1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0644); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 180 /* 181 * Number of grace periods between delays, normalized by the duration of 182 * the delay. The longer the delay, the more the grace periods between 183 * each delay. The reason for this normalization is that it means that, 184 * for non-zero delays, the overall slowdown of grace periods is constant 185 * regardless of the duration of the delay. This arrangement balances 186 * the need for long delays to increase some race probabilities with the 187 * need for fast grace periods to increase other race probabilities. 188 */ 189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 190 191 /* 192 * Track the rcutorture test sequence number and the update version 193 * number within a given test. The rcutorture_testseq is incremented 194 * on every rcutorture module load and unload, so has an odd value 195 * when a test is running. The rcutorture_vernum is set to zero 196 * when rcutorture starts and is incremented on each rcutorture update. 197 * These variables enable correlating rcutorture output with the 198 * RCU tracing information. 199 */ 200 unsigned long rcutorture_testseq; 201 unsigned long rcutorture_vernum; 202 203 /* 204 * Compute the mask of online CPUs for the specified rcu_node structure. 205 * This will not be stable unless the rcu_node structure's ->lock is 206 * held, but the bit corresponding to the current CPU will be stable 207 * in most contexts. 208 */ 209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 210 { 211 return READ_ONCE(rnp->qsmaskinitnext); 212 } 213 214 /* 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s 216 * permit this function to be invoked without holding the root rcu_node 217 * structure's ->lock, but of course results can be subject to change. 218 */ 219 static int rcu_gp_in_progress(struct rcu_state *rsp) 220 { 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 222 } 223 224 /* 225 * Note a quiescent state. Because we do not need to know 226 * how many quiescent states passed, just if there was at least 227 * one since the start of the grace period, this just sets a flag. 228 * The caller must have disabled preemption. 229 */ 230 void rcu_sched_qs(void) 231 { 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 234 return; 235 trace_rcu_grace_period(TPS("rcu_sched"), 236 __this_cpu_read(rcu_sched_data.gpnum), 237 TPS("cpuqs")); 238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 240 return; 241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 242 rcu_report_exp_rdp(&rcu_sched_state, 243 this_cpu_ptr(&rcu_sched_data), true); 244 } 245 246 void rcu_bh_qs(void) 247 { 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 250 trace_rcu_grace_period(TPS("rcu_bh"), 251 __this_cpu_read(rcu_bh_data.gpnum), 252 TPS("cpuqs")); 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 254 } 255 } 256 257 /* 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit 259 * control. Initially this is for TLB flushing. 260 */ 261 #define RCU_DYNTICK_CTRL_MASK 0x1 262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 263 #ifndef rcu_eqs_special_exit 264 #define rcu_eqs_special_exit() do { } while (0) 265 #endif 266 267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 268 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 269 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 270 }; 271 272 /* 273 * There's a few places, currently just in the tracing infrastructure, 274 * that uses rcu_irq_enter() to make sure RCU is watching. But there's 275 * a small location where that will not even work. In those cases 276 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter() 277 * can be called. 278 */ 279 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter); 280 281 bool rcu_irq_enter_disabled(void) 282 { 283 return this_cpu_read(disable_rcu_irq_enter); 284 } 285 286 /* 287 * Record entry into an extended quiescent state. This is only to be 288 * called when not already in an extended quiescent state. 289 */ 290 static void rcu_dynticks_eqs_enter(void) 291 { 292 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 293 int seq; 294 295 /* 296 * CPUs seeing atomic_add_return() must see prior RCU read-side 297 * critical sections, and we also must force ordering with the 298 * next idle sojourn. 299 */ 300 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 301 /* Better be in an extended quiescent state! */ 302 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 303 (seq & RCU_DYNTICK_CTRL_CTR)); 304 /* Better not have special action (TLB flush) pending! */ 305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 306 (seq & RCU_DYNTICK_CTRL_MASK)); 307 } 308 309 /* 310 * Record exit from an extended quiescent state. This is only to be 311 * called from an extended quiescent state. 312 */ 313 static void rcu_dynticks_eqs_exit(void) 314 { 315 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 316 int seq; 317 318 /* 319 * CPUs seeing atomic_add_return() must see prior idle sojourns, 320 * and we also must force ordering with the next RCU read-side 321 * critical section. 322 */ 323 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 324 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 325 !(seq & RCU_DYNTICK_CTRL_CTR)); 326 if (seq & RCU_DYNTICK_CTRL_MASK) { 327 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 328 smp_mb__after_atomic(); /* _exit after clearing mask. */ 329 /* Prefer duplicate flushes to losing a flush. */ 330 rcu_eqs_special_exit(); 331 } 332 } 333 334 /* 335 * Reset the current CPU's ->dynticks counter to indicate that the 336 * newly onlined CPU is no longer in an extended quiescent state. 337 * This will either leave the counter unchanged, or increment it 338 * to the next non-quiescent value. 339 * 340 * The non-atomic test/increment sequence works because the upper bits 341 * of the ->dynticks counter are manipulated only by the corresponding CPU, 342 * or when the corresponding CPU is offline. 343 */ 344 static void rcu_dynticks_eqs_online(void) 345 { 346 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 347 348 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 349 return; 350 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 351 } 352 353 /* 354 * Is the current CPU in an extended quiescent state? 355 * 356 * No ordering, as we are sampling CPU-local information. 357 */ 358 bool rcu_dynticks_curr_cpu_in_eqs(void) 359 { 360 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 361 362 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 363 } 364 365 /* 366 * Snapshot the ->dynticks counter with full ordering so as to allow 367 * stable comparison of this counter with past and future snapshots. 368 */ 369 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 370 { 371 int snap = atomic_add_return(0, &rdtp->dynticks); 372 373 return snap & ~RCU_DYNTICK_CTRL_MASK; 374 } 375 376 /* 377 * Return true if the snapshot returned from rcu_dynticks_snap() 378 * indicates that RCU is in an extended quiescent state. 379 */ 380 static bool rcu_dynticks_in_eqs(int snap) 381 { 382 return !(snap & RCU_DYNTICK_CTRL_CTR); 383 } 384 385 /* 386 * Return true if the CPU corresponding to the specified rcu_dynticks 387 * structure has spent some time in an extended quiescent state since 388 * rcu_dynticks_snap() returned the specified snapshot. 389 */ 390 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 391 { 392 return snap != rcu_dynticks_snap(rdtp); 393 } 394 395 /* 396 * Do a double-increment of the ->dynticks counter to emulate a 397 * momentary idle-CPU quiescent state. 398 */ 399 static void rcu_dynticks_momentary_idle(void) 400 { 401 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 402 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 403 &rdtp->dynticks); 404 405 /* It is illegal to call this from idle state. */ 406 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 407 } 408 409 /* 410 * Set the special (bottom) bit of the specified CPU so that it 411 * will take special action (such as flushing its TLB) on the 412 * next exit from an extended quiescent state. Returns true if 413 * the bit was successfully set, or false if the CPU was not in 414 * an extended quiescent state. 415 */ 416 bool rcu_eqs_special_set(int cpu) 417 { 418 int old; 419 int new; 420 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 421 422 do { 423 old = atomic_read(&rdtp->dynticks); 424 if (old & RCU_DYNTICK_CTRL_CTR) 425 return false; 426 new = old | RCU_DYNTICK_CTRL_MASK; 427 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 428 return true; 429 } 430 431 /* 432 * Let the RCU core know that this CPU has gone through the scheduler, 433 * which is a quiescent state. This is called when the need for a 434 * quiescent state is urgent, so we burn an atomic operation and full 435 * memory barriers to let the RCU core know about it, regardless of what 436 * this CPU might (or might not) do in the near future. 437 * 438 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 439 * 440 * The caller must have disabled interrupts. 441 */ 442 static void rcu_momentary_dyntick_idle(void) 443 { 444 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 445 rcu_dynticks_momentary_idle(); 446 } 447 448 /* 449 * Note a context switch. This is a quiescent state for RCU-sched, 450 * and requires special handling for preemptible RCU. 451 * The caller must have disabled interrupts. 452 */ 453 void rcu_note_context_switch(bool preempt) 454 { 455 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 456 trace_rcu_utilization(TPS("Start context switch")); 457 rcu_sched_qs(); 458 rcu_preempt_note_context_switch(preempt); 459 /* Load rcu_urgent_qs before other flags. */ 460 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 461 goto out; 462 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 463 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 464 rcu_momentary_dyntick_idle(); 465 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 466 if (!preempt) 467 rcu_note_voluntary_context_switch_lite(current); 468 out: 469 trace_rcu_utilization(TPS("End context switch")); 470 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 471 } 472 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 473 474 /* 475 * Register a quiescent state for all RCU flavors. If there is an 476 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 477 * dyntick-idle quiescent state visible to other CPUs (but only for those 478 * RCU flavors in desperate need of a quiescent state, which will normally 479 * be none of them). Either way, do a lightweight quiescent state for 480 * all RCU flavors. 481 * 482 * The barrier() calls are redundant in the common case when this is 483 * called externally, but just in case this is called from within this 484 * file. 485 * 486 */ 487 void rcu_all_qs(void) 488 { 489 unsigned long flags; 490 491 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 492 return; 493 preempt_disable(); 494 /* Load rcu_urgent_qs before other flags. */ 495 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 496 preempt_enable(); 497 return; 498 } 499 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 500 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 501 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 502 local_irq_save(flags); 503 rcu_momentary_dyntick_idle(); 504 local_irq_restore(flags); 505 } 506 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 507 rcu_sched_qs(); 508 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 509 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 510 preempt_enable(); 511 } 512 EXPORT_SYMBOL_GPL(rcu_all_qs); 513 514 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 515 static long blimit = DEFAULT_RCU_BLIMIT; 516 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 517 static long qhimark = DEFAULT_RCU_QHIMARK; 518 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 519 static long qlowmark = DEFAULT_RCU_QLOMARK; 520 521 module_param(blimit, long, 0444); 522 module_param(qhimark, long, 0444); 523 module_param(qlowmark, long, 0444); 524 525 static ulong jiffies_till_first_fqs = ULONG_MAX; 526 static ulong jiffies_till_next_fqs = ULONG_MAX; 527 static bool rcu_kick_kthreads; 528 529 module_param(jiffies_till_first_fqs, ulong, 0644); 530 module_param(jiffies_till_next_fqs, ulong, 0644); 531 module_param(rcu_kick_kthreads, bool, 0644); 532 533 /* 534 * How long the grace period must be before we start recruiting 535 * quiescent-state help from rcu_note_context_switch(). 536 */ 537 static ulong jiffies_till_sched_qs = HZ / 10; 538 module_param(jiffies_till_sched_qs, ulong, 0444); 539 540 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 541 struct rcu_data *rdp); 542 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 543 static void force_quiescent_state(struct rcu_state *rsp); 544 static int rcu_pending(void); 545 546 /* 547 * Return the number of RCU batches started thus far for debug & stats. 548 */ 549 unsigned long rcu_batches_started(void) 550 { 551 return rcu_state_p->gpnum; 552 } 553 EXPORT_SYMBOL_GPL(rcu_batches_started); 554 555 /* 556 * Return the number of RCU-sched batches started thus far for debug & stats. 557 */ 558 unsigned long rcu_batches_started_sched(void) 559 { 560 return rcu_sched_state.gpnum; 561 } 562 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 563 564 /* 565 * Return the number of RCU BH batches started thus far for debug & stats. 566 */ 567 unsigned long rcu_batches_started_bh(void) 568 { 569 return rcu_bh_state.gpnum; 570 } 571 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 572 573 /* 574 * Return the number of RCU batches completed thus far for debug & stats. 575 */ 576 unsigned long rcu_batches_completed(void) 577 { 578 return rcu_state_p->completed; 579 } 580 EXPORT_SYMBOL_GPL(rcu_batches_completed); 581 582 /* 583 * Return the number of RCU-sched batches completed thus far for debug & stats. 584 */ 585 unsigned long rcu_batches_completed_sched(void) 586 { 587 return rcu_sched_state.completed; 588 } 589 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 590 591 /* 592 * Return the number of RCU BH batches completed thus far for debug & stats. 593 */ 594 unsigned long rcu_batches_completed_bh(void) 595 { 596 return rcu_bh_state.completed; 597 } 598 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 599 600 /* 601 * Return the number of RCU expedited batches completed thus far for 602 * debug & stats. Odd numbers mean that a batch is in progress, even 603 * numbers mean idle. The value returned will thus be roughly double 604 * the cumulative batches since boot. 605 */ 606 unsigned long rcu_exp_batches_completed(void) 607 { 608 return rcu_state_p->expedited_sequence; 609 } 610 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 611 612 /* 613 * Return the number of RCU-sched expedited batches completed thus far 614 * for debug & stats. Similar to rcu_exp_batches_completed(). 615 */ 616 unsigned long rcu_exp_batches_completed_sched(void) 617 { 618 return rcu_sched_state.expedited_sequence; 619 } 620 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 621 622 /* 623 * Force a quiescent state. 624 */ 625 void rcu_force_quiescent_state(void) 626 { 627 force_quiescent_state(rcu_state_p); 628 } 629 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 630 631 /* 632 * Force a quiescent state for RCU BH. 633 */ 634 void rcu_bh_force_quiescent_state(void) 635 { 636 force_quiescent_state(&rcu_bh_state); 637 } 638 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 639 640 /* 641 * Force a quiescent state for RCU-sched. 642 */ 643 void rcu_sched_force_quiescent_state(void) 644 { 645 force_quiescent_state(&rcu_sched_state); 646 } 647 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 648 649 /* 650 * Show the state of the grace-period kthreads. 651 */ 652 void show_rcu_gp_kthreads(void) 653 { 654 struct rcu_state *rsp; 655 656 for_each_rcu_flavor(rsp) { 657 pr_info("%s: wait state: %d ->state: %#lx\n", 658 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 659 /* sched_show_task(rsp->gp_kthread); */ 660 } 661 } 662 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 663 664 /* 665 * Record the number of times rcutorture tests have been initiated and 666 * terminated. This information allows the debugfs tracing stats to be 667 * correlated to the rcutorture messages, even when the rcutorture module 668 * is being repeatedly loaded and unloaded. In other words, we cannot 669 * store this state in rcutorture itself. 670 */ 671 void rcutorture_record_test_transition(void) 672 { 673 rcutorture_testseq++; 674 rcutorture_vernum = 0; 675 } 676 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 677 678 /* 679 * Send along grace-period-related data for rcutorture diagnostics. 680 */ 681 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 682 unsigned long *gpnum, unsigned long *completed) 683 { 684 struct rcu_state *rsp = NULL; 685 686 switch (test_type) { 687 case RCU_FLAVOR: 688 rsp = rcu_state_p; 689 break; 690 case RCU_BH_FLAVOR: 691 rsp = &rcu_bh_state; 692 break; 693 case RCU_SCHED_FLAVOR: 694 rsp = &rcu_sched_state; 695 break; 696 default: 697 break; 698 } 699 if (rsp == NULL) 700 return; 701 *flags = READ_ONCE(rsp->gp_flags); 702 *gpnum = READ_ONCE(rsp->gpnum); 703 *completed = READ_ONCE(rsp->completed); 704 } 705 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 706 707 /* 708 * Record the number of writer passes through the current rcutorture test. 709 * This is also used to correlate debugfs tracing stats with the rcutorture 710 * messages. 