j]) { 3175 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3176 krcp->bkvhead[j] = NULL; 3177 } 3178 } 3179 3180 // Channel 3 corresponds to both SLAB and vmalloc 3181 // objects queued on the linked list. 3182 if (!krwp->head_free) { 3183 krwp->head_free = krcp->head; 3184 krcp->head = NULL; 3185 } 3186 3187 WRITE_ONCE(krcp->count, 0); 3188 3189 // One work is per one batch, so there are three 3190 // "free channels", the batch can handle. It can 3191 // be that the work is in the pending state when 3192 // channels have been detached following by each 3193 // other. 3194 queue_rcu_work(system_wq, &krwp->rcu_work); 3195 } 3196 } 3197 3198 // If there is nothing to detach, it means that our job is 3199 // successfully done here. In case of having at least one 3200 // of the channels that is still busy we should rearm the 3201 // work to repeat an attempt. Because previous batches are 3202 // still in progress. 3203 if (need_offload_krc(krcp)) 3204 schedule_delayed_monitor_work(krcp); 3205 3206 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3207 } 3208 3209 static enum hrtimer_restart 3210 schedule_page_work_fn(struct hrtimer *t) 3211 { 3212 struct kfree_rcu_cpu *krcp = 3213 container_of(t, struct kfree_rcu_cpu, hrtimer); 3214 3215 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3216 return HRTIMER_NORESTART; 3217 } 3218 3219 static void fill_page_cache_func(struct work_struct *work) 3220 { 3221 struct kvfree_rcu_bulk_data *bnode; 3222 struct kfree_rcu_cpu *krcp = 3223 container_of(work, struct kfree_rcu_cpu, 3224 page_cache_work.work); 3225 unsigned long flags; 3226 int nr_pages; 3227 bool pushed; 3228 int i; 3229 3230 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3231 1 : rcu_min_cached_objs; 3232 3233 for (i = 0; i < nr_pages; i++) { 3234 bnode = (struct kvfree_rcu_bulk_data *) 3235 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3236 3237 if (!bnode) 3238 break; 3239 3240 raw_spin_lock_irqsave(&krcp->lock, flags); 3241 pushed = put_cached_bnode(krcp, bnode); 3242 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3243 3244 if (!pushed) { 3245 free_page((unsigned long) bnode); 3246 break; 3247 } 3248 } 3249 3250 atomic_set(&krcp->work_in_progress, 0); 3251 atomic_set(&krcp->backoff_page_cache_fill, 0); 3252 } 3253 3254 static void 3255 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3256 { 3257 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3258 !atomic_xchg(&krcp->work_in_progress, 1)) { 3259 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3260 queue_delayed_work(system_wq, 3261 &krcp->page_cache_work, 3262 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3263 } else { 3264 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3265 krcp->hrtimer.function = schedule_page_work_fn; 3266 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3267 } 3268 } 3269 } 3270 3271 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3272 // state specified by flags. If can_alloc is true, the caller must 3273 // be schedulable and not be holding any locks or mutexes that might be 3274 // acquired by the memory allocator or anything that it might invoke. 3275 // Returns true if ptr was successfully recorded, else the caller must 3276 // use a fallback. 3277 static inline bool 3278 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3279 unsigned long *flags, void *ptr, bool can_alloc) 3280 { 3281 struct kvfree_rcu_bulk_data *bnode; 3282 int idx; 3283 3284 *krcp = krc_this_cpu_lock(flags); 3285 if (unlikely(!(*krcp)->initialized)) 3286 return false; 3287 3288 idx = !!is_vmalloc_addr(ptr); 3289 3290 /* Check if a new block is required. */ 3291 if (!(*krcp)->bkvhead[idx] || 3292 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3293 bnode = get_cached_bnode(*krcp); 3294 if (!bnode && can_alloc) { 3295 krc_this_cpu_unlock(*krcp, *flags); 3296 3297 // __GFP_NORETRY - allows a light-weight direct reclaim 3298 // what is OK from minimizing of fallback hitting point of 3299 // view. Apart of that it forbids any OOM invoking what is 3300 // also beneficial since we are about to release memory soon. 3301 // 3302 // __GFP_NOMEMALLOC - prevents from consuming of all the 3303 // memory reserves. Please note we have a fallback path. 3304 // 3305 // __GFP_NOWARN - it is supposed that an allocation can 3306 // be failed under low memory or high memory pressure 3307 // scenarios. 3308 bnode = (struct kvfree_rcu_bulk_data *) 3309 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3310 *krcp = krc_this_cpu_lock(flags); 3311 } 3312 3313 if (!bnode) 3314 return false; 3315 3316 /* Initialize the new block. */ 3317 bnode->nr_records = 0; 3318 bnode->next = (*krcp)->bkvhead[idx]; 3319 3320 /* Attach it to the head. */ 3321 (*krcp)->bkvhead[idx] = bnode; 3322 } 3323 3324 /* Finally insert. */ 3325 (*krcp)->bkvhead[idx]->records 3326 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3327 3328 return true; 3329 } 3330 3331 /* 3332 * Queue a request for lazy invocation of the appropriate free routine 3333 * after a grace period. Please note that three paths are maintained, 3334 * two for the common case using arrays of pointers and a third one that 3335 * is used only when the main paths cannot be used, for example, due to 3336 * memory pressure. 3337 * 3338 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3339 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3340 * be free'd in workqueue context. This allows us to: batch requests together to 3341 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3342 */ 3343 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3344 { 3345 unsigned long flags; 3346 struct kfree_rcu_cpu *krcp; 3347 bool success; 3348 void *ptr; 3349 3350 if (head) { 3351 ptr = (void *) head - (unsigned long) func; 3352 } else { 3353 /* 3354 * Please note there is a limitation for the head-less 3355 * variant, that is why there is a clear rule for such 3356 * objects: it can be used from might_sleep() context 3357 * only. For other places please embed an rcu_head to 3358 * your data. 3359 */ 3360 might_sleep(); 3361 ptr = (unsigned long *) func; 3362 } 3363 3364 // Queue the object but don't yet schedule the batch. 3365 if (debug_rcu_head_queue(ptr)) { 3366 // Probable double kfree_rcu(), just leak. 3367 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3368 __func__, head); 3369 3370 // Mark as success and leave. 3371 return; 3372 } 3373 3374 kasan_record_aux_stack_noalloc(ptr); 3375 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3376 if (!success) { 3377 run_page_cache_worker(krcp); 3378 3379 if (head == NULL) 3380 // Inline if kvfree_rcu(one_arg) call. 3381 goto unlock_return; 3382 3383 head->func = func; 3384 head->next = krcp->head; 3385 krcp->head = head; 3386 success = true; 3387 } 3388 3389 WRITE_ONCE(krcp->count, krcp->count + 1); 3390 3391 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3392 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3393 schedule_delayed_monitor_work(krcp); 3394 3395 unlock_return: 3396 krc_this_cpu_unlock(krcp, flags); 3397 3398 /* 3399 * Inline kvfree() after synchronize_rcu(). We can do 3400 * it from might_sleep() context only, so the current 3401 * CPU can pass the QS state. 