1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/kmemleak.h> 35 #include <linux/moduleparam.h> 36 #include <linux/panic.h> 37 #include <linux/panic_notifier.h> 38 #include <linux/percpu.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/mutex.h> 42 #include <linux/time.h> 43 #include <linux/kernel_stat.h> 44 #include <linux/wait.h> 45 #include <linux/kthread.h> 46 #include <uapi/linux/sched/types.h> 47 #include <linux/prefetch.h> 48 #include <linux/delay.h> 49 #include <linux/random.h> 50 #include <linux/trace_events.h> 51 #include <linux/suspend.h> 52 #include <linux/ftrace.h> 53 #include <linux/tick.h> 54 #include <linux/sysrq.h> 55 #include <linux/kprobes.h> 56 #include <linux/gfp.h> 57 #include <linux/oom.h> 58 #include <linux/smpboot.h> 59 #include <linux/jiffies.h> 60 #include <linux/slab.h> 61 #include <linux/sched/isolation.h> 62 #include <linux/sched/clock.h> 63 #include <linux/vmalloc.h> 64 #include <linux/mm.h> 65 #include <linux/kasan.h> 66 #include <linux/context_tracking.h> 67 #include "../time/tick-internal.h" 68 69 #include "tree.h" 70 #include "rcu.h" 71 72 #ifdef MODULE_PARAM_PREFIX 73 #undef MODULE_PARAM_PREFIX 74 #endif 75 #define MODULE_PARAM_PREFIX "rcutree." 76 77 /* Data structures. */ 78 79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 80 .gpwrap = true, 81 #ifdef CONFIG_RCU_NOCB_CPU 82 .cblist.flags = SEGCBLIST_RCU_CORE, 83 #endif 84 }; 85 static struct rcu_state rcu_state = { 86 .level = { &rcu_state.node[0] }, 87 .gp_state = RCU_GP_IDLE, 88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 91 .name = RCU_NAME, 92 .abbr = RCU_ABBR, 93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 96 }; 97 98 /* Dump rcu_node combining tree at boot to verify correct setup. */ 99 static bool dump_tree; 100 module_param(dump_tree, bool, 0444); 101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 103 #ifndef CONFIG_PREEMPT_RT 104 module_param(use_softirq, bool, 0444); 105 #endif 106 /* Control rcu_node-tree auto-balancing at boot time. */ 107 static bool rcu_fanout_exact; 108 module_param(rcu_fanout_exact, bool, 0444); 109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 111 module_param(rcu_fanout_leaf, int, 0444); 112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 113 /* Number of rcu_nodes at specified level. */ 114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 116 117 /* 118 * The rcu_scheduler_active variable is initialized to the value 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 121 * RCU can assume that there is but one task, allowing RCU to (for example) 122 * optimize synchronize_rcu() to a simple barrier(). When this variable 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 124 * to detect real grace periods. This variable is also used to suppress 125 * boot-time false positives from lockdep-RCU error checking. Finally, it 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 127 * is fully initialized, including all of its kthreads having been spawned. 128 */ 129 int rcu_scheduler_active __read_mostly; 130 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 131 132 /* 133 * The rcu_scheduler_fully_active variable transitions from zero to one 134 * during the early_initcall() processing, which is after the scheduler 135 * is capable of creating new tasks. So RCU processing (for example, 136 * creating tasks for RCU priority boosting) must be delayed until after 137 * rcu_scheduler_fully_active transitions from zero to one. We also 138 * currently delay invocation of any RCU callbacks until after this point. 139 * 140 * It might later prove better for people registering RCU callbacks during 141 * early boot to take responsibility for these callbacks, but one step at 142 * a time. 143 */ 144 static int rcu_scheduler_fully_active __read_mostly; 145 146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 147 unsigned long gps, unsigned long flags); 148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 149 static void invoke_rcu_core(void); 150 static void rcu_report_exp_rdp(struct rcu_data *rdp); 151 static void sync_sched_exp_online_cleanup(int cpu); 152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp); 155 static bool rcu_init_invoked(void); 156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 159 /* 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 161 * real-time priority(enabling/disabling) is controlled by 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 163 */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 // A page shrinker can ask for pages to be freed to make them 192 // available for other parts of the system. This usually happens 193 // under low memory conditions, and in that case we should also 194 // defer page-cache filling for a short time period. 195 // 196 // The default value is 5 seconds, which is long enough to reduce 197 // interference with the shrinker while it asks other systems to 198 // drain their caches. 199 static int rcu_delay_page_cache_fill_msec = 5000; 200 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 201 202 /* Retrieve RCU kthreads priority for rcutorture */ 203 int rcu_get_gp_kthreads_prio(void) 204 { 205 return kthread_prio; 206 } 207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 208 209 /* 210 * Number of grace periods between delays, normalized by the duration of 211 * the delay. The longer the delay, the more the grace periods between 212 * each delay. The reason for this normalization is that it means that, 213 * for non-zero delays, the overall slowdown of grace periods is constant 214 * regardless of the duration of the delay. This arrangement balances 215 * the need for long delays to increase some race probabilities with the 216 * need for fast grace periods to increase other race probabilities. 