1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 101 .orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \ 102 .orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \ 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 104 .name = RCU_STATE_NAME(sname), \ 105 .abbr = sabbr, \ 106 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 107 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 108 } 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *const rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Dump rcu_node combining tree at boot to verify correct setup. */ 117 static bool dump_tree; 118 module_param(dump_tree, bool, 0444); 119 /* Control rcu_node-tree auto-balancing at boot time. */ 120 static bool rcu_fanout_exact; 121 module_param(rcu_fanout_exact, bool, 0444); 122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 124 module_param(rcu_fanout_leaf, int, 0444); 125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 126 /* Number of rcu_nodes at specified level. */ 127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 129 /* panic() on RCU Stall sysctl. */ 130 int sysctl_panic_on_rcu_stall __read_mostly; 131 132 /* 133 * The rcu_scheduler_active variable is initialized to the value 134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 136 * RCU can assume that there is but one task, allowing RCU to (for example) 137 * optimize synchronize_rcu() to a simple barrier(). When this variable 138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 139 * to detect real grace periods. This variable is also used to suppress 140 * boot-time false positives from lockdep-RCU error checking. Finally, it 141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 142 * is fully initialized, including all of its kthreads having been spawned. 143 */ 144 int rcu_scheduler_active __read_mostly; 145 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 146 147 /* 148 * The rcu_scheduler_fully_active variable transitions from zero to one 149 * during the early_initcall() processing, which is after the scheduler 150 * is capable of creating new tasks. So RCU processing (for example, 151 * creating tasks for RCU priority boosting) must be delayed until after 152 * rcu_scheduler_fully_active transitions from zero to one. We also 153 * currently delay invocation of any RCU callbacks until after this point. 154 * 155 * It might later prove better for people registering RCU callbacks during 156 * early boot to take responsibility for these callbacks, but one step at 157 * a time. 158 */ 159 static int rcu_scheduler_fully_active __read_mostly; 160 161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 164 static void invoke_rcu_core(void); 165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 166 static void rcu_report_exp_rdp(struct rcu_state *rsp, 167 struct rcu_data *rdp, bool wake); 168 static void sync_sched_exp_online_cleanup(int cpu); 169 170 /* rcuc/rcub kthread realtime priority */ 171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 172 module_param(kthread_prio, int, 0644); 173 174 /* Delay in jiffies for grace-period initialization delays, debug only. */ 175 176 static int gp_preinit_delay; 177 module_param(gp_preinit_delay, int, 0444); 178 static int gp_init_delay; 179 module_param(gp_init_delay, int, 0444); 180 static int gp_cleanup_delay; 181 module_param(gp_cleanup_delay, int, 0444); 182 183 /* 184 * Number of grace periods between delays, normalized by the duration of 185 * the delay. The longer the delay, the more the grace periods between 186 * each delay. The reason for this normalization is that it means that, 187 * for non-zero delays, the overall slowdown of grace periods is constant 188 * regardless of the duration of the delay. This arrangement balances 189 * the need for long delays to increase some race probabilities with the 190 * need for fast grace periods to increase other race probabilities. 191 */ 192 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 193 194 /* 195 * Track the rcutorture test sequence number and the update version 196 * number within a given test. The rcutorture_testseq is incremented 197 * on every rcutorture module load and unload, so has an odd value 198 * when a test is running. The rcutorture_vernum is set to zero 199 * when rcutorture starts and is incremented on each rcutorture update. 200 * These variables enable correlating rcutorture output with the 201 * RCU tracing information. 202 */ 203 unsigned long rcutorture_testseq; 204 unsigned long rcutorture_vernum; 205 206 /* 207 * Compute the mask of online CPUs for the specified rcu_node structure. 208 * This will not be stable unless the rcu_node structure's ->lock is 209 * held, but the bit corresponding to the current CPU will be stable 210 * in most contexts. 211 */ 212 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 213 { 214 return READ_ONCE(rnp->qsmaskinitnext); 215 } 216 217 /* 218 * Return true if an RCU grace period is in progress. The READ_ONCE()s 219 * permit this function to be invoked without holding the root rcu_node 220 * structure's ->lock, but of course results can be subject to change. 221 */ 222 static int rcu_gp_in_progress(struct rcu_state *rsp) 223 { 224 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 225 } 226 227 /* 228 * Note a quiescent state. Because we do not need to know 229 * how many quiescent states passed, just if there was at least 230 * one since the start of the grace period, this just sets a flag. 231 * The caller must have disabled preemption. 232 */ 233 void rcu_sched_qs(void) 234 { 235 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 236 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 237 return; 238 trace_rcu_grace_period(TPS("rcu_sched"), 239 __this_cpu_read(rcu_sched_data.gpnum), 240 TPS("cpuqs")); 241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 242 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 243 return; 244 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 245 rcu_report_exp_rdp(&rcu_sched_state, 246 this_cpu_ptr(&rcu_sched_data), true); 247 } 248 249 void rcu_bh_qs(void) 250 { 251 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 252 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 253 trace_rcu_grace_period(TPS("rcu_bh"), 254 __this_cpu_read(rcu_bh_data.gpnum), 255 TPS("cpuqs")); 256 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 257 } 258 } 259 260 /* 261 * Steal a bit from the bottom of ->dynticks for idle entry/exit 262 * control. Initially this is for TLB flushing. 263 */ 264 #define RCU_DYNTICK_CTRL_MASK 0x1 265 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 266 #ifndef rcu_eqs_special_exit 267 #define rcu_eqs_special_exit() do { } while (0) 268 #endif 269 270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 271 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 272 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 273 }; 274 275 /* 276 * There's a few places, currently just in the tracing infrastructure, 277 * that uses rcu_irq_enter() to make sure RCU is watching. But there's 278 * a small location where that will not even work. In those cases 279 * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter() 280 * can be called. 281 */ 282 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter); 283 284 bool rcu_irq_enter_disabled(void) 285 { 286 return this_cpu_read(disable_rcu_irq_enter); 287 } 288 289 /* 290 * Record entry into an extended quiescent state. This is only to be 291 * called when not already in an extended quiescent state. 292 */ 293 static void rcu_dynticks_eqs_enter(void) 294 { 295 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 296 int seq; 297 298 /* 299 * CPUs seeing atomic_add_return() must see prior RCU read-side 300 * critical sections, and we also must force ordering with the 301 * next idle sojourn. 302 */ 303 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 304 /* Better be in an extended quiescent state! */ 305 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 306 (seq & RCU_DYNTICK_CTRL_CTR)); 307 /* Better not have special action (TLB flush) pending! */ 308 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 309 (seq & RCU_DYNTICK_CTRL_MASK)); 310 } 311 312 /* 313 * Record exit from an extended quiescent state. This is only to be 314 * called from an extended quiescent state. 315 */ 316 static void rcu_dynticks_eqs_exit(void) 317 { 318 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 319 int seq; 320 321 /* 322 * CPUs seeing atomic_add_return() must see prior idle sojourns, 323 * and we also must force ordering with the next RCU read-side 324 * critical section. 325 */ 326 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 327 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 328 !(seq & RCU_DYNTICK_CTRL_CTR)); 329 if (seq & RCU_DYNTICK_CTRL_MASK) { 330 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 331 smp_mb__after_atomic(); /* _exit after clearing mask. */ 332 /* Prefer duplicate flushes to losing a flush. */ 333 rcu_eqs_special_exit(); 334 } 335 } 336 337 /* 338 * Reset the current CPU's ->dynticks counter to indicate that the 339 * newly onlined CPU is no longer in an extended quiescent state. 340 * This will either leave the counter unchanged, or increment it 341 * to the next non-quiescent value. 342 * 343 * The non-atomic test/increment sequence works because the upper bits 344 * of the ->dynticks counter are manipulated only by the corresponding CPU, 345 * or when the corresponding CPU is offline. 346 */ 347 static void rcu_dynticks_eqs_online(void) 348 { 349 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 350 351 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 352 return; 353 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 354 } 355 356 /* 357 * Is the current CPU in an extended quiescent state? 358 * 359 * No ordering, as we are sampling CPU-local information. 360 */ 361 bool rcu_dynticks_curr_cpu_in_eqs(void) 362 { 363 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 364 365 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 366 } 367 368 /* 369 * Snapshot the ->dynticks counter with full ordering so as to allow 370 * stable comparison of this counter with past and future snapshots. 371 */ 372 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 373 { 374 int snap = atomic_add_return(0, &rdtp->dynticks); 375 376 return snap & ~RCU_DYNTICK_CTRL_MASK; 377 } 378 379 /* 380 * Return true if the snapshot returned from rcu_dynticks_snap() 381 * indicates that RCU is in an extended quiescent state. 382 */ 383 static bool rcu_dynticks_in_eqs(int snap) 384 { 385 return !(snap & RCU_DYNTICK_CTRL_CTR); 386 } 387 388 /* 389 * Return true if the CPU corresponding to the specified rcu_dynticks 390 * structure has spent some time in an extended quiescent state since 391 * rcu_dynticks_snap() returned the specified snapshot. 392 */ 393 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 394 { 395 return snap != rcu_dynticks_snap(rdtp); 396 } 397 398 /* 399 * Do a double-increment of the ->dynticks counter to emulate a 400 * momentary idle-CPU quiescent state. 401 */ 402 static void rcu_dynticks_momentary_idle(void) 403 { 404 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 405 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 406 &rdtp->dynticks); 407 408 /* It is illegal to call this from idle state. */ 409 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 410 } 411 412 /* 413 * Set the special (bottom) bit of the specified CPU so that it 414 * will take special action (such as flushing its TLB) on the 415 * next exit from an extended quiescent state. Returns true if 416 * the bit was successfully set, or false if the CPU was not in 417 * an extended quiescent state. 418 */ 419 bool rcu_eqs_special_set(int cpu) 420 { 421 int old; 422 int new; 423 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 424 425 do { 426 old = atomic_read(&rdtp->dynticks); 427 if (old & RCU_DYNTICK_CTRL_CTR) 428 return false; 429 new = old | RCU_DYNTICK_CTRL_MASK; 430 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 431 return true; 432 } 433 434 /* 435 * Let the RCU core know that this CPU has gone through the scheduler, 436 * which is a quiescent state. This is called when the need for a 437 * quiescent state is urgent, so we burn an atomic operation and full 438 * memory barriers to let the RCU core know about it, regardless of what 439 * this CPU might (or might not) do in the near future. 440 * 441 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 442 * 443 * The caller must have disabled interrupts. 444 */ 445 static void rcu_momentary_dyntick_idle(void) 446 { 447 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 448 rcu_dynticks_momentary_idle(); 449 } 450 451 /* 452 * Note a context switch. This is a quiescent state for RCU-sched, 453 * and requires special handling for preemptible RCU. 454 * The caller must have disabled interrupts. 455 */ 456 void rcu_note_context_switch(bool preempt) 457 { 458 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 459 trace_rcu_utilization(TPS("Start context switch")); 460 rcu_sched_qs(); 461 rcu_preempt_note_context_switch(preempt); 462 /* Load rcu_urgent_qs before other flags. */ 463 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 464 goto out; 465 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 466 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 467 rcu_momentary_dyntick_idle(); 468 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 469 if (!preempt) 470 rcu_note_voluntary_context_switch_lite(current); 471 out: 472 trace_rcu_utilization(TPS("End context switch")); 473 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 474 } 475 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 476 477 /* 478 * Register a quiescent state for all RCU flavors. If there is an 479 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 480 * dyntick-idle quiescent state visible to other CPUs (but only for those 481 * RCU flavors in desperate need of a quiescent state, which will normally 482 * be none of them). Either way, do a lightweight quiescent state for 483 * all RCU flavors. 484 * 485 * The barrier() calls are redundant in the common case when this is 486 * called externally, but just in case this is called from within this 487 * file. 488 * 489 */ 490 void rcu_all_qs(void) 491 { 492 unsigned long flags; 493 494 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 495 return; 496 preempt_disable(); 497 /* Load rcu_urgent_qs before other flags. */ 498 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 499 preempt_enable(); 500 return; 501 } 502 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 503 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 504 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 505 local_irq_save(flags); 506 rcu_momentary_dyntick_idle(); 507 local_irq_restore(flags); 508 } 509 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 510 rcu_sched_qs(); 511 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 512 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 513 preempt_enable(); 514 } 515 EXPORT_SYMBOL_GPL(rcu_all_qs); 516 517 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 518 static long blimit = DEFAULT_RCU_BLIMIT; 519 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 520 static long qhimark = DEFAULT_RCU_QHIMARK; 521 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 522 static long qlowmark = DEFAULT_RCU_QLOMARK; 523 524 module_param(blimit, long, 0444); 525 module_param(qhimark, long, 0444); 526 module_param(qlowmark, long, 0444); 527 528 static ulong jiffies_till_first_fqs = ULONG_MAX; 529 static ulong jiffies_till_next_fqs = ULONG_MAX; 530 static bool rcu_kick_kthreads; 531 532 module_param(jiffies_till_first_fqs, ulong, 0644); 533 module_param(jiffies_till_next_fqs, ulong, 0644); 534 module_param(rcu_kick_kthreads, bool, 0644); 535 536 /* 537 * How long the grace period must be before we start recruiting 538 * quiescent-state help from rcu_note_context_switch(). 539 */ 540 static ulong jiffies_till_sched_qs = HZ / 20; 541 module_param(jiffies_till_sched_qs, ulong, 0644); 542 543 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 544 struct rcu_data *rdp); 545 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 546 static void force_quiescent_state(struct rcu_state *rsp); 547 static int rcu_pending(void); 548 549 /* 550 * Return the number of RCU batches started thus far for debug & stats. 551 */ 552 unsigned long rcu_batches_started(void) 553 { 554 return rcu_state_p->gpnum; 555 } 556 EXPORT_SYMBOL_GPL(rcu_batches_started); 557 558 /* 559 * Return the number of RCU-sched batches started thus far for debug & stats. 560 */ 561 unsigned long rcu_batches_started_sched(void) 562 { 563 return rcu_sched_state.gpnum; 564 } 565 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 566 567 /* 568 * Return the number of RCU BH batches started thus far for debug & stats. 569 */ 570 unsigned long rcu_batches_started_bh(void) 571 { 572 return rcu_bh_state.gpnum; 573 } 574 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 575 576 /* 577 * Return the number of RCU batches completed thus far for debug & stats. 578 */ 579 unsigned long rcu_batches_completed(void) 580 { 581 return rcu_state_p->completed; 582 } 583 EXPORT_SYMBOL_GPL(rcu_batches_completed); 584 585 /* 586 * Return the number of RCU-sched batches completed thus far for debug & stats. 587 */ 588 unsigned long rcu_batches_completed_sched(void) 589 { 590 return rcu_sched_state.completed; 591 } 592 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 593 594 /* 595 * Return the number of RCU BH batches completed thus far for debug & stats. 