3402 */ 3403 if (!success) { 3404 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3405 synchronize_rcu(); 3406 kvfree(ptr); 3407 } 3408 } 3409 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3410 3411 static unsigned long 3412 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3413 { 3414 int cpu; 3415 unsigned long count = 0; 3416 3417 /* Snapshot count of all CPUs */ 3418 for_each_possible_cpu(cpu) { 3419 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3420 3421 count += READ_ONCE(krcp->count); 3422 count += READ_ONCE(krcp->nr_bkv_objs); 3423 atomic_set(&krcp->backoff_page_cache_fill, 1); 3424 } 3425 3426 return count == 0 ? SHRINK_EMPTY : count; 3427 } 3428 3429 static unsigned long 3430 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3431 { 3432 int cpu, freed = 0; 3433 3434 for_each_possible_cpu(cpu) { 3435 int count; 3436 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3437 3438 count = krcp->count; 3439 count += drain_page_cache(krcp); 3440 kfree_rcu_monitor(&krcp->monitor_work.work); 3441 3442 sc->nr_to_scan -= count; 3443 freed += count; 3444 3445 if (sc->nr_to_scan <= 0) 3446 break; 3447 } 3448 3449 return freed == 0 ? SHRINK_STOP : freed; 3450 } 3451 3452 static struct shrinker kfree_rcu_shrinker = { 3453 .count_objects = kfree_rcu_shrink_count, 3454 .scan_objects = kfree_rcu_shrink_scan, 3455 .batch = 0, 3456 .seeks = DEFAULT_SEEKS, 3457 }; 3458 3459 void __init kfree_rcu_scheduler_running(void) 3460 { 3461 int cpu; 3462 unsigned long flags; 3463 3464 for_each_possible_cpu(cpu) { 3465 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3466 3467 raw_spin_lock_irqsave(&krcp->lock, flags); 3468 if (need_offload_krc(krcp)) 3469 schedule_delayed_monitor_work(krcp); 3470 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3471 } 3472 } 3473 3474 /* 3475 * During early boot, any blocking grace-period wait automatically 3476 * implies a grace period. 3477 * 3478 * Later on, this could in theory be the case for kernels built with 3479 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3480 * is not a common case. Furthermore, this optimization would cause 3481 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3482 * grace-period optimization is ignored once the scheduler is running. 3483 */ 3484 static int rcu_blocking_is_gp(void) 3485 { 3486 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 3487 return false; 3488 might_sleep(); /* Check for RCU read-side critical section. */ 3489 return true; 3490 } 3491 3492 /** 3493 * synchronize_rcu - wait until a grace period has elapsed. 3494 * 3495 * Control will return to the caller some time after a full grace 3496 * period has elapsed, in other words after all currently executing RCU 3497 * read-side critical sections have completed. Note, however, that 3498 * upon return from synchronize_rcu(), the caller might well be executing 3499 * concurrently with new RCU read-side critical sections that began while 3500 * synchronize_rcu() was waiting. 3501 * 3502 * RCU read-side critical sections are delimited by rcu_read_lock() 3503 * and rcu_read_unlock(), and may be nested. In addition, but only in 3504 * v5.0 and later, regions of code across which interrupts, preemption, 3505 * or softirqs have been disabled also serve as RCU read-side critical 3506 * sections. This includes hardware interrupt handlers, softirq handlers, 3507 * and NMI handlers. 3508 * 3509 * Note that this guarantee implies further memory-ordering guarantees. 3510 * On systems with more than one CPU, when synchronize_rcu() returns, 3511 * each CPU is guaranteed to have executed a full memory barrier since 3512 * the end of its last RCU read-side critical section whose beginning 3513 * preceded the call to synchronize_rcu(). In addition, each CPU having 3514 * an RCU read-side critical section that extends beyond the return from 3515 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3516 * after the beginning of synchronize_rcu() and before the beginning of 3517 * that RCU read-side critical section. Note that these guarantees include 3518 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3519 * that are executing in the kernel. 3520 * 3521 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3522 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3523 * to have executed a full memory barrier during the execution of 3524 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3525 * again only if the system has more than one CPU). 3526 * 3527 * Implementation of these memory-ordering guarantees is described here: 3528 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3529 */ 3530 void synchronize_rcu(void) 3531 { 3532 unsigned long flags; 3533 struct rcu_node *rnp; 3534 3535 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3536 lock_is_held(&rcu_lock_map) || 3537 lock_is_held(&rcu_sched_lock_map), 3538 "Illegal synchronize_rcu() in RCU read-side critical section"); 3539 if (!rcu_blocking_is_gp()) { 3540 if (rcu_gp_is_expedited()) 3541 synchronize_rcu_expedited(); 3542 else 3543 wait_rcu_gp(call_rcu_hurry); 3544 return; 3545 } 3546 3547 // Context allows vacuous grace periods. 3548 // Note well that this code runs with !PREEMPT && !SMP. 3549 // In addition, all code that advances grace periods runs at 3550 // process level. Therefore, this normal GP overlaps with other 3551 // normal GPs only by being fully nested within them, which allows 3552 // reuse of ->gp_seq_polled_snap. 3553 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3554 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3555 3556 // Update the normal grace-period counters to record 3557 // this grace period, but only those used by the boot CPU. 3558 // The rcu_scheduler_starting() will take care of the rest of 3559 // these counters. 3560 local_irq_save(flags); 3561 WARN_ON_ONCE(num_online_cpus() > 1); 3562 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3563 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3564 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3565 local_irq_restore(flags); 3566 } 3567 EXPORT_SYMBOL_GPL(synchronize_rcu); 3568 3569 /** 3570 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3571 * @rgosp: Place to put state cookie 3572 * 3573 * Stores into @rgosp a value that will always be treated by functions 3574 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3575 * has already completed. 3576 */ 3577 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3578 { 3579 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3580 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3581 } 3582 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3583 3584 /** 3585 * get_state_synchronize_rcu - Snapshot current RCU state 3586 * 3587 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3588 * or poll_state_synchronize_rcu() to determine whether or not a full 3589 * grace period has elapsed in the meantime. 3590 */ 3591 unsigned long get_state_synchronize_rcu(void) 3592 { 3593 /* 3594 * Any prior manipulation of RCU-protected data must happen 3595 * before the load from ->gp_seq. 3596 */ 3597 smp_mb(); /* ^^^ */ 3598 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3599 } 3600 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3601 3602 /** 3603 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3604 * @rgosp: location to place combined normal/expedited grace-period state 3605 * 3606 * Places the normal and expedited grace-period states in @rgosp. This 3607 * state value can be passed to a later call to cond_synchronize_rcu_full() 3608 * or poll_state_synchronize_rcu_full() to determine whether or not a 3609 * grace period (whether normal or expedited) has elapsed in the meantime. 