217 */ 218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 rcu_tasks_qs(current, false); 248 } 249 250 /* 251 * Reset the current CPU's ->dynticks counter to indicate that the 252 * newly onlined CPU is no longer in an extended quiescent state. 253 * This will either leave the counter unchanged, or increment it 254 * to the next non-quiescent value. 255 * 256 * The non-atomic test/increment sequence works because the upper bits 257 * of the ->dynticks counter are manipulated only by the corresponding CPU, 258 * or when the corresponding CPU is offline. 259 */ 260 static void rcu_dynticks_eqs_online(void) 261 { 262 if (ct_dynticks() & RCU_DYNTICKS_IDX) 263 return; 264 ct_state_inc(RCU_DYNTICKS_IDX); 265 } 266 267 /* 268 * Snapshot the ->dynticks counter with full ordering so as to allow 269 * stable comparison of this counter with past and future snapshots. 270 */ 271 static int rcu_dynticks_snap(int cpu) 272 { 273 smp_mb(); // Fundamental RCU ordering guarantee. 274 return ct_dynticks_cpu_acquire(cpu); 275 } 276 277 /* 278 * Return true if the snapshot returned from rcu_dynticks_snap() 279 * indicates that RCU is in an extended quiescent state. 280 */ 281 static bool rcu_dynticks_in_eqs(int snap) 282 { 283 return !(snap & RCU_DYNTICKS_IDX); 284 } 285 286 /* 287 * Return true if the CPU corresponding to the specified rcu_data 288 * structure has spent some time in an extended quiescent state since 289 * rcu_dynticks_snap() returned the specified snapshot. 290 */ 291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 292 { 293 return snap != rcu_dynticks_snap(rdp->cpu); 294 } 295 296 /* 297 * Return true if the referenced integer is zero while the specified 298 * CPU remains within a single extended quiescent state. 299 */ 300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 301 { 302 int snap; 303 304 // If not quiescent, force back to earlier extended quiescent state. 305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 306 smp_rmb(); // Order ->dynticks and *vp reads. 307 if (READ_ONCE(*vp)) 308 return false; // Non-zero, so report failure; 309 smp_rmb(); // Order *vp read and ->dynticks re-read. 310 311 // If still in the same extended quiescent state, we are good! 312 return snap == ct_dynticks_cpu(cpu); 313 } 314 315 /* 316 * Let the RCU core know that this CPU has gone through the scheduler, 317 * which is a quiescent state. This is called when the need for a 318 * quiescent state is urgent, so we burn an atomic operation and full 319 * memory barriers to let the RCU core know about it, regardless of what 320 * this CPU might (or might not) do in the near future. 321 * 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 323 * 324 * The caller must have disabled interrupts and must not be idle. 325 */ 326 notrace void rcu_momentary_dyntick_idle(void) 327 { 328 int seq; 329 330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 332 /* It is illegal to call this from idle state. */ 333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 334 rcu_preempt_deferred_qs(current); 335 } 336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 337 338 /** 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 340 * 341 * If the current CPU is idle and running at a first-level (not nested) 342 * interrupt, or directly, from idle, return true. 343 * 344 * The caller must have at least disabled IRQs. 345 */ 346 static int rcu_is_cpu_rrupt_from_idle(void) 347 { 348 long nesting; 349 350 /* 351 * Usually called from the tick; but also used from smp_function_call() 352 * for expedited grace periods. This latter can result in running from 353 * the idle task, instead of an actual IPI. 354 */ 355 lockdep_assert_irqs_disabled(); 356 357 /* Check for counter underflows */ 358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 359 "RCU dynticks_nesting counter underflow!"); 360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 361 "RCU dynticks_nmi_nesting counter underflow/zero!"); 362 363 /* Are we at first interrupt nesting level? */ 364 nesting = ct_dynticks_nmi_nesting(); 365 if (nesting > 1) 366 return false; 367 368 /* 369 * If we're not in an interrupt, we must be in the idle task! 370 */ 371 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 372 373 /* Does CPU appear to be idle from an RCU standpoint? */ 374 return ct_dynticks_nesting() == 0; 375 } 376 377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 378 // Maximum callbacks per rcu_do_batch ... 379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 380 static long blimit = DEFAULT_RCU_BLIMIT; 381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 382 static long qhimark = DEFAULT_RCU_QHIMARK; 383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 384 static long qlowmark = DEFAULT_RCU_QLOMARK; 385 #define DEFAULT_RCU_QOVLD_MULT 2 386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 388 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 389 390 module_param(blimit, long, 0444); 391 module_param(qhimark, long, 0444); 392 module_param(qlowmark, long, 0444); 393 module_param(qovld, long, 0444); 394 395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 396 static ulong jiffies_till_next_fqs = ULONG_MAX; 397 static bool rcu_kick_kthreads; 398 static int rcu_divisor = 7; 399 module_param(rcu_divisor, int, 0644); 400 401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 403 module_param(rcu_resched_ns, long, 0644); 404 405 /* 406 * How long the grace period must be before we start recruiting 407 * quiescent-state help from rcu_note_context_switch(). 