596 */ 597 unsigned long rcu_batches_completed_bh(void) 598 { 599 return rcu_bh_state.completed; 600 } 601 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 602 603 /* 604 * Return the number of RCU expedited batches completed thus far for 605 * debug & stats. Odd numbers mean that a batch is in progress, even 606 * numbers mean idle. The value returned will thus be roughly double 607 * the cumulative batches since boot. 608 */ 609 unsigned long rcu_exp_batches_completed(void) 610 { 611 return rcu_state_p->expedited_sequence; 612 } 613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 614 615 /* 616 * Return the number of RCU-sched expedited batches completed thus far 617 * for debug & stats. Similar to rcu_exp_batches_completed(). 618 */ 619 unsigned long rcu_exp_batches_completed_sched(void) 620 { 621 return rcu_sched_state.expedited_sequence; 622 } 623 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 624 625 /* 626 * Force a quiescent state. 627 */ 628 void rcu_force_quiescent_state(void) 629 { 630 force_quiescent_state(rcu_state_p); 631 } 632 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 633 634 /* 635 * Force a quiescent state for RCU BH. 636 */ 637 void rcu_bh_force_quiescent_state(void) 638 { 639 force_quiescent_state(&rcu_bh_state); 640 } 641 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 642 643 /* 644 * Force a quiescent state for RCU-sched. 645 */ 646 void rcu_sched_force_quiescent_state(void) 647 { 648 force_quiescent_state(&rcu_sched_state); 649 } 650 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 651 652 /* 653 * Show the state of the grace-period kthreads. 654 */ 655 void show_rcu_gp_kthreads(void) 656 { 657 struct rcu_state *rsp; 658 659 for_each_rcu_flavor(rsp) { 660 pr_info("%s: wait state: %d ->state: %#lx\n", 661 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 662 /* sched_show_task(rsp->gp_kthread); */ 663 } 664 } 665 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 666 667 /* 668 * Record the number of times rcutorture tests have been initiated and 669 * terminated. This information allows the debugfs tracing stats to be 670 * correlated to the rcutorture messages, even when the rcutorture module 671 * is being repeatedly loaded and unloaded. In other words, we cannot 672 * store this state in rcutorture itself. 673 */ 674 void rcutorture_record_test_transition(void) 675 { 676 rcutorture_testseq++; 677 rcutorture_vernum = 0; 678 } 679 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 680 681 /* 682 * Send along grace-period-related data for rcutorture diagnostics. 683 */ 684 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 685 unsigned long *gpnum, unsigned long *completed) 686 { 687 struct rcu_state *rsp = NULL; 688 689 switch (test_type) { 690 case RCU_FLAVOR: 691 rsp = rcu_state_p; 692 break; 693 case RCU_BH_FLAVOR: 694 rsp = &rcu_bh_state; 695 break; 696 case RCU_SCHED_FLAVOR: 697 rsp = &rcu_sched_state; 698 break; 699 default: 700 break; 701 } 702 if (rsp == NULL) 703 return; 704 *flags = READ_ONCE(rsp->gp_flags); 705 *gpnum = READ_ONCE(rsp->gpnum); 706 *completed = READ_ONCE(rsp->completed); 707 } 708 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 709 710 /* 711 * Record the number of writer passes through the current rcutorture test. 712 * This is also used to correlate debugfs tracing stats with the rcutorture 713 * messages. 714 */ 715 void rcutorture_record_progress(unsigned long vernum) 716 { 717 rcutorture_vernum++; 718 } 719 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 720 721 /* 722 * Return the root node of the specified rcu_state structure. 723 */ 724 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 725 { 726 return &rsp->node[0]; 727 } 728 729 /* 730 * Is there any need for future grace periods? 731 * Interrupts must be disabled. If the caller does not hold the root 732 * rnp_node structure's ->lock, the results are advisory only. 733 */ 734 static int rcu_future_needs_gp(struct rcu_state *rsp) 735 { 736 struct rcu_node *rnp = rcu_get_root(rsp); 737 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 738 int *fp = &rnp->need_future_gp[idx]; 739 740 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!"); 741 return READ_ONCE(*fp); 742 } 743 744 /* 745 * Does the current CPU require a not-yet-started grace period? 746 * The caller must have disabled interrupts to prevent races with 747 * normal callback registry. 748 */ 749 static bool 750 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 751 { 752 RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!"); 753 if (rcu_gp_in_progress(rsp)) 754 return false; /* No, a grace period is already in progress. */ 755 if (rcu_future_needs_gp(rsp)) 756 return true; /* Yes, a no-CBs CPU needs one. */ 757 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 758 return false; /* No, this is a no-CBs (or offline) CPU. */ 759 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 760 return true; /* Yes, CPU has newly registered callbacks. */ 761 if (rcu_segcblist_future_gp_needed(&rdp->cblist, 762 READ_ONCE(rsp->completed))) 763 return true; /* Yes, CBs for future grace period. */ 764 return false; /* No grace period needed. */ 765 } 766 767 /* 768 * rcu_eqs_enter_common - current CPU is entering an extended quiescent state 769 * 770 * Enter idle, doing appropriate accounting. The caller must have 771 * disabled interrupts. 772 */ 773 static void rcu_eqs_enter_common(bool user) 774 { 775 struct rcu_state *rsp; 776 struct rcu_data *rdp; 777 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 778 779 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!"); 780 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0); 781 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 782 !user && !is_idle_task(current)) { 783 struct task_struct *idle __maybe_unused = 784 idle_task(smp_processor_id()); 785 786 trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0); 787 rcu_ftrace_dump(DUMP_ORIG); 788 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 789 current->pid, current->comm, 790 idle->pid, idle->comm); /* must be idle task! */ 791 } 792 for_each_rcu_flavor(rsp) { 793 rdp = this_cpu_ptr(rsp->rda); 794 do_nocb_deferred_wakeup(rdp); 795 } 796 rcu_prepare_for_idle(); 797 __this_cpu_inc(disable_rcu_irq_enter); 798 rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */ 799 rcu_dynticks_eqs_enter(); /* After this, tracing works again. */ 800 __this_cpu_dec(disable_rcu_irq_enter); 801 rcu_dynticks_task_enter(); 802 803 /* 804 * It is illegal to enter an extended quiescent state while 805 * in an RCU read-side critical section. 806 */ 807 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 808 "Illegal idle entry in RCU read-side critical section."); 809 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), 810 "Illegal idle entry in RCU-bh read-side critical section."); 811 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), 812 "Illegal idle entry in RCU-sched read-side critical section."); 813 } 814 815 /* 816 * Enter an RCU extended quiescent state, which can be either the 817 * idle loop or adaptive-tickless usermode execution. 818 */ 819 static void rcu_eqs_enter(bool user) 820 { 821 struct rcu_dynticks *rdtp; 822 823 rdtp = this_cpu_ptr(&rcu_dynticks); 824 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 825 (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0); 826 if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) 827 rcu_eqs_enter_common(user); 828 else 829 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 830 } 831 832 /** 833 * rcu_idle_enter - inform RCU that current CPU is entering idle 834 * 835 * Enter idle mode, in other words, -leave- the mode in which RCU 836 * read-side critical sections can occur. (Though RCU read-side 837 * critical sections can occur in irq handlers in idle, a possibility 838 * handled by irq_enter() and irq_exit().) 839 * 840 * We crowbar the ->dynticks_nesting field to zero to allow for 841 * the possibility of usermode upcalls having messed up our count 842 * of interrupt nesting level during the prior busy period. 843 */ 844 void rcu_idle_enter(void) 845 { 846 unsigned long flags; 847 848 local_irq_save(flags); 849 rcu_eqs_enter(false); 850 local_irq_restore(flags); 851 } 852 EXPORT_SYMBOL_GPL(rcu_idle_enter); 853 854 #ifdef CONFIG_NO_HZ_FULL 855 /** 856 * rcu_user_enter - inform RCU that we are resuming userspace. 857 * 858 * Enter RCU idle mode right before resuming userspace. No use of RCU 859 * is permitted between this call and rcu_user_exit(). This way the 860 * CPU doesn't need to maintain the tick for RCU maintenance purposes 861 * when the CPU runs in userspace. 862 */ 863 void rcu_user_enter(void) 864 { 865 rcu_eqs_enter(1); 866 } 867 #endif /* CONFIG_NO_HZ_FULL */ 868 869 /** 870 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 871 * 872 * Exit from an interrupt handler, which might possibly result in entering 873 * idle mode, in other words, leaving the mode in which read-side critical 874 * sections can occur. The caller must have disabled interrupts. 875 * 876 * This code assumes that the idle loop never does anything that might 877 * result in unbalanced calls to irq_enter() and irq_exit(). If your 878 * architecture violates this assumption, RCU will give you what you 879 * deserve, good and hard. But very infrequently and irreproducibly. 880 * 881 * Use things like work queues to work around this limitation. 882 * 883 * You have been warned. 884 */ 885 void rcu_irq_exit(void) 886 { 887 struct rcu_dynticks *rdtp; 888 889 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!"); 890 rdtp = this_cpu_ptr(&rcu_dynticks); 891 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 892 rdtp->dynticks_nesting < 1); 893 if (rdtp->dynticks_nesting <= 1) { 894 rcu_eqs_enter_common(true); 895 } else { 896 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1); 897 rdtp->dynticks_nesting--; 898 } 899 } 900 901 /* 902 * Wrapper for rcu_irq_exit() where interrupts are enabled. 903 */ 904 void rcu_irq_exit_irqson(void) 905 { 906 unsigned long flags; 907 908 local_irq_save(flags); 909 rcu_irq_exit(); 910 local_irq_restore(flags); 911 } 912 913 /* 914 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 915 * 916 * If the new value of the ->dynticks_nesting counter was previously zero, 917 * we really have exited idle, and must do the appropriate accounting. 918 * The caller must have disabled interrupts. 919 */ 920 static void rcu_eqs_exit_common(long long oldval, int user) 921 { 922 RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);) 923 924 rcu_dynticks_task_exit(); 925 rcu_dynticks_eqs_exit(); 926 rcu_cleanup_after_idle(); 927 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 928 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 929 !user && !is_idle_task(current)) { 930 struct task_struct *idle __maybe_unused = 931 idle_task(smp_processor_id()); 932 933 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 934 oldval, rdtp->dynticks_nesting); 935 rcu_ftrace_dump(DUMP_ORIG); 936 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 937 current->pid, current->comm, 938 idle->pid, idle->comm); /* must be idle task! */ 939 } 940 } 941 942 /* 943 * Exit an RCU extended quiescent state, which can be either the 944 * idle loop or adaptive-tickless usermode execution. 945 */ 946 static void rcu_eqs_exit(bool user) 947 { 948 struct rcu_dynticks *rdtp; 949 long long oldval; 950 951 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!"); 952 rdtp = this_cpu_ptr(&rcu_dynticks); 953 oldval = rdtp->dynticks_nesting; 954 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 955 if (oldval & DYNTICK_TASK_NEST_MASK) { 956 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 957 } else { 958 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 959 rcu_eqs_exit_common(oldval, user); 960 } 961 } 962 963 /** 964 * rcu_idle_exit - inform RCU that current CPU is leaving idle 965 * 966 * Exit idle mode, in other words, -enter- the mode in which RCU 967 * read-side critical sections can occur. 968 * 969 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 970 * allow for the possibility of usermode upcalls messing up our count 971 * of interrupt nesting level during the busy period that is just 972 * now starting. 973 */ 974 void rcu_idle_exit(void) 975 { 976 unsigned long flags; 977 978 local_irq_save(flags); 979 rcu_eqs_exit(false); 980 local_irq_restore(flags); 981 } 982 EXPORT_SYMBOL_GPL(rcu_idle_exit); 983 984 #ifdef CONFIG_NO_HZ_FULL 985 /** 986 * rcu_user_exit - inform RCU that we are exiting userspace. 987 * 988 * Exit RCU idle mode while entering the kernel because it can 989 * run a RCU read side critical section anytime. 990 */ 991 void rcu_user_exit(void) 992 { 993 rcu_eqs_exit(1); 994 } 995 #endif /* CONFIG_NO_HZ_FULL */ 996 997 /** 998 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 999 * 1000 * Enter an interrupt handler, which might possibly result in exiting 1001 * idle mode, in other words, entering the mode in which read-side critical 1002 * sections can occur. The caller must have disabled interrupts. 1003 * 1004 * Note that the Linux kernel is fully capable of entering an interrupt 1005 * handler that it never exits, for example when doing upcalls to 1006 * user mode! This code assumes that the idle loop never does upcalls to 1007 * user mode. If your architecture does do upcalls from the idle loop (or 1008 * does anything else that results in unbalanced calls to the irq_enter() 1009 * and irq_exit() functions), RCU will give you what you deserve, good 1010 * and hard. But very infrequently and irreproducibly. 1011 * 1012 * Use things like work queues to work around this limitation. 1013 * 1014 * You have been warned. 1015 */ 1016 void rcu_irq_enter(void) 1017 { 1018 struct rcu_dynticks *rdtp; 1019 long long oldval; 1020 1021 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!"); 1022 rdtp = this_cpu_ptr(&rcu_dynticks); 1023 oldval = rdtp->dynticks_nesting; 1024 rdtp->dynticks_nesting++; 1025 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 1026 rdtp->dynticks_nesting == 0); 1027 if (oldval) 1028 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 1029 else 1030 rcu_eqs_exit_common(oldval, true); 1031 } 1032 1033 /* 1034 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1035 */ 1036 void rcu_irq_enter_irqson(void) 1037 { 1038 unsigned long flags; 1039 1040 local_irq_save(flags); 1041 rcu_irq_enter(); 1042 local_irq_restore(flags); 1043 } 1044 1045 /** 1046 * rcu_nmi_enter - inform RCU of entry to NMI context 1047 * 1048 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 1049 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 1050 * that the CPU is active. This implementation permits nested NMIs, as 1051 * long as the nesting level does not overflow an int. (You will probably 1052 * run out of stack space first.) 1053 */ 1054 void rcu_nmi_enter(void) 1055 { 1056 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1057 int incby = 2; 1058 1059 /* Complain about underflow. */ 1060 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 1061 1062 /* 1063 * If idle from RCU viewpoint, atomically increment ->dynticks 1064 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1065 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1066 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1067 * to be in the outermost NMI handler that interrupted an RCU-idle 1068 * period (observation due to Andy Lutomirski). 1069 */ 1070 if (rcu_dynticks_curr_cpu_in_eqs()) { 1071 rcu_dynticks_eqs_exit(); 1072 incby = 1; 1073 } 1074 rdtp->dynticks_nmi_nesting += incby; 1075 barrier(); 1076 } 1077 1078 /** 1079 * rcu_nmi_exit - inform RCU of exit from NMI context 1080 * 1081 * If we are returning from the outermost NMI handler that interrupted an 1082 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 1083 * to let the RCU grace-period handling know that the CPU is back to 1084 * being RCU-idle. 1085 */ 1086 void rcu_nmi_exit(void) 1087 { 1088 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1089 1090 /* 1091 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 1092 * (We are exiting an NMI handler, so RCU better be paying attention 1093 * to us!) 1094 */ 1095 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 1096 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 1097 1098 /* 1099 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 1100 * leave it in non-RCU-idle state. 1101 */ 1102 if (rdtp->dynticks_nmi_nesting != 1) { 1103 rdtp->dynticks_nmi_nesting -= 2; 1104 return; 1105 } 1106 1107 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 1108 rdtp->dynticks_nmi_nesting = 0; 1109 rcu_dynticks_eqs_enter(); 1110 } 1111 1112 /** 1113 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1114 * 1115 * Return true if RCU is watching the running CPU, which means that this 1116 * CPU can safely enter RCU read-side critical sections. In other words, 1117 * if the current CPU is in its idle loop and is neither in an interrupt 1118 * or NMI handler, return true. 1119 */ 1120 bool notrace rcu_is_watching(void) 1121 { 1122 bool ret; 1123 1124 preempt_disable_notrace(); 1125 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1126 preempt_enable_notrace(); 1127 return ret; 1128 } 1129 EXPORT_SYMBOL_GPL(rcu_is_watching); 1130 1131 /* 1132 * If a holdout task is actually running, request an urgent quiescent 1133 * state from its CPU. This is unsynchronized, so migrations can cause 1134 * the request to go to the wrong CPU. Which is OK, all that will happen 1135 * is that the CPU's next context switch will be a bit slower and next 1136 * time around this task will generate another request. 