3610 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3611 * long, but is guaranteed to see all grace periods. In contrast, the 3612 * combined state occupies less memory, but can sometimes fail to take 3613 * grace periods into account. 3614 * 3615 * This does not guarantee that the needed grace period will actually 3616 * start. 3617 */ 3618 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3619 { 3620 struct rcu_node *rnp = rcu_get_root(); 3621 3622 /* 3623 * Any prior manipulation of RCU-protected data must happen 3624 * before the loads from ->gp_seq and ->expedited_sequence. 3625 */ 3626 smp_mb(); /* ^^^ */ 3627 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3628 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3629 } 3630 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3631 3632 /* 3633 * Helper function for start_poll_synchronize_rcu() and 3634 * start_poll_synchronize_rcu_full(). 3635 */ 3636 static void start_poll_synchronize_rcu_common(void) 3637 { 3638 unsigned long flags; 3639 bool needwake; 3640 struct rcu_data *rdp; 3641 struct rcu_node *rnp; 3642 3643 lockdep_assert_irqs_enabled(); 3644 local_irq_save(flags); 3645 rdp = this_cpu_ptr(&rcu_data); 3646 rnp = rdp->mynode; 3647 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3648 // Note it is possible for a grace period to have elapsed between 3649 // the above call to get_state_synchronize_rcu() and the below call 3650 // to rcu_seq_snap. This is OK, the worst that happens is that we 3651 // get a grace period that no one needed. These accesses are ordered 3652 // by smp_mb(), and we are accessing them in the opposite order 3653 // from which they are updated at grace-period start, as required. 3654 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3655 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3656 if (needwake) 3657 rcu_gp_kthread_wake(); 3658 } 3659 3660 /** 3661 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3662 * 3663 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3664 * or poll_state_synchronize_rcu() to determine whether or not a full 3665 * grace period has elapsed in the meantime. If the needed grace period 3666 * is not already slated to start, notifies RCU core of the need for that 3667 * grace period. 3668 * 3669 * Interrupts must be enabled for the case where it is necessary to awaken 3670 * the grace-period kthread. 3671 */ 3672 unsigned long start_poll_synchronize_rcu(void) 3673 { 3674 unsigned long gp_seq = get_state_synchronize_rcu(); 3675 3676 start_poll_synchronize_rcu_common(); 3677 return gp_seq; 3678 } 3679 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3680 3681 /** 3682 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3683 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3684 * 3685 * Places the normal and expedited grace-period states in *@rgos. This 3686 * state value can be passed to a later call to cond_synchronize_rcu_full() 3687 * or poll_state_synchronize_rcu_full() to determine whether or not a 3688 * grace period (whether normal or expedited) has elapsed in the meantime. 3689 * If the needed grace period is not already slated to start, notifies 3690 * RCU core of the need for that grace period. 3691 * 3692 * Interrupts must be enabled for the case where it is necessary to awaken 3693 * the grace-period kthread. 3694 */ 3695 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3696 { 3697 get_state_synchronize_rcu_full(rgosp); 3698 3699 start_poll_synchronize_rcu_common(); 3700 } 3701 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3702 3703 /** 3704 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3705 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3706 * 3707 * If a full RCU grace period has elapsed since the earlier call from 3708 * which @oldstate was obtained, return @true, otherwise return @false. 3709 * If @false is returned, it is the caller's responsibility to invoke this 3710 * function later on until it does return @true. Alternatively, the caller 3711 * can explicitly wait for a grace period, for example, by passing @oldstate 3712 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3713 * 3714 * Yes, this function does not take counter wrap into account. 3715 * But counter wrap is harmless. If the counter wraps, we have waited for 3716 * more than a billion grace periods (and way more on a 64-bit system!). 3717 * Those needing to keep old state values for very long time periods 3718 * (many hours even on 32-bit systems) should check them occasionally and 3719 * either refresh them or set a flag indicating that the grace period has 3720 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3721 * to get a guaranteed-completed grace-period state. 3722 * 3723 * This function provides the same memory-ordering guarantees that 3724 * would be provided by a synchronize_rcu() that was invoked at the call 3725 * to the function that provided @oldstate, and that returned at the end 3726 * of this function. 3727 */ 3728 bool poll_state_synchronize_rcu(unsigned long oldstate) 3729 { 3730 if (oldstate == RCU_GET_STATE_COMPLETED || 3731 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3732 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3733 return true; 3734 } 3735 return false; 3736 } 3737 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3738 3739 /** 3740 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3741 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3742 * 3743 * If a full RCU grace period has elapsed since the earlier call from 3744 * which *rgosp was obtained, return @true, otherwise return @false. 3745 * If @false is returned, it is the caller's responsibility to invoke this 3746 * function later on until it does return @true. Alternatively, the caller 3747 * can explicitly wait for a grace period, for example, by passing @rgosp 3748 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3749 * 3750 * Yes, this function does not take counter wrap into account. 3751 * But counter wrap is harmless. If the counter wraps, we have waited 3752 * for more than a billion grace periods (and way more on a 64-bit 3753 * system!). Those needing to keep rcu_gp_oldstate values for very 3754 * long time periods (many hours even on 32-bit systems) should check 3755 * them occasionally and either refresh them or set a flag indicating 3756 * that the grace period has completed. Alternatively, they can use 3757 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3758 * grace-period state. 3759 * 3760 * This function provides the same memory-ordering guarantees that would 3761 * be provided by a synchronize_rcu() that was invoked at the call to 3762 * the function that provided @rgosp, and that returned at the end of this 3763 * function. And this guarantee requires that the root rcu_node structure's 3764 * ->gp_seq field be checked instead of that of the rcu_state structure. 3765 * The problem is that the just-ending grace-period's callbacks can be 3766 * invoked between the time that the root rcu_node structure's ->gp_seq 3767 * field is updated and the time that the rcu_state structure's ->gp_seq 3768 * field is updated. Therefore, if a single synchronize_rcu() is to 3769 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3770 * then the root rcu_node structure is the one that needs to be polled. 