1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/sched/debug.h> 39 #include <linux/nmi.h> 40 #include <linux/atomic.h> 41 #include <linux/bitops.h> 42 #include <linux/export.h> 43 #include <linux/completion.h> 44 #include <linux/moduleparam.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <uapi/linux/sched/types.h> 54 #include <linux/prefetch.h> 55 #include <linux/delay.h> 56 #include <linux/stop_machine.h> 57 #include <linux/random.h> 58 #include <linux/trace_events.h> 59 #include <linux/suspend.h> 60 #include <linux/ftrace.h> 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * In order to export the rcu_state name to the tracing tools, it 74 * needs to be added in the __tracepoint_string section. 75 * This requires defining a separate variable tp_<sname>_varname 76 * that points to the string being used, and this will allow 77 * the tracing userspace tools to be able to decipher the string 78 * address to the matching string. 79 */ 80 #ifdef CONFIG_TRACING 81 # define DEFINE_RCU_TPS(sname) \ 82 static char sname##_varname[] = #sname; \ 83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 84 # define RCU_STATE_NAME(sname) sname##_varname 85 #else 86 # define DEFINE_RCU_TPS(sname) 87 # define RCU_STATE_NAME(sname) __stringify(sname) 88 #endif 89 90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 91 DEFINE_RCU_TPS(sname) \ 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ 93 struct rcu_state sname##_state = { \ 94 .level = { &sname##_state.node[0] }, \ 95 .rda = &sname##_data, \ 96 .call = cr, \ 97 .gp_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 101 .name = RCU_STATE_NAME(sname), \ 102 .abbr = sabbr, \ 103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ 104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ 105 } 106 107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 109 110 static struct rcu_state *const rcu_state_p; 111 LIST_HEAD(rcu_struct_flavors); 112 113 /* Dump rcu_node combining tree at boot to verify correct setup. */ 114 static bool dump_tree; 115 module_param(dump_tree, bool, 0444); 116 /* Control rcu_node-tree auto-balancing at boot time. */ 117 static bool rcu_fanout_exact; 118 module_param(rcu_fanout_exact, bool, 0444); 119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 121 module_param(rcu_fanout_leaf, int, 0444); 122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 123 /* Number of rcu_nodes at specified level. */ 124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 126 /* panic() on RCU Stall sysctl. */ 127 int sysctl_panic_on_rcu_stall __read_mostly; 128 129 /* 130 * The rcu_scheduler_active variable is initialized to the value 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 133 * RCU can assume that there is but one task, allowing RCU to (for example) 134 * optimize synchronize_rcu() to a simple barrier(). When this variable 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 136 * to detect real grace periods. This variable is also used to suppress 137 * boot-time false positives from lockdep-RCU error checking. Finally, it 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 139 * is fully initialized, including all of its kthreads having been spawned. 140 */ 141 int rcu_scheduler_active __read_mostly; 142 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 143 144 /* 145 * The rcu_scheduler_fully_active variable transitions from zero to one 146 * during the early_initcall() processing, which is after the scheduler 147 * is capable of creating new tasks. So RCU processing (for example, 148 * creating tasks for RCU priority boosting) must be delayed until after 149 * rcu_scheduler_fully_active transitions from zero to one. We also 150 * currently delay invocation of any RCU callbacks until after this point. 151 * 152 * It might later prove better for people registering RCU callbacks during 153 * early boot to take responsibility for these callbacks, but one step at 154 * a time. 155 */ 156 static int rcu_scheduler_fully_active __read_mostly; 157 158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 161 static void invoke_rcu_core(void); 162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 163 static void rcu_report_exp_rdp(struct rcu_state *rsp, 164 struct rcu_data *rdp, bool wake); 165 static void sync_sched_exp_online_cleanup(int cpu); 166 167 /* rcuc/rcub kthread realtime priority */ 168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 169 module_param(kthread_prio, int, 0644); 170 171 /* Delay in jiffies for grace-period initialization delays, debug only. */ 172 173 static int gp_preinit_delay; 174 module_param(gp_preinit_delay, int, 0444); 175 static int gp_init_delay; 176 module_param(gp_init_delay, int, 0444); 177 static int gp_cleanup_delay; 178 module_param(gp_cleanup_delay, int, 0444); 179 180 /* 181 * Number of grace periods between delays, normalized by the duration of 182 * the delay. The longer the delay, the more the grace periods between 183 * each delay. The reason for this normalization is that it means that, 184 * for non-zero delays, the overall slowdown of grace periods is constant 185 * regardless of the duration of the delay. This arrangement balances 186 * the need for long delays to increase some race probabilities with the 187 * need for fast grace periods to increase other race probabilities. 188 */ 189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 190 191 /* 192 * Track the rcutorture test sequence number and the update version 193 * number within a given test. The rcutorture_testseq is incremented 194 * on every rcutorture module load and unload, so has an odd value 195 * when a test is running. The rcutorture_vernum is set to zero 196 * when rcutorture starts and is incremented on each rcutorture update. 197 * These variables enable correlating rcutorture output with the 198 * RCU tracing information. 199 */ 200 unsigned long rcutorture_testseq; 201 unsigned long rcutorture_vernum; 202 203 /* 204 * Compute the mask of online CPUs for the specified rcu_node structure. 205 * This will not be stable unless the rcu_node structure's ->lock is 206 * held, but the bit corresponding to the current CPU will be stable 207 * in most contexts. 208 */ 209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 210 { 211 return READ_ONCE(rnp->qsmaskinitnext); 212 } 213 214 /* 215 * Return true if an RCU grace period is in progress. The READ_ONCE()s 216 * permit this function to be invoked without holding the root rcu_node 217 * structure's ->lock, but of course results can be subject to change. 218 */ 219 static int rcu_gp_in_progress(struct rcu_state *rsp) 220 { 221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum); 222 } 223 224 /* 225 * Note a quiescent state. Because we do not need to know 226 * how many quiescent states passed, just if there was at least 227 * one since the start of the grace period, this just sets a flag. 228 * The caller must have disabled preemption. 229 */ 230 void rcu_sched_qs(void) 231 { 232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); 233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) 234 return; 235 trace_rcu_grace_period(TPS("rcu_sched"), 236 __this_cpu_read(rcu_sched_data.gpnum), 237 TPS("cpuqs")); 238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); 239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) 240 return; 241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); 242 rcu_report_exp_rdp(&rcu_sched_state, 243 this_cpu_ptr(&rcu_sched_data), true); 244 } 245 246 void rcu_bh_qs(void) 247 { 248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); 249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { 250 trace_rcu_grace_period(TPS("rcu_bh"), 251 __this_cpu_read(rcu_bh_data.gpnum), 252 TPS("cpuqs")); 253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); 254 } 255 } 256 257 /* 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit 259 * control. Initially this is for TLB flushing. 260 */ 261 #define RCU_DYNTICK_CTRL_MASK 0x1 262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 263 #ifndef rcu_eqs_special_exit 264 #define rcu_eqs_special_exit() do { } while (0) 265 #endif 266 267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 268 .dynticks_nesting = 1, 269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 271 }; 272 273 /* 274 * Record entry into an extended quiescent state. This is only to be 275 * called when not already in an extended quiescent state. 276 */ 277 static void rcu_dynticks_eqs_enter(void) 278 { 279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 280 int seq; 281 282 /* 283 * CPUs seeing atomic_add_return() must see prior RCU read-side 284 * critical sections, and we also must force ordering with the 285 * next idle sojourn. 286 */ 287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 288 /* Better be in an extended quiescent state! */ 289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 290 (seq & RCU_DYNTICK_CTRL_CTR)); 291 /* Better not have special action (TLB flush) pending! */ 292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 293 (seq & RCU_DYNTICK_CTRL_MASK)); 294 } 295 296 /* 297 * Record exit from an extended quiescent state. This is only to be 298 * called from an extended quiescent state. 299 */ 300 static void rcu_dynticks_eqs_exit(void) 301 { 302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 303 int seq; 304 305 /* 306 * CPUs seeing atomic_add_return() must see prior idle sojourns, 307 * and we also must force ordering with the next RCU read-side 308 * critical section. 309 */ 310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 312 !(seq & RCU_DYNTICK_CTRL_CTR)); 313 if (seq & RCU_DYNTICK_CTRL_MASK) { 314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); 315 smp_mb__after_atomic(); /* _exit after clearing mask. */ 316 /* Prefer duplicate flushes to losing a flush. */ 317 rcu_eqs_special_exit(); 318 } 319 } 320 321 /* 322 * Reset the current CPU's ->dynticks counter to indicate that the 323 * newly onlined CPU is no longer in an extended quiescent state. 324 * This will either leave the counter unchanged, or increment it 325 * to the next non-quiescent value. 326 * 327 * The non-atomic test/increment sequence works because the upper bits 328 * of the ->dynticks counter are manipulated only by the corresponding CPU, 329 * or when the corresponding CPU is offline. 330 */ 331 static void rcu_dynticks_eqs_online(void) 332 { 333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 334 335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) 336 return; 337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); 338 } 339 340 /* 341 * Is the current CPU in an extended quiescent state? 342 * 343 * No ordering, as we are sampling CPU-local information. 344 */ 345 bool rcu_dynticks_curr_cpu_in_eqs(void) 346 { 347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 348 349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); 350 } 351 352 /* 353 * Snapshot the ->dynticks counter with full ordering so as to allow 354 * stable comparison of this counter with past and future snapshots. 355 */ 356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp) 357 { 358 int snap = atomic_add_return(0, &rdtp->dynticks); 359 360 return snap & ~RCU_DYNTICK_CTRL_MASK; 361 } 362 363 /* 364 * Return true if the snapshot returned from rcu_dynticks_snap() 365 * indicates that RCU is in an extended quiescent state. 366 */ 367 static bool rcu_dynticks_in_eqs(int snap) 368 { 369 return !(snap & RCU_DYNTICK_CTRL_CTR); 370 } 371 372 /* 373 * Return true if the CPU corresponding to the specified rcu_dynticks 374 * structure has spent some time in an extended quiescent state since 375 * rcu_dynticks_snap() returned the specified snapshot. 376 */ 377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) 378 { 379 return snap != rcu_dynticks_snap(rdtp); 380 } 381 382 /* 383 * Do a double-increment of the ->dynticks counter to emulate a 384 * momentary idle-CPU quiescent state. 385 */ 386 static void rcu_dynticks_momentary_idle(void) 387 { 388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 390 &rdtp->dynticks); 391 392 /* It is illegal to call this from idle state. */ 393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 394 } 395 396 /* 397 * Set the special (bottom) bit of the specified CPU so that it 398 * will take special action (such as flushing its TLB) on the 399 * next exit from an extended quiescent state. Returns true if 400 * the bit was successfully set, or false if the CPU was not in 401 * an extended quiescent state. 402 */ 403 bool rcu_eqs_special_set(int cpu) 404 { 405 int old; 406 int new; 407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 408 409 do { 410 old = atomic_read(&rdtp->dynticks); 411 if (old & RCU_DYNTICK_CTRL_CTR) 412 return false; 413 new = old | RCU_DYNTICK_CTRL_MASK; 414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); 415 return true; 416 } 417 418 /* 419 * Let the RCU core know that this CPU has gone through the scheduler, 420 * which is a quiescent state. This is called when the need for a 421 * quiescent state is urgent, so we burn an atomic operation and full 422 * memory barriers to let the RCU core know about it, regardless of what 423 * this CPU might (or might not) do in the near future. 424 * 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 426 * 427 * The caller must have disabled interrupts. 428 */ 429 static void rcu_momentary_dyntick_idle(void) 430 { 431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); 432 rcu_dynticks_momentary_idle(); 433 } 434 435 /* 436 * Note a context switch. This is a quiescent state for RCU-sched, 437 * and requires special handling for preemptible RCU. 438 * The caller must have disabled interrupts. 439 */ 440 void rcu_note_context_switch(bool preempt) 441 { 442 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 443 trace_rcu_utilization(TPS("Start context switch")); 444 rcu_sched_qs(); 445 rcu_preempt_note_context_switch(preempt); 446 /* Load rcu_urgent_qs before other flags. */ 447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) 448 goto out; 449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) 451 rcu_momentary_dyntick_idle(); 452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 453 if (!preempt) 454 rcu_note_voluntary_context_switch_lite(current); 455 out: 456 trace_rcu_utilization(TPS("End context switch")); 457 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 458 } 459 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 460 461 /* 462 * Register a quiescent state for all RCU flavors. If there is an 463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 464 * dyntick-idle quiescent state visible to other CPUs (but only for those 465 * RCU flavors in desperate need of a quiescent state, which will normally 466 * be none of them). Either way, do a lightweight quiescent state for 467 * all RCU flavors. 468 * 469 * The barrier() calls are redundant in the common case when this is 470 * called externally, but just in case this is called from within this 471 * file. 472 * 473 */ 474 void rcu_all_qs(void) 475 { 476 unsigned long flags; 477 478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) 479 return; 480 preempt_disable(); 481 /* Load rcu_urgent_qs before other flags. */ 482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { 483 preempt_enable(); 484 return; 485 } 486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); 487 barrier(); /* Avoid RCU read-side critical sections leaking down. */ 488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { 489 local_irq_save(flags); 490 rcu_momentary_dyntick_idle(); 491 local_irq_restore(flags); 492 } 493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) 494 rcu_sched_qs(); 495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr); 496 barrier(); /* Avoid RCU read-side critical sections leaking up. */ 497 preempt_enable(); 498 } 499 EXPORT_SYMBOL_GPL(rcu_all_qs); 500 501 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ 502 static long blimit = DEFAULT_RCU_BLIMIT; 503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 504 static long qhimark = DEFAULT_RCU_QHIMARK; 505 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 506 static long qlowmark = DEFAULT_RCU_QLOMARK; 507 508 module_param(blimit, long, 0444); 509 module_param(qhimark, long, 0444); 510 module_param(qlowmark, long, 0444); 511 512 static ulong jiffies_till_first_fqs = ULONG_MAX; 513 static ulong jiffies_till_next_fqs = ULONG_MAX; 514 static bool rcu_kick_kthreads; 515 516 module_param(jiffies_till_first_fqs, ulong, 0644); 517 module_param(jiffies_till_next_fqs, ulong, 0644); 518 module_param(rcu_kick_kthreads, bool, 0644); 519 520 /* 521 * How long the grace period must be before we start recruiting 522 * quiescent-state help from rcu_note_context_switch(). 523 */ 524 static ulong jiffies_till_sched_qs = HZ / 10; 525 module_param(jiffies_till_sched_qs, ulong, 0444); 526 527 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 528 struct rcu_data *rdp); 529 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); 530 static void force_quiescent_state(struct rcu_state *rsp); 531 static int rcu_pending(void); 532 533 /* 534 * Return the number of RCU batches started thus far for debug & stats. 535 */ 536 unsigned long rcu_batches_started(void) 537 { 538 return rcu_state_p->gpnum; 539 } 540 EXPORT_SYMBOL_GPL(rcu_batches_started); 541 542 /* 543 * Return the number of RCU-sched batches started thus far for debug & stats. 544 */ 545 unsigned long rcu_batches_started_sched(void) 546 { 547 return rcu_sched_state.gpnum; 548 } 549 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 550 551 /* 552 * Return the number of RCU BH batches started thus far for debug & stats. 