408 */ 409 static ulong jiffies_till_sched_qs = ULONG_MAX; 410 module_param(jiffies_till_sched_qs, ulong, 0444); 411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 413 414 /* 415 * Make sure that we give the grace-period kthread time to detect any 416 * idle CPUs before taking active measures to force quiescent states. 417 * However, don't go below 100 milliseconds, adjusted upwards for really 418 * large systems. 419 */ 420 static void adjust_jiffies_till_sched_qs(void) 421 { 422 unsigned long j; 423 424 /* If jiffies_till_sched_qs was specified, respect the request. */ 425 if (jiffies_till_sched_qs != ULONG_MAX) { 426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 427 return; 428 } 429 /* Otherwise, set to third fqs scan, but bound below on large system. */ 430 j = READ_ONCE(jiffies_till_first_fqs) + 431 2 * READ_ONCE(jiffies_till_next_fqs); 432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 435 WRITE_ONCE(jiffies_to_sched_qs, j); 436 } 437 438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 439 { 440 ulong j; 441 int ret = kstrtoul(val, 0, &j); 442 443 if (!ret) { 444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 445 adjust_jiffies_till_sched_qs(); 446 } 447 return ret; 448 } 449 450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 451 { 452 ulong j; 453 int ret = kstrtoul(val, 0, &j); 454 455 if (!ret) { 456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 457 adjust_jiffies_till_sched_qs(); 458 } 459 return ret; 460 } 461 462 static const struct kernel_param_ops first_fqs_jiffies_ops = { 463 .set = param_set_first_fqs_jiffies, 464 .get = param_get_ulong, 465 }; 466 467 static const struct kernel_param_ops next_fqs_jiffies_ops = { 468 .set = param_set_next_fqs_jiffies, 469 .get = param_get_ulong, 470 }; 471 472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 474 module_param(rcu_kick_kthreads, bool, 0644); 475 476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 477 static int rcu_pending(int user); 478 479 /* 480 * Return the number of RCU GPs completed thus far for debug & stats. 481 */ 482 unsigned long rcu_get_gp_seq(void) 483 { 484 return READ_ONCE(rcu_state.gp_seq); 485 } 486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 487 488 /* 489 * Return the number of RCU expedited batches completed thus far for 490 * debug & stats. Odd numbers mean that a batch is in progress, even 491 * numbers mean idle. The value returned will thus be roughly double 492 * the cumulative batches since boot. 493 */ 494 unsigned long rcu_exp_batches_completed(void) 495 { 496 return rcu_state.expedited_sequence; 497 } 498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 499 500 /* 501 * Return the root node of the rcu_state structure. 502 */ 503 static struct rcu_node *rcu_get_root(void) 504 { 505 return &rcu_state.node[0]; 506 } 507 508 /* 509 * Send along grace-period-related data for rcutorture diagnostics. 510 */ 511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 512 unsigned long *gp_seq) 513 { 514 switch (test_type) { 515 case RCU_FLAVOR: 516 *flags = READ_ONCE(rcu_state.gp_flags); 517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 518 break; 519 default: 520 break; 521 } 522 } 523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 524 525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 526 /* 527 * An empty function that will trigger a reschedule on 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 529 */ 530 static void late_wakeup_func(struct irq_work *work) 531 { 532 } 533 534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 535 IRQ_WORK_INIT(late_wakeup_func); 536 537 /* 538 * If either: 539 * 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 542 * 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 545 * get re-enabled again. 546 */ 547 noinstr void rcu_irq_work_resched(void) 548 { 549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 550 551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 552 return; 553 554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 555 return; 556 557 instrumentation_begin(); 558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 559 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 560 } 561 instrumentation_end(); 562 } 563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 564 565 #ifdef CONFIG_PROVE_RCU 566 /** 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 568 */ 569 void rcu_irq_exit_check_preempt(void) 570 { 571 lockdep_assert_irqs_disabled(); 572 573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 574 "RCU dynticks_nesting counter underflow/zero!"); 575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 576 DYNTICK_IRQ_NONIDLE, 577 "Bad RCU dynticks_nmi_nesting counter\n"); 578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 579 "RCU in extended quiescent state!"); 580 } 581 #endif /* #ifdef CONFIG_PROVE_RCU */ 582 583 #ifdef CONFIG_NO_HZ_FULL 584 /** 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 586 * 587 * The scheduler tick is not normally enabled when CPUs enter the kernel 588 * from nohz_full userspace execution. After all, nohz_full userspace 589 * execution is an RCU quiescent state and the time executing in the kernel 590 * is quite short. Except of course when it isn't. And it is not hard to 591 * cause a large system to spend tens of seconds or even minutes looping 592 * in the kernel, which can cause a number of problems, include RCU CPU 593 * stall warnings. 