3771 */ 3772 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3773 { 3774 struct rcu_node *rnp = rcu_get_root(); 3775 3776 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3777 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3778 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3779 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3780 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3781 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3782 return true; 3783 } 3784 return false; 3785 } 3786 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3787 3788 /** 3789 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3790 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3791 * 3792 * If a full RCU grace period has elapsed since the earlier call to 3793 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3794 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3795 * 3796 * Yes, this function does not take counter wrap into account. 3797 * But counter wrap is harmless. If the counter wraps, we have waited for 3798 * more than 2 billion grace periods (and way more on a 64-bit system!), 3799 * so waiting for a couple of additional grace periods should be just fine. 3800 * 3801 * This function provides the same memory-ordering guarantees that 3802 * would be provided by a synchronize_rcu() that was invoked at the call 3803 * to the function that provided @oldstate and that returned at the end 3804 * of this function. 3805 */ 3806 void cond_synchronize_rcu(unsigned long oldstate) 3807 { 3808 if (!poll_state_synchronize_rcu(oldstate)) 3809 synchronize_rcu(); 3810 } 3811 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3812 3813 /** 3814 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3815 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3816 * 3817 * If a full RCU grace period has elapsed since the call to 3818 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3819 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3820 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3821 * for a full grace period. 3822 * 3823 * Yes, this function does not take counter wrap into account. 3824 * But counter wrap is harmless. If the counter wraps, we have waited for 3825 * more than 2 billion grace periods (and way more on a 64-bit system!), 3826 * so waiting for a couple of additional grace periods should be just fine. 3827 * 3828 * This function provides the same memory-ordering guarantees that 3829 * would be provided by a synchronize_rcu() that was invoked at the call 3830 * to the function that provided @rgosp and that returned at the end of 3831 * this function. 3832 */ 3833 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3834 { 3835 if (!poll_state_synchronize_rcu_full(rgosp)) 3836 synchronize_rcu(); 3837 } 3838 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3839 3840 /* 3841 * Check to see if there is any immediate RCU-related work to be done by 3842 * the current CPU, returning 1 if so and zero otherwise. The checks are 3843 * in order of increasing expense: checks that can be carried out against 3844 * CPU-local state are performed first. However, we must check for CPU 3845 * stalls first, else we might not get a chance. 3846 */ 3847 static int rcu_pending(int user) 3848 { 3849 bool gp_in_progress; 3850 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3851 struct rcu_node *rnp = rdp->mynode; 3852 3853 lockdep_assert_irqs_disabled(); 3854 3855 /* Check for CPU stalls, if enabled. */ 3856 check_cpu_stall(rdp); 3857 3858 /* Does this CPU need a deferred NOCB wakeup? */ 3859 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3860 return 1; 3861 3862 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3863 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3864 return 0; 3865 3866 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3867 gp_in_progress = rcu_gp_in_progress(); 3868 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3869 return 1; 3870 3871 /* Does this CPU have callbacks ready to invoke? */ 3872 if (!rcu_rdp_is_offloaded(rdp) && 3873 rcu_segcblist_ready_cbs(&rdp->cblist)) 3874 return 1; 3875 3876 /* Has RCU gone idle with this CPU needing another grace period? */ 3877 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3878 !rcu_rdp_is_offloaded(rdp) && 3879 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3880 return 1; 3881 3882 /* Have RCU grace period completed or started? */ 3883 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3884 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3885 return 1; 3886 3887 /* nothing to do */ 3888 return 0; 3889 } 3890 3891 /* 3892 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3893 * the compiler is expected to optimize this away. 3894 */ 3895 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3896 { 3897 trace_rcu_barrier(rcu_state.name, s, cpu, 3898 atomic_read(&rcu_state.barrier_cpu_count), done); 3899 } 3900 3901 /* 3902 * RCU callback function for rcu_barrier(). If we are last, wake 3903 * up the task executing rcu_barrier(). 3904 * 3905 * Note that the value of rcu_state.barrier_sequence must be captured 3906 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3907 * other CPUs might count the value down to zero before this CPU gets 3908 * around to invoking rcu_barrier_trace(), which might result in bogus 3909 * data from the next instance of rcu_barrier(). 3910 */ 3911 static void rcu_barrier_callback(struct rcu_head *rhp) 3912 { 3913 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3914 3915 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3916 rcu_barrier_trace(TPS("LastCB"), -1, s); 3917 complete(&rcu_state.barrier_completion); 3918 } else { 3919 rcu_barrier_trace(TPS("CB"), -1, s); 3920 } 3921 } 3922 3923 /* 3924 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3925 */ 3926 static void rcu_barrier_entrain(struct rcu_data *rdp) 3927 { 3928 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3929 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3930 bool wake_nocb = false; 3931 bool was_alldone = false; 3932 3933 lockdep_assert_held(&rcu_state.barrier_lock); 3934 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3935 return; 3936 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3937 rdp->barrier_head.func = rcu_barrier_callback; 3938 debug_rcu_head_queue(&rdp->barrier_head); 3939 rcu_nocb_lock(rdp); 3940 /* 3941 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3942 * queue. This way we don't wait for bypass timer that can reach seconds 3943 * if it's fully lazy. 3944 */ 3945 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3946 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3947 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3948 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3949 atomic_inc(&rcu_state.barrier_cpu_count); 3950 } else { 3951 debug_rcu_head_unqueue(&rdp->barrier_head); 3952 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3953 } 3954 rcu_nocb_unlock(rdp); 3955 if (wake_nocb) 3956 wake_nocb_gp(rdp, false); 3957 smp_store_release(&rdp->barrier_seq_snap, gseq); 3958 } 3959 3960 /* 3961 * Called with preemption disabled, and from cross-cpu IRQ context. 3962 */ 3963 static void rcu_barrier_handler(void *cpu_in) 3964 { 3965 uintptr_t cpu = (uintptr_t)cpu_in; 3966 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3967 3968 lockdep_assert_irqs_disabled(); 3969 WARN_ON_ONCE(cpu != rdp->cpu); 3970 WARN_ON_ONCE(cpu != smp_processor_id()); 3971 raw_spin_lock(&rcu_state.barrier_lock); 3972 rcu_barrier_entrain(rdp); 3973 raw_spin_unlock(&rcu_state.barrier_lock); 3974 } 3975 3976 /** 3977 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3978 * 3979 * Note that this primitive does not necessarily wait for an RCU grace period 3980 * to complete. For example, if there are no RCU callbacks queued anywhere 3981 * in the system, then rcu_barrier() is within its rights to return 3982 * immediately, without waiting for anything, much less an RCU grace period. 