553 */ 554 unsigned long rcu_batches_started_bh(void) 555 { 556 return rcu_bh_state.gpnum; 557 } 558 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 559 560 /* 561 * Return the number of RCU batches completed thus far for debug & stats. 562 */ 563 unsigned long rcu_batches_completed(void) 564 { 565 return rcu_state_p->completed; 566 } 567 EXPORT_SYMBOL_GPL(rcu_batches_completed); 568 569 /* 570 * Return the number of RCU-sched batches completed thus far for debug & stats. 571 */ 572 unsigned long rcu_batches_completed_sched(void) 573 { 574 return rcu_sched_state.completed; 575 } 576 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 577 578 /* 579 * Return the number of RCU BH batches completed thus far for debug & stats. 580 */ 581 unsigned long rcu_batches_completed_bh(void) 582 { 583 return rcu_bh_state.completed; 584 } 585 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 586 587 /* 588 * Return the number of RCU expedited batches completed thus far for 589 * debug & stats. Odd numbers mean that a batch is in progress, even 590 * numbers mean idle. The value returned will thus be roughly double 591 * the cumulative batches since boot. 592 */ 593 unsigned long rcu_exp_batches_completed(void) 594 { 595 return rcu_state_p->expedited_sequence; 596 } 597 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 598 599 /* 600 * Return the number of RCU-sched expedited batches completed thus far 601 * for debug & stats. Similar to rcu_exp_batches_completed(). 602 */ 603 unsigned long rcu_exp_batches_completed_sched(void) 604 { 605 return rcu_sched_state.expedited_sequence; 606 } 607 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); 608 609 /* 610 * Force a quiescent state. 611 */ 612 void rcu_force_quiescent_state(void) 613 { 614 force_quiescent_state(rcu_state_p); 615 } 616 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 617 618 /* 619 * Force a quiescent state for RCU BH. 620 */ 621 void rcu_bh_force_quiescent_state(void) 622 { 623 force_quiescent_state(&rcu_bh_state); 624 } 625 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 626 627 /* 628 * Force a quiescent state for RCU-sched. 629 */ 630 void rcu_sched_force_quiescent_state(void) 631 { 632 force_quiescent_state(&rcu_sched_state); 633 } 634 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 635 636 /* 637 * Show the state of the grace-period kthreads. 638 */ 639 void show_rcu_gp_kthreads(void) 640 { 641 struct rcu_state *rsp; 642 643 for_each_rcu_flavor(rsp) { 644 pr_info("%s: wait state: %d ->state: %#lx\n", 645 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 646 /* sched_show_task(rsp->gp_kthread); */ 647 } 648 } 649 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 650 651 /* 652 * Record the number of times rcutorture tests have been initiated and 653 * terminated. This information allows the debugfs tracing stats to be 654 * correlated to the rcutorture messages, even when the rcutorture module 655 * is being repeatedly loaded and unloaded. In other words, we cannot 656 * store this state in rcutorture itself. 657 */ 658 void rcutorture_record_test_transition(void) 659 { 660 rcutorture_testseq++; 661 rcutorture_vernum = 0; 662 } 663 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 664 665 /* 666 * Send along grace-period-related data for rcutorture diagnostics. 667 */ 668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 669 unsigned long *gpnum, unsigned long *completed) 670 { 671 struct rcu_state *rsp = NULL; 672 673 switch (test_type) { 674 case RCU_FLAVOR: 675 rsp = rcu_state_p; 676 break; 677 case RCU_BH_FLAVOR: 678 rsp = &rcu_bh_state; 679 break; 680 case RCU_SCHED_FLAVOR: 681 rsp = &rcu_sched_state; 682 break; 683 default: 684 break; 685 } 686 if (rsp == NULL) 687 return; 688 *flags = READ_ONCE(rsp->gp_flags); 689 *gpnum = READ_ONCE(rsp->gpnum); 690 *completed = READ_ONCE(rsp->completed); 691 } 692 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 693 694 /* 695 * Record the number of writer passes through the current rcutorture test. 696 * This is also used to correlate debugfs tracing stats with the rcutorture 697 * messages. 698 */ 699 void rcutorture_record_progress(unsigned long vernum) 700 { 701 rcutorture_vernum++; 702 } 703 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 704 705 /* 706 * Return the root node of the specified rcu_state structure. 707 */ 708 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 709 { 710 return &rsp->node[0]; 711 } 712 713 /* 714 * Is there any need for future grace periods? 715 * Interrupts must be disabled. If the caller does not hold the root 716 * rnp_node structure's ->lock, the results are advisory only. 717 */ 718 static int rcu_future_needs_gp(struct rcu_state *rsp) 719 { 720 struct rcu_node *rnp = rcu_get_root(rsp); 721 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1; 722 int *fp = &rnp->need_future_gp[idx]; 723 724 lockdep_assert_irqs_disabled(); 725 return READ_ONCE(*fp); 726 } 727 728 /* 729 * Does the current CPU require a not-yet-started grace period? 730 * The caller must have disabled interrupts to prevent races with 731 * normal callback registry. 732 */ 733 static bool 734 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 735 { 736 lockdep_assert_irqs_disabled(); 737 if (rcu_gp_in_progress(rsp)) 738 return false; /* No, a grace period is already in progress. */ 739 if (rcu_future_needs_gp(rsp)) 740 return true; /* Yes, a no-CBs CPU needs one. */ 741 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 742 return false; /* No, this is a no-CBs (or offline) CPU. */ 743 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 744 return true; /* Yes, CPU has newly registered callbacks. */ 745 if (rcu_segcblist_future_gp_needed(&rdp->cblist, 746 READ_ONCE(rsp->completed))) 747 return true; /* Yes, CBs for future grace period. */ 748 return false; /* No grace period needed. */ 749 } 750 751 /* 752 * Enter an RCU extended quiescent state, which can be either the 753 * idle loop or adaptive-tickless usermode execution. 754 * 755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 756 * the possibility of usermode upcalls having messed up our count 757 * of interrupt nesting level during the prior busy period. 758 */ 759 static void rcu_eqs_enter(bool user) 760 { 761 struct rcu_state *rsp; 762 struct rcu_data *rdp; 763 struct rcu_dynticks *rdtp; 764 765 rdtp = this_cpu_ptr(&rcu_dynticks); 766 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); 767 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 768 rdtp->dynticks_nesting == 0); 769 if (rdtp->dynticks_nesting != 1) { 770 rdtp->dynticks_nesting--; 771 return; 772 } 773 774 lockdep_assert_irqs_disabled(); 775 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); 776 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 777 for_each_rcu_flavor(rsp) { 778 rdp = this_cpu_ptr(rsp->rda); 779 do_nocb_deferred_wakeup(rdp); 780 } 781 rcu_prepare_for_idle(); 782 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 783 rcu_dynticks_eqs_enter(); 784 rcu_dynticks_task_enter(); 785 } 786 787 /** 788 * rcu_idle_enter - inform RCU that current CPU is entering idle 789 * 790 * Enter idle mode, in other words, -leave- the mode in which RCU 791 * read-side critical sections can occur. (Though RCU read-side 792 * critical sections can occur in irq handlers in idle, a possibility 793 * handled by irq_enter() and irq_exit().) 794 * 795 * If you add or remove a call to rcu_idle_enter(), be sure to test with 796 * CONFIG_RCU_EQS_DEBUG=y. 797 */ 798 void rcu_idle_enter(void) 799 { 800 lockdep_assert_irqs_disabled(); 801 rcu_eqs_enter(false); 802 } 803 804 #ifdef CONFIG_NO_HZ_FULL 805 /** 806 * rcu_user_enter - inform RCU that we are resuming userspace. 807 * 808 * Enter RCU idle mode right before resuming userspace. No use of RCU 809 * is permitted between this call and rcu_user_exit(). This way the 810 * CPU doesn't need to maintain the tick for RCU maintenance purposes 811 * when the CPU runs in userspace. 812 * 813 * If you add or remove a call to rcu_user_enter(), be sure to test with 814 * CONFIG_RCU_EQS_DEBUG=y. 815 */ 816 void rcu_user_enter(void) 817 { 818 lockdep_assert_irqs_disabled(); 819 rcu_eqs_enter(true); 820 } 821 #endif /* CONFIG_NO_HZ_FULL */ 822 823 /** 824 * rcu_nmi_exit - inform RCU of exit from NMI context 825 * 826 * If we are returning from the outermost NMI handler that interrupted an 827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 828 * to let the RCU grace-period handling know that the CPU is back to 829 * being RCU-idle. 830 * 831 * If you add or remove a call to rcu_nmi_exit(), be sure to test 832 * with CONFIG_RCU_EQS_DEBUG=y. 833 */ 834 void rcu_nmi_exit(void) 835 { 836 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 837 838 /* 839 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 840 * (We are exiting an NMI handler, so RCU better be paying attention 841 * to us!) 842 */ 843 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 844 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 845 846 /* 847 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 848 * leave it in non-RCU-idle state. 849 */ 850 if (rdtp->dynticks_nmi_nesting != 1) { 851 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); 852 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ 853 rdtp->dynticks_nmi_nesting - 2); 854 return; 855 } 856 857 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 858 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); 859 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 860 rcu_dynticks_eqs_enter(); 861 } 862 863 /** 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 865 * 866 * Exit from an interrupt handler, which might possibly result in entering 867 * idle mode, in other words, leaving the mode in which read-side critical 868 * sections can occur. The caller must have disabled interrupts. 869 * 870 * This code assumes that the idle loop never does anything that might 871 * result in unbalanced calls to irq_enter() and irq_exit(). If your 872 * architecture's idle loop violates this assumption, RCU will give you what 873 * you deserve, good and hard. But very infrequently and irreproducibly. 874 * 875 * Use things like work queues to work around this limitation. 876 * 877 * You have been warned. 878 * 879 * If you add or remove a call to rcu_irq_exit(), be sure to test with 880 * CONFIG_RCU_EQS_DEBUG=y. 881 */ 882 void rcu_irq_exit(void) 883 { 884 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 885 886 lockdep_assert_irqs_disabled(); 887 if (rdtp->dynticks_nmi_nesting == 1) 888 rcu_prepare_for_idle(); 889 rcu_nmi_exit(); 890 if (rdtp->dynticks_nmi_nesting == 0) 891 rcu_dynticks_task_enter(); 892 } 893 894 /* 895 * Wrapper for rcu_irq_exit() where interrupts are enabled. 896 * 897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 898 * with CONFIG_RCU_EQS_DEBUG=y. 899 */ 900 void rcu_irq_exit_irqson(void) 901 { 902 unsigned long flags; 903 904 local_irq_save(flags); 905 rcu_irq_exit(); 906 local_irq_restore(flags); 907 } 908 909 /* 910 * Exit an RCU extended quiescent state, which can be either the 911 * idle loop or adaptive-tickless usermode execution. 912 * 913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 914 * allow for the possibility of usermode upcalls messing up our count of 915 * interrupt nesting level during the busy period that is just now starting. 916 */ 917 static void rcu_eqs_exit(bool user) 918 { 919 struct rcu_dynticks *rdtp; 920 long oldval; 921 922 lockdep_assert_irqs_disabled(); 923 rdtp = this_cpu_ptr(&rcu_dynticks); 924 oldval = rdtp->dynticks_nesting; 925 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 926 if (oldval) { 927 rdtp->dynticks_nesting++; 928 return; 929 } 930 rcu_dynticks_task_exit(); 931 rcu_dynticks_eqs_exit(); 932 rcu_cleanup_after_idle(); 933 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); 934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 935 WRITE_ONCE(rdtp->dynticks_nesting, 1); 936 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 937 } 938 939 /** 940 * rcu_idle_exit - inform RCU that current CPU is leaving idle 941 * 942 * Exit idle mode, in other words, -enter- the mode in which RCU 943 * read-side critical sections can occur. 944 * 945 * If you add or remove a call to rcu_idle_exit(), be sure to test with 946 * CONFIG_RCU_EQS_DEBUG=y. 947 */ 948 void rcu_idle_exit(void) 949 { 950 unsigned long flags; 951 952 local_irq_save(flags); 953 rcu_eqs_exit(false); 954 local_irq_restore(flags); 955 } 956 957 #ifdef CONFIG_NO_HZ_FULL 958 /** 959 * rcu_user_exit - inform RCU that we are exiting userspace. 960 * 961 * Exit RCU idle mode while entering the kernel because it can 962 * run a RCU read side critical section anytime. 963 * 964 * If you add or remove a call to rcu_user_exit(), be sure to test with 965 * CONFIG_RCU_EQS_DEBUG=y. 966 */ 967 void rcu_user_exit(void) 968 { 969 rcu_eqs_exit(1); 970 } 971 #endif /* CONFIG_NO_HZ_FULL */ 972 973 /** 974 * rcu_nmi_enter - inform RCU of entry to NMI context 975 * 976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 978 * that the CPU is active. This implementation permits nested NMIs, as 979 * long as the nesting level does not overflow an int. (You will probably 980 * run out of stack space first.) 981 * 982 * If you add or remove a call to rcu_nmi_enter(), be sure to test 983 * with CONFIG_RCU_EQS_DEBUG=y. 984 */ 985 void rcu_nmi_enter(void) 986 { 987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 988 long incby = 2; 989 990 /* Complain about underflow. */ 991 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 992 993 /* 994 * If idle from RCU viewpoint, atomically increment ->dynticks 995 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 996 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 997 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 998 * to be in the outermost NMI handler that interrupted an RCU-idle 999 * period (observation due to Andy Lutomirski). 1000 */ 1001 if (rcu_dynticks_curr_cpu_in_eqs()) { 1002 rcu_dynticks_eqs_exit(); 1003 incby = 1; 1004 } 1005 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1006 rdtp->dynticks_nmi_nesting, 1007 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); 1008 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1009 rdtp->dynticks_nmi_nesting + incby); 1010 barrier(); 1011 } 1012 1013 /** 1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1015 * 1016 * Enter an interrupt handler, which might possibly result in exiting 1017 * idle mode, in other words, entering the mode in which read-side critical 1018 * sections can occur. The caller must have disabled interrupts. 1019 * 1020 * Note that the Linux kernel is fully capable of entering an interrupt 1021 * handler that it never exits, for example when doing upcalls to user mode! 1022 * This code assumes that the idle loop never does upcalls to user mode. 1023 * If your architecture's idle loop does do upcalls to user mode (or does 1024 * anything else that results in unbalanced calls to the irq_enter() and 1025 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1026 * But very infrequently and irreproducibly. 1027 * 1028 * Use things like work queues to work around this limitation. 1029 * 1030 * You have been warned. 1031 * 1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1033 * CONFIG_RCU_EQS_DEBUG=y. 1034 */ 1035 void rcu_irq_enter(void) 1036 { 1037 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 1038 1039 lockdep_assert_irqs_disabled(); 1040 if (rdtp->dynticks_nmi_nesting == 0) 1041 rcu_dynticks_task_exit(); 1042 rcu_nmi_enter(); 1043 if (rdtp->dynticks_nmi_nesting == 1) 1044 rcu_cleanup_after_idle(); 1045 } 1046 1047 /* 1048 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1049 * 1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1051 * with CONFIG_RCU_EQS_DEBUG=y. 1052 */ 1053 void rcu_irq_enter_irqson(void) 1054 { 1055 unsigned long flags; 1056 1057 local_irq_save(flags); 1058 rcu_irq_enter(); 1059 local_irq_restore(flags); 1060 } 1061 1062 /** 1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle 1064 * 1065 * Return true if RCU is watching the running CPU, which means that this 1066 * CPU can safely enter RCU read-side critical sections. In other words, 1067 * if the current CPU is in its idle loop and is neither in an interrupt 1068 * or NMI handler, return true. 1069 */ 1070 bool notrace rcu_is_watching(void) 1071 { 1072 bool ret; 1073 1074 preempt_disable_notrace(); 1075 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1076 preempt_enable_notrace(); 1077 return ret; 1078 } 1079 EXPORT_SYMBOL_GPL(rcu_is_watching); 1080 1081 /* 1082 * If a holdout task is actually running, request an urgent quiescent 1083 * state from its CPU. This is unsynchronized, so migrations can cause 1084 * the request to go to the wrong CPU. Which is OK, all that will happen 1085 * is that the CPU's next context switch will be a bit slower and next 1086 * time around this task will generate another request. 1087 */ 1088 void rcu_request_urgent_qs_task(struct task_struct *t) 1089 { 1090 int cpu; 1091 1092 barrier(); 1093 cpu = task_cpu(t); 1094 if (!task_curr(t)) 1095 return; /* This task is not running on that CPU. */ 1096 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); 1097 } 1098 1099 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1100 1101 /* 1102 * Is the current CPU online? Disable preemption to avoid false positives 1103 * that could otherwise happen due to the current CPU number being sampled, 1104 * this task being preempted, its old CPU being taken offline, resuming 1105 * on some other CPU, then determining that its old CPU is now offline. 