1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include "../time/tick-internal.h" 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 78 .dynticks_nesting = 1, 79 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 80 .dynticks = ATOMIC_INIT(1), 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 155 156 /* rcuc/rcub kthread realtime priority */ 157 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 158 module_param(kthread_prio, int, 0444); 159 160 /* Delay in jiffies for grace-period initialization delays, debug only. */ 161 162 static int gp_preinit_delay; 163 module_param(gp_preinit_delay, int, 0444); 164 static int gp_init_delay; 165 module_param(gp_init_delay, int, 0444); 166 static int gp_cleanup_delay; 167 module_param(gp_cleanup_delay, int, 0444); 168 169 // Add delay to rcu_read_unlock() for strict grace periods. 170 static int rcu_unlock_delay; 171 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 172 module_param(rcu_unlock_delay, int, 0444); 173 #endif 174 175 /* 176 * This rcu parameter is runtime-read-only. It reflects 177 * a minimum allowed number of objects which can be cached 178 * per-CPU. Object size is equal to one page. This value 179 * can be changed at boot time. 180 */ 181 static int rcu_min_cached_objs = 5; 182 module_param(rcu_min_cached_objs, int, 0444); 183 184 // A page shrinker can ask for pages to be freed to make them 185 // available for other parts of the system. This usually happens 186 // under low memory conditions, and in that case we should also 187 // defer page-cache filling for a short time period. 188 // 189 // The default value is 5 seconds, which is long enough to reduce 190 // interference with the shrinker while it asks other systems to 191 // drain their caches. 192 static int rcu_delay_page_cache_fill_msec = 5000; 193 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 194 195 /* Retrieve RCU kthreads priority for rcutorture */ 196 int rcu_get_gp_kthreads_prio(void) 197 { 198 return kthread_prio; 199 } 200 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 201 202 /* 203 * Number of grace periods between delays, normalized by the duration of 204 * the delay. The longer the delay, the more the grace periods between 205 * each delay. The reason for this normalization is that it means that, 206 * for non-zero delays, the overall slowdown of grace periods is constant 207 * regardless of the duration of the delay. This arrangement balances 208 * the need for long delays to increase some race probabilities with the 209 * need for fast grace periods to increase other race probabilities. 210 */ 211 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 212 213 /* 214 * Compute the mask of online CPUs for the specified rcu_node structure. 215 * This will not be stable unless the rcu_node structure's ->lock is 216 * held, but the bit corresponding to the current CPU will be stable 217 * in most contexts. 218 */ 219 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 220 { 221 return READ_ONCE(rnp->qsmaskinitnext); 222 } 223 224 /* 225 * Return true if an RCU grace period is in progress. The READ_ONCE()s 226 * permit this function to be invoked without holding the root rcu_node 227 * structure's ->lock, but of course results can be subject to change. 228 */ 229 static int rcu_gp_in_progress(void) 230 { 231 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 232 } 233 234 /* 235 * Return the number of callbacks queued on the specified CPU. 236 * Handles both the nocbs and normal cases. 237 */ 238 static long rcu_get_n_cbs_cpu(int cpu) 239 { 240 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 241 242 if (rcu_segcblist_is_enabled(&rdp->cblist)) 243 return rcu_segcblist_n_cbs(&rdp->cblist); 244 return 0; 245 } 246 247 void rcu_softirq_qs(void) 248 { 249 rcu_qs(); 250 rcu_preempt_deferred_qs(current); 251 rcu_tasks_qs(current, false); 252 } 253 254 /* 255 * Increment the current CPU's rcu_data structure's ->dynticks field 256 * with ordering. Return the new value. 257 */ 258 static noinline noinstr unsigned long rcu_dynticks_inc(int incby) 259 { 260 return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks)); 261 } 262 263 /* 264 * Record entry into an extended quiescent state. This is only to be 265 * called when not already in an extended quiescent state, that is, 266 * RCU is watching prior to the call to this function and is no longer 267 * watching upon return. 268 */ 269 static noinstr void rcu_dynticks_eqs_enter(void) 270 { 271 int seq; 272 273 /* 274 * CPUs seeing atomic_add_return() must see prior RCU read-side 275 * critical sections, and we also must force ordering with the 276 * next idle sojourn. 277 */ 278 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 279 seq = rcu_dynticks_inc(1); 280 // RCU is no longer watching. Better be in extended quiescent state! 281 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1)); 282 } 283 284 /* 285 * Record exit from an extended quiescent state. This is only to be 286 * called from an extended quiescent state, that is, RCU is not watching 287 * prior to the call to this function and is watching upon return. 288 */ 289 static noinstr void rcu_dynticks_eqs_exit(void) 290 { 291 int seq; 292 293 /* 294 * CPUs seeing atomic_add_return() must see prior idle sojourns, 295 * and we also must force ordering with the next RCU read-side 296 * critical section. 297 */ 298 seq = rcu_dynticks_inc(1); 299 // RCU is now watching. Better not be in an extended quiescent state! 300 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 301 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1)); 302 } 303 304 /* 305 * Reset the current CPU's ->dynticks counter to indicate that the 306 * newly onlined CPU is no longer in an extended quiescent state. 307 * This will either leave the counter unchanged, or increment it 308 * to the next non-quiescent value. 309 * 310 * The non-atomic test/increment sequence works because the upper bits 311 * of the ->dynticks counter are manipulated only by the corresponding CPU, 312 * or when the corresponding CPU is offline. 313 */ 314 static void rcu_dynticks_eqs_online(void) 315 { 316 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 317 318 if (atomic_read(&rdp->dynticks) & 0x1) 319 return; 320 rcu_dynticks_inc(1); 321 } 322 323 /* 324 * Is the current CPU in an extended quiescent state? 325 * 326 * No ordering, as we are sampling CPU-local information. 327 */ 328 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 329 { 330 return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1); 331 } 332 333 /* 334 * Snapshot the ->dynticks counter with full ordering so as to allow 335 * stable comparison of this counter with past and future snapshots. 336 */ 337 static int rcu_dynticks_snap(struct rcu_data *rdp) 338 { 339 smp_mb(); // Fundamental RCU ordering guarantee. 340 return atomic_read_acquire(&rdp->dynticks); 341 } 342 343 /* 344 * Return true if the snapshot returned from rcu_dynticks_snap() 345 * indicates that RCU is in an extended quiescent state. 346 */ 347 static bool rcu_dynticks_in_eqs(int snap) 348 { 349 return !(snap & 0x1); 350 } 351 352 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 353 bool rcu_is_idle_cpu(int cpu) 354 { 355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 356 357 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 358 } 359 360 /* 361 * Return true if the CPU corresponding to the specified rcu_data 362 * structure has spent some time in an extended quiescent state since 363 * rcu_dynticks_snap() returned the specified snapshot. 364 */ 365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 366 { 367 return snap != rcu_dynticks_snap(rdp); 368 } 369 370 /* 371 * Return true if the referenced integer is zero while the specified 372 * CPU remains within a single extended quiescent state. 373 */ 374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 375 { 376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 377 int snap; 378 379 // If not quiescent, force back to earlier extended quiescent state. 380 snap = atomic_read(&rdp->dynticks) & ~0x1; 381 382 smp_rmb(); // Order ->dynticks and *vp reads. 383 if (READ_ONCE(*vp)) 384 return false; // Non-zero, so report failure; 385 smp_rmb(); // Order *vp read and ->dynticks re-read. 386 387 // If still in the same extended quiescent state, we are good! 388 return snap == atomic_read(&rdp->dynticks); 389 } 390 391 /* 392 * Let the RCU core know that this CPU has gone through the scheduler, 393 * which is a quiescent state. This is called when the need for a 394 * quiescent state is urgent, so we burn an atomic operation and full 395 * memory barriers to let the RCU core know about it, regardless of what 396 * this CPU might (or might not) do in the near future. 397 * 398 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 399 * 400 * The caller must have disabled interrupts and must not be idle. 401 */ 402 notrace void rcu_momentary_dyntick_idle(void) 403 { 404 int seq; 405 406 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 407 seq = rcu_dynticks_inc(2); 408 /* It is illegal to call this from idle state. */ 409 WARN_ON_ONCE(!(seq & 0x1)); 410 rcu_preempt_deferred_qs(current); 411 } 412 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 413 414 /** 415 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 416 * 417 * If the current CPU is idle and running at a first-level (not nested) 418 * interrupt, or directly, from idle, return true. 419 * 420 * The caller must have at least disabled IRQs. 421 */ 422 static int rcu_is_cpu_rrupt_from_idle(void) 423 { 424 long nesting; 425 426 /* 427 * Usually called from the tick; but also used from smp_function_call() 428 * for expedited grace periods. This latter can result in running from 429 * the idle task, instead of an actual IPI. 430 */ 431 lockdep_assert_irqs_disabled(); 432 433 /* Check for counter underflows */ 434 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 435 "RCU dynticks_nesting counter underflow!"); 436 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 437 "RCU dynticks_nmi_nesting counter underflow/zero!"); 438 439 /* Are we at first interrupt nesting level? */ 440 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 441 if (nesting > 1) 442 return false; 443 444 /* 445 * If we're not in an interrupt, we must be in the idle task! 446 */ 447 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 448 449 /* Does CPU appear to be idle from an RCU standpoint? */ 450 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 451 } 452 453 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 454 // Maximum callbacks per rcu_do_batch ... 455 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 456 static long blimit = DEFAULT_RCU_BLIMIT; 457 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 458 static long qhimark = DEFAULT_RCU_QHIMARK; 459 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 460 static long qlowmark = DEFAULT_RCU_QLOMARK; 461 #define DEFAULT_RCU_QOVLD_MULT 2 462 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 463 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 464 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 465 466 module_param(blimit, long, 0444); 467 module_param(qhimark, long, 0444); 468 module_param(qlowmark, long, 0444); 469 module_param(qovld, long, 0444); 470 471 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 472 static ulong jiffies_till_next_fqs = ULONG_MAX; 473 static bool rcu_kick_kthreads; 474 static int rcu_divisor = 7; 475 module_param(rcu_divisor, int, 0644); 476 477 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 478 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 479 module_param(rcu_resched_ns, long, 0644); 480 481 /* 482 * How long the grace period must be before we start recruiting 483 * quiescent-state help from rcu_note_context_switch(). 484 */ 485 static ulong jiffies_till_sched_qs = ULONG_MAX; 486 module_param(jiffies_till_sched_qs, ulong, 0444); 487 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 488 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 489 490 /* 491 * Make sure that we give the grace-period kthread time to detect any 492 * idle CPUs before taking active measures to force quiescent states. 493 * However, don't go below 100 milliseconds, adjusted upwards for really 494 * large systems. 495 */ 496 static void adjust_jiffies_till_sched_qs(void) 497 { 498 unsigned long j; 499 500 /* If jiffies_till_sched_qs was specified, respect the request. */ 501 if (jiffies_till_sched_qs != ULONG_MAX) { 502 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 503 return; 504 } 505 /* Otherwise, set to third fqs scan, but bound below on large system. */ 506 j = READ_ONCE(jiffies_till_first_fqs) + 507 2 * READ_ONCE(jiffies_till_next_fqs); 508 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 509 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 510 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 511 WRITE_ONCE(jiffies_to_sched_qs, j); 512 } 513 514 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 515 { 516 ulong j; 517 int ret = kstrtoul(val, 0, &j); 518 519 if (!ret) { 520 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 521 adjust_jiffies_till_sched_qs(); 522 } 523 return ret; 524 } 525 526 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 527 { 528 ulong j; 529 int ret = kstrtoul(val, 0, &j); 530 531 if (!ret) { 532 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 533 adjust_jiffies_till_sched_qs(); 534 } 535 return ret; 536 } 537 538 static const struct kernel_param_ops first_fqs_jiffies_ops = { 539 .set = param_set_first_fqs_jiffies, 540 .get = param_get_ulong, 541 }; 542 543 static const struct kernel_param_ops next_fqs_jiffies_ops = { 544 .set = param_set_next_fqs_jiffies, 545 .get = param_get_ulong, 546 }; 547 548 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 549 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 550 module_param(rcu_kick_kthreads, bool, 0644); 551 552 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 553 static int rcu_pending(int user); 554 555 /* 556 * Return the number of RCU GPs completed thus far for debug & stats. 557 */ 558 unsigned long rcu_get_gp_seq(void) 559 { 560 return READ_ONCE(rcu_state.gp_seq); 561 } 562 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 563 564 /* 565 * Return the number of RCU expedited batches completed thus far for 566 * debug & stats. Odd numbers mean that a batch is in progress, even 567 * numbers mean idle. The value returned will thus be roughly double 568 * the cumulative batches since boot. 569 */ 570 unsigned long rcu_exp_batches_completed(void) 571 { 572 return rcu_state.expedited_sequence; 573 } 574 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 575 576 /* 577 * Return the root node of the rcu_state structure. 578 */ 579 static struct rcu_node *rcu_get_root(void) 580 { 581 return &rcu_state.node[0]; 582 } 583 584 /* 585 * Send along grace-period-related data for rcutorture diagnostics. 586 */ 587 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 588 unsigned long *gp_seq) 589 { 590 switch (test_type) { 591 case RCU_FLAVOR: 592 *flags = READ_ONCE(rcu_state.gp_flags); 593 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 594 break; 595 default: 596 break; 597 } 598 } 599 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 600 601 /* 602 * Enter an RCU extended quiescent state, which can be either the 603 * idle loop or adaptive-tickless usermode execution. 604 * 605 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 606 * the possibility of usermode upcalls having messed up our count 607 * of interrupt nesting level during the prior busy period. 608 */ 609 static noinstr void rcu_eqs_enter(bool user) 610 { 611 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 612 613 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 614 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 615 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 616 rdp->dynticks_nesting == 0); 617 if (rdp->dynticks_nesting != 1) { 618 // RCU will still be watching, so just do accounting and leave. 619 rdp->dynticks_nesting--; 620 return; 621 } 622 623 lockdep_assert_irqs_disabled(); 624 instrumentation_begin(); 625 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 627 rcu_prepare_for_idle(); 628 rcu_preempt_deferred_qs(current); 629 630 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 631 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 632 633 instrumentation_end(); 634 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 635 // RCU is watching here ... 636 rcu_dynticks_eqs_enter(); 637 // ... but is no longer watching here. 638 rcu_dynticks_task_enter(); 639 } 640 641 /** 642 * rcu_idle_enter - inform RCU that current CPU is entering idle 643 * 644 * Enter idle mode, in other words, -leave- the mode in which RCU 645 * read-side critical sections can occur. (Though RCU read-side 646 * critical sections can occur in irq handlers in idle, a possibility 647 * handled by irq_enter() and irq_exit().) 648 * 649 * If you add or remove a call to rcu_idle_enter(), be sure to test with 650 * CONFIG_RCU_EQS_DEBUG=y. 651 */ 652 void rcu_idle_enter(void) 653 { 654 lockdep_assert_irqs_disabled(); 655 rcu_eqs_enter(false); 656 } 657 EXPORT_SYMBOL_GPL(rcu_idle_enter); 658 659 #ifdef CONFIG_NO_HZ_FULL 660 661 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 662 /* 663 * An empty function that will trigger a reschedule on 664 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 665 */ 666 static void late_wakeup_func(struct irq_work *work) 667 { 668 } 669 670 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 671 IRQ_WORK_INIT(late_wakeup_func); 672 673 /* 674 * If either: 675 * 676 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 677 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 678 * 679 * In these cases the late RCU wake ups aren't supported in the resched loops and our 680 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 681 * get re-enabled again. 682 */ 683 noinstr static void rcu_irq_work_resched(void) 684 { 685 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 686 687 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 688 return; 689 690 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 691 return; 692 693 instrumentation_begin(); 694 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 695 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 696 } 697 instrumentation_end(); 698 } 699 700 #else 701 static inline void rcu_irq_work_resched(void) { } 702 #endif 703 704 /** 705 * rcu_user_enter - inform RCU that we are resuming userspace. 706 * 707 * Enter RCU idle mode right before resuming userspace. No use of RCU 708 * is permitted between this call and rcu_user_exit(). This way the 709 * CPU doesn't need to maintain the tick for RCU maintenance purposes 710 * when the CPU runs in userspace. 711 * 712 * If you add or remove a call to rcu_user_enter(), be sure to test with 713 * CONFIG_RCU_EQS_DEBUG=y. 714 */ 715 noinstr void rcu_user_enter(void) 716 { 717 lockdep_assert_irqs_disabled(); 718 719 /* 720 * Other than generic entry implementation, we may be past the last 721 * rescheduling opportunity in the entry code. Trigger a self IPI 722 * that will fire and reschedule once we resume in user/guest mode. 723 */ 724 rcu_irq_work_resched(); 725 rcu_eqs_enter(true); 726 } 727 728 #endif /* CONFIG_NO_HZ_FULL */ 729 730 /** 731 * rcu_nmi_exit - inform RCU of exit from NMI context 732 * 733 * If we are returning from the outermost NMI handler that interrupted an 734 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 735 * to let the RCU grace-period handling know that the CPU is back to 736 * being RCU-idle. 737 * 738 * If you add or remove a call to rcu_nmi_exit(), be sure to test 739 * with CONFIG_RCU_EQS_DEBUG=y. 740 */ 741 noinstr void rcu_nmi_exit(void) 742 { 743 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 744 745 instrumentation_begin(); 746 /* 747 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 748 * (We are exiting an NMI handler, so RCU better be paying attention 749 * to us!) 750 */ 751 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 752 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 753 754 /* 755 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 756 * leave it in non-RCU-idle state. 