xref: /openbmc/linux/kernel/rcu/tree.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
101 	.orphan_pend = RCU_CBLIST_INITIALIZER(sname##_state.orphan_pend), \
102 	.orphan_done = RCU_CBLIST_INITIALIZER(sname##_state.orphan_done), \
103 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
104 	.name = RCU_STATE_NAME(sname), \
105 	.abbr = sabbr, \
106 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
107 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
108 }
109 
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112 
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115 
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131 
132 /*
133  * The rcu_scheduler_active variable is initialized to the value
134  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
136  * RCU can assume that there is but one task, allowing RCU to (for example)
137  * optimize synchronize_rcu() to a simple barrier().  When this variable
138  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139  * to detect real grace periods.  This variable is also used to suppress
140  * boot-time false positives from lockdep-RCU error checking.  Finally, it
141  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142  * is fully initialized, including all of its kthreads having been spawned.
143  */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146 
147 /*
148  * The rcu_scheduler_fully_active variable transitions from zero to one
149  * during the early_initcall() processing, which is after the scheduler
150  * is capable of creating new tasks.  So RCU processing (for example,
151  * creating tasks for RCU priority boosting) must be delayed until after
152  * rcu_scheduler_fully_active transitions from zero to one.  We also
153  * currently delay invocation of any RCU callbacks until after this point.
154  *
155  * It might later prove better for people registering RCU callbacks during
156  * early boot to take responsibility for these callbacks, but one step at
157  * a time.
158  */
159 static int rcu_scheduler_fully_active __read_mostly;
160 
161 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
162 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
163 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
164 static void invoke_rcu_core(void);
165 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
166 static void rcu_report_exp_rdp(struct rcu_state *rsp,
167 			       struct rcu_data *rdp, bool wake);
168 static void sync_sched_exp_online_cleanup(int cpu);
169 
170 /* rcuc/rcub kthread realtime priority */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 module_param(kthread_prio, int, 0644);
173 
174 /* Delay in jiffies for grace-period initialization delays, debug only. */
175 
176 static int gp_preinit_delay;
177 module_param(gp_preinit_delay, int, 0444);
178 static int gp_init_delay;
179 module_param(gp_init_delay, int, 0444);
180 static int gp_cleanup_delay;
181 module_param(gp_cleanup_delay, int, 0444);
182 
183 /*
184  * Number of grace periods between delays, normalized by the duration of
185  * the delay.  The longer the delay, the more the grace periods between
186  * each delay.  The reason for this normalization is that it means that,
187  * for non-zero delays, the overall slowdown of grace periods is constant
188  * regardless of the duration of the delay.  This arrangement balances
189  * the need for long delays to increase some race probabilities with the
190  * need for fast grace periods to increase other race probabilities.
191  */
192 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
193 
194 /*
195  * Track the rcutorture test sequence number and the update version
196  * number within a given test.  The rcutorture_testseq is incremented
197  * on every rcutorture module load and unload, so has an odd value
198  * when a test is running.  The rcutorture_vernum is set to zero
199  * when rcutorture starts and is incremented on each rcutorture update.
200  * These variables enable correlating rcutorture output with the
201  * RCU tracing information.
202  */
203 unsigned long rcutorture_testseq;
204 unsigned long rcutorture_vernum;
205 
206 /*
207  * Compute the mask of online CPUs for the specified rcu_node structure.
208  * This will not be stable unless the rcu_node structure's ->lock is
209  * held, but the bit corresponding to the current CPU will be stable
210  * in most contexts.
211  */
212 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
213 {
214 	return READ_ONCE(rnp->qsmaskinitnext);
215 }
216 
217 /*
218  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
219  * permit this function to be invoked without holding the root rcu_node
220  * structure's ->lock, but of course results can be subject to change.
221  */
222 static int rcu_gp_in_progress(struct rcu_state *rsp)
223 {
224 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
225 }
226 
227 /*
228  * Note a quiescent state.  Because we do not need to know
229  * how many quiescent states passed, just if there was at least
230  * one since the start of the grace period, this just sets a flag.
231  * The caller must have disabled preemption.
232  */
233 void rcu_sched_qs(void)
234 {
235 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
236 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
237 		return;
238 	trace_rcu_grace_period(TPS("rcu_sched"),
239 			       __this_cpu_read(rcu_sched_data.gpnum),
240 			       TPS("cpuqs"));
241 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
242 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
243 		return;
244 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
245 	rcu_report_exp_rdp(&rcu_sched_state,
246 			   this_cpu_ptr(&rcu_sched_data), true);
247 }
248 
249 void rcu_bh_qs(void)
250 {
251 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
252 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
253 		trace_rcu_grace_period(TPS("rcu_bh"),
254 				       __this_cpu_read(rcu_bh_data.gpnum),
255 				       TPS("cpuqs"));
256 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
257 	}
258 }
259 
260 /*
261  * Steal a bit from the bottom of ->dynticks for idle entry/exit
262  * control.  Initially this is for TLB flushing.
263  */
264 #define RCU_DYNTICK_CTRL_MASK 0x1
265 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
266 #ifndef rcu_eqs_special_exit
267 #define rcu_eqs_special_exit() do { } while (0)
268 #endif
269 
270 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
271 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
272 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
273 };
274 
275 /*
276  * There's a few places, currently just in the tracing infrastructure,
277  * that uses rcu_irq_enter() to make sure RCU is watching. But there's
278  * a small location where that will not even work. In those cases
279  * rcu_irq_enter_disabled() needs to be checked to make sure rcu_irq_enter()
280  * can be called.
281  */
282 static DEFINE_PER_CPU(bool, disable_rcu_irq_enter);
283 
284 bool rcu_irq_enter_disabled(void)
285 {
286 	return this_cpu_read(disable_rcu_irq_enter);
287 }
288 
289 /*
290  * Record entry into an extended quiescent state.  This is only to be
291  * called when not already in an extended quiescent state.
292  */
293 static void rcu_dynticks_eqs_enter(void)
294 {
295 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
296 	int seq;
297 
298 	/*
299 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
300 	 * critical sections, and we also must force ordering with the
301 	 * next idle sojourn.
302 	 */
303 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
304 	/* Better be in an extended quiescent state! */
305 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
306 		     (seq & RCU_DYNTICK_CTRL_CTR));
307 	/* Better not have special action (TLB flush) pending! */
308 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
309 		     (seq & RCU_DYNTICK_CTRL_MASK));
310 }
311 
312 /*
313  * Record exit from an extended quiescent state.  This is only to be
314  * called from an extended quiescent state.
315  */
316 static void rcu_dynticks_eqs_exit(void)
317 {
318 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
319 	int seq;
320 
321 	/*
322 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
323 	 * and we also must force ordering with the next RCU read-side
324 	 * critical section.
325 	 */
326 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
327 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
328 		     !(seq & RCU_DYNTICK_CTRL_CTR));
329 	if (seq & RCU_DYNTICK_CTRL_MASK) {
330 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
331 		smp_mb__after_atomic(); /* _exit after clearing mask. */
332 		/* Prefer duplicate flushes to losing a flush. */
333 		rcu_eqs_special_exit();
334 	}
335 }
336 
337 /*
338  * Reset the current CPU's ->dynticks counter to indicate that the
339  * newly onlined CPU is no longer in an extended quiescent state.
340  * This will either leave the counter unchanged, or increment it
341  * to the next non-quiescent value.
342  *
343  * The non-atomic test/increment sequence works because the upper bits
344  * of the ->dynticks counter are manipulated only by the corresponding CPU,
345  * or when the corresponding CPU is offline.
346  */
347 static void rcu_dynticks_eqs_online(void)
348 {
349 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
350 
351 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
352 		return;
353 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
354 }
355 
356 /*
357  * Is the current CPU in an extended quiescent state?
358  *
359  * No ordering, as we are sampling CPU-local information.
360  */
361 bool rcu_dynticks_curr_cpu_in_eqs(void)
362 {
363 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
364 
365 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
366 }
367 
368 /*
369  * Snapshot the ->dynticks counter with full ordering so as to allow
370  * stable comparison of this counter with past and future snapshots.
371  */
372 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
373 {
374 	int snap = atomic_add_return(0, &rdtp->dynticks);
375 
376 	return snap & ~RCU_DYNTICK_CTRL_MASK;
377 }
378 
379 /*
380  * Return true if the snapshot returned from rcu_dynticks_snap()
381  * indicates that RCU is in an extended quiescent state.
382  */
383 static bool rcu_dynticks_in_eqs(int snap)
384 {
385 	return !(snap & RCU_DYNTICK_CTRL_CTR);
386 }
387 
388 /*
389  * Return true if the CPU corresponding to the specified rcu_dynticks
390  * structure has spent some time in an extended quiescent state since
391  * rcu_dynticks_snap() returned the specified snapshot.
392  */
393 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
394 {
395 	return snap != rcu_dynticks_snap(rdtp);
396 }
397 
398 /*
399  * Do a double-increment of the ->dynticks counter to emulate a
400  * momentary idle-CPU quiescent state.
401  */
402 static void rcu_dynticks_momentary_idle(void)
403 {
404 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
405 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
406 					&rdtp->dynticks);
407 
408 	/* It is illegal to call this from idle state. */
409 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
410 }
411 
412 /*
413  * Set the special (bottom) bit of the specified CPU so that it
414  * will take special action (such as flushing its TLB) on the
415  * next exit from an extended quiescent state.  Returns true if
416  * the bit was successfully set, or false if the CPU was not in
417  * an extended quiescent state.
418  */
419 bool rcu_eqs_special_set(int cpu)
420 {
421 	int old;
422 	int new;
423 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
424 
425 	do {
426 		old = atomic_read(&rdtp->dynticks);
427 		if (old & RCU_DYNTICK_CTRL_CTR)
428 			return false;
429 		new = old | RCU_DYNTICK_CTRL_MASK;
430 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
431 	return true;
432 }
433 
434 /*
435  * Let the RCU core know that this CPU has gone through the scheduler,
436  * which is a quiescent state.  This is called when the need for a
437  * quiescent state is urgent, so we burn an atomic operation and full
438  * memory barriers to let the RCU core know about it, regardless of what
439  * this CPU might (or might not) do in the near future.
440  *
441  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
442  *
443  * The caller must have disabled interrupts.
444  */
445 static void rcu_momentary_dyntick_idle(void)
446 {
447 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
448 	rcu_dynticks_momentary_idle();
449 }
450 
451 /*
452  * Note a context switch.  This is a quiescent state for RCU-sched,
453  * and requires special handling for preemptible RCU.
454  * The caller must have disabled interrupts.
455  */
456 void rcu_note_context_switch(bool preempt)
457 {
458 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
459 	trace_rcu_utilization(TPS("Start context switch"));
460 	rcu_sched_qs();
461 	rcu_preempt_note_context_switch(preempt);
462 	/* Load rcu_urgent_qs before other flags. */
463 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
464 		goto out;
465 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
466 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
467 		rcu_momentary_dyntick_idle();
468 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
469 	if (!preempt)
470 		rcu_note_voluntary_context_switch_lite(current);
471 out:
472 	trace_rcu_utilization(TPS("End context switch"));
473 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
474 }
475 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
476 
477 /*
478  * Register a quiescent state for all RCU flavors.  If there is an
479  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
480  * dyntick-idle quiescent state visible to other CPUs (but only for those
481  * RCU flavors in desperate need of a quiescent state, which will normally
482  * be none of them).  Either way, do a lightweight quiescent state for
483  * all RCU flavors.
484  *
485  * The barrier() calls are redundant in the common case when this is
486  * called externally, but just in case this is called from within this
487  * file.
488  *
489  */
490 void rcu_all_qs(void)
491 {
492 	unsigned long flags;
493 
494 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
495 		return;
496 	preempt_disable();
497 	/* Load rcu_urgent_qs before other flags. */
498 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
499 		preempt_enable();
500 		return;
501 	}
502 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
503 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
504 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
505 		local_irq_save(flags);
506 		rcu_momentary_dyntick_idle();
507 		local_irq_restore(flags);
508 	}
509 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
510 		rcu_sched_qs();
511 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
512 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
513 	preempt_enable();
514 }
515 EXPORT_SYMBOL_GPL(rcu_all_qs);
516 
517 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
518 static long blimit = DEFAULT_RCU_BLIMIT;
519 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
520 static long qhimark = DEFAULT_RCU_QHIMARK;
521 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
522 static long qlowmark = DEFAULT_RCU_QLOMARK;
523 
524 module_param(blimit, long, 0444);
525 module_param(qhimark, long, 0444);
526 module_param(qlowmark, long, 0444);
527 
528 static ulong jiffies_till_first_fqs = ULONG_MAX;
529 static ulong jiffies_till_next_fqs = ULONG_MAX;
530 static bool rcu_kick_kthreads;
531 
532 module_param(jiffies_till_first_fqs, ulong, 0644);
533 module_param(jiffies_till_next_fqs, ulong, 0644);
534 module_param(rcu_kick_kthreads, bool, 0644);
535 
536 /*
537  * How long the grace period must be before we start recruiting
538  * quiescent-state help from rcu_note_context_switch().
539  */
540 static ulong jiffies_till_sched_qs = HZ / 20;
541 module_param(jiffies_till_sched_qs, ulong, 0644);
542 
543 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
544 				  struct rcu_data *rdp);
545 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
546 static void force_quiescent_state(struct rcu_state *rsp);
547 static int rcu_pending(void);
548 
549 /*
550  * Return the number of RCU batches started thus far for debug & stats.
551  */
552 unsigned long rcu_batches_started(void)
553 {
554 	return rcu_state_p->gpnum;
555 }
556 EXPORT_SYMBOL_GPL(rcu_batches_started);
557 
558 /*
559  * Return the number of RCU-sched batches started thus far for debug & stats.
560  */
561 unsigned long rcu_batches_started_sched(void)
562 {
563 	return rcu_sched_state.gpnum;
564 }
565 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
566 
567 /*
568  * Return the number of RCU BH batches started thus far for debug & stats.
569  */
570 unsigned long rcu_batches_started_bh(void)
571 {
572 	return rcu_bh_state.gpnum;
573 }
574 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
575 
576 /*
577  * Return the number of RCU batches completed thus far for debug & stats.
578  */
579 unsigned long rcu_batches_completed(void)
580 {
581 	return rcu_state_p->completed;
582 }
583 EXPORT_SYMBOL_GPL(rcu_batches_completed);
584 
585 /*
586  * Return the number of RCU-sched batches completed thus far for debug & stats.
587  */
588 unsigned long rcu_batches_completed_sched(void)
589 {
590 	return rcu_sched_state.completed;
591 }
592 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
593 
594 /*
595  * Return the number of RCU BH batches completed thus far for debug & stats.
596  */
597 unsigned long rcu_batches_completed_bh(void)
598 {
599 	return rcu_bh_state.completed;
600 }
601 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
602 
603 /*
604  * Return the number of RCU expedited batches completed thus far for
605  * debug & stats.  Odd numbers mean that a batch is in progress, even
606  * numbers mean idle.  The value returned will thus be roughly double
607  * the cumulative batches since boot.
608  */
609 unsigned long rcu_exp_batches_completed(void)
610 {
611 	return rcu_state_p->expedited_sequence;
612 }
613 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
614 
615 /*
616  * Return the number of RCU-sched expedited batches completed thus far
617  * for debug & stats.  Similar to rcu_exp_batches_completed().
618  */
619 unsigned long rcu_exp_batches_completed_sched(void)
620 {
621 	return rcu_sched_state.expedited_sequence;
622 }
623 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
624 
625 /*
626  * Force a quiescent state.
627  */
628 void rcu_force_quiescent_state(void)
629 {
630 	force_quiescent_state(rcu_state_p);
631 }
632 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
633 
634 /*
635  * Force a quiescent state for RCU BH.
636  */
637 void rcu_bh_force_quiescent_state(void)
638 {
639 	force_quiescent_state(&rcu_bh_state);
640 }
641 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
642 
643 /*
644  * Force a quiescent state for RCU-sched.
645  */
646 void rcu_sched_force_quiescent_state(void)
647 {
648 	force_quiescent_state(&rcu_sched_state);
649 }
650 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
651 
652 /*
653  * Show the state of the grace-period kthreads.
654  */
655 void show_rcu_gp_kthreads(void)
656 {
657 	struct rcu_state *rsp;
658 
659 	for_each_rcu_flavor(rsp) {
660 		pr_info("%s: wait state: %d ->state: %#lx\n",
661 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
662 		/* sched_show_task(rsp->gp_kthread); */
663 	}
664 }
665 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
666 
667 /*
668  * Record the number of times rcutorture tests have been initiated and
669  * terminated.  This information allows the debugfs tracing stats to be
670  * correlated to the rcutorture messages, even when the rcutorture module
671  * is being repeatedly loaded and unloaded.  In other words, we cannot
672  * store this state in rcutorture itself.