1106 * It is OK to use RCU on an offline processor during initial boot, hence 1107 * the check for rcu_scheduler_fully_active. Note also that it is OK 1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself 1109 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 1110 * offline to continue to use RCU for one jiffy after marking itself 1111 * offline in the cpu_online_mask. This leniency is necessary given the 1112 * non-atomic nature of the online and offline processing, for example, 1113 * the fact that a CPU enters the scheduler after completing the teardown 1114 * of the CPU. 1115 * 1116 * This is also why RCU internally marks CPUs online during in the 1117 * preparation phase and offline after the CPU has been taken down. 1118 * 1119 * Disable checking if in an NMI handler because we cannot safely report 1120 * errors from NMI handlers anyway. 1121 */ 1122 bool rcu_lockdep_current_cpu_online(void) 1123 { 1124 struct rcu_data *rdp; 1125 struct rcu_node *rnp; 1126 bool ret; 1127 1128 if (in_nmi()) 1129 return true; 1130 preempt_disable(); 1131 rdp = this_cpu_ptr(&rcu_sched_data); 1132 rnp = rdp->mynode; 1133 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || 1134 !rcu_scheduler_fully_active; 1135 preempt_enable(); 1136 return ret; 1137 } 1138 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1139 1140 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1141 1142 /** 1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 1144 * 1145 * If the current CPU is idle or running at a first-level (not nested) 1146 * interrupt from idle, return true. The caller must have at least 1147 * disabled preemption. 1148 */ 1149 static int rcu_is_cpu_rrupt_from_idle(void) 1150 { 1151 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && 1152 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; 1153 } 1154 1155 /* 1156 * We are reporting a quiescent state on behalf of some other CPU, so 1157 * it is our responsibility to check for and handle potential overflow 1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters. 1159 * After all, the CPU might be in deep idle state, and thus executing no 1160 * code whatsoever. 1161 */ 1162 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1163 { 1164 raw_lockdep_assert_held_rcu_node(rnp); 1165 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum)) 1166 WRITE_ONCE(rdp->gpwrap, true); 1167 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum)) 1168 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4; 1169 } 1170 1171 /* 1172 * Snapshot the specified CPU's dynticks counter so that we can later 1173 * credit them with an implicit quiescent state. Return 1 if this CPU 1174 * is in dynticks idle mode, which is an extended quiescent state. 1175 */ 1176 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1177 { 1178 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); 1179 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1181 rcu_gpnum_ovf(rdp->mynode, rdp); 1182 return 1; 1183 } 1184 return 0; 1185 } 1186 1187 /* 1188 * Handler for the irq_work request posted when a grace period has 1189 * gone on for too long, but not yet long enough for an RCU CPU 1190 * stall warning. Set state appropriately, but just complain if 1191 * there is unexpected state on entry. 1192 */ 1193 static void rcu_iw_handler(struct irq_work *iwp) 1194 { 1195 struct rcu_data *rdp; 1196 struct rcu_node *rnp; 1197 1198 rdp = container_of(iwp, struct rcu_data, rcu_iw); 1199 rnp = rdp->mynode; 1200 raw_spin_lock_rcu_node(rnp); 1201 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { 1202 rdp->rcu_iw_gpnum = rnp->gpnum; 1203 rdp->rcu_iw_pending = false; 1204 } 1205 raw_spin_unlock_rcu_node(rnp); 1206 } 1207 1208 /* 1209 * Return true if the specified CPU has passed through a quiescent 1210 * state by virtue of being in or having passed through an dynticks 1211 * idle state since the last call to dyntick_save_progress_counter() 1212 * for this same CPU, or by virtue of having been offline. 1213 */ 1214 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1215 { 1216 unsigned long jtsq; 1217 bool *rnhqp; 1218 bool *ruqp; 1219 struct rcu_node *rnp = rdp->mynode; 1220 1221 /* 1222 * If the CPU passed through or entered a dynticks idle phase with 1223 * no active irq/NMI handlers, then we can safely pretend that the CPU 1224 * already acknowledged the request to pass through a quiescent 1225 * state. Either way, that CPU cannot possibly be in an RCU 1226 * read-side critical section that started before the beginning 1227 * of the current RCU grace period. 1228 */ 1229 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { 1230 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1231 rdp->dynticks_fqs++; 1232 rcu_gpnum_ovf(rnp, rdp); 1233 return 1; 1234 } 1235 1236 /* 1237 * Has this CPU encountered a cond_resched_rcu_qs() since the 1238 * beginning of the grace period? For this to be the case, 1239 * the CPU has to have noticed the current grace period. This 1240 * might not be the case for nohz_full CPUs looping in the kernel. 1241 */ 1242 jtsq = jiffies_till_sched_qs; 1243 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); 1244 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && 1245 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && 1246 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) { 1247 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); 1248 rcu_gpnum_ovf(rnp, rdp); 1249 return 1; 1250 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { 1251 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ 1252 smp_store_release(ruqp, true); 1253 } 1254 1255 /* Check for the CPU being offline. */ 1256 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { 1257 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1258 rdp->offline_fqs++; 1259 rcu_gpnum_ovf(rnp, rdp); 1260 return 1; 1261 } 1262 1263 /* 1264 * A CPU running for an extended time within the kernel can 1265 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1266 * even context-switching back and forth between a pair of 1267 * in-kernel CPU-bound tasks cannot advance grace periods. 1268 * So if the grace period is old enough, make the CPU pay attention. 1269 * Note that the unsynchronized assignments to the per-CPU 1270 * rcu_need_heavy_qs variable are safe. Yes, setting of 1271 * bits can be lost, but they will be set again on the next 1272 * force-quiescent-state pass. So lost bit sets do not result 1273 * in incorrect behavior, merely in a grace period lasting 1274 * a few jiffies longer than it might otherwise. Because 1275 * there are at most four threads involved, and because the 1276 * updates are only once every few jiffies, the probability of 1277 * lossage (and thus of slight grace-period extension) is 1278 * quite low. 1279 */ 1280 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); 1281 if (!READ_ONCE(*rnhqp) && 1282 (time_after(jiffies, rdp->rsp->gp_start + jtsq) || 1283 time_after(jiffies, rdp->rsp->jiffies_resched))) { 1284 WRITE_ONCE(*rnhqp, true); 1285 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1286 smp_store_release(ruqp, true); 1287 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ 1288 } 1289 1290 /* 1291 * If more than halfway to RCU CPU stall-warning time, do a 1292 * resched_cpu() to try to loosen things up a bit. Also check to 1293 * see if the CPU is getting hammered with interrupts, but only 1294 * once per grace period, just to keep the IPIs down to a dull roar. 1295 */ 1296 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { 1297 resched_cpu(rdp->cpu); 1298 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1299 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum && 1300 (rnp->ffmask & rdp->grpmask)) { 1301 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1302 rdp->rcu_iw_pending = true; 1303 rdp->rcu_iw_gpnum = rnp->gpnum; 1304 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1305 } 1306 } 1307 1308 return 0; 1309 } 1310 1311 static void record_gp_stall_check_time(struct rcu_state *rsp) 1312 { 1313 unsigned long j = jiffies; 1314 unsigned long j1; 1315 1316 rsp->gp_start = j; 1317 smp_wmb(); /* Record start time before stall time. */ 1318 j1 = rcu_jiffies_till_stall_check(); 1319 WRITE_ONCE(rsp->jiffies_stall, j + j1); 1320 rsp->jiffies_resched = j + j1 / 2; 1321 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); 1322 } 1323 1324 /* 1325 * Convert a ->gp_state value to a character string. 1326 */ 1327 static const char *gp_state_getname(short gs) 1328 { 1329 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 1330 return "???"; 1331 return gp_state_names[gs]; 1332 } 1333 1334 /* 1335 * Complain about starvation of grace-period kthread. 1336 */ 1337 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1338 { 1339 unsigned long gpa; 1340 unsigned long j; 1341 1342 j = jiffies; 1343 gpa = READ_ONCE(rsp->gp_activity); 1344 if (j - gpa > 2 * HZ) { 1345 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n", 1346 rsp->name, j - gpa, 1347 rsp->gpnum, rsp->completed, 1348 rsp->gp_flags, 1349 gp_state_getname(rsp->gp_state), rsp->gp_state, 1350 rsp->gp_kthread ? rsp->gp_kthread->state : ~0, 1351 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); 1352 if (rsp->gp_kthread) { 1353 pr_err("RCU grace-period kthread stack dump:\n"); 1354 sched_show_task(rsp->gp_kthread); 1355 wake_up_process(rsp->gp_kthread); 1356 } 1357 } 1358 } 1359 1360 /* 1361 * Dump stacks of all tasks running on stalled CPUs. First try using 1362 * NMIs, but fall back to manual remote stack tracing on architectures 1363 * that don't support NMI-based stack dumps. The NMI-triggered stack 1364 * traces are more accurate because they are printed by the target CPU. 1365 */ 1366 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1367 { 1368 int cpu; 1369 unsigned long flags; 1370 struct rcu_node *rnp; 1371 1372 rcu_for_each_leaf_node(rsp, rnp) { 1373 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1374 for_each_leaf_node_possible_cpu(rnp, cpu) 1375 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) 1376 if (!trigger_single_cpu_backtrace(cpu)) 1377 dump_cpu_task(cpu); 1378 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1379 } 1380 } 1381 1382 /* 1383 * If too much time has passed in the current grace period, and if 1384 * so configured, go kick the relevant kthreads. 1385 */ 1386 static void rcu_stall_kick_kthreads(struct rcu_state *rsp) 1387 { 1388 unsigned long j; 1389 1390 if (!rcu_kick_kthreads) 1391 return; 1392 j = READ_ONCE(rsp->jiffies_kick_kthreads); 1393 if (time_after(jiffies, j) && rsp->gp_kthread && 1394 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { 1395 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); 1396 rcu_ftrace_dump(DUMP_ALL); 1397 wake_up_process(rsp->gp_kthread); 1398 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); 1399 } 1400 } 1401 1402 static inline void panic_on_rcu_stall(void) 1403 { 1404 if (sysctl_panic_on_rcu_stall) 1405 panic("RCU Stall\n"); 1406 } 1407 1408 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1409 { 1410 int cpu; 1411 long delta; 1412 unsigned long flags; 1413 unsigned long gpa; 1414 unsigned long j; 1415 int ndetected = 0; 1416 struct rcu_node *rnp = rcu_get_root(rsp); 1417 long totqlen = 0; 1418 1419 /* Kick and suppress, if so configured. */ 1420 rcu_stall_kick_kthreads(rsp); 1421 if (rcu_cpu_stall_suppress) 1422 return; 1423 1424 /* Only let one CPU complain about others per time interval. */ 1425 1426 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1427 delta = jiffies - READ_ONCE(rsp->jiffies_stall); 1428 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1430 return; 1431 } 1432 WRITE_ONCE(rsp->jiffies_stall, 1433 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1434 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1435 1436 /* 1437 * OK, time to rat on our buddy... 1438 * See Documentation/RCU/stallwarn.txt for info on how to debug 1439 * RCU CPU stall warnings. 1440 */ 1441 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1442 rsp->name); 1443 print_cpu_stall_info_begin(); 1444 rcu_for_each_leaf_node(rsp, rnp) { 1445 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1446 ndetected += rcu_print_task_stall(rnp); 1447 if (rnp->qsmask != 0) { 1448 for_each_leaf_node_possible_cpu(rnp, cpu) 1449 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { 1450 print_cpu_stall_info(rsp, cpu); 1451 ndetected++; 1452 } 1453 } 1454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1455 } 1456 1457 print_cpu_stall_info_end(); 1458 for_each_possible_cpu(cpu) 1459 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1460 cpu)->cblist); 1461 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1462 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1463 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1464 if (ndetected) { 1465 rcu_dump_cpu_stacks(rsp); 1466 1467 /* Complain about tasks blocking the grace period. */ 1468 rcu_print_detail_task_stall(rsp); 1469 } else { 1470 if (READ_ONCE(rsp->gpnum) != gpnum || 1471 READ_ONCE(rsp->completed) == gpnum) { 1472 pr_err("INFO: Stall ended before state dump start\n"); 1473 } else { 1474 j = jiffies; 1475 gpa = READ_ONCE(rsp->gp_activity); 1476 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", 1477 rsp->name, j - gpa, j, gpa, 1478 jiffies_till_next_fqs, 1479 rcu_get_root(rsp)->qsmask); 1480 /* In this case, the current CPU might be at fault. */ 1481 sched_show_task(current); 1482 } 1483 } 1484 1485 rcu_check_gp_kthread_starvation(rsp); 1486 1487 panic_on_rcu_stall(); 1488 1489 force_quiescent_state(rsp); /* Kick them all. */ 1490 } 1491 1492 static void print_cpu_stall(struct rcu_state *rsp) 1493 { 1494 int cpu; 1495 unsigned long flags; 1496 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1497 struct rcu_node *rnp = rcu_get_root(rsp); 1498 long totqlen = 0; 1499 1500 /* Kick and suppress, if so configured. */ 1501 rcu_stall_kick_kthreads(rsp); 1502 if (rcu_cpu_stall_suppress) 1503 return; 1504 1505 /* 1506 * OK, time to rat on ourselves... 1507 * See Documentation/RCU/stallwarn.txt for info on how to debug 1508 * RCU CPU stall warnings. 1509 */ 1510 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1511 print_cpu_stall_info_begin(); 1512 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); 1513 print_cpu_stall_info(rsp, smp_processor_id()); 1514 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); 1515 print_cpu_stall_info_end(); 1516 for_each_possible_cpu(cpu) 1517 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, 1518 cpu)->cblist); 1519 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1520 jiffies - rsp->gp_start, 1521 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1522 1523 rcu_check_gp_kthread_starvation(rsp); 1524 1525 rcu_dump_cpu_stacks(rsp); 1526 1527 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1528 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) 1529 WRITE_ONCE(rsp->jiffies_stall, 1530 jiffies + 3 * rcu_jiffies_till_stall_check() + 3); 1531 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1532 1533 panic_on_rcu_stall(); 1534 1535 /* 1536 * Attempt to revive the RCU machinery by forcing a context switch. 1537 * 1538 * A context switch would normally allow the RCU state machine to make 1539 * progress and it could be we're stuck in kernel space without context 1540 * switches for an entirely unreasonable amount of time. 1541 */ 1542 resched_cpu(smp_processor_id()); 1543 } 1544 1545 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1546 { 1547 unsigned long completed; 1548 unsigned long gpnum; 1549 unsigned long gps; 1550 unsigned long j; 1551 unsigned long js; 1552 struct rcu_node *rnp; 1553 1554 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || 1555 !rcu_gp_in_progress(rsp)) 1556 return; 1557 rcu_stall_kick_kthreads(rsp); 1558 j = jiffies; 1559 1560 /* 1561 * Lots of memory barriers to reject false positives. 1562 * 1563 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1564 * then rsp->gp_start, and finally rsp->completed. These values 1565 * are updated in the opposite order with memory barriers (or 1566 * equivalent) during grace-period initialization and cleanup. 1567 * Now, a false positive can occur if we get an new value of 1568 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1569 * the memory barriers, the only way that this can happen is if one 1570 * grace period ends and another starts between these two fetches. 1571 * Detect this by comparing rsp->completed with the previous fetch 1572 * from rsp->gpnum. 1573 * 1574 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1575 * and rsp->gp_start suffice to forestall false positives. 1576 */ 1577 gpnum = READ_ONCE(rsp->gpnum); 1578 smp_rmb(); /* Pick up ->gpnum first... */ 1579 js = READ_ONCE(rsp->jiffies_stall); 1580 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1581 gps = READ_ONCE(rsp->gp_start); 1582 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1583 completed = READ_ONCE(rsp->completed); 1584 if (ULONG_CMP_GE(completed, gpnum) || 1585 ULONG_CMP_LT(j, js) || 1586 ULONG_CMP_GE(gps, js)) 1587 return; /* No stall or GP completed since entering function. */ 1588 rnp = rdp->mynode; 1589 if (rcu_gp_in_progress(rsp) && 1590 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) { 1591 1592 /* We haven't checked in, so go dump stack. */ 1593 print_cpu_stall(rsp); 1594 1595 } else if (rcu_gp_in_progress(rsp) && 1596 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1597 1598 /* They had a few time units to dump stack, so complain. */ 1599 print_other_cpu_stall(rsp, gpnum); 1600 } 1601 } 1602 1603 /** 1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1605 * 1606 * Set the stall-warning timeout way off into the future, thus preventing 1607 * any RCU CPU stall-warning messages from appearing in the current set of 1608 * RCU grace periods. 