757 */ 758 if (rdp->dynticks_nmi_nesting != 1) { 759 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 760 atomic_read(&rdp->dynticks)); 761 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 762 rdp->dynticks_nmi_nesting - 2); 763 instrumentation_end(); 764 return; 765 } 766 767 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 768 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 769 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 770 771 if (!in_nmi()) 772 rcu_prepare_for_idle(); 773 774 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 775 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 776 instrumentation_end(); 777 778 // RCU is watching here ... 779 rcu_dynticks_eqs_enter(); 780 // ... but is no longer watching here. 781 782 if (!in_nmi()) 783 rcu_dynticks_task_enter(); 784 } 785 786 /** 787 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 788 * 789 * Exit from an interrupt handler, which might possibly result in entering 790 * idle mode, in other words, leaving the mode in which read-side critical 791 * sections can occur. The caller must have disabled interrupts. 792 * 793 * This code assumes that the idle loop never does anything that might 794 * result in unbalanced calls to irq_enter() and irq_exit(). If your 795 * architecture's idle loop violates this assumption, RCU will give you what 796 * you deserve, good and hard. But very infrequently and irreproducibly. 797 * 798 * Use things like work queues to work around this limitation. 799 * 800 * You have been warned. 801 * 802 * If you add or remove a call to rcu_irq_exit(), be sure to test with 803 * CONFIG_RCU_EQS_DEBUG=y. 804 */ 805 void noinstr rcu_irq_exit(void) 806 { 807 lockdep_assert_irqs_disabled(); 808 rcu_nmi_exit(); 809 } 810 811 #ifdef CONFIG_PROVE_RCU 812 /** 813 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 814 */ 815 void rcu_irq_exit_check_preempt(void) 816 { 817 lockdep_assert_irqs_disabled(); 818 819 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 820 "RCU dynticks_nesting counter underflow/zero!"); 821 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 822 DYNTICK_IRQ_NONIDLE, 823 "Bad RCU dynticks_nmi_nesting counter\n"); 824 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 825 "RCU in extended quiescent state!"); 826 } 827 #endif /* #ifdef CONFIG_PROVE_RCU */ 828 829 /* 830 * Wrapper for rcu_irq_exit() where interrupts are enabled. 831 * 832 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 833 * with CONFIG_RCU_EQS_DEBUG=y. 834 */ 835 void rcu_irq_exit_irqson(void) 836 { 837 unsigned long flags; 838 839 local_irq_save(flags); 840 rcu_irq_exit(); 841 local_irq_restore(flags); 842 } 843 844 /* 845 * Exit an RCU extended quiescent state, which can be either the 846 * idle loop or adaptive-tickless usermode execution. 847 * 848 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 849 * allow for the possibility of usermode upcalls messing up our count of 850 * interrupt nesting level during the busy period that is just now starting. 851 */ 852 static void noinstr rcu_eqs_exit(bool user) 853 { 854 struct rcu_data *rdp; 855 long oldval; 856 857 lockdep_assert_irqs_disabled(); 858 rdp = this_cpu_ptr(&rcu_data); 859 oldval = rdp->dynticks_nesting; 860 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 861 if (oldval) { 862 // RCU was already watching, so just do accounting and leave. 863 rdp->dynticks_nesting++; 864 return; 865 } 866 rcu_dynticks_task_exit(); 867 // RCU is not watching here ... 868 rcu_dynticks_eqs_exit(); 869 // ... but is watching here. 870 instrumentation_begin(); 871 872 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 873 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 874 875 rcu_cleanup_after_idle(); 876 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 877 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 878 WRITE_ONCE(rdp->dynticks_nesting, 1); 879 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 880 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 881 instrumentation_end(); 882 } 883 884 /** 885 * rcu_idle_exit - inform RCU that current CPU is leaving idle 886 * 887 * Exit idle mode, in other words, -enter- the mode in which RCU 888 * read-side critical sections can occur. 889 * 890 * If you add or remove a call to rcu_idle_exit(), be sure to test with 891 * CONFIG_RCU_EQS_DEBUG=y. 892 */ 893 void rcu_idle_exit(void) 894 { 895 unsigned long flags; 896 897 local_irq_save(flags); 898 rcu_eqs_exit(false); 899 local_irq_restore(flags); 900 } 901 EXPORT_SYMBOL_GPL(rcu_idle_exit); 902 903 #ifdef CONFIG_NO_HZ_FULL 904 /** 905 * rcu_user_exit - inform RCU that we are exiting userspace. 906 * 907 * Exit RCU idle mode while entering the kernel because it can 908 * run a RCU read side critical section anytime. 909 * 910 * If you add or remove a call to rcu_user_exit(), be sure to test with 911 * CONFIG_RCU_EQS_DEBUG=y. 912 */ 913 void noinstr rcu_user_exit(void) 914 { 915 rcu_eqs_exit(true); 916 } 917 918 /** 919 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 920 * 921 * The scheduler tick is not normally enabled when CPUs enter the kernel 922 * from nohz_full userspace execution. After all, nohz_full userspace 923 * execution is an RCU quiescent state and the time executing in the kernel 924 * is quite short. Except of course when it isn't. And it is not hard to 925 * cause a large system to spend tens of seconds or even minutes looping 926 * in the kernel, which can cause a number of problems, include RCU CPU 927 * stall warnings. 928 * 929 * Therefore, if a nohz_full CPU fails to report a quiescent state 930 * in a timely manner, the RCU grace-period kthread sets that CPU's 931 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 932 * exception will invoke this function, which will turn on the scheduler 933 * tick, which will enable RCU to detect that CPU's quiescent states, 934 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 935 * The tick will be disabled once a quiescent state is reported for 936 * this CPU. 937 * 938 * Of course, in carefully tuned systems, there might never be an 939 * interrupt or exception. In that case, the RCU grace-period kthread 940 * will eventually cause one to happen. However, in less carefully 941 * controlled environments, this function allows RCU to get what it 942 * needs without creating otherwise useless interruptions. 943 */ 944 void __rcu_irq_enter_check_tick(void) 945 { 946 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 947 948 // If we're here from NMI there's nothing to do. 949 if (in_nmi()) 950 return; 951 952 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 953 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 954 955 if (!tick_nohz_full_cpu(rdp->cpu) || 956 !READ_ONCE(rdp->rcu_urgent_qs) || 957 READ_ONCE(rdp->rcu_forced_tick)) { 958 // RCU doesn't need nohz_full help from this CPU, or it is 959 // already getting that help. 960 return; 961 } 962 963 // We get here only when not in an extended quiescent state and 964 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 965 // already watching and (2) The fact that we are in an interrupt 966 // handler and that the rcu_node lock is an irq-disabled lock 967 // prevents self-deadlock. So we can safely recheck under the lock. 968 // Note that the nohz_full state currently cannot change. 969 raw_spin_lock_rcu_node(rdp->mynode); 970 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 971 // A nohz_full CPU is in the kernel and RCU needs a 972 // quiescent state. Turn on the tick! 973 WRITE_ONCE(rdp->rcu_forced_tick, true); 974 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 975 } 976 raw_spin_unlock_rcu_node(rdp->mynode); 977 } 978 #endif /* CONFIG_NO_HZ_FULL */ 979 980 /** 981 * rcu_nmi_enter - inform RCU of entry to NMI context 982 * 983 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 984 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 985 * that the CPU is active. This implementation permits nested NMIs, as 986 * long as the nesting level does not overflow an int. (You will probably 987 * run out of stack space first.) 988 * 989 * If you add or remove a call to rcu_nmi_enter(), be sure to test 990 * with CONFIG_RCU_EQS_DEBUG=y. 991 */ 992 noinstr void rcu_nmi_enter(void) 993 { 994 long incby = 2; 995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 996 997 /* Complain about underflow. */ 998 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 999 1000 /* 1001 * If idle from RCU viewpoint, atomically increment ->dynticks 1002 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1003 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1004 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1005 * to be in the outermost NMI handler that interrupted an RCU-idle 1006 * period (observation due to Andy Lutomirski). 1007 */ 1008 if (rcu_dynticks_curr_cpu_in_eqs()) { 1009 1010 if (!in_nmi()) 1011 rcu_dynticks_task_exit(); 1012 1013 // RCU is not watching here ... 1014 rcu_dynticks_eqs_exit(); 1015 // ... but is watching here. 1016 1017 if (!in_nmi()) { 1018 instrumentation_begin(); 1019 rcu_cleanup_after_idle(); 1020 instrumentation_end(); 1021 } 1022 1023 instrumentation_begin(); 1024 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1025 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1026 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1027 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1028 1029 incby = 1; 1030 } else if (!in_nmi()) { 1031 instrumentation_begin(); 1032 rcu_irq_enter_check_tick(); 1033 } else { 1034 instrumentation_begin(); 1035 } 1036 1037 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1038 rdp->dynticks_nmi_nesting, 1039 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1040 instrumentation_end(); 1041 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1042 rdp->dynticks_nmi_nesting + incby); 1043 barrier(); 1044 } 1045 1046 /** 1047 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1048 * 1049 * Enter an interrupt handler, which might possibly result in exiting 1050 * idle mode, in other words, entering the mode in which read-side critical 1051 * sections can occur. The caller must have disabled interrupts. 1052 * 1053 * Note that the Linux kernel is fully capable of entering an interrupt 1054 * handler that it never exits, for example when doing upcalls to user mode! 1055 * This code assumes that the idle loop never does upcalls to user mode. 1056 * If your architecture's idle loop does do upcalls to user mode (or does 1057 * anything else that results in unbalanced calls to the irq_enter() and 1058 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1059 * But very infrequently and irreproducibly. 1060 * 1061 * Use things like work queues to work around this limitation. 1062 * 1063 * You have been warned. 1064 * 1065 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1066 * CONFIG_RCU_EQS_DEBUG=y. 1067 */ 1068 noinstr void rcu_irq_enter(void) 1069 { 1070 lockdep_assert_irqs_disabled(); 1071 rcu_nmi_enter(); 1072 } 1073 1074 /* 1075 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1076 * 1077 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1078 * with CONFIG_RCU_EQS_DEBUG=y. 1079 */ 1080 void rcu_irq_enter_irqson(void) 1081 { 1082 unsigned long flags; 1083 1084 local_irq_save(flags); 1085 rcu_irq_enter(); 1086 local_irq_restore(flags); 1087 } 1088 1089 /* 1090 * If any sort of urgency was applied to the current CPU (for example, 1091 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1092 * to get to a quiescent state, disable it. 1093 */ 1094 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1095 { 1096 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1097 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1098 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1099 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1100 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1101 WRITE_ONCE(rdp->rcu_forced_tick, false); 1102 } 1103 } 1104 1105 /** 1106 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1107 * 1108 * Return true if RCU is watching the running CPU, which means that this 1109 * CPU can safely enter RCU read-side critical sections. In other words, 1110 * if the current CPU is not in its idle loop or is in an interrupt or 1111 * NMI handler, return true. 1112 * 1113 * Make notrace because it can be called by the internal functions of 1114 * ftrace, and making this notrace removes unnecessary recursion calls. 1115 */ 1116 notrace bool rcu_is_watching(void) 1117 { 1118 bool ret; 1119 1120 preempt_disable_notrace(); 1121 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1122 preempt_enable_notrace(); 1123 return ret; 1124 } 1125 EXPORT_SYMBOL_GPL(rcu_is_watching); 1126 1127 /* 1128 * If a holdout task is actually running, request an urgent quiescent 1129 * state from its CPU. This is unsynchronized, so migrations can cause 1130 * the request to go to the wrong CPU. Which is OK, all that will happen 1131 * is that the CPU's next context switch will be a bit slower and next 1132 * time around this task will generate another request. 1133 */ 1134 void rcu_request_urgent_qs_task(struct task_struct *t) 1135 { 1136 int cpu; 1137 1138 barrier(); 1139 cpu = task_cpu(t); 1140 if (!task_curr(t)) 1141 return; /* This task is not running on that CPU. */ 1142 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1143 } 1144 1145 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1146 1147 /* 1148 * Is the current CPU online as far as RCU is concerned? 1149 * 1150 * Disable preemption to avoid false positives that could otherwise 1151 * happen due to the current CPU number being sampled, this task being 1152 * preempted, its old CPU being taken offline, resuming on some other CPU, 1153 * then determining that its old CPU is now offline. 1154 * 1155 * Disable checking if in an NMI handler because we cannot safely 1156 * report errors from NMI handlers anyway. In addition, it is OK to use 1157 * RCU on an offline processor during initial boot, hence the check for 1158 * rcu_scheduler_fully_active. 1159 */ 1160 bool rcu_lockdep_current_cpu_online(void) 1161 { 1162 struct rcu_data *rdp; 1163 struct rcu_node *rnp; 1164 bool ret = false; 1165 1166 if (in_nmi() || !rcu_scheduler_fully_active) 1167 return true; 1168 preempt_disable_notrace(); 1169 rdp = this_cpu_ptr(&rcu_data); 1170 rnp = rdp->mynode; 1171 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1172 ret = true; 1173 preempt_enable_notrace(); 1174 return ret; 1175 } 1176 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1177 1178 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1179 1180 /* 1181 * When trying to report a quiescent state on behalf of some other CPU, 1182 * it is our responsibility to check for and handle potential overflow 1183 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1184 * After all, the CPU might be in deep idle state, and thus executing no 1185 * code whatsoever. 1186 */ 1187 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1188 { 1189 raw_lockdep_assert_held_rcu_node(rnp); 1190 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1191 rnp->gp_seq)) 1192 WRITE_ONCE(rdp->gpwrap, true); 1193 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1194 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1195 } 1196 1197 /* 1198 * Snapshot the specified CPU's dynticks counter so that we can later 1199 * credit them with an implicit quiescent state. Return 1 if this CPU 1200 * is in dynticks idle mode, which is an extended quiescent state. 1201 */ 1202 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1203 { 1204 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1205 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1206 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1207 rcu_gpnum_ovf(rdp->mynode, rdp); 1208 return 1; 1209 } 1210 return 0; 1211 } 1212 1213 /* 1214 * Return true if the specified CPU has passed through a quiescent 1215 * state by virtue of being in or having passed through an dynticks 1216 * idle state since the last call to dyntick_save_progress_counter() 1217 * for this same CPU, or by virtue of having been offline. 1218 */ 1219 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1220 { 1221 unsigned long jtsq; 1222 struct rcu_node *rnp = rdp->mynode; 1223 1224 /* 1225 * If the CPU passed through or entered a dynticks idle phase with 1226 * no active irq/NMI handlers, then we can safely pretend that the CPU 1227 * already acknowledged the request to pass through a quiescent 1228 * state. Either way, that CPU cannot possibly be in an RCU 1229 * read-side critical section that started before the beginning 1230 * of the current RCU grace period. 1231 */ 1232 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1233 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1234 rcu_gpnum_ovf(rnp, rdp); 1235 return 1; 1236 } 1237 1238 /* 1239 * Complain if a CPU that is considered to be offline from RCU's 1240 * perspective has not yet reported a quiescent state. After all, 1241 * the offline CPU should have reported a quiescent state during 1242 * the CPU-offline process, or, failing that, by rcu_gp_init() 1243 * if it ran concurrently with either the CPU going offline or the 1244 * last task on a leaf rcu_node structure exiting its RCU read-side 1245 * critical section while all CPUs corresponding to that structure 1246 * are offline. This added warning detects bugs in any of these 1247 * code paths. 1248 * 1249 * The rcu_node structure's ->lock is held here, which excludes 1250 * the relevant portions the CPU-hotplug code, the grace-period 1251 * initialization code, and the rcu_read_unlock() code paths. 1252 * 1253 * For more detail, please refer to the "Hotplug CPU" section 1254 * of RCU's Requirements documentation. 1255 */ 1256 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1257 bool onl; 1258 struct rcu_node *rnp1; 1259 1260 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1261 __func__, rnp->grplo, rnp->grphi, rnp->level, 1262 (long)rnp->gp_seq, (long)rnp->completedqs); 1263 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1264 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1265 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1266 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1267 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1268 __func__, rdp->cpu, ".o"[onl], 1269 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1270 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1271 return 1; /* Break things loose after complaining. */ 1272 } 1273 1274 /* 1275 * A CPU running for an extended time within the kernel can 1276 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1277 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1278 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1279 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1280 * variable are safe because the assignments are repeated if this 1281 * CPU failed to pass through a quiescent state. This code 1282 * also checks .jiffies_resched in case jiffies_to_sched_qs 1283 * is set way high. 1284 */ 1285 jtsq = READ_ONCE(jiffies_to_sched_qs); 1286 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 1287 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1288 time_after(jiffies, rcu_state.jiffies_resched) || 1289 rcu_state.cbovld)) { 1290 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 1291 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1292 smp_store_release(&rdp->rcu_urgent_qs, true); 1293 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1294 WRITE_ONCE(rdp->rcu_urgent_qs, true); 1295 } 1296 1297 /* 1298 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1299 * The above code handles this, but only for straight cond_resched(). 1300 * And some in-kernel loops check need_resched() before calling 1301 * cond_resched(), which defeats the above code for CPUs that are 1302 * running in-kernel with scheduling-clock interrupts disabled. 