673  */
674 void rcutorture_record_test_transition(void)
675 {
676 	rcutorture_testseq++;
677 	rcutorture_vernum = 0;
678 }
679 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
680 
681 /*
682  * Send along grace-period-related data for rcutorture diagnostics.
683  */
684 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
685 			    unsigned long *gpnum, unsigned long *completed)
686 {
687 	struct rcu_state *rsp = NULL;
688 
689 	switch (test_type) {
690 	case RCU_FLAVOR:
691 		rsp = rcu_state_p;
692 		break;
693 	case RCU_BH_FLAVOR:
694 		rsp = &rcu_bh_state;
695 		break;
696 	case RCU_SCHED_FLAVOR:
697 		rsp = &rcu_sched_state;
698 		break;
699 	default:
700 		break;
701 	}
702 	if (rsp == NULL)
703 		return;
704 	*flags = READ_ONCE(rsp->gp_flags);
705 	*gpnum = READ_ONCE(rsp->gpnum);
706 	*completed = READ_ONCE(rsp->completed);
707 }
708 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
709 
710 /*
711  * Record the number of writer passes through the current rcutorture test.
712  * This is also used to correlate debugfs tracing stats with the rcutorture
713  * messages.
714  */
715 void rcutorture_record_progress(unsigned long vernum)
716 {
717 	rcutorture_vernum++;
718 }
719 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
720 
721 /*
722  * Return the root node of the specified rcu_state structure.
723  */
724 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
725 {
726 	return &rsp->node[0];
727 }
728 
729 /*
730  * Is there any need for future grace periods?
731  * Interrupts must be disabled.  If the caller does not hold the root
732  * rnp_node structure's ->lock, the results are advisory only.
733  */
734 static int rcu_future_needs_gp(struct rcu_state *rsp)
735 {
736 	struct rcu_node *rnp = rcu_get_root(rsp);
737 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
738 	int *fp = &rnp->need_future_gp[idx];
739 
740 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_future_needs_gp() invoked with irqs enabled!!!");
741 	return READ_ONCE(*fp);
742 }
743 
744 /*
745  * Does the current CPU require a not-yet-started grace period?
746  * The caller must have disabled interrupts to prevent races with
747  * normal callback registry.
748  */
749 static bool
750 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
751 {
752 	RCU_LOCKDEP_WARN(!irqs_disabled(), "cpu_needs_another_gp() invoked with irqs enabled!!!");
753 	if (rcu_gp_in_progress(rsp))
754 		return false;  /* No, a grace period is already in progress. */
755 	if (rcu_future_needs_gp(rsp))
756 		return true;  /* Yes, a no-CBs CPU needs one. */
757 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
758 		return false;  /* No, this is a no-CBs (or offline) CPU. */
759 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
760 		return true;  /* Yes, CPU has newly registered callbacks. */
761 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
762 					   READ_ONCE(rsp->completed)))
763 		return true;  /* Yes, CBs for future grace period. */
764 	return false; /* No grace period needed. */
765 }
766 
767 /*
768  * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
769  *
770  * Enter idle, doing appropriate accounting.  The caller must have
771  * disabled interrupts.
772  */
773 static void rcu_eqs_enter_common(bool user)
774 {
775 	struct rcu_state *rsp;
776 	struct rcu_data *rdp;
777 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
778 
779 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_enter_common() invoked with irqs enabled!!!");
780 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
781 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
782 	    !user && !is_idle_task(current)) {
783 		struct task_struct *idle __maybe_unused =
784 			idle_task(smp_processor_id());
785 
786 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
787 		rcu_ftrace_dump(DUMP_ORIG);
788 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
789 			  current->pid, current->comm,
790 			  idle->pid, idle->comm); /* must be idle task! */
791 	}
792 	for_each_rcu_flavor(rsp) {
793 		rdp = this_cpu_ptr(rsp->rda);
794 		do_nocb_deferred_wakeup(rdp);
795 	}
796 	rcu_prepare_for_idle();
797 	__this_cpu_inc(disable_rcu_irq_enter);
798 	rdtp->dynticks_nesting = 0; /* Breaks tracing momentarily. */
799 	rcu_dynticks_eqs_enter(); /* After this, tracing works again. */
800 	__this_cpu_dec(disable_rcu_irq_enter);
801 	rcu_dynticks_task_enter();
802 
803 	/*
804 	 * It is illegal to enter an extended quiescent state while
805 	 * in an RCU read-side critical section.
806 	 */
807 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
808 			 "Illegal idle entry in RCU read-side critical section.");
809 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
810 			 "Illegal idle entry in RCU-bh read-side critical section.");
811 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
812 			 "Illegal idle entry in RCU-sched read-side critical section.");
813 }
814 
815 /*
816  * Enter an RCU extended quiescent state, which can be either the
817  * idle loop or adaptive-tickless usermode execution.
818  */
819 static void rcu_eqs_enter(bool user)
820 {
821 	struct rcu_dynticks *rdtp;
822 
823 	rdtp = this_cpu_ptr(&rcu_dynticks);
824 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
825 		     (rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == 0);
826 	if ((rdtp->dynticks_nesting & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
827 		rcu_eqs_enter_common(user);
828 	else
829 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
830 }
831 
832 /**
833  * rcu_idle_enter - inform RCU that current CPU is entering idle
834  *
835  * Enter idle mode, in other words, -leave- the mode in which RCU
836  * read-side critical sections can occur.  (Though RCU read-side
837  * critical sections can occur in irq handlers in idle, a possibility
838  * handled by irq_enter() and irq_exit().)
839  *
840  * We crowbar the ->dynticks_nesting field to zero to allow for
841  * the possibility of usermode upcalls having messed up our count
842  * of interrupt nesting level during the prior busy period.
843  */
844 void rcu_idle_enter(void)
845 {
846 	unsigned long flags;
847 
848 	local_irq_save(flags);
849 	rcu_eqs_enter(false);
850 	local_irq_restore(flags);
851 }
852 EXPORT_SYMBOL_GPL(rcu_idle_enter);
853 
854 #ifdef CONFIG_NO_HZ_FULL
855 /**
856  * rcu_user_enter - inform RCU that we are resuming userspace.
857  *
858  * Enter RCU idle mode right before resuming userspace.  No use of RCU
859  * is permitted between this call and rcu_user_exit(). This way the
860  * CPU doesn't need to maintain the tick for RCU maintenance purposes
861  * when the CPU runs in userspace.
862  */
863 void rcu_user_enter(void)
864 {
865 	rcu_eqs_enter(1);
866 }
867 #endif /* CONFIG_NO_HZ_FULL */
868 
869 /**
870  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
871  *
872  * Exit from an interrupt handler, which might possibly result in entering
873  * idle mode, in other words, leaving the mode in which read-side critical
874  * sections can occur.  The caller must have disabled interrupts.
875  *
876  * This code assumes that the idle loop never does anything that might
877  * result in unbalanced calls to irq_enter() and irq_exit().  If your
878  * architecture violates this assumption, RCU will give you what you
879  * deserve, good and hard.  But very infrequently and irreproducibly.
880  *
881  * Use things like work queues to work around this limitation.
882  *
883  * You have been warned.
884  */
885 void rcu_irq_exit(void)
886 {
887 	struct rcu_dynticks *rdtp;
888 
889 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
890 	rdtp = this_cpu_ptr(&rcu_dynticks);
891 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
892 		     rdtp->dynticks_nesting < 1);
893 	if (rdtp->dynticks_nesting <= 1) {
894 		rcu_eqs_enter_common(true);
895 	} else {
896 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nesting, rdtp->dynticks_nesting - 1);
897 		rdtp->dynticks_nesting--;
898 	}
899 }
900 
901 /*
902  * Wrapper for rcu_irq_exit() where interrupts are enabled.
903  */
904 void rcu_irq_exit_irqson(void)
905 {
906 	unsigned long flags;
907 
908 	local_irq_save(flags);
909 	rcu_irq_exit();
910 	local_irq_restore(flags);
911 }
912 
913 /*
914  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
915  *
916  * If the new value of the ->dynticks_nesting counter was previously zero,
917  * we really have exited idle, and must do the appropriate accounting.
918  * The caller must have disabled interrupts.
919  */
920 static void rcu_eqs_exit_common(long long oldval, int user)
921 {
922 	RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
923 
924 	rcu_dynticks_task_exit();
925 	rcu_dynticks_eqs_exit();
926 	rcu_cleanup_after_idle();
927 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
928 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
929 	    !user && !is_idle_task(current)) {
930 		struct task_struct *idle __maybe_unused =
931 			idle_task(smp_processor_id());
932 
933 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
934 				  oldval, rdtp->dynticks_nesting);
935 		rcu_ftrace_dump(DUMP_ORIG);
936 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
937 			  current->pid, current->comm,
938 			  idle->pid, idle->comm); /* must be idle task! */
939 	}
940 }
941 
942 /*
943  * Exit an RCU extended quiescent state, which can be either the
944  * idle loop or adaptive-tickless usermode execution.
945  */
946 static void rcu_eqs_exit(bool user)
947 {
948 	struct rcu_dynticks *rdtp;
949 	long long oldval;
950 
951 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_eqs_exit() invoked with irqs enabled!!!");
952 	rdtp = this_cpu_ptr(&rcu_dynticks);
953 	oldval = rdtp->dynticks_nesting;
954 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
955 	if (oldval & DYNTICK_TASK_NEST_MASK) {
956 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
957 	} else {
958 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
959 		rcu_eqs_exit_common(oldval, user);
960 	}
961 }
962 
963 /**
964  * rcu_idle_exit - inform RCU that current CPU is leaving idle
965  *
966  * Exit idle mode, in other words, -enter- the mode in which RCU
967  * read-side critical sections can occur.
968  *
969  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
970  * allow for the possibility of usermode upcalls messing up our count
971  * of interrupt nesting level during the busy period that is just
972  * now starting.
973  */
974 void rcu_idle_exit(void)
975 {
976 	unsigned long flags;
977 
978 	local_irq_save(flags);
979 	rcu_eqs_exit(false);
980 	local_irq_restore(flags);
981 }
982 EXPORT_SYMBOL_GPL(rcu_idle_exit);
983 
984 #ifdef CONFIG_NO_HZ_FULL
985 /**
986  * rcu_user_exit - inform RCU that we are exiting userspace.
987  *
988  * Exit RCU idle mode while entering the kernel because it can
989  * run a RCU read side critical section anytime.
990  */
991 void rcu_user_exit(void)
992 {
993 	rcu_eqs_exit(1);
994 }
995 #endif /* CONFIG_NO_HZ_FULL */
996 
997 /**
998  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
999  *
1000  * Enter an interrupt handler, which might possibly result in exiting
1001  * idle mode, in other words, entering the mode in which read-side critical
1002  * sections can occur.  The caller must have disabled interrupts.
1003  *
1004  * Note that the Linux kernel is fully capable of entering an interrupt
1005  * handler that it never exits, for example when doing upcalls to
1006  * user mode!  This code assumes that the idle loop never does upcalls to
1007  * user mode.  If your architecture does do upcalls from the idle loop (or
1008  * does anything else that results in unbalanced calls to the irq_enter()
1009  * and irq_exit() functions), RCU will give you what you deserve, good
1010  * and hard.  But very infrequently and irreproducibly.
1011  *
1012  * Use things like work queues to work around this limitation.
1013  *
1014  * You have been warned.
1015  */
1016 void rcu_irq_enter(void)
1017 {
1018 	struct rcu_dynticks *rdtp;
1019 	long long oldval;
1020 
1021 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
1022 	rdtp = this_cpu_ptr(&rcu_dynticks);
1023 	oldval = rdtp->dynticks_nesting;
1024 	rdtp->dynticks_nesting++;
1025 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
1026 		     rdtp->dynticks_nesting == 0);
1027 	if (oldval)
1028 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
1029 	else
1030 		rcu_eqs_exit_common(oldval, true);
1031 }
1032 
1033 /*
1034  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1035  */
1036 void rcu_irq_enter_irqson(void)
1037 {
1038 	unsigned long flags;
1039 
1040 	local_irq_save(flags);
1041 	rcu_irq_enter();
1042 	local_irq_restore(flags);
1043 }
1044 
1045 /**
1046  * rcu_nmi_enter - inform RCU of entry to NMI context
1047  *
1048  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
1049  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
1050  * that the CPU is active.  This implementation permits nested NMIs, as
1051  * long as the nesting level does not overflow an int.  (You will probably
1052  * run out of stack space first.)
1053  */
1054 void rcu_nmi_enter(void)
1055 {
1056 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1057 	int incby = 2;
1058 
1059 	/* Complain about underflow. */
1060 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
1061 
1062 	/*
1063 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1064 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1065 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1066 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1067 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1068 	 * period (observation due to Andy Lutomirski).
1069 	 */
1070 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1071 		rcu_dynticks_eqs_exit();
1072 		incby = 1;
1073 	}
1074 	rdtp->dynticks_nmi_nesting += incby;
1075 	barrier();
1076 }
1077 
1078 /**
1079  * rcu_nmi_exit - inform RCU of exit from NMI context
1080  *
1081  * If we are returning from the outermost NMI handler that interrupted an
1082  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1083  * to let the RCU grace-period handling know that the CPU is back to
1084  * being RCU-idle.
1085  */
1086 void rcu_nmi_exit(void)
1087 {
1088 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1089 
1090 	/*
1091 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1092 	 * (We are exiting an NMI handler, so RCU better be paying attention
1093 	 * to us!)
1094 	 */
1095 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1096 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
1097 
1098 	/*
1099 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1100 	 * leave it in non-RCU-idle state.
1101 	 */
1102 	if (rdtp->dynticks_nmi_nesting != 1) {
1103 		rdtp->dynticks_nmi_nesting -= 2;
1104 		return;
1105 	}
1106 
1107 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1108 	rdtp->dynticks_nmi_nesting = 0;
1109 	rcu_dynticks_eqs_enter();
1110 }
1111 
1112 /**
1113  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1114  *
1115  * Return true if RCU is watching the running CPU, which means that this
1116  * CPU can safely enter RCU read-side critical sections.  In other words,
1117  * if the current CPU is in its idle loop and is neither in an interrupt
1118  * or NMI handler, return true.
1119  */
1120 bool notrace rcu_is_watching(void)
1121 {
1122 	bool ret;
1123 
1124 	preempt_disable_notrace();
1125 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1126 	preempt_enable_notrace();
1127 	return ret;
1128 }
1129 EXPORT_SYMBOL_GPL(rcu_is_watching);
1130 
1131 /*
1132  * If a holdout task is actually running, request an urgent quiescent
1133  * state from its CPU.  This is unsynchronized, so migrations can cause
1134  * the request to go to the wrong CPU.  Which is OK, all that will happen
1135  * is that the CPU's next context switch will be a bit slower and next
1136  * time around this task will generate another request.
1137  */
1138 void rcu_request_urgent_qs_task(struct task_struct *t)
1139 {
1140 	int cpu;
1141 
1142 	barrier();
1143 	cpu = task_cpu(t);
1144 	if (!task_curr(t))
1145 		return; /* This task is not running on that CPU. */
1146 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1147 }
1148 
1149 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1150 
1151 /*
1152  * Is the current CPU online?  Disable preemption to avoid false positives
1153  * that could otherwise happen due to the current CPU number being sampled,
1154  * this task being preempted, its old CPU being taken offline, resuming
1155  * on some other CPU, then determining that its old CPU is now offline.
1156  * It is OK to use RCU on an offline processor during initial boot, hence
1157  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1158  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1159  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1160  * offline to continue to use RCU for one jiffy after marking itself
1161  * offline in the cpu_online_mask.  This leniency is necessary given the
1162  * non-atomic nature of the online and offline processing, for example,
1163  * the fact that a CPU enters the scheduler after completing the teardown
1164  * of the CPU.
1165  *
1166  * This is also why RCU internally marks CPUs online during in the
1167  * preparation phase and offline after the CPU has been taken down.
1168  *
1169  * Disable checking if in an NMI handler because we cannot safely report
1170  * errors from NMI handlers anyway.
1171  */
1172 bool rcu_lockdep_current_cpu_online(void)
1173 {
1174 	struct rcu_data *rdp;
1175 	struct rcu_node *rnp;
1176 	bool ret;
1177 
1178 	if (in_nmi())
1179 		return true;
1180 	preempt_disable();
1181 	rdp = this_cpu_ptr(&rcu_sched_data);
1182 	rnp = rdp->mynode;
1183 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1184 	      !rcu_scheduler_fully_active;
1185 	preempt_enable();
1186 	return ret;
1187 }
1188 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1189 
1190 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1191 
1192 /**
1193  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1194  *
1195  * If the current CPU is idle or running at a first-level (not nested)
1196  * interrupt from idle, return true.  The caller must have at least
1197  * disabled preemption.