1609 * 1610 * The caller must disable hard irqs. 1611 */ 1612 void rcu_cpu_stall_reset(void) 1613 { 1614 struct rcu_state *rsp; 1615 1616 for_each_rcu_flavor(rsp) 1617 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); 1618 } 1619 1620 /* 1621 * Determine the value that ->completed will have at the end of the 1622 * next subsequent grace period. This is used to tag callbacks so that 1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1624 * been dyntick-idle for an extended period with callbacks under the 1625 * influence of RCU_FAST_NO_HZ. 1626 * 1627 * The caller must hold rnp->lock with interrupts disabled. 1628 */ 1629 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1630 struct rcu_node *rnp) 1631 { 1632 raw_lockdep_assert_held_rcu_node(rnp); 1633 1634 /* 1635 * If RCU is idle, we just wait for the next grace period. 1636 * But we can only be sure that RCU is idle if we are looking 1637 * at the root rcu_node structure -- otherwise, a new grace 1638 * period might have started, but just not yet gotten around 1639 * to initializing the current non-root rcu_node structure. 1640 */ 1641 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1642 return rnp->completed + 1; 1643 1644 /* 1645 * Otherwise, wait for a possible partial grace period and 1646 * then the subsequent full grace period. 1647 */ 1648 return rnp->completed + 2; 1649 } 1650 1651 /* 1652 * Trace-event helper function for rcu_start_future_gp() and 1653 * rcu_nocb_wait_gp(). 1654 */ 1655 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1656 unsigned long c, const char *s) 1657 { 1658 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1659 rnp->completed, c, rnp->level, 1660 rnp->grplo, rnp->grphi, s); 1661 } 1662 1663 /* 1664 * Start some future grace period, as needed to handle newly arrived 1665 * callbacks. The required future grace periods are recorded in each 1666 * rcu_node structure's ->need_future_gp field. Returns true if there 1667 * is reason to awaken the grace-period kthread. 1668 * 1669 * The caller must hold the specified rcu_node structure's ->lock. 1670 */ 1671 static bool __maybe_unused 1672 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1673 unsigned long *c_out) 1674 { 1675 unsigned long c; 1676 bool ret = false; 1677 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1678 1679 raw_lockdep_assert_held_rcu_node(rnp); 1680 1681 /* 1682 * Pick up grace-period number for new callbacks. If this 1683 * grace period is already marked as needed, return to the caller. 1684 */ 1685 c = rcu_cbs_completed(rdp->rsp, rnp); 1686 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1687 if (rnp->need_future_gp[c & 0x1]) { 1688 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1689 goto out; 1690 } 1691 1692 /* 1693 * If either this rcu_node structure or the root rcu_node structure 1694 * believe that a grace period is in progress, then we must wait 1695 * for the one following, which is in "c". Because our request 1696 * will be noticed at the end of the current grace period, we don't 1697 * need to explicitly start one. We only do the lockless check 1698 * of rnp_root's fields if the current rcu_node structure thinks 1699 * there is no grace period in flight, and because we hold rnp->lock, 1700 * the only possible change is when rnp_root's two fields are 1701 * equal, in which case rnp_root->gpnum might be concurrently 1702 * incremented. But that is OK, as it will just result in our 1703 * doing some extra useless work. 1704 */ 1705 if (rnp->gpnum != rnp->completed || 1706 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) { 1707 rnp->need_future_gp[c & 0x1]++; 1708 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1709 goto out; 1710 } 1711 1712 /* 1713 * There might be no grace period in progress. If we don't already 1714 * hold it, acquire the root rcu_node structure's lock in order to 1715 * start one (if needed). 1716 */ 1717 if (rnp != rnp_root) 1718 raw_spin_lock_rcu_node(rnp_root); 1719 1720 /* 1721 * Get a new grace-period number. If there really is no grace 1722 * period in progress, it will be smaller than the one we obtained 1723 * earlier. Adjust callbacks as needed. 1724 */ 1725 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1726 if (!rcu_is_nocb_cpu(rdp->cpu)) 1727 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1728 1729 /* 1730 * If the needed for the required grace period is already 1731 * recorded, trace and leave. 1732 */ 1733 if (rnp_root->need_future_gp[c & 0x1]) { 1734 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1735 goto unlock_out; 1736 } 1737 1738 /* Record the need for the future grace period. */ 1739 rnp_root->need_future_gp[c & 0x1]++; 1740 1741 /* If a grace period is not already in progress, start one. */ 1742 if (rnp_root->gpnum != rnp_root->completed) { 1743 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1744 } else { 1745 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1746 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1747 } 1748 unlock_out: 1749 if (rnp != rnp_root) 1750 raw_spin_unlock_rcu_node(rnp_root); 1751 out: 1752 if (c_out != NULL) 1753 *c_out = c; 1754 return ret; 1755 } 1756 1757 /* 1758 * Clean up any old requests for the just-ended grace period. Also return 1759 * whether any additional grace periods have been requested. 1760 */ 1761 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1762 { 1763 int c = rnp->completed; 1764 int needmore; 1765 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1766 1767 rnp->need_future_gp[c & 0x1] = 0; 1768 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1769 trace_rcu_future_gp(rnp, rdp, c, 1770 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1771 return needmore; 1772 } 1773 1774 /* 1775 * Awaken the grace-period kthread for the specified flavor of RCU. 1776 * Don't do a self-awaken, and don't bother awakening when there is 1777 * nothing for the grace-period kthread to do (as in several CPUs 1778 * raced to awaken, and we lost), and finally don't try to awaken 1779 * a kthread that has not yet been created. 1780 */ 1781 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1782 { 1783 if (current == rsp->gp_kthread || 1784 !READ_ONCE(rsp->gp_flags) || 1785 !rsp->gp_kthread) 1786 return; 1787 swake_up(&rsp->gp_wq); 1788 } 1789 1790 /* 1791 * If there is room, assign a ->completed number to any callbacks on 1792 * this CPU that have not already been assigned. Also accelerate any 1793 * callbacks that were previously assigned a ->completed number that has 1794 * since proven to be too conservative, which can happen if callbacks get 1795 * assigned a ->completed number while RCU is idle, but with reference to 1796 * a non-root rcu_node structure. This function is idempotent, so it does 1797 * not hurt to call it repeatedly. Returns an flag saying that we should 1798 * awaken the RCU grace-period kthread. 1799 * 1800 * The caller must hold rnp->lock with interrupts disabled. 1801 */ 1802 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1803 struct rcu_data *rdp) 1804 { 1805 bool ret = false; 1806 1807 raw_lockdep_assert_held_rcu_node(rnp); 1808 1809 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1810 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1811 return false; 1812 1813 /* 1814 * Callbacks are often registered with incomplete grace-period 1815 * information. Something about the fact that getting exact 1816 * information requires acquiring a global lock... RCU therefore 1817 * makes a conservative estimate of the grace period number at which 1818 * a given callback will become ready to invoke. The following 1819 * code checks this estimate and improves it when possible, thus 1820 * accelerating callback invocation to an earlier grace-period 1821 * number. 1822 */ 1823 if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp))) 1824 ret = rcu_start_future_gp(rnp, rdp, NULL); 1825 1826 /* Trace depending on how much we were able to accelerate. */ 1827 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1828 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1829 else 1830 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1831 return ret; 1832 } 1833 1834 /* 1835 * Move any callbacks whose grace period has completed to the 1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1838 * sublist. This function is idempotent, so it does not hurt to 1839 * invoke it repeatedly. As long as it is not invoked -too- often... 1840 * Returns true if the RCU grace-period kthread needs to be awakened. 1841 * 1842 * The caller must hold rnp->lock with interrupts disabled. 1843 */ 1844 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1845 struct rcu_data *rdp) 1846 { 1847 raw_lockdep_assert_held_rcu_node(rnp); 1848 1849 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1850 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1851 return false; 1852 1853 /* 1854 * Find all callbacks whose ->completed numbers indicate that they 1855 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1856 */ 1857 rcu_segcblist_advance(&rdp->cblist, rnp->completed); 1858 1859 /* Classify any remaining callbacks. */ 1860 return rcu_accelerate_cbs(rsp, rnp, rdp); 1861 } 1862 1863 /* 1864 * Update CPU-local rcu_data state to record the beginnings and ends of 1865 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1866 * structure corresponding to the current CPU, and must have irqs disabled. 1867 * Returns true if the grace-period kthread needs to be awakened. 1868 */ 1869 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1870 struct rcu_data *rdp) 1871 { 1872 bool ret; 1873 bool need_gp; 1874 1875 raw_lockdep_assert_held_rcu_node(rnp); 1876 1877 /* Handle the ends of any preceding grace periods first. */ 1878 if (rdp->completed == rnp->completed && 1879 !unlikely(READ_ONCE(rdp->gpwrap))) { 1880 1881 /* No grace period end, so just accelerate recent callbacks. */ 1882 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1883 1884 } else { 1885 1886 /* Advance callbacks. */ 1887 ret = rcu_advance_cbs(rsp, rnp, rdp); 1888 1889 /* Remember that we saw this grace-period completion. */ 1890 rdp->completed = rnp->completed; 1891 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1892 } 1893 1894 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) { 1895 /* 1896 * If the current grace period is waiting for this CPU, 1897 * set up to detect a quiescent state, otherwise don't 1898 * go looking for one. 1899 */ 1900 rdp->gpnum = rnp->gpnum; 1901 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1902 need_gp = !!(rnp->qsmask & rdp->grpmask); 1903 rdp->cpu_no_qs.b.norm = need_gp; 1904 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 1905 rdp->core_needs_qs = need_gp; 1906 zero_cpu_stall_ticks(rdp); 1907 WRITE_ONCE(rdp->gpwrap, false); 1908 rcu_gpnum_ovf(rnp, rdp); 1909 } 1910 return ret; 1911 } 1912 1913 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1914 { 1915 unsigned long flags; 1916 bool needwake; 1917 struct rcu_node *rnp; 1918 1919 local_irq_save(flags); 1920 rnp = rdp->mynode; 1921 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) && 1922 rdp->completed == READ_ONCE(rnp->completed) && 1923 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1924 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1925 local_irq_restore(flags); 1926 return; 1927 } 1928 needwake = __note_gp_changes(rsp, rnp, rdp); 1929 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1930 if (needwake) 1931 rcu_gp_kthread_wake(rsp); 1932 } 1933 1934 static void rcu_gp_slow(struct rcu_state *rsp, int delay) 1935 { 1936 if (delay > 0 && 1937 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1938 schedule_timeout_uninterruptible(delay); 1939 } 1940 1941 /* 1942 * Initialize a new grace period. Return false if no grace period required. 1943 */ 1944 static bool rcu_gp_init(struct rcu_state *rsp) 1945 { 1946 unsigned long oldmask; 1947 struct rcu_data *rdp; 1948 struct rcu_node *rnp = rcu_get_root(rsp); 1949 1950 WRITE_ONCE(rsp->gp_activity, jiffies); 1951 raw_spin_lock_irq_rcu_node(rnp); 1952 if (!READ_ONCE(rsp->gp_flags)) { 1953 /* Spurious wakeup, tell caller to go back to sleep. */ 1954 raw_spin_unlock_irq_rcu_node(rnp); 1955 return false; 1956 } 1957 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ 1958 1959 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1960 /* 1961 * Grace period already in progress, don't start another. 1962 * Not supposed to be able to happen. 1963 */ 1964 raw_spin_unlock_irq_rcu_node(rnp); 1965 return false; 1966 } 1967 1968 /* Advance to a new grace period and initialize state. */ 1969 record_gp_stall_check_time(rsp); 1970 /* Record GP times before starting GP, hence smp_store_release(). */ 1971 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1972 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1973 raw_spin_unlock_irq_rcu_node(rnp); 1974 1975 /* 1976 * Apply per-leaf buffered online and offline operations to the 1977 * rcu_node tree. Note that this new grace period need not wait 1978 * for subsequent online CPUs, and that quiescent-state forcing 1979 * will handle subsequent offline CPUs. 1980 */ 1981 rcu_for_each_leaf_node(rsp, rnp) { 1982 rcu_gp_slow(rsp, gp_preinit_delay); 1983 raw_spin_lock_irq_rcu_node(rnp); 1984 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1985 !rnp->wait_blkd_tasks) { 1986 /* Nothing to do on this leaf rcu_node structure. */ 1987 raw_spin_unlock_irq_rcu_node(rnp); 1988 continue; 1989 } 1990 1991 /* Record old state, apply changes to ->qsmaskinit field. */ 1992 oldmask = rnp->qsmaskinit; 1993 rnp->qsmaskinit = rnp->qsmaskinitnext; 1994 1995 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1996 if (!oldmask != !rnp->qsmaskinit) { 1997 if (!oldmask) /* First online CPU for this rcu_node. */ 1998 rcu_init_new_rnp(rnp); 1999 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ 2000 rnp->wait_blkd_tasks = true; 2001 else /* Last offline CPU and can propagate. */ 2002 rcu_cleanup_dead_rnp(rnp); 2003 } 2004 2005 /* 2006 * If all waited-on tasks from prior grace period are 2007 * done, and if all this rcu_node structure's CPUs are 2008 * still offline, propagate up the rcu_node tree and 2009 * clear ->wait_blkd_tasks. Otherwise, if one of this 2010 * rcu_node structure's CPUs has since come back online, 2011 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() 2012 * checks for this, so just call it unconditionally). 2013 */ 2014 if (rnp->wait_blkd_tasks && 2015 (!rcu_preempt_has_tasks(rnp) || 2016 rnp->qsmaskinit)) { 2017 rnp->wait_blkd_tasks = false; 2018 rcu_cleanup_dead_rnp(rnp); 2019 } 2020 2021 raw_spin_unlock_irq_rcu_node(rnp); 2022 } 2023 2024 /* 2025 * Set the quiescent-state-needed bits in all the rcu_node 2026 * structures for all currently online CPUs in breadth-first order, 2027 * starting from the root rcu_node structure, relying on the layout 2028 * of the tree within the rsp->node[] array. Note that other CPUs 2029 * will access only the leaves of the hierarchy, thus seeing that no 2030 * grace period is in progress, at least until the corresponding 2031 * leaf node has been initialized. 2032 * 2033 * The grace period cannot complete until the initialization 2034 * process finishes, because this kthread handles both. 2035 */ 2036 rcu_for_each_node_breadth_first(rsp, rnp) { 2037 rcu_gp_slow(rsp, gp_init_delay); 2038 raw_spin_lock_irq_rcu_node(rnp); 2039 rdp = this_cpu_ptr(rsp->rda); 2040 rcu_preempt_check_blocked_tasks(rnp); 2041 rnp->qsmask = rnp->qsmaskinit; 2042 WRITE_ONCE(rnp->gpnum, rsp->gpnum); 2043 if (WARN_ON_ONCE(rnp->completed != rsp->completed)) 2044 WRITE_ONCE(rnp->completed, rsp->completed); 2045 if (rnp == rdp->mynode) 2046 (void)__note_gp_changes(rsp, rnp, rdp); 2047 rcu_preempt_boost_start_gp(rnp); 2048 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 2049 rnp->level, rnp->grplo, 2050 rnp->grphi, rnp->qsmask); 2051 raw_spin_unlock_irq_rcu_node(rnp); 2052 cond_resched_rcu_qs(); 2053 WRITE_ONCE(rsp->gp_activity, jiffies); 2054 } 2055 2056 return true; 2057 } 2058 2059 /* 2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state 2061 * time. 2062 */ 2063 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) 2064 { 2065 struct rcu_node *rnp = rcu_get_root(rsp); 2066 2067 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 2068 *gfp = READ_ONCE(rsp->gp_flags); 2069 if (*gfp & RCU_GP_FLAG_FQS) 2070 return true; 2071 2072 /* The current grace period has completed. */ 2073 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 2074 return true; 2075 2076 return false; 2077 } 2078 2079 /* 2080 * Do one round of quiescent-state forcing. 2081 */ 2082 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) 2083 { 2084 struct rcu_node *rnp = rcu_get_root(rsp); 2085 2086 WRITE_ONCE(rsp->gp_activity, jiffies); 2087 rsp->n_force_qs++; 2088 if (first_time) { 2089 /* Collect dyntick-idle snapshots. */ 2090 force_qs_rnp(rsp, dyntick_save_progress_counter); 2091 } else { 2092 /* Handle dyntick-idle and offline CPUs. */ 2093 force_qs_rnp(rsp, rcu_implicit_dynticks_qs); 2094 } 2095 /* Clear flag to prevent immediate re-entry. */ 2096 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2097 raw_spin_lock_irq_rcu_node(rnp); 2098 WRITE_ONCE(rsp->gp_flags, 2099 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); 2100 raw_spin_unlock_irq_rcu_node(rnp); 2101 } 2102 } 2103 2104 /* 2105 * Clean up after the old grace period. 