711 */ 712 void rcutorture_record_progress(unsigned long vernum) 713 { 714 rcutorture_vernum++; 715 } 716 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 717 718 /* 719 * Return the root node of the specified rcu_state structure. 720 */ 721 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 722 { 723 return &rsp->node[0]; 724 } 725 726 /* 727 * Is there any need for future grace periods? 728 * Interrupts must be disabled. If the caller does not hold the root 729 * rnp_node structure's ->lock, the results are advisory only. 730 */ 731 static int rcu_future_needs_gp(struct rcu_state *rsp) 732 { 733 struct rcu_node *rnp = rcu_get_root(rsp); 734 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 735 int *fp = &rnp->need_future_gp[idx]; 736 737 lockdep_assert_irqs_disabled(); 738 return READ_ONCE(*fp); 739 } 740 741 /* 742 * Does the current CPU require a not-yet-started grace period? 743 * The caller must have disabled interrupts to prevent races with 744 * normal callback registry. 745 */ 746 static bool 747 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 748 { 749 lockdep_assert_irqs_disabled(); 750 if (rcu_gp_in_progress(rsp)) 751 return false; /* No, a grace period is already in progress. */ 752 if (rcu_future_needs_gp(rsp)) 753 return true; /* Yes, a no-CBs CPU needs one. */ 754 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 755 return false; /* No, this is a no-CBs (or offline) CPU. */ 756 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 757 return true; /* Yes, CPU has newly registered callbacks. */ 758 if (rcu_segcblist_future_gp_needed(&rdp->cblist, 759 READ_ONCE(rsp->completed))) 760 return true; /* Yes, CBs for future grace period. */ 761 return false; /* No grace period needed. */ 762 } 763 764 /* 765 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state 766 * 767 * Enter idle, doing appropriate accounting. The caller must have 768 * disabled interrupts. 769 */ 770 static void rcu_eqs_enter_common(bool user) 771 { 772 struct rcu_state *rsp; 773 struct rcu_data *rdp; 774 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 775 776 lockdep_assert_irqs_disabled(); 777 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0); 778 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 779 !user && !is_idle_task(current)) { 780 struct task_struct *idle __maybe_unused = 781 idle_task(smp_processor_id()); 782 783 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0); 784 rcu_ftrace_dump(DUMP_ORIG); 785 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 786 current->pid, current->comm, 787 idle->pid, idle->comm); /* must be idle task! */ 788 } 789 for_each_rcu_flavor(rsp) { 790 rdp = this_cpu_ptr(rsp->rda); 791 do_nocb_deferred_wakeup(rdp); 792 } 793 rcu_prepare_for_idle(); 794 __this_cpu_inc(disable_rcu_irq_enter); 795 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */ 796 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */ 797 __this_cpu_dec(disable_rcu_irq_enter); 798 rcu_dynticks_task_enter(); 799 800 /* 801 * It is illegal to enter an extended quiescent state while 802 * in an RCU read-side critical section. 803 */ 804 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 805 "Illegal idle entry in RCU read-side critical section."); 806 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 807 "Illegal idle entry in RCU-bh read-side critical section."); 808 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 809 "Illegal idle entry in RCU-sched read-side critical section."); 810 } 811 812 /* 813 * Enter an RCU extended quiescent state, which can be either the 814 * idle loop or adaptive-tickless usermode execution. 815 */ 816 static void rcu_eqs_enter(bool user) 817 { 818 struct rcu_dynticks *rdtp; 819 820 rdtp = this_cpu_ptr(&rcu_dynticks); 821 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 822 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0); 823 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 824 rcu_eqs_enter_common(user); 825 else 826 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 827 } 828 829 /** 830 * rcu_idle_enter - inform RCU that current CPU is entering idle 831 * 832 * Enter idle mode, in other words, -leave- the mode in which RCU 833 * read-side critical sections can occur. (Though RCU read-side 834 * critical sections can occur in irq handlers in idle, a possibility 835 * handled by irq_enter() and irq_exit().) 836 * 837 * We crowbar the ->dynticks_nesting field to zero to allow for 838 * the possibility of usermode upcalls having messed up our count 839 * of interrupt nesting level during the prior busy period. 840 * 841 * If you add or remove a call to rcu_idle_enter(), be sure to test with 842 * CONFIG_RCU_EQS_DEBUG=y. 843 */ 844 void rcu_idle_enter(void) 845 { 846 lockdep_assert_irqs_disabled(); 847 rcu_eqs_enter(false); 848 } 849 850 #ifdef CONFIG_NO_HZ_FULL 851 /** 852 * rcu_user_enter - inform RCU that we are resuming userspace. 853 * 854 * Enter RCU idle mode right before resuming userspace. No use of RCU 855 * is permitted between this call and rcu_user_exit(). This way the 856 * CPU doesn't need to maintain the tick for RCU maintenance purposes 857 * when the CPU runs in userspace. 858 * 859 * If you add or remove a call to rcu_user_enter(), be sure to test with 860 * CONFIG_RCU_EQS_DEBUG=y. 861 */ 862 void rcu_user_enter(void) 863 { 864 lockdep_assert_irqs_disabled(); 865 rcu_eqs_enter(true); 866 } 867 #endif /* CONFIG_NO_HZ_FULL */ 868 869 /** 870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 871 * 872 * Exit from an interrupt handler, which might possibly result in entering 873 * idle mode, in other words, leaving the mode in which read-side critical 874 * sections can occur. The caller must have disabled interrupts. 875 * 876 * This code assumes that the idle loop never does anything that might 877 * result in unbalanced calls to irq_enter() and irq_exit(). If your 878 * architecture violates this assumption, RCU will give you what you 879 * deserve, good and hard. But very infrequently and irreproducibly. 880 * 881 * Use things like work queues to work around this limitation. 882 * 883 * You have been warned. 884 * 885 * If you add or remove a call to rcu_irq_exit(), be sure to test with 886 * CONFIG_RCU_EQS_DEBUG=y. 887 */ 888 void rcu_irq_exit(void) 889 { 890 struct rcu_dynticks *rdtp; 891 892 lockdep_assert_irqs_disabled(); 893 rdtp = this_cpu_ptr(&rcu_dynticks); 894 895 /* Page faults can happen in NMI handlers, so check... */ 896 if (rdtp->dynticks_nmi_nesting) 897 return; 898 899 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 900 rdtp->dynticks_nesting < 1); 901 if (rdtp->dynticks_nesting <= 1) { 902 rcu_eqs_enter_common(true); 903 } else { 904 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1); 905 rdtp->dynticks_nesting--; 906 } 907 } 908 909 /* 910 * Wrapper for rcu_irq_exit() where interrupts are enabled. 911 * 912 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 913 * with CONFIG_RCU_EQS_DEBUG=y. 914 */ 915 void rcu_irq_exit_irqson(void) 916 { 917 unsigned long flags; 918 919 local_irq_save(flags); 920 rcu_irq_exit(); 921 local_irq_restore(flags); 922 } 923 924 /* 925 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 926 * 927 * If the new value of the ->dynticks_nesting counter was previously zero, 928 * we really have exited idle, and must do the appropriate accounting. 929 * The caller must have disabled interrupts. 930 */ 931 static void rcu_eqs_exit_common(long long oldval, int user) 932 { 933 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 934 935 rcu_dynticks_task_exit(); 936 rcu_dynticks_eqs_exit(); 937 rcu_cleanup_after_idle(); 938 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 939 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 940 !user && !is_idle_task(current)) { 941 struct task_struct *idle __maybe_unused = 942 idle_task(smp_processor_id()); 943 944 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 945 oldval, rdtp->dynticks_nesting); 946 rcu_ftrace_dump(DUMP_ORIG); 947 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 948 current->pid, current->comm, 949 idle->pid, idle->comm); /* must be idle task! */ 950 } 951 } 952 953 /* 954 * Exit an RCU extended quiescent state, which can be either the 955 * idle loop or adaptive-tickless usermode execution. 956 */ 957 static void rcu_eqs_exit(bool user) 958 { 959 struct rcu_dynticks *rdtp; 960 long long oldval; 961 962 lockdep_assert_irqs_disabled(); 963 rdtp = this_cpu_ptr(&rcu_dynticks); 964 oldval = rdtp->dynticks_nesting; 965 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 966 if (oldval & DYNTICK_TASK_NEST_MASK) { 967 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 968 } else { 969 __this_cpu_inc(disable_rcu_irq_enter); 970 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 971 rcu_eqs_exit_common(oldval, user); 972 __this_cpu_dec(disable_rcu_irq_enter); 973 } 974 } 975 976 /** 977 * rcu_idle_exit - inform RCU that current CPU is leaving idle 978 * 979 * Exit idle mode, in other words, -enter- the mode in which RCU 980 * read-side critical sections can occur. 981 * 982 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 983 * allow for the possibility of usermode upcalls messing up our count 984 * of interrupt nesting level during the busy period that is just 985 * now starting. 986 * 987 * If you add or remove a call to rcu_idle_exit(), be sure to test with 988 * CONFIG_RCU_EQS_DEBUG=y. 989 */ 990 void rcu_idle_exit(void) 991 { 992 unsigned long flags; 993 994 local_irq_save(flags); 995 rcu_eqs_exit(false); 996 local_irq_restore(flags); 997 } 998 999 #ifdef CONFIG_NO_HZ_FULL 1000 /** 1001 * rcu_user_exit - inform RCU that we are exiting userspace. 1002 * 1003 * Exit RCU idle mode while entering the kernel because it can 1004 * run a RCU read side critical section anytime. 1005 * 1006 * If you add or remove a call to rcu_user_exit(), be sure to test with 1007 * CONFIG_RCU_EQS_DEBUG=y. 1008 */ 1009 void rcu_user_exit(void) 1010 { 1011 rcu_eqs_exit(1); 1012 } 1013 #endif /* CONFIG_NO_HZ_FULL */ 1014 1015 /** 1016 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1017 * 1018 * Enter an interrupt handler, which might possibly result in exiting 1019 * idle mode, in other words, entering the mode in which read-side critical 1020 * sections can occur. The caller must have disabled interrupts. 1021 * 1022 * Note that the Linux kernel is fully capable of entering an interrupt 1023 * handler that it never exits, for example when doing upcalls to 1024 * user mode! This code assumes that the idle loop never does upcalls to 1025 * user mode. If your architecture does do upcalls from the idle loop (or 1026 * does anything else that results in unbalanced calls to the irq_enter() 1027 * and irq_exit() functions), RCU will give you what you deserve, good 1028 * and hard. But very infrequently and irreproducibly. 1029 * 1030 * Use things like work queues to work around this limitation. 1031 * 1032 * You have been warned. 1033 * 1034 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1035 * CONFIG_RCU_EQS_DEBUG=y. 1036 */ 1037 void rcu_irq_enter(void) 1038 { 1039 struct rcu_dynticks *rdtp; 1040 long long oldval; 1041 1042 lockdep_assert_irqs_disabled(); 1043 rdtp = this_cpu_ptr(&rcu_dynticks); 1044 1045 /* Page faults can happen in NMI handlers, so check... */ 1046 if (rdtp->dynticks_nmi_nesting) 1047 return; 1048 1049 oldval = rdtp->dynticks_nesting; 1050 rdtp->dynticks_nesting++; 1051 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1052 rdtp->dynticks_nesting == 0); 1053 if (oldval) 1054 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1055 else 1056 rcu_eqs_exit_common(oldval, true); 1057 } 1058 1059 /* 1060 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1061 * 1062 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1063 * with CONFIG_RCU_EQS_DEBUG=y. 1064 */ 1065 void rcu_irq_enter_irqson(void) 1066 { 1067 unsigned long flags; 1068 1069 local_irq_save(flags); 1070 rcu_irq_enter(); 1071 local_irq_restore(flags); 1072 } 1073 1074 /** 1075 * rcu_nmi_enter - inform RCU of entry to NMI context 1076 * 1077 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1078 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1079 * that the CPU is active. This implementation permits nested NMIs, as 1080 * long as the nesting level does not overflow an int. (You will probably 1081 * run out of stack space first.) 1082 * 1083 * If you add or remove a call to rcu_nmi_enter(), be sure to test 1084 * with CONFIG_RCU_EQS_DEBUG=y. 1085 */ 1086 void rcu_nmi_enter(void) 1087 { 1088 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1089 int incby = 2; 1090 1091 /* Complain about underflow. */ 1092 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1093 1094 /* 1095 * If idle from RCU viewpoint, atomically increment ->dynticks 1096 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1097 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1098 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1099 * to be in the outermost NMI handler that interrupted an RCU-idle 1100 * period (observation due to Andy Lutomirski). 1101 */ 1102 if (rcu_dynticks_curr_cpu_in_eqs()) { 1103 rcu_dynticks_eqs_exit(); 1104 incby = 1; 1105 } 1106 rdtp->dynticks_nmi_nesting += incby; 1107 barrier(); 1108 } 1109 1110 /** 1111 * rcu_nmi_exit - inform RCU of exit from NMI context 1112 * 1113 * If we are returning from the outermost NMI handler that interrupted an 1114 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1115 * to let the RCU grace-period handling know that the CPU is back to 1116 * being RCU-idle. 1117 * 1118 * If you add or remove a call to rcu_nmi_exit(), be sure to test 1119 * with CONFIG_RCU_EQS_DEBUG=y. 1120 */ 1121 void rcu_nmi_exit(void) 1122 { 1123 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1124 1125 /* 1126 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1127 * (We are exiting an NMI handler, so RCU better be paying attention 1128 * to us!) 1129 */ 1130 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1131 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1132 1133 /* 1134 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1135 * leave it in non-RCU-idle state. 1136 */ 1137 if (rdtp->dynticks_nmi_nesting != 1) { 1138 rdtp->dynticks_nmi_nesting -= 2; 1139 return; 1140 } 1141 1142 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1143 rdtp->dynticks_nmi_nesting = 0; 1144 rcu_dynticks_eqs_enter(); 1145 } 1146 1147 /** 1148 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1149 * 1150 * Return true if RCU is watching the running CPU, which means that this 1151 * CPU can safely enter RCU read-side critical sections. In other words, 1152 * if the current CPU is in its idle loop and is neither in an interrupt 1153 * or NMI handler, return true. 1154 */ 1155 bool notrace rcu_is_watching(void) 1156 { 1157 bool ret; 1158 1159 preempt_disable_notrace(); 1160 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1161 preempt_enable_notrace(); 1162 return ret; 1163 } 1164 EXPORT_SYMBOL_GPL(rcu_is_watching); 1165 1166 /* 1167 * If a holdout task is actually running, request an urgent quiescent 1168 * state from its CPU. This is unsynchronized, so migrations can cause 1169 * the request to go to the wrong CPU. Which is OK, all that will happen 1170 * is that the CPU's next context switch will be a bit slower and next 1171 * time around this task will generate another request. 1172 */ 1173 void rcu_request_urgent_qs_task(struct task_struct *t) 1174 { 1175 int cpu; 1176 1177 barrier(); 1178 cpu = task_cpu(t); 1179 if (!task_curr(t)) 1180 return; /* This task is not running on that CPU. */ 1181 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1182 } 1183 1184 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1185 1186 /* 1187 * Is the current CPU online? Disable preemption to avoid false positives 1188 * that could otherwise happen due to the current CPU number being sampled, 1189 * this task being preempted, its old CPU being taken offline, resuming 1190 * on some other CPU, then determining that its old CPU is now offline. 1191 * It is OK to use RCU on an offline processor during initial boot, hence 1192 * the check for rcu_scheduler_fully_active. Note also that it is OK 1193 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1194 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1195 * offline to continue to use RCU for one jiffy after marking itself 1196 * offline in the cpu_online_mask. This leniency is necessary given the 1197 * non-atomic nature of the online and offline processing, for example, 1198 * the fact that a CPU enters the scheduler after completing the teardown 1199 * of the CPU. 1200 * 1201 * This is also why RCU internally marks CPUs online during in the 1202 * preparation phase and offline after the CPU has been taken down. 1203 * 1204 * Disable checking if in an NMI handler because we cannot safely report 1205 * errors from NMI handlers anyway. 1206 */ 1207 bool rcu_lockdep_current_cpu_online(void) 1208 { 1209 struct rcu_data *rdp; 1210 struct rcu_node *rnp; 1211 bool ret; 1212 1213 if (in_nmi()) 1214 return true; 1215 preempt_disable(); 1216 rdp = this_cpu_ptr(&rcu_sched_data); 1217 rnp = rdp->mynode; 1218 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1219 !rcu_scheduler_fully_active; 1220 preempt_enable(); 1221 return ret; 1222 } 1223 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1224 1225 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1226 1227 /** 1228 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1229 * 1230 * If the current CPU is idle or running at a first-level (not nested) 1231 * interrupt from idle, return true. The caller must have at least 1232 * disabled preemption. 