1198  */
1199 static int rcu_is_cpu_rrupt_from_idle(void)
1200 {
1201 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1202 }
1203 
1204 /*
1205  * Snapshot the specified CPU's dynticks counter so that we can later
1206  * credit them with an implicit quiescent state.  Return 1 if this CPU
1207  * is in dynticks idle mode, which is an extended quiescent state.
1208  */
1209 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1210 {
1211 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1212 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1213 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1214 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1215 				 rdp->mynode->gpnum))
1216 			WRITE_ONCE(rdp->gpwrap, true);
1217 		return 1;
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Return true if the specified CPU has passed through a quiescent
1224  * state by virtue of being in or having passed through an dynticks
1225  * idle state since the last call to dyntick_save_progress_counter()
1226  * for this same CPU, or by virtue of having been offline.
1227  */
1228 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1229 {
1230 	unsigned long jtsq;
1231 	bool *rnhqp;
1232 	bool *ruqp;
1233 	unsigned long rjtsc;
1234 	struct rcu_node *rnp;
1235 
1236 	/*
1237 	 * If the CPU passed through or entered a dynticks idle phase with
1238 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1239 	 * already acknowledged the request to pass through a quiescent
1240 	 * state.  Either way, that CPU cannot possibly be in an RCU
1241 	 * read-side critical section that started before the beginning
1242 	 * of the current RCU grace period.
1243 	 */
1244 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1245 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1246 		rdp->dynticks_fqs++;
1247 		return 1;
1248 	}
1249 
1250 	/* Compute and saturate jiffies_till_sched_qs. */
1251 	jtsq = jiffies_till_sched_qs;
1252 	rjtsc = rcu_jiffies_till_stall_check();
1253 	if (jtsq > rjtsc / 2) {
1254 		WRITE_ONCE(jiffies_till_sched_qs, rjtsc);
1255 		jtsq = rjtsc / 2;
1256 	} else if (jtsq < 1) {
1257 		WRITE_ONCE(jiffies_till_sched_qs, 1);
1258 		jtsq = 1;
1259 	}
1260 
1261 	/*
1262 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1263 	 * beginning of the grace period?  For this to be the case,
1264 	 * the CPU has to have noticed the current grace period.  This
1265 	 * might not be the case for nohz_full CPUs looping in the kernel.
1266 	 */
1267 	rnp = rdp->mynode;
1268 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1269 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1270 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1271 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1272 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1273 		return 1;
1274 	} else {
1275 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1276 		smp_store_release(ruqp, true);
1277 	}
1278 
1279 	/* Check for the CPU being offline. */
1280 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1281 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1282 		rdp->offline_fqs++;
1283 		return 1;
1284 	}
1285 
1286 	/*
1287 	 * A CPU running for an extended time within the kernel can
1288 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1289 	 * even context-switching back and forth between a pair of
1290 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1291 	 * So if the grace period is old enough, make the CPU pay attention.
1292 	 * Note that the unsynchronized assignments to the per-CPU
1293 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1294 	 * bits can be lost, but they will be set again on the next
1295 	 * force-quiescent-state pass.  So lost bit sets do not result
1296 	 * in incorrect behavior, merely in a grace period lasting
1297 	 * a few jiffies longer than it might otherwise.  Because
1298 	 * there are at most four threads involved, and because the
1299 	 * updates are only once every few jiffies, the probability of
1300 	 * lossage (and thus of slight grace-period extension) is
1301 	 * quite low.
1302 	 *
1303 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1304 	 * is set too high, we override with half of the RCU CPU stall
1305 	 * warning delay.
1306 	 */
1307 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1308 	if (!READ_ONCE(*rnhqp) &&
1309 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1310 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1311 		WRITE_ONCE(*rnhqp, true);
1312 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1313 		smp_store_release(ruqp, true);
1314 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1315 	}
1316 
1317 	/*
1318 	 * If more than halfway to RCU CPU stall-warning time, do
1319 	 * a resched_cpu() to try to loosen things up a bit.
1320 	 */
1321 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2)
1322 		resched_cpu(rdp->cpu);
1323 
1324 	return 0;
1325 }
1326 
1327 static void record_gp_stall_check_time(struct rcu_state *rsp)
1328 {
1329 	unsigned long j = jiffies;
1330 	unsigned long j1;
1331 
1332 	rsp->gp_start = j;
1333 	smp_wmb(); /* Record start time before stall time. */
1334 	j1 = rcu_jiffies_till_stall_check();
1335 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1336 	rsp->jiffies_resched = j + j1 / 2;
1337 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1338 }
1339 
1340 /*
1341  * Convert a ->gp_state value to a character string.
1342  */
1343 static const char *gp_state_getname(short gs)
1344 {
1345 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1346 		return "???";
1347 	return gp_state_names[gs];
1348 }
1349 
1350 /*
1351  * Complain about starvation of grace-period kthread.
1352  */
1353 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1354 {
1355 	unsigned long gpa;
1356 	unsigned long j;
1357 
1358 	j = jiffies;
1359 	gpa = READ_ONCE(rsp->gp_activity);
1360 	if (j - gpa > 2 * HZ) {
1361 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1362 		       rsp->name, j - gpa,
1363 		       rsp->gpnum, rsp->completed,
1364 		       rsp->gp_flags,
1365 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1366 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1367 		if (rsp->gp_kthread) {
1368 			sched_show_task(rsp->gp_kthread);
1369 			wake_up_process(rsp->gp_kthread);
1370 		}
1371 	}
1372 }
1373 
1374 /*
1375  * Dump stacks of all tasks running on stalled CPUs.  First try using
1376  * NMIs, but fall back to manual remote stack tracing on architectures
1377  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1378  * traces are more accurate because they are printed by the target CPU.
1379  */
1380 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1381 {
1382 	int cpu;
1383 	unsigned long flags;
1384 	struct rcu_node *rnp;
1385 
1386 	rcu_for_each_leaf_node(rsp, rnp) {
1387 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1388 		for_each_leaf_node_possible_cpu(rnp, cpu)
1389 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1390 				if (!trigger_single_cpu_backtrace(cpu))
1391 					dump_cpu_task(cpu);
1392 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1393 	}
1394 }
1395 
1396 /*
1397  * If too much time has passed in the current grace period, and if
1398  * so configured, go kick the relevant kthreads.
1399  */
1400 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1401 {
1402 	unsigned long j;
1403 
1404 	if (!rcu_kick_kthreads)
1405 		return;
1406 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1407 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1408 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1409 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1410 		rcu_ftrace_dump(DUMP_ALL);
1411 		wake_up_process(rsp->gp_kthread);
1412 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1413 	}
1414 }
1415 
1416 static inline void panic_on_rcu_stall(void)
1417 {
1418 	if (sysctl_panic_on_rcu_stall)
1419 		panic("RCU Stall\n");
1420 }
1421 
1422 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1423 {
1424 	int cpu;
1425 	long delta;
1426 	unsigned long flags;
1427 	unsigned long gpa;
1428 	unsigned long j;
1429 	int ndetected = 0;
1430 	struct rcu_node *rnp = rcu_get_root(rsp);
1431 	long totqlen = 0;
1432 
1433 	/* Kick and suppress, if so configured. */
1434 	rcu_stall_kick_kthreads(rsp);
1435 	if (rcu_cpu_stall_suppress)
1436 		return;
1437 
1438 	/* Only let one CPU complain about others per time interval. */
1439 
1440 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1441 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1442 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1443 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1444 		return;
1445 	}
1446 	WRITE_ONCE(rsp->jiffies_stall,
1447 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1448 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1449 
1450 	/*
1451 	 * OK, time to rat on our buddy...
1452 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1453 	 * RCU CPU stall warnings.
1454 	 */
1455 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1456 	       rsp->name);
1457 	print_cpu_stall_info_begin();
1458 	rcu_for_each_leaf_node(rsp, rnp) {
1459 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1460 		ndetected += rcu_print_task_stall(rnp);
1461 		if (rnp->qsmask != 0) {
1462 			for_each_leaf_node_possible_cpu(rnp, cpu)
1463 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1464 					print_cpu_stall_info(rsp, cpu);
1465 					ndetected++;
1466 				}
1467 		}
1468 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1469 	}
1470 
1471 	print_cpu_stall_info_end();
1472 	for_each_possible_cpu(cpu)
1473 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1474 							    cpu)->cblist);
1475 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1476 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1477 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1478 	if (ndetected) {
1479 		rcu_dump_cpu_stacks(rsp);
1480 
1481 		/* Complain about tasks blocking the grace period. */
1482 		rcu_print_detail_task_stall(rsp);
1483 	} else {
1484 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1485 		    READ_ONCE(rsp->completed) == gpnum) {
1486 			pr_err("INFO: Stall ended before state dump start\n");
1487 		} else {
1488 			j = jiffies;
1489 			gpa = READ_ONCE(rsp->gp_activity);
1490 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1491 			       rsp->name, j - gpa, j, gpa,
1492 			       jiffies_till_next_fqs,
1493 			       rcu_get_root(rsp)->qsmask);
1494 			/* In this case, the current CPU might be at fault. */
1495 			sched_show_task(current);
1496 		}
1497 	}
1498 
1499 	rcu_check_gp_kthread_starvation(rsp);
1500 
1501 	panic_on_rcu_stall();
1502 
1503 	force_quiescent_state(rsp);  /* Kick them all. */
1504 }
1505 
1506 static void print_cpu_stall(struct rcu_state *rsp)
1507 {
1508 	int cpu;
1509 	unsigned long flags;
1510 	struct rcu_node *rnp = rcu_get_root(rsp);
1511 	long totqlen = 0;
1512 
1513 	/* Kick and suppress, if so configured. */
1514 	rcu_stall_kick_kthreads(rsp);
1515 	if (rcu_cpu_stall_suppress)
1516 		return;
1517 
1518 	/*
1519 	 * OK, time to rat on ourselves...
1520 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1521 	 * RCU CPU stall warnings.
1522 	 */
1523 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1524 	print_cpu_stall_info_begin();
1525 	print_cpu_stall_info(rsp, smp_processor_id());
1526 	print_cpu_stall_info_end();
1527 	for_each_possible_cpu(cpu)
1528 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1529 							    cpu)->cblist);
1530 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1531 		jiffies - rsp->gp_start,
1532 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1533 
1534 	rcu_check_gp_kthread_starvation(rsp);
1535 
1536 	rcu_dump_cpu_stacks(rsp);
1537 
1538 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1539 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1540 		WRITE_ONCE(rsp->jiffies_stall,
1541 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1542 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1543 
1544 	panic_on_rcu_stall();
1545 
1546 	/*
1547 	 * Attempt to revive the RCU machinery by forcing a context switch.
1548 	 *
1549 	 * A context switch would normally allow the RCU state machine to make
1550 	 * progress and it could be we're stuck in kernel space without context
1551 	 * switches for an entirely unreasonable amount of time.
1552 	 */
1553 	resched_cpu(smp_processor_id());
1554 }
1555 
1556 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1557 {
1558 	unsigned long completed;
1559 	unsigned long gpnum;
1560 	unsigned long gps;
1561 	unsigned long j;
1562 	unsigned long js;
1563 	struct rcu_node *rnp;
1564 
1565 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1566 	    !rcu_gp_in_progress(rsp))
1567 		return;
1568 	rcu_stall_kick_kthreads(rsp);
1569 	j = jiffies;
1570 
1571 	/*
1572 	 * Lots of memory barriers to reject false positives.
1573 	 *
1574 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1575 	 * then rsp->gp_start, and finally rsp->completed.  These values
1576 	 * are updated in the opposite order with memory barriers (or
1577 	 * equivalent) during grace-period initialization and cleanup.
1578 	 * Now, a false positive can occur if we get an new value of
1579 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1580 	 * the memory barriers, the only way that this can happen is if one
1581 	 * grace period ends and another starts between these two fetches.
1582 	 * Detect this by comparing rsp->completed with the previous fetch
1583 	 * from rsp->gpnum.
1584 	 *
1585 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1586 	 * and rsp->gp_start suffice to forestall false positives.
1587 	 */
1588 	gpnum = READ_ONCE(rsp->gpnum);
1589 	smp_rmb(); /* Pick up ->gpnum first... */
1590 	js = READ_ONCE(rsp->jiffies_stall);
1591 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1592 	gps = READ_ONCE(rsp->gp_start);
1593 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1594 	completed = READ_ONCE(rsp->completed);
1595 	if (ULONG_CMP_GE(completed, gpnum) ||
1596 	    ULONG_CMP_LT(j, js) ||
1597 	    ULONG_CMP_GE(gps, js))
1598 		return; /* No stall or GP completed since entering function. */
1599 	rnp = rdp->mynode;
1600 	if (rcu_gp_in_progress(rsp) &&
1601 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1602 
1603 		/* We haven't checked in, so go dump stack. */
1604 		print_cpu_stall(rsp);
1605 
1606 	} else if (rcu_gp_in_progress(rsp) &&
1607 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1608 
1609 		/* They had a few time units to dump stack, so complain. */
1610 		print_other_cpu_stall(rsp, gpnum);
1611 	}
1612 }
1613 
1614 /**
1615  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1616  *
1617  * Set the stall-warning timeout way off into the future, thus preventing
1618  * any RCU CPU stall-warning messages from appearing in the current set of
1619  * RCU grace periods.
1620  *
1621  * The caller must disable hard irqs.
1622  */
1623 void rcu_cpu_stall_reset(void)
1624 {
1625 	struct rcu_state *rsp;
1626 
1627 	for_each_rcu_flavor(rsp)
1628 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1629 }
1630 
1631 /*
1632  * Determine the value that ->completed will have at the end of the
1633  * next subsequent grace period.  This is used to tag callbacks so that
1634  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1635  * been dyntick-idle for an extended period with callbacks under the
1636  * influence of RCU_FAST_NO_HZ.
1637  *
1638  * The caller must hold rnp->lock with interrupts disabled.
1639  */
1640 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1641 				       struct rcu_node *rnp)
1642 {
1643 	lockdep_assert_held(&rnp->lock);
1644 
1645 	/*
1646 	 * If RCU is idle, we just wait for the next grace period.
1647 	 * But we can only be sure that RCU is idle if we are looking
1648 	 * at the root rcu_node structure -- otherwise, a new grace
1649 	 * period might have started, but just not yet gotten around
1650 	 * to initializing the current non-root rcu_node structure.
1651 	 */
1652 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1653 		return rnp->completed + 1;
1654 
1655 	/*
1656 	 * Otherwise, wait for a possible partial grace period and
1657 	 * then the subsequent full grace period.
1658 	 */
1659 	return rnp->completed + 2;
1660 }
1661 
1662 /*
1663  * Trace-event helper function for rcu_start_future_gp() and
1664  * rcu_nocb_wait_gp().
1665  */
1666 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1667 				unsigned long c, const char *s)
1668 {
1669 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1670 				      rnp->completed, c, rnp->level,
1671 				      rnp->grplo, rnp->grphi, s);
1672 }
1673 
1674 /*
1675  * Start some future grace period, as needed to handle newly arrived
1676  * callbacks.  The required future grace periods are recorded in each
1677  * rcu_node structure's ->need_future_gp field.  Returns true if there
1678  * is reason to awaken the grace-period kthread.
1679  *
1680  * The caller must hold the specified rcu_node structure's ->lock.
1681  */
1682 static bool __maybe_unused
1683 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1684 		    unsigned long *c_out)
1685 {
1686 	unsigned long c;
1687 	bool ret = false;
1688 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1689 
1690 	lockdep_assert_held(&rnp->lock);
1691 
1692 	/*
1693 	 * Pick up grace-period number for new callbacks.  If this
1694 	 * grace period is already marked as needed, return to the caller.
1695 	 */
1696 	c = rcu_cbs_completed(rdp->rsp, rnp);
1697 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1698 	if (rnp->need_future_gp[c & 0x1]) {
1699 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1700 		goto out;
1701 	}
1702 
1703 	/*
1704 	 * If either this rcu_node structure or the root rcu_node structure
1705 	 * believe that a grace period is in progress, then we must wait
1706 	 * for the one following, which is in "c".  Because our request
1707 	 * will be noticed at the end of the current grace period, we don't
1708 	 * need to explicitly start one.  We only do the lockless check
1709 	 * of rnp_root's fields if the current rcu_node structure thinks
1710 	 * there is no grace period in flight, and because we hold rnp->lock,
1711 	 * the only possible change is when rnp_root's two fields are
1712 	 * equal, in which case rnp_root->gpnum might be concurrently
1713 	 * incremented.  But that is OK, as it will just result in our
1714 	 * doing some extra useless work.