2106 */ 2107 static void rcu_gp_cleanup(struct rcu_state *rsp) 2108 { 2109 unsigned long gp_duration; 2110 bool needgp = false; 2111 int nocb = 0; 2112 struct rcu_data *rdp; 2113 struct rcu_node *rnp = rcu_get_root(rsp); 2114 struct swait_queue_head *sq; 2115 2116 WRITE_ONCE(rsp->gp_activity, jiffies); 2117 raw_spin_lock_irq_rcu_node(rnp); 2118 gp_duration = jiffies - rsp->gp_start; 2119 if (gp_duration > rsp->gp_max) 2120 rsp->gp_max = gp_duration; 2121 2122 /* 2123 * We know the grace period is complete, but to everyone else 2124 * it appears to still be ongoing. But it is also the case 2125 * that to everyone else it looks like there is nothing that 2126 * they can do to advance the grace period. It is therefore 2127 * safe for us to drop the lock in order to mark the grace 2128 * period as completed in all of the rcu_node structures. 2129 */ 2130 raw_spin_unlock_irq_rcu_node(rnp); 2131 2132 /* 2133 * Propagate new ->completed value to rcu_node structures so 2134 * that other CPUs don't have to wait until the start of the next 2135 * grace period to process their callbacks. This also avoids 2136 * some nasty RCU grace-period initialization races by forcing 2137 * the end of the current grace period to be completely recorded in 2138 * all of the rcu_node structures before the beginning of the next 2139 * grace period is recorded in any of the rcu_node structures. 2140 */ 2141 rcu_for_each_node_breadth_first(rsp, rnp) { 2142 raw_spin_lock_irq_rcu_node(rnp); 2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)); 2144 WARN_ON_ONCE(rnp->qsmask); 2145 WRITE_ONCE(rnp->completed, rsp->gpnum); 2146 rdp = this_cpu_ptr(rsp->rda); 2147 if (rnp == rdp->mynode) 2148 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 2149 /* smp_mb() provided by prior unlock-lock pair. */ 2150 nocb += rcu_future_gp_cleanup(rsp, rnp); 2151 sq = rcu_nocb_gp_get(rnp); 2152 raw_spin_unlock_irq_rcu_node(rnp); 2153 rcu_nocb_gp_cleanup(sq); 2154 cond_resched_rcu_qs(); 2155 WRITE_ONCE(rsp->gp_activity, jiffies); 2156 rcu_gp_slow(rsp, gp_cleanup_delay); 2157 } 2158 rnp = rcu_get_root(rsp); 2159 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */ 2160 rcu_nocb_gp_set(rnp, nocb); 2161 2162 /* Declare grace period done. */ 2163 WRITE_ONCE(rsp->completed, rsp->gpnum); 2164 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 2165 rsp->gp_state = RCU_GP_IDLE; 2166 rdp = this_cpu_ptr(rsp->rda); 2167 /* Advance CBs to reduce false positives below. */ 2168 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 2169 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 2170 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2171 trace_rcu_grace_period(rsp->name, 2172 READ_ONCE(rsp->gpnum), 2173 TPS("newreq")); 2174 } 2175 raw_spin_unlock_irq_rcu_node(rnp); 2176 } 2177 2178 /* 2179 * Body of kthread that handles grace periods. 2180 */ 2181 static int __noreturn rcu_gp_kthread(void *arg) 2182 { 2183 bool first_gp_fqs; 2184 int gf; 2185 unsigned long j; 2186 int ret; 2187 struct rcu_state *rsp = arg; 2188 struct rcu_node *rnp = rcu_get_root(rsp); 2189 2190 rcu_bind_gp_kthread(); 2191 for (;;) { 2192 2193 /* Handle grace-period start. */ 2194 for (;;) { 2195 trace_rcu_grace_period(rsp->name, 2196 READ_ONCE(rsp->gpnum), 2197 TPS("reqwait")); 2198 rsp->gp_state = RCU_GP_WAIT_GPS; 2199 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & 2200 RCU_GP_FLAG_INIT); 2201 rsp->gp_state = RCU_GP_DONE_GPS; 2202 /* Locking provides needed memory barrier. */ 2203 if (rcu_gp_init(rsp)) 2204 break; 2205 cond_resched_rcu_qs(); 2206 WRITE_ONCE(rsp->gp_activity, jiffies); 2207 WARN_ON(signal_pending(current)); 2208 trace_rcu_grace_period(rsp->name, 2209 READ_ONCE(rsp->gpnum), 2210 TPS("reqwaitsig")); 2211 } 2212 2213 /* Handle quiescent-state forcing. */ 2214 first_gp_fqs = true; 2215 j = jiffies_till_first_fqs; 2216 if (j > HZ) { 2217 j = HZ; 2218 jiffies_till_first_fqs = HZ; 2219 } 2220 ret = 0; 2221 for (;;) { 2222 if (!ret) { 2223 rsp->jiffies_force_qs = jiffies + j; 2224 WRITE_ONCE(rsp->jiffies_kick_kthreads, 2225 jiffies + 3 * j); 2226 } 2227 trace_rcu_grace_period(rsp->name, 2228 READ_ONCE(rsp->gpnum), 2229 TPS("fqswait")); 2230 rsp->gp_state = RCU_GP_WAIT_FQS; 2231 ret = swait_event_idle_timeout(rsp->gp_wq, 2232 rcu_gp_fqs_check_wake(rsp, &gf), j); 2233 rsp->gp_state = RCU_GP_DOING_FQS; 2234 /* Locking provides needed memory barriers. */ 2235 /* If grace period done, leave loop. */ 2236 if (!READ_ONCE(rnp->qsmask) && 2237 !rcu_preempt_blocked_readers_cgp(rnp)) 2238 break; 2239 /* If time for quiescent-state forcing, do it. */ 2240 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 2241 (gf & RCU_GP_FLAG_FQS)) { 2242 trace_rcu_grace_period(rsp->name, 2243 READ_ONCE(rsp->gpnum), 2244 TPS("fqsstart")); 2245 rcu_gp_fqs(rsp, first_gp_fqs); 2246 first_gp_fqs = false; 2247 trace_rcu_grace_period(rsp->name, 2248 READ_ONCE(rsp->gpnum), 2249 TPS("fqsend")); 2250 cond_resched_rcu_qs(); 2251 WRITE_ONCE(rsp->gp_activity, jiffies); 2252 ret = 0; /* Force full wait till next FQS. */ 2253 j = jiffies_till_next_fqs; 2254 if (j > HZ) { 2255 j = HZ; 2256 jiffies_till_next_fqs = HZ; 2257 } else if (j < 1) { 2258 j = 1; 2259 jiffies_till_next_fqs = 1; 2260 } 2261 } else { 2262 /* Deal with stray signal. */ 2263 cond_resched_rcu_qs(); 2264 WRITE_ONCE(rsp->gp_activity, jiffies); 2265 WARN_ON(signal_pending(current)); 2266 trace_rcu_grace_period(rsp->name, 2267 READ_ONCE(rsp->gpnum), 2268 TPS("fqswaitsig")); 2269 ret = 1; /* Keep old FQS timing. */ 2270 j = jiffies; 2271 if (time_after(jiffies, rsp->jiffies_force_qs)) 2272 j = 1; 2273 else 2274 j = rsp->jiffies_force_qs - j; 2275 } 2276 } 2277 2278 /* Handle grace-period end. */ 2279 rsp->gp_state = RCU_GP_CLEANUP; 2280 rcu_gp_cleanup(rsp); 2281 rsp->gp_state = RCU_GP_CLEANED; 2282 } 2283 } 2284 2285 /* 2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy 2287 * in preparation for detecting the next grace period. The caller must hold 2288 * the root node's ->lock and hard irqs must be disabled. 2289 * 2290 * Note that it is legal for a dying CPU (which is marked as offline) to 2291 * invoke this function. This can happen when the dying CPU reports its 2292 * quiescent state. 2293 * 2294 * Returns true if the grace-period kthread must be awakened. 2295 */ 2296 static bool 2297 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 2298 struct rcu_data *rdp) 2299 { 2300 raw_lockdep_assert_held_rcu_node(rnp); 2301 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 2302 /* 2303 * Either we have not yet spawned the grace-period 2304 * task, this CPU does not need another grace period, 2305 * or a grace period is already in progress. 2306 * Either way, don't start a new grace period. 2307 */ 2308 return false; 2309 } 2310 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); 2311 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), 2312 TPS("newreq")); 2313 2314 /* 2315 * We can't do wakeups while holding the rnp->lock, as that 2316 * could cause possible deadlocks with the rq->lock. Defer 2317 * the wakeup to our caller. 2318 */ 2319 return true; 2320 } 2321 2322 /* 2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2324 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2325 * is invoked indirectly from rcu_advance_cbs(), which would result in 2326 * endless recursion -- or would do so if it wasn't for the self-deadlock 2327 * that is encountered beforehand. 2328 * 2329 * Returns true if the grace-period kthread needs to be awakened. 2330 */ 2331 static bool rcu_start_gp(struct rcu_state *rsp) 2332 { 2333 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2334 struct rcu_node *rnp = rcu_get_root(rsp); 2335 bool ret = false; 2336 2337 /* 2338 * If there is no grace period in progress right now, any 2339 * callbacks we have up to this point will be satisfied by the 2340 * next grace period. Also, advancing the callbacks reduces the 2341 * probability of false positives from cpu_needs_another_gp() 2342 * resulting in pointless grace periods. So, advance callbacks 2343 * then start the grace period! 2344 */ 2345 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2346 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2347 return ret; 2348 } 2349 2350 /* 2351 * Report a full set of quiescent states to the specified rcu_state data 2352 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period 2353 * kthread if another grace period is required. Whether we wake 2354 * the grace-period kthread or it awakens itself for the next round 2355 * of quiescent-state forcing, that kthread will clean up after the 2356 * just-completed grace period. Note that the caller must hold rnp->lock, 2357 * which is released before return. 2358 */ 2359 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2360 __releases(rcu_get_root(rsp)->lock) 2361 { 2362 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); 2363 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2364 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2365 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2366 rcu_gp_kthread_wake(rsp); 2367 } 2368 2369 /* 2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2371 * Allows quiescent states for a group of CPUs to be reported at one go 2372 * to the specified rcu_node structure, though all the CPUs in the group 2373 * must be represented by the same rcu_node structure (which need not be a 2374 * leaf rcu_node structure, though it often will be). The gps parameter 2375 * is the grace-period snapshot, which means that the quiescent states 2376 * are valid only if rnp->gpnum is equal to gps. That structure's lock 2377 * must be held upon entry, and it is released before return. 2378 */ 2379 static void 2380 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2381 struct rcu_node *rnp, unsigned long gps, unsigned long flags) 2382 __releases(rnp->lock) 2383 { 2384 unsigned long oldmask = 0; 2385 struct rcu_node *rnp_c; 2386 2387 raw_lockdep_assert_held_rcu_node(rnp); 2388 2389 /* Walk up the rcu_node hierarchy. */ 2390 for (;;) { 2391 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) { 2392 2393 /* 2394 * Our bit has already been cleared, or the 2395 * relevant grace period is already over, so done. 2396 */ 2397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2398 return; 2399 } 2400 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2401 WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 && 2402 rcu_preempt_blocked_readers_cgp(rnp)); 2403 rnp->qsmask &= ~mask; 2404 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2405 mask, rnp->qsmask, rnp->level, 2406 rnp->grplo, rnp->grphi, 2407 !!rnp->gp_tasks); 2408 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2409 2410 /* Other bits still set at this level, so done. */ 2411 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2412 return; 2413 } 2414 mask = rnp->grpmask; 2415 if (rnp->parent == NULL) { 2416 2417 /* No more levels. Exit loop holding root lock. */ 2418 2419 break; 2420 } 2421 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2422 rnp_c = rnp; 2423 rnp = rnp->parent; 2424 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2425 oldmask = rnp_c->qsmask; 2426 } 2427 2428 /* 2429 * Get here if we are the last CPU to pass through a quiescent 2430 * state for this grace period. Invoke rcu_report_qs_rsp() 2431 * to clean up and start the next grace period if one is needed. 2432 */ 2433 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2434 } 2435 2436 /* 2437 * Record a quiescent state for all tasks that were previously queued 2438 * on the specified rcu_node structure and that were blocking the current 2439 * RCU grace period. The caller must hold the specified rnp->lock with 2440 * irqs disabled, and this lock is released upon return, but irqs remain 2441 * disabled. 2442 */ 2443 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, 2444 struct rcu_node *rnp, unsigned long flags) 2445 __releases(rnp->lock) 2446 { 2447 unsigned long gps; 2448 unsigned long mask; 2449 struct rcu_node *rnp_p; 2450 2451 raw_lockdep_assert_held_rcu_node(rnp); 2452 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || 2453 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2454 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2455 return; /* Still need more quiescent states! */ 2456 } 2457 2458 rnp_p = rnp->parent; 2459 if (rnp_p == NULL) { 2460 /* 2461 * Only one rcu_node structure in the tree, so don't 2462 * try to report up to its nonexistent parent! 2463 */ 2464 rcu_report_qs_rsp(rsp, flags); 2465 return; 2466 } 2467 2468 /* Report up the rest of the hierarchy, tracking current ->gpnum. */ 2469 gps = rnp->gpnum; 2470 mask = rnp->grpmask; 2471 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2472 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2473 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); 2474 } 2475 2476 /* 2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2478 * structure. This must be called from the specified CPU. 2479 */ 2480 static void 2481 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2482 { 2483 unsigned long flags; 2484 unsigned long mask; 2485 bool needwake; 2486 struct rcu_node *rnp; 2487 2488 rnp = rdp->mynode; 2489 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2490 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum || 2491 rnp->completed == rnp->gpnum || rdp->gpwrap) { 2492 2493 /* 2494 * The grace period in which this quiescent state was 2495 * recorded has ended, so don't report it upwards. 2496 * We will instead need a new quiescent state that lies 2497 * within the current grace period. 2498 */ 2499 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2500 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); 2501 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2502 return; 2503 } 2504 mask = rdp->grpmask; 2505 if ((rnp->qsmask & mask) == 0) { 2506 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2507 } else { 2508 rdp->core_needs_qs = false; 2509 2510 /* 2511 * This GP can't end until cpu checks in, so all of our 2512 * callbacks can be processed during the next GP. 2513 */ 2514 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2515 2516 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2517 /* ^^^ Released rnp->lock */ 2518 if (needwake) 2519 rcu_gp_kthread_wake(rsp); 2520 } 2521 } 2522 2523 /* 2524 * Check to see if there is a new grace period of which this CPU 2525 * is not yet aware, and if so, set up local rcu_data state for it. 2526 * Otherwise, see if this CPU has just passed through its first 2527 * quiescent state for this grace period, and record that fact if so. 2528 */ 2529 static void 2530 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2531 { 2532 /* Check for grace-period ends and beginnings. */ 2533 note_gp_changes(rsp, rdp); 2534 2535 /* 2536 * Does this CPU still need to do its part for current grace period? 2537 * If no, return and let the other CPUs do their part as well. 2538 */ 2539 if (!rdp->core_needs_qs) 2540 return; 2541 2542 /* 2543 * Was there a quiescent state since the beginning of the grace 2544 * period? If no, then exit and wait for the next call. 2545 */ 2546 if (rdp->cpu_no_qs.b.norm) 2547 return; 2548 2549 /* 2550 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2551 * judge of that). 2552 */ 2553 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2554 } 2555 2556 /* 2557 * Trace the fact that this CPU is going offline. 2558 */ 2559 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2560 { 2561 RCU_TRACE(unsigned long mask;) 2562 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) 2563 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) 2564 2565 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2566 return; 2567 2568 RCU_TRACE(mask = rdp->grpmask;) 2569 trace_rcu_grace_period(rsp->name, 2570 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2571 TPS("cpuofl")); 2572 } 2573 2574 /* 2575 * All CPUs for the specified rcu_node structure have gone offline, 2576 * and all tasks that were preempted within an RCU read-side critical 2577 * section while running on one of those CPUs have since exited their RCU 2578 * read-side critical section. Some other CPU is reporting this fact with 2579 * the specified rcu_node structure's ->lock held and interrupts disabled. 2580 * This function therefore goes up the tree of rcu_node structures, 2581 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2582 * the leaf rcu_node structure's ->qsmaskinit field has already been 2583 * updated 2584 * 2585 * This function does check that the specified rcu_node structure has 2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2587 * prematurely. That said, invoking it after the fact will cost you 2588 * a needless lock acquisition. So once it has done its work, don't 2589 * invoke it again. 2590 */ 2591 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2592 { 2593 long mask; 2594 struct rcu_node *rnp = rnp_leaf; 2595 2596 raw_lockdep_assert_held_rcu_node(rnp); 2597 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2598 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2599 return; 2600 for (;;) { 2601 mask = rnp->grpmask; 2602 rnp = rnp->parent; 2603 if (!rnp) 2604 break; 2605 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2606 rnp->qsmaskinit &= ~mask; 2607 rnp->qsmask &= ~mask; 2608 if (rnp->qsmaskinit) { 2609 raw_spin_unlock_rcu_node(rnp); 2610 /* irqs remain disabled. */ 2611 return; 2612 } 2613 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2614 } 2615 } 2616 2617 /* 2618 * The CPU has been completely removed, and some other CPU is reporting 2619 * this fact from process context. Do the remainder of the cleanup. 2620 * There can only be one CPU hotplug operation at a time, so no need for 2621 * explicit locking. 2622 */ 2623 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2624 { 2625 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2626 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2627 2628 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2629 return; 2630 2631 /* Adjust any no-longer-needed kthreads. */ 2632 rcu_boost_kthread_setaffinity(rnp, -1); 2633 } 2634 2635 /* 2636 * Invoke any RCU callbacks that have made it to the end of their grace 2637 * period. Thottle as specified by rdp->blimit. 