3983 */ 3984 void rcu_barrier(void) 3985 { 3986 uintptr_t cpu; 3987 unsigned long flags; 3988 unsigned long gseq; 3989 struct rcu_data *rdp; 3990 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3991 3992 rcu_barrier_trace(TPS("Begin"), -1, s); 3993 3994 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3995 mutex_lock(&rcu_state.barrier_mutex); 3996 3997 /* Did someone else do our work for us? */ 3998 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3999 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4000 smp_mb(); /* caller's subsequent code after above check. */ 4001 mutex_unlock(&rcu_state.barrier_mutex); 4002 return; 4003 } 4004 4005 /* Mark the start of the barrier operation. */ 4006 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4007 rcu_seq_start(&rcu_state.barrier_sequence); 4008 gseq = rcu_state.barrier_sequence; 4009 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4010 4011 /* 4012 * Initialize the count to two rather than to zero in order 4013 * to avoid a too-soon return to zero in case of an immediate 4014 * invocation of the just-enqueued callback (or preemption of 4015 * this task). Exclude CPU-hotplug operations to ensure that no 4016 * offline non-offloaded CPU has callbacks queued. 4017 */ 4018 init_completion(&rcu_state.barrier_completion); 4019 atomic_set(&rcu_state.barrier_cpu_count, 2); 4020 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4021 4022 /* 4023 * Force each CPU with callbacks to register a new callback. 4024 * When that callback is invoked, we will know that all of the 4025 * corresponding CPU's preceding callbacks have been invoked. 4026 */ 4027 for_each_possible_cpu(cpu) { 4028 rdp = per_cpu_ptr(&rcu_data, cpu); 4029 retry: 4030 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4031 continue; 4032 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4033 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4034 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4035 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4036 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4037 continue; 4038 } 4039 if (!rcu_rdp_cpu_online(rdp)) { 4040 rcu_barrier_entrain(rdp); 4041 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4042 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4043 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4044 continue; 4045 } 4046 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4047 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4048 schedule_timeout_uninterruptible(1); 4049 goto retry; 4050 } 4051 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4052 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4053 } 4054 4055 /* 4056 * Now that we have an rcu_barrier_callback() callback on each 4057 * CPU, and thus each counted, remove the initial count. 4058 */ 4059 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4060 complete(&rcu_state.barrier_completion); 4061 4062 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4063 wait_for_completion(&rcu_state.barrier_completion); 4064 4065 /* Mark the end of the barrier operation. */ 4066 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4067 rcu_seq_end(&rcu_state.barrier_sequence); 4068 gseq = rcu_state.barrier_sequence; 4069 for_each_possible_cpu(cpu) { 4070 rdp = per_cpu_ptr(&rcu_data, cpu); 4071 4072 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4073 } 4074 4075 /* Other rcu_barrier() invocations can now safely proceed. */ 4076 mutex_unlock(&rcu_state.barrier_mutex); 4077 } 4078 EXPORT_SYMBOL_GPL(rcu_barrier); 4079 4080 /* 4081 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4082 * first CPU in a given leaf rcu_node structure coming online. The caller 4083 * must hold the corresponding leaf rcu_node ->lock with interrupts 4084 * disabled. 4085 */ 4086 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4087 { 4088 long mask; 4089 long oldmask; 4090 struct rcu_node *rnp = rnp_leaf; 4091 4092 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4093 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4094 for (;;) { 4095 mask = rnp->grpmask; 4096 rnp = rnp->parent; 4097 if (rnp == NULL) 4098 return; 4099 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4100 oldmask = rnp->qsmaskinit; 4101 rnp->qsmaskinit |= mask; 4102 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4103 if (oldmask) 4104 return; 4105 } 4106 } 4107 4108 /* 4109 * Do boot-time initialization of a CPU's per-CPU RCU data. 4110 */ 4111 static void __init 4112 rcu_boot_init_percpu_data(int cpu) 4113 { 4114 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4115 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4116 4117 /* Set up local state, ensuring consistent view of global state. */ 4118 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4119 INIT_WORK(&rdp->strict_work, strict_work_handler); 4120 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4121 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4122 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4123 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4124 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4125 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4126 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4127 rdp->last_sched_clock = jiffies; 4128 rdp->cpu = cpu; 4129 rcu_boot_init_nocb_percpu_data(rdp); 4130 } 4131 4132 /* 4133 * Invoked early in the CPU-online process, when pretty much all services 4134 * are available. The incoming CPU is not present. 4135 * 4136 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4137 * offline event can be happening at a given time. Note also that we can 4138 * accept some slop in the rsp->gp_seq access due to the fact that this 4139 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4140 * And any offloaded callbacks are being numbered elsewhere. 4141 */ 4142 int rcutree_prepare_cpu(unsigned int cpu) 4143 { 4144 unsigned long flags; 4145 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4146 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4147 struct rcu_node *rnp = rcu_get_root(); 4148 4149 /* Set up local state, ensuring consistent view of global state. */ 4150 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4151 rdp->qlen_last_fqs_check = 0; 4152 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4153 rdp->blimit = blimit; 4154 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4155 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4156 4157 /* 4158 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4159 * (re-)initialized. 4160 */ 4161 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4162 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4163 4164 /* 4165 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4166 * propagation up the rcu_node tree will happen at the beginning 4167 * of the next grace period. 