1137 */ 1138 void rcu_request_urgent_qs_task(struct task_struct *t) 1139 { 1140 int cpu; 1141 1142 barrier(); 1143 cpu = task_cpu(t); 1144 if (!task_curr(t)) 1145 return; /* This task is not running on that CPU. */ 1146 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1147 } 1148 1149 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1150 1151 /* 1152 * Is the current CPU online? Disable preemption to avoid false positives 1153 * that could otherwise happen due to the current CPU number being sampled, 1154 * this task being preempted, its old CPU being taken offline, resuming 1155 * on some other CPU, then determining that its old CPU is now offline. 1156 * It is OK to use RCU on an offline processor during initial boot, hence 1157 * the check for rcu_scheduler_fully_active. Note also that it is OK 1158 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1159 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1160 * offline to continue to use RCU for one jiffy after marking itself 1161 * offline in the cpu_online_mask. This leniency is necessary given the 1162 * non-atomic nature of the online and offline processing, for example, 1163 * the fact that a CPU enters the scheduler after completing the teardown 1164 * of the CPU. 1165 * 1166 * This is also why RCU internally marks CPUs online during in the 1167 * preparation phase and offline after the CPU has been taken down. 1168 * 1169 * Disable checking if in an NMI handler because we cannot safely report 1170 * errors from NMI handlers anyway. 1171 */ 1172 bool rcu_lockdep_current_cpu_online(void) 1173 { 1174 struct rcu_data *rdp; 1175 struct rcu_node *rnp; 1176 bool ret; 1177 1178 if (in_nmi()) 1179 return true; 1180 preempt_disable(); 1181 rdp = this_cpu_ptr(&rcu_sched_data); 1182 rnp = rdp->mynode; 1183 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1184 !rcu_scheduler_fully_active; 1185 preempt_enable(); 1186 return ret; 1187 } 1188 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1189 1190 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1191 1192 /** 1193 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1194 * 1195 * If the current CPU is idle or running at a first-level (not nested) 1196 * interrupt from idle, return true. The caller must have at least 1197 * disabled preemption. 1198 */ 1199 static int rcu_is_cpu_rrupt_from_idle(void) 1200 { 1201 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 1202 } 1203 1204 /* 1205 * Snapshot the specified CPU's dynticks counter so that we can later 1206 * credit them with an implicit quiescent state. Return 1 if this CPU 1207 * is in dynticks idle mode, which is an extended quiescent state. 1208 */ 1209 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1210 { 1211 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1212 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1213 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1214 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, 1215 rdp->mynode->gpnum)) 1216 WRITE_ONCE(rdp->gpwrap, true); 1217 return 1; 1218 } 1219 return 0; 1220 } 1221 1222 /* 1223 * Return true if the specified CPU has passed through a quiescent 1224 * state by virtue of being in or having passed through an dynticks 1225 * idle state since the last call to dyntick_save_progress_counter() 1226 * for this same CPU, or by virtue of having been offline. 1227 */ 1228 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1229 { 1230 unsigned long jtsq; 1231 bool *rnhqp; 1232 bool *ruqp; 1233 unsigned long rjtsc; 1234 struct rcu_node *rnp; 1235 1236 /* 1237 * If the CPU passed through or entered a dynticks idle phase with 1238 * no active irq/NMI handlers, then we can safely pretend that the CPU 1239 * already acknowledged the request to pass through a quiescent 1240 * state. Either way, that CPU cannot possibly be in an RCU 1241 * read-side critical section that started before the beginning 1242 * of the current RCU grace period. 1243 */ 1244 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1245 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1246 rdp->dynticks_fqs++; 1247 return 1; 1248 } 1249 1250 /* Compute and saturate jiffies_till_sched_qs. */ 1251 jtsq = jiffies_till_sched_qs; 1252 rjtsc = rcu_jiffies_till_stall_check(); 1253 if (jtsq > rjtsc / 2) { 1254 WRITE_ONCE(jiffies_till_sched_qs, rjtsc); 1255 jtsq = rjtsc / 2; 1256 } else if (jtsq < 1) { 1257 WRITE_ONCE(jiffies_till_sched_qs, 1); 1258 jtsq = 1; 1259 } 1260 1261 /* 1262 * Has this CPU encountered a cond_resched_rcu_qs() since the 1263 * beginning of the grace period? For this to be the case, 1264 * the CPU has to have noticed the current grace period. This 1265 * might not be the case for nohz_full CPUs looping in the kernel. 1266 */ 1267 rnp = rdp->mynode; 1268 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1269 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1270 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1271 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1272 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1273 return 1; 1274 } else { 1275 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1276 smp_store_release(ruqp, true); 1277 } 1278 1279 /* Check for the CPU being offline. */ 1280 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1281 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1282 rdp->offline_fqs++; 1283 return 1; 1284 } 1285 1286 /* 1287 * A CPU running for an extended time within the kernel can 1288 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1289 * even context-switching back and forth between a pair of 1290 * in-kernel CPU-bound tasks cannot advance grace periods. 1291 * So if the grace period is old enough, make the CPU pay attention. 1292 * Note that the unsynchronized assignments to the per-CPU 1293 * rcu_need_heavy_qs variable are safe. Yes, setting of 1294 * bits can be lost, but they will be set again on the next 1295 * force-quiescent-state pass. So lost bit sets do not result 1296 * in incorrect behavior, merely in a grace period lasting 1297 * a few jiffies longer than it might otherwise. Because 1298 * there are at most four threads involved, and because the 1299 * updates are only once every few jiffies, the probability of 1300 * lossage (and thus of slight grace-period extension) is 1301 * quite low. 1302 * 1303 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1304 * is set too high, we override with half of the RCU CPU stall 1305 * warning delay. 1306 */ 1307 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1308 if (!READ_ONCE(*rnhqp) && 1309 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1310 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1311 WRITE_ONCE(*rnhqp, true); 1312 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1313 smp_store_release(ruqp, true); 1314 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1315 } 1316 1317 /* 1318 * If more than halfway to RCU CPU stall-warning time, do 1319 * a resched_cpu() to try to loosen things up a bit. 1320 */ 1321 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) 1322 resched_cpu(rdp->cpu); 1323 1324 return 0; 1325 } 1326 1327 static void record_gp_stall_check_time(struct rcu_state *rsp) 1328 { 1329 unsigned long j = jiffies; 1330 unsigned long j1; 1331 1332 rsp->gp_start = j; 1333 smp_wmb(); /* Record start time before stall time. */ 1334 j1 = rcu_jiffies_till_stall_check(); 1335 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1336 rsp->jiffies_resched = j + j1 / 2; 1337 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1338 } 1339 1340 /* 1341 * Convert a ->gp_state value to a character string. 1342 */ 1343 static const char *gp_state_getname(short gs) 1344 { 1345 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1346 return "???"; 1347 return gp_state_names[gs]; 1348 } 1349 1350 /* 1351 * Complain about starvation of grace-period kthread. 1352 */ 1353 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1354 { 1355 unsigned long gpa; 1356 unsigned long j; 1357 1358 j = jiffies; 1359 gpa = READ_ONCE(rsp->gp_activity); 1360 if (j - gpa > 2 * HZ) { 1361 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n", 1362 rsp->name, j - gpa, 1363 rsp->gpnum, rsp->completed, 1364 rsp->gp_flags, 1365 gp_state_getname(rsp->gp_state), rsp->gp_state, 1366 rsp->gp_kthread ? rsp->gp_kthread->state : ~0); 1367 if (rsp->gp_kthread) { 1368 sched_show_task(rsp->gp_kthread); 1369 wake_up_process(rsp->gp_kthread); 1370 } 1371 } 1372 } 1373 1374 /* 1375 * Dump stacks of all tasks running on stalled CPUs. First try using 1376 * NMIs, but fall back to manual remote stack tracing on architectures 1377 * that don't support NMI-based stack dumps. The NMI-triggered stack 1378 * traces are more accurate because they are printed by the target CPU. 1379 */ 1380 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1381 { 1382 int cpu; 1383 unsigned long flags; 1384 struct rcu_node *rnp; 1385 1386 rcu_for_each_leaf_node(rsp, rnp) { 1387 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1388 for_each_leaf_node_possible_cpu(rnp, cpu) 1389 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1390 if (!trigger_single_cpu_backtrace(cpu)) 1391 dump_cpu_task(cpu); 1392 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1393 } 1394 } 1395 1396 /* 1397 * If too much time has passed in the current grace period, and if 1398 * so configured, go kick the relevant kthreads. 1399 */ 1400 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1401 { 1402 unsigned long j; 1403 1404 if (!rcu_kick_kthreads) 1405 return; 1406 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1407 if (time_after(jiffies, j) && rsp->gp_kthread && 1408 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1409 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1410 rcu_ftrace_dump(DUMP_ALL); 1411 wake_up_process(rsp->gp_kthread); 1412 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1413 } 1414 } 1415 1416 static inline void panic_on_rcu_stall(void) 1417 { 1418 if (sysctl_panic_on_rcu_stall) 1419 panic("RCU Stall\n"); 1420 } 1421 1422 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1423 { 1424 int cpu; 1425 long delta; 1426 unsigned long flags; 1427 unsigned long gpa; 1428 unsigned long j; 1429 int ndetected = 0; 1430 struct rcu_node *rnp = rcu_get_root(rsp); 1431 long totqlen = 0; 1432 1433 /* Kick and suppress, if so configured. */ 1434 rcu_stall_kick_kthreads(rsp); 1435 if (rcu_cpu_stall_suppress) 1436 return; 1437 1438 /* Only let one CPU complain about others per time interval. */ 1439 1440 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1441 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1442 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1443 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1444 return; 1445 } 1446 WRITE_ONCE(rsp->jiffies_stall, 1447 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1448 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1449 1450 /* 1451 * OK, time to rat on our buddy... 1452 * See Documentation/RCU/stallwarn.txt for info on how to debug 1453 * RCU CPU stall warnings. 1454 */ 1455 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1456 rsp->name); 1457 print_cpu_stall_info_begin(); 1458 rcu_for_each_leaf_node(rsp, rnp) { 1459 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1460 ndetected += rcu_print_task_stall(rnp); 1461 if (rnp->qsmask != 0) { 1462 for_each_leaf_node_possible_cpu(rnp, cpu) 1463 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1464 print_cpu_stall_info(rsp, cpu); 1465 ndetected++; 1466 } 1467 } 1468 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1469 } 1470 1471 print_cpu_stall_info_end(); 1472 for_each_possible_cpu(cpu) 1473 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1474 cpu)->cblist); 1475 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1476 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1477 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1478 if (ndetected) { 1479 rcu_dump_cpu_stacks(rsp); 1480 1481 /* Complain about tasks blocking the grace period. */ 1482 rcu_print_detail_task_stall(rsp); 1483 } else { 1484 if (READ_ONCE(rsp->gpnum) != gpnum || 1485 READ_ONCE(rsp->completed) == gpnum) { 1486 pr_err("INFO: Stall ended before state dump start\n"); 1487 } else { 1488 j = jiffies; 1489 gpa = READ_ONCE(rsp->gp_activity); 1490 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1491 rsp->name, j - gpa, j, gpa, 1492 jiffies_till_next_fqs, 1493 rcu_get_root(rsp)->qsmask); 1494 /* In this case, the current CPU might be at fault. */ 1495 sched_show_task(current); 1496 } 1497 } 1498 1499 rcu_check_gp_kthread_starvation(rsp); 1500 1501 panic_on_rcu_stall(); 1502 1503 force_quiescent_state(rsp); /* Kick them all. */ 1504 } 1505 1506 static void print_cpu_stall(struct rcu_state *rsp) 1507 { 1508 int cpu; 1509 unsigned long flags; 1510 struct rcu_node *rnp = rcu_get_root(rsp); 1511 long totqlen = 0; 1512 1513 /* Kick and suppress, if so configured. */ 1514 rcu_stall_kick_kthreads(rsp); 1515 if (rcu_cpu_stall_suppress) 1516 return; 1517 1518 /* 1519 * OK, time to rat on ourselves... 1520 * See Documentation/RCU/stallwarn.txt for info on how to debug 1521 * RCU CPU stall warnings. 1522 */ 1523 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1524 print_cpu_stall_info_begin(); 1525 print_cpu_stall_info(rsp, smp_processor_id()); 1526 print_cpu_stall_info_end(); 1527 for_each_possible_cpu(cpu) 1528 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1529 cpu)->cblist); 1530 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1531 jiffies - rsp->gp_start, 1532 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1533 1534 rcu_check_gp_kthread_starvation(rsp); 1535 1536 rcu_dump_cpu_stacks(rsp); 1537 1538 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1539 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1540 WRITE_ONCE(rsp->jiffies_stall, 1541 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1542 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1543 1544 panic_on_rcu_stall(); 1545 1546 /* 1547 * Attempt to revive the RCU machinery by forcing a context switch. 1548 * 1549 * A context switch would normally allow the RCU state machine to make 1550 * progress and it could be we're stuck in kernel space without context 1551 * switches for an entirely unreasonable amount of time. 1552 */ 1553 resched_cpu(smp_processor_id()); 1554 } 1555 1556 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1557 { 1558 unsigned long completed; 1559 unsigned long gpnum; 1560 unsigned long gps; 1561 unsigned long j; 1562 unsigned long js; 1563 struct rcu_node *rnp; 1564 1565 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1566 !rcu_gp_in_progress(rsp)) 1567 return; 1568 rcu_stall_kick_kthreads(rsp); 1569 j = jiffies; 1570 1571 /* 1572 * Lots of memory barriers to reject false positives. 1573 * 1574 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1575 * then rsp->gp_start, and finally rsp->completed. These values 1576 * are updated in the opposite order with memory barriers (or 1577 * equivalent) during grace-period initialization and cleanup. 1578 * Now, a false positive can occur if we get an new value of 1579 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1580 * the memory barriers, the only way that this can happen is if one 1581 * grace period ends and another starts between these two fetches. 1582 * Detect this by comparing rsp->completed with the previous fetch 1583 * from rsp->gpnum. 1584 * 1585 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1586 * and rsp->gp_start suffice to forestall false positives. 1587 */ 1588 gpnum = READ_ONCE(rsp->gpnum); 1589 smp_rmb(); /* Pick up ->gpnum first... */ 1590 js = READ_ONCE(rsp->jiffies_stall); 1591 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1592 gps = READ_ONCE(rsp->gp_start); 1593 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1594 completed = READ_ONCE(rsp->completed); 1595 if (ULONG_CMP_GE(completed, gpnum) || 1596 ULONG_CMP_LT(j, js) || 1597 ULONG_CMP_GE(gps, js)) 1598 return; /* No stall or GP completed since entering function. */ 1599 rnp = rdp->mynode; 1600 if (rcu_gp_in_progress(rsp) && 1601 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1602 1603 /* We haven't checked in, so go dump stack. */ 1604 print_cpu_stall(rsp); 1605 1606 } else if (rcu_gp_in_progress(rsp) && 1607 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1608 1609 /* They had a few time units to dump stack, so complain. */ 1610 print_other_cpu_stall(rsp, gpnum); 1611 } 1612 } 1613 1614 /** 1615 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1616 * 1617 * Set the stall-warning timeout way off into the future, thus preventing 1618 * any RCU CPU stall-warning messages from appearing in the current set of 1619 * RCU grace periods. 1620 * 1621 * The caller must disable hard irqs. 1622 */ 1623 void rcu_cpu_stall_reset(void) 1624 { 1625 struct rcu_state *rsp; 1626 1627 for_each_rcu_flavor(rsp) 1628 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1629 } 1630 1631 /* 1632 * Determine the value that ->completed will have at the end of the 1633 * next subsequent grace period. This is used to tag callbacks so that 1634 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1635 * been dyntick-idle for an extended period with callbacks under the 1636 * influence of RCU_FAST_NO_HZ. 1637 * 1638 * The caller must hold rnp->lock with interrupts disabled. 1639 */ 1640 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1641 struct rcu_node *rnp) 1642 { 1643 lockdep_assert_held(&rnp->lock); 1644 1645 /* 1646 * If RCU is idle, we just wait for the next grace period. 1647 * But we can only be sure that RCU is idle if we are looking 1648 * at the root rcu_node structure -- otherwise, a new grace 1649 * period might have started, but just not yet gotten around 1650 * to initializing the current non-root rcu_node structure. 