2638 */ 2639 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2640 { 2641 unsigned long flags; 2642 struct rcu_head *rhp; 2643 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2644 long bl, count; 2645 2646 /* If no callbacks are ready, just return. */ 2647 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2648 trace_rcu_batch_start(rsp->name, 2649 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2650 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2651 trace_rcu_batch_end(rsp->name, 0, 2652 !rcu_segcblist_empty(&rdp->cblist), 2653 need_resched(), is_idle_task(current), 2654 rcu_is_callbacks_kthread()); 2655 return; 2656 } 2657 2658 /* 2659 * Extract the list of ready callbacks, disabling to prevent 2660 * races with call_rcu() from interrupt handlers. Leave the 2661 * callback counts, as rcu_barrier() needs to be conservative. 2662 */ 2663 local_irq_save(flags); 2664 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2665 bl = rdp->blimit; 2666 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2667 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2668 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2669 local_irq_restore(flags); 2670 2671 /* Invoke callbacks. */ 2672 rhp = rcu_cblist_dequeue(&rcl); 2673 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2674 debug_rcu_head_unqueue(rhp); 2675 if (__rcu_reclaim(rsp->name, rhp)) 2676 rcu_cblist_dequeued_lazy(&rcl); 2677 /* 2678 * Stop only if limit reached and CPU has something to do. 2679 * Note: The rcl structure counts down from zero. 2680 */ 2681 if (-rcl.len >= bl && 2682 (need_resched() || 2683 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2684 break; 2685 } 2686 2687 local_irq_save(flags); 2688 count = -rcl.len; 2689 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), 2690 is_idle_task(current), rcu_is_callbacks_kthread()); 2691 2692 /* Update counts and requeue any remaining callbacks. */ 2693 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2694 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2695 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2696 2697 /* Reinstate batch limit if we have worked down the excess. */ 2698 count = rcu_segcblist_n_cbs(&rdp->cblist); 2699 if (rdp->blimit == LONG_MAX && count <= qlowmark) 2700 rdp->blimit = blimit; 2701 2702 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2703 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2704 rdp->qlen_last_fqs_check = 0; 2705 rdp->n_force_qs_snap = rsp->n_force_qs; 2706 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2707 rdp->qlen_last_fqs_check = count; 2708 2709 /* 2710 * The following usually indicates a double call_rcu(). To track 2711 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2712 */ 2713 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); 2714 2715 local_irq_restore(flags); 2716 2717 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2718 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2719 invoke_rcu_core(); 2720 } 2721 2722 /* 2723 * Check to see if this CPU is in a non-context-switch quiescent state 2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2725 * Also schedule RCU core processing. 2726 * 2727 * This function must be called from hardirq context. It is normally 2728 * invoked from the scheduling-clock interrupt. 2729 */ 2730 void rcu_check_callbacks(int user) 2731 { 2732 trace_rcu_utilization(TPS("Start scheduler-tick")); 2733 increment_cpu_stall_ticks(); 2734 if (user || rcu_is_cpu_rrupt_from_idle()) { 2735 2736 /* 2737 * Get here if this CPU took its interrupt from user 2738 * mode or from the idle loop, and if this is not a 2739 * nested interrupt. In this case, the CPU is in 2740 * a quiescent state, so note it. 2741 * 2742 * No memory barrier is required here because both 2743 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2744 * variables that other CPUs neither access nor modify, 2745 * at least not while the corresponding CPU is online. 2746 */ 2747 2748 rcu_sched_qs(); 2749 rcu_bh_qs(); 2750 2751 } else if (!in_softirq()) { 2752 2753 /* 2754 * Get here if this CPU did not take its interrupt from 2755 * softirq, in other words, if it is not interrupting 2756 * a rcu_bh read-side critical section. This is an _bh 2757 * critical section, so note it. 2758 */ 2759 2760 rcu_bh_qs(); 2761 } 2762 rcu_preempt_check_callbacks(); 2763 if (rcu_pending()) 2764 invoke_rcu_core(); 2765 if (user) 2766 rcu_note_voluntary_context_switch(current); 2767 trace_rcu_utilization(TPS("End scheduler-tick")); 2768 } 2769 2770 /* 2771 * Scan the leaf rcu_node structures, processing dyntick state for any that 2772 * have not yet encountered a quiescent state, using the function specified. 2773 * Also initiate boosting for any threads blocked on the root rcu_node. 2774 * 2775 * The caller must have suppressed start of new grace periods. 2776 */ 2777 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) 2778 { 2779 int cpu; 2780 unsigned long flags; 2781 unsigned long mask; 2782 struct rcu_node *rnp; 2783 2784 rcu_for_each_leaf_node(rsp, rnp) { 2785 cond_resched_rcu_qs(); 2786 mask = 0; 2787 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2788 if (rnp->qsmask == 0) { 2789 if (rcu_state_p == &rcu_sched_state || 2790 rsp != rcu_state_p || 2791 rcu_preempt_blocked_readers_cgp(rnp)) { 2792 /* 2793 * No point in scanning bits because they 2794 * are all zero. But we might need to 2795 * priority-boost blocked readers. 2796 */ 2797 rcu_initiate_boost(rnp, flags); 2798 /* rcu_initiate_boost() releases rnp->lock */ 2799 continue; 2800 } 2801 if (rnp->parent && 2802 (rnp->parent->qsmask & rnp->grpmask)) { 2803 /* 2804 * Race between grace-period 2805 * initialization and task exiting RCU 2806 * read-side critical section: Report. 2807 */ 2808 rcu_report_unblock_qs_rnp(rsp, rnp, flags); 2809 /* rcu_report_unblock_qs_rnp() rlses ->lock */ 2810 continue; 2811 } 2812 } 2813 for_each_leaf_node_possible_cpu(rnp, cpu) { 2814 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2815 if ((rnp->qsmask & bit) != 0) { 2816 if (f(per_cpu_ptr(rsp->rda, cpu))) 2817 mask |= bit; 2818 } 2819 } 2820 if (mask != 0) { 2821 /* Idle/offline CPUs, report (releases rnp->lock. */ 2822 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags); 2823 } else { 2824 /* Nothing to do here, so just drop the lock. */ 2825 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2826 } 2827 } 2828 } 2829 2830 /* 2831 * Force quiescent states on reluctant CPUs, and also detect which 2832 * CPUs are in dyntick-idle mode. 2833 */ 2834 static void force_quiescent_state(struct rcu_state *rsp) 2835 { 2836 unsigned long flags; 2837 bool ret; 2838 struct rcu_node *rnp; 2839 struct rcu_node *rnp_old = NULL; 2840 2841 /* Funnel through hierarchy to reduce memory contention. */ 2842 rnp = __this_cpu_read(rsp->rda->mynode); 2843 for (; rnp != NULL; rnp = rnp->parent) { 2844 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2845 !raw_spin_trylock(&rnp->fqslock); 2846 if (rnp_old != NULL) 2847 raw_spin_unlock(&rnp_old->fqslock); 2848 if (ret) 2849 return; 2850 rnp_old = rnp; 2851 } 2852 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2853 2854 /* Reached the root of the rcu_node tree, acquire lock. */ 2855 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2856 raw_spin_unlock(&rnp_old->fqslock); 2857 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2858 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2859 return; /* Someone beat us to it. */ 2860 } 2861 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); 2862 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2863 rcu_gp_kthread_wake(rsp); 2864 } 2865 2866 /* 2867 * This does the RCU core processing work for the specified rcu_state 2868 * and rcu_data structures. This may be called only from the CPU to 2869 * whom the rdp belongs. 2870 */ 2871 static void 2872 __rcu_process_callbacks(struct rcu_state *rsp) 2873 { 2874 unsigned long flags; 2875 bool needwake; 2876 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2877 2878 WARN_ON_ONCE(!rdp->beenonline); 2879 2880 /* Update RCU state based on any recent quiescent states. */ 2881 rcu_check_quiescent_state(rsp, rdp); 2882 2883 /* Does this CPU require a not-yet-started grace period? */ 2884 local_irq_save(flags); 2885 if (cpu_needs_another_gp(rsp, rdp)) { 2886 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */ 2887 needwake = rcu_start_gp(rsp); 2888 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); 2889 if (needwake) 2890 rcu_gp_kthread_wake(rsp); 2891 } else { 2892 local_irq_restore(flags); 2893 } 2894 2895 /* If there are callbacks ready, invoke them. */ 2896 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2897 invoke_rcu_callbacks(rsp, rdp); 2898 2899 /* Do any needed deferred wakeups of rcuo kthreads. */ 2900 do_nocb_deferred_wakeup(rdp); 2901 } 2902 2903 /* 2904 * Do RCU core processing for the current CPU. 2905 */ 2906 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) 2907 { 2908 struct rcu_state *rsp; 2909 2910 if (cpu_is_offline(smp_processor_id())) 2911 return; 2912 trace_rcu_utilization(TPS("Start RCU core")); 2913 for_each_rcu_flavor(rsp) 2914 __rcu_process_callbacks(rsp); 2915 trace_rcu_utilization(TPS("End RCU core")); 2916 } 2917 2918 /* 2919 * Schedule RCU callback invocation. If the specified type of RCU 2920 * does not support RCU priority boosting, just do a direct call, 2921 * otherwise wake up the per-CPU kernel kthread. Note that because we 2922 * are running on the current CPU with softirqs disabled, the 2923 * rcu_cpu_kthread_task cannot disappear out from under us. 2924 */ 2925 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2926 { 2927 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) 2928 return; 2929 if (likely(!rsp->boost)) { 2930 rcu_do_batch(rsp, rdp); 2931 return; 2932 } 2933 invoke_rcu_callbacks_kthread(); 2934 } 2935 2936 static void invoke_rcu_core(void) 2937 { 2938 if (cpu_online(smp_processor_id())) 2939 raise_softirq(RCU_SOFTIRQ); 2940 } 2941 2942 /* 2943 * Handle any core-RCU processing required by a call_rcu() invocation. 2944 */ 2945 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2946 struct rcu_head *head, unsigned long flags) 2947 { 2948 bool needwake; 2949 2950 /* 2951 * If called from an extended quiescent state, invoke the RCU 2952 * core in order to force a re-evaluation of RCU's idleness. 2953 */ 2954 if (!rcu_is_watching()) 2955 invoke_rcu_core(); 2956 2957 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2958 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2959 return; 2960 2961 /* 2962 * Force the grace period if too many callbacks or too long waiting. 2963 * Enforce hysteresis, and don't invoke force_quiescent_state() 2964 * if some other CPU has recently done so. Also, don't bother 2965 * invoking force_quiescent_state() if the newly enqueued callback 2966 * is the only one waiting for a grace period to complete. 2967 */ 2968 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2969 rdp->qlen_last_fqs_check + qhimark)) { 2970 2971 /* Are we ignoring a completed grace period? */ 2972 note_gp_changes(rsp, rdp); 2973 2974 /* Start a new grace period if one not already started. */ 2975 if (!rcu_gp_in_progress(rsp)) { 2976 struct rcu_node *rnp_root = rcu_get_root(rsp); 2977 2978 raw_spin_lock_rcu_node(rnp_root); 2979 needwake = rcu_start_gp(rsp); 2980 raw_spin_unlock_rcu_node(rnp_root); 2981 if (needwake) 2982 rcu_gp_kthread_wake(rsp); 2983 } else { 2984 /* Give the grace period a kick. */ 2985 rdp->blimit = LONG_MAX; 2986 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2987 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2988 force_quiescent_state(rsp); 2989 rdp->n_force_qs_snap = rsp->n_force_qs; 2990 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2991 } 2992 } 2993 } 2994 2995 /* 2996 * RCU callback function to leak a callback. 2997 */ 2998 static void rcu_leak_callback(struct rcu_head *rhp) 2999 { 3000 } 3001 3002 /* 3003 * Helper function for call_rcu() and friends. The cpu argument will 3004 * normally be -1, indicating "currently running CPU". It may specify 3005 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 3006 * is expected to specify a CPU. 3007 */ 3008 static void 3009 __call_rcu(struct rcu_head *head, rcu_callback_t func, 3010 struct rcu_state *rsp, int cpu, bool lazy) 3011 { 3012 unsigned long flags; 3013 struct rcu_data *rdp; 3014 3015 /* Misaligned rcu_head! */ 3016 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3017 3018 if (debug_rcu_head_queue(head)) { 3019 /* 3020 * Probable double call_rcu(), so leak the callback. 3021 * Use rcu:rcu_callback trace event to find the previous 3022 * time callback was passed to __call_rcu(). 3023 */ 3024 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", 3025 head, head->func); 3026 WRITE_ONCE(head->func, rcu_leak_callback); 3027 return; 3028 } 3029 head->func = func; 3030 head->next = NULL; 3031 local_irq_save(flags); 3032 rdp = this_cpu_ptr(rsp->rda); 3033 3034 /* Add the callback to our list. */ 3035 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { 3036 int offline; 3037 3038 if (cpu != -1) 3039 rdp = per_cpu_ptr(rsp->rda, cpu); 3040 if (likely(rdp->mynode)) { 3041 /* Post-boot, so this should be for a no-CBs CPU. */ 3042 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 3043 WARN_ON_ONCE(offline); 3044 /* Offline CPU, _call_rcu() illegal, leak callback. */ 3045 local_irq_restore(flags); 3046 return; 3047 } 3048 /* 3049 * Very early boot, before rcu_init(). Initialize if needed 3050 * and then drop through to queue the callback. 3051 */ 3052 BUG_ON(cpu != -1); 3053 WARN_ON_ONCE(!rcu_is_watching()); 3054 if (rcu_segcblist_empty(&rdp->cblist)) 3055 rcu_segcblist_init(&rdp->cblist); 3056 } 3057 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 3058 if (!lazy) 3059 rcu_idle_count_callbacks_posted(); 3060 3061 if (__is_kfree_rcu_offset((unsigned long)func)) 3062 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 3063 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3064 rcu_segcblist_n_cbs(&rdp->cblist)); 3065 else 3066 trace_rcu_callback(rsp->name, head, 3067 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 3068 rcu_segcblist_n_cbs(&rdp->cblist)); 3069 3070 /* Go handle any RCU core processing required. */ 3071 __call_rcu_core(rsp, rdp, head, flags); 3072 local_irq_restore(flags); 3073 } 3074 3075 /** 3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 3077 * @head: structure to be used for queueing the RCU updates. 3078 * @func: actual callback function to be invoked after the grace period 3079 * 3080 * The callback function will be invoked some time after a full grace 3081 * period elapses, in other words after all currently executing RCU 3082 * read-side critical sections have completed. call_rcu_sched() assumes 3083 * that the read-side critical sections end on enabling of preemption 3084 * or on voluntary preemption. 3085 * RCU read-side critical sections are delimited by: 3086 * 3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR 3088 * - anything that disables preemption. 3089 * 3090 * These may be nested. 3091 * 3092 * See the description of call_rcu() for more detailed information on 3093 * memory ordering guarantees. 3094 */ 3095 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) 3096 { 3097 __call_rcu(head, func, &rcu_sched_state, -1, 0); 3098 } 3099 EXPORT_SYMBOL_GPL(call_rcu_sched); 3100 3101 /** 3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 3103 * @head: structure to be used for queueing the RCU updates. 3104 * @func: actual callback function to be invoked after the grace period 3105 * 3106 * The callback function will be invoked some time after a full grace 3107 * period elapses, in other words after all currently executing RCU 3108 * read-side critical sections have completed. call_rcu_bh() assumes 3109 * that the read-side critical sections end on completion of a softirq 3110 * handler. This means that read-side critical sections in process 3111 * context must not be interrupted by softirqs. This interface is to be 3112 * used when most of the read-side critical sections are in softirq context. 3113 * RCU read-side critical sections are delimited by: 3114 * 3115 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR 3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 3117 * 3118 * These may be nested. 3119 * 3120 * See the description of call_rcu() for more detailed information on 3121 * memory ordering guarantees. 3122 */ 3123 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) 3124 { 3125 __call_rcu(head, func, &rcu_bh_state, -1, 0); 3126 } 3127 EXPORT_SYMBOL_GPL(call_rcu_bh); 3128 3129 /* 3130 * Queue an RCU callback for lazy invocation after a grace period. 3131 * This will likely be later named something like "call_rcu_lazy()", 3132 * but this change will require some way of tagging the lazy RCU 3133 * callbacks in the list of pending callbacks. Until then, this 3134 * function may only be called from __kfree_rcu(). 3135 */ 3136 void kfree_call_rcu(struct rcu_head *head, 3137 rcu_callback_t func) 3138 { 3139 __call_rcu(head, func, rcu_state_p, -1, 1); 3140 } 3141 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3142 3143 /* 3144 * Because a context switch is a grace period for RCU-sched and RCU-bh, 3145 * any blocking grace-period wait automatically implies a grace period 3146 * if there is only one CPU online at any point time during execution 3147 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 3148 * occasionally incorrectly indicate that there are multiple CPUs online 3149 * when there was in fact only one the whole time, as this just adds 3150 * some overhead: RCU still operates correctly. 