1233 */ 1234 static int rcu_is_cpu_rrupt_from_idle(void) 1235 { 1236 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1237 } 1238 1239 /* 1240 * We are reporting a quiescent state on behalf of some other CPU, so 1241 * it is our responsibility to check for and handle potential overflow 1242 * of the rcu_node ->gpnum counter with respect to the rcu_data counters. 1243 * After all, the CPU might be in deep idle state, and thus executing no 1244 * code whatsoever. 1245 */ 1246 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1247 { 1248 lockdep_assert_held(&rnp->lock); 1249 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum)) 1250 WRITE_ONCE(rdp->gpwrap, true); 1251 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum)) 1252 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4; 1253 } 1254 1255 /* 1256 * Snapshot the specified CPU's dynticks counter so that we can later 1257 * credit them with an implicit quiescent state. Return 1 if this CPU 1258 * is in dynticks idle mode, which is an extended quiescent state. 1259 */ 1260 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1261 { 1262 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1263 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1264 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1265 rcu_gpnum_ovf(rdp->mynode, rdp); 1266 return 1; 1267 } 1268 return 0; 1269 } 1270 1271 /* 1272 * Handler for the irq_work request posted when a grace period has 1273 * gone on for too long, but not yet long enough for an RCU CPU 1274 * stall warning. Set state appropriately, but just complain if 1275 * there is unexpected state on entry. 1276 */ 1277 static void rcu_iw_handler(struct irq_work *iwp) 1278 { 1279 struct rcu_data *rdp; 1280 struct rcu_node *rnp; 1281 1282 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1283 rnp = rdp->mynode; 1284 raw_spin_lock_rcu_node(rnp); 1285 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1286 rdp->rcu_iw_gpnum = rnp->gpnum; 1287 rdp->rcu_iw_pending = false; 1288 } 1289 raw_spin_unlock_rcu_node(rnp); 1290 } 1291 1292 /* 1293 * Return true if the specified CPU has passed through a quiescent 1294 * state by virtue of being in or having passed through an dynticks 1295 * idle state since the last call to dyntick_save_progress_counter() 1296 * for this same CPU, or by virtue of having been offline. 1297 */ 1298 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1299 { 1300 unsigned long jtsq; 1301 bool *rnhqp; 1302 bool *ruqp; 1303 struct rcu_node *rnp = rdp->mynode; 1304 1305 /* 1306 * If the CPU passed through or entered a dynticks idle phase with 1307 * no active irq/NMI handlers, then we can safely pretend that the CPU 1308 * already acknowledged the request to pass through a quiescent 1309 * state. Either way, that CPU cannot possibly be in an RCU 1310 * read-side critical section that started before the beginning 1311 * of the current RCU grace period. 1312 */ 1313 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1314 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1315 rdp->dynticks_fqs++; 1316 rcu_gpnum_ovf(rnp, rdp); 1317 return 1; 1318 } 1319 1320 /* 1321 * Has this CPU encountered a cond_resched_rcu_qs() since the 1322 * beginning of the grace period? For this to be the case, 1323 * the CPU has to have noticed the current grace period. This 1324 * might not be the case for nohz_full CPUs looping in the kernel. 1325 */ 1326 jtsq = jiffies_till_sched_qs; 1327 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1328 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1329 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1330 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1331 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1332 rcu_gpnum_ovf(rnp, rdp); 1333 return 1; 1334 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { 1335 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1336 smp_store_release(ruqp, true); 1337 } 1338 1339 /* Check for the CPU being offline. */ 1340 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1341 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1342 rdp->offline_fqs++; 1343 rcu_gpnum_ovf(rnp, rdp); 1344 return 1; 1345 } 1346 1347 /* 1348 * A CPU running for an extended time within the kernel can 1349 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1350 * even context-switching back and forth between a pair of 1351 * in-kernel CPU-bound tasks cannot advance grace periods. 1352 * So if the grace period is old enough, make the CPU pay attention. 1353 * Note that the unsynchronized assignments to the per-CPU 1354 * rcu_need_heavy_qs variable are safe. Yes, setting of 1355 * bits can be lost, but they will be set again on the next 1356 * force-quiescent-state pass. So lost bit sets do not result 1357 * in incorrect behavior, merely in a grace period lasting 1358 * a few jiffies longer than it might otherwise. Because 1359 * there are at most four threads involved, and because the 1360 * updates are only once every few jiffies, the probability of 1361 * lossage (and thus of slight grace-period extension) is 1362 * quite low. 1363 */ 1364 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1365 if (!READ_ONCE(*rnhqp) && 1366 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1367 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1368 WRITE_ONCE(*rnhqp, true); 1369 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1370 smp_store_release(ruqp, true); 1371 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ 1372 } 1373 1374 /* 1375 * If more than halfway to RCU CPU stall-warning time, do a 1376 * resched_cpu() to try to loosen things up a bit. Also check to 1377 * see if the CPU is getting hammered with interrupts, but only 1378 * once per grace period, just to keep the IPIs down to a dull roar. 1379 */ 1380 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { 1381 resched_cpu(rdp->cpu); 1382 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1383 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum && 1384 (rnp->ffmask & rdp->grpmask)) { 1385 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1386 rdp->rcu_iw_pending = true; 1387 rdp->rcu_iw_gpnum = rnp->gpnum; 1388 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1389 } 1390 } 1391 1392 return 0; 1393 } 1394 1395 static void record_gp_stall_check_time(struct rcu_state *rsp) 1396 { 1397 unsigned long j = jiffies; 1398 unsigned long j1; 1399 1400 rsp->gp_start = j; 1401 smp_wmb(); /* Record start time before stall time. */ 1402 j1 = rcu_jiffies_till_stall_check(); 1403 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1404 rsp->jiffies_resched = j + j1 / 2; 1405 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1406 } 1407 1408 /* 1409 * Convert a ->gp_state value to a character string. 1410 */ 1411 static const char *gp_state_getname(short gs) 1412 { 1413 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1414 return "???"; 1415 return gp_state_names[gs]; 1416 } 1417 1418 /* 1419 * Complain about starvation of grace-period kthread. 1420 */ 1421 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1422 { 1423 unsigned long gpa; 1424 unsigned long j; 1425 1426 j = jiffies; 1427 gpa = READ_ONCE(rsp->gp_activity); 1428 if (j - gpa > 2 * HZ) { 1429 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1430 rsp->name, j - gpa, 1431 rsp->gpnum, rsp->completed, 1432 rsp->gp_flags, 1433 gp_state_getname(rsp->gp_state), rsp->gp_state, 1434 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1435 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1436 if (rsp->gp_kthread) { 1437 sched_show_task(rsp->gp_kthread); 1438 wake_up_process(rsp->gp_kthread); 1439 } 1440 } 1441 } 1442 1443 /* 1444 * Dump stacks of all tasks running on stalled CPUs. First try using 1445 * NMIs, but fall back to manual remote stack tracing on architectures 1446 * that don't support NMI-based stack dumps. The NMI-triggered stack 1447 * traces are more accurate because they are printed by the target CPU. 1448 */ 1449 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1450 { 1451 int cpu; 1452 unsigned long flags; 1453 struct rcu_node *rnp; 1454 1455 rcu_for_each_leaf_node(rsp, rnp) { 1456 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1457 for_each_leaf_node_possible_cpu(rnp, cpu) 1458 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1459 if (!trigger_single_cpu_backtrace(cpu)) 1460 dump_cpu_task(cpu); 1461 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1462 } 1463 } 1464 1465 /* 1466 * If too much time has passed in the current grace period, and if 1467 * so configured, go kick the relevant kthreads. 1468 */ 1469 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1470 { 1471 unsigned long j; 1472 1473 if (!rcu_kick_kthreads) 1474 return; 1475 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1476 if (time_after(jiffies, j) && rsp->gp_kthread && 1477 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1478 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1479 rcu_ftrace_dump(DUMP_ALL); 1480 wake_up_process(rsp->gp_kthread); 1481 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1482 } 1483 } 1484 1485 static inline void panic_on_rcu_stall(void) 1486 { 1487 if (sysctl_panic_on_rcu_stall) 1488 panic("RCU Stall\n"); 1489 } 1490 1491 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1492 { 1493 int cpu; 1494 long delta; 1495 unsigned long flags; 1496 unsigned long gpa; 1497 unsigned long j; 1498 int ndetected = 0; 1499 struct rcu_node *rnp = rcu_get_root(rsp); 1500 long totqlen = 0; 1501 1502 /* Kick and suppress, if so configured. */ 1503 rcu_stall_kick_kthreads(rsp); 1504 if (rcu_cpu_stall_suppress) 1505 return; 1506 1507 /* Only let one CPU complain about others per time interval. */ 1508 1509 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1510 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1511 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1512 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1513 return; 1514 } 1515 WRITE_ONCE(rsp->jiffies_stall, 1516 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1517 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1518 1519 /* 1520 * OK, time to rat on our buddy... 1521 * See Documentation/RCU/stallwarn.txt for info on how to debug 1522 * RCU CPU stall warnings. 1523 */ 1524 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1525 rsp->name); 1526 print_cpu_stall_info_begin(); 1527 rcu_for_each_leaf_node(rsp, rnp) { 1528 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1529 ndetected += rcu_print_task_stall(rnp); 1530 if (rnp->qsmask != 0) { 1531 for_each_leaf_node_possible_cpu(rnp, cpu) 1532 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1533 print_cpu_stall_info(rsp, cpu); 1534 ndetected++; 1535 } 1536 } 1537 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1538 } 1539 1540 print_cpu_stall_info_end(); 1541 for_each_possible_cpu(cpu) 1542 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1543 cpu)->cblist); 1544 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1545 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1546 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1547 if (ndetected) { 1548 rcu_dump_cpu_stacks(rsp); 1549 1550 /* Complain about tasks blocking the grace period. */ 1551 rcu_print_detail_task_stall(rsp); 1552 } else { 1553 if (READ_ONCE(rsp->gpnum) != gpnum || 1554 READ_ONCE(rsp->completed) == gpnum) { 1555 pr_err("INFO: Stall ended before state dump start\n"); 1556 } else { 1557 j = jiffies; 1558 gpa = READ_ONCE(rsp->gp_activity); 1559 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1560 rsp->name, j - gpa, j, gpa, 1561 jiffies_till_next_fqs, 1562 rcu_get_root(rsp)->qsmask); 1563 /* In this case, the current CPU might be at fault. */ 1564 sched_show_task(current); 1565 } 1566 } 1567 1568 rcu_check_gp_kthread_starvation(rsp); 1569 1570 panic_on_rcu_stall(); 1571 1572 force_quiescent_state(rsp); /* Kick them all. */ 1573 } 1574 1575 static void print_cpu_stall(struct rcu_state *rsp) 1576 { 1577 int cpu; 1578 unsigned long flags; 1579 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1580 struct rcu_node *rnp = rcu_get_root(rsp); 1581 long totqlen = 0; 1582 1583 /* Kick and suppress, if so configured. */ 1584 rcu_stall_kick_kthreads(rsp); 1585 if (rcu_cpu_stall_suppress) 1586 return; 1587 1588 /* 1589 * OK, time to rat on ourselves... 1590 * See Documentation/RCU/stallwarn.txt for info on how to debug 1591 * RCU CPU stall warnings. 1592 */ 1593 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1594 print_cpu_stall_info_begin(); 1595 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1596 print_cpu_stall_info(rsp, smp_processor_id()); 1597 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1598 print_cpu_stall_info_end(); 1599 for_each_possible_cpu(cpu) 1600 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1601 cpu)->cblist); 1602 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1603 jiffies - rsp->gp_start, 1604 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1605 1606 rcu_check_gp_kthread_starvation(rsp); 1607 1608 rcu_dump_cpu_stacks(rsp); 1609 1610 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1611 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1612 WRITE_ONCE(rsp->jiffies_stall, 1613 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1614 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1615 1616 panic_on_rcu_stall(); 1617 1618 /* 1619 * Attempt to revive the RCU machinery by forcing a context switch. 1620 * 1621 * A context switch would normally allow the RCU state machine to make 1622 * progress and it could be we're stuck in kernel space without context 1623 * switches for an entirely unreasonable amount of time. 1624 */ 1625 resched_cpu(smp_processor_id()); 1626 } 1627 1628 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1629 { 1630 unsigned long completed; 1631 unsigned long gpnum; 1632 unsigned long gps; 1633 unsigned long j; 1634 unsigned long js; 1635 struct rcu_node *rnp; 1636 1637 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1638 !rcu_gp_in_progress(rsp)) 1639 return; 1640 rcu_stall_kick_kthreads(rsp); 1641 j = jiffies; 1642 1643 /* 1644 * Lots of memory barriers to reject false positives. 1645 * 1646 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1647 * then rsp->gp_start, and finally rsp->completed. These values 1648 * are updated in the opposite order with memory barriers (or 1649 * equivalent) during grace-period initialization and cleanup. 1650 * Now, a false positive can occur if we get an new value of 1651 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1652 * the memory barriers, the only way that this can happen is if one 1653 * grace period ends and another starts between these two fetches. 1654 * Detect this by comparing rsp->completed with the previous fetch 1655 * from rsp->gpnum. 1656 * 1657 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1658 * and rsp->gp_start suffice to forestall false positives. 1659 */ 1660 gpnum = READ_ONCE(rsp->gpnum); 1661 smp_rmb(); /* Pick up ->gpnum first... */ 1662 js = READ_ONCE(rsp->jiffies_stall); 1663 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1664 gps = READ_ONCE(rsp->gp_start); 1665 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1666 completed = READ_ONCE(rsp->completed); 1667 if (ULONG_CMP_GE(completed, gpnum) || 1668 ULONG_CMP_LT(j, js) || 1669 ULONG_CMP_GE(gps, js)) 1670 return; /* No stall or GP completed since entering function. */ 1671 rnp = rdp->mynode; 1672 if (rcu_gp_in_progress(rsp) && 1673 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1674 1675 /* We haven't checked in, so go dump stack. */ 1676 print_cpu_stall(rsp); 1677 1678 } else if (rcu_gp_in_progress(rsp) && 1679 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1680 1681 /* They had a few time units to dump stack, so complain. */ 1682 print_other_cpu_stall(rsp, gpnum); 1683 } 1684 } 1685 1686 /** 1687 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1688 * 1689 * Set the stall-warning timeout way off into the future, thus preventing 1690 * any RCU CPU stall-warning messages from appearing in the current set of 1691 * RCU grace periods. 1692 * 1693 * The caller must disable hard irqs. 1694 */ 1695 void rcu_cpu_stall_reset(void) 1696 { 1697 struct rcu_state *rsp; 1698 1699 for_each_rcu_flavor(rsp) 1700 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1701 } 1702 1703 /* 1704 * Determine the value that ->completed will have at the end of the 1705 * next subsequent grace period. This is used to tag callbacks so that 1706 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1707 * been dyntick-idle for an extended period with callbacks under the 1708 * influence of RCU_FAST_NO_HZ. 1709 * 1710 * The caller must hold rnp->lock with interrupts disabled. 1711 */ 1712 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1713 struct rcu_node *rnp) 1714 { 1715 lockdep_assert_held(&rnp->lock); 1716 1717 /* 1718 * If RCU is idle, we just wait for the next grace period. 1719 * But we can only be sure that RCU is idle if we are looking 1720 * at the root rcu_node structure -- otherwise, a new grace 1721 * period might have started, but just not yet gotten around 1722 * to initializing the current non-root rcu_node structure. 1723 */ 1724 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1725 return rnp->completed + 1; 1726 1727 /* 1728 * Otherwise, wait for a possible partial grace period and 1729 * then the subsequent full grace period. 