1651 */ 1652 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1653 return rnp->completed + 1; 1654 1655 /* 1656 * Otherwise, wait for a possible partial grace period and 1657 * then the subsequent full grace period. 1658 */ 1659 return rnp->completed + 2; 1660 } 1661 1662 /* 1663 * Trace-event helper function for rcu_start_future_gp() and 1664 * rcu_nocb_wait_gp(). 1665 */ 1666 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1667 unsigned long c, const char *s) 1668 { 1669 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1670 rnp->completed, c, rnp->level, 1671 rnp->grplo, rnp->grphi, s); 1672 } 1673 1674 /* 1675 * Start some future grace period, as needed to handle newly arrived 1676 * callbacks. The required future grace periods are recorded in each 1677 * rcu_node structure's ->need_future_gp field. Returns true if there 1678 * is reason to awaken the grace-period kthread. 1679 * 1680 * The caller must hold the specified rcu_node structure's ->lock. 1681 */ 1682 static bool __maybe_unused 1683 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1684 unsigned long *c_out) 1685 { 1686 unsigned long c; 1687 bool ret = false; 1688 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1689 1690 lockdep_assert_held(&rnp->lock); 1691 1692 /* 1693 * Pick up grace-period number for new callbacks. If this 1694 * grace period is already marked as needed, return to the caller. 1695 */ 1696 c = rcu_cbs_completed(rdp->rsp, rnp); 1697 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1698 if (rnp->need_future_gp[c & 0x1]) { 1699 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1700 goto out; 1701 } 1702 1703 /* 1704 * If either this rcu_node structure or the root rcu_node structure 1705 * believe that a grace period is in progress, then we must wait 1706 * for the one following, which is in "c". Because our request 1707 * will be noticed at the end of the current grace period, we don't 1708 * need to explicitly start one. We only do the lockless check 1709 * of rnp_root's fields if the current rcu_node structure thinks 1710 * there is no grace period in flight, and because we hold rnp->lock, 1711 * the only possible change is when rnp_root's two fields are 1712 * equal, in which case rnp_root->gpnum might be concurrently 1713 * incremented. But that is OK, as it will just result in our 1714 * doing some extra useless work. 1715 */ 1716 if (rnp->gpnum != rnp->completed || 1717 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1718 rnp->need_future_gp[c & 0x1]++; 1719 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1720 goto out; 1721 } 1722 1723 /* 1724 * There might be no grace period in progress. If we don't already 1725 * hold it, acquire the root rcu_node structure's lock in order to 1726 * start one (if needed). 1727 */ 1728 if (rnp != rnp_root) 1729 raw_spin_lock_rcu_node(rnp_root); 1730 1731 /* 1732 * Get a new grace-period number. If there really is no grace 1733 * period in progress, it will be smaller than the one we obtained 1734 * earlier. Adjust callbacks as needed. 1735 */ 1736 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1737 if (!rcu_is_nocb_cpu(rdp->cpu)) 1738 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1739 1740 /* 1741 * If the needed for the required grace period is already 1742 * recorded, trace and leave. 1743 */ 1744 if (rnp_root->need_future_gp[c & 0x1]) { 1745 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1746 goto unlock_out; 1747 } 1748 1749 /* Record the need for the future grace period. */ 1750 rnp_root->need_future_gp[c & 0x1]++; 1751 1752 /* If a grace period is not already in progress, start one. */ 1753 if (rnp_root->gpnum != rnp_root->completed) { 1754 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1755 } else { 1756 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1757 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1758 } 1759 unlock_out: 1760 if (rnp != rnp_root) 1761 raw_spin_unlock_rcu_node(rnp_root); 1762 out: 1763 if (c_out != NULL) 1764 *c_out = c; 1765 return ret; 1766 } 1767 1768 /* 1769 * Clean up any old requests for the just-ended grace period. Also return 1770 * whether any additional grace periods have been requested. 1771 */ 1772 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1773 { 1774 int c = rnp->completed; 1775 int needmore; 1776 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1777 1778 rnp->need_future_gp[c & 0x1] = 0; 1779 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1780 trace_rcu_future_gp(rnp, rdp, c, 1781 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1782 return needmore; 1783 } 1784 1785 /* 1786 * Awaken the grace-period kthread for the specified flavor of RCU. 1787 * Don't do a self-awaken, and don't bother awakening when there is 1788 * nothing for the grace-period kthread to do (as in several CPUs 1789 * raced to awaken, and we lost), and finally don't try to awaken 1790 * a kthread that has not yet been created. 1791 */ 1792 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1793 { 1794 if (current == rsp->gp_kthread || 1795 !READ_ONCE(rsp->gp_flags) || 1796 !rsp->gp_kthread) 1797 return; 1798 swake_up(&rsp->gp_wq); 1799 } 1800 1801 /* 1802 * If there is room, assign a ->completed number to any callbacks on 1803 * this CPU that have not already been assigned. Also accelerate any 1804 * callbacks that were previously assigned a ->completed number that has 1805 * since proven to be too conservative, which can happen if callbacks get 1806 * assigned a ->completed number while RCU is idle, but with reference to 1807 * a non-root rcu_node structure. This function is idempotent, so it does 1808 * not hurt to call it repeatedly. Returns an flag saying that we should 1809 * awaken the RCU grace-period kthread. 1810 * 1811 * The caller must hold rnp->lock with interrupts disabled. 1812 */ 1813 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1814 struct rcu_data *rdp) 1815 { 1816 bool ret = false; 1817 1818 lockdep_assert_held(&rnp->lock); 1819 1820 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1821 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1822 return false; 1823 1824 /* 1825 * Callbacks are often registered with incomplete grace-period 1826 * information. Something about the fact that getting exact 1827 * information requires acquiring a global lock... RCU therefore 1828 * makes a conservative estimate of the grace period number at which 1829 * a given callback will become ready to invoke. The following 1830 * code checks this estimate and improves it when possible, thus 1831 * accelerating callback invocation to an earlier grace-period 1832 * number. 1833 */ 1834 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp))) 1835 ret = rcu_start_future_gp(rnp, rdp, NULL); 1836 1837 /* Trace depending on how much we were able to accelerate. */ 1838 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1839 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1840 else 1841 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1842 return ret; 1843 } 1844 1845 /* 1846 * Move any callbacks whose grace period has completed to the 1847 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1848 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1849 * sublist. This function is idempotent, so it does not hurt to 1850 * invoke it repeatedly. As long as it is not invoked -too- often... 1851 * Returns true if the RCU grace-period kthread needs to be awakened. 1852 * 1853 * The caller must hold rnp->lock with interrupts disabled. 1854 */ 1855 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1856 struct rcu_data *rdp) 1857 { 1858 lockdep_assert_held(&rnp->lock); 1859 1860 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1861 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1862 return false; 1863 1864 /* 1865 * Find all callbacks whose ->completed numbers indicate that they 1866 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1867 */ 1868 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1869 1870 /* Classify any remaining callbacks. */ 1871 return rcu_accelerate_cbs(rsp, rnp, rdp); 1872 } 1873 1874 /* 1875 * Update CPU-local rcu_data state to record the beginnings and ends of 1876 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1877 * structure corresponding to the current CPU, and must have irqs disabled. 1878 * Returns true if the grace-period kthread needs to be awakened. 1879 */ 1880 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1881 struct rcu_data *rdp) 1882 { 1883 bool ret; 1884 bool need_gp; 1885 1886 lockdep_assert_held(&rnp->lock); 1887 1888 /* Handle the ends of any preceding grace periods first. */ 1889 if (rdp->completed == rnp->completed && 1890 !unlikely(READ_ONCE(rdp->gpwrap))) { 1891 1892 /* No grace period end, so just accelerate recent callbacks. */ 1893 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1894 1895 } else { 1896 1897 /* Advance callbacks. */ 1898 ret = rcu_advance_cbs(rsp, rnp, rdp); 1899 1900 /* Remember that we saw this grace-period completion. */ 1901 rdp->completed = rnp->completed; 1902 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1903 } 1904 1905 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1906 /* 1907 * If the current grace period is waiting for this CPU, 1908 * set up to detect a quiescent state, otherwise don't 1909 * go looking for one. 1910 */ 1911 rdp->gpnum = rnp->gpnum; 1912 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1913 need_gp = !!(rnp->qsmask & rdp->grpmask); 1914 rdp->cpu_no_qs.b.norm = need_gp; 1915 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1916 rdp->core_needs_qs = need_gp; 1917 zero_cpu_stall_ticks(rdp); 1918 WRITE_ONCE(rdp->gpwrap, false); 1919 } 1920 return ret; 1921 } 1922 1923 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1924 { 1925 unsigned long flags; 1926 bool needwake; 1927 struct rcu_node *rnp; 1928 1929 local_irq_save(flags); 1930 rnp = rdp->mynode; 1931 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1932 rdp->completed == READ_ONCE(rnp->completed) && 1933 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1934 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1935 local_irq_restore(flags); 1936 return; 1937 } 1938 needwake = __note_gp_changes(rsp, rnp, rdp); 1939 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1940 if (needwake) 1941 rcu_gp_kthread_wake(rsp); 1942 } 1943 1944 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1945 { 1946 if (delay > 0 && 1947 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1948 schedule_timeout_uninterruptible(delay); 1949 } 1950 1951 /* 1952 * Initialize a new grace period. Return false if no grace period required. 1953 */ 1954 static bool rcu_gp_init(struct rcu_state *rsp) 1955 { 1956 unsigned long oldmask; 1957 struct rcu_data *rdp; 1958 struct rcu_node *rnp = rcu_get_root(rsp); 1959 1960 WRITE_ONCE(rsp->gp_activity, jiffies); 1961 raw_spin_lock_irq_rcu_node(rnp); 1962 if (!READ_ONCE(rsp->gp_flags)) { 1963 /* Spurious wakeup, tell caller to go back to sleep. */ 1964 raw_spin_unlock_irq_rcu_node(rnp); 1965 return false; 1966 } 1967 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1968 1969 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1970 /* 1971 * Grace period already in progress, don't start another. 1972 * Not supposed to be able to happen. 1973 */ 1974 raw_spin_unlock_irq_rcu_node(rnp); 1975 return false; 1976 } 1977 1978 /* Advance to a new grace period and initialize state. */ 1979 record_gp_stall_check_time(rsp); 1980 /* Record GP times before starting GP, hence smp_store_release(). */ 1981 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1982 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1983 raw_spin_unlock_irq_rcu_node(rnp); 1984 1985 /* 1986 * Apply per-leaf buffered online and offline operations to the 1987 * rcu_node tree. Note that this new grace period need not wait 1988 * for subsequent online CPUs, and that quiescent-state forcing 1989 * will handle subsequent offline CPUs. 1990 */ 1991 rcu_for_each_leaf_node(rsp, rnp) { 1992 rcu_gp_slow(rsp, gp_preinit_delay); 1993 raw_spin_lock_irq_rcu_node(rnp); 1994 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1995 !rnp->wait_blkd_tasks) { 1996 /* Nothing to do on this leaf rcu_node structure. */ 1997 raw_spin_unlock_irq_rcu_node(rnp); 1998 continue; 1999 } 2000 2001 /* Record old state, apply changes to ->qsmaskinit field. */ 2002 oldmask = rnp->qsmaskinit; 2003 rnp->qsmaskinit = rnp->qsmaskinitnext; 2004 2005 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 2006 if (!oldmask != !rnp->qsmaskinit) { 2007 if (!oldmask) /* First online CPU for this rcu_node. */ 2008 rcu_init_new_rnp(rnp); 2009 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2010 rnp->wait_blkd_tasks = true; 2011 else /* Last offline CPU and can propagate. */ 2012 rcu_cleanup_dead_rnp(rnp); 2013 } 2014 2015 /* 2016 * If all waited-on tasks from prior grace period are 2017 * done, and if all this rcu_node structure's CPUs are 2018 * still offline, propagate up the rcu_node tree and 2019 * clear ->wait_blkd_tasks. Otherwise, if one of this 2020 * rcu_node structure's CPUs has since come back online, 2021 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2022 * checks for this, so just call it unconditionally). 2023 */ 2024 if (rnp->wait_blkd_tasks && 2025 (!rcu_preempt_has_tasks(rnp) || 2026 rnp->qsmaskinit)) { 2027 rnp->wait_blkd_tasks = false; 2028 rcu_cleanup_dead_rnp(rnp); 2029 } 2030 2031 raw_spin_unlock_irq_rcu_node(rnp); 2032 } 2033 2034 /* 2035 * Set the quiescent-state-needed bits in all the rcu_node 2036 * structures for all currently online CPUs in breadth-first order, 2037 * starting from the root rcu_node structure, relying on the layout 2038 * of the tree within the rsp->node[] array. Note that other CPUs 2039 * will access only the leaves of the hierarchy, thus seeing that no 2040 * grace period is in progress, at least until the corresponding 2041 * leaf node has been initialized. 2042 * 2043 * The grace period cannot complete until the initialization 2044 * process finishes, because this kthread handles both. 2045 */ 2046 rcu_for_each_node_breadth_first(rsp, rnp) { 2047 rcu_gp_slow(rsp, gp_init_delay); 2048 raw_spin_lock_irq_rcu_node(rnp); 2049 rdp = this_cpu_ptr(rsp->rda); 2050 rcu_preempt_check_blocked_tasks(rnp); 2051 rnp->qsmask = rnp->qsmaskinit; 2052 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2053 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2054 WRITE_ONCE(rnp->completed, rsp->completed); 2055 if (rnp == rdp->mynode) 2056 (void)__note_gp_changes(rsp, rnp, rdp); 2057 rcu_preempt_boost_start_gp(rnp); 2058 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2059 rnp->level, rnp->grplo, 2060 rnp->grphi, rnp->qsmask); 2061 raw_spin_unlock_irq_rcu_node(rnp); 2062 cond_resched_rcu_qs(); 2063 WRITE_ONCE(rsp->gp_activity, jiffies); 2064 } 2065 2066 return true; 2067 } 2068 2069 /* 2070 * Helper function for wait_event_interruptible_timeout() wakeup 2071 * at force-quiescent-state time. 2072 */ 2073 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2074 { 2075 struct rcu_node *rnp = rcu_get_root(rsp); 2076 2077 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2078 *gfp = READ_ONCE(rsp->gp_flags); 2079 if (*gfp & RCU_GP_FLAG_FQS) 2080 return true; 2081 2082 /* The current grace period has completed. */ 2083 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2084 return true; 2085 2086 return false; 2087 } 2088 2089 /* 2090 * Do one round of quiescent-state forcing. 2091 */ 2092 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2093 { 2094 struct rcu_node *rnp = rcu_get_root(rsp); 2095 2096 WRITE_ONCE(rsp->gp_activity, jiffies); 2097 rsp->n_force_qs++; 2098 if (first_time) { 2099 /* Collect dyntick-idle snapshots. */ 2100 force_qs_rnp(rsp, dyntick_save_progress_counter); 2101 } else { 2102 /* Handle dyntick-idle and offline CPUs. */ 2103 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2104 } 2105 /* Clear flag to prevent immediate re-entry. */ 2106 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2107 raw_spin_lock_irq_rcu_node(rnp); 2108 WRITE_ONCE(rsp->gp_flags, 2109 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2110 raw_spin_unlock_irq_rcu_node(rnp); 2111 } 2112 } 2113 2114 /* 2115 * Clean up after the old grace period. 2116 */ 2117 static void rcu_gp_cleanup(struct rcu_state *rsp) 2118 { 2119 unsigned long gp_duration; 2120 bool needgp = false; 2121 int nocb = 0; 2122 struct rcu_data *rdp; 2123 struct rcu_node *rnp = rcu_get_root(rsp); 2124 struct swait_queue_head *sq; 2125 2126 WRITE_ONCE(rsp->gp_activity, jiffies); 2127 raw_spin_lock_irq_rcu_node(rnp); 2128 gp_duration = jiffies - rsp->gp_start; 2129 if (gp_duration > rsp->gp_max) 2130 rsp->gp_max = gp_duration; 2131 2132 /* 2133 * We know the grace period is complete, but to everyone else 2134 * it appears to still be ongoing. But it is also the case 2135 * that to everyone else it looks like there is nothing that 2136 * they can do to advance the grace period. It is therefore 2137 * safe for us to drop the lock in order to mark the grace 2138 * period as completed in all of the rcu_node structures. 2139 */ 2140 raw_spin_unlock_irq_rcu_node(rnp); 2141 2142 /* 2143 * Propagate new ->completed value to rcu_node structures so 2144 * that other CPUs don't have to wait until the start of the next 2145 * grace period to process their callbacks. This also avoids 2146 * some nasty RCU grace-period initialization races by forcing 2147 * the end of the current grace period to be completely recorded in 2148 * all of the rcu_node structures before the beginning of the next 2149 * grace period is recorded in any of the rcu_node structures. 