1303 * So hit them over the head with the resched_cpu() hammer! 1304 */ 1305 if (tick_nohz_full_cpu(rdp->cpu) && 1306 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1307 rcu_state.cbovld)) { 1308 WRITE_ONCE(rdp->rcu_urgent_qs, true); 1309 resched_cpu(rdp->cpu); 1310 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1311 } 1312 1313 /* 1314 * If more than halfway to RCU CPU stall-warning time, invoke 1315 * resched_cpu() more frequently to try to loosen things up a bit. 1316 * Also check to see if the CPU is getting hammered with interrupts, 1317 * but only once per grace period, just to keep the IPIs down to 1318 * a dull roar. 1319 */ 1320 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1321 if (time_after(jiffies, 1322 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1323 resched_cpu(rdp->cpu); 1324 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1325 } 1326 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1327 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1328 (rnp->ffmask & rdp->grpmask)) { 1329 rdp->rcu_iw_pending = true; 1330 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1331 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1332 } 1333 } 1334 1335 return 0; 1336 } 1337 1338 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1339 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1340 unsigned long gp_seq_req, const char *s) 1341 { 1342 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1343 gp_seq_req, rnp->level, 1344 rnp->grplo, rnp->grphi, s); 1345 } 1346 1347 /* 1348 * rcu_start_this_gp - Request the start of a particular grace period 1349 * @rnp_start: The leaf node of the CPU from which to start. 1350 * @rdp: The rcu_data corresponding to the CPU from which to start. 1351 * @gp_seq_req: The gp_seq of the grace period to start. 1352 * 1353 * Start the specified grace period, as needed to handle newly arrived 1354 * callbacks. The required future grace periods are recorded in each 1355 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1356 * is reason to awaken the grace-period kthread. 1357 * 1358 * The caller must hold the specified rcu_node structure's ->lock, which 1359 * is why the caller is responsible for waking the grace-period kthread. 1360 * 1361 * Returns true if the GP thread needs to be awakened else false. 1362 */ 1363 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1364 unsigned long gp_seq_req) 1365 { 1366 bool ret = false; 1367 struct rcu_node *rnp; 1368 1369 /* 1370 * Use funnel locking to either acquire the root rcu_node 1371 * structure's lock or bail out if the need for this grace period 1372 * has already been recorded -- or if that grace period has in 1373 * fact already started. If there is already a grace period in 1374 * progress in a non-leaf node, no recording is needed because the 1375 * end of the grace period will scan the leaf rcu_node structures. 1376 * Note that rnp_start->lock must not be released. 1377 */ 1378 raw_lockdep_assert_held_rcu_node(rnp_start); 1379 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1380 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1381 if (rnp != rnp_start) 1382 raw_spin_lock_rcu_node(rnp); 1383 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1384 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1385 (rnp != rnp_start && 1386 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1387 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1388 TPS("Prestarted")); 1389 goto unlock_out; 1390 } 1391 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1392 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1393 /* 1394 * We just marked the leaf or internal node, and a 1395 * grace period is in progress, which means that 1396 * rcu_gp_cleanup() will see the marking. Bail to 1397 * reduce contention. 1398 */ 1399 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1400 TPS("Startedleaf")); 1401 goto unlock_out; 1402 } 1403 if (rnp != rnp_start && rnp->parent != NULL) 1404 raw_spin_unlock_rcu_node(rnp); 1405 if (!rnp->parent) 1406 break; /* At root, and perhaps also leaf. */ 1407 } 1408 1409 /* If GP already in progress, just leave, otherwise start one. */ 1410 if (rcu_gp_in_progress()) { 1411 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1412 goto unlock_out; 1413 } 1414 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1415 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1416 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1417 if (!READ_ONCE(rcu_state.gp_kthread)) { 1418 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1419 goto unlock_out; 1420 } 1421 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1422 ret = true; /* Caller must wake GP kthread. */ 1423 unlock_out: 1424 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1425 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1426 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1427 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1428 } 1429 if (rnp != rnp_start) 1430 raw_spin_unlock_rcu_node(rnp); 1431 return ret; 1432 } 1433 1434 /* 1435 * Clean up any old requests for the just-ended grace period. Also return 1436 * whether any additional grace periods have been requested. 1437 */ 1438 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1439 { 1440 bool needmore; 1441 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1442 1443 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1444 if (!needmore) 1445 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1446 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1447 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1448 return needmore; 1449 } 1450 1451 /* 1452 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1453 * interrupt or softirq handler, in which case we just might immediately 1454 * sleep upon return, resulting in a grace-period hang), and don't bother 1455 * awakening when there is nothing for the grace-period kthread to do 1456 * (as in several CPUs raced to awaken, we lost), and finally don't try 1457 * to awaken a kthread that has not yet been created. If all those checks 1458 * are passed, track some debug information and awaken. 1459 * 1460 * So why do the self-wakeup when in an interrupt or softirq handler 1461 * in the grace-period kthread's context? Because the kthread might have 1462 * been interrupted just as it was going to sleep, and just after the final 1463 * pre-sleep check of the awaken condition. In this case, a wakeup really 1464 * is required, and is therefore supplied. 1465 */ 1466 static void rcu_gp_kthread_wake(void) 1467 { 1468 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1469 1470 if ((current == t && !in_irq() && !in_serving_softirq()) || 1471 !READ_ONCE(rcu_state.gp_flags) || !t) 1472 return; 1473 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1474 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1475 swake_up_one(&rcu_state.gp_wq); 1476 } 1477 1478 /* 1479 * If there is room, assign a ->gp_seq number to any callbacks on this 1480 * CPU that have not already been assigned. Also accelerate any callbacks 1481 * that were previously assigned a ->gp_seq number that has since proven 1482 * to be too conservative, which can happen if callbacks get assigned a 1483 * ->gp_seq number while RCU is idle, but with reference to a non-root 1484 * rcu_node structure. This function is idempotent, so it does not hurt 1485 * to call it repeatedly. Returns an flag saying that we should awaken 1486 * the RCU grace-period kthread. 1487 * 1488 * The caller must hold rnp->lock with interrupts disabled. 1489 */ 1490 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1491 { 1492 unsigned long gp_seq_req; 1493 bool ret = false; 1494 1495 rcu_lockdep_assert_cblist_protected(rdp); 1496 raw_lockdep_assert_held_rcu_node(rnp); 1497 1498 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1499 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1500 return false; 1501 1502 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1503 1504 /* 1505 * Callbacks are often registered with incomplete grace-period 1506 * information. Something about the fact that getting exact 1507 * information requires acquiring a global lock... RCU therefore 1508 * makes a conservative estimate of the grace period number at which 1509 * a given callback will become ready to invoke. The following 1510 * code checks this estimate and improves it when possible, thus 1511 * accelerating callback invocation to an earlier grace-period 1512 * number. 1513 */ 1514 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1515 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1516 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1517 1518 /* Trace depending on how much we were able to accelerate. */ 1519 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1520 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1521 else 1522 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1523 1524 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1531 * rcu_node structure's ->lock be held. It consults the cached value 1532 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1533 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1534 * while holding the leaf rcu_node structure's ->lock. 1535 */ 1536 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1537 struct rcu_data *rdp) 1538 { 1539 unsigned long c; 1540 bool needwake; 1541 1542 rcu_lockdep_assert_cblist_protected(rdp); 1543 c = rcu_seq_snap(&rcu_state.gp_seq); 1544 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1545 /* Old request still live, so mark recent callbacks. */ 1546 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1547 return; 1548 } 1549 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1550 needwake = rcu_accelerate_cbs(rnp, rdp); 1551 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1552 if (needwake) 1553 rcu_gp_kthread_wake(); 1554 } 1555 1556 /* 1557 * Move any callbacks whose grace period has completed to the 1558 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1559 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1560 * sublist. This function is idempotent, so it does not hurt to 1561 * invoke it repeatedly. As long as it is not invoked -too- often... 1562 * Returns true if the RCU grace-period kthread needs to be awakened. 1563 * 1564 * The caller must hold rnp->lock with interrupts disabled. 1565 */ 1566 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1567 { 1568 rcu_lockdep_assert_cblist_protected(rdp); 1569 raw_lockdep_assert_held_rcu_node(rnp); 1570 1571 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1572 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1573 return false; 1574 1575 /* 1576 * Find all callbacks whose ->gp_seq numbers indicate that they 1577 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1578 */ 1579 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1580 1581 /* Classify any remaining callbacks. */ 1582 return rcu_accelerate_cbs(rnp, rdp); 1583 } 1584 1585 /* 1586 * Move and classify callbacks, but only if doing so won't require 1587 * that the RCU grace-period kthread be awakened. 1588 */ 1589 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1590 struct rcu_data *rdp) 1591 { 1592 rcu_lockdep_assert_cblist_protected(rdp); 1593 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1594 !raw_spin_trylock_rcu_node(rnp)) 1595 return; 1596 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1597 raw_spin_unlock_rcu_node(rnp); 1598 } 1599 1600 /* 1601 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1602 * quiescent state. This is intended to be invoked when the CPU notices 1603 * a new grace period. 1604 */ 1605 static void rcu_strict_gp_check_qs(void) 1606 { 1607 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1608 rcu_read_lock(); 1609 rcu_read_unlock(); 1610 } 1611 } 1612 1613 /* 1614 * Update CPU-local rcu_data state to record the beginnings and ends of 1615 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1616 * structure corresponding to the current CPU, and must have irqs disabled. 1617 * Returns true if the grace-period kthread needs to be awakened. 1618 */ 1619 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1620 { 1621 bool ret = false; 1622 bool need_qs; 1623 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1624 1625 raw_lockdep_assert_held_rcu_node(rnp); 1626 1627 if (rdp->gp_seq == rnp->gp_seq) 1628 return false; /* Nothing to do. */ 1629 1630 /* Handle the ends of any preceding grace periods first. */ 1631 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1632 unlikely(READ_ONCE(rdp->gpwrap))) { 1633 if (!offloaded) 1634 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1635 rdp->core_needs_qs = false; 1636 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1637 } else { 1638 if (!offloaded) 1639 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1640 if (rdp->core_needs_qs) 1641 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1642 } 1643 1644 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1645 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1646 unlikely(READ_ONCE(rdp->gpwrap))) { 1647 /* 1648 * If the current grace period is waiting for this CPU, 1649 * set up to detect a quiescent state, otherwise don't 1650 * go looking for one. 1651 */ 1652 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1653 need_qs = !!(rnp->qsmask & rdp->grpmask); 1654 rdp->cpu_no_qs.b.norm = need_qs; 1655 rdp->core_needs_qs = need_qs; 1656 zero_cpu_stall_ticks(rdp); 1657 } 1658 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1659 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1660 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1661 WRITE_ONCE(rdp->gpwrap, false); 1662 rcu_gpnum_ovf(rnp, rdp); 1663 return ret; 1664 } 1665 1666 static void note_gp_changes(struct rcu_data *rdp) 1667 { 1668 unsigned long flags; 1669 bool needwake; 1670 struct rcu_node *rnp; 1671 1672 local_irq_save(flags); 1673 rnp = rdp->mynode; 1674 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1675 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1676 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1677 local_irq_restore(flags); 1678 return; 1679 } 1680 needwake = __note_gp_changes(rnp, rdp); 1681 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1682 rcu_strict_gp_check_qs(); 1683 if (needwake) 1684 rcu_gp_kthread_wake(); 1685 } 1686 1687 static void rcu_gp_slow(int delay) 1688 { 1689 if (delay > 0 && 1690 !(rcu_seq_ctr(rcu_state.gp_seq) % 1691 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1692 schedule_timeout_idle(delay); 1693 } 1694 1695 static unsigned long sleep_duration; 1696 1697 /* Allow rcutorture to stall the grace-period kthread. */ 1698 void rcu_gp_set_torture_wait(int duration) 1699 { 1700 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1701 WRITE_ONCE(sleep_duration, duration); 1702 } 1703 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1704 1705 /* Actually implement the aforementioned wait. */ 1706 static void rcu_gp_torture_wait(void) 1707 { 1708 unsigned long duration; 1709 1710 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1711 return; 1712 duration = xchg(&sleep_duration, 0UL); 1713 if (duration > 0) { 1714 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1715 schedule_timeout_idle(duration); 1716 pr_alert("%s: Wait complete\n", __func__); 1717 } 1718 } 1719 1720 /* 1721 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1722 * processing. 1723 */ 1724 static void rcu_strict_gp_boundary(void *unused) 1725 { 1726 invoke_rcu_core(); 1727 } 1728 1729 /* 1730 * Initialize a new grace period. Return false if no grace period required. 1731 */ 1732 static noinline_for_stack bool rcu_gp_init(void) 1733 { 1734 unsigned long firstseq; 1735 unsigned long flags; 1736 unsigned long oldmask; 1737 unsigned long mask; 1738 struct rcu_data *rdp; 1739 struct rcu_node *rnp = rcu_get_root(); 1740 1741 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1742 raw_spin_lock_irq_rcu_node(rnp); 1743 if (!READ_ONCE(rcu_state.gp_flags)) { 1744 /* Spurious wakeup, tell caller to go back to sleep. */ 1745 raw_spin_unlock_irq_rcu_node(rnp); 1746 return false; 1747 } 1748 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1749 1750 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1751 /* 1752 * Grace period already in progress, don't start another. 1753 * Not supposed to be able to happen. 1754 */ 1755 raw_spin_unlock_irq_rcu_node(rnp); 1756 return false; 1757 } 1758 1759 /* Advance to a new grace period and initialize state. */ 1760 record_gp_stall_check_time(); 1761 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1762 rcu_seq_start(&rcu_state.gp_seq); 1763 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1764 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1765 raw_spin_unlock_irq_rcu_node(rnp); 1766 1767 /* 1768 * Apply per-leaf buffered online and offline operations to 1769 * the rcu_node tree. Note that this new grace period need not 1770 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1771 * offlining path, when combined with checks in this function, 1772 * will handle CPUs that are currently going offline or that will 1773 * go offline later. Please also refer to "Hotplug CPU" section 1774 * of RCU's Requirements documentation. 1775 */ 1776 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1777 rcu_for_each_leaf_node(rnp) { 1778 // Wait for CPU-hotplug operations that might have 1779 // started before this grace period did. 1780 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1781 firstseq = READ_ONCE(rnp->ofl_seq); 1782 if (firstseq & 0x1) 1783 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1784 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1785 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1786 raw_spin_lock(&rcu_state.ofl_lock); 1787 raw_spin_lock_irq_rcu_node(rnp); 1788 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1789 !rnp->wait_blkd_tasks) { 1790 /* Nothing to do on this leaf rcu_node structure. */ 1791 raw_spin_unlock_irq_rcu_node(rnp); 1792 raw_spin_unlock(&rcu_state.ofl_lock); 1793 continue; 1794 } 1795 1796 /* Record old state, apply changes to ->qsmaskinit field. */ 1797 oldmask = rnp->qsmaskinit; 1798 rnp->qsmaskinit = rnp->qsmaskinitnext; 1799 1800 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1801 if (!oldmask != !rnp->qsmaskinit) { 1802 if (!oldmask) { /* First online CPU for rcu_node. */ 1803 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1804 rcu_init_new_rnp(rnp); 1805 } else if (rcu_preempt_has_tasks(rnp)) { 1806 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1807 } else { /* Last offline CPU and can propagate. */ 1808 rcu_cleanup_dead_rnp(rnp); 1809 } 1810 } 1811 1812 /* 1813 * If all waited-on tasks from prior grace period are 1814 * done, and if all this rcu_node structure's CPUs are 1815 * still offline, propagate up the rcu_node tree and 1816 * clear ->wait_blkd_tasks. Otherwise, if one of this 1817 * rcu_node structure's CPUs has since come back online, 1818 * simply clear ->wait_blkd_tasks. 1819 */ 1820 if (rnp->wait_blkd_tasks && 1821 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1822 rnp->wait_blkd_tasks = false; 1823 if (!rnp->qsmaskinit) 1824 rcu_cleanup_dead_rnp(rnp); 1825 } 1826 1827 raw_spin_unlock_irq_rcu_node(rnp); 1828 raw_spin_unlock(&rcu_state.ofl_lock); 1829 } 1830 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1831 1832 /* 1833 * Set the quiescent-state-needed bits in all the rcu_node 1834 * structures for all currently online CPUs in breadth-first 1835 * order, starting from the root rcu_node structure, relying on the 1836 * layout of the tree within the rcu_state.node[] array. Note that 1837 * other CPUs will access only the leaves of the hierarchy, thus 1838 * seeing that no grace period is in progress, at least until the 1839 * corresponding leaf node has been initialized. 