594 * 595 * Therefore, if a nohz_full CPU fails to report a quiescent state 596 * in a timely manner, the RCU grace-period kthread sets that CPU's 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 598 * exception will invoke this function, which will turn on the scheduler 599 * tick, which will enable RCU to detect that CPU's quiescent states, 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 601 * The tick will be disabled once a quiescent state is reported for 602 * this CPU. 603 * 604 * Of course, in carefully tuned systems, there might never be an 605 * interrupt or exception. In that case, the RCU grace-period kthread 606 * will eventually cause one to happen. However, in less carefully 607 * controlled environments, this function allows RCU to get what it 608 * needs without creating otherwise useless interruptions. 609 */ 610 void __rcu_irq_enter_check_tick(void) 611 { 612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 613 614 // If we're here from NMI there's nothing to do. 615 if (in_nmi()) 616 return; 617 618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 620 621 if (!tick_nohz_full_cpu(rdp->cpu) || 622 !READ_ONCE(rdp->rcu_urgent_qs) || 623 READ_ONCE(rdp->rcu_forced_tick)) { 624 // RCU doesn't need nohz_full help from this CPU, or it is 625 // already getting that help. 626 return; 627 } 628 629 // We get here only when not in an extended quiescent state and 630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 631 // already watching and (2) The fact that we are in an interrupt 632 // handler and that the rcu_node lock is an irq-disabled lock 633 // prevents self-deadlock. So we can safely recheck under the lock. 634 // Note that the nohz_full state currently cannot change. 635 raw_spin_lock_rcu_node(rdp->mynode); 636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) { 637 // A nohz_full CPU is in the kernel and RCU needs a 638 // quiescent state. Turn on the tick! 639 WRITE_ONCE(rdp->rcu_forced_tick, true); 640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 641 } 642 raw_spin_unlock_rcu_node(rdp->mynode); 643 } 644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick); 645 #endif /* CONFIG_NO_HZ_FULL */ 646 647 /* 648 * Check to see if any future non-offloaded RCU-related work will need 649 * to be done by the current CPU, even if none need be done immediately, 650 * returning 1 if so. This function is part of the RCU implementation; 651 * it is -not- an exported member of the RCU API. This is used by 652 * the idle-entry code to figure out whether it is safe to disable the 653 * scheduler-clock interrupt. 654 * 655 * Just check whether or not this CPU has non-offloaded RCU callbacks 656 * queued. 657 */ 658 int rcu_needs_cpu(void) 659 { 660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 662 } 663 664 /* 665 * If any sort of urgency was applied to the current CPU (for example, 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 667 * to get to a quiescent state, disable it. 668 */ 669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 670 { 671 raw_lockdep_assert_held_rcu_node(rdp->mynode); 672 WRITE_ONCE(rdp->rcu_urgent_qs, false); 673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 676 WRITE_ONCE(rdp->rcu_forced_tick, false); 677 } 678 } 679 680 /** 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU? 682 * 683 * Return @true if RCU is watching the running CPU and @false otherwise. 684 * An @true return means that this CPU can safely enter RCU read-side 685 * critical sections. 686 * 687 * Although calls to rcu_is_watching() from most parts of the kernel 688 * will return @true, there are important exceptions. For example, if the 689 * current CPU is deep within its idle loop, in kernel entry/exit code, 690 * or offline, rcu_is_watching() will return @false. 691 * 692 * Make notrace because it can be called by the internal functions of 693 * ftrace, and making this notrace removes unnecessary recursion calls. 694 */ 695 notrace bool rcu_is_watching(void) 696 { 697 bool ret; 698 699 preempt_disable_notrace(); 700 ret = !rcu_dynticks_curr_cpu_in_eqs(); 701 preempt_enable_notrace(); 702 return ret; 703 } 704 EXPORT_SYMBOL_GPL(rcu_is_watching); 705 706 /* 707 * If a holdout task is actually running, request an urgent quiescent 708 * state from its CPU. This is unsynchronized, so migrations can cause 709 * the request to go to the wrong CPU. Which is OK, all that will happen 710 * is that the CPU's next context switch will be a bit slower and next 711 * time around this task will generate another request. 712 */ 713 void rcu_request_urgent_qs_task(struct task_struct *t) 714 { 715 int cpu; 716 717 barrier(); 718 cpu = task_cpu(t); 719 if (!task_curr(t)) 720 return; /* This task is not running on that CPU. */ 721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 722 } 723 724 /* 725 * When trying to report a quiescent state on behalf of some other CPU, 726 * it is our responsibility to check for and handle potential overflow 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 728 * After all, the CPU might be in deep idle state, and thus executing no 729 * code whatsoever. 