1715 	 */
1716 	if (rnp->gpnum != rnp->completed ||
1717 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1718 		rnp->need_future_gp[c & 0x1]++;
1719 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1720 		goto out;
1721 	}
1722 
1723 	/*
1724 	 * There might be no grace period in progress.  If we don't already
1725 	 * hold it, acquire the root rcu_node structure's lock in order to
1726 	 * start one (if needed).
1727 	 */
1728 	if (rnp != rnp_root)
1729 		raw_spin_lock_rcu_node(rnp_root);
1730 
1731 	/*
1732 	 * Get a new grace-period number.  If there really is no grace
1733 	 * period in progress, it will be smaller than the one we obtained
1734 	 * earlier.  Adjust callbacks as needed.
1735 	 */
1736 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1737 	if (!rcu_is_nocb_cpu(rdp->cpu))
1738 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1739 
1740 	/*
1741 	 * If the needed for the required grace period is already
1742 	 * recorded, trace and leave.
1743 	 */
1744 	if (rnp_root->need_future_gp[c & 0x1]) {
1745 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1746 		goto unlock_out;
1747 	}
1748 
1749 	/* Record the need for the future grace period. */
1750 	rnp_root->need_future_gp[c & 0x1]++;
1751 
1752 	/* If a grace period is not already in progress, start one. */
1753 	if (rnp_root->gpnum != rnp_root->completed) {
1754 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1755 	} else {
1756 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1757 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1758 	}
1759 unlock_out:
1760 	if (rnp != rnp_root)
1761 		raw_spin_unlock_rcu_node(rnp_root);
1762 out:
1763 	if (c_out != NULL)
1764 		*c_out = c;
1765 	return ret;
1766 }
1767 
1768 /*
1769  * Clean up any old requests for the just-ended grace period.  Also return
1770  * whether any additional grace periods have been requested.
1771  */
1772 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1773 {
1774 	int c = rnp->completed;
1775 	int needmore;
1776 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1777 
1778 	rnp->need_future_gp[c & 0x1] = 0;
1779 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1780 	trace_rcu_future_gp(rnp, rdp, c,
1781 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1782 	return needmore;
1783 }
1784 
1785 /*
1786  * Awaken the grace-period kthread for the specified flavor of RCU.
1787  * Don't do a self-awaken, and don't bother awakening when there is
1788  * nothing for the grace-period kthread to do (as in several CPUs
1789  * raced to awaken, and we lost), and finally don't try to awaken
1790  * a kthread that has not yet been created.
1791  */
1792 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1793 {
1794 	if (current == rsp->gp_kthread ||
1795 	    !READ_ONCE(rsp->gp_flags) ||
1796 	    !rsp->gp_kthread)
1797 		return;
1798 	swake_up(&rsp->gp_wq);
1799 }
1800 
1801 /*
1802  * If there is room, assign a ->completed number to any callbacks on
1803  * this CPU that have not already been assigned.  Also accelerate any
1804  * callbacks that were previously assigned a ->completed number that has
1805  * since proven to be too conservative, which can happen if callbacks get
1806  * assigned a ->completed number while RCU is idle, but with reference to
1807  * a non-root rcu_node structure.  This function is idempotent, so it does
1808  * not hurt to call it repeatedly.  Returns an flag saying that we should
1809  * awaken the RCU grace-period kthread.
1810  *
1811  * The caller must hold rnp->lock with interrupts disabled.
1812  */
1813 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1814 			       struct rcu_data *rdp)
1815 {
1816 	bool ret = false;
1817 
1818 	lockdep_assert_held(&rnp->lock);
1819 
1820 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1821 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1822 		return false;
1823 
1824 	/*
1825 	 * Callbacks are often registered with incomplete grace-period
1826 	 * information.  Something about the fact that getting exact
1827 	 * information requires acquiring a global lock...  RCU therefore
1828 	 * makes a conservative estimate of the grace period number at which
1829 	 * a given callback will become ready to invoke.	The following
1830 	 * code checks this estimate and improves it when possible, thus
1831 	 * accelerating callback invocation to an earlier grace-period
1832 	 * number.
1833 	 */
1834 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1835 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1836 
1837 	/* Trace depending on how much we were able to accelerate. */
1838 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1839 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1840 	else
1841 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1842 	return ret;
1843 }
1844 
1845 /*
1846  * Move any callbacks whose grace period has completed to the
1847  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1848  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1849  * sublist.  This function is idempotent, so it does not hurt to
1850  * invoke it repeatedly.  As long as it is not invoked -too- often...
1851  * Returns true if the RCU grace-period kthread needs to be awakened.
1852  *
1853  * The caller must hold rnp->lock with interrupts disabled.
1854  */
1855 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1856 			    struct rcu_data *rdp)
1857 {
1858 	lockdep_assert_held(&rnp->lock);
1859 
1860 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1861 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1862 		return false;
1863 
1864 	/*
1865 	 * Find all callbacks whose ->completed numbers indicate that they
1866 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1867 	 */
1868 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1869 
1870 	/* Classify any remaining callbacks. */
1871 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1872 }
1873 
1874 /*
1875  * Update CPU-local rcu_data state to record the beginnings and ends of
1876  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1877  * structure corresponding to the current CPU, and must have irqs disabled.
1878  * Returns true if the grace-period kthread needs to be awakened.
1879  */
1880 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1881 			      struct rcu_data *rdp)
1882 {
1883 	bool ret;
1884 	bool need_gp;
1885 
1886 	lockdep_assert_held(&rnp->lock);
1887 
1888 	/* Handle the ends of any preceding grace periods first. */
1889 	if (rdp->completed == rnp->completed &&
1890 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1891 
1892 		/* No grace period end, so just accelerate recent callbacks. */
1893 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1894 
1895 	} else {
1896 
1897 		/* Advance callbacks. */
1898 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1899 
1900 		/* Remember that we saw this grace-period completion. */
1901 		rdp->completed = rnp->completed;
1902 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1903 	}
1904 
1905 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1906 		/*
1907 		 * If the current grace period is waiting for this CPU,
1908 		 * set up to detect a quiescent state, otherwise don't
1909 		 * go looking for one.
1910 		 */
1911 		rdp->gpnum = rnp->gpnum;
1912 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1913 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1914 		rdp->cpu_no_qs.b.norm = need_gp;
1915 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1916 		rdp->core_needs_qs = need_gp;
1917 		zero_cpu_stall_ticks(rdp);
1918 		WRITE_ONCE(rdp->gpwrap, false);
1919 	}
1920 	return ret;
1921 }
1922 
1923 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1924 {
1925 	unsigned long flags;
1926 	bool needwake;
1927 	struct rcu_node *rnp;
1928 
1929 	local_irq_save(flags);
1930 	rnp = rdp->mynode;
1931 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1932 	     rdp->completed == READ_ONCE(rnp->completed) &&
1933 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1934 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1935 		local_irq_restore(flags);
1936 		return;
1937 	}
1938 	needwake = __note_gp_changes(rsp, rnp, rdp);
1939 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1940 	if (needwake)
1941 		rcu_gp_kthread_wake(rsp);
1942 }
1943 
1944 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1945 {
1946 	if (delay > 0 &&
1947 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1948 		schedule_timeout_uninterruptible(delay);
1949 }
1950 
1951 /*
1952  * Initialize a new grace period.  Return false if no grace period required.
1953  */
1954 static bool rcu_gp_init(struct rcu_state *rsp)
1955 {
1956 	unsigned long oldmask;
1957 	struct rcu_data *rdp;
1958 	struct rcu_node *rnp = rcu_get_root(rsp);
1959 
1960 	WRITE_ONCE(rsp->gp_activity, jiffies);
1961 	raw_spin_lock_irq_rcu_node(rnp);
1962 	if (!READ_ONCE(rsp->gp_flags)) {
1963 		/* Spurious wakeup, tell caller to go back to sleep.  */
1964 		raw_spin_unlock_irq_rcu_node(rnp);
1965 		return false;
1966 	}
1967 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1968 
1969 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1970 		/*
1971 		 * Grace period already in progress, don't start another.
1972 		 * Not supposed to be able to happen.
1973 		 */
1974 		raw_spin_unlock_irq_rcu_node(rnp);
1975 		return false;
1976 	}
1977 
1978 	/* Advance to a new grace period and initialize state. */
1979 	record_gp_stall_check_time(rsp);
1980 	/* Record GP times before starting GP, hence smp_store_release(). */
1981 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1982 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1983 	raw_spin_unlock_irq_rcu_node(rnp);
1984 
1985 	/*
1986 	 * Apply per-leaf buffered online and offline operations to the
1987 	 * rcu_node tree.  Note that this new grace period need not wait
1988 	 * for subsequent online CPUs, and that quiescent-state forcing
1989 	 * will handle subsequent offline CPUs.
1990 	 */
1991 	rcu_for_each_leaf_node(rsp, rnp) {
1992 		rcu_gp_slow(rsp, gp_preinit_delay);
1993 		raw_spin_lock_irq_rcu_node(rnp);
1994 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1995 		    !rnp->wait_blkd_tasks) {
1996 			/* Nothing to do on this leaf rcu_node structure. */
1997 			raw_spin_unlock_irq_rcu_node(rnp);
1998 			continue;
1999 		}
2000 
2001 		/* Record old state, apply changes to ->qsmaskinit field. */
2002 		oldmask = rnp->qsmaskinit;
2003 		rnp->qsmaskinit = rnp->qsmaskinitnext;
2004 
2005 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
2006 		if (!oldmask != !rnp->qsmaskinit) {
2007 			if (!oldmask) /* First online CPU for this rcu_node. */
2008 				rcu_init_new_rnp(rnp);
2009 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2010 				rnp->wait_blkd_tasks = true;
2011 			else /* Last offline CPU and can propagate. */
2012 				rcu_cleanup_dead_rnp(rnp);
2013 		}
2014 
2015 		/*
2016 		 * If all waited-on tasks from prior grace period are
2017 		 * done, and if all this rcu_node structure's CPUs are
2018 		 * still offline, propagate up the rcu_node tree and
2019 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2020 		 * rcu_node structure's CPUs has since come back online,
2021 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2022 		 * checks for this, so just call it unconditionally).
2023 		 */
2024 		if (rnp->wait_blkd_tasks &&
2025 		    (!rcu_preempt_has_tasks(rnp) ||
2026 		     rnp->qsmaskinit)) {
2027 			rnp->wait_blkd_tasks = false;
2028 			rcu_cleanup_dead_rnp(rnp);
2029 		}
2030 
2031 		raw_spin_unlock_irq_rcu_node(rnp);
2032 	}
2033 
2034 	/*
2035 	 * Set the quiescent-state-needed bits in all the rcu_node
2036 	 * structures for all currently online CPUs in breadth-first order,
2037 	 * starting from the root rcu_node structure, relying on the layout
2038 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2039 	 * will access only the leaves of the hierarchy, thus seeing that no
2040 	 * grace period is in progress, at least until the corresponding
2041 	 * leaf node has been initialized.
2042 	 *
2043 	 * The grace period cannot complete until the initialization
2044 	 * process finishes, because this kthread handles both.
2045 	 */
2046 	rcu_for_each_node_breadth_first(rsp, rnp) {
2047 		rcu_gp_slow(rsp, gp_init_delay);
2048 		raw_spin_lock_irq_rcu_node(rnp);
2049 		rdp = this_cpu_ptr(rsp->rda);
2050 		rcu_preempt_check_blocked_tasks(rnp);
2051 		rnp->qsmask = rnp->qsmaskinit;
2052 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2053 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2054 			WRITE_ONCE(rnp->completed, rsp->completed);
2055 		if (rnp == rdp->mynode)
2056 			(void)__note_gp_changes(rsp, rnp, rdp);
2057 		rcu_preempt_boost_start_gp(rnp);
2058 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2059 					    rnp->level, rnp->grplo,
2060 					    rnp->grphi, rnp->qsmask);
2061 		raw_spin_unlock_irq_rcu_node(rnp);
2062 		cond_resched_rcu_qs();
2063 		WRITE_ONCE(rsp->gp_activity, jiffies);
2064 	}
2065 
2066 	return true;
2067 }
2068 
2069 /*
2070  * Helper function for wait_event_interruptible_timeout() wakeup
2071  * at force-quiescent-state time.
2072  */
2073 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2074 {
2075 	struct rcu_node *rnp = rcu_get_root(rsp);
2076 
2077 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2078 	*gfp = READ_ONCE(rsp->gp_flags);
2079 	if (*gfp & RCU_GP_FLAG_FQS)
2080 		return true;
2081 
2082 	/* The current grace period has completed. */
2083 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2084 		return true;
2085 
2086 	return false;
2087 }
2088 
2089 /*
2090  * Do one round of quiescent-state forcing.
2091  */
2092 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2093 {
2094 	struct rcu_node *rnp = rcu_get_root(rsp);
2095 
2096 	WRITE_ONCE(rsp->gp_activity, jiffies);
2097 	rsp->n_force_qs++;
2098 	if (first_time) {
2099 		/* Collect dyntick-idle snapshots. */
2100 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2101 	} else {
2102 		/* Handle dyntick-idle and offline CPUs. */
2103 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2104 	}
2105 	/* Clear flag to prevent immediate re-entry. */
2106 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2107 		raw_spin_lock_irq_rcu_node(rnp);
2108 		WRITE_ONCE(rsp->gp_flags,
2109 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2110 		raw_spin_unlock_irq_rcu_node(rnp);
2111 	}
2112 }
2113 
2114 /*
2115  * Clean up after the old grace period.
2116  */
2117 static void rcu_gp_cleanup(struct rcu_state *rsp)
2118 {
2119 	unsigned long gp_duration;
2120 	bool needgp = false;
2121 	int nocb = 0;
2122 	struct rcu_data *rdp;
2123 	struct rcu_node *rnp = rcu_get_root(rsp);
2124 	struct swait_queue_head *sq;
2125 
2126 	WRITE_ONCE(rsp->gp_activity, jiffies);
2127 	raw_spin_lock_irq_rcu_node(rnp);
2128 	gp_duration = jiffies - rsp->gp_start;
2129 	if (gp_duration > rsp->gp_max)
2130 		rsp->gp_max = gp_duration;
2131 
2132 	/*
2133 	 * We know the grace period is complete, but to everyone else
2134 	 * it appears to still be ongoing.  But it is also the case
2135 	 * that to everyone else it looks like there is nothing that
2136 	 * they can do to advance the grace period.  It is therefore
2137 	 * safe for us to drop the lock in order to mark the grace
2138 	 * period as completed in all of the rcu_node structures.
2139 	 */
2140 	raw_spin_unlock_irq_rcu_node(rnp);
2141 
2142 	/*
2143 	 * Propagate new ->completed value to rcu_node structures so
2144 	 * that other CPUs don't have to wait until the start of the next
2145 	 * grace period to process their callbacks.  This also avoids
2146 	 * some nasty RCU grace-period initialization races by forcing
2147 	 * the end of the current grace period to be completely recorded in
2148 	 * all of the rcu_node structures before the beginning of the next
2149 	 * grace period is recorded in any of the rcu_node structures.
2150 	 */
2151 	rcu_for_each_node_breadth_first(rsp, rnp) {
2152 		raw_spin_lock_irq_rcu_node(rnp);
2153 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2154 		WARN_ON_ONCE(rnp->qsmask);
2155 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2156 		rdp = this_cpu_ptr(rsp->rda);
2157 		if (rnp == rdp->mynode)
2158 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2159 		/* smp_mb() provided by prior unlock-lock pair. */
2160 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2161 		sq = rcu_nocb_gp_get(rnp);
2162 		raw_spin_unlock_irq_rcu_node(rnp);
2163 		rcu_nocb_gp_cleanup(sq);
2164 		cond_resched_rcu_qs();
2165 		WRITE_ONCE(rsp->gp_activity, jiffies);
2166 		rcu_gp_slow(rsp, gp_cleanup_delay);
2167 	}
2168 	rnp = rcu_get_root(rsp);
2169 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2170 	rcu_nocb_gp_set(rnp, nocb);
2171 
2172 	/* Declare grace period done. */
2173 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2174 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2175 	rsp->gp_state = RCU_GP_IDLE;
2176 	rdp = this_cpu_ptr(rsp->rda);
2177 	/* Advance CBs to reduce false positives below. */
2178 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2179 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2180 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2181 		trace_rcu_grace_period(rsp->name,
2182 				       READ_ONCE(rsp->gpnum),
2183 				       TPS("newreq"));
2184 	}
2185 	raw_spin_unlock_irq_rcu_node(rnp);
2186 }
2187 
2188 /*
2189  * Body of kthread that handles grace periods.