1730 */ 1731 return rnp->completed + 2; 1732 } 1733 1734 /* 1735 * Trace-event helper function for rcu_start_future_gp() and 1736 * rcu_nocb_wait_gp(). 1737 */ 1738 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1739 unsigned long c, const char *s) 1740 { 1741 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1742 rnp->completed, c, rnp->level, 1743 rnp->grplo, rnp->grphi, s); 1744 } 1745 1746 /* 1747 * Start some future grace period, as needed to handle newly arrived 1748 * callbacks. The required future grace periods are recorded in each 1749 * rcu_node structure's ->need_future_gp field. Returns true if there 1750 * is reason to awaken the grace-period kthread. 1751 * 1752 * The caller must hold the specified rcu_node structure's ->lock. 1753 */ 1754 static bool __maybe_unused 1755 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1756 unsigned long *c_out) 1757 { 1758 unsigned long c; 1759 bool ret = false; 1760 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1761 1762 lockdep_assert_held(&rnp->lock); 1763 1764 /* 1765 * Pick up grace-period number for new callbacks. If this 1766 * grace period is already marked as needed, return to the caller. 1767 */ 1768 c = rcu_cbs_completed(rdp->rsp, rnp); 1769 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1770 if (rnp->need_future_gp[c & 0x1]) { 1771 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1772 goto out; 1773 } 1774 1775 /* 1776 * If either this rcu_node structure or the root rcu_node structure 1777 * believe that a grace period is in progress, then we must wait 1778 * for the one following, which is in "c". Because our request 1779 * will be noticed at the end of the current grace period, we don't 1780 * need to explicitly start one. We only do the lockless check 1781 * of rnp_root's fields if the current rcu_node structure thinks 1782 * there is no grace period in flight, and because we hold rnp->lock, 1783 * the only possible change is when rnp_root's two fields are 1784 * equal, in which case rnp_root->gpnum might be concurrently 1785 * incremented. But that is OK, as it will just result in our 1786 * doing some extra useless work. 1787 */ 1788 if (rnp->gpnum != rnp->completed || 1789 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1790 rnp->need_future_gp[c & 0x1]++; 1791 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1792 goto out; 1793 } 1794 1795 /* 1796 * There might be no grace period in progress. If we don't already 1797 * hold it, acquire the root rcu_node structure's lock in order to 1798 * start one (if needed). 1799 */ 1800 if (rnp != rnp_root) 1801 raw_spin_lock_rcu_node(rnp_root); 1802 1803 /* 1804 * Get a new grace-period number. If there really is no grace 1805 * period in progress, it will be smaller than the one we obtained 1806 * earlier. Adjust callbacks as needed. 1807 */ 1808 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1809 if (!rcu_is_nocb_cpu(rdp->cpu)) 1810 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1811 1812 /* 1813 * If the needed for the required grace period is already 1814 * recorded, trace and leave. 1815 */ 1816 if (rnp_root->need_future_gp[c & 0x1]) { 1817 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1818 goto unlock_out; 1819 } 1820 1821 /* Record the need for the future grace period. */ 1822 rnp_root->need_future_gp[c & 0x1]++; 1823 1824 /* If a grace period is not already in progress, start one. */ 1825 if (rnp_root->gpnum != rnp_root->completed) { 1826 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1827 } else { 1828 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1829 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1830 } 1831 unlock_out: 1832 if (rnp != rnp_root) 1833 raw_spin_unlock_rcu_node(rnp_root); 1834 out: 1835 if (c_out != NULL) 1836 *c_out = c; 1837 return ret; 1838 } 1839 1840 /* 1841 * Clean up any old requests for the just-ended grace period. Also return 1842 * whether any additional grace periods have been requested. 1843 */ 1844 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1845 { 1846 int c = rnp->completed; 1847 int needmore; 1848 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1849 1850 rnp->need_future_gp[c & 0x1] = 0; 1851 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1852 trace_rcu_future_gp(rnp, rdp, c, 1853 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1854 return needmore; 1855 } 1856 1857 /* 1858 * Awaken the grace-period kthread for the specified flavor of RCU. 1859 * Don't do a self-awaken, and don't bother awakening when there is 1860 * nothing for the grace-period kthread to do (as in several CPUs 1861 * raced to awaken, and we lost), and finally don't try to awaken 1862 * a kthread that has not yet been created. 1863 */ 1864 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1865 { 1866 if (current == rsp->gp_kthread || 1867 !READ_ONCE(rsp->gp_flags) || 1868 !rsp->gp_kthread) 1869 return; 1870 swake_up(&rsp->gp_wq); 1871 } 1872 1873 /* 1874 * If there is room, assign a ->completed number to any callbacks on 1875 * this CPU that have not already been assigned. Also accelerate any 1876 * callbacks that were previously assigned a ->completed number that has 1877 * since proven to be too conservative, which can happen if callbacks get 1878 * assigned a ->completed number while RCU is idle, but with reference to 1879 * a non-root rcu_node structure. This function is idempotent, so it does 1880 * not hurt to call it repeatedly. Returns an flag saying that we should 1881 * awaken the RCU grace-period kthread. 1882 * 1883 * The caller must hold rnp->lock with interrupts disabled. 1884 */ 1885 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1886 struct rcu_data *rdp) 1887 { 1888 bool ret = false; 1889 1890 lockdep_assert_held(&rnp->lock); 1891 1892 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1893 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1894 return false; 1895 1896 /* 1897 * Callbacks are often registered with incomplete grace-period 1898 * information. Something about the fact that getting exact 1899 * information requires acquiring a global lock... RCU therefore 1900 * makes a conservative estimate of the grace period number at which 1901 * a given callback will become ready to invoke. The following 1902 * code checks this estimate and improves it when possible, thus 1903 * accelerating callback invocation to an earlier grace-period 1904 * number. 1905 */ 1906 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp))) 1907 ret = rcu_start_future_gp(rnp, rdp, NULL); 1908 1909 /* Trace depending on how much we were able to accelerate. */ 1910 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1911 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1912 else 1913 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1914 return ret; 1915 } 1916 1917 /* 1918 * Move any callbacks whose grace period has completed to the 1919 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1920 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1921 * sublist. This function is idempotent, so it does not hurt to 1922 * invoke it repeatedly. As long as it is not invoked -too- often... 1923 * Returns true if the RCU grace-period kthread needs to be awakened. 1924 * 1925 * The caller must hold rnp->lock with interrupts disabled. 1926 */ 1927 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1928 struct rcu_data *rdp) 1929 { 1930 lockdep_assert_held(&rnp->lock); 1931 1932 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1933 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1934 return false; 1935 1936 /* 1937 * Find all callbacks whose ->completed numbers indicate that they 1938 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1939 */ 1940 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1941 1942 /* Classify any remaining callbacks. */ 1943 return rcu_accelerate_cbs(rsp, rnp, rdp); 1944 } 1945 1946 /* 1947 * Update CPU-local rcu_data state to record the beginnings and ends of 1948 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1949 * structure corresponding to the current CPU, and must have irqs disabled. 1950 * Returns true if the grace-period kthread needs to be awakened. 1951 */ 1952 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1953 struct rcu_data *rdp) 1954 { 1955 bool ret; 1956 bool need_gp; 1957 1958 lockdep_assert_held(&rnp->lock); 1959 1960 /* Handle the ends of any preceding grace periods first. */ 1961 if (rdp->completed == rnp->completed && 1962 !unlikely(READ_ONCE(rdp->gpwrap))) { 1963 1964 /* No grace period end, so just accelerate recent callbacks. */ 1965 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1966 1967 } else { 1968 1969 /* Advance callbacks. */ 1970 ret = rcu_advance_cbs(rsp, rnp, rdp); 1971 1972 /* Remember that we saw this grace-period completion. */ 1973 rdp->completed = rnp->completed; 1974 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1975 } 1976 1977 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1978 /* 1979 * If the current grace period is waiting for this CPU, 1980 * set up to detect a quiescent state, otherwise don't 1981 * go looking for one. 1982 */ 1983 rdp->gpnum = rnp->gpnum; 1984 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1985 need_gp = !!(rnp->qsmask & rdp->grpmask); 1986 rdp->cpu_no_qs.b.norm = need_gp; 1987 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1988 rdp->core_needs_qs = need_gp; 1989 zero_cpu_stall_ticks(rdp); 1990 WRITE_ONCE(rdp->gpwrap, false); 1991 rcu_gpnum_ovf(rnp, rdp); 1992 } 1993 return ret; 1994 } 1995 1996 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1997 { 1998 unsigned long flags; 1999 bool needwake; 2000 struct rcu_node *rnp; 2001 2002 local_irq_save(flags); 2003 rnp = rdp->mynode; 2004 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 2005 rdp->completed == READ_ONCE(rnp->completed) && 2006 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 2007 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 2008 local_irq_restore(flags); 2009 return; 2010 } 2011 needwake = __note_gp_changes(rsp, rnp, rdp); 2012 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2013 if (needwake) 2014 rcu_gp_kthread_wake(rsp); 2015 } 2016 2017 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 2018 { 2019 if (delay > 0 && 2020 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 2021 schedule_timeout_uninterruptible(delay); 2022 } 2023 2024 /* 2025 * Initialize a new grace period. Return false if no grace period required. 2026 */ 2027 static bool rcu_gp_init(struct rcu_state *rsp) 2028 { 2029 unsigned long oldmask; 2030 struct rcu_data *rdp; 2031 struct rcu_node *rnp = rcu_get_root(rsp); 2032 2033 WRITE_ONCE(rsp->gp_activity, jiffies); 2034 raw_spin_lock_irq_rcu_node(rnp); 2035 if (!READ_ONCE(rsp->gp_flags)) { 2036 /* Spurious wakeup, tell caller to go back to sleep. */ 2037 raw_spin_unlock_irq_rcu_node(rnp); 2038 return false; 2039 } 2040 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 2041 2042 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 2043 /* 2044 * Grace period already in progress, don't start another. 2045 * Not supposed to be able to happen. 2046 */ 2047 raw_spin_unlock_irq_rcu_node(rnp); 2048 return false; 2049 } 2050 2051 /* Advance to a new grace period and initialize state. */ 2052 record_gp_stall_check_time(rsp); 2053 /* Record GP times before starting GP, hence smp_store_release(). */ 2054 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 2055 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 2056 raw_spin_unlock_irq_rcu_node(rnp); 2057 2058 /* 2059 * Apply per-leaf buffered online and offline operations to the 2060 * rcu_node tree. Note that this new grace period need not wait 2061 * for subsequent online CPUs, and that quiescent-state forcing 2062 * will handle subsequent offline CPUs. 2063 */ 2064 rcu_for_each_leaf_node(rsp, rnp) { 2065 rcu_gp_slow(rsp, gp_preinit_delay); 2066 raw_spin_lock_irq_rcu_node(rnp); 2067 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 2068 !rnp->wait_blkd_tasks) { 2069 /* Nothing to do on this leaf rcu_node structure. */ 2070 raw_spin_unlock_irq_rcu_node(rnp); 2071 continue; 2072 } 2073 2074 /* Record old state, apply changes to ->qsmaskinit field. */ 2075 oldmask = rnp->qsmaskinit; 2076 rnp->qsmaskinit = rnp->qsmaskinitnext; 2077 2078 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2079 if (!oldmask != !rnp->qsmaskinit) { 2080 if (!oldmask) /* First online CPU for this rcu_node. */ 2081 rcu_init_new_rnp(rnp); 2082 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2083 rnp->wait_blkd_tasks = true; 2084 else /* Last offline CPU and can propagate. */ 2085 rcu_cleanup_dead_rnp(rnp); 2086 } 2087 2088 /* 2089 * If all waited-on tasks from prior grace period are 2090 * done, and if all this rcu_node structure's CPUs are 2091 * still offline, propagate up the rcu_node tree and 2092 * clear ->wait_blkd_tasks. Otherwise, if one of this 2093 * rcu_node structure's CPUs has since come back online, 2094 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2095 * checks for this, so just call it unconditionally). 2096 */ 2097 if (rnp->wait_blkd_tasks && 2098 (!rcu_preempt_has_tasks(rnp) || 2099 rnp->qsmaskinit)) { 2100 rnp->wait_blkd_tasks = false; 2101 rcu_cleanup_dead_rnp(rnp); 2102 } 2103 2104 raw_spin_unlock_irq_rcu_node(rnp); 2105 } 2106 2107 /* 2108 * Set the quiescent-state-needed bits in all the rcu_node 2109 * structures for all currently online CPUs in breadth-first order, 2110 * starting from the root rcu_node structure, relying on the layout 2111 * of the tree within the rsp->node[] array. Note that other CPUs 2112 * will access only the leaves of the hierarchy, thus seeing that no 2113 * grace period is in progress, at least until the corresponding 2114 * leaf node has been initialized. 2115 * 2116 * The grace period cannot complete until the initialization 2117 * process finishes, because this kthread handles both. 2118 */ 2119 rcu_for_each_node_breadth_first(rsp, rnp) { 2120 rcu_gp_slow(rsp, gp_init_delay); 2121 raw_spin_lock_irq_rcu_node(rnp); 2122 rdp = this_cpu_ptr(rsp->rda); 2123 rcu_preempt_check_blocked_tasks(rnp); 2124 rnp->qsmask = rnp->qsmaskinit; 2125 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2126 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2127 WRITE_ONCE(rnp->completed, rsp->completed); 2128 if (rnp == rdp->mynode) 2129 (void)__note_gp_changes(rsp, rnp, rdp); 2130 rcu_preempt_boost_start_gp(rnp); 2131 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2132 rnp->level, rnp->grplo, 2133 rnp->grphi, rnp->qsmask); 2134 raw_spin_unlock_irq_rcu_node(rnp); 2135 cond_resched_rcu_qs(); 2136 WRITE_ONCE(rsp->gp_activity, jiffies); 2137 } 2138 2139 return true; 2140 } 2141 2142 /* 2143 * Helper function for swait_event_idle() wakeup at force-quiescent-state 2144 * time. 2145 */ 2146 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2147 { 2148 struct rcu_node *rnp = rcu_get_root(rsp); 2149 2150 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2151 *gfp = READ_ONCE(rsp->gp_flags); 2152 if (*gfp & RCU_GP_FLAG_FQS) 2153 return true; 2154 2155 /* The current grace period has completed. */ 2156 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2157 return true; 2158 2159 return false; 2160 } 2161 2162 /* 2163 * Do one round of quiescent-state forcing. 2164 */ 2165 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2166 { 2167 struct rcu_node *rnp = rcu_get_root(rsp); 2168 2169 WRITE_ONCE(rsp->gp_activity, jiffies); 2170 rsp->n_force_qs++; 2171 if (first_time) { 2172 /* Collect dyntick-idle snapshots. */ 2173 force_qs_rnp(rsp, dyntick_save_progress_counter); 2174 } else { 2175 /* Handle dyntick-idle and offline CPUs. */ 2176 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2177 } 2178 /* Clear flag to prevent immediate re-entry. */ 2179 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2180 raw_spin_lock_irq_rcu_node(rnp); 2181 WRITE_ONCE(rsp->gp_flags, 2182 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2183 raw_spin_unlock_irq_rcu_node(rnp); 2184 } 2185 } 2186 2187 /* 2188 * Clean up after the old grace period. 2189 */ 2190 static void rcu_gp_cleanup(struct rcu_state *rsp) 2191 { 2192 unsigned long gp_duration; 2193 bool needgp = false; 2194 int nocb = 0; 2195 struct rcu_data *rdp; 2196 struct rcu_node *rnp = rcu_get_root(rsp); 2197 struct swait_queue_head *sq; 2198 2199 WRITE_ONCE(rsp->gp_activity, jiffies); 2200 raw_spin_lock_irq_rcu_node(rnp); 2201 gp_duration = jiffies - rsp->gp_start; 2202 if (gp_duration > rsp->gp_max) 2203 rsp->gp_max = gp_duration; 2204 2205 /* 2206 * We know the grace period is complete, but to everyone else 2207 * it appears to still be ongoing. But it is also the case 2208 * that to everyone else it looks like there is nothing that 2209 * they can do to advance the grace period. It is therefore 2210 * safe for us to drop the lock in order to mark the grace 2211 * period as completed in all of the rcu_node structures. 2212 */ 2213 raw_spin_unlock_irq_rcu_node(rnp); 2214 2215 /* 2216 * Propagate new ->completed value to rcu_node structures so 2217 * that other CPUs don't have to wait until the start of the next 2218 * grace period to process their callbacks. This also avoids 2219 * some nasty RCU grace-period initialization races by forcing 2220 * the end of the current grace period to be completely recorded in 2221 * all of the rcu_node structures before the beginning of the next 2222 * grace period is recorded in any of the rcu_node structures. 