730 */ 731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 732 { 733 raw_lockdep_assert_held_rcu_node(rnp); 734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 735 rnp->gp_seq)) 736 WRITE_ONCE(rdp->gpwrap, true); 737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 739 } 740 741 /* 742 * Snapshot the specified CPU's dynticks counter so that we can later 743 * credit them with an implicit quiescent state. Return 1 if this CPU 744 * is in dynticks idle mode, which is an extended quiescent state. 745 */ 746 static int dyntick_save_progress_counter(struct rcu_data *rdp) 747 { 748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 751 rcu_gpnum_ovf(rdp->mynode, rdp); 752 return 1; 753 } 754 return 0; 755 } 756 757 /* 758 * Return true if the specified CPU has passed through a quiescent 759 * state by virtue of being in or having passed through an dynticks 760 * idle state since the last call to dyntick_save_progress_counter() 761 * for this same CPU, or by virtue of having been offline. 762 */ 763 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 764 { 765 unsigned long jtsq; 766 struct rcu_node *rnp = rdp->mynode; 767 768 /* 769 * If the CPU passed through or entered a dynticks idle phase with 770 * no active irq/NMI handlers, then we can safely pretend that the CPU 771 * already acknowledged the request to pass through a quiescent 772 * state. Either way, that CPU cannot possibly be in an RCU 773 * read-side critical section that started before the beginning 774 * of the current RCU grace period. 775 */ 776 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 777 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 778 rcu_gpnum_ovf(rnp, rdp); 779 return 1; 780 } 781 782 /* 783 * Complain if a CPU that is considered to be offline from RCU's 784 * perspective has not yet reported a quiescent state. After all, 785 * the offline CPU should have reported a quiescent state during 786 * the CPU-offline process, or, failing that, by rcu_gp_init() 787 * if it ran concurrently with either the CPU going offline or the 788 * last task on a leaf rcu_node structure exiting its RCU read-side 789 * critical section while all CPUs corresponding to that structure 790 * are offline. This added warning detects bugs in any of these 791 * code paths. 792 * 793 * The rcu_node structure's ->lock is held here, which excludes 794 * the relevant portions the CPU-hotplug code, the grace-period 795 * initialization code, and the rcu_read_unlock() code paths. 796 * 797 * For more detail, please refer to the "Hotplug CPU" section 798 * of RCU's Requirements documentation. 799 */ 800 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 801 struct rcu_node *rnp1; 802 803 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 804 __func__, rnp->grplo, rnp->grphi, rnp->level, 805 (long)rnp->gp_seq, (long)rnp->completedqs); 806 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 807 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 808 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 809 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 810 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 811 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 812 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 813 return 1; /* Break things loose after complaining. */ 814 } 815 816 /* 817 * A CPU running for an extended time within the kernel can 818 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 819 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 820 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 821 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 822 * variable are safe because the assignments are repeated if this 823 * CPU failed to pass through a quiescent state. This code 824 * also checks .jiffies_resched in case jiffies_to_sched_qs 825 * is set way high. 826 */ 827 jtsq = READ_ONCE(jiffies_to_sched_qs); 828 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 829 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 830 time_after(jiffies, rcu_state.jiffies_resched) || 831 rcu_state.cbovld)) { 832 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 833 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 834 smp_store_release(&rdp->rcu_urgent_qs, true); 835 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 836 WRITE_ONCE(rdp->rcu_urgent_qs, true); 837 } 838 839 /* 840 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 841 * The above code handles this, but only for straight cond_resched(). 842 * And some in-kernel loops check need_resched() before calling 843 * cond_resched(), which defeats the above code for CPUs that are 844 * running in-kernel with scheduling-clock interrupts disabled. 845 * So hit them over the head with the resched_cpu() hammer! 