2150 */ 2151 rcu_for_each_node_breadth_first(rsp, rnp) { 2152 raw_spin_lock_irq_rcu_node(rnp); 2153 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2154 WARN_ON_ONCE(rnp->qsmask); 2155 WRITE_ONCE(rnp->completed, rsp->gpnum); 2156 rdp = this_cpu_ptr(rsp->rda); 2157 if (rnp == rdp->mynode) 2158 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2159 /* smp_mb() provided by prior unlock-lock pair. */ 2160 nocb += rcu_future_gp_cleanup(rsp, rnp); 2161 sq = rcu_nocb_gp_get(rnp); 2162 raw_spin_unlock_irq_rcu_node(rnp); 2163 rcu_nocb_gp_cleanup(sq); 2164 cond_resched_rcu_qs(); 2165 WRITE_ONCE(rsp->gp_activity, jiffies); 2166 rcu_gp_slow(rsp, gp_cleanup_delay); 2167 } 2168 rnp = rcu_get_root(rsp); 2169 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2170 rcu_nocb_gp_set(rnp, nocb); 2171 2172 /* Declare grace period done. */ 2173 WRITE_ONCE(rsp->completed, rsp->gpnum); 2174 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2175 rsp->gp_state = RCU_GP_IDLE; 2176 rdp = this_cpu_ptr(rsp->rda); 2177 /* Advance CBs to reduce false positives below. */ 2178 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2179 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2180 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2181 trace_rcu_grace_period(rsp->name, 2182 READ_ONCE(rsp->gpnum), 2183 TPS("newreq")); 2184 } 2185 raw_spin_unlock_irq_rcu_node(rnp); 2186 } 2187 2188 /* 2189 * Body of kthread that handles grace periods. 2190 */ 2191 static int __noreturn rcu_gp_kthread(void *arg) 2192 { 2193 bool first_gp_fqs; 2194 int gf; 2195 unsigned long j; 2196 int ret; 2197 struct rcu_state *rsp = arg; 2198 struct rcu_node *rnp = rcu_get_root(rsp); 2199 2200 rcu_bind_gp_kthread(); 2201 for (;;) { 2202 2203 /* Handle grace-period start. */ 2204 for (;;) { 2205 trace_rcu_grace_period(rsp->name, 2206 READ_ONCE(rsp->gpnum), 2207 TPS("reqwait")); 2208 rsp->gp_state = RCU_GP_WAIT_GPS; 2209 swait_event_interruptible(rsp->gp_wq, 2210 READ_ONCE(rsp->gp_flags) & 2211 RCU_GP_FLAG_INIT); 2212 rsp->gp_state = RCU_GP_DONE_GPS; 2213 /* Locking provides needed memory barrier. */ 2214 if (rcu_gp_init(rsp)) 2215 break; 2216 cond_resched_rcu_qs(); 2217 WRITE_ONCE(rsp->gp_activity, jiffies); 2218 WARN_ON(signal_pending(current)); 2219 trace_rcu_grace_period(rsp->name, 2220 READ_ONCE(rsp->gpnum), 2221 TPS("reqwaitsig")); 2222 } 2223 2224 /* Handle quiescent-state forcing. */ 2225 first_gp_fqs = true; 2226 j = jiffies_till_first_fqs; 2227 if (j > HZ) { 2228 j = HZ; 2229 jiffies_till_first_fqs = HZ; 2230 } 2231 ret = 0; 2232 for (;;) { 2233 if (!ret) { 2234 rsp->jiffies_force_qs = jiffies + j; 2235 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2236 jiffies + 3 * j); 2237 } 2238 trace_rcu_grace_period(rsp->name, 2239 READ_ONCE(rsp->gpnum), 2240 TPS("fqswait")); 2241 rsp->gp_state = RCU_GP_WAIT_FQS; 2242 ret = swait_event_interruptible_timeout(rsp->gp_wq, 2243 rcu_gp_fqs_check_wake(rsp, &gf), j); 2244 rsp->gp_state = RCU_GP_DOING_FQS; 2245 /* Locking provides needed memory barriers. */ 2246 /* If grace period done, leave loop. */ 2247 if (!READ_ONCE(rnp->qsmask) && 2248 !rcu_preempt_blocked_readers_cgp(rnp)) 2249 break; 2250 /* If time for quiescent-state forcing, do it. */ 2251 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2252 (gf & RCU_GP_FLAG_FQS)) { 2253 trace_rcu_grace_period(rsp->name, 2254 READ_ONCE(rsp->gpnum), 2255 TPS("fqsstart")); 2256 rcu_gp_fqs(rsp, first_gp_fqs); 2257 first_gp_fqs = false; 2258 trace_rcu_grace_period(rsp->name, 2259 READ_ONCE(rsp->gpnum), 2260 TPS("fqsend")); 2261 cond_resched_rcu_qs(); 2262 WRITE_ONCE(rsp->gp_activity, jiffies); 2263 ret = 0; /* Force full wait till next FQS. */ 2264 j = jiffies_till_next_fqs; 2265 if (j > HZ) { 2266 j = HZ; 2267 jiffies_till_next_fqs = HZ; 2268 } else if (j < 1) { 2269 j = 1; 2270 jiffies_till_next_fqs = 1; 2271 } 2272 } else { 2273 /* Deal with stray signal. */ 2274 cond_resched_rcu_qs(); 2275 WRITE_ONCE(rsp->gp_activity, jiffies); 2276 WARN_ON(signal_pending(current)); 2277 trace_rcu_grace_period(rsp->name, 2278 READ_ONCE(rsp->gpnum), 2279 TPS("fqswaitsig")); 2280 ret = 1; /* Keep old FQS timing. */ 2281 j = jiffies; 2282 if (time_after(jiffies, rsp->jiffies_force_qs)) 2283 j = 1; 2284 else 2285 j = rsp->jiffies_force_qs - j; 2286 } 2287 } 2288 2289 /* Handle grace-period end. */ 2290 rsp->gp_state = RCU_GP_CLEANUP; 2291 rcu_gp_cleanup(rsp); 2292 rsp->gp_state = RCU_GP_CLEANED; 2293 } 2294 } 2295 2296 /* 2297 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2298 * in preparation for detecting the next grace period. The caller must hold 2299 * the root node's ->lock and hard irqs must be disabled. 2300 * 2301 * Note that it is legal for a dying CPU (which is marked as offline) to 2302 * invoke this function. This can happen when the dying CPU reports its 2303 * quiescent state. 2304 * 2305 * Returns true if the grace-period kthread must be awakened. 2306 */ 2307 static bool 2308 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2309 struct rcu_data *rdp) 2310 { 2311 lockdep_assert_held(&rnp->lock); 2312 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2313 /* 2314 * Either we have not yet spawned the grace-period 2315 * task, this CPU does not need another grace period, 2316 * or a grace period is already in progress. 2317 * Either way, don't start a new grace period. 2318 */ 2319 return false; 2320 } 2321 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2322 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2323 TPS("newreq")); 2324 2325 /* 2326 * We can't do wakeups while holding the rnp->lock, as that 2327 * could cause possible deadlocks with the rq->lock. Defer 2328 * the wakeup to our caller. 2329 */ 2330 return true; 2331 } 2332 2333 /* 2334 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2335 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2336 * is invoked indirectly from rcu_advance_cbs(), which would result in 2337 * endless recursion -- or would do so if it wasn't for the self-deadlock 2338 * that is encountered beforehand. 2339 * 2340 * Returns true if the grace-period kthread needs to be awakened. 2341 */ 2342 static bool rcu_start_gp(struct rcu_state *rsp) 2343 { 2344 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2345 struct rcu_node *rnp = rcu_get_root(rsp); 2346 bool ret = false; 2347 2348 /* 2349 * If there is no grace period in progress right now, any 2350 * callbacks we have up to this point will be satisfied by the 2351 * next grace period. Also, advancing the callbacks reduces the 2352 * probability of false positives from cpu_needs_another_gp() 2353 * resulting in pointless grace periods. So, advance callbacks 2354 * then start the grace period! 2355 */ 2356 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2357 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2358 return ret; 2359 } 2360 2361 /* 2362 * Report a full set of quiescent states to the specified rcu_state data 2363 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2364 * kthread if another grace period is required. Whether we wake 2365 * the grace-period kthread or it awakens itself for the next round 2366 * of quiescent-state forcing, that kthread will clean up after the 2367 * just-completed grace period. Note that the caller must hold rnp->lock, 2368 * which is released before return. 2369 */ 2370 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2371 __releases(rcu_get_root(rsp)->lock) 2372 { 2373 lockdep_assert_held(&rcu_get_root(rsp)->lock); 2374 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2375 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2376 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2377 rcu_gp_kthread_wake(rsp); 2378 } 2379 2380 /* 2381 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2382 * Allows quiescent states for a group of CPUs to be reported at one go 2383 * to the specified rcu_node structure, though all the CPUs in the group 2384 * must be represented by the same rcu_node structure (which need not be a 2385 * leaf rcu_node structure, though it often will be). The gps parameter 2386 * is the grace-period snapshot, which means that the quiescent states 2387 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2388 * must be held upon entry, and it is released before return. 2389 */ 2390 static void 2391 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2392 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2393 __releases(rnp->lock) 2394 { 2395 unsigned long oldmask = 0; 2396 struct rcu_node *rnp_c; 2397 2398 lockdep_assert_held(&rnp->lock); 2399 2400 /* Walk up the rcu_node hierarchy. */ 2401 for (;;) { 2402 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2403 2404 /* 2405 * Our bit has already been cleared, or the 2406 * relevant grace period is already over, so done. 2407 */ 2408 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2409 return; 2410 } 2411 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2412 rnp->qsmask &= ~mask; 2413 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2414 mask, rnp->qsmask, rnp->level, 2415 rnp->grplo, rnp->grphi, 2416 !!rnp->gp_tasks); 2417 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2418 2419 /* Other bits still set at this level, so done. */ 2420 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2421 return; 2422 } 2423 mask = rnp->grpmask; 2424 if (rnp->parent == NULL) { 2425 2426 /* No more levels. Exit loop holding root lock. */ 2427 2428 break; 2429 } 2430 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2431 rnp_c = rnp; 2432 rnp = rnp->parent; 2433 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2434 oldmask = rnp_c->qsmask; 2435 } 2436 2437 /* 2438 * Get here if we are the last CPU to pass through a quiescent 2439 * state for this grace period. Invoke rcu_report_qs_rsp() 2440 * to clean up and start the next grace period if one is needed. 2441 */ 2442 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2443 } 2444 2445 /* 2446 * Record a quiescent state for all tasks that were previously queued 2447 * on the specified rcu_node structure and that were blocking the current 2448 * RCU grace period. The caller must hold the specified rnp->lock with 2449 * irqs disabled, and this lock is released upon return, but irqs remain 2450 * disabled. 2451 */ 2452 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2453 struct rcu_node *rnp, unsigned long flags) 2454 __releases(rnp->lock) 2455 { 2456 unsigned long gps; 2457 unsigned long mask; 2458 struct rcu_node *rnp_p; 2459 2460 lockdep_assert_held(&rnp->lock); 2461 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2462 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2463 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2464 return; /* Still need more quiescent states! */ 2465 } 2466 2467 rnp_p = rnp->parent; 2468 if (rnp_p == NULL) { 2469 /* 2470 * Only one rcu_node structure in the tree, so don't 2471 * try to report up to its nonexistent parent! 2472 */ 2473 rcu_report_qs_rsp(rsp, flags); 2474 return; 2475 } 2476 2477 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2478 gps = rnp->gpnum; 2479 mask = rnp->grpmask; 2480 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2481 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2482 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2483 } 2484 2485 /* 2486 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2487 * structure. This must be called from the specified CPU. 2488 */ 2489 static void 2490 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2491 { 2492 unsigned long flags; 2493 unsigned long mask; 2494 bool needwake; 2495 struct rcu_node *rnp; 2496 2497 rnp = rdp->mynode; 2498 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2499 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2500 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2501 2502 /* 2503 * The grace period in which this quiescent state was 2504 * recorded has ended, so don't report it upwards. 2505 * We will instead need a new quiescent state that lies 2506 * within the current grace period. 2507 */ 2508 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2509 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2510 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2511 return; 2512 } 2513 mask = rdp->grpmask; 2514 if ((rnp->qsmask & mask) == 0) { 2515 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2516 } else { 2517 rdp->core_needs_qs = false; 2518 2519 /* 2520 * This GP can't end until cpu checks in, so all of our 2521 * callbacks can be processed during the next GP. 2522 */ 2523 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2524 2525 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2526 /* ^^^ Released rnp->lock */ 2527 if (needwake) 2528 rcu_gp_kthread_wake(rsp); 2529 } 2530 } 2531 2532 /* 2533 * Check to see if there is a new grace period of which this CPU 2534 * is not yet aware, and if so, set up local rcu_data state for it. 2535 * Otherwise, see if this CPU has just passed through its first 2536 * quiescent state for this grace period, and record that fact if so. 2537 */ 2538 static void 2539 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2540 { 2541 /* Check for grace-period ends and beginnings. */ 2542 note_gp_changes(rsp, rdp); 2543 2544 /* 2545 * Does this CPU still need to do its part for current grace period? 2546 * If no, return and let the other CPUs do their part as well. 2547 */ 2548 if (!rdp->core_needs_qs) 2549 return; 2550 2551 /* 2552 * Was there a quiescent state since the beginning of the grace 2553 * period? If no, then exit and wait for the next call. 2554 */ 2555 if (rdp->cpu_no_qs.b.norm) 2556 return; 2557 2558 /* 2559 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2560 * judge of that). 2561 */ 2562 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2563 } 2564 2565 /* 2566 * Send the specified CPU's RCU callbacks to the orphanage. The 2567 * specified CPU must be offline, and the caller must hold the 2568 * ->orphan_lock. 2569 */ 2570 static void 2571 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2572 struct rcu_node *rnp, struct rcu_data *rdp) 2573 { 2574 lockdep_assert_held(&rsp->orphan_lock); 2575 2576 /* No-CBs CPUs do not have orphanable callbacks. */ 2577 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu)) 2578 return; 2579 2580 /* 2581 * Orphan the callbacks. First adjust the counts. This is safe 2582 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2583 * cannot be running now. Thus no memory barrier is required. 2584 */ 2585 rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist); 2586 rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done); 2587 2588 /* 2589 * Next, move those callbacks still needing a grace period to 2590 * the orphanage, where some other CPU will pick them up. 2591 * Some of the callbacks might have gone partway through a grace 2592 * period, but that is too bad. They get to start over because we 2593 * cannot assume that grace periods are synchronized across CPUs. 2594 */ 2595 rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend); 2596 2597 /* 2598 * Then move the ready-to-invoke callbacks to the orphanage, 2599 * where some other CPU will pick them up. These will not be 2600 * required to pass though another grace period: They are done. 2601 */ 2602 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done); 2603 2604 /* Finally, disallow further callbacks on this CPU. */ 2605 rcu_segcblist_disable(&rdp->cblist); 2606 } 2607 2608 /* 2609 * Adopt the RCU callbacks from the specified rcu_state structure's 2610 * orphanage. The caller must hold the ->orphan_lock. 2611 */ 2612 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2613 { 2614 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2615 2616 lockdep_assert_held(&rsp->orphan_lock); 2617 2618 /* No-CBs CPUs are handled specially. */ 2619 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2620 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2621 return; 2622 2623 /* Do the accounting first. */ 2624 rdp->n_cbs_adopted += rsp->orphan_done.len; 2625 if (rsp->orphan_done.len_lazy != rsp->orphan_done.len) 2626 rcu_idle_count_callbacks_posted(); 2627 rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done); 2628 2629 /* 2630 * We do not need a memory barrier here because the only way we 2631 * can get here if there is an rcu_barrier() in flight is if 2632 * we are the task doing the rcu_barrier(). 2633 */ 2634 2635 /* First adopt the ready-to-invoke callbacks, then the done ones. */ 2636 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done); 2637 WARN_ON_ONCE(rsp->orphan_done.head); 2638 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend); 2639 WARN_ON_ONCE(rsp->orphan_pend.head); 2640 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != 2641 !rcu_segcblist_n_cbs(&rdp->cblist)); 2642 } 2643 2644 /* 2645 * Trace the fact that this CPU is going offline. 2646 */ 2647 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2648 { 2649 RCU_TRACE(unsigned long mask;) 2650 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2651 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2652 2653 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2654 return; 2655 2656 RCU_TRACE(mask = rdp->grpmask;) 2657 trace_rcu_grace_period(rsp->name, 2658 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2659 TPS("cpuofl")); 2660 } 2661 2662 /* 2663 * All CPUs for the specified rcu_node structure have gone offline, 2664 * and all tasks that were preempted within an RCU read-side critical 2665 * section while running on one of those CPUs have since exited their RCU 2666 * read-side critical section. Some other CPU is reporting this fact with 2667 * the specified rcu_node structure's ->lock held and interrupts disabled. 