2190  */
2191 static int __noreturn rcu_gp_kthread(void *arg)
2192 {
2193 	bool first_gp_fqs;
2194 	int gf;
2195 	unsigned long j;
2196 	int ret;
2197 	struct rcu_state *rsp = arg;
2198 	struct rcu_node *rnp = rcu_get_root(rsp);
2199 
2200 	rcu_bind_gp_kthread();
2201 	for (;;) {
2202 
2203 		/* Handle grace-period start. */
2204 		for (;;) {
2205 			trace_rcu_grace_period(rsp->name,
2206 					       READ_ONCE(rsp->gpnum),
2207 					       TPS("reqwait"));
2208 			rsp->gp_state = RCU_GP_WAIT_GPS;
2209 			swait_event_interruptible(rsp->gp_wq,
2210 						 READ_ONCE(rsp->gp_flags) &
2211 						 RCU_GP_FLAG_INIT);
2212 			rsp->gp_state = RCU_GP_DONE_GPS;
2213 			/* Locking provides needed memory barrier. */
2214 			if (rcu_gp_init(rsp))
2215 				break;
2216 			cond_resched_rcu_qs();
2217 			WRITE_ONCE(rsp->gp_activity, jiffies);
2218 			WARN_ON(signal_pending(current));
2219 			trace_rcu_grace_period(rsp->name,
2220 					       READ_ONCE(rsp->gpnum),
2221 					       TPS("reqwaitsig"));
2222 		}
2223 
2224 		/* Handle quiescent-state forcing. */
2225 		first_gp_fqs = true;
2226 		j = jiffies_till_first_fqs;
2227 		if (j > HZ) {
2228 			j = HZ;
2229 			jiffies_till_first_fqs = HZ;
2230 		}
2231 		ret = 0;
2232 		for (;;) {
2233 			if (!ret) {
2234 				rsp->jiffies_force_qs = jiffies + j;
2235 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2236 					   jiffies + 3 * j);
2237 			}
2238 			trace_rcu_grace_period(rsp->name,
2239 					       READ_ONCE(rsp->gpnum),
2240 					       TPS("fqswait"));
2241 			rsp->gp_state = RCU_GP_WAIT_FQS;
2242 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2243 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2244 			rsp->gp_state = RCU_GP_DOING_FQS;
2245 			/* Locking provides needed memory barriers. */
2246 			/* If grace period done, leave loop. */
2247 			if (!READ_ONCE(rnp->qsmask) &&
2248 			    !rcu_preempt_blocked_readers_cgp(rnp))
2249 				break;
2250 			/* If time for quiescent-state forcing, do it. */
2251 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2252 			    (gf & RCU_GP_FLAG_FQS)) {
2253 				trace_rcu_grace_period(rsp->name,
2254 						       READ_ONCE(rsp->gpnum),
2255 						       TPS("fqsstart"));
2256 				rcu_gp_fqs(rsp, first_gp_fqs);
2257 				first_gp_fqs = false;
2258 				trace_rcu_grace_period(rsp->name,
2259 						       READ_ONCE(rsp->gpnum),
2260 						       TPS("fqsend"));
2261 				cond_resched_rcu_qs();
2262 				WRITE_ONCE(rsp->gp_activity, jiffies);
2263 				ret = 0; /* Force full wait till next FQS. */
2264 				j = jiffies_till_next_fqs;
2265 				if (j > HZ) {
2266 					j = HZ;
2267 					jiffies_till_next_fqs = HZ;
2268 				} else if (j < 1) {
2269 					j = 1;
2270 					jiffies_till_next_fqs = 1;
2271 				}
2272 			} else {
2273 				/* Deal with stray signal. */
2274 				cond_resched_rcu_qs();
2275 				WRITE_ONCE(rsp->gp_activity, jiffies);
2276 				WARN_ON(signal_pending(current));
2277 				trace_rcu_grace_period(rsp->name,
2278 						       READ_ONCE(rsp->gpnum),
2279 						       TPS("fqswaitsig"));
2280 				ret = 1; /* Keep old FQS timing. */
2281 				j = jiffies;
2282 				if (time_after(jiffies, rsp->jiffies_force_qs))
2283 					j = 1;
2284 				else
2285 					j = rsp->jiffies_force_qs - j;
2286 			}
2287 		}
2288 
2289 		/* Handle grace-period end. */
2290 		rsp->gp_state = RCU_GP_CLEANUP;
2291 		rcu_gp_cleanup(rsp);
2292 		rsp->gp_state = RCU_GP_CLEANED;
2293 	}
2294 }
2295 
2296 /*
2297  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2298  * in preparation for detecting the next grace period.  The caller must hold
2299  * the root node's ->lock and hard irqs must be disabled.
2300  *
2301  * Note that it is legal for a dying CPU (which is marked as offline) to
2302  * invoke this function.  This can happen when the dying CPU reports its
2303  * quiescent state.
2304  *
2305  * Returns true if the grace-period kthread must be awakened.
2306  */
2307 static bool
2308 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2309 		      struct rcu_data *rdp)
2310 {
2311 	lockdep_assert_held(&rnp->lock);
2312 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2313 		/*
2314 		 * Either we have not yet spawned the grace-period
2315 		 * task, this CPU does not need another grace period,
2316 		 * or a grace period is already in progress.
2317 		 * Either way, don't start a new grace period.
2318 		 */
2319 		return false;
2320 	}
2321 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2322 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2323 			       TPS("newreq"));
2324 
2325 	/*
2326 	 * We can't do wakeups while holding the rnp->lock, as that
2327 	 * could cause possible deadlocks with the rq->lock. Defer
2328 	 * the wakeup to our caller.
2329 	 */
2330 	return true;
2331 }
2332 
2333 /*
2334  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2335  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2336  * is invoked indirectly from rcu_advance_cbs(), which would result in
2337  * endless recursion -- or would do so if it wasn't for the self-deadlock
2338  * that is encountered beforehand.
2339  *
2340  * Returns true if the grace-period kthread needs to be awakened.
2341  */
2342 static bool rcu_start_gp(struct rcu_state *rsp)
2343 {
2344 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2345 	struct rcu_node *rnp = rcu_get_root(rsp);
2346 	bool ret = false;
2347 
2348 	/*
2349 	 * If there is no grace period in progress right now, any
2350 	 * callbacks we have up to this point will be satisfied by the
2351 	 * next grace period.  Also, advancing the callbacks reduces the
2352 	 * probability of false positives from cpu_needs_another_gp()
2353 	 * resulting in pointless grace periods.  So, advance callbacks
2354 	 * then start the grace period!
2355 	 */
2356 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2357 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2358 	return ret;
2359 }
2360 
2361 /*
2362  * Report a full set of quiescent states to the specified rcu_state data
2363  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2364  * kthread if another grace period is required.  Whether we wake
2365  * the grace-period kthread or it awakens itself for the next round
2366  * of quiescent-state forcing, that kthread will clean up after the
2367  * just-completed grace period.  Note that the caller must hold rnp->lock,
2368  * which is released before return.
2369  */
2370 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2371 	__releases(rcu_get_root(rsp)->lock)
2372 {
2373 	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2374 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2375 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2376 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2377 	rcu_gp_kthread_wake(rsp);
2378 }
2379 
2380 /*
2381  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2382  * Allows quiescent states for a group of CPUs to be reported at one go
2383  * to the specified rcu_node structure, though all the CPUs in the group
2384  * must be represented by the same rcu_node structure (which need not be a
2385  * leaf rcu_node structure, though it often will be).  The gps parameter
2386  * is the grace-period snapshot, which means that the quiescent states
2387  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2388  * must be held upon entry, and it is released before return.
2389  */
2390 static void
2391 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2392 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2393 	__releases(rnp->lock)
2394 {
2395 	unsigned long oldmask = 0;
2396 	struct rcu_node *rnp_c;
2397 
2398 	lockdep_assert_held(&rnp->lock);
2399 
2400 	/* Walk up the rcu_node hierarchy. */
2401 	for (;;) {
2402 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2403 
2404 			/*
2405 			 * Our bit has already been cleared, or the
2406 			 * relevant grace period is already over, so done.
2407 			 */
2408 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2409 			return;
2410 		}
2411 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2412 		rnp->qsmask &= ~mask;
2413 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2414 						 mask, rnp->qsmask, rnp->level,
2415 						 rnp->grplo, rnp->grphi,
2416 						 !!rnp->gp_tasks);
2417 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2418 
2419 			/* Other bits still set at this level, so done. */
2420 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421 			return;
2422 		}
2423 		mask = rnp->grpmask;
2424 		if (rnp->parent == NULL) {
2425 
2426 			/* No more levels.  Exit loop holding root lock. */
2427 
2428 			break;
2429 		}
2430 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2431 		rnp_c = rnp;
2432 		rnp = rnp->parent;
2433 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2434 		oldmask = rnp_c->qsmask;
2435 	}
2436 
2437 	/*
2438 	 * Get here if we are the last CPU to pass through a quiescent
2439 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2440 	 * to clean up and start the next grace period if one is needed.
2441 	 */
2442 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2443 }
2444 
2445 /*
2446  * Record a quiescent state for all tasks that were previously queued
2447  * on the specified rcu_node structure and that were blocking the current
2448  * RCU grace period.  The caller must hold the specified rnp->lock with
2449  * irqs disabled, and this lock is released upon return, but irqs remain
2450  * disabled.
2451  */
2452 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2453 				      struct rcu_node *rnp, unsigned long flags)
2454 	__releases(rnp->lock)
2455 {
2456 	unsigned long gps;
2457 	unsigned long mask;
2458 	struct rcu_node *rnp_p;
2459 
2460 	lockdep_assert_held(&rnp->lock);
2461 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2462 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2463 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2464 		return;  /* Still need more quiescent states! */
2465 	}
2466 
2467 	rnp_p = rnp->parent;
2468 	if (rnp_p == NULL) {
2469 		/*
2470 		 * Only one rcu_node structure in the tree, so don't
2471 		 * try to report up to its nonexistent parent!
2472 		 */
2473 		rcu_report_qs_rsp(rsp, flags);
2474 		return;
2475 	}
2476 
2477 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2478 	gps = rnp->gpnum;
2479 	mask = rnp->grpmask;
2480 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2481 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2482 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2483 }
2484 
2485 /*
2486  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2487  * structure.  This must be called from the specified CPU.
2488  */
2489 static void
2490 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2491 {
2492 	unsigned long flags;
2493 	unsigned long mask;
2494 	bool needwake;
2495 	struct rcu_node *rnp;
2496 
2497 	rnp = rdp->mynode;
2498 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2499 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2500 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2501 
2502 		/*
2503 		 * The grace period in which this quiescent state was
2504 		 * recorded has ended, so don't report it upwards.
2505 		 * We will instead need a new quiescent state that lies
2506 		 * within the current grace period.
2507 		 */
2508 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2509 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2510 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2511 		return;
2512 	}
2513 	mask = rdp->grpmask;
2514 	if ((rnp->qsmask & mask) == 0) {
2515 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2516 	} else {
2517 		rdp->core_needs_qs = false;
2518 
2519 		/*
2520 		 * This GP can't end until cpu checks in, so all of our
2521 		 * callbacks can be processed during the next GP.
2522 		 */
2523 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2524 
2525 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2526 		/* ^^^ Released rnp->lock */
2527 		if (needwake)
2528 			rcu_gp_kthread_wake(rsp);
2529 	}
2530 }
2531 
2532 /*
2533  * Check to see if there is a new grace period of which this CPU
2534  * is not yet aware, and if so, set up local rcu_data state for it.
2535  * Otherwise, see if this CPU has just passed through its first
2536  * quiescent state for this grace period, and record that fact if so.
2537  */
2538 static void
2539 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2540 {
2541 	/* Check for grace-period ends and beginnings. */
2542 	note_gp_changes(rsp, rdp);
2543 
2544 	/*
2545 	 * Does this CPU still need to do its part for current grace period?
2546 	 * If no, return and let the other CPUs do their part as well.
2547 	 */
2548 	if (!rdp->core_needs_qs)
2549 		return;
2550 
2551 	/*
2552 	 * Was there a quiescent state since the beginning of the grace
2553 	 * period? If no, then exit and wait for the next call.
2554 	 */
2555 	if (rdp->cpu_no_qs.b.norm)
2556 		return;
2557 
2558 	/*
2559 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2560 	 * judge of that).
2561 	 */
2562 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2563 }
2564 
2565 /*
2566  * Send the specified CPU's RCU callbacks to the orphanage.  The
2567  * specified CPU must be offline, and the caller must hold the
2568  * ->orphan_lock.
2569  */
2570 static void
2571 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2572 			  struct rcu_node *rnp, struct rcu_data *rdp)
2573 {
2574 	lockdep_assert_held(&rsp->orphan_lock);
2575 
2576 	/* No-CBs CPUs do not have orphanable callbacks. */
2577 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2578 		return;
2579 
2580 	/*
2581 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2582 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2583 	 * cannot be running now.  Thus no memory barrier is required.
2584 	 */
2585 	rdp->n_cbs_orphaned += rcu_segcblist_n_cbs(&rdp->cblist);
2586 	rcu_segcblist_extract_count(&rdp->cblist, &rsp->orphan_done);
2587 
2588 	/*
2589 	 * Next, move those callbacks still needing a grace period to
2590 	 * the orphanage, where some other CPU will pick them up.
2591 	 * Some of the callbacks might have gone partway through a grace
2592 	 * period, but that is too bad.  They get to start over because we
2593 	 * cannot assume that grace periods are synchronized across CPUs.
2594 	 */
2595 	rcu_segcblist_extract_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2596 
2597 	/*
2598 	 * Then move the ready-to-invoke callbacks to the orphanage,
2599 	 * where some other CPU will pick them up.  These will not be
2600 	 * required to pass though another grace period: They are done.
2601 	 */
2602 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rsp->orphan_done);
2603 
2604 	/* Finally, disallow further callbacks on this CPU.  */
2605 	rcu_segcblist_disable(&rdp->cblist);
2606 }
2607 
2608 /*
2609  * Adopt the RCU callbacks from the specified rcu_state structure's
2610  * orphanage.  The caller must hold the ->orphan_lock.
2611  */
2612 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2613 {
2614 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2615 
2616 	lockdep_assert_held(&rsp->orphan_lock);
2617 
2618 	/* No-CBs CPUs are handled specially. */
2619 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2620 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2621 		return;
2622 
2623 	/* Do the accounting first. */
2624 	rdp->n_cbs_adopted += rsp->orphan_done.len;
2625 	if (rsp->orphan_done.len_lazy != rsp->orphan_done.len)
2626 		rcu_idle_count_callbacks_posted();
2627 	rcu_segcblist_insert_count(&rdp->cblist, &rsp->orphan_done);
2628 
2629 	/*
2630 	 * We do not need a memory barrier here because the only way we
2631 	 * can get here if there is an rcu_barrier() in flight is if
2632 	 * we are the task doing the rcu_barrier().
2633 	 */
2634 
2635 	/* First adopt the ready-to-invoke callbacks, then the done ones. */
2636 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rsp->orphan_done);
2637 	WARN_ON_ONCE(rsp->orphan_done.head);
2638 	rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rsp->orphan_pend);
2639 	WARN_ON_ONCE(rsp->orphan_pend.head);
2640 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) !=
2641 		     !rcu_segcblist_n_cbs(&rdp->cblist));
2642 }
2643 
2644 /*
2645  * Trace the fact that this CPU is going offline.
2646  */
2647 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2648 {
2649 	RCU_TRACE(unsigned long mask;)
2650 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2651 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2652 
2653 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2654 		return;
2655 
2656 	RCU_TRACE(mask = rdp->grpmask;)
2657 	trace_rcu_grace_period(rsp->name,
2658 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2659 			       TPS("cpuofl"));
2660 }
2661 
2662 /*
2663  * All CPUs for the specified rcu_node structure have gone offline,
2664  * and all tasks that were preempted within an RCU read-side critical
2665  * section while running on one of those CPUs have since exited their RCU
2666  * read-side critical section.  Some other CPU is reporting this fact with
2667  * the specified rcu_node structure's ->lock held and interrupts disabled.
2668  * This function therefore goes up the tree of rcu_node structures,
2669  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2670  * the leaf rcu_node structure's ->qsmaskinit field has already been
2671  * updated
2672  *
2673  * This function does check that the specified rcu_node structure has
2674  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2675  * prematurely.  That said, invoking it after the fact will cost you
2676  * a needless lock acquisition.  So once it has done its work, don't
2677  * invoke it again.