846 */ 847 if (tick_nohz_full_cpu(rdp->cpu) && 848 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 849 rcu_state.cbovld)) { 850 WRITE_ONCE(rdp->rcu_urgent_qs, true); 851 resched_cpu(rdp->cpu); 852 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 853 } 854 855 /* 856 * If more than halfway to RCU CPU stall-warning time, invoke 857 * resched_cpu() more frequently to try to loosen things up a bit. 858 * Also check to see if the CPU is getting hammered with interrupts, 859 * but only once per grace period, just to keep the IPIs down to 860 * a dull roar. 861 */ 862 if (time_after(jiffies, rcu_state.jiffies_resched)) { 863 if (time_after(jiffies, 864 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 865 resched_cpu(rdp->cpu); 866 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 867 } 868 if (IS_ENABLED(CONFIG_IRQ_WORK) && 869 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 870 (rnp->ffmask & rdp->grpmask)) { 871 rdp->rcu_iw_pending = true; 872 rdp->rcu_iw_gp_seq = rnp->gp_seq; 873 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 874 } 875 876 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) { 877 int cpu = rdp->cpu; 878 struct rcu_snap_record *rsrp; 879 struct kernel_cpustat *kcsp; 880 881 kcsp = &kcpustat_cpu(cpu); 882 883 rsrp = &rdp->snap_record; 884 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu); 885 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu); 886 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu); 887 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu); 888 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu); 889 rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu); 890 rsrp->jiffies = jiffies; 891 rsrp->gp_seq = rdp->gp_seq; 892 } 893 } 894 895 return 0; 896 } 897 898 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 899 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 900 unsigned long gp_seq_req, const char *s) 901 { 902 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 903 gp_seq_req, rnp->level, 904 rnp->grplo, rnp->grphi, s); 905 } 906 907 /* 908 * rcu_start_this_gp - Request the start of a particular grace period 909 * @rnp_start: The leaf node of the CPU from which to start. 910 * @rdp: The rcu_data corresponding to the CPU from which to start. 911 * @gp_seq_req: The gp_seq of the grace period to start. 912 * 913 * Start the specified grace period, as needed to handle newly arrived 914 * callbacks. The required future grace periods are recorded in each 915 * rcu_node structure's ->gp_seq_needed field. Returns true if there 916 * is reason to awaken the grace-period kthread. 917 * 918 * The caller must hold the specified rcu_node structure's ->lock, which 919 * is why the caller is responsible for waking the grace-period kthread. 920 * 921 * Returns true if the GP thread needs to be awakened else false. 922 */ 923 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 924 unsigned long gp_seq_req) 925 { 926 bool ret = false; 927 struct rcu_node *rnp; 928 929 /* 930 * Use funnel locking to either acquire the root rcu_node 931 * structure's lock or bail out if the need for this grace period 932 * has already been recorded -- or if that grace period has in 933 * fact already started. If there is already a grace period in 934 * progress in a non-leaf node, no recording is needed because the 935 * end of the grace period will scan the leaf rcu_node structures. 936 * Note that rnp_start->lock must not be released. 937 */ 938 raw_lockdep_assert_held_rcu_node(rnp_start); 939 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 940 for (rnp = rnp_start; 1; rnp = rnp->parent) { 941 if (rnp != rnp_start) 942 raw_spin_lock_rcu_node(rnp); 943 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 944 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 945 (rnp != rnp_start && 946 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 947 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 948 TPS("Prestarted")); 949 goto unlock_out; 950 } 951 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 952 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 953 /* 954 * We just marked the leaf or internal node, and a 955 * grace period is in progress, which means that 956 * rcu_gp_cleanup() will see the marking. Bail to 957 * reduce contention. 958 */ 959 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 960 TPS("Startedleaf")); 961 goto unlock_out; 962 } 963 if (rnp != rnp_start && rnp->parent != NULL) 964 raw_spin_unlock_rcu_node(rnp); 965 if (!rnp->parent) 966 break; /* At root, and perhaps also leaf. */ 967 } 968 969 /* If GP already in progress, just leave, otherwise start one. */ 970 if (rcu_gp_in_progress()) { 971 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 972 goto unlock_out; 973 } 974 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 975 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 976 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 977 if (!READ_ONCE(rcu_state.gp_kthread)) { 978 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 979 goto unlock_out; 980 } 981 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 982 ret = true; /* Caller must wake GP kthread. */ 983 unlock_out: 984 /* Push furthest requested GP to leaf node and rcu_data structure. */ 985 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 986 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 987 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 988 } 989 if (rnp != rnp_start) 990 raw_spin_unlock_rcu_node(rnp); 991 return ret; 992 } 993 994 /* 995 * Clean up any old requests for the just-ended grace period. Also return 996 * whether any additional grace periods have been requested. 