1840 * 1841 * The grace period cannot complete until the initialization 1842 * process finishes, because this kthread handles both. 1843 */ 1844 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1845 rcu_for_each_node_breadth_first(rnp) { 1846 rcu_gp_slow(gp_init_delay); 1847 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1848 rdp = this_cpu_ptr(&rcu_data); 1849 rcu_preempt_check_blocked_tasks(rnp); 1850 rnp->qsmask = rnp->qsmaskinit; 1851 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1852 if (rnp == rdp->mynode) 1853 (void)__note_gp_changes(rnp, rdp); 1854 rcu_preempt_boost_start_gp(rnp); 1855 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1856 rnp->level, rnp->grplo, 1857 rnp->grphi, rnp->qsmask); 1858 /* Quiescent states for tasks on any now-offline CPUs. */ 1859 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1860 rnp->rcu_gp_init_mask = mask; 1861 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1862 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1863 else 1864 raw_spin_unlock_irq_rcu_node(rnp); 1865 cond_resched_tasks_rcu_qs(); 1866 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1867 } 1868 1869 // If strict, make all CPUs aware of new grace period. 1870 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1871 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1872 1873 return true; 1874 } 1875 1876 /* 1877 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1878 * time. 1879 */ 1880 static bool rcu_gp_fqs_check_wake(int *gfp) 1881 { 1882 struct rcu_node *rnp = rcu_get_root(); 1883 1884 // If under overload conditions, force an immediate FQS scan. 1885 if (*gfp & RCU_GP_FLAG_OVLD) 1886 return true; 1887 1888 // Someone like call_rcu() requested a force-quiescent-state scan. 1889 *gfp = READ_ONCE(rcu_state.gp_flags); 1890 if (*gfp & RCU_GP_FLAG_FQS) 1891 return true; 1892 1893 // The current grace period has completed. 1894 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1895 return true; 1896 1897 return false; 1898 } 1899 1900 /* 1901 * Do one round of quiescent-state forcing. 1902 */ 1903 static void rcu_gp_fqs(bool first_time) 1904 { 1905 struct rcu_node *rnp = rcu_get_root(); 1906 1907 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1908 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1909 if (first_time) { 1910 /* Collect dyntick-idle snapshots. */ 1911 force_qs_rnp(dyntick_save_progress_counter); 1912 } else { 1913 /* Handle dyntick-idle and offline CPUs. */ 1914 force_qs_rnp(rcu_implicit_dynticks_qs); 1915 } 1916 /* Clear flag to prevent immediate re-entry. */ 1917 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1918 raw_spin_lock_irq_rcu_node(rnp); 1919 WRITE_ONCE(rcu_state.gp_flags, 1920 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1921 raw_spin_unlock_irq_rcu_node(rnp); 1922 } 1923 } 1924 1925 /* 1926 * Loop doing repeated quiescent-state forcing until the grace period ends. 1927 */ 1928 static noinline_for_stack void rcu_gp_fqs_loop(void) 1929 { 1930 bool first_gp_fqs; 1931 int gf = 0; 1932 unsigned long j; 1933 int ret; 1934 struct rcu_node *rnp = rcu_get_root(); 1935 1936 first_gp_fqs = true; 1937 j = READ_ONCE(jiffies_till_first_fqs); 1938 if (rcu_state.cbovld) 1939 gf = RCU_GP_FLAG_OVLD; 1940 ret = 0; 1941 for (;;) { 1942 if (!ret) { 1943 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1944 /* 1945 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1946 * update; required for stall checks. 1947 */ 1948 smp_wmb(); 1949 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1950 jiffies + (j ? 3 * j : 2)); 1951 } 1952 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1953 TPS("fqswait")); 1954 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1955 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1956 rcu_gp_fqs_check_wake(&gf), j); 1957 rcu_gp_torture_wait(); 1958 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1959 /* Locking provides needed memory barriers. */ 1960 /* If grace period done, leave loop. */ 1961 if (!READ_ONCE(rnp->qsmask) && 1962 !rcu_preempt_blocked_readers_cgp(rnp)) 1963 break; 1964 /* If time for quiescent-state forcing, do it. */ 1965 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1966 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1967 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1968 TPS("fqsstart")); 1969 rcu_gp_fqs(first_gp_fqs); 1970 gf = 0; 1971 if (first_gp_fqs) { 1972 first_gp_fqs = false; 1973 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1974 } 1975 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1976 TPS("fqsend")); 1977 cond_resched_tasks_rcu_qs(); 1978 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1979 ret = 0; /* Force full wait till next FQS. */ 1980 j = READ_ONCE(jiffies_till_next_fqs); 1981 } else { 1982 /* Deal with stray signal. */ 1983 cond_resched_tasks_rcu_qs(); 1984 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1985 WARN_ON(signal_pending(current)); 1986 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1987 TPS("fqswaitsig")); 1988 ret = 1; /* Keep old FQS timing. */ 1989 j = jiffies; 1990 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1991 j = 1; 1992 else 1993 j = rcu_state.jiffies_force_qs - j; 1994 gf = 0; 1995 } 1996 } 1997 } 1998 1999 /* 2000 * Clean up after the old grace period. 2001 */ 2002 static noinline void rcu_gp_cleanup(void) 2003 { 2004 int cpu; 2005 bool needgp = false; 2006 unsigned long gp_duration; 2007 unsigned long new_gp_seq; 2008 bool offloaded; 2009 struct rcu_data *rdp; 2010 struct rcu_node *rnp = rcu_get_root(); 2011 struct swait_queue_head *sq; 2012 2013 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2014 raw_spin_lock_irq_rcu_node(rnp); 2015 rcu_state.gp_end = jiffies; 2016 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2017 if (gp_duration > rcu_state.gp_max) 2018 rcu_state.gp_max = gp_duration; 2019 2020 /* 2021 * We know the grace period is complete, but to everyone else 2022 * it appears to still be ongoing. But it is also the case 2023 * that to everyone else it looks like there is nothing that 2024 * they can do to advance the grace period. It is therefore 2025 * safe for us to drop the lock in order to mark the grace 2026 * period as completed in all of the rcu_node structures. 2027 */ 2028 raw_spin_unlock_irq_rcu_node(rnp); 2029 2030 /* 2031 * Propagate new ->gp_seq value to rcu_node structures so that 2032 * other CPUs don't have to wait until the start of the next grace 2033 * period to process their callbacks. This also avoids some nasty 2034 * RCU grace-period initialization races by forcing the end of 2035 * the current grace period to be completely recorded in all of 2036 * the rcu_node structures before the beginning of the next grace 2037 * period is recorded in any of the rcu_node structures. 2038 */ 2039 new_gp_seq = rcu_state.gp_seq; 2040 rcu_seq_end(&new_gp_seq); 2041 rcu_for_each_node_breadth_first(rnp) { 2042 raw_spin_lock_irq_rcu_node(rnp); 2043 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2044 dump_blkd_tasks(rnp, 10); 2045 WARN_ON_ONCE(rnp->qsmask); 2046 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2047 rdp = this_cpu_ptr(&rcu_data); 2048 if (rnp == rdp->mynode) 2049 needgp = __note_gp_changes(rnp, rdp) || needgp; 2050 /* smp_mb() provided by prior unlock-lock pair. */ 2051 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2052 // Reset overload indication for CPUs no longer overloaded 2053 if (rcu_is_leaf_node(rnp)) 2054 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2055 rdp = per_cpu_ptr(&rcu_data, cpu); 2056 check_cb_ovld_locked(rdp, rnp); 2057 } 2058 sq = rcu_nocb_gp_get(rnp); 2059 raw_spin_unlock_irq_rcu_node(rnp); 2060 rcu_nocb_gp_cleanup(sq); 2061 cond_resched_tasks_rcu_qs(); 2062 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2063 rcu_gp_slow(gp_cleanup_delay); 2064 } 2065 rnp = rcu_get_root(); 2066 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2067 2068 /* Declare grace period done, trace first to use old GP number. */ 2069 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2070 rcu_seq_end(&rcu_state.gp_seq); 2071 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2072 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2073 /* Check for GP requests since above loop. */ 2074 rdp = this_cpu_ptr(&rcu_data); 2075 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2076 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2077 TPS("CleanupMore")); 2078 needgp = true; 2079 } 2080 /* Advance CBs to reduce false positives below. */ 2081 offloaded = rcu_rdp_is_offloaded(rdp); 2082 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2083 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2084 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2085 trace_rcu_grace_period(rcu_state.name, 2086 rcu_state.gp_seq, 2087 TPS("newreq")); 2088 } else { 2089 WRITE_ONCE(rcu_state.gp_flags, 2090 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2091 } 2092 raw_spin_unlock_irq_rcu_node(rnp); 2093 2094 // If strict, make all CPUs aware of the end of the old grace period. 2095 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2096 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2097 } 2098 2099 /* 2100 * Body of kthread that handles grace periods. 2101 */ 2102 static int __noreturn rcu_gp_kthread(void *unused) 2103 { 2104 rcu_bind_gp_kthread(); 2105 for (;;) { 2106 2107 /* Handle grace-period start. */ 2108 for (;;) { 2109 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2110 TPS("reqwait")); 2111 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2112 swait_event_idle_exclusive(rcu_state.gp_wq, 2113 READ_ONCE(rcu_state.gp_flags) & 2114 RCU_GP_FLAG_INIT); 2115 rcu_gp_torture_wait(); 2116 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2117 /* Locking provides needed memory barrier. */ 2118 if (rcu_gp_init()) 2119 break; 2120 cond_resched_tasks_rcu_qs(); 2121 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2122 WARN_ON(signal_pending(current)); 2123 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2124 TPS("reqwaitsig")); 2125 } 2126 2127 /* Handle quiescent-state forcing. */ 2128 rcu_gp_fqs_loop(); 2129 2130 /* Handle grace-period end. */ 2131 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2132 rcu_gp_cleanup(); 2133 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2134 } 2135 } 2136 2137 /* 2138 * Report a full set of quiescent states to the rcu_state data structure. 2139 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2140 * another grace period is required. Whether we wake the grace-period 2141 * kthread or it awakens itself for the next round of quiescent-state 2142 * forcing, that kthread will clean up after the just-completed grace 2143 * period. Note that the caller must hold rnp->lock, which is released 2144 * before return. 2145 */ 2146 static void rcu_report_qs_rsp(unsigned long flags) 2147 __releases(rcu_get_root()->lock) 2148 { 2149 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2150 WARN_ON_ONCE(!rcu_gp_in_progress()); 2151 WRITE_ONCE(rcu_state.gp_flags, 2152 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2153 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2154 rcu_gp_kthread_wake(); 2155 } 2156 2157 /* 2158 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2159 * Allows quiescent states for a group of CPUs to be reported at one go 2160 * to the specified rcu_node structure, though all the CPUs in the group 2161 * must be represented by the same rcu_node structure (which need not be a 2162 * leaf rcu_node structure, though it often will be). The gps parameter 2163 * is the grace-period snapshot, which means that the quiescent states 2164 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2165 * must be held upon entry, and it is released before return. 2166 * 2167 * As a special case, if mask is zero, the bit-already-cleared check is 2168 * disabled. This allows propagating quiescent state due to resumed tasks 2169 * during grace-period initialization. 2170 */ 2171 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2172 unsigned long gps, unsigned long flags) 2173 __releases(rnp->lock) 2174 { 2175 unsigned long oldmask = 0; 2176 struct rcu_node *rnp_c; 2177 2178 raw_lockdep_assert_held_rcu_node(rnp); 2179 2180 /* Walk up the rcu_node hierarchy. */ 2181 for (;;) { 2182 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2183 2184 /* 2185 * Our bit has already been cleared, or the 2186 * relevant grace period is already over, so done. 2187 */ 2188 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2189 return; 2190 } 2191 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2192 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2193 rcu_preempt_blocked_readers_cgp(rnp)); 2194 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2195 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2196 mask, rnp->qsmask, rnp->level, 2197 rnp->grplo, rnp->grphi, 2198 !!rnp->gp_tasks); 2199 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2200 2201 /* Other bits still set at this level, so done. */ 2202 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2203 return; 2204 } 2205 rnp->completedqs = rnp->gp_seq; 2206 mask = rnp->grpmask; 2207 if (rnp->parent == NULL) { 2208 2209 /* No more levels. Exit loop holding root lock. */ 2210 2211 break; 2212 } 2213 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2214 rnp_c = rnp; 2215 rnp = rnp->parent; 2216 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2217 oldmask = READ_ONCE(rnp_c->qsmask); 2218 } 2219 2220 /* 2221 * Get here if we are the last CPU to pass through a quiescent 2222 * state for this grace period. Invoke rcu_report_qs_rsp() 2223 * to clean up and start the next grace period if one is needed. 2224 */ 2225 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2226 } 2227 2228 /* 2229 * Record a quiescent state for all tasks that were previously queued 2230 * on the specified rcu_node structure and that were blocking the current 2231 * RCU grace period. The caller must hold the corresponding rnp->lock with 2232 * irqs disabled, and this lock is released upon return, but irqs remain 2233 * disabled. 2234 */ 2235 static void __maybe_unused 2236 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2237 __releases(rnp->lock) 2238 { 2239 unsigned long gps; 2240 unsigned long mask; 2241 struct rcu_node *rnp_p; 2242 2243 raw_lockdep_assert_held_rcu_node(rnp); 2244 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2245 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2246 rnp->qsmask != 0) { 2247 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2248 return; /* Still need more quiescent states! */ 2249 } 2250 2251 rnp->completedqs = rnp->gp_seq; 2252 rnp_p = rnp->parent; 2253 if (rnp_p == NULL) { 2254 /* 2255 * Only one rcu_node structure in the tree, so don't 2256 * try to report up to its nonexistent parent! 2257 */ 2258 rcu_report_qs_rsp(flags); 2259 return; 2260 } 2261 2262 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2263 gps = rnp->gp_seq; 2264 mask = rnp->grpmask; 2265 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2266 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2267 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2268 } 2269 2270 /* 2271 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2272 * structure. This must be called from the specified CPU. 2273 */ 2274 static void 2275 rcu_report_qs_rdp(struct rcu_data *rdp) 2276 { 2277 unsigned long flags; 2278 unsigned long mask; 2279 bool needwake = false; 2280 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2281 struct rcu_node *rnp; 2282 2283 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2284 rnp = rdp->mynode; 2285 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2286 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2287 rdp->gpwrap) { 2288 2289 /* 2290 * The grace period in which this quiescent state was 2291 * recorded has ended, so don't report it upwards. 2292 * We will instead need a new quiescent state that lies 2293 * within the current grace period. 2294 */ 2295 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2296 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2297 return; 2298 } 2299 mask = rdp->grpmask; 2300 rdp->core_needs_qs = false; 2301 if ((rnp->qsmask & mask) == 0) { 2302 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2303 } else { 2304 /* 2305 * This GP can't end until cpu checks in, so all of our 2306 * callbacks can be processed during the next GP. 2307 */ 2308 if (!offloaded) 2309 needwake = rcu_accelerate_cbs(rnp, rdp); 2310 2311 rcu_disable_urgency_upon_qs(rdp); 2312 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2313 /* ^^^ Released rnp->lock */ 2314 if (needwake) 2315 rcu_gp_kthread_wake(); 2316 } 2317 } 2318 2319 /* 2320 * Check to see if there is a new grace period of which this CPU 2321 * is not yet aware, and if so, set up local rcu_data state for it. 2322 * Otherwise, see if this CPU has just passed through its first 2323 * quiescent state for this grace period, and record that fact if so. 2324 */ 2325 static void 2326 rcu_check_quiescent_state(struct rcu_data *rdp) 2327 { 2328 /* Check for grace-period ends and beginnings. */ 2329 note_gp_changes(rdp); 2330 2331 /* 2332 * Does this CPU still need to do its part for current grace period? 2333 * If no, return and let the other CPUs do their part as well. 2334 */ 2335 if (!rdp->core_needs_qs) 2336 return; 2337 2338 /* 2339 * Was there a quiescent state since the beginning of the grace 2340 * period? If no, then exit and wait for the next call. 2341 */ 2342 if (rdp->cpu_no_qs.b.norm) 2343 return; 2344 2345 /* 2346 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2347 * judge of that). 2348 */ 2349 rcu_report_qs_rdp(rdp); 2350 } 2351 2352 /* 2353 * Near the end of the offline process. Trace the fact that this CPU 2354 * is going offline. 2355 */ 2356 int rcutree_dying_cpu(unsigned int cpu) 2357 { 2358 bool blkd; 2359 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2360 struct rcu_node *rnp = rdp->mynode; 2361 2362 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2363 return 0; 2364 2365 blkd = !!(rnp->qsmask & rdp->grpmask); 2366 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2367 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2368 return 0; 2369 } 2370 2371 /* 2372 * All CPUs for the specified rcu_node structure have gone offline, 2373 * and all tasks that were preempted within an RCU read-side critical 2374 * section while running on one of those CPUs have since exited their RCU 2375 * read-side critical section. Some other CPU is reporting this fact with 2376 * the specified rcu_node structure's ->lock held and interrupts disabled. 2377 * This function therefore goes up the tree of rcu_node structures, 2378 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2379 * the leaf rcu_node structure's ->qsmaskinit field has already been 2380 * updated. 2381 * 2382 * This function does check that the specified rcu_node structure has 2383 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2384 * prematurely. That said, invoking it after the fact will cost you 2385 * a needless lock acquisition. So once it has done its work, don't 2386 * invoke it again. 2387 */ 2388 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2389 { 2390 long mask; 2391 struct rcu_node *rnp = rnp_leaf; 2392 2393 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2394 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2395 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2396 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2397 return; 2398 for (;;) { 2399 mask = rnp->grpmask; 2400 rnp = rnp->parent; 2401 if (!rnp) 2402 break; 2403 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2404 rnp->qsmaskinit &= ~mask; 2405 /* Between grace periods, so better already be zero! */ 2406 WARN_ON_ONCE(rnp->qsmask); 2407 if (rnp->qsmaskinit) { 2408 raw_spin_unlock_rcu_node(rnp); 2409 /* irqs remain disabled. */ 2410 return; 2411 } 2412 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2413 } 2414 } 2415 2416 /* 2417 * The CPU has been completely removed, and some other CPU is reporting 2418 * this fact from process context. Do the remainder of the cleanup. 2419 * There can only be one CPU hotplug operation at a time, so no need for 2420 * explicit locking. 