4168 */ 4169 rnp = rdp->mynode; 4170 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4171 rdp->beenonline = true; /* We have now been online. */ 4172 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4173 rdp->gp_seq_needed = rdp->gp_seq; 4174 rdp->cpu_no_qs.b.norm = true; 4175 rdp->core_needs_qs = false; 4176 rdp->rcu_iw_pending = false; 4177 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4178 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4179 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4180 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4181 rcu_spawn_one_boost_kthread(rnp); 4182 rcu_spawn_cpu_nocb_kthread(cpu); 4183 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4184 4185 return 0; 4186 } 4187 4188 /* 4189 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4190 */ 4191 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4192 { 4193 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4194 4195 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4196 } 4197 4198 /* 4199 * Near the end of the CPU-online process. Pretty much all services 4200 * enabled, and the CPU is now very much alive. 4201 */ 4202 int rcutree_online_cpu(unsigned int cpu) 4203 { 4204 unsigned long flags; 4205 struct rcu_data *rdp; 4206 struct rcu_node *rnp; 4207 4208 rdp = per_cpu_ptr(&rcu_data, cpu); 4209 rnp = rdp->mynode; 4210 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4211 rnp->ffmask |= rdp->grpmask; 4212 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4213 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4214 return 0; /* Too early in boot for scheduler work. */ 4215 sync_sched_exp_online_cleanup(cpu); 4216 rcutree_affinity_setting(cpu, -1); 4217 4218 // Stop-machine done, so allow nohz_full to disable tick. 4219 tick_dep_clear(TICK_DEP_BIT_RCU); 4220 return 0; 4221 } 4222 4223 /* 4224 * Near the beginning of the process. The CPU is still very much alive 4225 * with pretty much all services enabled. 4226 */ 4227 int rcutree_offline_cpu(unsigned int cpu) 4228 { 4229 unsigned long flags; 4230 struct rcu_data *rdp; 4231 struct rcu_node *rnp; 4232 4233 rdp = per_cpu_ptr(&rcu_data, cpu); 4234 rnp = rdp->mynode; 4235 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4236 rnp->ffmask &= ~rdp->grpmask; 4237 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4238 4239 rcutree_affinity_setting(cpu, cpu); 4240 4241 // nohz_full CPUs need the tick for stop-machine to work quickly 4242 tick_dep_set(TICK_DEP_BIT_RCU); 4243 return 0; 4244 } 4245 4246 /* 4247 * Mark the specified CPU as being online so that subsequent grace periods 4248 * (both expedited and normal) will wait on it. Note that this means that 4249 * incoming CPUs are not allowed to use RCU read-side critical sections 4250 * until this function is called. Failing to observe this restriction 4251 * will result in lockdep splats. 4252 * 4253 * Note that this function is special in that it is invoked directly 4254 * from the incoming CPU rather than from the cpuhp_step mechanism. 4255 * This is because this function must be invoked at a precise location. 4256 */ 4257 void rcu_cpu_starting(unsigned int cpu) 4258 { 4259 unsigned long flags; 4260 unsigned long mask; 4261 struct rcu_data *rdp; 4262 struct rcu_node *rnp; 4263 bool newcpu; 4264 4265 rdp = per_cpu_ptr(&rcu_data, cpu); 4266 if (rdp->cpu_started) 4267 return; 4268 rdp->cpu_started = true; 4269 4270 rnp = rdp->mynode; 4271 mask = rdp->grpmask; 4272 local_irq_save(flags); 4273 arch_spin_lock(&rcu_state.ofl_lock); 4274 rcu_dynticks_eqs_online(); 4275 raw_spin_lock(&rcu_state.barrier_lock); 4276 raw_spin_lock_rcu_node(rnp); 4277 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4278 raw_spin_unlock(&rcu_state.barrier_lock); 4279 newcpu = !(rnp->expmaskinitnext & mask); 4280 rnp->expmaskinitnext |= mask; 4281 /* Allow lockless access for expedited grace periods. */ 4282 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4283 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4284 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4285 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4286 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4287 4288 /* An incoming CPU should never be blocking a grace period. */ 4289 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4290 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4291 unsigned long flags2; 4292 4293 local_irq_save(flags2); 4294 rcu_disable_urgency_upon_qs(rdp); 4295 /* Report QS -after- changing ->qsmaskinitnext! */ 4296 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4297 } else { 4298 raw_spin_unlock_rcu_node(rnp); 4299 } 4300 arch_spin_unlock(&rcu_state.ofl_lock); 4301 local_irq_restore(flags); 4302 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4303 } 4304 4305 /* 4306 * The outgoing function has no further need of RCU, so remove it from 4307 * the rcu_node tree's ->qsmaskinitnext bit masks. 4308 * 4309 * Note that this function is special in that it is invoked directly 4310 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4311 * This is because this function must be invoked at a precise location. 4312 */ 4313 void rcu_report_dead(unsigned int cpu) 4314 { 4315 unsigned long flags, seq_flags; 4316 unsigned long mask; 4317 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4318 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4319 4320 // Do any dangling deferred wakeups. 4321 do_nocb_deferred_wakeup(rdp); 4322 4323 rcu_preempt_deferred_qs(current); 4324 4325 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4326 mask = rdp->grpmask; 4327 local_irq_save(seq_flags); 4328 arch_spin_lock(&rcu_state.ofl_lock); 4329 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4330 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4331 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4332 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4333 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4334 rcu_disable_urgency_upon_qs(rdp); 4335 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4336 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4337 } 4338 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4339 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4340 arch_spin_unlock(&rcu_state.ofl_lock); 4341 local_irq_restore(seq_flags); 4342 4343 rdp->cpu_started = false; 4344 } 4345 4346 #ifdef CONFIG_HOTPLUG_CPU 4347 /* 4348 * The outgoing CPU has just passed through the dying-idle state, and we 4349 * are being invoked from the CPU that was IPIed to continue the offline 4350 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4351 */ 4352 void rcutree_migrate_callbacks(int cpu) 4353 { 4354 unsigned long flags; 4355 struct rcu_data *my_rdp; 4356 struct rcu_node *my_rnp; 4357 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4358 bool needwake; 4359 4360 if (rcu_rdp_is_offloaded(rdp) || 4361 rcu_segcblist_empty(&rdp->cblist)) 4362 return; /* No callbacks to migrate. */ 4363 4364 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4365 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4366 rcu_barrier_entrain(rdp); 4367 my_rdp = this_cpu_ptr(&rcu_data); 4368 my_rnp = my_rdp->mynode; 4369 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4370 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4371 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4372 /* Leverage recent GPs and set GP for new callbacks. */ 4373 needwake = rcu_advance_cbs(my_rnp, rdp) || 4374 rcu_advance_cbs(my_rnp, my_rdp); 4375 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4376 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4377 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4378 rcu_segcblist_disable(&rdp->cblist); 4379 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4380 check_cb_ovld_locked(my_rdp, my_rnp); 4381 if (rcu_rdp_is_offloaded(my_rdp)) { 4382 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4383 __call_rcu_nocb_wake(my_rdp, true, flags); 4384 } else { 4385 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4386 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4387 } 4388 if (needwake) 4389 rcu_gp_kthread_wake(); 4390 lockdep_assert_irqs_enabled(); 4391 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4392 !rcu_segcblist_empty(&rdp->cblist), 4393 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4394 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4395 rcu_segcblist_first_cb(&rdp->cblist)); 4396 } 4397 #endif 4398 4399 /* 4400 * On non-huge systems, use expedited RCU grace periods to make suspend 4401 * and hibernation run faster. 