997 */ 998 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 999 { 1000 bool needmore; 1001 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1002 1003 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1004 if (!needmore) 1005 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1006 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1007 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1008 return needmore; 1009 } 1010 1011 /* 1012 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1013 * interrupt or softirq handler, in which case we just might immediately 1014 * sleep upon return, resulting in a grace-period hang), and don't bother 1015 * awakening when there is nothing for the grace-period kthread to do 1016 * (as in several CPUs raced to awaken, we lost), and finally don't try 1017 * to awaken a kthread that has not yet been created. If all those checks 1018 * are passed, track some debug information and awaken. 1019 * 1020 * So why do the self-wakeup when in an interrupt or softirq handler 1021 * in the grace-period kthread's context? Because the kthread might have 1022 * been interrupted just as it was going to sleep, and just after the final 1023 * pre-sleep check of the awaken condition. In this case, a wakeup really 1024 * is required, and is therefore supplied. 1025 */ 1026 static void rcu_gp_kthread_wake(void) 1027 { 1028 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1029 1030 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1031 !READ_ONCE(rcu_state.gp_flags) || !t) 1032 return; 1033 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1034 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1035 swake_up_one(&rcu_state.gp_wq); 1036 } 1037 1038 /* 1039 * If there is room, assign a ->gp_seq number to any callbacks on this 1040 * CPU that have not already been assigned. Also accelerate any callbacks 1041 * that were previously assigned a ->gp_seq number that has since proven 1042 * to be too conservative, which can happen if callbacks get assigned a 1043 * ->gp_seq number while RCU is idle, but with reference to a non-root 1044 * rcu_node structure. This function is idempotent, so it does not hurt 1045 * to call it repeatedly. Returns an flag saying that we should awaken 1046 * the RCU grace-period kthread. 1047 * 1048 * The caller must hold rnp->lock with interrupts disabled. 1049 */ 1050 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1051 { 1052 unsigned long gp_seq_req; 1053 bool ret = false; 1054 1055 rcu_lockdep_assert_cblist_protected(rdp); 1056 raw_lockdep_assert_held_rcu_node(rnp); 1057 1058 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1059 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1060 return false; 1061 1062 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1063 1064 /* 1065 * Callbacks are often registered with incomplete grace-period 1066 * information. Something about the fact that getting exact 1067 * information requires acquiring a global lock... RCU therefore 1068 * makes a conservative estimate of the grace period number at which 1069 * a given callback will become ready to invoke. The following 1070 * code checks this estimate and improves it when possible, thus 1071 * accelerating callback invocation to an earlier grace-period 1072 * number. 1073 */ 1074 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1075 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1076 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1077 1078 /* Trace depending on how much we were able to accelerate. */ 1079 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1080 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1081 else 1082 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1083 1084 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1085 1086 return ret; 1087 } 1088 1089 /* 1090 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1091 * rcu_node structure's ->lock be held. It consults the cached value 1092 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1093 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1094 * while holding the leaf rcu_node structure's ->lock. 1095 */ 1096 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1097 struct rcu_data *rdp) 1098 { 1099 unsigned long c; 1100 bool needwake; 1101 1102 rcu_lockdep_assert_cblist_protected(rdp); 1103 c = rcu_seq_snap(&rcu_state.gp_seq); 1104 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1105 /* Old request still live, so mark recent callbacks. */ 1106 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1107 return; 1108 } 1109 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1110 needwake = rcu_accelerate_cbs(rnp, rdp); 1111 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1112 if (needwake) 1113 rcu_gp_kthread_wake(); 1114 } 1115 1116 /* 1117 * Move any callbacks whose grace period has completed to the 1118 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1119 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1120 * sublist. This function is idempotent, so it does not hurt to 1121 * invoke it repeatedly. As long as it is not invoked -too- often... 1122 * Returns true if the RCU grace-period kthread needs to be awakened. 1123 * 1124 * The caller must hold rnp->lock with interrupts disabled. 1125 */ 1126 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1127 { 1128 rcu_lockdep_assert_cblist_protected(rdp); 1129 raw_lockdep_assert_held_rcu_node(rnp); 1130 1131 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1132 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1133 return false; 1134 1135 /* 1136 * Find all callbacks whose ->gp_seq numbers indicate that they 1137 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1138 */ 1139 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1140 1141 /* Classify any remaining callbacks. */ 1142 return rcu_accelerate_cbs(rnp, rdp); 1143 } 1144 1145 /* 1146 * Move and classify callbacks, but only if doing so won't require 1147 * that the RCU grace-period kthread be awakened. 