2421 */ 2422 int rcutree_dead_cpu(unsigned int cpu) 2423 { 2424 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2425 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2426 2427 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2428 return 0; 2429 2430 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2431 /* Adjust any no-longer-needed kthreads. */ 2432 rcu_boost_kthread_setaffinity(rnp, -1); 2433 // Stop-machine done, so allow nohz_full to disable tick. 2434 tick_dep_clear(TICK_DEP_BIT_RCU); 2435 return 0; 2436 } 2437 2438 /* 2439 * Invoke any RCU callbacks that have made it to the end of their grace 2440 * period. Throttle as specified by rdp->blimit. 2441 */ 2442 static void rcu_do_batch(struct rcu_data *rdp) 2443 { 2444 int div; 2445 bool __maybe_unused empty; 2446 unsigned long flags; 2447 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2448 struct rcu_head *rhp; 2449 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2450 long bl, count = 0; 2451 long pending, tlimit = 0; 2452 2453 /* If no callbacks are ready, just return. */ 2454 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2455 trace_rcu_batch_start(rcu_state.name, 2456 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2457 trace_rcu_batch_end(rcu_state.name, 0, 2458 !rcu_segcblist_empty(&rdp->cblist), 2459 need_resched(), is_idle_task(current), 2460 rcu_is_callbacks_kthread()); 2461 return; 2462 } 2463 2464 /* 2465 * Extract the list of ready callbacks, disabling to prevent 2466 * races with call_rcu() from interrupt handlers. Leave the 2467 * callback counts, as rcu_barrier() needs to be conservative. 2468 */ 2469 local_irq_save(flags); 2470 rcu_nocb_lock(rdp); 2471 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2472 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2473 div = READ_ONCE(rcu_divisor); 2474 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2475 bl = max(rdp->blimit, pending >> div); 2476 if (unlikely(bl > 100)) { 2477 long rrn = READ_ONCE(rcu_resched_ns); 2478 2479 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2480 tlimit = local_clock() + rrn; 2481 } 2482 trace_rcu_batch_start(rcu_state.name, 2483 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2484 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2485 if (offloaded) 2486 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2487 2488 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2489 rcu_nocb_unlock_irqrestore(rdp, flags); 2490 2491 /* Invoke callbacks. */ 2492 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2493 rhp = rcu_cblist_dequeue(&rcl); 2494 2495 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2496 rcu_callback_t f; 2497 2498 count++; 2499 debug_rcu_head_unqueue(rhp); 2500 2501 rcu_lock_acquire(&rcu_callback_map); 2502 trace_rcu_invoke_callback(rcu_state.name, rhp); 2503 2504 f = rhp->func; 2505 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2506 f(rhp); 2507 2508 rcu_lock_release(&rcu_callback_map); 2509 2510 /* 2511 * Stop only if limit reached and CPU has something to do. 2512 */ 2513 if (count >= bl && !offloaded && 2514 (need_resched() || 2515 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2516 break; 2517 if (unlikely(tlimit)) { 2518 /* only call local_clock() every 32 callbacks */ 2519 if (likely((count & 31) || local_clock() < tlimit)) 2520 continue; 2521 /* Exceeded the time limit, so leave. */ 2522 break; 2523 } 2524 if (!in_serving_softirq()) { 2525 local_bh_enable(); 2526 lockdep_assert_irqs_enabled(); 2527 cond_resched_tasks_rcu_qs(); 2528 lockdep_assert_irqs_enabled(); 2529 local_bh_disable(); 2530 } 2531 } 2532 2533 local_irq_save(flags); 2534 rcu_nocb_lock(rdp); 2535 rdp->n_cbs_invoked += count; 2536 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2537 is_idle_task(current), rcu_is_callbacks_kthread()); 2538 2539 /* Update counts and requeue any remaining callbacks. */ 2540 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2541 rcu_segcblist_add_len(&rdp->cblist, -count); 2542 2543 /* Reinstate batch limit if we have worked down the excess. */ 2544 count = rcu_segcblist_n_cbs(&rdp->cblist); 2545 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2546 rdp->blimit = blimit; 2547 2548 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2549 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2550 rdp->qlen_last_fqs_check = 0; 2551 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2552 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2553 rdp->qlen_last_fqs_check = count; 2554 2555 /* 2556 * The following usually indicates a double call_rcu(). To track 2557 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2558 */ 2559 empty = rcu_segcblist_empty(&rdp->cblist); 2560 WARN_ON_ONCE(count == 0 && !empty); 2561 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2562 count != 0 && empty); 2563 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2564 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2565 2566 rcu_nocb_unlock_irqrestore(rdp, flags); 2567 2568 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2569 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2570 invoke_rcu_core(); 2571 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2572 } 2573 2574 /* 2575 * This function is invoked from each scheduling-clock interrupt, 2576 * and checks to see if this CPU is in a non-context-switch quiescent 2577 * state, for example, user mode or idle loop. It also schedules RCU 2578 * core processing. If the current grace period has gone on too long, 2579 * it will ask the scheduler to manufacture a context switch for the sole 2580 * purpose of providing the needed quiescent state. 2581 */ 2582 void rcu_sched_clock_irq(int user) 2583 { 2584 trace_rcu_utilization(TPS("Start scheduler-tick")); 2585 lockdep_assert_irqs_disabled(); 2586 raw_cpu_inc(rcu_data.ticks_this_gp); 2587 /* The load-acquire pairs with the store-release setting to true. */ 2588 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2589 /* Idle and userspace execution already are quiescent states. */ 2590 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2591 set_tsk_need_resched(current); 2592 set_preempt_need_resched(); 2593 } 2594 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2595 } 2596 rcu_flavor_sched_clock_irq(user); 2597 if (rcu_pending(user)) 2598 invoke_rcu_core(); 2599 lockdep_assert_irqs_disabled(); 2600 2601 trace_rcu_utilization(TPS("End scheduler-tick")); 2602 } 2603 2604 /* 2605 * Scan the leaf rcu_node structures. For each structure on which all 2606 * CPUs have reported a quiescent state and on which there are tasks 2607 * blocking the current grace period, initiate RCU priority boosting. 2608 * Otherwise, invoke the specified function to check dyntick state for 2609 * each CPU that has not yet reported a quiescent state. 2610 */ 2611 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2612 { 2613 int cpu; 2614 unsigned long flags; 2615 unsigned long mask; 2616 struct rcu_data *rdp; 2617 struct rcu_node *rnp; 2618 2619 rcu_state.cbovld = rcu_state.cbovldnext; 2620 rcu_state.cbovldnext = false; 2621 rcu_for_each_leaf_node(rnp) { 2622 cond_resched_tasks_rcu_qs(); 2623 mask = 0; 2624 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2625 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2626 if (rnp->qsmask == 0) { 2627 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2628 /* 2629 * No point in scanning bits because they 2630 * are all zero. But we might need to 2631 * priority-boost blocked readers. 2632 */ 2633 rcu_initiate_boost(rnp, flags); 2634 /* rcu_initiate_boost() releases rnp->lock */ 2635 continue; 2636 } 2637 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2638 continue; 2639 } 2640 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2641 rdp = per_cpu_ptr(&rcu_data, cpu); 2642 if (f(rdp)) { 2643 mask |= rdp->grpmask; 2644 rcu_disable_urgency_upon_qs(rdp); 2645 } 2646 } 2647 if (mask != 0) { 2648 /* Idle/offline CPUs, report (releases rnp->lock). */ 2649 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2650 } else { 2651 /* Nothing to do here, so just drop the lock. */ 2652 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2653 } 2654 } 2655 } 2656 2657 /* 2658 * Force quiescent states on reluctant CPUs, and also detect which 2659 * CPUs are in dyntick-idle mode. 2660 */ 2661 void rcu_force_quiescent_state(void) 2662 { 2663 unsigned long flags; 2664 bool ret; 2665 struct rcu_node *rnp; 2666 struct rcu_node *rnp_old = NULL; 2667 2668 /* Funnel through hierarchy to reduce memory contention. */ 2669 rnp = __this_cpu_read(rcu_data.mynode); 2670 for (; rnp != NULL; rnp = rnp->parent) { 2671 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2672 !raw_spin_trylock(&rnp->fqslock); 2673 if (rnp_old != NULL) 2674 raw_spin_unlock(&rnp_old->fqslock); 2675 if (ret) 2676 return; 2677 rnp_old = rnp; 2678 } 2679 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2680 2681 /* Reached the root of the rcu_node tree, acquire lock. */ 2682 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2683 raw_spin_unlock(&rnp_old->fqslock); 2684 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2685 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2686 return; /* Someone beat us to it. */ 2687 } 2688 WRITE_ONCE(rcu_state.gp_flags, 2689 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2690 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2691 rcu_gp_kthread_wake(); 2692 } 2693 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2694 2695 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2696 // grace periods. 2697 static void strict_work_handler(struct work_struct *work) 2698 { 2699 rcu_read_lock(); 2700 rcu_read_unlock(); 2701 } 2702 2703 /* Perform RCU core processing work for the current CPU. */ 2704 static __latent_entropy void rcu_core(void) 2705 { 2706 unsigned long flags; 2707 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2708 struct rcu_node *rnp = rdp->mynode; 2709 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2710 2711 if (cpu_is_offline(smp_processor_id())) 2712 return; 2713 trace_rcu_utilization(TPS("Start RCU core")); 2714 WARN_ON_ONCE(!rdp->beenonline); 2715 2716 /* Report any deferred quiescent states if preemption enabled. */ 2717 if (!(preempt_count() & PREEMPT_MASK)) { 2718 rcu_preempt_deferred_qs(current); 2719 } else if (rcu_preempt_need_deferred_qs(current)) { 2720 set_tsk_need_resched(current); 2721 set_preempt_need_resched(); 2722 } 2723 2724 /* Update RCU state based on any recent quiescent states. */ 2725 rcu_check_quiescent_state(rdp); 2726 2727 /* No grace period and unregistered callbacks? */ 2728 if (!rcu_gp_in_progress() && 2729 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2730 rcu_nocb_lock_irqsave(rdp, flags); 2731 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2732 rcu_accelerate_cbs_unlocked(rnp, rdp); 2733 rcu_nocb_unlock_irqrestore(rdp, flags); 2734 } 2735 2736 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2737 2738 /* If there are callbacks ready, invoke them. */ 2739 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2740 likely(READ_ONCE(rcu_scheduler_fully_active))) 2741 rcu_do_batch(rdp); 2742 2743 /* Do any needed deferred wakeups of rcuo kthreads. */ 2744 do_nocb_deferred_wakeup(rdp); 2745 trace_rcu_utilization(TPS("End RCU core")); 2746 2747 // If strict GPs, schedule an RCU reader in a clean environment. 2748 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2749 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2750 } 2751 2752 static void rcu_core_si(struct softirq_action *h) 2753 { 2754 rcu_core(); 2755 } 2756 2757 static void rcu_wake_cond(struct task_struct *t, int status) 2758 { 2759 /* 2760 * If the thread is yielding, only wake it when this 2761 * is invoked from idle 2762 */ 2763 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2764 wake_up_process(t); 2765 } 2766 2767 static void invoke_rcu_core_kthread(void) 2768 { 2769 struct task_struct *t; 2770 unsigned long flags; 2771 2772 local_irq_save(flags); 2773 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2774 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2775 if (t != NULL && t != current) 2776 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2777 local_irq_restore(flags); 2778 } 2779 2780 /* 2781 * Wake up this CPU's rcuc kthread to do RCU core processing. 2782 */ 2783 static void invoke_rcu_core(void) 2784 { 2785 if (!cpu_online(smp_processor_id())) 2786 return; 2787 if (use_softirq) 2788 raise_softirq(RCU_SOFTIRQ); 2789 else 2790 invoke_rcu_core_kthread(); 2791 } 2792 2793 static void rcu_cpu_kthread_park(unsigned int cpu) 2794 { 2795 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2796 } 2797 2798 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2799 { 2800 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2801 } 2802 2803 /* 2804 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2805 * the RCU softirq used in configurations of RCU that do not support RCU 2806 * priority boosting. 2807 */ 2808 static void rcu_cpu_kthread(unsigned int cpu) 2809 { 2810 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2811 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2812 int spincnt; 2813 2814 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2815 for (spincnt = 0; spincnt < 10; spincnt++) { 2816 local_bh_disable(); 2817 *statusp = RCU_KTHREAD_RUNNING; 2818 local_irq_disable(); 2819 work = *workp; 2820 *workp = 0; 2821 local_irq_enable(); 2822 if (work) 2823 rcu_core(); 2824 local_bh_enable(); 2825 if (*workp == 0) { 2826 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2827 *statusp = RCU_KTHREAD_WAITING; 2828 return; 2829 } 2830 } 2831 *statusp = RCU_KTHREAD_YIELDING; 2832 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2833 schedule_timeout_idle(2); 2834 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2835 *statusp = RCU_KTHREAD_WAITING; 2836 } 2837 2838 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2839 .store = &rcu_data.rcu_cpu_kthread_task, 2840 .thread_should_run = rcu_cpu_kthread_should_run, 2841 .thread_fn = rcu_cpu_kthread, 2842 .thread_comm = "rcuc/%u", 2843 .setup = rcu_cpu_kthread_setup, 2844 .park = rcu_cpu_kthread_park, 2845 }; 2846 2847 /* 2848 * Spawn per-CPU RCU core processing kthreads. 2849 */ 2850 static int __init rcu_spawn_core_kthreads(void) 2851 { 2852 int cpu; 2853 2854 for_each_possible_cpu(cpu) 2855 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2856 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2857 return 0; 2858 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2859 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2860 return 0; 2861 } 2862 2863 /* 2864 * Handle any core-RCU processing required by a call_rcu() invocation. 2865 */ 2866 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2867 unsigned long flags) 2868 { 2869 /* 2870 * If called from an extended quiescent state, invoke the RCU 2871 * core in order to force a re-evaluation of RCU's idleness. 2872 */ 2873 if (!rcu_is_watching()) 2874 invoke_rcu_core(); 2875 2876 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2877 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2878 return; 2879 2880 /* 2881 * Force the grace period if too many callbacks or too long waiting. 2882 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2883 * if some other CPU has recently done so. Also, don't bother 2884 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2885 * is the only one waiting for a grace period to complete. 2886 */ 2887 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2888 rdp->qlen_last_fqs_check + qhimark)) { 2889 2890 /* Are we ignoring a completed grace period? */ 2891 note_gp_changes(rdp); 2892 2893 /* Start a new grace period if one not already started. */ 2894 if (!rcu_gp_in_progress()) { 2895 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2896 } else { 2897 /* Give the grace period a kick. */ 2898 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2899 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2900 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2901 rcu_force_quiescent_state(); 2902 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2903 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2904 } 2905 } 2906 } 2907 2908 /* 2909 * RCU callback function to leak a callback. 2910 */ 2911 static void rcu_leak_callback(struct rcu_head *rhp) 2912 { 2913 } 2914 2915 /* 2916 * Check and if necessary update the leaf rcu_node structure's 2917 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2918 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2919 * structure's ->lock. 2920 */ 2921 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2922 { 2923 raw_lockdep_assert_held_rcu_node(rnp); 2924 if (qovld_calc <= 0) 2925 return; // Early boot and wildcard value set. 2926 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2927 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2928 else 2929 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2930 } 2931 2932 /* 2933 * Check and if necessary update the leaf rcu_node structure's 2934 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2935 * number of queued RCU callbacks. No locks need be held, but the 2936 * caller must have disabled interrupts. 2937 * 2938 * Note that this function ignores the possibility that there are a lot 2939 * of callbacks all of which have already seen the end of their respective 2940 * grace periods. This omission is due to the need for no-CBs CPUs to 2941 * be holding ->nocb_lock to do this check, which is too heavy for a 2942 * common-case operation. 2943 */ 2944 static void check_cb_ovld(struct rcu_data *rdp) 2945 { 2946 struct rcu_node *const rnp = rdp->mynode; 2947 2948 if (qovld_calc <= 0 || 2949 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2950 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2951 return; // Early boot wildcard value or already set correctly. 2952 raw_spin_lock_rcu_node(rnp); 2953 check_cb_ovld_locked(rdp, rnp); 2954 raw_spin_unlock_rcu_node(rnp); 2955 } 2956 2957 /* Helper function for call_rcu() and friends. */ 2958 static void 2959 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2960 { 2961 static atomic_t doublefrees; 2962 unsigned long flags; 2963 struct rcu_data *rdp; 2964 bool was_alldone; 2965 2966 /* Misaligned rcu_head! */ 2967 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2968 2969 if (debug_rcu_head_queue(head)) { 2970 /* 2971 * Probable double call_rcu(), so leak the callback. 2972 * Use rcu:rcu_callback trace event to find the previous 2973 * time callback was passed to __call_rcu(). 2974 */ 2975 if (atomic_inc_return(&doublefrees) < 4) { 2976 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2977 mem_dump_obj(head); 2978 } 2979 WRITE_ONCE(head->func, rcu_leak_callback); 2980 return; 2981 } 2982 head->func = func; 2983 head->next = NULL; 2984 local_irq_save(flags); 2985 kasan_record_aux_stack(head); 2986 rdp = this_cpu_ptr(&rcu_data); 2987 2988 /* Add the callback to our list. */ 2989 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2990 // This can trigger due to call_rcu() from offline CPU: 2991 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2992 WARN_ON_ONCE(!rcu_is_watching()); 2993 // Very early boot, before rcu_init(). Initialize if needed 2994 // and then drop through to queue the callback. 2995 if (rcu_segcblist_empty(&rdp->cblist)) 2996 rcu_segcblist_init(&rdp->cblist); 2997 } 2998 2999 check_cb_ovld(rdp); 3000 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3001 return; // Enqueued onto ->nocb_bypass, so just leave. 3002 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3003 rcu_segcblist_enqueue(&rdp->cblist, head); 3004 if (__is_kvfree_rcu_offset((unsigned long)func)) 3005 trace_rcu_kvfree_callback(rcu_state.name, head, 3006 (unsigned long)func, 3007 rcu_segcblist_n_cbs(&rdp->cblist)); 3008 else 3009 trace_rcu_callback(rcu_state.name, head, 3010 rcu_segcblist_n_cbs(&rdp->cblist)); 3011 3012 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3013 3014 /* Go handle any RCU core processing required. */ 3015 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3016 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3017 } else { 3018 __call_rcu_core(rdp, head, flags); 3019 local_irq_restore(flags); 3020 } 3021 } 3022 3023 /** 3024 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3025 * @head: structure to be used for queueing the RCU updates. 