2678  */
2679 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2680 {
2681 	long mask;
2682 	struct rcu_node *rnp = rnp_leaf;
2683 
2684 	lockdep_assert_held(&rnp->lock);
2685 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2686 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2687 		return;
2688 	for (;;) {
2689 		mask = rnp->grpmask;
2690 		rnp = rnp->parent;
2691 		if (!rnp)
2692 			break;
2693 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2694 		rnp->qsmaskinit &= ~mask;
2695 		rnp->qsmask &= ~mask;
2696 		if (rnp->qsmaskinit) {
2697 			raw_spin_unlock_rcu_node(rnp);
2698 			/* irqs remain disabled. */
2699 			return;
2700 		}
2701 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2702 	}
2703 }
2704 
2705 /*
2706  * The CPU has been completely removed, and some other CPU is reporting
2707  * this fact from process context.  Do the remainder of the cleanup,
2708  * including orphaning the outgoing CPU's RCU callbacks, and also
2709  * adopting them.  There can only be one CPU hotplug operation at a time,
2710  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2711  */
2712 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2713 {
2714 	unsigned long flags;
2715 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2716 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2717 
2718 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2719 		return;
2720 
2721 	/* Adjust any no-longer-needed kthreads. */
2722 	rcu_boost_kthread_setaffinity(rnp, -1);
2723 
2724 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2725 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2726 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2727 	rcu_adopt_orphan_cbs(rsp, flags);
2728 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2729 
2730 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
2731 		  !rcu_segcblist_empty(&rdp->cblist),
2732 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
2733 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
2734 		  rcu_segcblist_first_cb(&rdp->cblist));
2735 }
2736 
2737 /*
2738  * Invoke any RCU callbacks that have made it to the end of their grace
2739  * period.  Thottle as specified by rdp->blimit.
2740  */
2741 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2742 {
2743 	unsigned long flags;
2744 	struct rcu_head *rhp;
2745 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2746 	long bl, count;
2747 
2748 	/* If no callbacks are ready, just return. */
2749 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2750 		trace_rcu_batch_start(rsp->name,
2751 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2752 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2753 		trace_rcu_batch_end(rsp->name, 0,
2754 				    !rcu_segcblist_empty(&rdp->cblist),
2755 				    need_resched(), is_idle_task(current),
2756 				    rcu_is_callbacks_kthread());
2757 		return;
2758 	}
2759 
2760 	/*
2761 	 * Extract the list of ready callbacks, disabling to prevent
2762 	 * races with call_rcu() from interrupt handlers.  Leave the
2763 	 * callback counts, as rcu_barrier() needs to be conservative.
2764 	 */
2765 	local_irq_save(flags);
2766 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2767 	bl = rdp->blimit;
2768 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2769 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2770 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2771 	local_irq_restore(flags);
2772 
2773 	/* Invoke callbacks. */
2774 	rhp = rcu_cblist_dequeue(&rcl);
2775 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2776 		debug_rcu_head_unqueue(rhp);
2777 		if (__rcu_reclaim(rsp->name, rhp))
2778 			rcu_cblist_dequeued_lazy(&rcl);
2779 		/*
2780 		 * Stop only if limit reached and CPU has something to do.
2781 		 * Note: The rcl structure counts down from zero.
2782 		 */
2783 		if (-rcl.len >= bl &&
2784 		    (need_resched() ||
2785 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2786 			break;
2787 	}
2788 
2789 	local_irq_save(flags);
2790 	count = -rcl.len;
2791 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2792 			    is_idle_task(current), rcu_is_callbacks_kthread());
2793 
2794 	/* Update counts and requeue any remaining callbacks. */
2795 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2796 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2797 	rdp->n_cbs_invoked += count;
2798 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2799 
2800 	/* Reinstate batch limit if we have worked down the excess. */
2801 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2802 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2803 		rdp->blimit = blimit;
2804 
2805 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2806 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2807 		rdp->qlen_last_fqs_check = 0;
2808 		rdp->n_force_qs_snap = rsp->n_force_qs;
2809 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2810 		rdp->qlen_last_fqs_check = count;
2811 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2812 
2813 	local_irq_restore(flags);
2814 
2815 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2816 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2817 		invoke_rcu_core();
2818 }
2819 
2820 /*
2821  * Check to see if this CPU is in a non-context-switch quiescent state
2822  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2823  * Also schedule RCU core processing.
2824  *
2825  * This function must be called from hardirq context.  It is normally
2826  * invoked from the scheduling-clock interrupt.
2827  */
2828 void rcu_check_callbacks(int user)
2829 {
2830 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2831 	increment_cpu_stall_ticks();
2832 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2833 
2834 		/*
2835 		 * Get here if this CPU took its interrupt from user
2836 		 * mode or from the idle loop, and if this is not a
2837 		 * nested interrupt.  In this case, the CPU is in
2838 		 * a quiescent state, so note it.
2839 		 *
2840 		 * No memory barrier is required here because both
2841 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2842 		 * variables that other CPUs neither access nor modify,
2843 		 * at least not while the corresponding CPU is online.
2844 		 */
2845 
2846 		rcu_sched_qs();
2847 		rcu_bh_qs();
2848 
2849 	} else if (!in_softirq()) {
2850 
2851 		/*
2852 		 * Get here if this CPU did not take its interrupt from
2853 		 * softirq, in other words, if it is not interrupting
2854 		 * a rcu_bh read-side critical section.  This is an _bh
2855 		 * critical section, so note it.
2856 		 */
2857 
2858 		rcu_bh_qs();
2859 	}
2860 	rcu_preempt_check_callbacks();
2861 	if (rcu_pending())
2862 		invoke_rcu_core();
2863 	if (user)
2864 		rcu_note_voluntary_context_switch(current);
2865 	trace_rcu_utilization(TPS("End scheduler-tick"));
2866 }
2867 
2868 /*
2869  * Scan the leaf rcu_node structures, processing dyntick state for any that
2870  * have not yet encountered a quiescent state, using the function specified.
2871  * Also initiate boosting for any threads blocked on the root rcu_node.
2872  *
2873  * The caller must have suppressed start of new grace periods.
2874  */
2875 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2876 {
2877 	int cpu;
2878 	unsigned long flags;
2879 	unsigned long mask;
2880 	struct rcu_node *rnp;
2881 
2882 	rcu_for_each_leaf_node(rsp, rnp) {
2883 		cond_resched_rcu_qs();
2884 		mask = 0;
2885 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2886 		if (rnp->qsmask == 0) {
2887 			if (rcu_state_p == &rcu_sched_state ||
2888 			    rsp != rcu_state_p ||
2889 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2890 				/*
2891 				 * No point in scanning bits because they
2892 				 * are all zero.  But we might need to
2893 				 * priority-boost blocked readers.
2894 				 */
2895 				rcu_initiate_boost(rnp, flags);
2896 				/* rcu_initiate_boost() releases rnp->lock */
2897 				continue;
2898 			}
2899 			if (rnp->parent &&
2900 			    (rnp->parent->qsmask & rnp->grpmask)) {
2901 				/*
2902 				 * Race between grace-period
2903 				 * initialization and task exiting RCU
2904 				 * read-side critical section: Report.
2905 				 */
2906 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2907 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2908 				continue;
2909 			}
2910 		}
2911 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2912 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2913 			if ((rnp->qsmask & bit) != 0) {
2914 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2915 					mask |= bit;
2916 			}
2917 		}
2918 		if (mask != 0) {
2919 			/* Idle/offline CPUs, report (releases rnp->lock. */
2920 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2921 		} else {
2922 			/* Nothing to do here, so just drop the lock. */
2923 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2924 		}
2925 	}
2926 }
2927 
2928 /*
2929  * Force quiescent states on reluctant CPUs, and also detect which
2930  * CPUs are in dyntick-idle mode.
2931  */
2932 static void force_quiescent_state(struct rcu_state *rsp)
2933 {
2934 	unsigned long flags;
2935 	bool ret;
2936 	struct rcu_node *rnp;
2937 	struct rcu_node *rnp_old = NULL;
2938 
2939 	/* Funnel through hierarchy to reduce memory contention. */
2940 	rnp = __this_cpu_read(rsp->rda->mynode);
2941 	for (; rnp != NULL; rnp = rnp->parent) {
2942 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2943 		      !raw_spin_trylock(&rnp->fqslock);
2944 		if (rnp_old != NULL)
2945 			raw_spin_unlock(&rnp_old->fqslock);
2946 		if (ret) {
2947 			rsp->n_force_qs_lh++;
2948 			return;
2949 		}
2950 		rnp_old = rnp;
2951 	}
2952 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2953 
2954 	/* Reached the root of the rcu_node tree, acquire lock. */
2955 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2956 	raw_spin_unlock(&rnp_old->fqslock);
2957 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2958 		rsp->n_force_qs_lh++;
2959 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2960 		return;  /* Someone beat us to it. */
2961 	}
2962 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2963 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2964 	rcu_gp_kthread_wake(rsp);
2965 }
2966 
2967 /*
2968  * This does the RCU core processing work for the specified rcu_state
2969  * and rcu_data structures.  This may be called only from the CPU to
2970  * whom the rdp belongs.
2971  */
2972 static void
2973 __rcu_process_callbacks(struct rcu_state *rsp)
2974 {
2975 	unsigned long flags;
2976 	bool needwake;
2977 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2978 
2979 	WARN_ON_ONCE(!rdp->beenonline);
2980 
2981 	/* Update RCU state based on any recent quiescent states. */
2982 	rcu_check_quiescent_state(rsp, rdp);
2983 
2984 	/* Does this CPU require a not-yet-started grace period? */
2985 	local_irq_save(flags);
2986 	if (cpu_needs_another_gp(rsp, rdp)) {
2987 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2988 		needwake = rcu_start_gp(rsp);
2989 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2990 		if (needwake)
2991 			rcu_gp_kthread_wake(rsp);
2992 	} else {
2993 		local_irq_restore(flags);
2994 	}
2995 
2996 	/* If there are callbacks ready, invoke them. */
2997 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2998 		invoke_rcu_callbacks(rsp, rdp);
2999 
3000 	/* Do any needed deferred wakeups of rcuo kthreads. */
3001 	do_nocb_deferred_wakeup(rdp);
3002 }
3003 
3004 /*
3005  * Do RCU core processing for the current CPU.
3006  */
3007 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3008 {
3009 	struct rcu_state *rsp;
3010 
3011 	if (cpu_is_offline(smp_processor_id()))
3012 		return;
3013 	trace_rcu_utilization(TPS("Start RCU core"));
3014 	for_each_rcu_flavor(rsp)
3015 		__rcu_process_callbacks(rsp);
3016 	trace_rcu_utilization(TPS("End RCU core"));
3017 }
3018 
3019 /*
3020  * Schedule RCU callback invocation.  If the specified type of RCU
3021  * does not support RCU priority boosting, just do a direct call,
3022  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3023  * are running on the current CPU with softirqs disabled, the
3024  * rcu_cpu_kthread_task cannot disappear out from under us.
3025  */
3026 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3027 {
3028 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3029 		return;
3030 	if (likely(!rsp->boost)) {
3031 		rcu_do_batch(rsp, rdp);
3032 		return;
3033 	}
3034 	invoke_rcu_callbacks_kthread();
3035 }
3036 
3037 static void invoke_rcu_core(void)
3038 {
3039 	if (cpu_online(smp_processor_id()))
3040 		raise_softirq(RCU_SOFTIRQ);
3041 }
3042 
3043 /*
3044  * Handle any core-RCU processing required by a call_rcu() invocation.
3045  */
3046 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3047 			    struct rcu_head *head, unsigned long flags)
3048 {
3049 	bool needwake;
3050 
3051 	/*
3052 	 * If called from an extended quiescent state, invoke the RCU
3053 	 * core in order to force a re-evaluation of RCU's idleness.
3054 	 */
3055 	if (!rcu_is_watching())
3056 		invoke_rcu_core();
3057 
3058 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3059 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3060 		return;
3061 
3062 	/*
3063 	 * Force the grace period if too many callbacks or too long waiting.
3064 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3065 	 * if some other CPU has recently done so.  Also, don't bother
3066 	 * invoking force_quiescent_state() if the newly enqueued callback
3067 	 * is the only one waiting for a grace period to complete.
3068 	 */
3069 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
3070 		     rdp->qlen_last_fqs_check + qhimark)) {
3071 
3072 		/* Are we ignoring a completed grace period? */
3073 		note_gp_changes(rsp, rdp);
3074 
3075 		/* Start a new grace period if one not already started. */
3076 		if (!rcu_gp_in_progress(rsp)) {
3077 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3078 
3079 			raw_spin_lock_rcu_node(rnp_root);
3080 			needwake = rcu_start_gp(rsp);
3081 			raw_spin_unlock_rcu_node(rnp_root);
3082 			if (needwake)
3083 				rcu_gp_kthread_wake(rsp);
3084 		} else {
3085 			/* Give the grace period a kick. */
3086 			rdp->blimit = LONG_MAX;
3087 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3088 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3089 				force_quiescent_state(rsp);
3090 			rdp->n_force_qs_snap = rsp->n_force_qs;
3091 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3092 		}
3093 	}
3094 }
3095 
3096 /*
3097  * RCU callback function to leak a callback.
3098  */
3099 static void rcu_leak_callback(struct rcu_head *rhp)
3100 {
3101 }
3102 
3103 /*
3104  * Helper function for call_rcu() and friends.  The cpu argument will
3105  * normally be -1, indicating "currently running CPU".  It may specify
3106  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3107  * is expected to specify a CPU.
3108  */
3109 static void
3110 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3111 	   struct rcu_state *rsp, int cpu, bool lazy)
3112 {
3113 	unsigned long flags;
3114 	struct rcu_data *rdp;
3115 
3116 	/* Misaligned rcu_head! */
3117 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3118 
3119 	if (debug_rcu_head_queue(head)) {
3120 		/*
3121 		 * Probable double call_rcu(), so leak the callback.
3122 		 * Use rcu:rcu_callback trace event to find the previous
3123 		 * time callback was passed to __call_rcu().
3124 		 */
3125 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3126 			  head, head->func);
3127 		WRITE_ONCE(head->func, rcu_leak_callback);
3128 		return;
3129 	}
3130 	head->func = func;
3131 	head->next = NULL;
3132 	local_irq_save(flags);
3133 	rdp = this_cpu_ptr(rsp->rda);
3134 
3135 	/* Add the callback to our list. */
3136 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3137 		int offline;
3138 
3139 		if (cpu != -1)
3140 			rdp = per_cpu_ptr(rsp->rda, cpu);
3141 		if (likely(rdp->mynode)) {
3142 			/* Post-boot, so this should be for a no-CBs CPU. */
3143 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3144 			WARN_ON_ONCE(offline);
3145 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3146 			local_irq_restore(flags);
3147 			return;
3148 		}
3149 		/*
3150 		 * Very early boot, before rcu_init().  Initialize if needed
3151 		 * and then drop through to queue the callback.
3152 		 */
3153 		BUG_ON(cpu != -1);
3154 		WARN_ON_ONCE(!rcu_is_watching());
3155 		if (rcu_segcblist_empty(&rdp->cblist))
3156 			rcu_segcblist_init(&rdp->cblist);
3157 	}
3158 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3159 	if (!lazy)
3160 		rcu_idle_count_callbacks_posted();
3161 
3162 	if (__is_kfree_rcu_offset((unsigned long)func))
3163 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3164 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3165 					 rcu_segcblist_n_cbs(&rdp->cblist));
3166 	else
3167 		trace_rcu_callback(rsp->name, head,
3168 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3169 				   rcu_segcblist_n_cbs(&rdp->cblist));
3170 
3171 	/* Go handle any RCU core processing required. */
3172 	__call_rcu_core(rsp, rdp, head, flags);
3173 	local_irq_restore(flags);
3174 }
3175 
3176 /**
3177  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3178  * @head: structure to be used for queueing the RCU updates.
3179  * @func: actual callback function to be invoked after the grace period
3180  *
3181  * The callback function will be invoked some time after a full grace
3182  * period elapses, in other words after all currently executing RCU
3183  * read-side critical sections have completed. call_rcu_sched() assumes
3184  * that the read-side critical sections end on enabling of preemption
3185  * or on voluntary preemption.
3186  * RCU read-side critical sections are delimited by :
3187  *  - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3188  *  - anything that disables preemption.
3189  *
3190  *  These may be nested.
3191  *
3192  * See the description of call_rcu() for more detailed information on
3193  * memory ordering guarantees.
3194  */
3195 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3196 {
3197 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3198 }
3199 EXPORT_SYMBOL_GPL(call_rcu_sched);
3200 
3201 /**
3202  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3203  * @head: structure to be used for queueing the RCU updates.