2223 */ 2224 rcu_for_each_node_breadth_first(rsp, rnp) { 2225 raw_spin_lock_irq_rcu_node(rnp); 2226 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2227 WARN_ON_ONCE(rnp->qsmask); 2228 WRITE_ONCE(rnp->completed, rsp->gpnum); 2229 rdp = this_cpu_ptr(rsp->rda); 2230 if (rnp == rdp->mynode) 2231 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2232 /* smp_mb() provided by prior unlock-lock pair. */ 2233 nocb += rcu_future_gp_cleanup(rsp, rnp); 2234 sq = rcu_nocb_gp_get(rnp); 2235 raw_spin_unlock_irq_rcu_node(rnp); 2236 rcu_nocb_gp_cleanup(sq); 2237 cond_resched_rcu_qs(); 2238 WRITE_ONCE(rsp->gp_activity, jiffies); 2239 rcu_gp_slow(rsp, gp_cleanup_delay); 2240 } 2241 rnp = rcu_get_root(rsp); 2242 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2243 rcu_nocb_gp_set(rnp, nocb); 2244 2245 /* Declare grace period done. */ 2246 WRITE_ONCE(rsp->completed, rsp->gpnum); 2247 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2248 rsp->gp_state = RCU_GP_IDLE; 2249 rdp = this_cpu_ptr(rsp->rda); 2250 /* Advance CBs to reduce false positives below. */ 2251 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2252 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2253 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2254 trace_rcu_grace_period(rsp->name, 2255 READ_ONCE(rsp->gpnum), 2256 TPS("newreq")); 2257 } 2258 raw_spin_unlock_irq_rcu_node(rnp); 2259 } 2260 2261 /* 2262 * Body of kthread that handles grace periods. 2263 */ 2264 static int __noreturn rcu_gp_kthread(void *arg) 2265 { 2266 bool first_gp_fqs; 2267 int gf; 2268 unsigned long j; 2269 int ret; 2270 struct rcu_state *rsp = arg; 2271 struct rcu_node *rnp = rcu_get_root(rsp); 2272 2273 rcu_bind_gp_kthread(); 2274 for (;;) { 2275 2276 /* Handle grace-period start. */ 2277 for (;;) { 2278 trace_rcu_grace_period(rsp->name, 2279 READ_ONCE(rsp->gpnum), 2280 TPS("reqwait")); 2281 rsp->gp_state = RCU_GP_WAIT_GPS; 2282 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2283 RCU_GP_FLAG_INIT); 2284 rsp->gp_state = RCU_GP_DONE_GPS; 2285 /* Locking provides needed memory barrier. */ 2286 if (rcu_gp_init(rsp)) 2287 break; 2288 cond_resched_rcu_qs(); 2289 WRITE_ONCE(rsp->gp_activity, jiffies); 2290 WARN_ON(signal_pending(current)); 2291 trace_rcu_grace_period(rsp->name, 2292 READ_ONCE(rsp->gpnum), 2293 TPS("reqwaitsig")); 2294 } 2295 2296 /* Handle quiescent-state forcing. */ 2297 first_gp_fqs = true; 2298 j = jiffies_till_first_fqs; 2299 if (j > HZ) { 2300 j = HZ; 2301 jiffies_till_first_fqs = HZ; 2302 } 2303 ret = 0; 2304 for (;;) { 2305 if (!ret) { 2306 rsp->jiffies_force_qs = jiffies + j; 2307 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2308 jiffies + 3 * j); 2309 } 2310 trace_rcu_grace_period(rsp->name, 2311 READ_ONCE(rsp->gpnum), 2312 TPS("fqswait")); 2313 rsp->gp_state = RCU_GP_WAIT_FQS; 2314 ret = swait_event_idle_timeout(rsp->gp_wq, 2315 rcu_gp_fqs_check_wake(rsp, &gf), j); 2316 rsp->gp_state = RCU_GP_DOING_FQS; 2317 /* Locking provides needed memory barriers. */ 2318 /* If grace period done, leave loop. */ 2319 if (!READ_ONCE(rnp->qsmask) && 2320 !rcu_preempt_blocked_readers_cgp(rnp)) 2321 break; 2322 /* If time for quiescent-state forcing, do it. */ 2323 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2324 (gf & RCU_GP_FLAG_FQS)) { 2325 trace_rcu_grace_period(rsp->name, 2326 READ_ONCE(rsp->gpnum), 2327 TPS("fqsstart")); 2328 rcu_gp_fqs(rsp, first_gp_fqs); 2329 first_gp_fqs = false; 2330 trace_rcu_grace_period(rsp->name, 2331 READ_ONCE(rsp->gpnum), 2332 TPS("fqsend")); 2333 cond_resched_rcu_qs(); 2334 WRITE_ONCE(rsp->gp_activity, jiffies); 2335 ret = 0; /* Force full wait till next FQS. */ 2336 j = jiffies_till_next_fqs; 2337 if (j > HZ) { 2338 j = HZ; 2339 jiffies_till_next_fqs = HZ; 2340 } else if (j < 1) { 2341 j = 1; 2342 jiffies_till_next_fqs = 1; 2343 } 2344 } else { 2345 /* Deal with stray signal. */ 2346 cond_resched_rcu_qs(); 2347 WRITE_ONCE(rsp->gp_activity, jiffies); 2348 WARN_ON(signal_pending(current)); 2349 trace_rcu_grace_period(rsp->name, 2350 READ_ONCE(rsp->gpnum), 2351 TPS("fqswaitsig")); 2352 ret = 1; /* Keep old FQS timing. */ 2353 j = jiffies; 2354 if (time_after(jiffies, rsp->jiffies_force_qs)) 2355 j = 1; 2356 else 2357 j = rsp->jiffies_force_qs - j; 2358 } 2359 } 2360 2361 /* Handle grace-period end. */ 2362 rsp->gp_state = RCU_GP_CLEANUP; 2363 rcu_gp_cleanup(rsp); 2364 rsp->gp_state = RCU_GP_CLEANED; 2365 } 2366 } 2367 2368 /* 2369 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2370 * in preparation for detecting the next grace period. The caller must hold 2371 * the root node's ->lock and hard irqs must be disabled. 2372 * 2373 * Note that it is legal for a dying CPU (which is marked as offline) to 2374 * invoke this function. This can happen when the dying CPU reports its 2375 * quiescent state. 2376 * 2377 * Returns true if the grace-period kthread must be awakened. 2378 */ 2379 static bool 2380 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2381 struct rcu_data *rdp) 2382 { 2383 lockdep_assert_held(&rnp->lock); 2384 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2385 /* 2386 * Either we have not yet spawned the grace-period 2387 * task, this CPU does not need another grace period, 2388 * or a grace period is already in progress. 2389 * Either way, don't start a new grace period. 2390 */ 2391 return false; 2392 } 2393 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2394 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2395 TPS("newreq")); 2396 2397 /* 2398 * We can't do wakeups while holding the rnp->lock, as that 2399 * could cause possible deadlocks with the rq->lock. Defer 2400 * the wakeup to our caller. 2401 */ 2402 return true; 2403 } 2404 2405 /* 2406 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2407 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2408 * is invoked indirectly from rcu_advance_cbs(), which would result in 2409 * endless recursion -- or would do so if it wasn't for the self-deadlock 2410 * that is encountered beforehand. 2411 * 2412 * Returns true if the grace-period kthread needs to be awakened. 2413 */ 2414 static bool rcu_start_gp(struct rcu_state *rsp) 2415 { 2416 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2417 struct rcu_node *rnp = rcu_get_root(rsp); 2418 bool ret = false; 2419 2420 /* 2421 * If there is no grace period in progress right now, any 2422 * callbacks we have up to this point will be satisfied by the 2423 * next grace period. Also, advancing the callbacks reduces the 2424 * probability of false positives from cpu_needs_another_gp() 2425 * resulting in pointless grace periods. So, advance callbacks 2426 * then start the grace period! 2427 */ 2428 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2429 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2430 return ret; 2431 } 2432 2433 /* 2434 * Report a full set of quiescent states to the specified rcu_state data 2435 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2436 * kthread if another grace period is required. Whether we wake 2437 * the grace-period kthread or it awakens itself for the next round 2438 * of quiescent-state forcing, that kthread will clean up after the 2439 * just-completed grace period. Note that the caller must hold rnp->lock, 2440 * which is released before return. 2441 */ 2442 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2443 __releases(rcu_get_root(rsp)->lock) 2444 { 2445 lockdep_assert_held(&rcu_get_root(rsp)->lock); 2446 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2447 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2448 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2449 rcu_gp_kthread_wake(rsp); 2450 } 2451 2452 /* 2453 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2454 * Allows quiescent states for a group of CPUs to be reported at one go 2455 * to the specified rcu_node structure, though all the CPUs in the group 2456 * must be represented by the same rcu_node structure (which need not be a 2457 * leaf rcu_node structure, though it often will be). The gps parameter 2458 * is the grace-period snapshot, which means that the quiescent states 2459 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2460 * must be held upon entry, and it is released before return. 2461 */ 2462 static void 2463 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2464 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2465 __releases(rnp->lock) 2466 { 2467 unsigned long oldmask = 0; 2468 struct rcu_node *rnp_c; 2469 2470 lockdep_assert_held(&rnp->lock); 2471 2472 /* Walk up the rcu_node hierarchy. */ 2473 for (;;) { 2474 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2475 2476 /* 2477 * Our bit has already been cleared, or the 2478 * relevant grace period is already over, so done. 2479 */ 2480 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2481 return; 2482 } 2483 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2484 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 && 2485 rcu_preempt_blocked_readers_cgp(rnp)); 2486 rnp->qsmask &= ~mask; 2487 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2488 mask, rnp->qsmask, rnp->level, 2489 rnp->grplo, rnp->grphi, 2490 !!rnp->gp_tasks); 2491 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2492 2493 /* Other bits still set at this level, so done. */ 2494 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2495 return; 2496 } 2497 mask = rnp->grpmask; 2498 if (rnp->parent == NULL) { 2499 2500 /* No more levels. Exit loop holding root lock. */ 2501 2502 break; 2503 } 2504 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2505 rnp_c = rnp; 2506 rnp = rnp->parent; 2507 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2508 oldmask = rnp_c->qsmask; 2509 } 2510 2511 /* 2512 * Get here if we are the last CPU to pass through a quiescent 2513 * state for this grace period. Invoke rcu_report_qs_rsp() 2514 * to clean up and start the next grace period if one is needed. 2515 */ 2516 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2517 } 2518 2519 /* 2520 * Record a quiescent state for all tasks that were previously queued 2521 * on the specified rcu_node structure and that were blocking the current 2522 * RCU grace period. The caller must hold the specified rnp->lock with 2523 * irqs disabled, and this lock is released upon return, but irqs remain 2524 * disabled. 2525 */ 2526 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2527 struct rcu_node *rnp, unsigned long flags) 2528 __releases(rnp->lock) 2529 { 2530 unsigned long gps; 2531 unsigned long mask; 2532 struct rcu_node *rnp_p; 2533 2534 lockdep_assert_held(&rnp->lock); 2535 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2536 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2537 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2538 return; /* Still need more quiescent states! */ 2539 } 2540 2541 rnp_p = rnp->parent; 2542 if (rnp_p == NULL) { 2543 /* 2544 * Only one rcu_node structure in the tree, so don't 2545 * try to report up to its nonexistent parent! 2546 */ 2547 rcu_report_qs_rsp(rsp, flags); 2548 return; 2549 } 2550 2551 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2552 gps = rnp->gpnum; 2553 mask = rnp->grpmask; 2554 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2555 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2556 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2557 } 2558 2559 /* 2560 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2561 * structure. This must be called from the specified CPU. 2562 */ 2563 static void 2564 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2565 { 2566 unsigned long flags; 2567 unsigned long mask; 2568 bool needwake; 2569 struct rcu_node *rnp; 2570 2571 rnp = rdp->mynode; 2572 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2573 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2574 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2575 2576 /* 2577 * The grace period in which this quiescent state was 2578 * recorded has ended, so don't report it upwards. 2579 * We will instead need a new quiescent state that lies 2580 * within the current grace period. 2581 */ 2582 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2583 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2584 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2585 return; 2586 } 2587 mask = rdp->grpmask; 2588 if ((rnp->qsmask & mask) == 0) { 2589 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2590 } else { 2591 rdp->core_needs_qs = false; 2592 2593 /* 2594 * This GP can't end until cpu checks in, so all of our 2595 * callbacks can be processed during the next GP. 2596 */ 2597 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2598 2599 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2600 /* ^^^ Released rnp->lock */ 2601 if (needwake) 2602 rcu_gp_kthread_wake(rsp); 2603 } 2604 } 2605 2606 /* 2607 * Check to see if there is a new grace period of which this CPU 2608 * is not yet aware, and if so, set up local rcu_data state for it. 2609 * Otherwise, see if this CPU has just passed through its first 2610 * quiescent state for this grace period, and record that fact if so. 2611 */ 2612 static void 2613 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2614 { 2615 /* Check for grace-period ends and beginnings. */ 2616 note_gp_changes(rsp, rdp); 2617 2618 /* 2619 * Does this CPU still need to do its part for current grace period? 2620 * If no, return and let the other CPUs do their part as well. 2621 */ 2622 if (!rdp->core_needs_qs) 2623 return; 2624 2625 /* 2626 * Was there a quiescent state since the beginning of the grace 2627 * period? If no, then exit and wait for the next call. 2628 */ 2629 if (rdp->cpu_no_qs.b.norm) 2630 return; 2631 2632 /* 2633 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2634 * judge of that). 2635 */ 2636 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2637 } 2638 2639 /* 2640 * Trace the fact that this CPU is going offline. 2641 */ 2642 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2643 { 2644 RCU_TRACE(unsigned long mask;) 2645 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2646 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2647 2648 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2649 return; 2650 2651 RCU_TRACE(mask = rdp->grpmask;) 2652 trace_rcu_grace_period(rsp->name, 2653 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2654 TPS("cpuofl")); 2655 } 2656 2657 /* 2658 * All CPUs for the specified rcu_node structure have gone offline, 2659 * and all tasks that were preempted within an RCU read-side critical 2660 * section while running on one of those CPUs have since exited their RCU 2661 * read-side critical section. Some other CPU is reporting this fact with 2662 * the specified rcu_node structure's ->lock held and interrupts disabled. 2663 * This function therefore goes up the tree of rcu_node structures, 2664 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2665 * the leaf rcu_node structure's ->qsmaskinit field has already been 2666 * updated 2667 * 2668 * This function does check that the specified rcu_node structure has 2669 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2670 * prematurely. That said, invoking it after the fact will cost you 2671 * a needless lock acquisition. So once it has done its work, don't 2672 * invoke it again. 2673 */ 2674 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2675 { 2676 long mask; 2677 struct rcu_node *rnp = rnp_leaf; 2678 2679 lockdep_assert_held(&rnp->lock); 2680 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2681 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2682 return; 2683 for (;;) { 2684 mask = rnp->grpmask; 2685 rnp = rnp->parent; 2686 if (!rnp) 2687 break; 2688 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2689 rnp->qsmaskinit &= ~mask; 2690 rnp->qsmask &= ~mask; 2691 if (rnp->qsmaskinit) { 2692 raw_spin_unlock_rcu_node(rnp); 2693 /* irqs remain disabled. */ 2694 return; 2695 } 2696 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2697 } 2698 } 2699 2700 /* 2701 * The CPU has been completely removed, and some other CPU is reporting 2702 * this fact from process context. Do the remainder of the cleanup. 2703 * There can only be one CPU hotplug operation at a time, so no need for 2704 * explicit locking. 2705 */ 2706 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2707 { 2708 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2709 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2710 2711 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2712 return; 2713 2714 /* Adjust any no-longer-needed kthreads. */ 2715 rcu_boost_kthread_setaffinity(rnp, -1); 2716 } 2717 2718 /* 2719 * Invoke any RCU callbacks that have made it to the end of their grace 2720 * period. Thottle as specified by rdp->blimit. 2721 */ 2722 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2723 { 2724 unsigned long flags; 2725 struct rcu_head *rhp; 2726 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2727 long bl, count; 2728 2729 /* If no callbacks are ready, just return. */ 2730 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2731 trace_rcu_batch_start(rsp->name, 2732 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2733 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2734 trace_rcu_batch_end(rsp->name, 0, 2735 !rcu_segcblist_empty(&rdp->cblist), 2736 need_resched(), is_idle_task(current), 2737 rcu_is_callbacks_kthread()); 2738 return; 2739 } 2740 2741 /* 2742 * Extract the list of ready callbacks, disabling to prevent 2743 * races with call_rcu() from interrupt handlers. Leave the 2744 * callback counts, as rcu_barrier() needs to be conservative. 