3026 * @func: actual callback function to be invoked after the grace period 3027 * 3028 * The callback function will be invoked some time after a full grace 3029 * period elapses, in other words after all pre-existing RCU read-side 3030 * critical sections have completed. However, the callback function 3031 * might well execute concurrently with RCU read-side critical sections 3032 * that started after call_rcu() was invoked. 3033 * 3034 * RCU read-side critical sections are delimited by rcu_read_lock() 3035 * and rcu_read_unlock(), and may be nested. In addition, but only in 3036 * v5.0 and later, regions of code across which interrupts, preemption, 3037 * or softirqs have been disabled also serve as RCU read-side critical 3038 * sections. This includes hardware interrupt handlers, softirq handlers, 3039 * and NMI handlers. 3040 * 3041 * Note that all CPUs must agree that the grace period extended beyond 3042 * all pre-existing RCU read-side critical section. On systems with more 3043 * than one CPU, this means that when "func()" is invoked, each CPU is 3044 * guaranteed to have executed a full memory barrier since the end of its 3045 * last RCU read-side critical section whose beginning preceded the call 3046 * to call_rcu(). It also means that each CPU executing an RCU read-side 3047 * critical section that continues beyond the start of "func()" must have 3048 * executed a memory barrier after the call_rcu() but before the beginning 3049 * of that RCU read-side critical section. Note that these guarantees 3050 * include CPUs that are offline, idle, or executing in user mode, as 3051 * well as CPUs that are executing in the kernel. 3052 * 3053 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3054 * resulting RCU callback function "func()", then both CPU A and CPU B are 3055 * guaranteed to execute a full memory barrier during the time interval 3056 * between the call to call_rcu() and the invocation of "func()" -- even 3057 * if CPU A and CPU B are the same CPU (but again only if the system has 3058 * more than one CPU). 3059 * 3060 * Implementation of these memory-ordering guarantees is described here: 3061 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3062 */ 3063 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3064 { 3065 __call_rcu(head, func); 3066 } 3067 EXPORT_SYMBOL_GPL(call_rcu); 3068 3069 3070 /* Maximum number of jiffies to wait before draining a batch. */ 3071 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3072 #define KFREE_N_BATCHES 2 3073 #define FREE_N_CHANNELS 2 3074 3075 /** 3076 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3077 * @nr_records: Number of active pointers in the array 3078 * @next: Next bulk object in the block chain 3079 * @records: Array of the kvfree_rcu() pointers 3080 */ 3081 struct kvfree_rcu_bulk_data { 3082 unsigned long nr_records; 3083 struct kvfree_rcu_bulk_data *next; 3084 void *records[]; 3085 }; 3086 3087 /* 3088 * This macro defines how many entries the "records" array 3089 * will contain. It is based on the fact that the size of 3090 * kvfree_rcu_bulk_data structure becomes exactly one page. 3091 */ 3092 #define KVFREE_BULK_MAX_ENTR \ 3093 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3094 3095 /** 3096 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3097 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3098 * @head_free: List of kfree_rcu() objects waiting for a grace period 3099 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3100 * @krcp: Pointer to @kfree_rcu_cpu structure 3101 */ 3102 3103 struct kfree_rcu_cpu_work { 3104 struct rcu_work rcu_work; 3105 struct rcu_head *head_free; 3106 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3107 struct kfree_rcu_cpu *krcp; 3108 }; 3109 3110 /** 3111 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3112 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3113 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3114 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3115 * @lock: Synchronize access to this structure 3116 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3117 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3118 * @initialized: The @rcu_work fields have been initialized 3119 * @count: Number of objects for which GP not started 3120 * @bkvcache: 3121 * A simple cache list that contains objects for reuse purpose. 3122 * In order to save some per-cpu space the list is singular. 3123 * Even though it is lockless an access has to be protected by the 3124 * per-cpu lock. 3125 * @page_cache_work: A work to refill the cache when it is empty 3126 * @backoff_page_cache_fill: Delay cache refills 3127 * @work_in_progress: Indicates that page_cache_work is running 3128 * @hrtimer: A hrtimer for scheduling a page_cache_work 3129 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3130 * 3131 * This is a per-CPU structure. The reason that it is not included in 3132 * the rcu_data structure is to permit this code to be extracted from 3133 * the RCU files. Such extraction could allow further optimization of 3134 * the interactions with the slab allocators. 3135 */ 3136 struct kfree_rcu_cpu { 3137 struct rcu_head *head; 3138 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3139 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3140 raw_spinlock_t lock; 3141 struct delayed_work monitor_work; 3142 bool monitor_todo; 3143 bool initialized; 3144 int count; 3145 3146 struct delayed_work page_cache_work; 3147 atomic_t backoff_page_cache_fill; 3148 atomic_t work_in_progress; 3149 struct hrtimer hrtimer; 3150 3151 struct llist_head bkvcache; 3152 int nr_bkv_objs; 3153 }; 3154 3155 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3156 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3157 }; 3158 3159 static __always_inline void 3160 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3161 { 3162 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3163 int i; 3164 3165 for (i = 0; i < bhead->nr_records; i++) 3166 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3167 #endif 3168 } 3169 3170 static inline struct kfree_rcu_cpu * 3171 krc_this_cpu_lock(unsigned long *flags) 3172 { 3173 struct kfree_rcu_cpu *krcp; 3174 3175 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3176 krcp = this_cpu_ptr(&krc); 3177 raw_spin_lock(&krcp->lock); 3178 3179 return krcp; 3180 } 3181 3182 static inline void 3183 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3184 { 3185 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3186 } 3187 3188 static inline struct kvfree_rcu_bulk_data * 3189 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3190 { 3191 if (!krcp->nr_bkv_objs) 3192 return NULL; 3193 3194 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 3195 return (struct kvfree_rcu_bulk_data *) 3196 llist_del_first(&krcp->bkvcache); 3197 } 3198 3199 static inline bool 3200 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3201 struct kvfree_rcu_bulk_data *bnode) 3202 { 3203 // Check the limit. 3204 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3205 return false; 3206 3207 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3208 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 3209 return true; 3210 } 3211 3212 static int 3213 drain_page_cache(struct kfree_rcu_cpu *krcp) 3214 { 3215 unsigned long flags; 3216 struct llist_node *page_list, *pos, *n; 3217 int freed = 0; 3218 3219 raw_spin_lock_irqsave(&krcp->lock, flags); 3220 page_list = llist_del_all(&krcp->bkvcache); 3221 WRITE_ONCE(krcp->nr_bkv_objs, 0); 3222 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3223 3224 llist_for_each_safe(pos, n, page_list) { 3225 free_page((unsigned long)pos); 3226 freed++; 3227 } 3228 3229 return freed; 3230 } 3231 3232 /* 3233 * This function is invoked in workqueue context after a grace period. 3234 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3235 */ 3236 static void kfree_rcu_work(struct work_struct *work) 3237 { 3238 unsigned long flags; 3239 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3240 struct rcu_head *head, *next; 3241 struct kfree_rcu_cpu *krcp; 3242 struct kfree_rcu_cpu_work *krwp; 3243 int i, j; 3244 3245 krwp = container_of(to_rcu_work(work), 3246 struct kfree_rcu_cpu_work, rcu_work); 3247 krcp = krwp->krcp; 3248 3249 raw_spin_lock_irqsave(&krcp->lock, flags); 3250 // Channels 1 and 2. 3251 for (i = 0; i < FREE_N_CHANNELS; i++) { 3252 bkvhead[i] = krwp->bkvhead_free[i]; 3253 krwp->bkvhead_free[i] = NULL; 3254 } 3255 3256 // Channel 3. 3257 head = krwp->head_free; 3258 krwp->head_free = NULL; 3259 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3260 3261 // Handle the first two channels. 3262 for (i = 0; i < FREE_N_CHANNELS; i++) { 3263 for (; bkvhead[i]; bkvhead[i] = bnext) { 3264 bnext = bkvhead[i]->next; 3265 debug_rcu_bhead_unqueue(bkvhead[i]); 3266 3267 rcu_lock_acquire(&rcu_callback_map); 3268 if (i == 0) { // kmalloc() / kfree(). 3269 trace_rcu_invoke_kfree_bulk_callback( 3270 rcu_state.name, bkvhead[i]->nr_records, 3271 bkvhead[i]->records); 3272 3273 kfree_bulk(bkvhead[i]->nr_records, 3274 bkvhead[i]->records); 3275 } else { // vmalloc() / vfree(). 3276 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3277 trace_rcu_invoke_kvfree_callback( 3278 rcu_state.name, 3279 bkvhead[i]->records[j], 0); 3280 3281 vfree(bkvhead[i]->records[j]); 3282 } 3283 } 3284 rcu_lock_release(&rcu_callback_map); 3285 3286 raw_spin_lock_irqsave(&krcp->lock, flags); 3287 if (put_cached_bnode(krcp, bkvhead[i])) 3288 bkvhead[i] = NULL; 3289 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3290 3291 if (bkvhead[i]) 3292 free_page((unsigned long) bkvhead[i]); 3293 3294 cond_resched_tasks_rcu_qs(); 3295 } 3296 } 3297 3298 /* 3299 * This is used when the "bulk" path can not be used for the 3300 * double-argument of kvfree_rcu(). This happens when the 3301 * page-cache is empty, which means that objects are instead 3302 * queued on a linked list through their rcu_head structures. 3303 * This list is named "Channel 3". 3304 */ 3305 for (; head; head = next) { 3306 unsigned long offset = (unsigned long)head->func; 3307 void *ptr = (void *)head - offset; 3308 3309 next = head->next; 3310 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3311 rcu_lock_acquire(&rcu_callback_map); 3312 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3313 3314 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3315 kvfree(ptr); 3316 3317 rcu_lock_release(&rcu_callback_map); 3318 cond_resched_tasks_rcu_qs(); 3319 } 3320 } 3321 3322 /* 3323 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3324 */ 3325 static void kfree_rcu_monitor(struct work_struct *work) 3326 { 3327 struct kfree_rcu_cpu *krcp = container_of(work, 3328 struct kfree_rcu_cpu, monitor_work.work); 3329 unsigned long flags; 3330 int i, j; 3331 3332 raw_spin_lock_irqsave(&krcp->lock, flags); 3333 3334 // Attempt to start a new batch. 3335 for (i = 0; i < KFREE_N_BATCHES; i++) { 3336 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3337 3338 // Try to detach bkvhead or head and attach it over any 3339 // available corresponding free channel. It can be that 3340 // a previous RCU batch is in progress, it means that 3341 // immediately to queue another one is not possible so 3342 // in that case the monitor work is rearmed. 3343 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3344 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3345 (krcp->head && !krwp->head_free)) { 3346 // Channel 1 corresponds to the SLAB-pointer bulk path. 3347 // Channel 2 corresponds to vmalloc-pointer bulk path. 3348 for (j = 0; j < FREE_N_CHANNELS; j++) { 3349 if (!krwp->bkvhead_free[j]) { 3350 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3351 krcp->bkvhead[j] = NULL; 3352 } 3353 } 3354 3355 // Channel 3 corresponds to both SLAB and vmalloc 3356 // objects queued on the linked list. 3357 if (!krwp->head_free) { 3358 krwp->head_free = krcp->head; 3359 krcp->head = NULL; 3360 } 3361 3362 WRITE_ONCE(krcp->count, 0); 3363 3364 // One work is per one batch, so there are three 3365 // "free channels", the batch can handle. It can 3366 // be that the work is in the pending state when 3367 // channels have been detached following by each 3368 // other. 3369 queue_rcu_work(system_wq, &krwp->rcu_work); 3370 } 3371 } 3372 3373 // If there is nothing to detach, it means that our job is 3374 // successfully done here. In case of having at least one 3375 // of the channels that is still busy we should rearm the 3376 // work to repeat an attempt. Because previous batches are 3377 // still in progress. 3378 if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) 3379 krcp->monitor_todo = false; 3380 else 3381 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3382 3383 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3384 } 3385 3386 static enum hrtimer_restart 3387 schedule_page_work_fn(struct hrtimer *t) 3388 { 3389 struct kfree_rcu_cpu *krcp = 3390 container_of(t, struct kfree_rcu_cpu, hrtimer); 3391 3392 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3393 return HRTIMER_NORESTART; 3394 } 3395 3396 static void fill_page_cache_func(struct work_struct *work) 3397 { 3398 struct kvfree_rcu_bulk_data *bnode; 3399 struct kfree_rcu_cpu *krcp = 3400 container_of(work, struct kfree_rcu_cpu, 3401 page_cache_work.work); 3402 unsigned long flags; 3403 int nr_pages; 3404 bool pushed; 3405 int i; 3406 3407 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3408 1 : rcu_min_cached_objs; 3409 3410 for (i = 0; i < nr_pages; i++) { 3411 bnode = (struct kvfree_rcu_bulk_data *) 3412 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3413 3414 if (bnode) { 3415 raw_spin_lock_irqsave(&krcp->lock, flags); 3416 pushed = put_cached_bnode(krcp, bnode); 3417 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3418 3419 if (!pushed) { 3420 free_page((unsigned long) bnode); 3421 break; 3422 } 3423 } 3424 } 3425 3426 atomic_set(&krcp->work_in_progress, 0); 3427 atomic_set(&krcp->backoff_page_cache_fill, 0); 3428 } 3429 3430 static void 3431 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3432 { 3433 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3434 !atomic_xchg(&krcp->work_in_progress, 1)) { 3435 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3436 queue_delayed_work(system_wq, 3437 &krcp->page_cache_work, 3438 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3439 } else { 3440 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3441 krcp->hrtimer.function = schedule_page_work_fn; 3442 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3443 } 3444 } 3445 } 3446 3447 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3448 // state specified by flags. If can_alloc is true, the caller must 3449 // be schedulable and not be holding any locks or mutexes that might be 3450 // acquired by the memory allocator or anything that it might invoke. 3451 // Returns true if ptr was successfully recorded, else the caller must 3452 // use a fallback. 3453 static inline bool 3454 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3455 unsigned long *flags, void *ptr, bool can_alloc) 3456 { 3457 struct kvfree_rcu_bulk_data *bnode; 3458 int idx; 3459 3460 *krcp = krc_this_cpu_lock(flags); 3461 if (unlikely(!(*krcp)->initialized)) 3462 return false; 3463 3464 idx = !!is_vmalloc_addr(ptr); 3465 3466 /* Check if a new block is required. */ 3467 if (!(*krcp)->bkvhead[idx] || 3468 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3469 bnode = get_cached_bnode(*krcp); 3470 if (!bnode && can_alloc) { 3471 krc_this_cpu_unlock(*krcp, *flags); 3472 3473 // __GFP_NORETRY - allows a light-weight direct reclaim 3474 // what is OK from minimizing of fallback hitting point of 3475 // view. Apart of that it forbids any OOM invoking what is 3476 // also beneficial since we are about to release memory soon. 3477 // 3478 // __GFP_NOMEMALLOC - prevents from consuming of all the 3479 // memory reserves. Please note we have a fallback path. 3480 // 3481 // __GFP_NOWARN - it is supposed that an allocation can 3482 // be failed under low memory or high memory pressure 3483 // scenarios. 3484 bnode = (struct kvfree_rcu_bulk_data *) 3485 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3486 *krcp = krc_this_cpu_lock(flags); 3487 } 3488 3489 if (!bnode) 3490 return false; 3491 3492 /* Initialize the new block. */ 3493 bnode->nr_records = 0; 3494 bnode->next = (*krcp)->bkvhead[idx]; 3495 3496 /* Attach it to the head. */ 3497 (*krcp)->bkvhead[idx] = bnode; 3498 } 3499 3500 /* Finally insert. */ 3501 (*krcp)->bkvhead[idx]->records 3502 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3503 3504 return true; 3505 } 3506 3507 /* 3508 * Queue a request for lazy invocation of the appropriate free routine 3509 * after a grace period. Please note that three paths are maintained, 3510 * two for the common case using arrays of pointers and a third one that 3511 * is used only when the main paths cannot be used, for example, due to 3512 * memory pressure. 3513 * 3514 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3515 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3516 * be free'd in workqueue context. This allows us to: batch requests together to 3517 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3518 */ 3519 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3520 { 3521 unsigned long flags; 3522 struct kfree_rcu_cpu *krcp; 3523 bool success; 3524 void *ptr; 3525 3526 if (head) { 3527 ptr = (void *) head - (unsigned long) func; 3528 } else { 3529 /* 3530 * Please note there is a limitation for the head-less 3531 * variant, that is why there is a clear rule for such 3532 * objects: it can be used from might_sleep() context 3533 * only. For other places please embed an rcu_head to 3534 * your data. 3535 */ 3536 might_sleep(); 3537 ptr = (unsigned long *) func; 3538 } 3539 3540 // Queue the object but don't yet schedule the batch. 3541 if (debug_rcu_head_queue(ptr)) { 3542 // Probable double kfree_rcu(), just leak. 3543 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3544 __func__, head); 3545 3546 // Mark as success and leave. 3547 return; 3548 } 3549 3550 kasan_record_aux_stack(ptr); 3551 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3552 if (!success) { 3553 run_page_cache_worker(krcp); 3554 3555 if (head == NULL) 3556 // Inline if kvfree_rcu(one_arg) call. 3557 goto unlock_return; 3558 3559 head->func = func; 3560 head->next = krcp->head; 3561 krcp->head = head; 3562 success = true; 3563 } 3564 3565 WRITE_ONCE(krcp->count, krcp->count + 1); 3566 3567 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3568 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3569 !krcp->monitor_todo) { 3570 krcp->monitor_todo = true; 3571 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3572 } 3573 3574 unlock_return: 3575 krc_this_cpu_unlock(krcp, flags); 3576 3577 /* 3578 * Inline kvfree() after synchronize_rcu(). We can do 3579 * it from might_sleep() context only, so the current 3580 * CPU can pass the QS state. 