4402 */ 4403 static int rcu_pm_notify(struct notifier_block *self, 4404 unsigned long action, void *hcpu) 4405 { 4406 switch (action) { 4407 case PM_HIBERNATION_PREPARE: 4408 case PM_SUSPEND_PREPARE: 4409 rcu_expedite_gp(); 4410 break; 4411 case PM_POST_HIBERNATION: 4412 case PM_POST_SUSPEND: 4413 rcu_unexpedite_gp(); 4414 break; 4415 default: 4416 break; 4417 } 4418 return NOTIFY_OK; 4419 } 4420 4421 #ifdef CONFIG_RCU_EXP_KTHREAD 4422 struct kthread_worker *rcu_exp_gp_kworker; 4423 struct kthread_worker *rcu_exp_par_gp_kworker; 4424 4425 static void __init rcu_start_exp_gp_kworkers(void) 4426 { 4427 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4428 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4429 struct sched_param param = { .sched_priority = kthread_prio }; 4430 4431 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4432 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4433 pr_err("Failed to create %s!\n", gp_kworker_name); 4434 return; 4435 } 4436 4437 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4438 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4439 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4440 kthread_destroy_worker(rcu_exp_gp_kworker); 4441 return; 4442 } 4443 4444 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4445 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4446 ¶m); 4447 } 4448 4449 static inline void rcu_alloc_par_gp_wq(void) 4450 { 4451 } 4452 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4453 struct workqueue_struct *rcu_par_gp_wq; 4454 4455 static void __init rcu_start_exp_gp_kworkers(void) 4456 { 4457 } 4458 4459 static inline void rcu_alloc_par_gp_wq(void) 4460 { 4461 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4462 WARN_ON(!rcu_par_gp_wq); 4463 } 4464 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4465 4466 /* 4467 * Spawn the kthreads that handle RCU's grace periods. 4468 */ 4469 static int __init rcu_spawn_gp_kthread(void) 4470 { 4471 unsigned long flags; 4472 struct rcu_node *rnp; 4473 struct sched_param sp; 4474 struct task_struct *t; 4475 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4476 4477 rcu_scheduler_fully_active = 1; 4478 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4479 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4480 return 0; 4481 if (kthread_prio) { 4482 sp.sched_priority = kthread_prio; 4483 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4484 } 4485 rnp = rcu_get_root(); 4486 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4487 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4488 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4489 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4490 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4492 wake_up_process(t); 4493 /* This is a pre-SMP initcall, we expect a single CPU */ 4494 WARN_ON(num_online_cpus() > 1); 4495 /* 4496 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4497 * due to rcu_scheduler_fully_active. 4498 */ 4499 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4500 rcu_spawn_one_boost_kthread(rdp->mynode); 4501 rcu_spawn_core_kthreads(); 4502 /* Create kthread worker for expedited GPs */ 4503 rcu_start_exp_gp_kworkers(); 4504 return 0; 4505 } 4506 early_initcall(rcu_spawn_gp_kthread); 4507 4508 /* 4509 * This function is invoked towards the end of the scheduler's 4510 * initialization process. Before this is called, the idle task might 4511 * contain synchronous grace-period primitives (during which time, this idle 4512 * task is booting the system, and such primitives are no-ops). After this 4513 * function is called, any synchronous grace-period primitives are run as 4514 * expedited, with the requesting task driving the grace period forward. 4515 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4516 * runtime RCU functionality. 4517 */ 4518 void rcu_scheduler_starting(void) 4519 { 4520 unsigned long flags; 4521 struct rcu_node *rnp; 4522 4523 WARN_ON(num_online_cpus() != 1); 4524 WARN_ON(nr_context_switches() > 0); 4525 rcu_test_sync_prims(); 4526 4527 // Fix up the ->gp_seq counters. 4528 local_irq_save(flags); 4529 rcu_for_each_node_breadth_first(rnp) 4530 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4531 local_irq_restore(flags); 4532 4533 // Switch out of early boot mode. 4534 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4535 rcu_test_sync_prims(); 4536 } 4537 4538 /* 4539 * Helper function for rcu_init() that initializes the rcu_state structure. 4540 */ 4541 static void __init rcu_init_one(void) 4542 { 4543 static const char * const buf[] = RCU_NODE_NAME_INIT; 4544 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4545 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4546 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4547 4548 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4549 int cpustride = 1; 4550 int i; 4551 int j; 4552 struct rcu_node *rnp; 4553 4554 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4555 4556 /* Silence gcc 4.8 false positive about array index out of range. */ 4557 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4558 panic("rcu_init_one: rcu_num_lvls out of range"); 4559 4560 /* Initialize the level-tracking arrays. */ 4561 4562 for (i = 1; i < rcu_num_lvls; i++) 4563 rcu_state.level[i] = 4564 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4565 rcu_init_levelspread(levelspread, num_rcu_lvl); 4566 4567 /* Initialize the elements themselves, starting from the leaves. */ 4568 4569 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4570 cpustride *= levelspread[i]; 4571 rnp = rcu_state.level[i]; 4572 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4573 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4574 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4575 &rcu_node_class[i], buf[i]); 4576 raw_spin_lock_init(&rnp->fqslock); 4577 lockdep_set_class_and_name(&rnp->fqslock, 4578 &rcu_fqs_class[i], fqs[i]); 4579 rnp->gp_seq = rcu_state.gp_seq; 4580 rnp->gp_seq_needed = rcu_state.gp_seq; 4581 rnp->completedqs = rcu_state.gp_seq; 4582 rnp->qsmask = 0; 4583 rnp->qsmaskinit = 0; 4584 rnp->grplo = j * cpustride; 4585 rnp->grphi = (j + 1) * cpustride - 1; 4586 if (rnp->grphi >= nr_cpu_ids) 4587 rnp->grphi = nr_cpu_ids - 1; 4588 if (i == 0) { 4589 rnp->grpnum = 0; 4590 rnp->grpmask = 0; 4591 rnp->parent = NULL; 4592 } else { 4593 rnp->grpnum = j % levelspread[i - 1]; 4594 rnp->grpmask = BIT(rnp->grpnum); 4595 rnp->parent = rcu_state.level[i - 1] + 4596 j / levelspread[i - 1]; 4597 } 4598 rnp->level = i; 4599 INIT_LIST_HEAD(&rnp->blkd_tasks); 4600 rcu_init_one_nocb(rnp); 4601 init_waitqueue_head(&rnp->exp_wq[0]); 4602 init_waitqueue_head(&rnp->exp_wq[1]); 4603 init_waitqueue_head(&rnp->exp_wq[2]); 4604 init_waitqueue_head(&rnp->exp_wq[3]); 4605 spin_lock_init(&rnp->exp_lock); 4606 mutex_init(&rnp->boost_kthread_mutex); 4607 raw_spin_lock_init(&rnp->exp_poll_lock); 4608 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4609 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4610 } 4611 } 4612 4613 init_swait_queue_head(&rcu_state.gp_wq); 4614 init_swait_queue_head(&rcu_state.expedited_wq); 4615 rnp = rcu_first_leaf_node(); 4616 for_each_possible_cpu(i) { 4617 while (i > rnp->grphi) 4618 rnp++; 4619 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4620 rcu_boot_init_percpu_data(i); 4621 } 4622 } 4623 4624 /* 4625 * Force priority from the kernel command-line into range. 