2745 */ 2746 local_irq_save(flags); 2747 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2748 bl = rdp->blimit; 2749 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2750 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2751 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2752 local_irq_restore(flags); 2753 2754 /* Invoke callbacks. */ 2755 rhp = rcu_cblist_dequeue(&rcl); 2756 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2757 debug_rcu_head_unqueue(rhp); 2758 if (__rcu_reclaim(rsp->name, rhp)) 2759 rcu_cblist_dequeued_lazy(&rcl); 2760 /* 2761 * Stop only if limit reached and CPU has something to do. 2762 * Note: The rcl structure counts down from zero. 2763 */ 2764 if (-rcl.len >= bl && 2765 (need_resched() || 2766 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2767 break; 2768 } 2769 2770 local_irq_save(flags); 2771 count = -rcl.len; 2772 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2773 is_idle_task(current), rcu_is_callbacks_kthread()); 2774 2775 /* Update counts and requeue any remaining callbacks. */ 2776 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2777 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2778 rdp->n_cbs_invoked += count; 2779 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2780 2781 /* Reinstate batch limit if we have worked down the excess. */ 2782 count = rcu_segcblist_n_cbs(&rdp->cblist); 2783 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2784 rdp->blimit = blimit; 2785 2786 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2787 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2788 rdp->qlen_last_fqs_check = 0; 2789 rdp->n_force_qs_snap = rsp->n_force_qs; 2790 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2791 rdp->qlen_last_fqs_check = count; 2792 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2793 2794 local_irq_restore(flags); 2795 2796 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2797 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2798 invoke_rcu_core(); 2799 } 2800 2801 /* 2802 * Check to see if this CPU is in a non-context-switch quiescent state 2803 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2804 * Also schedule RCU core processing. 2805 * 2806 * This function must be called from hardirq context. It is normally 2807 * invoked from the scheduling-clock interrupt. 2808 */ 2809 void rcu_check_callbacks(int user) 2810 { 2811 trace_rcu_utilization(TPS("Start scheduler-tick")); 2812 increment_cpu_stall_ticks(); 2813 if (user || rcu_is_cpu_rrupt_from_idle()) { 2814 2815 /* 2816 * Get here if this CPU took its interrupt from user 2817 * mode or from the idle loop, and if this is not a 2818 * nested interrupt. In this case, the CPU is in 2819 * a quiescent state, so note it. 2820 * 2821 * No memory barrier is required here because both 2822 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2823 * variables that other CPUs neither access nor modify, 2824 * at least not while the corresponding CPU is online. 2825 */ 2826 2827 rcu_sched_qs(); 2828 rcu_bh_qs(); 2829 2830 } else if (!in_softirq()) { 2831 2832 /* 2833 * Get here if this CPU did not take its interrupt from 2834 * softirq, in other words, if it is not interrupting 2835 * a rcu_bh read-side critical section. This is an _bh 2836 * critical section, so note it. 2837 */ 2838 2839 rcu_bh_qs(); 2840 } 2841 rcu_preempt_check_callbacks(); 2842 if (rcu_pending()) 2843 invoke_rcu_core(); 2844 if (user) 2845 rcu_note_voluntary_context_switch(current); 2846 trace_rcu_utilization(TPS("End scheduler-tick")); 2847 } 2848 2849 /* 2850 * Scan the leaf rcu_node structures, processing dyntick state for any that 2851 * have not yet encountered a quiescent state, using the function specified. 2852 * Also initiate boosting for any threads blocked on the root rcu_node. 2853 * 2854 * The caller must have suppressed start of new grace periods. 2855 */ 2856 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2857 { 2858 int cpu; 2859 unsigned long flags; 2860 unsigned long mask; 2861 struct rcu_node *rnp; 2862 2863 rcu_for_each_leaf_node(rsp, rnp) { 2864 cond_resched_rcu_qs(); 2865 mask = 0; 2866 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2867 if (rnp->qsmask == 0) { 2868 if (rcu_state_p == &rcu_sched_state || 2869 rsp != rcu_state_p || 2870 rcu_preempt_blocked_readers_cgp(rnp)) { 2871 /* 2872 * No point in scanning bits because they 2873 * are all zero. But we might need to 2874 * priority-boost blocked readers. 2875 */ 2876 rcu_initiate_boost(rnp, flags); 2877 /* rcu_initiate_boost() releases rnp->lock */ 2878 continue; 2879 } 2880 if (rnp->parent && 2881 (rnp->parent->qsmask & rnp->grpmask)) { 2882 /* 2883 * Race between grace-period 2884 * initialization and task exiting RCU 2885 * read-side critical section: Report. 2886 */ 2887 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2888 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2889 continue; 2890 } 2891 } 2892 for_each_leaf_node_possible_cpu(rnp, cpu) { 2893 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2894 if ((rnp->qsmask & bit) != 0) { 2895 if (f(per_cpu_ptr(rsp->rda, cpu))) 2896 mask |= bit; 2897 } 2898 } 2899 if (mask != 0) { 2900 /* Idle/offline CPUs, report (releases rnp->lock. */ 2901 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2902 } else { 2903 /* Nothing to do here, so just drop the lock. */ 2904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2905 } 2906 } 2907 } 2908 2909 /* 2910 * Force quiescent states on reluctant CPUs, and also detect which 2911 * CPUs are in dyntick-idle mode. 2912 */ 2913 static void force_quiescent_state(struct rcu_state *rsp) 2914 { 2915 unsigned long flags; 2916 bool ret; 2917 struct rcu_node *rnp; 2918 struct rcu_node *rnp_old = NULL; 2919 2920 /* Funnel through hierarchy to reduce memory contention. */ 2921 rnp = __this_cpu_read(rsp->rda->mynode); 2922 for (; rnp != NULL; rnp = rnp->parent) { 2923 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2924 !raw_spin_trylock(&rnp->fqslock); 2925 if (rnp_old != NULL) 2926 raw_spin_unlock(&rnp_old->fqslock); 2927 if (ret) { 2928 rsp->n_force_qs_lh++; 2929 return; 2930 } 2931 rnp_old = rnp; 2932 } 2933 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2934 2935 /* Reached the root of the rcu_node tree, acquire lock. */ 2936 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2937 raw_spin_unlock(&rnp_old->fqslock); 2938 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2939 rsp->n_force_qs_lh++; 2940 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2941 return; /* Someone beat us to it. */ 2942 } 2943 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2944 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2945 rcu_gp_kthread_wake(rsp); 2946 } 2947 2948 /* 2949 * This does the RCU core processing work for the specified rcu_state 2950 * and rcu_data structures. This may be called only from the CPU to 2951 * whom the rdp belongs. 2952 */ 2953 static void 2954 __rcu_process_callbacks(struct rcu_state *rsp) 2955 { 2956 unsigned long flags; 2957 bool needwake; 2958 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2959 2960 WARN_ON_ONCE(!rdp->beenonline); 2961 2962 /* Update RCU state based on any recent quiescent states. */ 2963 rcu_check_quiescent_state(rsp, rdp); 2964 2965 /* Does this CPU require a not-yet-started grace period? */ 2966 local_irq_save(flags); 2967 if (cpu_needs_another_gp(rsp, rdp)) { 2968 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2969 needwake = rcu_start_gp(rsp); 2970 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2971 if (needwake) 2972 rcu_gp_kthread_wake(rsp); 2973 } else { 2974 local_irq_restore(flags); 2975 } 2976 2977 /* If there are callbacks ready, invoke them. */ 2978 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2979 invoke_rcu_callbacks(rsp, rdp); 2980 2981 /* Do any needed deferred wakeups of rcuo kthreads. */ 2982 do_nocb_deferred_wakeup(rdp); 2983 } 2984 2985 /* 2986 * Do RCU core processing for the current CPU. 2987 */ 2988 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2989 { 2990 struct rcu_state *rsp; 2991 2992 if (cpu_is_offline(smp_processor_id())) 2993 return; 2994 trace_rcu_utilization(TPS("Start RCU core")); 2995 for_each_rcu_flavor(rsp) 2996 __rcu_process_callbacks(rsp); 2997 trace_rcu_utilization(TPS("End RCU core")); 2998 } 2999 3000 /* 3001 * Schedule RCU callback invocation. If the specified type of RCU 3002 * does not support RCU priority boosting, just do a direct call, 3003 * otherwise wake up the per-CPU kernel kthread. Note that because we 3004 * are running on the current CPU with softirqs disabled, the 3005 * rcu_cpu_kthread_task cannot disappear out from under us. 3006 */ 3007 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3008 { 3009 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3010 return; 3011 if (likely(!rsp->boost)) { 3012 rcu_do_batch(rsp, rdp); 3013 return; 3014 } 3015 invoke_rcu_callbacks_kthread(); 3016 } 3017 3018 static void invoke_rcu_core(void) 3019 { 3020 if (cpu_online(smp_processor_id())) 3021 raise_softirq(RCU_SOFTIRQ); 3022 } 3023 3024 /* 3025 * Handle any core-RCU processing required by a call_rcu() invocation. 3026 */ 3027 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3028 struct rcu_head *head, unsigned long flags) 3029 { 3030 bool needwake; 3031 3032 /* 3033 * If called from an extended quiescent state, invoke the RCU 3034 * core in order to force a re-evaluation of RCU's idleness. 3035 */ 3036 if (!rcu_is_watching()) 3037 invoke_rcu_core(); 3038 3039 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3040 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3041 return; 3042 3043 /* 3044 * Force the grace period if too many callbacks or too long waiting. 3045 * Enforce hysteresis, and don't invoke force_quiescent_state() 3046 * if some other CPU has recently done so. Also, don't bother 3047 * invoking force_quiescent_state() if the newly enqueued callback 3048 * is the only one waiting for a grace period to complete. 3049 */ 3050 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 3051 rdp->qlen_last_fqs_check + qhimark)) { 3052 3053 /* Are we ignoring a completed grace period? */ 3054 note_gp_changes(rsp, rdp); 3055 3056 /* Start a new grace period if one not already started. */ 3057 if (!rcu_gp_in_progress(rsp)) { 3058 struct rcu_node *rnp_root = rcu_get_root(rsp); 3059 3060 raw_spin_lock_rcu_node(rnp_root); 3061 needwake = rcu_start_gp(rsp); 3062 raw_spin_unlock_rcu_node(rnp_root); 3063 if (needwake) 3064 rcu_gp_kthread_wake(rsp); 3065 } else { 3066 /* Give the grace period a kick. */ 3067 rdp->blimit = LONG_MAX; 3068 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3069 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3070 force_quiescent_state(rsp); 3071 rdp->n_force_qs_snap = rsp->n_force_qs; 3072 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3073 } 3074 } 3075 } 3076 3077 /* 3078 * RCU callback function to leak a callback. 3079 */ 3080 static void rcu_leak_callback(struct rcu_head *rhp) 3081 { 3082 } 3083 3084 /* 3085 * Helper function for call_rcu() and friends. The cpu argument will 3086 * normally be -1, indicating "currently running CPU". It may specify 3087 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3088 * is expected to specify a CPU. 3089 */ 3090 static void 3091 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3092 struct rcu_state *rsp, int cpu, bool lazy) 3093 { 3094 unsigned long flags; 3095 struct rcu_data *rdp; 3096 3097 /* Misaligned rcu_head! */ 3098 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3099 3100 if (debug_rcu_head_queue(head)) { 3101 /* 3102 * Probable double call_rcu(), so leak the callback. 3103 * Use rcu:rcu_callback trace event to find the previous 3104 * time callback was passed to __call_rcu(). 3105 */ 3106 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 3107 head, head->func); 3108 WRITE_ONCE(head->func, rcu_leak_callback); 3109 return; 3110 } 3111 head->func = func; 3112 head->next = NULL; 3113 local_irq_save(flags); 3114 rdp = this_cpu_ptr(rsp->rda); 3115 3116 /* Add the callback to our list. */ 3117 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 3118 int offline; 3119 3120 if (cpu != -1) 3121 rdp = per_cpu_ptr(rsp->rda, cpu); 3122 if (likely(rdp->mynode)) { 3123 /* Post-boot, so this should be for a no-CBs CPU. */ 3124 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3125 WARN_ON_ONCE(offline); 3126 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3127 local_irq_restore(flags); 3128 return; 3129 } 3130 /* 3131 * Very early boot, before rcu_init(). Initialize if needed 3132 * and then drop through to queue the callback. 3133 */ 3134 BUG_ON(cpu != -1); 3135 WARN_ON_ONCE(!rcu_is_watching()); 3136 if (rcu_segcblist_empty(&rdp->cblist)) 3137 rcu_segcblist_init(&rdp->cblist); 3138 } 3139 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3140 if (!lazy) 3141 rcu_idle_count_callbacks_posted(); 3142 3143 if (__is_kfree_rcu_offset((unsigned long)func)) 3144 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3145 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3146 rcu_segcblist_n_cbs(&rdp->cblist)); 3147 else 3148 trace_rcu_callback(rsp->name, head, 3149 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3150 rcu_segcblist_n_cbs(&rdp->cblist)); 3151 3152 /* Go handle any RCU core processing required. */ 3153 __call_rcu_core(rsp, rdp, head, flags); 3154 local_irq_restore(flags); 3155 } 3156 3157 /** 3158 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 3159 * @head: structure to be used for queueing the RCU updates. 3160 * @func: actual callback function to be invoked after the grace period 3161 * 3162 * The callback function will be invoked some time after a full grace 3163 * period elapses, in other words after all currently executing RCU 3164 * read-side critical sections have completed. call_rcu_sched() assumes 3165 * that the read-side critical sections end on enabling of preemption 3166 * or on voluntary preemption. 3167 * RCU read-side critical sections are delimited by: 3168 * 3169 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 3170 * - anything that disables preemption. 3171 * 3172 * These may be nested. 3173 * 3174 * See the description of call_rcu() for more detailed information on 3175 * memory ordering guarantees. 3176 */ 3177 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3178 { 3179 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3180 } 3181 EXPORT_SYMBOL_GPL(call_rcu_sched); 3182 3183 /** 3184 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3185 * @head: structure to be used for queueing the RCU updates. 3186 * @func: actual callback function to be invoked after the grace period 3187 * 3188 * The callback function will be invoked some time after a full grace 3189 * period elapses, in other words after all currently executing RCU 3190 * read-side critical sections have completed. call_rcu_bh() assumes 3191 * that the read-side critical sections end on completion of a softirq 3192 * handler. This means that read-side critical sections in process 3193 * context must not be interrupted by softirqs. This interface is to be 3194 * used when most of the read-side critical sections are in softirq context. 3195 * RCU read-side critical sections are delimited by: 3196 * 3197 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR 3198 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3199 * 3200 * These may be nested. 3201 * 3202 * See the description of call_rcu() for more detailed information on 3203 * memory ordering guarantees. 3204 */ 3205 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3206 { 3207 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3208 } 3209 EXPORT_SYMBOL_GPL(call_rcu_bh); 3210 3211 /* 3212 * Queue an RCU callback for lazy invocation after a grace period. 3213 * This will likely be later named something like "call_rcu_lazy()", 3214 * but this change will require some way of tagging the lazy RCU 3215 * callbacks in the list of pending callbacks. Until then, this 3216 * function may only be called from __kfree_rcu(). 3217 */ 3218 void kfree_call_rcu(struct rcu_head *head, 3219 rcu_callback_t func) 3220 { 3221 __call_rcu(head, func, rcu_state_p, -1, 1); 3222 } 3223 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3224 3225 /* 3226 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3227 * any blocking grace-period wait automatically implies a grace period 3228 * if there is only one CPU online at any point time during execution 3229 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3230 * occasionally incorrectly indicate that there are multiple CPUs online 3231 * when there was in fact only one the whole time, as this just adds 3232 * some overhead: RCU still operates correctly. 3233 */ 3234 static inline int rcu_blocking_is_gp(void) 3235 { 3236 int ret; 3237 3238 might_sleep(); /* Check for RCU read-side critical section. */ 3239 preempt_disable(); 3240 ret = num_online_cpus() <= 1; 3241 preempt_enable(); 3242 return ret; 3243 } 3244 3245 /** 3246 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3247 * 3248 * Control will return to the caller some time after a full rcu-sched 3249 * grace period has elapsed, in other words after all currently executing 3250 * rcu-sched read-side critical sections have completed. These read-side 3251 * critical sections are delimited by rcu_read_lock_sched() and 3252 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3253 * local_irq_disable(), and so on may be used in place of 3254 * rcu_read_lock_sched(). 