3581 */ 3582 if (!success) { 3583 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3584 synchronize_rcu(); 3585 kvfree(ptr); 3586 } 3587 } 3588 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3589 3590 static unsigned long 3591 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3592 { 3593 int cpu; 3594 unsigned long count = 0; 3595 3596 /* Snapshot count of all CPUs */ 3597 for_each_possible_cpu(cpu) { 3598 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3599 3600 count += READ_ONCE(krcp->count); 3601 count += READ_ONCE(krcp->nr_bkv_objs); 3602 atomic_set(&krcp->backoff_page_cache_fill, 1); 3603 } 3604 3605 return count; 3606 } 3607 3608 static unsigned long 3609 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3610 { 3611 int cpu, freed = 0; 3612 3613 for_each_possible_cpu(cpu) { 3614 int count; 3615 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3616 3617 count = krcp->count; 3618 count += drain_page_cache(krcp); 3619 kfree_rcu_monitor(&krcp->monitor_work.work); 3620 3621 sc->nr_to_scan -= count; 3622 freed += count; 3623 3624 if (sc->nr_to_scan <= 0) 3625 break; 3626 } 3627 3628 return freed == 0 ? SHRINK_STOP : freed; 3629 } 3630 3631 static struct shrinker kfree_rcu_shrinker = { 3632 .count_objects = kfree_rcu_shrink_count, 3633 .scan_objects = kfree_rcu_shrink_scan, 3634 .batch = 0, 3635 .seeks = DEFAULT_SEEKS, 3636 }; 3637 3638 void __init kfree_rcu_scheduler_running(void) 3639 { 3640 int cpu; 3641 unsigned long flags; 3642 3643 for_each_possible_cpu(cpu) { 3644 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3645 3646 raw_spin_lock_irqsave(&krcp->lock, flags); 3647 if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) || 3648 krcp->monitor_todo) { 3649 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3650 continue; 3651 } 3652 krcp->monitor_todo = true; 3653 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3654 KFREE_DRAIN_JIFFIES); 3655 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3656 } 3657 } 3658 3659 /* 3660 * During early boot, any blocking grace-period wait automatically 3661 * implies a grace period. Later on, this is never the case for PREEMPTION. 3662 * 3663 * However, because a context switch is a grace period for !PREEMPTION, any 3664 * blocking grace-period wait automatically implies a grace period if 3665 * there is only one CPU online at any point time during execution of 3666 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3667 * occasionally incorrectly indicate that there are multiple CPUs online 3668 * when there was in fact only one the whole time, as this just adds some 3669 * overhead: RCU still operates correctly. 3670 */ 3671 static int rcu_blocking_is_gp(void) 3672 { 3673 int ret; 3674 3675 if (IS_ENABLED(CONFIG_PREEMPTION)) 3676 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3677 might_sleep(); /* Check for RCU read-side critical section. */ 3678 preempt_disable(); 3679 /* 3680 * If the rcu_state.n_online_cpus counter is equal to one, 3681 * there is only one CPU, and that CPU sees all prior accesses 3682 * made by any CPU that was online at the time of its access. 3683 * Furthermore, if this counter is equal to one, its value cannot 3684 * change until after the preempt_enable() below. 3685 * 3686 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3687 * all later CPUs (both this one and any that come online later 3688 * on) are guaranteed to see all accesses prior to this point 3689 * in the code, without the need for additional memory barriers. 3690 * Those memory barriers are provided by CPU-hotplug code. 3691 */ 3692 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3693 preempt_enable(); 3694 return ret; 3695 } 3696 3697 /** 3698 * synchronize_rcu - wait until a grace period has elapsed. 3699 * 3700 * Control will return to the caller some time after a full grace 3701 * period has elapsed, in other words after all currently executing RCU 3702 * read-side critical sections have completed. Note, however, that 3703 * upon return from synchronize_rcu(), the caller might well be executing 3704 * concurrently with new RCU read-side critical sections that began while 3705 * synchronize_rcu() was waiting. 3706 * 3707 * RCU read-side critical sections are delimited by rcu_read_lock() 3708 * and rcu_read_unlock(), and may be nested. In addition, but only in 3709 * v5.0 and later, regions of code across which interrupts, preemption, 3710 * or softirqs have been disabled also serve as RCU read-side critical 3711 * sections. This includes hardware interrupt handlers, softirq handlers, 3712 * and NMI handlers. 3713 * 3714 * Note that this guarantee implies further memory-ordering guarantees. 3715 * On systems with more than one CPU, when synchronize_rcu() returns, 3716 * each CPU is guaranteed to have executed a full memory barrier since 3717 * the end of its last RCU read-side critical section whose beginning 3718 * preceded the call to synchronize_rcu(). In addition, each CPU having 3719 * an RCU read-side critical section that extends beyond the return from 3720 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3721 * after the beginning of synchronize_rcu() and before the beginning of 3722 * that RCU read-side critical section. Note that these guarantees include 3723 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3724 * that are executing in the kernel. 3725 * 3726 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3727 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3728 * to have executed a full memory barrier during the execution of 3729 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3730 * again only if the system has more than one CPU). 3731 * 3732 * Implementation of these memory-ordering guarantees is described here: 3733 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3734 */ 3735 void synchronize_rcu(void) 3736 { 3737 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3738 lock_is_held(&rcu_lock_map) || 3739 lock_is_held(&rcu_sched_lock_map), 3740 "Illegal synchronize_rcu() in RCU read-side critical section"); 3741 if (rcu_blocking_is_gp()) 3742 return; // Context allows vacuous grace periods. 3743 if (rcu_gp_is_expedited()) 3744 synchronize_rcu_expedited(); 3745 else 3746 wait_rcu_gp(call_rcu); 3747 } 3748 EXPORT_SYMBOL_GPL(synchronize_rcu); 3749 3750 /** 3751 * get_state_synchronize_rcu - Snapshot current RCU state 3752 * 3753 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3754 * or poll_state_synchronize_rcu() to determine whether or not a full 3755 * grace period has elapsed in the meantime. 3756 */ 3757 unsigned long get_state_synchronize_rcu(void) 3758 { 3759 /* 3760 * Any prior manipulation of RCU-protected data must happen 3761 * before the load from ->gp_seq. 3762 */ 3763 smp_mb(); /* ^^^ */ 3764 return rcu_seq_snap(&rcu_state.gp_seq); 3765 } 3766 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3767 3768 /** 3769 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3770 * 3771 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3772 * or poll_state_synchronize_rcu() to determine whether or not a full 3773 * grace period has elapsed in the meantime. If the needed grace period 3774 * is not already slated to start, notifies RCU core of the need for that 3775 * grace period. 3776 * 3777 * Interrupts must be enabled for the case where it is necessary to awaken 3778 * the grace-period kthread. 3779 */ 3780 unsigned long start_poll_synchronize_rcu(void) 3781 { 3782 unsigned long flags; 3783 unsigned long gp_seq = get_state_synchronize_rcu(); 3784 bool needwake; 3785 struct rcu_data *rdp; 3786 struct rcu_node *rnp; 3787 3788 lockdep_assert_irqs_enabled(); 3789 local_irq_save(flags); 3790 rdp = this_cpu_ptr(&rcu_data); 3791 rnp = rdp->mynode; 3792 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3793 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3794 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3795 if (needwake) 3796 rcu_gp_kthread_wake(); 3797 return gp_seq; 3798 } 3799 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3800 3801 /** 3802 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3803 * 3804 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3805 * 3806 * If a full RCU grace period has elapsed since the earlier call from 3807 * which oldstate was obtained, return @true, otherwise return @false. 3808 * If @false is returned, it is the caller's responsibility to invoke this 3809 * function later on until it does return @true. Alternatively, the caller 3810 * can explicitly wait for a grace period, for example, by passing @oldstate 3811 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3812 * 3813 * Yes, this function does not take counter wrap into account. 3814 * But counter wrap is harmless. If the counter wraps, we have waited for 3815 * more than 2 billion grace periods (and way more on a 64-bit system!). 3816 * Those needing to keep oldstate values for very long time periods 3817 * (many hours even on 32-bit systems) should check them occasionally 3818 * and either refresh them or set a flag indicating that the grace period 3819 * has completed. 3820 * 3821 * This function provides the same memory-ordering guarantees that 3822 * would be provided by a synchronize_rcu() that was invoked at the call 3823 * to the function that provided @oldstate, and that returned at the end 3824 * of this function. 3825 */ 3826 bool poll_state_synchronize_rcu(unsigned long oldstate) 3827 { 3828 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3829 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3830 return true; 3831 } 3832 return false; 3833 } 3834 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3835 3836 /** 3837 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3838 * 3839 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3840 * 3841 * If a full RCU grace period has elapsed since the earlier call to 3842 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3843 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3844 * 3845 * Yes, this function does not take counter wrap into account. But 3846 * counter wrap is harmless. If the counter wraps, we have waited for 3847 * more than 2 billion grace periods (and way more on a 64-bit system!), 3848 * so waiting for one additional grace period should be just fine. 3849 * 3850 * This function provides the same memory-ordering guarantees that 3851 * would be provided by a synchronize_rcu() that was invoked at the call 3852 * to the function that provided @oldstate, and that returned at the end 3853 * of this function. 3854 */ 3855 void cond_synchronize_rcu(unsigned long oldstate) 3856 { 3857 if (!poll_state_synchronize_rcu(oldstate)) 3858 synchronize_rcu(); 3859 } 3860 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3861 3862 /* 3863 * Check to see if there is any immediate RCU-related work to be done by 3864 * the current CPU, returning 1 if so and zero otherwise. The checks are 3865 * in order of increasing expense: checks that can be carried out against 3866 * CPU-local state are performed first. However, we must check for CPU 3867 * stalls first, else we might not get a chance. 3868 */ 3869 static int rcu_pending(int user) 3870 { 3871 bool gp_in_progress; 3872 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3873 struct rcu_node *rnp = rdp->mynode; 3874 3875 lockdep_assert_irqs_disabled(); 3876 3877 /* Check for CPU stalls, if enabled. */ 3878 check_cpu_stall(rdp); 3879 3880 /* Does this CPU need a deferred NOCB wakeup? */ 3881 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3882 return 1; 3883 3884 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3885 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3886 return 0; 3887 3888 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3889 gp_in_progress = rcu_gp_in_progress(); 3890 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3891 return 1; 3892 3893 /* Does this CPU have callbacks ready to invoke? */ 3894 if (!rcu_rdp_is_offloaded(rdp) && 3895 rcu_segcblist_ready_cbs(&rdp->cblist)) 3896 return 1; 3897 3898 /* Has RCU gone idle with this CPU needing another grace period? */ 3899 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3900 !rcu_rdp_is_offloaded(rdp) && 3901 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3902 return 1; 3903 3904 /* Have RCU grace period completed or started? */ 3905 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3906 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3907 return 1; 3908 3909 /* nothing to do */ 3910 return 0; 3911 } 3912 3913 /* 3914 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3915 * the compiler is expected to optimize this away. 3916 */ 3917 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3918 { 3919 trace_rcu_barrier(rcu_state.name, s, cpu, 3920 atomic_read(&rcu_state.barrier_cpu_count), done); 3921 } 3922 3923 /* 3924 * RCU callback function for rcu_barrier(). If we are last, wake 3925 * up the task executing rcu_barrier(). 3926 * 3927 * Note that the value of rcu_state.barrier_sequence must be captured 3928 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3929 * other CPUs might count the value down to zero before this CPU gets 3930 * around to invoking rcu_barrier_trace(), which might result in bogus 3931 * data from the next instance of rcu_barrier(). 3932 */ 3933 static void rcu_barrier_callback(struct rcu_head *rhp) 3934 { 3935 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3936 3937 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3938 rcu_barrier_trace(TPS("LastCB"), -1, s); 3939 complete(&rcu_state.barrier_completion); 3940 } else { 3941 rcu_barrier_trace(TPS("CB"), -1, s); 3942 } 3943 } 3944 3945 /* 3946 * Called with preemption disabled, and from cross-cpu IRQ context. 3947 */ 3948 static void rcu_barrier_func(void *cpu_in) 3949 { 3950 uintptr_t cpu = (uintptr_t)cpu_in; 3951 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3952 3953 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3954 rdp->barrier_head.func = rcu_barrier_callback; 3955 debug_rcu_head_queue(&rdp->barrier_head); 3956 rcu_nocb_lock(rdp); 3957 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3958 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3959 atomic_inc(&rcu_state.barrier_cpu_count); 3960 } else { 3961 debug_rcu_head_unqueue(&rdp->barrier_head); 3962 rcu_barrier_trace(TPS("IRQNQ"), -1, 3963 rcu_state.barrier_sequence); 3964 } 3965 rcu_nocb_unlock(rdp); 3966 } 3967 3968 /** 3969 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3970 * 3971 * Note that this primitive does not necessarily wait for an RCU grace period 3972 * to complete. For example, if there are no RCU callbacks queued anywhere 3973 * in the system, then rcu_barrier() is within its rights to return 3974 * immediately, without waiting for anything, much less an RCU grace period. 3975 */ 3976 void rcu_barrier(void) 3977 { 3978 uintptr_t cpu; 3979 struct rcu_data *rdp; 3980 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3981 3982 rcu_barrier_trace(TPS("Begin"), -1, s); 3983 3984 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3985 mutex_lock(&rcu_state.barrier_mutex); 3986 3987 /* Did someone else do our work for us? */ 3988 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3989 rcu_barrier_trace(TPS("EarlyExit"), -1, 3990 rcu_state.barrier_sequence); 3991 smp_mb(); /* caller's subsequent code after above check. */ 3992 mutex_unlock(&rcu_state.barrier_mutex); 3993 return; 3994 } 3995 3996 /* Mark the start of the barrier operation. */ 3997 rcu_seq_start(&rcu_state.barrier_sequence); 3998 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3999 4000 /* 4001 * Initialize the count to two rather than to zero in order 4002 * to avoid a too-soon return to zero in case of an immediate 4003 * invocation of the just-enqueued callback (or preemption of 4004 * this task). Exclude CPU-hotplug operations to ensure that no 4005 * offline non-offloaded CPU has callbacks queued. 4006 */ 4007 init_completion(&rcu_state.barrier_completion); 4008 atomic_set(&rcu_state.barrier_cpu_count, 2); 4009 cpus_read_lock(); 4010 4011 /* 4012 * Force each CPU with callbacks to register a new callback. 4013 * When that callback is invoked, we will know that all of the 4014 * corresponding CPU's preceding callbacks have been invoked. 4015 */ 4016 for_each_possible_cpu(cpu) { 4017 rdp = per_cpu_ptr(&rcu_data, cpu); 4018 if (cpu_is_offline(cpu) && 4019 !rcu_rdp_is_offloaded(rdp)) 4020 continue; 4021 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 4022 rcu_barrier_trace(TPS("OnlineQ"), cpu, 4023 rcu_state.barrier_sequence); 4024 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 4025 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 4026 cpu_is_offline(cpu)) { 4027 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 4028 rcu_state.barrier_sequence); 4029 local_irq_disable(); 4030 rcu_barrier_func((void *)cpu); 4031 local_irq_enable(); 4032 } else if (cpu_is_offline(cpu)) { 4033 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 4034 rcu_state.barrier_sequence); 4035 } else { 4036 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 4037 rcu_state.barrier_sequence); 4038 } 4039 } 4040 cpus_read_unlock(); 4041 4042 /* 4043 * Now that we have an rcu_barrier_callback() callback on each 4044 * CPU, and thus each counted, remove the initial count. 4045 */ 4046 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4047 complete(&rcu_state.barrier_completion); 4048 4049 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4050 wait_for_completion(&rcu_state.barrier_completion); 4051 4052 /* Mark the end of the barrier operation. */ 4053 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4054 rcu_seq_end(&rcu_state.barrier_sequence); 4055 4056 /* Other rcu_barrier() invocations can now safely proceed. */ 4057 mutex_unlock(&rcu_state.barrier_mutex); 4058 } 4059 EXPORT_SYMBOL_GPL(rcu_barrier); 4060 4061 /* 4062 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4063 * first CPU in a given leaf rcu_node structure coming online. The caller 4064 * must hold the corresponding leaf rcu_node ->lock with interrupts 4065 * disabled. 4066 */ 4067 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4068 { 4069 long mask; 4070 long oldmask; 4071 struct rcu_node *rnp = rnp_leaf; 4072 4073 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4074 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4075 for (;;) { 4076 mask = rnp->grpmask; 4077 rnp = rnp->parent; 4078 if (rnp == NULL) 4079 return; 4080 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4081 oldmask = rnp->qsmaskinit; 4082 rnp->qsmaskinit |= mask; 4083 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4084 if (oldmask) 4085 return; 4086 } 4087 } 4088 4089 /* 4090 * Do boot-time initialization of a CPU's per-CPU RCU data. 4091 */ 4092 static void __init 4093 rcu_boot_init_percpu_data(int cpu) 4094 { 4095 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4096 4097 /* Set up local state, ensuring consistent view of global state. */ 4098 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4099 INIT_WORK(&rdp->strict_work, strict_work_handler); 4100 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4101 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4102 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4103 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4104 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4105 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4106 rdp->cpu = cpu; 4107 rcu_boot_init_nocb_percpu_data(rdp); 4108 } 4109 4110 /* 4111 * Invoked early in the CPU-online process, when pretty much all services 4112 * are available. The incoming CPU is not present. 4113 * 4114 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4115 * offline event can be happening at a given time. Note also that we can 4116 * accept some slop in the rsp->gp_seq access due to the fact that this 4117 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4118 * And any offloaded callbacks are being numbered elsewhere. 4119 */ 4120 int rcutree_prepare_cpu(unsigned int cpu) 4121 { 4122 unsigned long flags; 4123 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4124 struct rcu_node *rnp = rcu_get_root(); 4125 4126 /* Set up local state, ensuring consistent view of global state. */ 4127 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4128 rdp->qlen_last_fqs_check = 0; 4129 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4130 rdp->blimit = blimit; 4131 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4132 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4133 4134 /* 4135 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4136 * (re-)initialized. 4137 */ 4138 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4139 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4140 4141 /* 4142 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4143 * propagation up the rcu_node tree will happen at the beginning 4144 * of the next grace period. 