3151 */ 3152 static inline int rcu_blocking_is_gp(void) 3153 { 3154 int ret; 3155 3156 might_sleep(); /* Check for RCU read-side critical section. */ 3157 preempt_disable(); 3158 ret = num_online_cpus() <= 1; 3159 preempt_enable(); 3160 return ret; 3161 } 3162 3163 /** 3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 3165 * 3166 * Control will return to the caller some time after a full rcu-sched 3167 * grace period has elapsed, in other words after all currently executing 3168 * rcu-sched read-side critical sections have completed. These read-side 3169 * critical sections are delimited by rcu_read_lock_sched() and 3170 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 3171 * local_irq_disable(), and so on may be used in place of 3172 * rcu_read_lock_sched(). 3173 * 3174 * This means that all preempt_disable code sequences, including NMI and 3175 * non-threaded hardware-interrupt handlers, in progress on entry will 3176 * have completed before this primitive returns. However, this does not 3177 * guarantee that softirq handlers will have completed, since in some 3178 * kernels, these handlers can run in process context, and can block. 3179 * 3180 * Note that this guarantee implies further memory-ordering guarantees. 3181 * On systems with more than one CPU, when synchronize_sched() returns, 3182 * each CPU is guaranteed to have executed a full memory barrier since the 3183 * end of its last RCU-sched read-side critical section whose beginning 3184 * preceded the call to synchronize_sched(). In addition, each CPU having 3185 * an RCU read-side critical section that extends beyond the return from 3186 * synchronize_sched() is guaranteed to have executed a full memory barrier 3187 * after the beginning of synchronize_sched() and before the beginning of 3188 * that RCU read-side critical section. Note that these guarantees include 3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3190 * that are executing in the kernel. 3191 * 3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned 3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3194 * to have executed a full memory barrier during the execution of 3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 3196 * again only if the system has more than one CPU). 3197 */ 3198 void synchronize_sched(void) 3199 { 3200 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3201 lock_is_held(&rcu_lock_map) || 3202 lock_is_held(&rcu_sched_lock_map), 3203 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 3204 if (rcu_blocking_is_gp()) 3205 return; 3206 if (rcu_gp_is_expedited()) 3207 synchronize_sched_expedited(); 3208 else 3209 wait_rcu_gp(call_rcu_sched); 3210 } 3211 EXPORT_SYMBOL_GPL(synchronize_sched); 3212 3213 /** 3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 3215 * 3216 * Control will return to the caller some time after a full rcu_bh grace 3217 * period has elapsed, in other words after all currently executing rcu_bh 3218 * read-side critical sections have completed. RCU read-side critical 3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 3220 * and may be nested. 3221 * 3222 * See the description of synchronize_sched() for more detailed information 3223 * on memory ordering guarantees. 3224 */ 3225 void synchronize_rcu_bh(void) 3226 { 3227 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3228 lock_is_held(&rcu_lock_map) || 3229 lock_is_held(&rcu_sched_lock_map), 3230 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 3231 if (rcu_blocking_is_gp()) 3232 return; 3233 if (rcu_gp_is_expedited()) 3234 synchronize_rcu_bh_expedited(); 3235 else 3236 wait_rcu_gp(call_rcu_bh); 3237 } 3238 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 3239 3240 /** 3241 * get_state_synchronize_rcu - Snapshot current RCU state 3242 * 3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3244 * to determine whether or not a full grace period has elapsed in the 3245 * meantime. 3246 */ 3247 unsigned long get_state_synchronize_rcu(void) 3248 { 3249 /* 3250 * Any prior manipulation of RCU-protected data must happen 3251 * before the load from ->gpnum. 3252 */ 3253 smp_mb(); /* ^^^ */ 3254 3255 /* 3256 * Make sure this load happens before the purportedly 3257 * time-consuming work between get_state_synchronize_rcu() 3258 * and cond_synchronize_rcu(). 3259 */ 3260 return smp_load_acquire(&rcu_state_p->gpnum); 3261 } 3262 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3263 3264 /** 3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3266 * 3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3268 * 3269 * If a full RCU grace period has elapsed since the earlier call to 3270 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3271 * synchronize_rcu() to wait for a full grace period. 3272 * 3273 * Yes, this function does not take counter wrap into account. But 3274 * counter wrap is harmless. If the counter wraps, we have waited for 3275 * more than 2 billion grace periods (and way more on a 64-bit system!), 3276 * so waiting for one additional grace period should be just fine. 3277 */ 3278 void cond_synchronize_rcu(unsigned long oldstate) 3279 { 3280 unsigned long newstate; 3281 3282 /* 3283 * Ensure that this load happens before any RCU-destructive 3284 * actions the caller might carry out after we return. 3285 */ 3286 newstate = smp_load_acquire(&rcu_state_p->completed); 3287 if (ULONG_CMP_GE(oldstate, newstate)) 3288 synchronize_rcu(); 3289 } 3290 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3291 3292 /** 3293 * get_state_synchronize_sched - Snapshot current RCU-sched state 3294 * 3295 * Returns a cookie that is used by a later call to cond_synchronize_sched() 3296 * to determine whether or not a full grace period has elapsed in the 3297 * meantime. 3298 */ 3299 unsigned long get_state_synchronize_sched(void) 3300 { 3301 /* 3302 * Any prior manipulation of RCU-protected data must happen 3303 * before the load from ->gpnum. 3304 */ 3305 smp_mb(); /* ^^^ */ 3306 3307 /* 3308 * Make sure this load happens before the purportedly 3309 * time-consuming work between get_state_synchronize_sched() 3310 * and cond_synchronize_sched(). 3311 */ 3312 return smp_load_acquire(&rcu_sched_state.gpnum); 3313 } 3314 EXPORT_SYMBOL_GPL(get_state_synchronize_sched); 3315 3316 /** 3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period 3318 * 3319 * @oldstate: return value from earlier call to get_state_synchronize_sched() 3320 * 3321 * If a full RCU-sched grace period has elapsed since the earlier call to 3322 * get_state_synchronize_sched(), just return. Otherwise, invoke 3323 * synchronize_sched() to wait for a full grace period. 3324 * 3325 * Yes, this function does not take counter wrap into account. But 3326 * counter wrap is harmless. If the counter wraps, we have waited for 3327 * more than 2 billion grace periods (and way more on a 64-bit system!), 3328 * so waiting for one additional grace period should be just fine. 3329 */ 3330 void cond_synchronize_sched(unsigned long oldstate) 3331 { 3332 unsigned long newstate; 3333 3334 /* 3335 * Ensure that this load happens before any RCU-destructive 3336 * actions the caller might carry out after we return. 3337 */ 3338 newstate = smp_load_acquire(&rcu_sched_state.completed); 3339 if (ULONG_CMP_GE(oldstate, newstate)) 3340 synchronize_sched(); 3341 } 3342 EXPORT_SYMBOL_GPL(cond_synchronize_sched); 3343 3344 /* 3345 * Check to see if there is any immediate RCU-related work to be done 3346 * by the current CPU, for the specified type of RCU, returning 1 if so. 3347 * The checks are in order of increasing expense: checks that can be 3348 * carried out against CPU-local state are performed first. However, 3349 * we must check for CPU stalls first, else we might not get a chance. 3350 */ 3351 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3352 { 3353 struct rcu_node *rnp = rdp->mynode; 3354 3355 /* Check for CPU stalls, if enabled. */ 3356 check_cpu_stall(rsp, rdp); 3357 3358 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3359 if (rcu_nohz_full_cpu(rsp)) 3360 return 0; 3361 3362 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3363 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 3364 return 1; 3365 3366 /* Does this CPU have callbacks ready to invoke? */ 3367 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3368 return 1; 3369 3370 /* Has RCU gone idle with this CPU needing another grace period? */ 3371 if (cpu_needs_another_gp(rsp, rdp)) 3372 return 1; 3373 3374 /* Has another RCU grace period completed? */ 3375 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */ 3376 return 1; 3377 3378 /* Has a new RCU grace period started? */ 3379 if (READ_ONCE(rnp->gpnum) != rdp->gpnum || 3380 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3381 return 1; 3382 3383 /* Does this CPU need a deferred NOCB wakeup? */ 3384 if (rcu_nocb_need_deferred_wakeup(rdp)) 3385 return 1; 3386 3387 /* nothing to do */ 3388 return 0; 3389 } 3390 3391 /* 3392 * Check to see if there is any immediate RCU-related work to be done 3393 * by the current CPU, returning 1 if so. This function is part of the 3394 * RCU implementation; it is -not- an exported member of the RCU API. 3395 */ 3396 static int rcu_pending(void) 3397 { 3398 struct rcu_state *rsp; 3399 3400 for_each_rcu_flavor(rsp) 3401 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3402 return 1; 3403 return 0; 3404 } 3405 3406 /* 3407 * Return true if the specified CPU has any callback. If all_lazy is 3408 * non-NULL, store an indication of whether all callbacks are lazy. 3409 * (If there are no callbacks, all of them are deemed to be lazy.) 3410 */ 3411 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3412 { 3413 bool al = true; 3414 bool hc = false; 3415 struct rcu_data *rdp; 3416 struct rcu_state *rsp; 3417 3418 for_each_rcu_flavor(rsp) { 3419 rdp = this_cpu_ptr(rsp->rda); 3420 if (rcu_segcblist_empty(&rdp->cblist)) 3421 continue; 3422 hc = true; 3423 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { 3424 al = false; 3425 break; 3426 } 3427 } 3428 if (all_lazy) 3429 *all_lazy = al; 3430 return hc; 3431 } 3432 3433 /* 3434 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3435 * the compiler is expected to optimize this away. 3436 */ 3437 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3438 int cpu, unsigned long done) 3439 { 3440 trace_rcu_barrier(rsp->name, s, cpu, 3441 atomic_read(&rsp->barrier_cpu_count), done); 3442 } 3443 3444 /* 3445 * RCU callback function for _rcu_barrier(). If we are last, wake 3446 * up the task executing _rcu_barrier(). 3447 */ 3448 static void rcu_barrier_callback(struct rcu_head *rhp) 3449 { 3450 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3451 struct rcu_state *rsp = rdp->rsp; 3452 3453 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3454 _rcu_barrier_trace(rsp, TPS("LastCB"), -1, 3455 rsp->barrier_sequence); 3456 complete(&rsp->barrier_completion); 3457 } else { 3458 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); 3459 } 3460 } 3461 3462 /* 3463 * Called with preemption disabled, and from cross-cpu IRQ context. 3464 */ 3465 static void rcu_barrier_func(void *type) 3466 { 3467 struct rcu_state *rsp = type; 3468 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3469 3470 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); 3471 rdp->barrier_head.func = rcu_barrier_callback; 3472 debug_rcu_head_queue(&rdp->barrier_head); 3473 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 3474 atomic_inc(&rsp->barrier_cpu_count); 3475 } else { 3476 debug_rcu_head_unqueue(&rdp->barrier_head); 3477 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, 3478 rsp->barrier_sequence); 3479 } 3480 } 3481 3482 /* 3483 * Orchestrate the specified type of RCU barrier, waiting for all 3484 * RCU callbacks of the specified type to complete. 3485 */ 3486 static void _rcu_barrier(struct rcu_state *rsp) 3487 { 3488 int cpu; 3489 struct rcu_data *rdp; 3490 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); 3491 3492 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); 3493 3494 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3495 mutex_lock(&rsp->barrier_mutex); 3496 3497 /* Did someone else do our work for us? */ 3498 if (rcu_seq_done(&rsp->barrier_sequence, s)) { 3499 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, 3500 rsp->barrier_sequence); 3501 smp_mb(); /* caller's subsequent code after above check. */ 3502 mutex_unlock(&rsp->barrier_mutex); 3503 return; 3504 } 3505 3506 /* Mark the start of the barrier operation. */ 3507 rcu_seq_start(&rsp->barrier_sequence); 3508 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); 3509 3510 /* 3511 * Initialize the count to one rather than to zero in order to 3512 * avoid a too-soon return to zero in case of a short grace period 3513 * (or preemption of this task). Exclude CPU-hotplug operations 3514 * to ensure that no offline CPU has callbacks queued. 3515 */ 3516 init_completion(&rsp->barrier_completion); 3517 atomic_set(&rsp->barrier_cpu_count, 1); 3518 get_online_cpus(); 3519 3520 /* 3521 * Force each CPU with callbacks to register a new callback. 3522 * When that callback is invoked, we will know that all of the 3523 * corresponding CPU's preceding callbacks have been invoked. 3524 */ 3525 for_each_possible_cpu(cpu) { 3526 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3527 continue; 3528 rdp = per_cpu_ptr(rsp->rda, cpu); 3529 if (rcu_is_nocb_cpu(cpu)) { 3530 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3531 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, 3532 rsp->barrier_sequence); 3533 } else { 3534 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, 3535 rsp->barrier_sequence); 3536 smp_mb__before_atomic(); 3537 atomic_inc(&rsp->barrier_cpu_count); 3538 __call_rcu(&rdp->barrier_head, 3539 rcu_barrier_callback, rsp, cpu, 0); 3540 } 3541 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { 3542 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, 3543 rsp->barrier_sequence); 3544 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3545 } else { 3546 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, 3547 rsp->barrier_sequence); 3548 } 3549 } 3550 put_online_cpus(); 3551 3552 /* 3553 * Now that we have an rcu_barrier_callback() callback on each 3554 * CPU, and thus each counted, remove the initial count. 3555 */ 3556 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3557 complete(&rsp->barrier_completion); 3558 3559 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3560 wait_for_completion(&rsp->barrier_completion); 3561 3562 /* Mark the end of the barrier operation. */ 3563 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); 3564 rcu_seq_end(&rsp->barrier_sequence); 3565 3566 /* Other rcu_barrier() invocations can now safely proceed. */ 3567 mutex_unlock(&rsp->barrier_mutex); 3568 } 3569 3570 /** 3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3572 */ 3573 void rcu_barrier_bh(void) 3574 { 3575 _rcu_barrier(&rcu_bh_state); 3576 } 3577 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3578 3579 /** 3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3581 */ 3582 void rcu_barrier_sched(void) 3583 { 3584 _rcu_barrier(&rcu_sched_state); 3585 } 3586 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3587 3588 /* 3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3590 * first CPU in a given leaf rcu_node structure coming online. The caller 3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3592 * disabled. 3593 */ 3594 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3595 { 3596 long mask; 3597 struct rcu_node *rnp = rnp_leaf; 3598 3599 raw_lockdep_assert_held_rcu_node(rnp); 3600 for (;;) { 3601 mask = rnp->grpmask; 3602 rnp = rnp->parent; 3603 if (rnp == NULL) 3604 return; 3605 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3606 rnp->qsmaskinit |= mask; 3607 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3608 } 3609 } 3610 3611 /* 3612 * Do boot-time initialization of a CPU's per-CPU RCU data. 3613 */ 3614 static void __init 3615 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3616 { 3617 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3618 3619 /* Set up local state, ensuring consistent view of global state. */ 3620 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3621 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3622 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); 3623 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); 3624 rdp->cpu = cpu; 3625 rdp->rsp = rsp; 3626 rcu_boot_init_nocb_percpu_data(rdp); 3627 } 3628 3629 /* 3630 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3631 * offline event can be happening at a given time. Note also that we 3632 * can accept some slop in the rsp->completed access due to the fact 3633 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3634 */ 3635 static void 3636 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3637 { 3638 unsigned long flags; 3639 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3640 struct rcu_node *rnp = rcu_get_root(rsp); 3641 3642 /* Set up local state, ensuring consistent view of global state. */ 3643 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3644 rdp->qlen_last_fqs_check = 0; 3645 rdp->n_force_qs_snap = rsp->n_force_qs; 3646 rdp->blimit = blimit; 3647 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3648 !init_nocb_callback_list(rdp)) 3649 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3650 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3651 rcu_dynticks_eqs_online(); 3652 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3653 3654 /* 3655 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3656 * propagation up the rcu_node tree will happen at the beginning 3657 * of the next grace period. 