3255 * 3256 * This means that all preempt_disable code sequences, including NMI and 3257 * non-threaded hardware-interrupt handlers, in progress on entry will 3258 * have completed before this primitive returns. However, this does not 3259 * guarantee that softirq handlers will have completed, since in some 3260 * kernels, these handlers can run in process context, and can block. 3261 * 3262 * Note that this guarantee implies further memory-ordering guarantees. 3263 * On systems with more than one CPU, when synchronize_sched() returns, 3264 * each CPU is guaranteed to have executed a full memory barrier since the 3265 * end of its last RCU-sched read-side critical section whose beginning 3266 * preceded the call to synchronize_sched(). In addition, each CPU having 3267 * an RCU read-side critical section that extends beyond the return from 3268 * synchronize_sched() is guaranteed to have executed a full memory barrier 3269 * after the beginning of synchronize_sched() and before the beginning of 3270 * that RCU read-side critical section. Note that these guarantees include 3271 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3272 * that are executing in the kernel. 3273 * 3274 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3275 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3276 * to have executed a full memory barrier during the execution of 3277 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3278 * again only if the system has more than one CPU). 3279 */ 3280 void synchronize_sched(void) 3281 { 3282 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3283 lock_is_held(&rcu_lock_map) || 3284 lock_is_held(&rcu_sched_lock_map), 3285 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3286 if (rcu_blocking_is_gp()) 3287 return; 3288 if (rcu_gp_is_expedited()) 3289 synchronize_sched_expedited(); 3290 else 3291 wait_rcu_gp(call_rcu_sched); 3292 } 3293 EXPORT_SYMBOL_GPL(synchronize_sched); 3294 3295 /** 3296 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3297 * 3298 * Control will return to the caller some time after a full rcu_bh grace 3299 * period has elapsed, in other words after all currently executing rcu_bh 3300 * read-side critical sections have completed. RCU read-side critical 3301 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3302 * and may be nested. 3303 * 3304 * See the description of synchronize_sched() for more detailed information 3305 * on memory ordering guarantees. 3306 */ 3307 void synchronize_rcu_bh(void) 3308 { 3309 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3310 lock_is_held(&rcu_lock_map) || 3311 lock_is_held(&rcu_sched_lock_map), 3312 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3313 if (rcu_blocking_is_gp()) 3314 return; 3315 if (rcu_gp_is_expedited()) 3316 synchronize_rcu_bh_expedited(); 3317 else 3318 wait_rcu_gp(call_rcu_bh); 3319 } 3320 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3321 3322 /** 3323 * get_state_synchronize_rcu - Snapshot current RCU state 3324 * 3325 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3326 * to determine whether or not a full grace period has elapsed in the 3327 * meantime. 3328 */ 3329 unsigned long get_state_synchronize_rcu(void) 3330 { 3331 /* 3332 * Any prior manipulation of RCU-protected data must happen 3333 * before the load from ->gpnum. 3334 */ 3335 smp_mb(); /* ^^^ */ 3336 3337 /* 3338 * Make sure this load happens before the purportedly 3339 * time-consuming work between get_state_synchronize_rcu() 3340 * and cond_synchronize_rcu(). 3341 */ 3342 return smp_load_acquire(&rcu_state_p->gpnum); 3343 } 3344 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3345 3346 /** 3347 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3348 * 3349 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3350 * 3351 * If a full RCU grace period has elapsed since the earlier call to 3352 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3353 * synchronize_rcu() to wait for a full grace period. 3354 * 3355 * Yes, this function does not take counter wrap into account. But 3356 * counter wrap is harmless. If the counter wraps, we have waited for 3357 * more than 2 billion grace periods (and way more on a 64-bit system!), 3358 * so waiting for one additional grace period should be just fine. 3359 */ 3360 void cond_synchronize_rcu(unsigned long oldstate) 3361 { 3362 unsigned long newstate; 3363 3364 /* 3365 * Ensure that this load happens before any RCU-destructive 3366 * actions the caller might carry out after we return. 3367 */ 3368 newstate = smp_load_acquire(&rcu_state_p->completed); 3369 if (ULONG_CMP_GE(oldstate, newstate)) 3370 synchronize_rcu(); 3371 } 3372 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3373 3374 /** 3375 * get_state_synchronize_sched - Snapshot current RCU-sched state 3376 * 3377 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3378 * to determine whether or not a full grace period has elapsed in the 3379 * meantime. 3380 */ 3381 unsigned long get_state_synchronize_sched(void) 3382 { 3383 /* 3384 * Any prior manipulation of RCU-protected data must happen 3385 * before the load from ->gpnum. 3386 */ 3387 smp_mb(); /* ^^^ */ 3388 3389 /* 3390 * Make sure this load happens before the purportedly 3391 * time-consuming work between get_state_synchronize_sched() 3392 * and cond_synchronize_sched(). 3393 */ 3394 return smp_load_acquire(&rcu_sched_state.gpnum); 3395 } 3396 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3397 3398 /** 3399 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3400 * 3401 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3402 * 3403 * If a full RCU-sched grace period has elapsed since the earlier call to 3404 * get_state_synchronize_sched(), just return. Otherwise, invoke 3405 * synchronize_sched() to wait for a full grace period. 3406 * 3407 * Yes, this function does not take counter wrap into account. But 3408 * counter wrap is harmless. If the counter wraps, we have waited for 3409 * more than 2 billion grace periods (and way more on a 64-bit system!), 3410 * so waiting for one additional grace period should be just fine. 3411 */ 3412 void cond_synchronize_sched(unsigned long oldstate) 3413 { 3414 unsigned long newstate; 3415 3416 /* 3417 * Ensure that this load happens before any RCU-destructive 3418 * actions the caller might carry out after we return. 3419 */ 3420 newstate = smp_load_acquire(&rcu_sched_state.completed); 3421 if (ULONG_CMP_GE(oldstate, newstate)) 3422 synchronize_sched(); 3423 } 3424 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3425 3426 /* 3427 * Check to see if there is any immediate RCU-related work to be done 3428 * by the current CPU, for the specified type of RCU, returning 1 if so. 3429 * The checks are in order of increasing expense: checks that can be 3430 * carried out against CPU-local state are performed first. However, 3431 * we must check for CPU stalls first, else we might not get a chance. 3432 */ 3433 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3434 { 3435 struct rcu_node *rnp = rdp->mynode; 3436 3437 rdp->n_rcu_pending++; 3438 3439 /* Check for CPU stalls, if enabled. */ 3440 check_cpu_stall(rsp, rdp); 3441 3442 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3443 if (rcu_nohz_full_cpu(rsp)) 3444 return 0; 3445 3446 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3447 if (rcu_scheduler_fully_active && 3448 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3449 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) { 3450 rdp->n_rp_core_needs_qs++; 3451 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3452 rdp->n_rp_report_qs++; 3453 return 1; 3454 } 3455 3456 /* Does this CPU have callbacks ready to invoke? */ 3457 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 3458 rdp->n_rp_cb_ready++; 3459 return 1; 3460 } 3461 3462 /* Has RCU gone idle with this CPU needing another grace period? */ 3463 if (cpu_needs_another_gp(rsp, rdp)) { 3464 rdp->n_rp_cpu_needs_gp++; 3465 return 1; 3466 } 3467 3468 /* Has another RCU grace period completed? */ 3469 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3470 rdp->n_rp_gp_completed++; 3471 return 1; 3472 } 3473 3474 /* Has a new RCU grace period started? */ 3475 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3476 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3477 rdp->n_rp_gp_started++; 3478 return 1; 3479 } 3480 3481 /* Does this CPU need a deferred NOCB wakeup? */ 3482 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3483 rdp->n_rp_nocb_defer_wakeup++; 3484 return 1; 3485 } 3486 3487 /* nothing to do */ 3488 rdp->n_rp_need_nothing++; 3489 return 0; 3490 } 3491 3492 /* 3493 * Check to see if there is any immediate RCU-related work to be done 3494 * by the current CPU, returning 1 if so. This function is part of the 3495 * RCU implementation; it is -not- an exported member of the RCU API. 3496 */ 3497 static int rcu_pending(void) 3498 { 3499 struct rcu_state *rsp; 3500 3501 for_each_rcu_flavor(rsp) 3502 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3503 return 1; 3504 return 0; 3505 } 3506 3507 /* 3508 * Return true if the specified CPU has any callback. If all_lazy is 3509 * non-NULL, store an indication of whether all callbacks are lazy. 3510 * (If there are no callbacks, all of them are deemed to be lazy.) 3511 */ 3512 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3513 { 3514 bool al = true; 3515 bool hc = false; 3516 struct rcu_data *rdp; 3517 struct rcu_state *rsp; 3518 3519 for_each_rcu_flavor(rsp) { 3520 rdp = this_cpu_ptr(rsp->rda); 3521 if (rcu_segcblist_empty(&rdp->cblist)) 3522 continue; 3523 hc = true; 3524 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3525 al = false; 3526 break; 3527 } 3528 } 3529 if (all_lazy) 3530 *all_lazy = al; 3531 return hc; 3532 } 3533 3534 /* 3535 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3536 * the compiler is expected to optimize this away. 3537 */ 3538 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3539 int cpu, unsigned long done) 3540 { 3541 trace_rcu_barrier(rsp->name, s, cpu, 3542 atomic_read(&rsp->barrier_cpu_count), done); 3543 } 3544 3545 /* 3546 * RCU callback function for _rcu_barrier(). If we are last, wake 3547 * up the task executing _rcu_barrier(). 3548 */ 3549 static void rcu_barrier_callback(struct rcu_head *rhp) 3550 { 3551 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3552 struct rcu_state *rsp = rdp->rsp; 3553 3554 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3555 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3556 rsp->barrier_sequence); 3557 complete(&rsp->barrier_completion); 3558 } else { 3559 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3560 } 3561 } 3562 3563 /* 3564 * Called with preemption disabled, and from cross-cpu IRQ context. 3565 */ 3566 static void rcu_barrier_func(void *type) 3567 { 3568 struct rcu_state *rsp = type; 3569 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3570 3571 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3572 rdp->barrier_head.func = rcu_barrier_callback; 3573 debug_rcu_head_queue(&rdp->barrier_head); 3574 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3575 atomic_inc(&rsp->barrier_cpu_count); 3576 } else { 3577 debug_rcu_head_unqueue(&rdp->barrier_head); 3578 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3579 rsp->barrier_sequence); 3580 } 3581 } 3582 3583 /* 3584 * Orchestrate the specified type of RCU barrier, waiting for all 3585 * RCU callbacks of the specified type to complete. 3586 */ 3587 static void _rcu_barrier(struct rcu_state *rsp) 3588 { 3589 int cpu; 3590 struct rcu_data *rdp; 3591 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3592 3593 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3594 3595 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3596 mutex_lock(&rsp->barrier_mutex); 3597 3598 /* Did someone else do our work for us? */ 3599 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3600 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3601 rsp->barrier_sequence); 3602 smp_mb(); /* caller's subsequent code after above check. */ 3603 mutex_unlock(&rsp->barrier_mutex); 3604 return; 3605 } 3606 3607 /* Mark the start of the barrier operation. */ 3608 rcu_seq_start(&rsp->barrier_sequence); 3609 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3610 3611 /* 3612 * Initialize the count to one rather than to zero in order to 3613 * avoid a too-soon return to zero in case of a short grace period 3614 * (or preemption of this task). Exclude CPU-hotplug operations 3615 * to ensure that no offline CPU has callbacks queued. 3616 */ 3617 init_completion(&rsp->barrier_completion); 3618 atomic_set(&rsp->barrier_cpu_count, 1); 3619 get_online_cpus(); 3620 3621 /* 3622 * Force each CPU with callbacks to register a new callback. 3623 * When that callback is invoked, we will know that all of the 3624 * corresponding CPU's preceding callbacks have been invoked. 3625 */ 3626 for_each_possible_cpu(cpu) { 3627 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3628 continue; 3629 rdp = per_cpu_ptr(rsp->rda, cpu); 3630 if (rcu_is_nocb_cpu(cpu)) { 3631 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3632 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3633 rsp->barrier_sequence); 3634 } else { 3635 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3636 rsp->barrier_sequence); 3637 smp_mb__before_atomic(); 3638 atomic_inc(&rsp->barrier_cpu_count); 3639 __call_rcu(&rdp->barrier_head, 3640 rcu_barrier_callback, rsp, cpu, 0); 3641 } 3642 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3643 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3644 rsp->barrier_sequence); 3645 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3646 } else { 3647 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3648 rsp->barrier_sequence); 3649 } 3650 } 3651 put_online_cpus(); 3652 3653 /* 3654 * Now that we have an rcu_barrier_callback() callback on each 3655 * CPU, and thus each counted, remove the initial count. 3656 */ 3657 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3658 complete(&rsp->barrier_completion); 3659 3660 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3661 wait_for_completion(&rsp->barrier_completion); 3662 3663 /* Mark the end of the barrier operation. */ 3664 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3665 rcu_seq_end(&rsp->barrier_sequence); 3666 3667 /* Other rcu_barrier() invocations can now safely proceed. */ 3668 mutex_unlock(&rsp->barrier_mutex); 3669 } 3670 3671 /** 3672 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3673 */ 3674 void rcu_barrier_bh(void) 3675 { 3676 _rcu_barrier(&rcu_bh_state); 3677 } 3678 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3679 3680 /** 3681 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3682 */ 3683 void rcu_barrier_sched(void) 3684 { 3685 _rcu_barrier(&rcu_sched_state); 3686 } 3687 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3688 3689 /* 3690 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3691 * first CPU in a given leaf rcu_node structure coming online. The caller 3692 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3693 * disabled. 3694 */ 3695 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3696 { 3697 long mask; 3698 struct rcu_node *rnp = rnp_leaf; 3699 3700 lockdep_assert_held(&rnp->lock); 3701 for (;;) { 3702 mask = rnp->grpmask; 3703 rnp = rnp->parent; 3704 if (rnp == NULL) 3705 return; 3706 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3707 rnp->qsmaskinit |= mask; 3708 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3709 } 3710 } 3711 3712 /* 3713 * Do boot-time initialization of a CPU's per-CPU RCU data. 3714 */ 3715 static void __init 3716 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3717 { 3718 unsigned long flags; 3719 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3720 struct rcu_node *rnp = rcu_get_root(rsp); 3721 3722 /* Set up local state, ensuring consistent view of global state. */ 3723 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3724 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3725 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3726 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3727 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3728 rdp->cpu = cpu; 3729 rdp->rsp = rsp; 3730 rcu_boot_init_nocb_percpu_data(rdp); 3731 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3732 } 3733 3734 /* 3735 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3736 * offline event can be happening at a given time. Note also that we 3737 * can accept some slop in the rsp->completed access due to the fact 3738 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3739 */ 3740 static void 3741 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3742 { 3743 unsigned long flags; 3744 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3745 struct rcu_node *rnp = rcu_get_root(rsp); 3746 3747 /* Set up local state, ensuring consistent view of global state. */ 3748 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3749 rdp->qlen_last_fqs_check = 0; 3750 rdp->n_force_qs_snap = rsp->n_force_qs; 3751 rdp->blimit = blimit; 3752 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3753 !init_nocb_callback_list(rdp)) 3754 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3755 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3756 rcu_dynticks_eqs_online(); 3757 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3758 3759 /* 3760 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3761 * propagation up the rcu_node tree will happen at the beginning 3762 * of the next grace period. 