4145 */ 4146 rnp = rdp->mynode; 4147 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4148 rdp->beenonline = true; /* We have now been online. */ 4149 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4150 rdp->gp_seq_needed = rdp->gp_seq; 4151 rdp->cpu_no_qs.b.norm = true; 4152 rdp->core_needs_qs = false; 4153 rdp->rcu_iw_pending = false; 4154 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4155 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4156 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4157 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4158 rcu_spawn_one_boost_kthread(rnp); 4159 rcu_spawn_cpu_nocb_kthread(cpu); 4160 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4161 4162 return 0; 4163 } 4164 4165 /* 4166 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4167 */ 4168 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4169 { 4170 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4171 4172 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4173 } 4174 4175 /* 4176 * Near the end of the CPU-online process. Pretty much all services 4177 * enabled, and the CPU is now very much alive. 4178 */ 4179 int rcutree_online_cpu(unsigned int cpu) 4180 { 4181 unsigned long flags; 4182 struct rcu_data *rdp; 4183 struct rcu_node *rnp; 4184 4185 rdp = per_cpu_ptr(&rcu_data, cpu); 4186 rnp = rdp->mynode; 4187 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4188 rnp->ffmask |= rdp->grpmask; 4189 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4190 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4191 return 0; /* Too early in boot for scheduler work. */ 4192 sync_sched_exp_online_cleanup(cpu); 4193 rcutree_affinity_setting(cpu, -1); 4194 4195 // Stop-machine done, so allow nohz_full to disable tick. 4196 tick_dep_clear(TICK_DEP_BIT_RCU); 4197 return 0; 4198 } 4199 4200 /* 4201 * Near the beginning of the process. The CPU is still very much alive 4202 * with pretty much all services enabled. 4203 */ 4204 int rcutree_offline_cpu(unsigned int cpu) 4205 { 4206 unsigned long flags; 4207 struct rcu_data *rdp; 4208 struct rcu_node *rnp; 4209 4210 rdp = per_cpu_ptr(&rcu_data, cpu); 4211 rnp = rdp->mynode; 4212 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4213 rnp->ffmask &= ~rdp->grpmask; 4214 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4215 4216 rcutree_affinity_setting(cpu, cpu); 4217 4218 // nohz_full CPUs need the tick for stop-machine to work quickly 4219 tick_dep_set(TICK_DEP_BIT_RCU); 4220 return 0; 4221 } 4222 4223 /* 4224 * Mark the specified CPU as being online so that subsequent grace periods 4225 * (both expedited and normal) will wait on it. Note that this means that 4226 * incoming CPUs are not allowed to use RCU read-side critical sections 4227 * until this function is called. Failing to observe this restriction 4228 * will result in lockdep splats. 4229 * 4230 * Note that this function is special in that it is invoked directly 4231 * from the incoming CPU rather than from the cpuhp_step mechanism. 4232 * This is because this function must be invoked at a precise location. 4233 */ 4234 void rcu_cpu_starting(unsigned int cpu) 4235 { 4236 unsigned long flags; 4237 unsigned long mask; 4238 struct rcu_data *rdp; 4239 struct rcu_node *rnp; 4240 bool newcpu; 4241 4242 rdp = per_cpu_ptr(&rcu_data, cpu); 4243 if (rdp->cpu_started) 4244 return; 4245 rdp->cpu_started = true; 4246 4247 rnp = rdp->mynode; 4248 mask = rdp->grpmask; 4249 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4250 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4251 rcu_dynticks_eqs_online(); 4252 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4253 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4254 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4255 newcpu = !(rnp->expmaskinitnext & mask); 4256 rnp->expmaskinitnext |= mask; 4257 /* Allow lockless access for expedited grace periods. */ 4258 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4259 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4260 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4261 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4262 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4263 4264 /* An incoming CPU should never be blocking a grace period. */ 4265 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4266 rcu_disable_urgency_upon_qs(rdp); 4267 /* Report QS -after- changing ->qsmaskinitnext! */ 4268 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4269 } else { 4270 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4271 } 4272 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4273 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4274 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4275 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4276 } 4277 4278 /* 4279 * The outgoing function has no further need of RCU, so remove it from 4280 * the rcu_node tree's ->qsmaskinitnext bit masks. 4281 * 4282 * Note that this function is special in that it is invoked directly 4283 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4284 * This is because this function must be invoked at a precise location. 4285 */ 4286 void rcu_report_dead(unsigned int cpu) 4287 { 4288 unsigned long flags; 4289 unsigned long mask; 4290 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4291 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4292 4293 // Do any dangling deferred wakeups. 4294 do_nocb_deferred_wakeup(rdp); 4295 4296 /* QS for any half-done expedited grace period. */ 4297 rcu_report_exp_rdp(rdp); 4298 rcu_preempt_deferred_qs(current); 4299 4300 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4301 mask = rdp->grpmask; 4302 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4303 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4304 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4305 raw_spin_lock(&rcu_state.ofl_lock); 4306 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4307 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4308 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4309 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4310 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4311 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4312 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4313 } 4314 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4315 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4316 raw_spin_unlock(&rcu_state.ofl_lock); 4317 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4318 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4319 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4320 4321 rdp->cpu_started = false; 4322 } 4323 4324 #ifdef CONFIG_HOTPLUG_CPU 4325 /* 4326 * The outgoing CPU has just passed through the dying-idle state, and we 4327 * are being invoked from the CPU that was IPIed to continue the offline 4328 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4329 */ 4330 void rcutree_migrate_callbacks(int cpu) 4331 { 4332 unsigned long flags; 4333 struct rcu_data *my_rdp; 4334 struct rcu_node *my_rnp; 4335 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4336 bool needwake; 4337 4338 if (rcu_rdp_is_offloaded(rdp) || 4339 rcu_segcblist_empty(&rdp->cblist)) 4340 return; /* No callbacks to migrate. */ 4341 4342 local_irq_save(flags); 4343 my_rdp = this_cpu_ptr(&rcu_data); 4344 my_rnp = my_rdp->mynode; 4345 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4346 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4347 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4348 /* Leverage recent GPs and set GP for new callbacks. */ 4349 needwake = rcu_advance_cbs(my_rnp, rdp) || 4350 rcu_advance_cbs(my_rnp, my_rdp); 4351 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4352 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4353 rcu_segcblist_disable(&rdp->cblist); 4354 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4355 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4356 if (rcu_rdp_is_offloaded(my_rdp)) { 4357 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4358 __call_rcu_nocb_wake(my_rdp, true, flags); 4359 } else { 4360 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4361 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4362 } 4363 if (needwake) 4364 rcu_gp_kthread_wake(); 4365 lockdep_assert_irqs_enabled(); 4366 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4367 !rcu_segcblist_empty(&rdp->cblist), 4368 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4369 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4370 rcu_segcblist_first_cb(&rdp->cblist)); 4371 } 4372 #endif 4373 4374 /* 4375 * On non-huge systems, use expedited RCU grace periods to make suspend 4376 * and hibernation run faster. 4377 */ 4378 static int rcu_pm_notify(struct notifier_block *self, 4379 unsigned long action, void *hcpu) 4380 { 4381 switch (action) { 4382 case PM_HIBERNATION_PREPARE: 4383 case PM_SUSPEND_PREPARE: 4384 rcu_expedite_gp(); 4385 break; 4386 case PM_POST_HIBERNATION: 4387 case PM_POST_SUSPEND: 4388 rcu_unexpedite_gp(); 4389 break; 4390 default: 4391 break; 4392 } 4393 return NOTIFY_OK; 4394 } 4395 4396 /* 4397 * Spawn the kthreads that handle RCU's grace periods. 4398 */ 4399 static int __init rcu_spawn_gp_kthread(void) 4400 { 4401 unsigned long flags; 4402 int kthread_prio_in = kthread_prio; 4403 struct rcu_node *rnp; 4404 struct sched_param sp; 4405 struct task_struct *t; 4406 4407 /* Force priority into range. */ 4408 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4409 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4410 kthread_prio = 2; 4411 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4412 kthread_prio = 1; 4413 else if (kthread_prio < 0) 4414 kthread_prio = 0; 4415 else if (kthread_prio > 99) 4416 kthread_prio = 99; 4417 4418 if (kthread_prio != kthread_prio_in) 4419 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4420 kthread_prio, kthread_prio_in); 4421 4422 rcu_scheduler_fully_active = 1; 4423 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4424 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4425 return 0; 4426 if (kthread_prio) { 4427 sp.sched_priority = kthread_prio; 4428 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4429 } 4430 rnp = rcu_get_root(); 4431 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4432 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4433 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4434 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4435 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4436 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4437 wake_up_process(t); 4438 rcu_spawn_nocb_kthreads(); 4439 rcu_spawn_boost_kthreads(); 4440 rcu_spawn_core_kthreads(); 4441 return 0; 4442 } 4443 early_initcall(rcu_spawn_gp_kthread); 4444 4445 /* 4446 * This function is invoked towards the end of the scheduler's 4447 * initialization process. Before this is called, the idle task might 4448 * contain synchronous grace-period primitives (during which time, this idle 4449 * task is booting the system, and such primitives are no-ops). After this 4450 * function is called, any synchronous grace-period primitives are run as 4451 * expedited, with the requesting task driving the grace period forward. 4452 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4453 * runtime RCU functionality. 4454 */ 4455 void rcu_scheduler_starting(void) 4456 { 4457 WARN_ON(num_online_cpus() != 1); 4458 WARN_ON(nr_context_switches() > 0); 4459 rcu_test_sync_prims(); 4460 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4461 rcu_test_sync_prims(); 4462 } 4463 4464 /* 4465 * Helper function for rcu_init() that initializes the rcu_state structure. 4466 */ 4467 static void __init rcu_init_one(void) 4468 { 4469 static const char * const buf[] = RCU_NODE_NAME_INIT; 4470 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4471 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4472 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4473 4474 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4475 int cpustride = 1; 4476 int i; 4477 int j; 4478 struct rcu_node *rnp; 4479 4480 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4481 4482 /* Silence gcc 4.8 false positive about array index out of range. */ 4483 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4484 panic("rcu_init_one: rcu_num_lvls out of range"); 4485 4486 /* Initialize the level-tracking arrays. */ 4487 4488 for (i = 1; i < rcu_num_lvls; i++) 4489 rcu_state.level[i] = 4490 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4491 rcu_init_levelspread(levelspread, num_rcu_lvl); 4492 4493 /* Initialize the elements themselves, starting from the leaves. */ 4494 4495 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4496 cpustride *= levelspread[i]; 4497 rnp = rcu_state.level[i]; 4498 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4499 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4500 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4501 &rcu_node_class[i], buf[i]); 4502 raw_spin_lock_init(&rnp->fqslock); 4503 lockdep_set_class_and_name(&rnp->fqslock, 4504 &rcu_fqs_class[i], fqs[i]); 4505 rnp->gp_seq = rcu_state.gp_seq; 4506 rnp->gp_seq_needed = rcu_state.gp_seq; 4507 rnp->completedqs = rcu_state.gp_seq; 4508 rnp->qsmask = 0; 4509 rnp->qsmaskinit = 0; 4510 rnp->grplo = j * cpustride; 4511 rnp->grphi = (j + 1) * cpustride - 1; 4512 if (rnp->grphi >= nr_cpu_ids) 4513 rnp->grphi = nr_cpu_ids - 1; 4514 if (i == 0) { 4515 rnp->grpnum = 0; 4516 rnp->grpmask = 0; 4517 rnp->parent = NULL; 4518 } else { 4519 rnp->grpnum = j % levelspread[i - 1]; 4520 rnp->grpmask = BIT(rnp->grpnum); 4521 rnp->parent = rcu_state.level[i - 1] + 4522 j / levelspread[i - 1]; 4523 } 4524 rnp->level = i; 4525 INIT_LIST_HEAD(&rnp->blkd_tasks); 4526 rcu_init_one_nocb(rnp); 4527 init_waitqueue_head(&rnp->exp_wq[0]); 4528 init_waitqueue_head(&rnp->exp_wq[1]); 4529 init_waitqueue_head(&rnp->exp_wq[2]); 4530 init_waitqueue_head(&rnp->exp_wq[3]); 4531 spin_lock_init(&rnp->exp_lock); 4532 } 4533 } 4534 4535 init_swait_queue_head(&rcu_state.gp_wq); 4536 init_swait_queue_head(&rcu_state.expedited_wq); 4537 rnp = rcu_first_leaf_node(); 4538 for_each_possible_cpu(i) { 4539 while (i > rnp->grphi) 4540 rnp++; 4541 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4542 rcu_boot_init_percpu_data(i); 4543 } 4544 } 4545 4546 /* 4547 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4548 * replace the definitions in tree.h because those are needed to size 4549 * the ->node array in the rcu_state structure. 4550 */ 4551 void rcu_init_geometry(void) 4552 { 4553 ulong d; 4554 int i; 4555 static unsigned long old_nr_cpu_ids; 4556 int rcu_capacity[RCU_NUM_LVLS]; 4557 static bool initialized; 4558 4559 if (initialized) { 4560 /* 4561 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4562 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4563 */ 4564 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4565 return; 4566 } 4567 4568 old_nr_cpu_ids = nr_cpu_ids; 4569 initialized = true; 4570 4571 /* 4572 * Initialize any unspecified boot parameters. 4573 * The default values of jiffies_till_first_fqs and 4574 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4575 * value, which is a function of HZ, then adding one for each 4576 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4577 */ 4578 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4579 if (jiffies_till_first_fqs == ULONG_MAX) 4580 jiffies_till_first_fqs = d; 4581 if (jiffies_till_next_fqs == ULONG_MAX) 4582 jiffies_till_next_fqs = d; 4583 adjust_jiffies_till_sched_qs(); 4584 4585 /* If the compile-time values are accurate, just leave. */ 4586 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4587 nr_cpu_ids == NR_CPUS) 4588 return; 4589 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4590 rcu_fanout_leaf, nr_cpu_ids); 4591 4592 /* 4593 * The boot-time rcu_fanout_leaf parameter must be at least two 4594 * and cannot exceed the number of bits in the rcu_node masks. 4595 * Complain and fall back to the compile-time values if this 4596 * limit is exceeded. 4597 */ 4598 if (rcu_fanout_leaf < 2 || 4599 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4600 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4601 WARN_ON(1); 4602 return; 4603 } 4604 4605 /* 4606 * Compute number of nodes that can be handled an rcu_node tree 4607 * with the given number of levels. 4608 */ 4609 rcu_capacity[0] = rcu_fanout_leaf; 4610 for (i = 1; i < RCU_NUM_LVLS; i++) 4611 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4612 4613 /* 4614 * The tree must be able to accommodate the configured number of CPUs. 4615 * If this limit is exceeded, fall back to the compile-time values. 4616 */ 4617 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4618 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4619 WARN_ON(1); 4620 return; 4621 } 4622 4623 /* Calculate the number of levels in the tree. */ 4624 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4625 } 4626 rcu_num_lvls = i + 1; 4627 4628 /* Calculate the number of rcu_nodes at each level of the tree. */ 4629 for (i = 0; i < rcu_num_lvls; i++) { 4630 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4631 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4632 } 4633 4634 /* Calculate the total number of rcu_node structures. */ 4635 rcu_num_nodes = 0; 4636 for (i = 0; i < rcu_num_lvls; i++) 4637 rcu_num_nodes += num_rcu_lvl[i]; 4638 } 4639 4640 /* 4641 * Dump out the structure of the rcu_node combining tree associated 4642 * with the rcu_state structure. 4643 */ 4644 static void __init rcu_dump_rcu_node_tree(void) 4645 { 4646 int level = 0; 4647 struct rcu_node *rnp; 4648 4649 pr_info("rcu_node tree layout dump\n"); 4650 pr_info(" "); 4651 rcu_for_each_node_breadth_first(rnp) { 4652 if (rnp->level != level) { 4653 pr_cont("\n"); 4654 pr_info(" "); 4655 level = rnp->level; 4656 } 4657 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4658 } 4659 pr_cont("\n"); 4660 } 4661 4662 struct workqueue_struct *rcu_gp_wq; 4663 struct workqueue_struct *rcu_par_gp_wq; 4664 4665 static void __init kfree_rcu_batch_init(void) 4666 { 4667 int cpu; 4668 int i; 4669 4670 /* Clamp it to [0:100] seconds interval. */ 4671 if (rcu_delay_page_cache_fill_msec < 0 || 4672 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4673 4674 rcu_delay_page_cache_fill_msec = 4675 clamp(rcu_delay_page_cache_fill_msec, 0, 4676 (int) (100 * MSEC_PER_SEC)); 4677 4678 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4679 rcu_delay_page_cache_fill_msec); 4680 } 4681 4682 for_each_possible_cpu(cpu) { 4683 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4684 4685 for (i = 0; i < KFREE_N_BATCHES; i++) { 4686 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4687 krcp->krw_arr[i].krcp = krcp; 4688 } 4689 4690 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4691 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4692 krcp->initialized = true; 4693 } 4694 if (register_shrinker(&kfree_rcu_shrinker)) 4695 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4696 } 4697 4698 void __init rcu_init(void) 4699 { 4700 int cpu; 4701 4702 rcu_early_boot_tests(); 4703 4704 kfree_rcu_batch_init(); 4705 rcu_bootup_announce(); 4706 rcu_init_geometry(); 4707 rcu_init_one(); 4708 if (dump_tree) 4709 rcu_dump_rcu_node_tree(); 4710 if (use_softirq) 4711 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4712 4713 /* 4714 * We don't need protection against CPU-hotplug here because 4715 * this is called early in boot, before either interrupts 4716 * or the scheduler are operational. 4717 */ 4718 pm_notifier(rcu_pm_notify, 0); 4719 for_each_online_cpu(cpu) { 4720 rcutree_prepare_cpu(cpu); 4721 rcu_cpu_starting(cpu); 4722 rcutree_online_cpu(cpu); 4723 } 4724 4725 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4726 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4727 WARN_ON(!rcu_gp_wq); 4728 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4729 WARN_ON(!rcu_par_gp_wq); 4730 4731 /* Fill in default value for rcutree.qovld boot parameter. */ 4732 /* -After- the rcu_node ->lock fields are initialized! */ 4733 if (qovld < 0) 4734 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4735 else 4736 qovld_calc = qovld; 4737 } 4738 4739 #include "tree_stall.h" 4740 #include "tree_exp.h" 4741 #include "tree_nocb.h" 4742 #include "tree_plugin.h" 4743