4626 */ 4627 static void __init sanitize_kthread_prio(void) 4628 { 4629 int kthread_prio_in = kthread_prio; 4630 4631 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4632 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4633 kthread_prio = 2; 4634 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4635 kthread_prio = 1; 4636 else if (kthread_prio < 0) 4637 kthread_prio = 0; 4638 else if (kthread_prio > 99) 4639 kthread_prio = 99; 4640 4641 if (kthread_prio != kthread_prio_in) 4642 pr_alert("%s: Limited prio to %d from %d\n", 4643 __func__, kthread_prio, kthread_prio_in); 4644 } 4645 4646 /* 4647 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4648 * replace the definitions in tree.h because those are needed to size 4649 * the ->node array in the rcu_state structure. 4650 */ 4651 void rcu_init_geometry(void) 4652 { 4653 ulong d; 4654 int i; 4655 static unsigned long old_nr_cpu_ids; 4656 int rcu_capacity[RCU_NUM_LVLS]; 4657 static bool initialized; 4658 4659 if (initialized) { 4660 /* 4661 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4662 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4663 */ 4664 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4665 return; 4666 } 4667 4668 old_nr_cpu_ids = nr_cpu_ids; 4669 initialized = true; 4670 4671 /* 4672 * Initialize any unspecified boot parameters. 4673 * The default values of jiffies_till_first_fqs and 4674 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4675 * value, which is a function of HZ, then adding one for each 4676 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4677 */ 4678 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4679 if (jiffies_till_first_fqs == ULONG_MAX) 4680 jiffies_till_first_fqs = d; 4681 if (jiffies_till_next_fqs == ULONG_MAX) 4682 jiffies_till_next_fqs = d; 4683 adjust_jiffies_till_sched_qs(); 4684 4685 /* If the compile-time values are accurate, just leave. */ 4686 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4687 nr_cpu_ids == NR_CPUS) 4688 return; 4689 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4690 rcu_fanout_leaf, nr_cpu_ids); 4691 4692 /* 4693 * The boot-time rcu_fanout_leaf parameter must be at least two 4694 * and cannot exceed the number of bits in the rcu_node masks. 4695 * Complain and fall back to the compile-time values if this 4696 * limit is exceeded. 4697 */ 4698 if (rcu_fanout_leaf < 2 || 4699 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4700 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4701 WARN_ON(1); 4702 return; 4703 } 4704 4705 /* 4706 * Compute number of nodes that can be handled an rcu_node tree 4707 * with the given number of levels. 4708 */ 4709 rcu_capacity[0] = rcu_fanout_leaf; 4710 for (i = 1; i < RCU_NUM_LVLS; i++) 4711 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4712 4713 /* 4714 * The tree must be able to accommodate the configured number of CPUs. 4715 * If this limit is exceeded, fall back to the compile-time values. 4716 */ 4717 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4718 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4719 WARN_ON(1); 4720 return; 4721 } 4722 4723 /* Calculate the number of levels in the tree. */ 4724 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4725 } 4726 rcu_num_lvls = i + 1; 4727 4728 /* Calculate the number of rcu_nodes at each level of the tree. */ 4729 for (i = 0; i < rcu_num_lvls; i++) { 4730 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4731 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4732 } 4733 4734 /* Calculate the total number of rcu_node structures. */ 4735 rcu_num_nodes = 0; 4736 for (i = 0; i < rcu_num_lvls; i++) 4737 rcu_num_nodes += num_rcu_lvl[i]; 4738 } 4739 4740 /* 4741 * Dump out the structure of the rcu_node combining tree associated 4742 * with the rcu_state structure. 4743 */ 4744 static void __init rcu_dump_rcu_node_tree(void) 4745 { 4746 int level = 0; 4747 struct rcu_node *rnp; 4748 4749 pr_info("rcu_node tree layout dump\n"); 4750 pr_info(" "); 4751 rcu_for_each_node_breadth_first(rnp) { 4752 if (rnp->level != level) { 4753 pr_cont("\n"); 4754 pr_info(" "); 4755 level = rnp->level; 4756 } 4757 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4758 } 4759 pr_cont("\n"); 4760 } 4761 4762 struct workqueue_struct *rcu_gp_wq; 4763 4764 static void __init kfree_rcu_batch_init(void) 4765 { 4766 int cpu; 4767 int i; 4768 4769 /* Clamp it to [0:100] seconds interval. */ 4770 if (rcu_delay_page_cache_fill_msec < 0 || 4771 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4772 4773 rcu_delay_page_cache_fill_msec = 4774 clamp(rcu_delay_page_cache_fill_msec, 0, 4775 (int) (100 * MSEC_PER_SEC)); 4776 4777 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4778 rcu_delay_page_cache_fill_msec); 4779 } 4780 4781 for_each_possible_cpu(cpu) { 4782 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4783 4784 for (i = 0; i < KFREE_N_BATCHES; i++) { 4785 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4786 krcp->krw_arr[i].krcp = krcp; 4787 } 4788 4789 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4790 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4791 krcp->initialized = true; 4792 } 4793 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4794 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4795 } 4796 4797 void __init rcu_init(void) 4798 { 4799 int cpu = smp_processor_id(); 4800 4801 rcu_early_boot_tests(); 4802 4803 kfree_rcu_batch_init(); 4804 rcu_bootup_announce(); 4805 sanitize_kthread_prio(); 4806 rcu_init_geometry(); 4807 rcu_init_one(); 4808 if (dump_tree) 4809 rcu_dump_rcu_node_tree(); 4810 if (use_softirq) 4811 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4812 4813 /* 4814 * We don't need protection against CPU-hotplug here because 4815 * this is called early in boot, before either interrupts 4816 * or the scheduler are operational. 4817 */ 4818 pm_notifier(rcu_pm_notify, 0); 4819 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4820 rcutree_prepare_cpu(cpu); 4821 rcu_cpu_starting(cpu); 4822 rcutree_online_cpu(cpu); 4823 4824 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4825 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4826 WARN_ON(!rcu_gp_wq); 4827 rcu_alloc_par_gp_wq(); 4828 4829 /* Fill in default value for rcutree.qovld boot parameter. */ 4830 /* -After- the rcu_node ->lock fields are initialized! */ 4831 if (qovld < 0) 4832 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4833 else 4834 qovld_calc = qovld; 4835 4836 // Kick-start any polled grace periods that started early. 4837 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) 4838 (void)start_poll_synchronize_rcu_expedited(); 4839 } 4840 4841 #include "tree_stall.h" 4842 #include "tree_exp.h" 4843 #include "tree_nocb.h" 4844 #include "tree_plugin.h" 4845