2668 * This function therefore goes up the tree of rcu_node structures, 2669 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2670 * the leaf rcu_node structure's ->qsmaskinit field has already been 2671 * updated 2672 * 2673 * This function does check that the specified rcu_node structure has 2674 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2675 * prematurely. That said, invoking it after the fact will cost you 2676 * a needless lock acquisition. So once it has done its work, don't 2677 * invoke it again. 2678 */ 2679 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2680 { 2681 long mask; 2682 struct rcu_node *rnp = rnp_leaf; 2683 2684 lockdep_assert_held(&rnp->lock); 2685 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2686 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2687 return; 2688 for (;;) { 2689 mask = rnp->grpmask; 2690 rnp = rnp->parent; 2691 if (!rnp) 2692 break; 2693 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2694 rnp->qsmaskinit &= ~mask; 2695 rnp->qsmask &= ~mask; 2696 if (rnp->qsmaskinit) { 2697 raw_spin_unlock_rcu_node(rnp); 2698 /* irqs remain disabled. */ 2699 return; 2700 } 2701 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2702 } 2703 } 2704 2705 /* 2706 * The CPU has been completely removed, and some other CPU is reporting 2707 * this fact from process context. Do the remainder of the cleanup, 2708 * including orphaning the outgoing CPU's RCU callbacks, and also 2709 * adopting them. There can only be one CPU hotplug operation at a time, 2710 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2711 */ 2712 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2713 { 2714 unsigned long flags; 2715 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2716 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2717 2718 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2719 return; 2720 2721 /* Adjust any no-longer-needed kthreads. */ 2722 rcu_boost_kthread_setaffinity(rnp, -1); 2723 2724 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2725 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2726 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2727 rcu_adopt_orphan_cbs(rsp, flags); 2728 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2729 2730 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 2731 !rcu_segcblist_empty(&rdp->cblist), 2732 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 2733 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 2734 rcu_segcblist_first_cb(&rdp->cblist)); 2735 } 2736 2737 /* 2738 * Invoke any RCU callbacks that have made it to the end of their grace 2739 * period. Thottle as specified by rdp->blimit. 2740 */ 2741 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2742 { 2743 unsigned long flags; 2744 struct rcu_head *rhp; 2745 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2746 long bl, count; 2747 2748 /* If no callbacks are ready, just return. */ 2749 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2750 trace_rcu_batch_start(rsp->name, 2751 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2752 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2753 trace_rcu_batch_end(rsp->name, 0, 2754 !rcu_segcblist_empty(&rdp->cblist), 2755 need_resched(), is_idle_task(current), 2756 rcu_is_callbacks_kthread()); 2757 return; 2758 } 2759 2760 /* 2761 * Extract the list of ready callbacks, disabling to prevent 2762 * races with call_rcu() from interrupt handlers. Leave the 2763 * callback counts, as rcu_barrier() needs to be conservative. 2764 */ 2765 local_irq_save(flags); 2766 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2767 bl = rdp->blimit; 2768 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2769 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2770 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2771 local_irq_restore(flags); 2772 2773 /* Invoke callbacks. */ 2774 rhp = rcu_cblist_dequeue(&rcl); 2775 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2776 debug_rcu_head_unqueue(rhp); 2777 if (__rcu_reclaim(rsp->name, rhp)) 2778 rcu_cblist_dequeued_lazy(&rcl); 2779 /* 2780 * Stop only if limit reached and CPU has something to do. 2781 * Note: The rcl structure counts down from zero. 2782 */ 2783 if (-rcl.len >= bl && 2784 (need_resched() || 2785 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2786 break; 2787 } 2788 2789 local_irq_save(flags); 2790 count = -rcl.len; 2791 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2792 is_idle_task(current), rcu_is_callbacks_kthread()); 2793 2794 /* Update counts and requeue any remaining callbacks. */ 2795 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2796 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2797 rdp->n_cbs_invoked += count; 2798 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2799 2800 /* Reinstate batch limit if we have worked down the excess. */ 2801 count = rcu_segcblist_n_cbs(&rdp->cblist); 2802 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2803 rdp->blimit = blimit; 2804 2805 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2806 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2807 rdp->qlen_last_fqs_check = 0; 2808 rdp->n_force_qs_snap = rsp->n_force_qs; 2809 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2810 rdp->qlen_last_fqs_check = count; 2811 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2812 2813 local_irq_restore(flags); 2814 2815 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2816 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2817 invoke_rcu_core(); 2818 } 2819 2820 /* 2821 * Check to see if this CPU is in a non-context-switch quiescent state 2822 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2823 * Also schedule RCU core processing. 2824 * 2825 * This function must be called from hardirq context. It is normally 2826 * invoked from the scheduling-clock interrupt. 2827 */ 2828 void rcu_check_callbacks(int user) 2829 { 2830 trace_rcu_utilization(TPS("Start scheduler-tick")); 2831 increment_cpu_stall_ticks(); 2832 if (user || rcu_is_cpu_rrupt_from_idle()) { 2833 2834 /* 2835 * Get here if this CPU took its interrupt from user 2836 * mode or from the idle loop, and if this is not a 2837 * nested interrupt. In this case, the CPU is in 2838 * a quiescent state, so note it. 2839 * 2840 * No memory barrier is required here because both 2841 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2842 * variables that other CPUs neither access nor modify, 2843 * at least not while the corresponding CPU is online. 2844 */ 2845 2846 rcu_sched_qs(); 2847 rcu_bh_qs(); 2848 2849 } else if (!in_softirq()) { 2850 2851 /* 2852 * Get here if this CPU did not take its interrupt from 2853 * softirq, in other words, if it is not interrupting 2854 * a rcu_bh read-side critical section. This is an _bh 2855 * critical section, so note it. 2856 */ 2857 2858 rcu_bh_qs(); 2859 } 2860 rcu_preempt_check_callbacks(); 2861 if (rcu_pending()) 2862 invoke_rcu_core(); 2863 if (user) 2864 rcu_note_voluntary_context_switch(current); 2865 trace_rcu_utilization(TPS("End scheduler-tick")); 2866 } 2867 2868 /* 2869 * Scan the leaf rcu_node structures, processing dyntick state for any that 2870 * have not yet encountered a quiescent state, using the function specified. 2871 * Also initiate boosting for any threads blocked on the root rcu_node. 2872 * 2873 * The caller must have suppressed start of new grace periods. 2874 */ 2875 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2876 { 2877 int cpu; 2878 unsigned long flags; 2879 unsigned long mask; 2880 struct rcu_node *rnp; 2881 2882 rcu_for_each_leaf_node(rsp, rnp) { 2883 cond_resched_rcu_qs(); 2884 mask = 0; 2885 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2886 if (rnp->qsmask == 0) { 2887 if (rcu_state_p == &rcu_sched_state || 2888 rsp != rcu_state_p || 2889 rcu_preempt_blocked_readers_cgp(rnp)) { 2890 /* 2891 * No point in scanning bits because they 2892 * are all zero. But we might need to 2893 * priority-boost blocked readers. 2894 */ 2895 rcu_initiate_boost(rnp, flags); 2896 /* rcu_initiate_boost() releases rnp->lock */ 2897 continue; 2898 } 2899 if (rnp->parent && 2900 (rnp->parent->qsmask & rnp->grpmask)) { 2901 /* 2902 * Race between grace-period 2903 * initialization and task exiting RCU 2904 * read-side critical section: Report. 2905 */ 2906 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2907 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2908 continue; 2909 } 2910 } 2911 for_each_leaf_node_possible_cpu(rnp, cpu) { 2912 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2913 if ((rnp->qsmask & bit) != 0) { 2914 if (f(per_cpu_ptr(rsp->rda, cpu))) 2915 mask |= bit; 2916 } 2917 } 2918 if (mask != 0) { 2919 /* Idle/offline CPUs, report (releases rnp->lock. */ 2920 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2921 } else { 2922 /* Nothing to do here, so just drop the lock. */ 2923 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2924 } 2925 } 2926 } 2927 2928 /* 2929 * Force quiescent states on reluctant CPUs, and also detect which 2930 * CPUs are in dyntick-idle mode. 2931 */ 2932 static void force_quiescent_state(struct rcu_state *rsp) 2933 { 2934 unsigned long flags; 2935 bool ret; 2936 struct rcu_node *rnp; 2937 struct rcu_node *rnp_old = NULL; 2938 2939 /* Funnel through hierarchy to reduce memory contention. */ 2940 rnp = __this_cpu_read(rsp->rda->mynode); 2941 for (; rnp != NULL; rnp = rnp->parent) { 2942 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2943 !raw_spin_trylock(&rnp->fqslock); 2944 if (rnp_old != NULL) 2945 raw_spin_unlock(&rnp_old->fqslock); 2946 if (ret) { 2947 rsp->n_force_qs_lh++; 2948 return; 2949 } 2950 rnp_old = rnp; 2951 } 2952 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2953 2954 /* Reached the root of the rcu_node tree, acquire lock. */ 2955 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2956 raw_spin_unlock(&rnp_old->fqslock); 2957 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2958 rsp->n_force_qs_lh++; 2959 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2960 return; /* Someone beat us to it. */ 2961 } 2962 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2963 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2964 rcu_gp_kthread_wake(rsp); 2965 } 2966 2967 /* 2968 * This does the RCU core processing work for the specified rcu_state 2969 * and rcu_data structures. This may be called only from the CPU to 2970 * whom the rdp belongs. 2971 */ 2972 static void 2973 __rcu_process_callbacks(struct rcu_state *rsp) 2974 { 2975 unsigned long flags; 2976 bool needwake; 2977 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2978 2979 WARN_ON_ONCE(!rdp->beenonline); 2980 2981 /* Update RCU state based on any recent quiescent states. */ 2982 rcu_check_quiescent_state(rsp, rdp); 2983 2984 /* Does this CPU require a not-yet-started grace period? */ 2985 local_irq_save(flags); 2986 if (cpu_needs_another_gp(rsp, rdp)) { 2987 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2988 needwake = rcu_start_gp(rsp); 2989 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2990 if (needwake) 2991 rcu_gp_kthread_wake(rsp); 2992 } else { 2993 local_irq_restore(flags); 2994 } 2995 2996 /* If there are callbacks ready, invoke them. */ 2997 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2998 invoke_rcu_callbacks(rsp, rdp); 2999 3000 /* Do any needed deferred wakeups of rcuo kthreads. */ 3001 do_nocb_deferred_wakeup(rdp); 3002 } 3003 3004 /* 3005 * Do RCU core processing for the current CPU. 3006 */ 3007 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 3008 { 3009 struct rcu_state *rsp; 3010 3011 if (cpu_is_offline(smp_processor_id())) 3012 return; 3013 trace_rcu_utilization(TPS("Start RCU core")); 3014 for_each_rcu_flavor(rsp) 3015 __rcu_process_callbacks(rsp); 3016 trace_rcu_utilization(TPS("End RCU core")); 3017 } 3018 3019 /* 3020 * Schedule RCU callback invocation. If the specified type of RCU 3021 * does not support RCU priority boosting, just do a direct call, 3022 * otherwise wake up the per-CPU kernel kthread. Note that because we 3023 * are running on the current CPU with softirqs disabled, the 3024 * rcu_cpu_kthread_task cannot disappear out from under us. 3025 */ 3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 3027 { 3028 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 3029 return; 3030 if (likely(!rsp->boost)) { 3031 rcu_do_batch(rsp, rdp); 3032 return; 3033 } 3034 invoke_rcu_callbacks_kthread(); 3035 } 3036 3037 static void invoke_rcu_core(void) 3038 { 3039 if (cpu_online(smp_processor_id())) 3040 raise_softirq(RCU_SOFTIRQ); 3041 } 3042 3043 /* 3044 * Handle any core-RCU processing required by a call_rcu() invocation. 3045 */ 3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 3047 struct rcu_head *head, unsigned long flags) 3048 { 3049 bool needwake; 3050 3051 /* 3052 * If called from an extended quiescent state, invoke the RCU 3053 * core in order to force a re-evaluation of RCU's idleness. 3054 */ 3055 if (!rcu_is_watching()) 3056 invoke_rcu_core(); 3057 3058 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 3059 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 3060 return; 3061 3062 /* 3063 * Force the grace period if too many callbacks or too long waiting. 3064 * Enforce hysteresis, and don't invoke force_quiescent_state() 3065 * if some other CPU has recently done so. Also, don't bother 3066 * invoking force_quiescent_state() if the newly enqueued callback 3067 * is the only one waiting for a grace period to complete. 3068 */ 3069 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 3070 rdp->qlen_last_fqs_check + qhimark)) { 3071 3072 /* Are we ignoring a completed grace period? */ 3073 note_gp_changes(rsp, rdp); 3074 3075 /* Start a new grace period if one not already started. */ 3076 if (!rcu_gp_in_progress(rsp)) { 3077 struct rcu_node *rnp_root = rcu_get_root(rsp); 3078 3079 raw_spin_lock_rcu_node(rnp_root); 3080 needwake = rcu_start_gp(rsp); 3081 raw_spin_unlock_rcu_node(rnp_root); 3082 if (needwake) 3083 rcu_gp_kthread_wake(rsp); 3084 } else { 3085 /* Give the grace period a kick. */ 3086 rdp->blimit = LONG_MAX; 3087 if (rsp->n_force_qs == rdp->n_force_qs_snap && 3088 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 3089 force_quiescent_state(rsp); 3090 rdp->n_force_qs_snap = rsp->n_force_qs; 3091 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 3092 } 3093 } 3094 } 3095 3096 /* 3097 * RCU callback function to leak a callback. 3098 */ 3099 static void rcu_leak_callback(struct rcu_head *rhp) 3100 { 3101 } 3102 3103 /* 3104 * Helper function for call_rcu() and friends. The cpu argument will 3105 * normally be -1, indicating "currently running CPU". It may specify 3106 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3107 * is expected to specify a CPU. 3108 */ 3109 static void 3110 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3111 struct rcu_state *rsp, int cpu, bool lazy) 3112 { 3113 unsigned long flags; 3114 struct rcu_data *rdp; 3115 3116 /* Misaligned rcu_head! */ 3117 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3118 3119 if (debug_rcu_head_queue(head)) { 3120 /* 3121 * Probable double call_rcu(), so leak the callback. 3122 * Use rcu:rcu_callback trace event to find the previous 3123 * time callback was passed to __call_rcu(). 3124 */ 3125 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 3126 head, head->func); 3127 WRITE_ONCE(head->func, rcu_leak_callback); 3128 return; 3129 } 3130 head->func = func; 3131 head->next = NULL; 3132 local_irq_save(flags); 3133 rdp = this_cpu_ptr(rsp->rda); 3134 3135 /* Add the callback to our list. */ 3136 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 3137 int offline; 3138 3139 if (cpu != -1) 3140 rdp = per_cpu_ptr(rsp->rda, cpu); 3141 if (likely(rdp->mynode)) { 3142 /* Post-boot, so this should be for a no-CBs CPU. */ 3143 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3144 WARN_ON_ONCE(offline); 3145 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3146 local_irq_restore(flags); 3147 return; 3148 } 3149 /* 3150 * Very early boot, before rcu_init(). Initialize if needed 3151 * and then drop through to queue the callback. 3152 */ 3153 BUG_ON(cpu != -1); 3154 WARN_ON_ONCE(!rcu_is_watching()); 3155 if (rcu_segcblist_empty(&rdp->cblist)) 3156 rcu_segcblist_init(&rdp->cblist); 3157 } 3158 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3159 if (!lazy) 3160 rcu_idle_count_callbacks_posted(); 3161 3162 if (__is_kfree_rcu_offset((unsigned long)func)) 3163 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3164 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3165 rcu_segcblist_n_cbs(&rdp->cblist)); 3166 else 3167 trace_rcu_callback(rsp->name, head, 3168 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3169 rcu_segcblist_n_cbs(&rdp->cblist)); 3170 3171 /* Go handle any RCU core processing required. */ 3172 __call_rcu_core(rsp, rdp, head, flags); 3173 local_irq_restore(flags); 3174 } 3175 3176 /** 3177 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 3178 * @head: structure to be used for queueing the RCU updates. 3179 * @func: actual callback function to be invoked after the grace period 3180 * 3181 * The callback function will be invoked some time after a full grace 3182 * period elapses, in other words after all currently executing RCU 3183 * read-side critical sections have completed. call_rcu_sched() assumes 3184 * that the read-side critical sections end on enabling of preemption 3185 * or on voluntary preemption. 3186 * RCU read-side critical sections are delimited by : 3187 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 3188 * - anything that disables preemption. 3189 * 3190 * These may be nested. 3191 * 3192 * See the description of call_rcu() for more detailed information on 3193 * memory ordering guarantees. 