3658 */ 3659 rnp = rdp->mynode; 3660 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3661 rdp->beenonline = true; /* We have now been online. */ 3662 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ 3663 rdp->completed = rnp->completed; 3664 rdp->cpu_no_qs.b.norm = true; 3665 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); 3666 rdp->core_needs_qs = false; 3667 rdp->rcu_iw_pending = false; 3668 rdp->rcu_iw_gpnum = rnp->gpnum - 1; 3669 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3671 } 3672 3673 /* 3674 * Invoked early in the CPU-online process, when pretty much all 3675 * services are available. The incoming CPU is not present. 3676 */ 3677 int rcutree_prepare_cpu(unsigned int cpu) 3678 { 3679 struct rcu_state *rsp; 3680 3681 for_each_rcu_flavor(rsp) 3682 rcu_init_percpu_data(cpu, rsp); 3683 3684 rcu_prepare_kthreads(cpu); 3685 rcu_spawn_all_nocb_kthreads(cpu); 3686 3687 return 0; 3688 } 3689 3690 /* 3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3692 */ 3693 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3694 { 3695 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3696 3697 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3698 } 3699 3700 /* 3701 * Near the end of the CPU-online process. Pretty much all services 3702 * enabled, and the CPU is now very much alive. 3703 */ 3704 int rcutree_online_cpu(unsigned int cpu) 3705 { 3706 unsigned long flags; 3707 struct rcu_data *rdp; 3708 struct rcu_node *rnp; 3709 struct rcu_state *rsp; 3710 3711 for_each_rcu_flavor(rsp) { 3712 rdp = per_cpu_ptr(rsp->rda, cpu); 3713 rnp = rdp->mynode; 3714 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3715 rnp->ffmask |= rdp->grpmask; 3716 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3717 } 3718 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3719 srcu_online_cpu(cpu); 3720 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3721 return 0; /* Too early in boot for scheduler work. */ 3722 sync_sched_exp_online_cleanup(cpu); 3723 rcutree_affinity_setting(cpu, -1); 3724 return 0; 3725 } 3726 3727 /* 3728 * Near the beginning of the process. The CPU is still very much alive 3729 * with pretty much all services enabled. 3730 */ 3731 int rcutree_offline_cpu(unsigned int cpu) 3732 { 3733 unsigned long flags; 3734 struct rcu_data *rdp; 3735 struct rcu_node *rnp; 3736 struct rcu_state *rsp; 3737 3738 for_each_rcu_flavor(rsp) { 3739 rdp = per_cpu_ptr(rsp->rda, cpu); 3740 rnp = rdp->mynode; 3741 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3742 rnp->ffmask &= ~rdp->grpmask; 3743 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3744 } 3745 3746 rcutree_affinity_setting(cpu, cpu); 3747 if (IS_ENABLED(CONFIG_TREE_SRCU)) 3748 srcu_offline_cpu(cpu); 3749 return 0; 3750 } 3751 3752 /* 3753 * Near the end of the offline process. We do only tracing here. 3754 */ 3755 int rcutree_dying_cpu(unsigned int cpu) 3756 { 3757 struct rcu_state *rsp; 3758 3759 for_each_rcu_flavor(rsp) 3760 rcu_cleanup_dying_cpu(rsp); 3761 return 0; 3762 } 3763 3764 /* 3765 * The outgoing CPU is gone and we are running elsewhere. 3766 */ 3767 int rcutree_dead_cpu(unsigned int cpu) 3768 { 3769 struct rcu_state *rsp; 3770 3771 for_each_rcu_flavor(rsp) { 3772 rcu_cleanup_dead_cpu(cpu, rsp); 3773 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3774 } 3775 return 0; 3776 } 3777 3778 /* 3779 * Mark the specified CPU as being online so that subsequent grace periods 3780 * (both expedited and normal) will wait on it. Note that this means that 3781 * incoming CPUs are not allowed to use RCU read-side critical sections 3782 * until this function is called. Failing to observe this restriction 3783 * will result in lockdep splats. 3784 * 3785 * Note that this function is special in that it is invoked directly 3786 * from the incoming CPU rather than from the cpuhp_step mechanism. 3787 * This is because this function must be invoked at a precise location. 3788 */ 3789 void rcu_cpu_starting(unsigned int cpu) 3790 { 3791 unsigned long flags; 3792 unsigned long mask; 3793 int nbits; 3794 unsigned long oldmask; 3795 struct rcu_data *rdp; 3796 struct rcu_node *rnp; 3797 struct rcu_state *rsp; 3798 3799 for_each_rcu_flavor(rsp) { 3800 rdp = per_cpu_ptr(rsp->rda, cpu); 3801 rnp = rdp->mynode; 3802 mask = rdp->grpmask; 3803 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3804 rnp->qsmaskinitnext |= mask; 3805 oldmask = rnp->expmaskinitnext; 3806 rnp->expmaskinitnext |= mask; 3807 oldmask ^= rnp->expmaskinitnext; 3808 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3809 /* Allow lockless access for expedited grace periods. */ 3810 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ 3811 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3812 } 3813 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3814 } 3815 3816 #ifdef CONFIG_HOTPLUG_CPU 3817 /* 3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead() 3819 * function. We now remove it from the rcu_node tree's ->qsmaskinit 3820 * bit masks. 3821 */ 3822 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) 3823 { 3824 unsigned long flags; 3825 unsigned long mask; 3826 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3827 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3828 3829 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3830 mask = rdp->grpmask; 3831 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3832 rnp->qsmaskinitnext &= ~mask; 3833 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3834 } 3835 3836 /* 3837 * The outgoing function has no further need of RCU, so remove it from 3838 * the list of CPUs that RCU must track. 3839 * 3840 * Note that this function is special in that it is invoked directly 3841 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3842 * This is because this function must be invoked at a precise location. 3843 */ 3844 void rcu_report_dead(unsigned int cpu) 3845 { 3846 struct rcu_state *rsp; 3847 3848 /* QS for any half-done expedited RCU-sched GP. */ 3849 preempt_disable(); 3850 rcu_report_exp_rdp(&rcu_sched_state, 3851 this_cpu_ptr(rcu_sched_state.rda), true); 3852 preempt_enable(); 3853 for_each_rcu_flavor(rsp) 3854 rcu_cleanup_dying_idle_cpu(cpu, rsp); 3855 } 3856 3857 /* Migrate the dead CPU's callbacks to the current CPU. */ 3858 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) 3859 { 3860 unsigned long flags; 3861 struct rcu_data *my_rdp; 3862 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3863 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 3864 3865 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) 3866 return; /* No callbacks to migrate. */ 3867 3868 local_irq_save(flags); 3869 my_rdp = this_cpu_ptr(rsp->rda); 3870 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { 3871 local_irq_restore(flags); 3872 return; 3873 } 3874 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ 3875 rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */ 3876 rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */ 3877 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3878 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3879 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3880 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); 3881 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3882 !rcu_segcblist_empty(&rdp->cblist), 3883 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3884 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3885 rcu_segcblist_first_cb(&rdp->cblist)); 3886 } 3887 3888 /* 3889 * The outgoing CPU has just passed through the dying-idle state, 3890 * and we are being invoked from the CPU that was IPIed to continue the 3891 * offline operation. We need to migrate the outgoing CPU's callbacks. 3892 */ 3893 void rcutree_migrate_callbacks(int cpu) 3894 { 3895 struct rcu_state *rsp; 3896 3897 for_each_rcu_flavor(rsp) 3898 rcu_migrate_callbacks(cpu, rsp); 3899 } 3900 #endif 3901 3902 /* 3903 * On non-huge systems, use expedited RCU grace periods to make suspend 3904 * and hibernation run faster. 3905 */ 3906 static int rcu_pm_notify(struct notifier_block *self, 3907 unsigned long action, void *hcpu) 3908 { 3909 switch (action) { 3910 case PM_HIBERNATION_PREPARE: 3911 case PM_SUSPEND_PREPARE: 3912 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3913 rcu_expedite_gp(); 3914 break; 3915 case PM_POST_HIBERNATION: 3916 case PM_POST_SUSPEND: 3917 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3918 rcu_unexpedite_gp(); 3919 break; 3920 default: 3921 break; 3922 } 3923 return NOTIFY_OK; 3924 } 3925 3926 /* 3927 * Spawn the kthreads that handle each RCU flavor's grace periods. 3928 */ 3929 static int __init rcu_spawn_gp_kthread(void) 3930 { 3931 unsigned long flags; 3932 int kthread_prio_in = kthread_prio; 3933 struct rcu_node *rnp; 3934 struct rcu_state *rsp; 3935 struct sched_param sp; 3936 struct task_struct *t; 3937 3938 /* Force priority into range. */ 3939 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3940 kthread_prio = 1; 3941 else if (kthread_prio < 0) 3942 kthread_prio = 0; 3943 else if (kthread_prio > 99) 3944 kthread_prio = 99; 3945 if (kthread_prio != kthread_prio_in) 3946 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3947 kthread_prio, kthread_prio_in); 3948 3949 rcu_scheduler_fully_active = 1; 3950 for_each_rcu_flavor(rsp) { 3951 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3952 BUG_ON(IS_ERR(t)); 3953 rnp = rcu_get_root(rsp); 3954 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3955 rsp->gp_kthread = t; 3956 if (kthread_prio) { 3957 sp.sched_priority = kthread_prio; 3958 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3959 } 3960 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3961 wake_up_process(t); 3962 } 3963 rcu_spawn_nocb_kthreads(); 3964 rcu_spawn_boost_kthreads(); 3965 return 0; 3966 } 3967 early_initcall(rcu_spawn_gp_kthread); 3968 3969 /* 3970 * This function is invoked towards the end of the scheduler's 3971 * initialization process. Before this is called, the idle task might 3972 * contain synchronous grace-period primitives (during which time, this idle 3973 * task is booting the system, and such primitives are no-ops). After this 3974 * function is called, any synchronous grace-period primitives are run as 3975 * expedited, with the requesting task driving the grace period forward. 3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3977 * runtime RCU functionality. 3978 */ 3979 void rcu_scheduler_starting(void) 3980 { 3981 WARN_ON(num_online_cpus() != 1); 3982 WARN_ON(nr_context_switches() > 0); 3983 rcu_test_sync_prims(); 3984 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3985 rcu_test_sync_prims(); 3986 } 3987 3988 /* 3989 * Helper function for rcu_init() that initializes one rcu_state structure. 3990 */ 3991 static void __init rcu_init_one(struct rcu_state *rsp) 3992 { 3993 static const char * const buf[] = RCU_NODE_NAME_INIT; 3994 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3995 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3996 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3997 3998 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3999 int cpustride = 1; 4000 int i; 4001 int j; 4002 struct rcu_node *rnp; 4003 4004 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4005 4006 /* Silence gcc 4.8 false positive about array index out of range. */ 4007 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4008 panic("rcu_init_one: rcu_num_lvls out of range"); 4009 4010 /* Initialize the level-tracking arrays. */ 4011 4012 for (i = 1; i < rcu_num_lvls; i++) 4013 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; 4014 rcu_init_levelspread(levelspread, num_rcu_lvl); 4015 4016 /* Initialize the elements themselves, starting from the leaves. */ 4017 4018 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4019 cpustride *= levelspread[i]; 4020 rnp = rsp->level[i]; 4021 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4022 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4023 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4024 &rcu_node_class[i], buf[i]); 4025 raw_spin_lock_init(&rnp->fqslock); 4026 lockdep_set_class_and_name(&rnp->fqslock, 4027 &rcu_fqs_class[i], fqs[i]); 4028 rnp->gpnum = rsp->gpnum; 4029 rnp->completed = rsp->completed; 4030 rnp->qsmask = 0; 4031 rnp->qsmaskinit = 0; 4032 rnp->grplo = j * cpustride; 4033 rnp->grphi = (j + 1) * cpustride - 1; 4034 if (rnp->grphi >= nr_cpu_ids) 4035 rnp->grphi = nr_cpu_ids - 1; 4036 if (i == 0) { 4037 rnp->grpnum = 0; 4038 rnp->grpmask = 0; 4039 rnp->parent = NULL; 4040 } else { 4041 rnp->grpnum = j % levelspread[i - 1]; 4042 rnp->grpmask = 1UL << rnp->grpnum; 4043 rnp->parent = rsp->level[i - 1] + 4044 j / levelspread[i - 1]; 4045 } 4046 rnp->level = i; 4047 INIT_LIST_HEAD(&rnp->blkd_tasks); 4048 rcu_init_one_nocb(rnp); 4049 init_waitqueue_head(&rnp->exp_wq[0]); 4050 init_waitqueue_head(&rnp->exp_wq[1]); 4051 init_waitqueue_head(&rnp->exp_wq[2]); 4052 init_waitqueue_head(&rnp->exp_wq[3]); 4053 spin_lock_init(&rnp->exp_lock); 4054 } 4055 } 4056 4057 init_swait_queue_head(&rsp->gp_wq); 4058 init_swait_queue_head(&rsp->expedited_wq); 4059 rnp = rsp->level[rcu_num_lvls - 1]; 4060 for_each_possible_cpu(i) { 4061 while (i > rnp->grphi) 4062 rnp++; 4063 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 4064 rcu_boot_init_percpu_data(i, rsp); 4065 } 4066 list_add(&rsp->flavors, &rcu_struct_flavors); 4067 } 4068 4069 /* 4070 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4071 * replace the definitions in tree.h because those are needed to size 4072 * the ->node array in the rcu_state structure. 4073 */ 4074 static void __init rcu_init_geometry(void) 4075 { 4076 ulong d; 4077 int i; 4078 int rcu_capacity[RCU_NUM_LVLS]; 4079 4080 /* 4081 * Initialize any unspecified boot parameters. 4082 * The default values of jiffies_till_first_fqs and 4083 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4084 * value, which is a function of HZ, then adding one for each 4085 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4086 */ 4087 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4088 if (jiffies_till_first_fqs == ULONG_MAX) 4089 jiffies_till_first_fqs = d; 4090 if (jiffies_till_next_fqs == ULONG_MAX) 4091 jiffies_till_next_fqs = d; 4092 4093 /* If the compile-time values are accurate, just leave. */ 4094 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4095 nr_cpu_ids == NR_CPUS) 4096 return; 4097 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4098 rcu_fanout_leaf, nr_cpu_ids); 4099 4100 /* 4101 * The boot-time rcu_fanout_leaf parameter must be at least two 4102 * and cannot exceed the number of bits in the rcu_node masks. 4103 * Complain and fall back to the compile-time values if this 4104 * limit is exceeded. 4105 */ 4106 if (rcu_fanout_leaf < 2 || 4107 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4108 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4109 WARN_ON(1); 4110 return; 4111 } 4112 4113 /* 4114 * Compute number of nodes that can be handled an rcu_node tree 4115 * with the given number of levels. 4116 */ 4117 rcu_capacity[0] = rcu_fanout_leaf; 4118 for (i = 1; i < RCU_NUM_LVLS; i++) 4119 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4120 4121 /* 4122 * The tree must be able to accommodate the configured number of CPUs. 4123 * If this limit is exceeded, fall back to the compile-time values. 4124 */ 4125 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4126 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4127 WARN_ON(1); 4128 return; 4129 } 4130 4131 /* Calculate the number of levels in the tree. */ 4132 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4133 } 4134 rcu_num_lvls = i + 1; 4135 4136 /* Calculate the number of rcu_nodes at each level of the tree. */ 4137 for (i = 0; i < rcu_num_lvls; i++) { 4138 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4139 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4140 } 4141 4142 /* Calculate the total number of rcu_node structures. */ 4143 rcu_num_nodes = 0; 4144 for (i = 0; i < rcu_num_lvls; i++) 4145 rcu_num_nodes += num_rcu_lvl[i]; 4146 } 4147 4148 /* 4149 * Dump out the structure of the rcu_node combining tree associated 4150 * with the rcu_state structure referenced by rsp. 4151 */ 4152 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) 4153 { 4154 int level = 0; 4155 struct rcu_node *rnp; 4156 4157 pr_info("rcu_node tree layout dump\n"); 4158 pr_info(" "); 4159 rcu_for_each_node_breadth_first(rsp, rnp) { 4160 if (rnp->level != level) { 4161 pr_cont("\n"); 4162 pr_info(" "); 4163 level = rnp->level; 4164 } 4165 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4166 } 4167 pr_cont("\n"); 4168 } 4169 4170 struct workqueue_struct *rcu_gp_wq; 4171 4172 void __init rcu_init(void) 4173 { 4174 int cpu; 4175 4176 rcu_early_boot_tests(); 4177 4178 rcu_bootup_announce(); 4179 rcu_init_geometry(); 4180 rcu_init_one(&rcu_bh_state); 4181 rcu_init_one(&rcu_sched_state); 4182 if (dump_tree) 4183 rcu_dump_rcu_node_tree(&rcu_sched_state); 4184 __rcu_init_preempt(); 4185 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 4186 4187 /* 4188 * We don't need protection against CPU-hotplug here because 4189 * this is called early in boot, before either interrupts 4190 * or the scheduler are operational. 4191 */ 4192 pm_notifier(rcu_pm_notify, 0); 4193 for_each_online_cpu(cpu) { 4194 rcutree_prepare_cpu(cpu); 4195 rcu_cpu_starting(cpu); 4196 rcutree_online_cpu(cpu); 4197 } 4198 4199 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4200 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4201 WARN_ON(!rcu_gp_wq); 4202 } 4203 4204 #include "tree_exp.h" 4205 #include "tree_plugin.h" 4206