3204  * @func: actual callback function to be invoked after the grace period
3205  *
3206  * The callback function will be invoked some time after a full grace
3207  * period elapses, in other words after all currently executing RCU
3208  * read-side critical sections have completed. call_rcu_bh() assumes
3209  * that the read-side critical sections end on completion of a softirq
3210  * handler. This means that read-side critical sections in process
3211  * context must not be interrupted by softirqs. This interface is to be
3212  * used when most of the read-side critical sections are in softirq context.
3213  * RCU read-side critical sections are delimited by :
3214  *  - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context.
3215  *  OR
3216  *  - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3217  *  These may be nested.
3218  *
3219  * See the description of call_rcu() for more detailed information on
3220  * memory ordering guarantees.
3221  */
3222 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3223 {
3224 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3225 }
3226 EXPORT_SYMBOL_GPL(call_rcu_bh);
3227 
3228 /*
3229  * Queue an RCU callback for lazy invocation after a grace period.
3230  * This will likely be later named something like "call_rcu_lazy()",
3231  * but this change will require some way of tagging the lazy RCU
3232  * callbacks in the list of pending callbacks. Until then, this
3233  * function may only be called from __kfree_rcu().
3234  */
3235 void kfree_call_rcu(struct rcu_head *head,
3236 		    rcu_callback_t func)
3237 {
3238 	__call_rcu(head, func, rcu_state_p, -1, 1);
3239 }
3240 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3241 
3242 /*
3243  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3244  * any blocking grace-period wait automatically implies a grace period
3245  * if there is only one CPU online at any point time during execution
3246  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3247  * occasionally incorrectly indicate that there are multiple CPUs online
3248  * when there was in fact only one the whole time, as this just adds
3249  * some overhead: RCU still operates correctly.
3250  */
3251 static inline int rcu_blocking_is_gp(void)
3252 {
3253 	int ret;
3254 
3255 	might_sleep();  /* Check for RCU read-side critical section. */
3256 	preempt_disable();
3257 	ret = num_online_cpus() <= 1;
3258 	preempt_enable();
3259 	return ret;
3260 }
3261 
3262 /**
3263  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3264  *
3265  * Control will return to the caller some time after a full rcu-sched
3266  * grace period has elapsed, in other words after all currently executing
3267  * rcu-sched read-side critical sections have completed.   These read-side
3268  * critical sections are delimited by rcu_read_lock_sched() and
3269  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3270  * local_irq_disable(), and so on may be used in place of
3271  * rcu_read_lock_sched().
3272  *
3273  * This means that all preempt_disable code sequences, including NMI and
3274  * non-threaded hardware-interrupt handlers, in progress on entry will
3275  * have completed before this primitive returns.  However, this does not
3276  * guarantee that softirq handlers will have completed, since in some
3277  * kernels, these handlers can run in process context, and can block.
3278  *
3279  * Note that this guarantee implies further memory-ordering guarantees.
3280  * On systems with more than one CPU, when synchronize_sched() returns,
3281  * each CPU is guaranteed to have executed a full memory barrier since the
3282  * end of its last RCU-sched read-side critical section whose beginning
3283  * preceded the call to synchronize_sched().  In addition, each CPU having
3284  * an RCU read-side critical section that extends beyond the return from
3285  * synchronize_sched() is guaranteed to have executed a full memory barrier
3286  * after the beginning of synchronize_sched() and before the beginning of
3287  * that RCU read-side critical section.  Note that these guarantees include
3288  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3289  * that are executing in the kernel.
3290  *
3291  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3292  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3293  * to have executed a full memory barrier during the execution of
3294  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3295  * again only if the system has more than one CPU).
3296  */
3297 void synchronize_sched(void)
3298 {
3299 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3300 			 lock_is_held(&rcu_lock_map) ||
3301 			 lock_is_held(&rcu_sched_lock_map),
3302 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3303 	if (rcu_blocking_is_gp())
3304 		return;
3305 	if (rcu_gp_is_expedited())
3306 		synchronize_sched_expedited();
3307 	else
3308 		wait_rcu_gp(call_rcu_sched);
3309 }
3310 EXPORT_SYMBOL_GPL(synchronize_sched);
3311 
3312 /**
3313  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3314  *
3315  * Control will return to the caller some time after a full rcu_bh grace
3316  * period has elapsed, in other words after all currently executing rcu_bh
3317  * read-side critical sections have completed.  RCU read-side critical
3318  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3319  * and may be nested.
3320  *
3321  * See the description of synchronize_sched() for more detailed information
3322  * on memory ordering guarantees.
3323  */
3324 void synchronize_rcu_bh(void)
3325 {
3326 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3327 			 lock_is_held(&rcu_lock_map) ||
3328 			 lock_is_held(&rcu_sched_lock_map),
3329 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3330 	if (rcu_blocking_is_gp())
3331 		return;
3332 	if (rcu_gp_is_expedited())
3333 		synchronize_rcu_bh_expedited();
3334 	else
3335 		wait_rcu_gp(call_rcu_bh);
3336 }
3337 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3338 
3339 /**
3340  * get_state_synchronize_rcu - Snapshot current RCU state
3341  *
3342  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3343  * to determine whether or not a full grace period has elapsed in the
3344  * meantime.
3345  */
3346 unsigned long get_state_synchronize_rcu(void)
3347 {
3348 	/*
3349 	 * Any prior manipulation of RCU-protected data must happen
3350 	 * before the load from ->gpnum.
3351 	 */
3352 	smp_mb();  /* ^^^ */
3353 
3354 	/*
3355 	 * Make sure this load happens before the purportedly
3356 	 * time-consuming work between get_state_synchronize_rcu()
3357 	 * and cond_synchronize_rcu().
3358 	 */
3359 	return smp_load_acquire(&rcu_state_p->gpnum);
3360 }
3361 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3362 
3363 /**
3364  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3365  *
3366  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3367  *
3368  * If a full RCU grace period has elapsed since the earlier call to
3369  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3370  * synchronize_rcu() to wait for a full grace period.
3371  *
3372  * Yes, this function does not take counter wrap into account.  But
3373  * counter wrap is harmless.  If the counter wraps, we have waited for
3374  * more than 2 billion grace periods (and way more on a 64-bit system!),
3375  * so waiting for one additional grace period should be just fine.
3376  */
3377 void cond_synchronize_rcu(unsigned long oldstate)
3378 {
3379 	unsigned long newstate;
3380 
3381 	/*
3382 	 * Ensure that this load happens before any RCU-destructive
3383 	 * actions the caller might carry out after we return.
3384 	 */
3385 	newstate = smp_load_acquire(&rcu_state_p->completed);
3386 	if (ULONG_CMP_GE(oldstate, newstate))
3387 		synchronize_rcu();
3388 }
3389 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3390 
3391 /**
3392  * get_state_synchronize_sched - Snapshot current RCU-sched state
3393  *
3394  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3395  * to determine whether or not a full grace period has elapsed in the
3396  * meantime.
3397  */
3398 unsigned long get_state_synchronize_sched(void)
3399 {
3400 	/*
3401 	 * Any prior manipulation of RCU-protected data must happen
3402 	 * before the load from ->gpnum.
3403 	 */
3404 	smp_mb();  /* ^^^ */
3405 
3406 	/*
3407 	 * Make sure this load happens before the purportedly
3408 	 * time-consuming work between get_state_synchronize_sched()
3409 	 * and cond_synchronize_sched().
3410 	 */
3411 	return smp_load_acquire(&rcu_sched_state.gpnum);
3412 }
3413 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3414 
3415 /**
3416  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3417  *
3418  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3419  *
3420  * If a full RCU-sched grace period has elapsed since the earlier call to
3421  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3422  * synchronize_sched() to wait for a full grace period.
3423  *
3424  * Yes, this function does not take counter wrap into account.  But
3425  * counter wrap is harmless.  If the counter wraps, we have waited for
3426  * more than 2 billion grace periods (and way more on a 64-bit system!),
3427  * so waiting for one additional grace period should be just fine.
3428  */
3429 void cond_synchronize_sched(unsigned long oldstate)
3430 {
3431 	unsigned long newstate;
3432 
3433 	/*
3434 	 * Ensure that this load happens before any RCU-destructive
3435 	 * actions the caller might carry out after we return.
3436 	 */
3437 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3438 	if (ULONG_CMP_GE(oldstate, newstate))
3439 		synchronize_sched();
3440 }
3441 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3442 
3443 /*
3444  * Check to see if there is any immediate RCU-related work to be done
3445  * by the current CPU, for the specified type of RCU, returning 1 if so.
3446  * The checks are in order of increasing expense: checks that can be
3447  * carried out against CPU-local state are performed first.  However,
3448  * we must check for CPU stalls first, else we might not get a chance.
3449  */
3450 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3451 {
3452 	struct rcu_node *rnp = rdp->mynode;
3453 
3454 	rdp->n_rcu_pending++;
3455 
3456 	/* Check for CPU stalls, if enabled. */
3457 	check_cpu_stall(rsp, rdp);
3458 
3459 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3460 	if (rcu_nohz_full_cpu(rsp))
3461 		return 0;
3462 
3463 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3464 	if (rcu_scheduler_fully_active &&
3465 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3466 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3467 		rdp->n_rp_core_needs_qs++;
3468 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3469 		rdp->n_rp_report_qs++;
3470 		return 1;
3471 	}
3472 
3473 	/* Does this CPU have callbacks ready to invoke? */
3474 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3475 		rdp->n_rp_cb_ready++;
3476 		return 1;
3477 	}
3478 
3479 	/* Has RCU gone idle with this CPU needing another grace period? */
3480 	if (cpu_needs_another_gp(rsp, rdp)) {
3481 		rdp->n_rp_cpu_needs_gp++;
3482 		return 1;
3483 	}
3484 
3485 	/* Has another RCU grace period completed?  */
3486 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3487 		rdp->n_rp_gp_completed++;
3488 		return 1;
3489 	}
3490 
3491 	/* Has a new RCU grace period started? */
3492 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3493 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3494 		rdp->n_rp_gp_started++;
3495 		return 1;
3496 	}
3497 
3498 	/* Does this CPU need a deferred NOCB wakeup? */
3499 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3500 		rdp->n_rp_nocb_defer_wakeup++;
3501 		return 1;
3502 	}
3503 
3504 	/* nothing to do */
3505 	rdp->n_rp_need_nothing++;
3506 	return 0;
3507 }
3508 
3509 /*
3510  * Check to see if there is any immediate RCU-related work to be done
3511  * by the current CPU, returning 1 if so.  This function is part of the
3512  * RCU implementation; it is -not- an exported member of the RCU API.
3513  */
3514 static int rcu_pending(void)
3515 {
3516 	struct rcu_state *rsp;
3517 
3518 	for_each_rcu_flavor(rsp)
3519 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3520 			return 1;
3521 	return 0;
3522 }
3523 
3524 /*
3525  * Return true if the specified CPU has any callback.  If all_lazy is
3526  * non-NULL, store an indication of whether all callbacks are lazy.
3527  * (If there are no callbacks, all of them are deemed to be lazy.)
3528  */
3529 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3530 {
3531 	bool al = true;
3532 	bool hc = false;
3533 	struct rcu_data *rdp;
3534 	struct rcu_state *rsp;
3535 
3536 	for_each_rcu_flavor(rsp) {
3537 		rdp = this_cpu_ptr(rsp->rda);
3538 		if (rcu_segcblist_empty(&rdp->cblist))
3539 			continue;
3540 		hc = true;
3541 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3542 			al = false;
3543 			break;
3544 		}
3545 	}
3546 	if (all_lazy)
3547 		*all_lazy = al;
3548 	return hc;
3549 }
3550 
3551 /*
3552  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3553  * the compiler is expected to optimize this away.
3554  */
3555 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3556 			       int cpu, unsigned long done)
3557 {
3558 	trace_rcu_barrier(rsp->name, s, cpu,
3559 			  atomic_read(&rsp->barrier_cpu_count), done);
3560 }
3561 
3562 /*
3563  * RCU callback function for _rcu_barrier().  If we are last, wake
3564  * up the task executing _rcu_barrier().
3565  */
3566 static void rcu_barrier_callback(struct rcu_head *rhp)
3567 {
3568 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3569 	struct rcu_state *rsp = rdp->rsp;
3570 
3571 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3572 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3573 		complete(&rsp->barrier_completion);
3574 	} else {
3575 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3576 	}
3577 }
3578 
3579 /*
3580  * Called with preemption disabled, and from cross-cpu IRQ context.
3581  */
3582 static void rcu_barrier_func(void *type)
3583 {
3584 	struct rcu_state *rsp = type;
3585 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3586 
3587 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3588 	rdp->barrier_head.func = rcu_barrier_callback;
3589 	debug_rcu_head_queue(&rdp->barrier_head);
3590 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3591 		atomic_inc(&rsp->barrier_cpu_count);
3592 	} else {
3593 		debug_rcu_head_unqueue(&rdp->barrier_head);
3594 		_rcu_barrier_trace(rsp, "IRQNQ", -1, rsp->barrier_sequence);
3595 	}
3596 }
3597 
3598 /*
3599  * Orchestrate the specified type of RCU barrier, waiting for all
3600  * RCU callbacks of the specified type to complete.
3601  */
3602 static void _rcu_barrier(struct rcu_state *rsp)
3603 {
3604 	int cpu;
3605 	struct rcu_data *rdp;
3606 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3607 
3608 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3609 
3610 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3611 	mutex_lock(&rsp->barrier_mutex);
3612 
3613 	/* Did someone else do our work for us? */
3614 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3615 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3616 		smp_mb(); /* caller's subsequent code after above check. */
3617 		mutex_unlock(&rsp->barrier_mutex);
3618 		return;
3619 	}
3620 
3621 	/* Mark the start of the barrier operation. */
3622 	rcu_seq_start(&rsp->barrier_sequence);
3623 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3624 
3625 	/*
3626 	 * Initialize the count to one rather than to zero in order to
3627 	 * avoid a too-soon return to zero in case of a short grace period
3628 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3629 	 * to ensure that no offline CPU has callbacks queued.
3630 	 */
3631 	init_completion(&rsp->barrier_completion);
3632 	atomic_set(&rsp->barrier_cpu_count, 1);
3633 	get_online_cpus();
3634 
3635 	/*
3636 	 * Force each CPU with callbacks to register a new callback.
3637 	 * When that callback is invoked, we will know that all of the
3638 	 * corresponding CPU's preceding callbacks have been invoked.
3639 	 */
3640 	for_each_possible_cpu(cpu) {
3641 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3642 			continue;
3643 		rdp = per_cpu_ptr(rsp->rda, cpu);
3644 		if (rcu_is_nocb_cpu(cpu)) {
3645 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3646 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3647 						   rsp->barrier_sequence);
3648 			} else {
3649 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3650 						   rsp->barrier_sequence);
3651 				smp_mb__before_atomic();
3652 				atomic_inc(&rsp->barrier_cpu_count);
3653 				__call_rcu(&rdp->barrier_head,
3654 					   rcu_barrier_callback, rsp, cpu, 0);
3655 			}
3656 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3657 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3658 					   rsp->barrier_sequence);
3659 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3660 		} else {
3661 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3662 					   rsp->barrier_sequence);
3663 		}
3664 	}
3665 	put_online_cpus();
3666 
3667 	/*
3668 	 * Now that we have an rcu_barrier_callback() callback on each
3669 	 * CPU, and thus each counted, remove the initial count.
3670 	 */
3671 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3672 		complete(&rsp->barrier_completion);
3673 
3674 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3675 	wait_for_completion(&rsp->barrier_completion);
3676 
3677 	/* Mark the end of the barrier operation. */
3678 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3679 	rcu_seq_end(&rsp->barrier_sequence);
3680 
3681 	/* Other rcu_barrier() invocations can now safely proceed. */
3682 	mutex_unlock(&rsp->barrier_mutex);
3683 }
3684 
3685 /**
3686  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3687  */
3688 void rcu_barrier_bh(void)
3689 {
3690 	_rcu_barrier(&rcu_bh_state);
3691 }
3692 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3693 
3694 /**
3695  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3696  */
3697 void rcu_barrier_sched(void)
3698 {
3699 	_rcu_barrier(&rcu_sched_state);
3700 }
3701 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3702 
3703 /*
3704  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3705  * first CPU in a given leaf rcu_node structure coming online.  The caller
3706  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3707  * disabled.