3763 */ 3764 rnp = rdp->mynode; 3765 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3766 rdp->beenonline = true; /* We have now been online. */ 3767 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3768 rdp->completed = rnp->completed; 3769 rdp->cpu_no_qs.b.norm = true; 3770 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3771 rdp->core_needs_qs = false; 3772 rdp->rcu_iw_pending = false; 3773 rdp->rcu_iw_gpnum = rnp->gpnum - 1; 3774 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3775 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3776 } 3777 3778 /* 3779 * Invoked early in the CPU-online process, when pretty much all 3780 * services are available. The incoming CPU is not present. 3781 */ 3782 int rcutree_prepare_cpu(unsigned int cpu) 3783 { 3784 struct rcu_state *rsp; 3785 3786 for_each_rcu_flavor(rsp) 3787 rcu_init_percpu_data(cpu, rsp); 3788 3789 rcu_prepare_kthreads(cpu); 3790 rcu_spawn_all_nocb_kthreads(cpu); 3791 3792 return 0; 3793 } 3794 3795 /* 3796 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3797 */ 3798 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3799 { 3800 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3801 3802 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3803 } 3804 3805 /* 3806 * Near the end of the CPU-online process. Pretty much all services 3807 * enabled, and the CPU is now very much alive. 3808 */ 3809 int rcutree_online_cpu(unsigned int cpu) 3810 { 3811 unsigned long flags; 3812 struct rcu_data *rdp; 3813 struct rcu_node *rnp; 3814 struct rcu_state *rsp; 3815 3816 for_each_rcu_flavor(rsp) { 3817 rdp = per_cpu_ptr(rsp->rda, cpu); 3818 rnp = rdp->mynode; 3819 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3820 rnp->ffmask |= rdp->grpmask; 3821 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3822 } 3823 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3824 srcu_online_cpu(cpu); 3825 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3826 return 0; /* Too early in boot for scheduler work. */ 3827 sync_sched_exp_online_cleanup(cpu); 3828 rcutree_affinity_setting(cpu, -1); 3829 return 0; 3830 } 3831 3832 /* 3833 * Near the beginning of the process. The CPU is still very much alive 3834 * with pretty much all services enabled. 3835 */ 3836 int rcutree_offline_cpu(unsigned int cpu) 3837 { 3838 unsigned long flags; 3839 struct rcu_data *rdp; 3840 struct rcu_node *rnp; 3841 struct rcu_state *rsp; 3842 3843 for_each_rcu_flavor(rsp) { 3844 rdp = per_cpu_ptr(rsp->rda, cpu); 3845 rnp = rdp->mynode; 3846 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3847 rnp->ffmask &= ~rdp->grpmask; 3848 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3849 } 3850 3851 rcutree_affinity_setting(cpu, cpu); 3852 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3853 srcu_offline_cpu(cpu); 3854 return 0; 3855 } 3856 3857 /* 3858 * Near the end of the offline process. We do only tracing here. 3859 */ 3860 int rcutree_dying_cpu(unsigned int cpu) 3861 { 3862 struct rcu_state *rsp; 3863 3864 for_each_rcu_flavor(rsp) 3865 rcu_cleanup_dying_cpu(rsp); 3866 return 0; 3867 } 3868 3869 /* 3870 * The outgoing CPU is gone and we are running elsewhere. 3871 */ 3872 int rcutree_dead_cpu(unsigned int cpu) 3873 { 3874 struct rcu_state *rsp; 3875 3876 for_each_rcu_flavor(rsp) { 3877 rcu_cleanup_dead_cpu(cpu, rsp); 3878 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3879 } 3880 return 0; 3881 } 3882 3883 /* 3884 * Mark the specified CPU as being online so that subsequent grace periods 3885 * (both expedited and normal) will wait on it. Note that this means that 3886 * incoming CPUs are not allowed to use RCU read-side critical sections 3887 * until this function is called. Failing to observe this restriction 3888 * will result in lockdep splats. 3889 * 3890 * Note that this function is special in that it is invoked directly 3891 * from the incoming CPU rather than from the cpuhp_step mechanism. 3892 * This is because this function must be invoked at a precise location. 3893 */ 3894 void rcu_cpu_starting(unsigned int cpu) 3895 { 3896 unsigned long flags; 3897 unsigned long mask; 3898 int nbits; 3899 unsigned long oldmask; 3900 struct rcu_data *rdp; 3901 struct rcu_node *rnp; 3902 struct rcu_state *rsp; 3903 3904 for_each_rcu_flavor(rsp) { 3905 rdp = per_cpu_ptr(rsp->rda, cpu); 3906 rnp = rdp->mynode; 3907 mask = rdp->grpmask; 3908 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3909 rnp->qsmaskinitnext |= mask; 3910 oldmask = rnp->expmaskinitnext; 3911 rnp->expmaskinitnext |= mask; 3912 oldmask ^= rnp->expmaskinitnext; 3913 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3914 /* Allow lockless access for expedited grace periods. */ 3915 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3916 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3917 } 3918 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3919 } 3920 3921 #ifdef CONFIG_HOTPLUG_CPU 3922 /* 3923 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3924 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3925 * bit masks. 3926 */ 3927 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3928 { 3929 unsigned long flags; 3930 unsigned long mask; 3931 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3932 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3933 3934 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3935 mask = rdp->grpmask; 3936 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3937 rnp->qsmaskinitnext &= ~mask; 3938 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3939 } 3940 3941 /* 3942 * The outgoing function has no further need of RCU, so remove it from 3943 * the list of CPUs that RCU must track. 3944 * 3945 * Note that this function is special in that it is invoked directly 3946 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3947 * This is because this function must be invoked at a precise location. 3948 */ 3949 void rcu_report_dead(unsigned int cpu) 3950 { 3951 struct rcu_state *rsp; 3952 3953 /* QS for any half-done expedited RCU-sched GP. */ 3954 preempt_disable(); 3955 rcu_report_exp_rdp(&rcu_sched_state, 3956 this_cpu_ptr(rcu_sched_state.rda), true); 3957 preempt_enable(); 3958 for_each_rcu_flavor(rsp) 3959 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3960 } 3961 3962 /* Migrate the dead CPU's callbacks to the current CPU. */ 3963 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3964 { 3965 unsigned long flags; 3966 struct rcu_data *my_rdp; 3967 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3968 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3969 3970 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3971 return; /* No callbacks to migrate. */ 3972 3973 local_irq_save(flags); 3974 my_rdp = this_cpu_ptr(rsp->rda); 3975 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3976 local_irq_restore(flags); 3977 return; 3978 } 3979 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3980 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */ 3981 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */ 3982 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3983 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3984 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3985 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3986 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3987 !rcu_segcblist_empty(&rdp->cblist), 3988 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3989 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3990 rcu_segcblist_first_cb(&rdp->cblist)); 3991 } 3992 3993 /* 3994 * The outgoing CPU has just passed through the dying-idle state, 3995 * and we are being invoked from the CPU that was IPIed to continue the 3996 * offline operation. We need to migrate the outgoing CPU's callbacks. 3997 */ 3998 void rcutree_migrate_callbacks(int cpu) 3999 { 4000 struct rcu_state *rsp; 4001 4002 for_each_rcu_flavor(rsp) 4003 rcu_migrate_callbacks(cpu, rsp); 4004 } 4005 #endif 4006 4007 /* 4008 * On non-huge systems, use expedited RCU grace periods to make suspend 4009 * and hibernation run faster. 4010 */ 4011 static int rcu_pm_notify(struct notifier_block *self, 4012 unsigned long action, void *hcpu) 4013 { 4014 switch (action) { 4015 case PM_HIBERNATION_PREPARE: 4016 case PM_SUSPEND_PREPARE: 4017 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4018 rcu_expedite_gp(); 4019 break; 4020 case PM_POST_HIBERNATION: 4021 case PM_POST_SUSPEND: 4022 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 4023 rcu_unexpedite_gp(); 4024 break; 4025 default: 4026 break; 4027 } 4028 return NOTIFY_OK; 4029 } 4030 4031 /* 4032 * Spawn the kthreads that handle each RCU flavor's grace periods. 4033 */ 4034 static int __init rcu_spawn_gp_kthread(void) 4035 { 4036 unsigned long flags; 4037 int kthread_prio_in = kthread_prio; 4038 struct rcu_node *rnp; 4039 struct rcu_state *rsp; 4040 struct sched_param sp; 4041 struct task_struct *t; 4042 4043 /* Force priority into range. */ 4044 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4045 kthread_prio = 1; 4046 else if (kthread_prio < 0) 4047 kthread_prio = 0; 4048 else if (kthread_prio > 99) 4049 kthread_prio = 99; 4050 if (kthread_prio != kthread_prio_in) 4051 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4052 kthread_prio, kthread_prio_in); 4053 4054 rcu_scheduler_fully_active = 1; 4055 for_each_rcu_flavor(rsp) { 4056 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 4057 BUG_ON(IS_ERR(t)); 4058 rnp = rcu_get_root(rsp); 4059 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4060 rsp->gp_kthread = t; 4061 if (kthread_prio) { 4062 sp.sched_priority = kthread_prio; 4063 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4064 } 4065 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4066 wake_up_process(t); 4067 } 4068 rcu_spawn_nocb_kthreads(); 4069 rcu_spawn_boost_kthreads(); 4070 return 0; 4071 } 4072 early_initcall(rcu_spawn_gp_kthread); 4073 4074 /* 4075 * This function is invoked towards the end of the scheduler's 4076 * initialization process. Before this is called, the idle task might 4077 * contain synchronous grace-period primitives (during which time, this idle 4078 * task is booting the system, and such primitives are no-ops). After this 4079 * function is called, any synchronous grace-period primitives are run as 4080 * expedited, with the requesting task driving the grace period forward. 4081 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4082 * runtime RCU functionality. 4083 */ 4084 void rcu_scheduler_starting(void) 4085 { 4086 WARN_ON(num_online_cpus() != 1); 4087 WARN_ON(nr_context_switches() > 0); 4088 rcu_test_sync_prims(); 4089 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4090 rcu_test_sync_prims(); 4091 } 4092 4093 /* 4094 * Helper function for rcu_init() that initializes one rcu_state structure. 4095 */ 4096 static void __init rcu_init_one(struct rcu_state *rsp) 4097 { 4098 static const char * const buf[] = RCU_NODE_NAME_INIT; 4099 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4100 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4101 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4102 4103 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4104 int cpustride = 1; 4105 int i; 4106 int j; 4107 struct rcu_node *rnp; 4108 4109 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4110 4111 /* Silence gcc 4.8 false positive about array index out of range. */ 4112 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4113 panic("rcu_init_one: rcu_num_lvls out of range"); 4114 4115 /* Initialize the level-tracking arrays. */ 4116 4117 for (i = 1; i < rcu_num_lvls; i++) 4118 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 4119 rcu_init_levelspread(levelspread, num_rcu_lvl); 4120 4121 /* Initialize the elements themselves, starting from the leaves. */ 4122 4123 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4124 cpustride *= levelspread[i]; 4125 rnp = rsp->level[i]; 4126 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4127 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4128 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4129 &rcu_node_class[i], buf[i]); 4130 raw_spin_lock_init(&rnp->fqslock); 4131 lockdep_set_class_and_name(&rnp->fqslock, 4132 &rcu_fqs_class[i], fqs[i]); 4133 rnp->gpnum = rsp->gpnum; 4134 rnp->completed = rsp->completed; 4135 rnp->qsmask = 0; 4136 rnp->qsmaskinit = 0; 4137 rnp->grplo = j * cpustride; 4138 rnp->grphi = (j + 1) * cpustride - 1; 4139 if (rnp->grphi >= nr_cpu_ids) 4140 rnp->grphi = nr_cpu_ids - 1; 4141 if (i == 0) { 4142 rnp->grpnum = 0; 4143 rnp->grpmask = 0; 4144 rnp->parent = NULL; 4145 } else { 4146 rnp->grpnum = j % levelspread[i - 1]; 4147 rnp->grpmask = 1UL << rnp->grpnum; 4148 rnp->parent = rsp->level[i - 1] + 4149 j / levelspread[i - 1]; 4150 } 4151 rnp->level = i; 4152 INIT_LIST_HEAD(&rnp->blkd_tasks); 4153 rcu_init_one_nocb(rnp); 4154 init_waitqueue_head(&rnp->exp_wq[0]); 4155 init_waitqueue_head(&rnp->exp_wq[1]); 4156 init_waitqueue_head(&rnp->exp_wq[2]); 4157 init_waitqueue_head(&rnp->exp_wq[3]); 4158 spin_lock_init(&rnp->exp_lock); 4159 } 4160 } 4161 4162 init_swait_queue_head(&rsp->gp_wq); 4163 init_swait_queue_head(&rsp->expedited_wq); 4164 rnp = rsp->level[rcu_num_lvls - 1]; 4165 for_each_possible_cpu(i) { 4166 while (i > rnp->grphi) 4167 rnp++; 4168 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4169 rcu_boot_init_percpu_data(i, rsp); 4170 } 4171 list_add(&rsp->flavors, &rcu_struct_flavors); 4172 } 4173 4174 /* 4175 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4176 * replace the definitions in tree.h because those are needed to size 4177 * the ->node array in the rcu_state structure. 4178 */ 4179 static void __init rcu_init_geometry(void) 4180 { 4181 ulong d; 4182 int i; 4183 int rcu_capacity[RCU_NUM_LVLS]; 4184 4185 /* 4186 * Initialize any unspecified boot parameters. 4187 * The default values of jiffies_till_first_fqs and 4188 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4189 * value, which is a function of HZ, then adding one for each 4190 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4191 */ 4192 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4193 if (jiffies_till_first_fqs == ULONG_MAX) 4194 jiffies_till_first_fqs = d; 4195 if (jiffies_till_next_fqs == ULONG_MAX) 4196 jiffies_till_next_fqs = d; 4197 4198 /* If the compile-time values are accurate, just leave. */ 4199 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4200 nr_cpu_ids == NR_CPUS) 4201 return; 4202 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4203 rcu_fanout_leaf, nr_cpu_ids); 4204 4205 /* 4206 * The boot-time rcu_fanout_leaf parameter must be at least two 4207 * and cannot exceed the number of bits in the rcu_node masks. 4208 * Complain and fall back to the compile-time values if this 4209 * limit is exceeded. 4210 */ 4211 if (rcu_fanout_leaf < 2 || 4212 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4213 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4214 WARN_ON(1); 4215 return; 4216 } 4217 4218 /* 4219 * Compute number of nodes that can be handled an rcu_node tree 4220 * with the given number of levels. 4221 */ 4222 rcu_capacity[0] = rcu_fanout_leaf; 4223 for (i = 1; i < RCU_NUM_LVLS; i++) 4224 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4225 4226 /* 4227 * The tree must be able to accommodate the configured number of CPUs. 4228 * If this limit is exceeded, fall back to the compile-time values. 4229 */ 4230 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4231 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4232 WARN_ON(1); 4233 return; 4234 } 4235 4236 /* Calculate the number of levels in the tree. */ 4237 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4238 } 4239 rcu_num_lvls = i + 1; 4240 4241 /* Calculate the number of rcu_nodes at each level of the tree. */ 4242 for (i = 0; i < rcu_num_lvls; i++) { 4243 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4244 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4245 } 4246 4247 /* Calculate the total number of rcu_node structures. */ 4248 rcu_num_nodes = 0; 4249 for (i = 0; i < rcu_num_lvls; i++) 4250 rcu_num_nodes += num_rcu_lvl[i]; 4251 } 4252 4253 /* 4254 * Dump out the structure of the rcu_node combining tree associated 4255 * with the rcu_state structure referenced by rsp. 4256 */ 4257 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4258 { 4259 int level = 0; 4260 struct rcu_node *rnp; 4261 4262 pr_info("rcu_node tree layout dump\n"); 4263 pr_info(" "); 4264 rcu_for_each_node_breadth_first(rsp, rnp) { 4265 if (rnp->level != level) { 4266 pr_cont("\n"); 4267 pr_info(" "); 4268 level = rnp->level; 4269 } 4270 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4271 } 4272 pr_cont("\n"); 4273 } 4274 4275 void __init rcu_init(void) 4276 { 4277 int cpu; 4278 4279 rcu_early_boot_tests(); 4280 4281 rcu_bootup_announce(); 4282 rcu_init_geometry(); 4283 rcu_init_one(&rcu_bh_state); 4284 rcu_init_one(&rcu_sched_state); 4285 if (dump_tree) 4286 rcu_dump_rcu_node_tree(&rcu_sched_state); 4287 __rcu_init_preempt(); 4288 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4289 4290 /* 4291 * We don't need protection against CPU-hotplug here because 4292 * this is called early in boot, before either interrupts 4293 * or the scheduler are operational. 4294 */ 4295 pm_notifier(rcu_pm_notify, 0); 4296 for_each_online_cpu(cpu) { 4297 rcutree_prepare_cpu(cpu); 4298 rcu_cpu_starting(cpu); 4299 rcutree_online_cpu(cpu); 4300 } 4301 } 4302 4303 #include "tree_exp.h" 4304 #include "tree_plugin.h" 4305