3194 */ 3195 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3196 { 3197 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3198 } 3199 EXPORT_SYMBOL_GPL(call_rcu_sched); 3200 3201 /** 3202 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3203 * @head: structure to be used for queueing the RCU updates. 3204 * @func: actual callback function to be invoked after the grace period 3205 * 3206 * The callback function will be invoked some time after a full grace 3207 * period elapses, in other words after all currently executing RCU 3208 * read-side critical sections have completed. call_rcu_bh() assumes 3209 * that the read-side critical sections end on completion of a softirq 3210 * handler. This means that read-side critical sections in process 3211 * context must not be interrupted by softirqs. This interface is to be 3212 * used when most of the read-side critical sections are in softirq context. 3213 * RCU read-side critical sections are delimited by : 3214 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 3215 * OR 3216 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3217 * These may be nested. 3218 * 3219 * See the description of call_rcu() for more detailed information on 3220 * memory ordering guarantees. 3221 */ 3222 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3223 { 3224 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3225 } 3226 EXPORT_SYMBOL_GPL(call_rcu_bh); 3227 3228 /* 3229 * Queue an RCU callback for lazy invocation after a grace period. 3230 * This will likely be later named something like "call_rcu_lazy()", 3231 * but this change will require some way of tagging the lazy RCU 3232 * callbacks in the list of pending callbacks. Until then, this 3233 * function may only be called from __kfree_rcu(). 3234 */ 3235 void kfree_call_rcu(struct rcu_head *head, 3236 rcu_callback_t func) 3237 { 3238 __call_rcu(head, func, rcu_state_p, -1, 1); 3239 } 3240 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3241 3242 /* 3243 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3244 * any blocking grace-period wait automatically implies a grace period 3245 * if there is only one CPU online at any point time during execution 3246 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3247 * occasionally incorrectly indicate that there are multiple CPUs online 3248 * when there was in fact only one the whole time, as this just adds 3249 * some overhead: RCU still operates correctly. 3250 */ 3251 static inline int rcu_blocking_is_gp(void) 3252 { 3253 int ret; 3254 3255 might_sleep(); /* Check for RCU read-side critical section. */ 3256 preempt_disable(); 3257 ret = num_online_cpus() <= 1; 3258 preempt_enable(); 3259 return ret; 3260 } 3261 3262 /** 3263 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3264 * 3265 * Control will return to the caller some time after a full rcu-sched 3266 * grace period has elapsed, in other words after all currently executing 3267 * rcu-sched read-side critical sections have completed. These read-side 3268 * critical sections are delimited by rcu_read_lock_sched() and 3269 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3270 * local_irq_disable(), and so on may be used in place of 3271 * rcu_read_lock_sched(). 3272 * 3273 * This means that all preempt_disable code sequences, including NMI and 3274 * non-threaded hardware-interrupt handlers, in progress on entry will 3275 * have completed before this primitive returns. However, this does not 3276 * guarantee that softirq handlers will have completed, since in some 3277 * kernels, these handlers can run in process context, and can block. 3278 * 3279 * Note that this guarantee implies further memory-ordering guarantees. 3280 * On systems with more than one CPU, when synchronize_sched() returns, 3281 * each CPU is guaranteed to have executed a full memory barrier since the 3282 * end of its last RCU-sched read-side critical section whose beginning 3283 * preceded the call to synchronize_sched(). In addition, each CPU having 3284 * an RCU read-side critical section that extends beyond the return from 3285 * synchronize_sched() is guaranteed to have executed a full memory barrier 3286 * after the beginning of synchronize_sched() and before the beginning of 3287 * that RCU read-side critical section. Note that these guarantees include 3288 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3289 * that are executing in the kernel. 3290 * 3291 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3292 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3293 * to have executed a full memory barrier during the execution of 3294 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3295 * again only if the system has more than one CPU). 3296 */ 3297 void synchronize_sched(void) 3298 { 3299 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3300 lock_is_held(&rcu_lock_map) || 3301 lock_is_held(&rcu_sched_lock_map), 3302 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3303 if (rcu_blocking_is_gp()) 3304 return; 3305 if (rcu_gp_is_expedited()) 3306 synchronize_sched_expedited(); 3307 else 3308 wait_rcu_gp(call_rcu_sched); 3309 } 3310 EXPORT_SYMBOL_GPL(synchronize_sched); 3311 3312 /** 3313 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3314 * 3315 * Control will return to the caller some time after a full rcu_bh grace 3316 * period has elapsed, in other words after all currently executing rcu_bh 3317 * read-side critical sections have completed. RCU read-side critical 3318 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3319 * and may be nested. 3320 * 3321 * See the description of synchronize_sched() for more detailed information 3322 * on memory ordering guarantees. 3323 */ 3324 void synchronize_rcu_bh(void) 3325 { 3326 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3327 lock_is_held(&rcu_lock_map) || 3328 lock_is_held(&rcu_sched_lock_map), 3329 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3330 if (rcu_blocking_is_gp()) 3331 return; 3332 if (rcu_gp_is_expedited()) 3333 synchronize_rcu_bh_expedited(); 3334 else 3335 wait_rcu_gp(call_rcu_bh); 3336 } 3337 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3338 3339 /** 3340 * get_state_synchronize_rcu - Snapshot current RCU state 3341 * 3342 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3343 * to determine whether or not a full grace period has elapsed in the 3344 * meantime. 3345 */ 3346 unsigned long get_state_synchronize_rcu(void) 3347 { 3348 /* 3349 * Any prior manipulation of RCU-protected data must happen 3350 * before the load from ->gpnum. 3351 */ 3352 smp_mb(); /* ^^^ */ 3353 3354 /* 3355 * Make sure this load happens before the purportedly 3356 * time-consuming work between get_state_synchronize_rcu() 3357 * and cond_synchronize_rcu(). 3358 */ 3359 return smp_load_acquire(&rcu_state_p->gpnum); 3360 } 3361 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3362 3363 /** 3364 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3365 * 3366 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3367 * 3368 * If a full RCU grace period has elapsed since the earlier call to 3369 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3370 * synchronize_rcu() to wait for a full grace period. 3371 * 3372 * Yes, this function does not take counter wrap into account. But 3373 * counter wrap is harmless. If the counter wraps, we have waited for 3374 * more than 2 billion grace periods (and way more on a 64-bit system!), 3375 * so waiting for one additional grace period should be just fine. 3376 */ 3377 void cond_synchronize_rcu(unsigned long oldstate) 3378 { 3379 unsigned long newstate; 3380 3381 /* 3382 * Ensure that this load happens before any RCU-destructive 3383 * actions the caller might carry out after we return. 3384 */ 3385 newstate = smp_load_acquire(&rcu_state_p->completed); 3386 if (ULONG_CMP_GE(oldstate, newstate)) 3387 synchronize_rcu(); 3388 } 3389 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3390 3391 /** 3392 * get_state_synchronize_sched - Snapshot current RCU-sched state 3393 * 3394 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3395 * to determine whether or not a full grace period has elapsed in the 3396 * meantime. 3397 */ 3398 unsigned long get_state_synchronize_sched(void) 3399 { 3400 /* 3401 * Any prior manipulation of RCU-protected data must happen 3402 * before the load from ->gpnum. 3403 */ 3404 smp_mb(); /* ^^^ */ 3405 3406 /* 3407 * Make sure this load happens before the purportedly 3408 * time-consuming work between get_state_synchronize_sched() 3409 * and cond_synchronize_sched(). 3410 */ 3411 return smp_load_acquire(&rcu_sched_state.gpnum); 3412 } 3413 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3414 3415 /** 3416 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3417 * 3418 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3419 * 3420 * If a full RCU-sched grace period has elapsed since the earlier call to 3421 * get_state_synchronize_sched(), just return. Otherwise, invoke 3422 * synchronize_sched() to wait for a full grace period. 3423 * 3424 * Yes, this function does not take counter wrap into account. But 3425 * counter wrap is harmless. If the counter wraps, we have waited for 3426 * more than 2 billion grace periods (and way more on a 64-bit system!), 3427 * so waiting for one additional grace period should be just fine. 3428 */ 3429 void cond_synchronize_sched(unsigned long oldstate) 3430 { 3431 unsigned long newstate; 3432 3433 /* 3434 * Ensure that this load happens before any RCU-destructive 3435 * actions the caller might carry out after we return. 3436 */ 3437 newstate = smp_load_acquire(&rcu_sched_state.completed); 3438 if (ULONG_CMP_GE(oldstate, newstate)) 3439 synchronize_sched(); 3440 } 3441 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3442 3443 /* 3444 * Check to see if there is any immediate RCU-related work to be done 3445 * by the current CPU, for the specified type of RCU, returning 1 if so. 3446 * The checks are in order of increasing expense: checks that can be 3447 * carried out against CPU-local state are performed first. However, 3448 * we must check for CPU stalls first, else we might not get a chance. 3449 */ 3450 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3451 { 3452 struct rcu_node *rnp = rdp->mynode; 3453 3454 rdp->n_rcu_pending++; 3455 3456 /* Check for CPU stalls, if enabled. */ 3457 check_cpu_stall(rsp, rdp); 3458 3459 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3460 if (rcu_nohz_full_cpu(rsp)) 3461 return 0; 3462 3463 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3464 if (rcu_scheduler_fully_active && 3465 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm && 3466 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) { 3467 rdp->n_rp_core_needs_qs++; 3468 } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) { 3469 rdp->n_rp_report_qs++; 3470 return 1; 3471 } 3472 3473 /* Does this CPU have callbacks ready to invoke? */ 3474 if (rcu_segcblist_ready_cbs(&rdp->cblist)) { 3475 rdp->n_rp_cb_ready++; 3476 return 1; 3477 } 3478 3479 /* Has RCU gone idle with this CPU needing another grace period? */ 3480 if (cpu_needs_another_gp(rsp, rdp)) { 3481 rdp->n_rp_cpu_needs_gp++; 3482 return 1; 3483 } 3484 3485 /* Has another RCU grace period completed? */ 3486 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3487 rdp->n_rp_gp_completed++; 3488 return 1; 3489 } 3490 3491 /* Has a new RCU grace period started? */ 3492 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3493 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */ 3494 rdp->n_rp_gp_started++; 3495 return 1; 3496 } 3497 3498 /* Does this CPU need a deferred NOCB wakeup? */ 3499 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3500 rdp->n_rp_nocb_defer_wakeup++; 3501 return 1; 3502 } 3503 3504 /* nothing to do */ 3505 rdp->n_rp_need_nothing++; 3506 return 0; 3507 } 3508 3509 /* 3510 * Check to see if there is any immediate RCU-related work to be done 3511 * by the current CPU, returning 1 if so. This function is part of the 3512 * RCU implementation; it is -not- an exported member of the RCU API. 3513 */ 3514 static int rcu_pending(void) 3515 { 3516 struct rcu_state *rsp; 3517 3518 for_each_rcu_flavor(rsp) 3519 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3520 return 1; 3521 return 0; 3522 } 3523 3524 /* 3525 * Return true if the specified CPU has any callback. If all_lazy is 3526 * non-NULL, store an indication of whether all callbacks are lazy. 3527 * (If there are no callbacks, all of them are deemed to be lazy.) 3528 */ 3529 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3530 { 3531 bool al = true; 3532 bool hc = false; 3533 struct rcu_data *rdp; 3534 struct rcu_state *rsp; 3535 3536 for_each_rcu_flavor(rsp) { 3537 rdp = this_cpu_ptr(rsp->rda); 3538 if (rcu_segcblist_empty(&rdp->cblist)) 3539 continue; 3540 hc = true; 3541 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3542 al = false; 3543 break; 3544 } 3545 } 3546 if (all_lazy) 3547 *all_lazy = al; 3548 return hc; 3549 } 3550 3551 /* 3552 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3553 * the compiler is expected to optimize this away. 3554 */ 3555 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3556 int cpu, unsigned long done) 3557 { 3558 trace_rcu_barrier(rsp->name, s, cpu, 3559 atomic_read(&rsp->barrier_cpu_count), done); 3560 } 3561 3562 /* 3563 * RCU callback function for _rcu_barrier(). If we are last, wake 3564 * up the task executing _rcu_barrier(). 3565 */ 3566 static void rcu_barrier_callback(struct rcu_head *rhp) 3567 { 3568 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3569 struct rcu_state *rsp = rdp->rsp; 3570 3571 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3572 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence); 3573 complete(&rsp->barrier_completion); 3574 } else { 3575 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence); 3576 } 3577 } 3578 3579 /* 3580 * Called with preemption disabled, and from cross-cpu IRQ context. 3581 */ 3582 static void rcu_barrier_func(void *type) 3583 { 3584 struct rcu_state *rsp = type; 3585 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3586 3587 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence); 3588 rdp->barrier_head.func = rcu_barrier_callback; 3589 debug_rcu_head_queue(&rdp->barrier_head); 3590 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3591 atomic_inc(&rsp->barrier_cpu_count); 3592 } else { 3593 debug_rcu_head_unqueue(&rdp->barrier_head); 3594 _rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence); 3595 } 3596 } 3597 3598 /* 3599 * Orchestrate the specified type of RCU barrier, waiting for all 3600 * RCU callbacks of the specified type to complete. 3601 */ 3602 static void _rcu_barrier(struct rcu_state *rsp) 3603 { 3604 int cpu; 3605 struct rcu_data *rdp; 3606 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3607 3608 _rcu_barrier_trace(rsp, "Begin", -1, s); 3609 3610 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3611 mutex_lock(&rsp->barrier_mutex); 3612 3613 /* Did someone else do our work for us? */ 3614 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3615 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence); 3616 smp_mb(); /* caller's subsequent code after above check. */ 3617 mutex_unlock(&rsp->barrier_mutex); 3618 return; 3619 } 3620 3621 /* Mark the start of the barrier operation. */ 3622 rcu_seq_start(&rsp->barrier_sequence); 3623 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence); 3624 3625 /* 3626 * Initialize the count to one rather than to zero in order to 3627 * avoid a too-soon return to zero in case of a short grace period 3628 * (or preemption of this task). Exclude CPU-hotplug operations 3629 * to ensure that no offline CPU has callbacks queued. 3630 */ 3631 init_completion(&rsp->barrier_completion); 3632 atomic_set(&rsp->barrier_cpu_count, 1); 3633 get_online_cpus(); 3634 3635 /* 3636 * Force each CPU with callbacks to register a new callback. 3637 * When that callback is invoked, we will know that all of the 3638 * corresponding CPU's preceding callbacks have been invoked. 3639 */ 3640 for_each_possible_cpu(cpu) { 3641 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3642 continue; 3643 rdp = per_cpu_ptr(rsp->rda, cpu); 3644 if (rcu_is_nocb_cpu(cpu)) { 3645 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3646 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3647 rsp->barrier_sequence); 3648 } else { 3649 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3650 rsp->barrier_sequence); 3651 smp_mb__before_atomic(); 3652 atomic_inc(&rsp->barrier_cpu_count); 3653 __call_rcu(&rdp->barrier_head, 3654 rcu_barrier_callback, rsp, cpu, 0); 3655 } 3656 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3657 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3658 rsp->barrier_sequence); 3659 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3660 } else { 3661 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3662 rsp->barrier_sequence); 3663 } 3664 } 3665 put_online_cpus(); 3666 3667 /* 3668 * Now that we have an rcu_barrier_callback() callback on each 3669 * CPU, and thus each counted, remove the initial count. 