3708  */
3709 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3710 {
3711 	long mask;
3712 	struct rcu_node *rnp = rnp_leaf;
3713 
3714 	lockdep_assert_held(&rnp->lock);
3715 	for (;;) {
3716 		mask = rnp->grpmask;
3717 		rnp = rnp->parent;
3718 		if (rnp == NULL)
3719 			return;
3720 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3721 		rnp->qsmaskinit |= mask;
3722 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3723 	}
3724 }
3725 
3726 /*
3727  * Do boot-time initialization of a CPU's per-CPU RCU data.
3728  */
3729 static void __init
3730 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3731 {
3732 	unsigned long flags;
3733 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3734 	struct rcu_node *rnp = rcu_get_root(rsp);
3735 
3736 	/* Set up local state, ensuring consistent view of global state. */
3737 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3739 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3740 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3741 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3742 	rdp->cpu = cpu;
3743 	rdp->rsp = rsp;
3744 	rcu_boot_init_nocb_percpu_data(rdp);
3745 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3746 }
3747 
3748 /*
3749  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3750  * offline event can be happening at a given time.  Note also that we
3751  * can accept some slop in the rsp->completed access due to the fact
3752  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3753  */
3754 static void
3755 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3756 {
3757 	unsigned long flags;
3758 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3759 	struct rcu_node *rnp = rcu_get_root(rsp);
3760 
3761 	/* Set up local state, ensuring consistent view of global state. */
3762 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3763 	rdp->qlen_last_fqs_check = 0;
3764 	rdp->n_force_qs_snap = rsp->n_force_qs;
3765 	rdp->blimit = blimit;
3766 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3767 	    !init_nocb_callback_list(rdp))
3768 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3769 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3770 	rcu_dynticks_eqs_online();
3771 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3772 
3773 	/*
3774 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3775 	 * propagation up the rcu_node tree will happen at the beginning
3776 	 * of the next grace period.
3777 	 */
3778 	rnp = rdp->mynode;
3779 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3780 	if (!rdp->beenonline)
3781 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3782 	rdp->beenonline = true;	 /* We have now been online. */
3783 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3784 	rdp->completed = rnp->completed;
3785 	rdp->cpu_no_qs.b.norm = true;
3786 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3787 	rdp->core_needs_qs = false;
3788 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3789 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3790 }
3791 
3792 /*
3793  * Invoked early in the CPU-online process, when pretty much all
3794  * services are available.  The incoming CPU is not present.
3795  */
3796 int rcutree_prepare_cpu(unsigned int cpu)
3797 {
3798 	struct rcu_state *rsp;
3799 
3800 	for_each_rcu_flavor(rsp)
3801 		rcu_init_percpu_data(cpu, rsp);
3802 
3803 	rcu_prepare_kthreads(cpu);
3804 	rcu_spawn_all_nocb_kthreads(cpu);
3805 
3806 	return 0;
3807 }
3808 
3809 /*
3810  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3811  */
3812 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3813 {
3814 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3815 
3816 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3817 }
3818 
3819 /*
3820  * Near the end of the CPU-online process.  Pretty much all services
3821  * enabled, and the CPU is now very much alive.
3822  */
3823 int rcutree_online_cpu(unsigned int cpu)
3824 {
3825 	sync_sched_exp_online_cleanup(cpu);
3826 	rcutree_affinity_setting(cpu, -1);
3827 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3828 		srcu_online_cpu(cpu);
3829 	return 0;
3830 }
3831 
3832 /*
3833  * Near the beginning of the process.  The CPU is still very much alive
3834  * with pretty much all services enabled.
3835  */
3836 int rcutree_offline_cpu(unsigned int cpu)
3837 {
3838 	rcutree_affinity_setting(cpu, cpu);
3839 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3840 		srcu_offline_cpu(cpu);
3841 	return 0;
3842 }
3843 
3844 /*
3845  * Near the end of the offline process.  We do only tracing here.
3846  */
3847 int rcutree_dying_cpu(unsigned int cpu)
3848 {
3849 	struct rcu_state *rsp;
3850 
3851 	for_each_rcu_flavor(rsp)
3852 		rcu_cleanup_dying_cpu(rsp);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * The outgoing CPU is gone and we are running elsewhere.
3858  */
3859 int rcutree_dead_cpu(unsigned int cpu)
3860 {
3861 	struct rcu_state *rsp;
3862 
3863 	for_each_rcu_flavor(rsp) {
3864 		rcu_cleanup_dead_cpu(cpu, rsp);
3865 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3866 	}
3867 	return 0;
3868 }
3869 
3870 /*
3871  * Mark the specified CPU as being online so that subsequent grace periods
3872  * (both expedited and normal) will wait on it.  Note that this means that
3873  * incoming CPUs are not allowed to use RCU read-side critical sections
3874  * until this function is called.  Failing to observe this restriction
3875  * will result in lockdep splats.
3876  *
3877  * Note that this function is special in that it is invoked directly
3878  * from the incoming CPU rather than from the cpuhp_step mechanism.
3879  * This is because this function must be invoked at a precise location.
3880  */
3881 void rcu_cpu_starting(unsigned int cpu)
3882 {
3883 	unsigned long flags;
3884 	unsigned long mask;
3885 	struct rcu_data *rdp;
3886 	struct rcu_node *rnp;
3887 	struct rcu_state *rsp;
3888 
3889 	for_each_rcu_flavor(rsp) {
3890 		rdp = per_cpu_ptr(rsp->rda, cpu);
3891 		rnp = rdp->mynode;
3892 		mask = rdp->grpmask;
3893 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 		rnp->qsmaskinitnext |= mask;
3895 		rnp->expmaskinitnext |= mask;
3896 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 	}
3898 }
3899 
3900 #ifdef CONFIG_HOTPLUG_CPU
3901 /*
3902  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3903  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3904  * bit masks.
3905  */
3906 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3907 {
3908 	unsigned long flags;
3909 	unsigned long mask;
3910 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3911 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3912 
3913 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3914 	mask = rdp->grpmask;
3915 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3916 	rnp->qsmaskinitnext &= ~mask;
3917 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3918 }
3919 
3920 /*
3921  * The outgoing function has no further need of RCU, so remove it from
3922  * the list of CPUs that RCU must track.
3923  *
3924  * Note that this function is special in that it is invoked directly
3925  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3926  * This is because this function must be invoked at a precise location.
3927  */
3928 void rcu_report_dead(unsigned int cpu)
3929 {
3930 	struct rcu_state *rsp;
3931 
3932 	/* QS for any half-done expedited RCU-sched GP. */
3933 	preempt_disable();
3934 	rcu_report_exp_rdp(&rcu_sched_state,
3935 			   this_cpu_ptr(rcu_sched_state.rda), true);
3936 	preempt_enable();
3937 	for_each_rcu_flavor(rsp)
3938 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3939 }
3940 #endif
3941 
3942 /*
3943  * On non-huge systems, use expedited RCU grace periods to make suspend
3944  * and hibernation run faster.
3945  */
3946 static int rcu_pm_notify(struct notifier_block *self,
3947 			 unsigned long action, void *hcpu)
3948 {
3949 	switch (action) {
3950 	case PM_HIBERNATION_PREPARE:
3951 	case PM_SUSPEND_PREPARE:
3952 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3953 			rcu_expedite_gp();
3954 		break;
3955 	case PM_POST_HIBERNATION:
3956 	case PM_POST_SUSPEND:
3957 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3958 			rcu_unexpedite_gp();
3959 		break;
3960 	default:
3961 		break;
3962 	}
3963 	return NOTIFY_OK;
3964 }
3965 
3966 /*
3967  * Spawn the kthreads that handle each RCU flavor's grace periods.
3968  */
3969 static int __init rcu_spawn_gp_kthread(void)
3970 {
3971 	unsigned long flags;
3972 	int kthread_prio_in = kthread_prio;
3973 	struct rcu_node *rnp;
3974 	struct rcu_state *rsp;
3975 	struct sched_param sp;
3976 	struct task_struct *t;
3977 
3978 	/* Force priority into range. */
3979 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3980 		kthread_prio = 1;
3981 	else if (kthread_prio < 0)
3982 		kthread_prio = 0;
3983 	else if (kthread_prio > 99)
3984 		kthread_prio = 99;
3985 	if (kthread_prio != kthread_prio_in)
3986 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3987 			 kthread_prio, kthread_prio_in);
3988 
3989 	rcu_scheduler_fully_active = 1;
3990 	for_each_rcu_flavor(rsp) {
3991 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3992 		BUG_ON(IS_ERR(t));
3993 		rnp = rcu_get_root(rsp);
3994 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3995 		rsp->gp_kthread = t;
3996 		if (kthread_prio) {
3997 			sp.sched_priority = kthread_prio;
3998 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3999 		}
4000 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4001 		wake_up_process(t);
4002 	}
4003 	rcu_spawn_nocb_kthreads();
4004 	rcu_spawn_boost_kthreads();
4005 	return 0;
4006 }
4007 early_initcall(rcu_spawn_gp_kthread);
4008 
4009 /*
4010  * This function is invoked towards the end of the scheduler's
4011  * initialization process.  Before this is called, the idle task might
4012  * contain synchronous grace-period primitives (during which time, this idle
4013  * task is booting the system, and such primitives are no-ops).  After this
4014  * function is called, any synchronous grace-period primitives are run as
4015  * expedited, with the requesting task driving the grace period forward.
4016  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4017  * runtime RCU functionality.
4018  */
4019 void rcu_scheduler_starting(void)
4020 {
4021 	WARN_ON(num_online_cpus() != 1);
4022 	WARN_ON(nr_context_switches() > 0);
4023 	rcu_test_sync_prims();
4024 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4025 	rcu_test_sync_prims();
4026 }
4027 
4028 /*
4029  * Helper function for rcu_init() that initializes one rcu_state structure.
4030  */
4031 static void __init rcu_init_one(struct rcu_state *rsp)
4032 {
4033 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4034 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4035 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4036 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4037 
4038 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4039 	int cpustride = 1;
4040 	int i;
4041 	int j;
4042 	struct rcu_node *rnp;
4043 
4044 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4045 
4046 	/* Silence gcc 4.8 false positive about array index out of range. */
4047 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4048 		panic("rcu_init_one: rcu_num_lvls out of range");
4049 
4050 	/* Initialize the level-tracking arrays. */
4051 
4052 	for (i = 1; i < rcu_num_lvls; i++)
4053 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4054 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4055 
4056 	/* Initialize the elements themselves, starting from the leaves. */
4057 
4058 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4059 		cpustride *= levelspread[i];
4060 		rnp = rsp->level[i];
4061 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4062 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4063 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4064 						   &rcu_node_class[i], buf[i]);
4065 			raw_spin_lock_init(&rnp->fqslock);
4066 			lockdep_set_class_and_name(&rnp->fqslock,
4067 						   &rcu_fqs_class[i], fqs[i]);
4068 			rnp->gpnum = rsp->gpnum;
4069 			rnp->completed = rsp->completed;
4070 			rnp->qsmask = 0;
4071 			rnp->qsmaskinit = 0;
4072 			rnp->grplo = j * cpustride;
4073 			rnp->grphi = (j + 1) * cpustride - 1;
4074 			if (rnp->grphi >= nr_cpu_ids)
4075 				rnp->grphi = nr_cpu_ids - 1;
4076 			if (i == 0) {
4077 				rnp->grpnum = 0;
4078 				rnp->grpmask = 0;
4079 				rnp->parent = NULL;
4080 			} else {
4081 				rnp->grpnum = j % levelspread[i - 1];
4082 				rnp->grpmask = 1UL << rnp->grpnum;
4083 				rnp->parent = rsp->level[i - 1] +
4084 					      j / levelspread[i - 1];
4085 			}
4086 			rnp->level = i;
4087 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4088 			rcu_init_one_nocb(rnp);
4089 			init_waitqueue_head(&rnp->exp_wq[0]);
4090 			init_waitqueue_head(&rnp->exp_wq[1]);
4091 			init_waitqueue_head(&rnp->exp_wq[2]);
4092 			init_waitqueue_head(&rnp->exp_wq[3]);
4093 			spin_lock_init(&rnp->exp_lock);
4094 		}
4095 	}
4096 
4097 	init_swait_queue_head(&rsp->gp_wq);
4098 	init_swait_queue_head(&rsp->expedited_wq);
4099 	rnp = rsp->level[rcu_num_lvls - 1];
4100 	for_each_possible_cpu(i) {
4101 		while (i > rnp->grphi)
4102 			rnp++;
4103 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4104 		rcu_boot_init_percpu_data(i, rsp);
4105 	}
4106 	list_add(&rsp->flavors, &rcu_struct_flavors);
4107 }
4108 
4109 /*
4110  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4111  * replace the definitions in tree.h because those are needed to size
4112  * the ->node array in the rcu_state structure.
4113  */
4114 static void __init rcu_init_geometry(void)
4115 {
4116 	ulong d;
4117 	int i;
4118 	int rcu_capacity[RCU_NUM_LVLS];
4119 
4120 	/*
4121 	 * Initialize any unspecified boot parameters.
4122 	 * The default values of jiffies_till_first_fqs and
4123 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4124 	 * value, which is a function of HZ, then adding one for each
4125 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4126 	 */
4127 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4128 	if (jiffies_till_first_fqs == ULONG_MAX)
4129 		jiffies_till_first_fqs = d;
4130 	if (jiffies_till_next_fqs == ULONG_MAX)
4131 		jiffies_till_next_fqs = d;
4132 
4133 	/* If the compile-time values are accurate, just leave. */
4134 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4135 	    nr_cpu_ids == NR_CPUS)
4136 		return;
4137 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4138 		rcu_fanout_leaf, nr_cpu_ids);
4139 
4140 	/*
4141 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4142 	 * and cannot exceed the number of bits in the rcu_node masks.
4143 	 * Complain and fall back to the compile-time values if this
4144 	 * limit is exceeded.
4145 	 */
4146 	if (rcu_fanout_leaf < 2 ||
4147 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4148 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4149 		WARN_ON(1);
4150 		return;
4151 	}
4152 
4153 	/*
4154 	 * Compute number of nodes that can be handled an rcu_node tree
4155 	 * with the given number of levels.
4156 	 */
4157 	rcu_capacity[0] = rcu_fanout_leaf;
4158 	for (i = 1; i < RCU_NUM_LVLS; i++)
4159 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4160 
4161 	/*
4162 	 * The tree must be able to accommodate the configured number of CPUs.
4163 	 * If this limit is exceeded, fall back to the compile-time values.
4164 	 */
4165 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4166 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4167 		WARN_ON(1);
4168 		return;
4169 	}
4170 
4171 	/* Calculate the number of levels in the tree. */
4172 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4173 	}
4174 	rcu_num_lvls = i + 1;
4175 
4176 	/* Calculate the number of rcu_nodes at each level of the tree. */
4177 	for (i = 0; i < rcu_num_lvls; i++) {
4178 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4179 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4180 	}
4181 
4182 	/* Calculate the total number of rcu_node structures. */
4183 	rcu_num_nodes = 0;
4184 	for (i = 0; i < rcu_num_lvls; i++)
4185 		rcu_num_nodes += num_rcu_lvl[i];
4186 }
4187 
4188 /*
4189  * Dump out the structure of the rcu_node combining tree associated
4190  * with the rcu_state structure referenced by rsp.
4191  */
4192 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4193 {
4194 	int level = 0;
4195 	struct rcu_node *rnp;
4196 
4197 	pr_info("rcu_node tree layout dump\n");
4198 	pr_info(" ");
4199 	rcu_for_each_node_breadth_first(rsp, rnp) {
4200 		if (rnp->level != level) {
4201 			pr_cont("\n");
4202 			pr_info(" ");
4203 			level = rnp->level;
4204 		}
4205 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4206 	}
4207 	pr_cont("\n");
4208 }
4209 
4210 void __init rcu_init(void)
4211 {
4212 	int cpu;
4213 
4214 	rcu_early_boot_tests();
4215 
4216 	rcu_bootup_announce();
4217 	rcu_init_geometry();
4218 	rcu_init_one(&rcu_bh_state);
4219 	rcu_init_one(&rcu_sched_state);
4220 	if (dump_tree)
4221 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4222 	__rcu_init_preempt();
4223 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4224 
4225 	/*
4226 	 * We don't need protection against CPU-hotplug here because
4227 	 * this is called early in boot, before either interrupts
4228 	 * or the scheduler are operational.
4229 	 */
4230 	pm_notifier(rcu_pm_notify, 0);
4231 	for_each_online_cpu(cpu) {
4232 		rcutree_prepare_cpu(cpu);
4233 		rcu_cpu_starting(cpu);
4234 		if (IS_ENABLED(CONFIG_TREE_SRCU))
4235 			srcu_online_cpu(cpu);
4236 	}
4237 }
4238 
4239 #include "tree_exp.h"
4240 #include "tree_plugin.h"
4241