3670 */ 3671 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3672 complete(&rsp->barrier_completion); 3673 3674 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3675 wait_for_completion(&rsp->barrier_completion); 3676 3677 /* Mark the end of the barrier operation. */ 3678 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence); 3679 rcu_seq_end(&rsp->barrier_sequence); 3680 3681 /* Other rcu_barrier() invocations can now safely proceed. */ 3682 mutex_unlock(&rsp->barrier_mutex); 3683 } 3684 3685 /** 3686 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3687 */ 3688 void rcu_barrier_bh(void) 3689 { 3690 _rcu_barrier(&rcu_bh_state); 3691 } 3692 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3693 3694 /** 3695 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3696 */ 3697 void rcu_barrier_sched(void) 3698 { 3699 _rcu_barrier(&rcu_sched_state); 3700 } 3701 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3702 3703 /* 3704 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3705 * first CPU in a given leaf rcu_node structure coming online. The caller 3706 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3707 * disabled. 3708 */ 3709 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3710 { 3711 long mask; 3712 struct rcu_node *rnp = rnp_leaf; 3713 3714 lockdep_assert_held(&rnp->lock); 3715 for (;;) { 3716 mask = rnp->grpmask; 3717 rnp = rnp->parent; 3718 if (rnp == NULL) 3719 return; 3720 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3721 rnp->qsmaskinit |= mask; 3722 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3723 } 3724 } 3725 3726 /* 3727 * Do boot-time initialization of a CPU's per-CPU RCU data. 3728 */ 3729 static void __init 3730 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3731 { 3732 unsigned long flags; 3733 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3734 struct rcu_node *rnp = rcu_get_root(rsp); 3735 3736 /* Set up local state, ensuring consistent view of global state. */ 3737 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3738 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3739 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3740 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3741 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3742 rdp->cpu = cpu; 3743 rdp->rsp = rsp; 3744 rcu_boot_init_nocb_percpu_data(rdp); 3745 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3746 } 3747 3748 /* 3749 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3750 * offline event can be happening at a given time. Note also that we 3751 * can accept some slop in the rsp->completed access due to the fact 3752 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3753 */ 3754 static void 3755 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3756 { 3757 unsigned long flags; 3758 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3759 struct rcu_node *rnp = rcu_get_root(rsp); 3760 3761 /* Set up local state, ensuring consistent view of global state. */ 3762 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3763 rdp->qlen_last_fqs_check = 0; 3764 rdp->n_force_qs_snap = rsp->n_force_qs; 3765 rdp->blimit = blimit; 3766 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3767 !init_nocb_callback_list(rdp)) 3768 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3769 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3770 rcu_dynticks_eqs_online(); 3771 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3772 3773 /* 3774 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3775 * propagation up the rcu_node tree will happen at the beginning 3776 * of the next grace period. 3777 */ 3778 rnp = rdp->mynode; 3779 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3780 if (!rdp->beenonline) 3781 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1); 3782 rdp->beenonline = true; /* We have now been online. */ 3783 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3784 rdp->completed = rnp->completed; 3785 rdp->cpu_no_qs.b.norm = true; 3786 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3787 rdp->core_needs_qs = false; 3788 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3789 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3790 } 3791 3792 /* 3793 * Invoked early in the CPU-online process, when pretty much all 3794 * services are available. The incoming CPU is not present. 3795 */ 3796 int rcutree_prepare_cpu(unsigned int cpu) 3797 { 3798 struct rcu_state *rsp; 3799 3800 for_each_rcu_flavor(rsp) 3801 rcu_init_percpu_data(cpu, rsp); 3802 3803 rcu_prepare_kthreads(cpu); 3804 rcu_spawn_all_nocb_kthreads(cpu); 3805 3806 return 0; 3807 } 3808 3809 /* 3810 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3811 */ 3812 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3813 { 3814 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3815 3816 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3817 } 3818 3819 /* 3820 * Near the end of the CPU-online process. Pretty much all services 3821 * enabled, and the CPU is now very much alive. 3822 */ 3823 int rcutree_online_cpu(unsigned int cpu) 3824 { 3825 sync_sched_exp_online_cleanup(cpu); 3826 rcutree_affinity_setting(cpu, -1); 3827 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3828 srcu_online_cpu(cpu); 3829 return 0; 3830 } 3831 3832 /* 3833 * Near the beginning of the process. The CPU is still very much alive 3834 * with pretty much all services enabled. 3835 */ 3836 int rcutree_offline_cpu(unsigned int cpu) 3837 { 3838 rcutree_affinity_setting(cpu, cpu); 3839 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3840 srcu_offline_cpu(cpu); 3841 return 0; 3842 } 3843 3844 /* 3845 * Near the end of the offline process. We do only tracing here. 3846 */ 3847 int rcutree_dying_cpu(unsigned int cpu) 3848 { 3849 struct rcu_state *rsp; 3850 3851 for_each_rcu_flavor(rsp) 3852 rcu_cleanup_dying_cpu(rsp); 3853 return 0; 3854 } 3855 3856 /* 3857 * The outgoing CPU is gone and we are running elsewhere. 3858 */ 3859 int rcutree_dead_cpu(unsigned int cpu) 3860 { 3861 struct rcu_state *rsp; 3862 3863 for_each_rcu_flavor(rsp) { 3864 rcu_cleanup_dead_cpu(cpu, rsp); 3865 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3866 } 3867 return 0; 3868 } 3869 3870 /* 3871 * Mark the specified CPU as being online so that subsequent grace periods 3872 * (both expedited and normal) will wait on it. Note that this means that 3873 * incoming CPUs are not allowed to use RCU read-side critical sections 3874 * until this function is called. Failing to observe this restriction 3875 * will result in lockdep splats. 3876 * 3877 * Note that this function is special in that it is invoked directly 3878 * from the incoming CPU rather than from the cpuhp_step mechanism. 3879 * This is because this function must be invoked at a precise location. 3880 */ 3881 void rcu_cpu_starting(unsigned int cpu) 3882 { 3883 unsigned long flags; 3884 unsigned long mask; 3885 struct rcu_data *rdp; 3886 struct rcu_node *rnp; 3887 struct rcu_state *rsp; 3888 3889 for_each_rcu_flavor(rsp) { 3890 rdp = per_cpu_ptr(rsp->rda, cpu); 3891 rnp = rdp->mynode; 3892 mask = rdp->grpmask; 3893 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3894 rnp->qsmaskinitnext |= mask; 3895 rnp->expmaskinitnext |= mask; 3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3897 } 3898 } 3899 3900 #ifdef CONFIG_HOTPLUG_CPU 3901 /* 3902 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3903 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3904 * bit masks. 3905 */ 3906 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3907 { 3908 unsigned long flags; 3909 unsigned long mask; 3910 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3911 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3912 3913 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3914 mask = rdp->grpmask; 3915 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3916 rnp->qsmaskinitnext &= ~mask; 3917 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3918 } 3919 3920 /* 3921 * The outgoing function has no further need of RCU, so remove it from 3922 * the list of CPUs that RCU must track. 3923 * 3924 * Note that this function is special in that it is invoked directly 3925 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3926 * This is because this function must be invoked at a precise location. 3927 */ 3928 void rcu_report_dead(unsigned int cpu) 3929 { 3930 struct rcu_state *rsp; 3931 3932 /* QS for any half-done expedited RCU-sched GP. */ 3933 preempt_disable(); 3934 rcu_report_exp_rdp(&rcu_sched_state, 3935 this_cpu_ptr(rcu_sched_state.rda), true); 3936 preempt_enable(); 3937 for_each_rcu_flavor(rsp) 3938 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3939 } 3940 #endif 3941 3942 /* 3943 * On non-huge systems, use expedited RCU grace periods to make suspend 3944 * and hibernation run faster. 3945 */ 3946 static int rcu_pm_notify(struct notifier_block *self, 3947 unsigned long action, void *hcpu) 3948 { 3949 switch (action) { 3950 case PM_HIBERNATION_PREPARE: 3951 case PM_SUSPEND_PREPARE: 3952 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3953 rcu_expedite_gp(); 3954 break; 3955 case PM_POST_HIBERNATION: 3956 case PM_POST_SUSPEND: 3957 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3958 rcu_unexpedite_gp(); 3959 break; 3960 default: 3961 break; 3962 } 3963 return NOTIFY_OK; 3964 } 3965 3966 /* 3967 * Spawn the kthreads that handle each RCU flavor's grace periods. 3968 */ 3969 static int __init rcu_spawn_gp_kthread(void) 3970 { 3971 unsigned long flags; 3972 int kthread_prio_in = kthread_prio; 3973 struct rcu_node *rnp; 3974 struct rcu_state *rsp; 3975 struct sched_param sp; 3976 struct task_struct *t; 3977 3978 /* Force priority into range. */ 3979 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3980 kthread_prio = 1; 3981 else if (kthread_prio < 0) 3982 kthread_prio = 0; 3983 else if (kthread_prio > 99) 3984 kthread_prio = 99; 3985 if (kthread_prio != kthread_prio_in) 3986 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3987 kthread_prio, kthread_prio_in); 3988 3989 rcu_scheduler_fully_active = 1; 3990 for_each_rcu_flavor(rsp) { 3991 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3992 BUG_ON(IS_ERR(t)); 3993 rnp = rcu_get_root(rsp); 3994 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3995 rsp->gp_kthread = t; 3996 if (kthread_prio) { 3997 sp.sched_priority = kthread_prio; 3998 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3999 } 4000 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4001 wake_up_process(t); 4002 } 4003 rcu_spawn_nocb_kthreads(); 4004 rcu_spawn_boost_kthreads(); 4005 return 0; 4006 } 4007 early_initcall(rcu_spawn_gp_kthread); 4008 4009 /* 4010 * This function is invoked towards the end of the scheduler's 4011 * initialization process. Before this is called, the idle task might 4012 * contain synchronous grace-period primitives (during which time, this idle 4013 * task is booting the system, and such primitives are no-ops). After this 4014 * function is called, any synchronous grace-period primitives are run as 4015 * expedited, with the requesting task driving the grace period forward. 4016 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4017 * runtime RCU functionality. 4018 */ 4019 void rcu_scheduler_starting(void) 4020 { 4021 WARN_ON(num_online_cpus() != 1); 4022 WARN_ON(nr_context_switches() > 0); 4023 rcu_test_sync_prims(); 4024 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4025 rcu_test_sync_prims(); 4026 } 4027 4028 /* 4029 * Helper function for rcu_init() that initializes one rcu_state structure. 4030 */ 4031 static void __init rcu_init_one(struct rcu_state *rsp) 4032 { 4033 static const char * const buf[] = RCU_NODE_NAME_INIT; 4034 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4035 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4036 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4037 4038 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4039 int cpustride = 1; 4040 int i; 4041 int j; 4042 struct rcu_node *rnp; 4043 4044 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4045 4046 /* Silence gcc 4.8 false positive about array index out of range. */ 4047 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4048 panic("rcu_init_one: rcu_num_lvls out of range"); 4049 4050 /* Initialize the level-tracking arrays. */ 4051 4052 for (i = 1; i < rcu_num_lvls; i++) 4053 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 4054 rcu_init_levelspread(levelspread, num_rcu_lvl); 4055 4056 /* Initialize the elements themselves, starting from the leaves. */ 4057 4058 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4059 cpustride *= levelspread[i]; 4060 rnp = rsp->level[i]; 4061 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4062 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4063 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4064 &rcu_node_class[i], buf[i]); 4065 raw_spin_lock_init(&rnp->fqslock); 4066 lockdep_set_class_and_name(&rnp->fqslock, 4067 &rcu_fqs_class[i], fqs[i]); 4068 rnp->gpnum = rsp->gpnum; 4069 rnp->completed = rsp->completed; 4070 rnp->qsmask = 0; 4071 rnp->qsmaskinit = 0; 4072 rnp->grplo = j * cpustride; 4073 rnp->grphi = (j + 1) * cpustride - 1; 4074 if (rnp->grphi >= nr_cpu_ids) 4075 rnp->grphi = nr_cpu_ids - 1; 4076 if (i == 0) { 4077 rnp->grpnum = 0; 4078 rnp->grpmask = 0; 4079 rnp->parent = NULL; 4080 } else { 4081 rnp->grpnum = j % levelspread[i - 1]; 4082 rnp->grpmask = 1UL << rnp->grpnum; 4083 rnp->parent = rsp->level[i - 1] + 4084 j / levelspread[i - 1]; 4085 } 4086 rnp->level = i; 4087 INIT_LIST_HEAD(&rnp->blkd_tasks); 4088 rcu_init_one_nocb(rnp); 4089 init_waitqueue_head(&rnp->exp_wq[0]); 4090 init_waitqueue_head(&rnp->exp_wq[1]); 4091 init_waitqueue_head(&rnp->exp_wq[2]); 4092 init_waitqueue_head(&rnp->exp_wq[3]); 4093 spin_lock_init(&rnp->exp_lock); 4094 } 4095 } 4096 4097 init_swait_queue_head(&rsp->gp_wq); 4098 init_swait_queue_head(&rsp->expedited_wq); 4099 rnp = rsp->level[rcu_num_lvls - 1]; 4100 for_each_possible_cpu(i) { 4101 while (i > rnp->grphi) 4102 rnp++; 4103 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4104 rcu_boot_init_percpu_data(i, rsp); 4105 } 4106 list_add(&rsp->flavors, &rcu_struct_flavors); 4107 } 4108 4109 /* 4110 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4111 * replace the definitions in tree.h because those are needed to size 4112 * the ->node array in the rcu_state structure. 4113 */ 4114 static void __init rcu_init_geometry(void) 4115 { 4116 ulong d; 4117 int i; 4118 int rcu_capacity[RCU_NUM_LVLS]; 4119 4120 /* 4121 * Initialize any unspecified boot parameters. 4122 * The default values of jiffies_till_first_fqs and 4123 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4124 * value, which is a function of HZ, then adding one for each 4125 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4126 */ 4127 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4128 if (jiffies_till_first_fqs == ULONG_MAX) 4129 jiffies_till_first_fqs = d; 4130 if (jiffies_till_next_fqs == ULONG_MAX) 4131 jiffies_till_next_fqs = d; 4132 4133 /* If the compile-time values are accurate, just leave. */ 4134 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4135 nr_cpu_ids == NR_CPUS) 4136 return; 4137 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 4138 rcu_fanout_leaf, nr_cpu_ids); 4139 4140 /* 4141 * The boot-time rcu_fanout_leaf parameter must be at least two 4142 * and cannot exceed the number of bits in the rcu_node masks. 4143 * Complain and fall back to the compile-time values if this 4144 * limit is exceeded. 4145 */ 4146 if (rcu_fanout_leaf < 2 || 4147 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4148 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4149 WARN_ON(1); 4150 return; 4151 } 4152 4153 /* 4154 * Compute number of nodes that can be handled an rcu_node tree 4155 * with the given number of levels. 4156 */ 4157 rcu_capacity[0] = rcu_fanout_leaf; 4158 for (i = 1; i < RCU_NUM_LVLS; i++) 4159 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4160 4161 /* 4162 * The tree must be able to accommodate the configured number of CPUs. 4163 * If this limit is exceeded, fall back to the compile-time values. 4164 */ 4165 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4166 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4167 WARN_ON(1); 4168 return; 4169 } 4170 4171 /* Calculate the number of levels in the tree. */ 4172 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4173 } 4174 rcu_num_lvls = i + 1; 4175 4176 /* Calculate the number of rcu_nodes at each level of the tree. */ 4177 for (i = 0; i < rcu_num_lvls; i++) { 4178 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4179 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4180 } 4181 4182 /* Calculate the total number of rcu_node structures. */ 4183 rcu_num_nodes = 0; 4184 for (i = 0; i < rcu_num_lvls; i++) 4185 rcu_num_nodes += num_rcu_lvl[i]; 4186 } 4187 4188 /* 4189 * Dump out the structure of the rcu_node combining tree associated 4190 * with the rcu_state structure referenced by rsp. 4191 */ 4192 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4193 { 4194 int level = 0; 4195 struct rcu_node *rnp; 4196 4197 pr_info("rcu_node tree layout dump\n"); 4198 pr_info(" "); 4199 rcu_for_each_node_breadth_first(rsp, rnp) { 4200 if (rnp->level != level) { 4201 pr_cont("\n"); 4202 pr_info(" "); 4203 level = rnp->level; 4204 } 4205 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4206 } 4207 pr_cont("\n"); 4208 } 4209 4210 void __init rcu_init(void) 4211 { 4212 int cpu; 4213 4214 rcu_early_boot_tests(); 4215 4216 rcu_bootup_announce(); 4217 rcu_init_geometry(); 4218 rcu_init_one(&rcu_bh_state); 4219 rcu_init_one(&rcu_sched_state); 4220 if (dump_tree) 4221 rcu_dump_rcu_node_tree(&rcu_sched_state); 4222 __rcu_init_preempt(); 4223 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4224 4225 /* 4226 * We don't need protection against CPU-hotplug here because 4227 * this is called early in boot, before either interrupts 4228 * or the scheduler are operational. 4229 */ 4230 pm_notifier(rcu_pm_notify, 0); 4231 for_each_online_cpu(cpu) { 4232 rcutree_prepare_cpu(cpu); 4233 rcu_cpu_starting(cpu); 4234 if (IS_ENABLED(CONFIG_TREE_SRCU)) 4235 srcu_online_cpu(cpu); 4236 } 4237 } 4238 4239 #include "tree_exp.h" 4240 #include "tree_plugin.h" 4241