1148 */ 1149 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1150 struct rcu_data *rdp) 1151 { 1152 rcu_lockdep_assert_cblist_protected(rdp); 1153 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1154 return; 1155 // The grace period cannot end while we hold the rcu_node lock. 1156 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1157 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1158 raw_spin_unlock_rcu_node(rnp); 1159 } 1160 1161 /* 1162 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1163 * quiescent state. This is intended to be invoked when the CPU notices 1164 * a new grace period. 1165 */ 1166 static void rcu_strict_gp_check_qs(void) 1167 { 1168 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1169 rcu_read_lock(); 1170 rcu_read_unlock(); 1171 } 1172 } 1173 1174 /* 1175 * Update CPU-local rcu_data state to record the beginnings and ends of 1176 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1177 * structure corresponding to the current CPU, and must have irqs disabled. 1178 * Returns true if the grace-period kthread needs to be awakened. 1179 */ 1180 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1181 { 1182 bool ret = false; 1183 bool need_qs; 1184 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1185 1186 raw_lockdep_assert_held_rcu_node(rnp); 1187 1188 if (rdp->gp_seq == rnp->gp_seq) 1189 return false; /* Nothing to do. */ 1190 1191 /* Handle the ends of any preceding grace periods first. */ 1192 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1193 unlikely(READ_ONCE(rdp->gpwrap))) { 1194 if (!offloaded) 1195 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1196 rdp->core_needs_qs = false; 1197 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1198 } else { 1199 if (!offloaded) 1200 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1201 if (rdp->core_needs_qs) 1202 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1203 } 1204 1205 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1206 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1207 unlikely(READ_ONCE(rdp->gpwrap))) { 1208 /* 1209 * If the current grace period is waiting for this CPU, 1210 * set up to detect a quiescent state, otherwise don't 1211 * go looking for one. 1212 */ 1213 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1214 need_qs = !!(rnp->qsmask & rdp->grpmask); 1215 rdp->cpu_no_qs.b.norm = need_qs; 1216 rdp->core_needs_qs = need_qs; 1217 zero_cpu_stall_ticks(rdp); 1218 } 1219 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1220 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1221 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1222 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1223 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1224 WRITE_ONCE(rdp->gpwrap, false); 1225 rcu_gpnum_ovf(rnp, rdp); 1226 return ret; 1227 } 1228 1229 static void note_gp_changes(struct rcu_data *rdp) 1230 { 1231 unsigned long flags; 1232 bool needwake; 1233 struct rcu_node *rnp; 1234 1235 local_irq_save(flags); 1236 rnp = rdp->mynode; 1237 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1238 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1239 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1240 local_irq_restore(flags); 1241 return; 1242 } 1243 needwake = __note_gp_changes(rnp, rdp); 1244 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1245 rcu_strict_gp_check_qs(); 1246 if (needwake) 1247 rcu_gp_kthread_wake(); 1248 } 1249 1250 static atomic_t *rcu_gp_slow_suppress; 1251 1252 /* Register a counter to suppress debugging grace-period delays. */ 1253 void rcu_gp_slow_register(atomic_t *rgssp) 1254 { 1255 WARN_ON_ONCE(rcu_gp_slow_suppress); 1256 1257 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1258 } 1259 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1260 1261 /* Unregister a counter, with NULL for not caring which. */ 1262 void rcu_gp_slow_unregister(atomic_t *rgssp) 1263 { 1264 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1265 1266 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1267 } 1268 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1269 1270 static bool rcu_gp_slow_is_suppressed(void) 1271 { 1272 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1273 1274 return rgssp && atomic_read(rgssp); 1275 } 1276 1277 static void rcu_gp_slow(int delay) 1278 { 1279 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1280 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1281 schedule_timeout_idle(delay); 1282 } 1283 1284 static unsigned long sleep_duration; 1285 1286 /* Allow rcutorture to stall the grace-period kthread. */ 1287 void rcu_gp_set_torture_wait(int duration) 1288 { 1289 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1290 WRITE_ONCE(sleep_duration, duration); 1291 } 1292 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1293 1294 /* Actually implement the aforementioned wait. */ 1295 static void rcu_gp_torture_wait(void) 1296 { 1297 unsigned long duration; 1298 1299 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1300 return; 1301 duration = xchg(&sleep_duration, 0UL); 1302 if (duration > 0) { 1303 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1304 schedule_timeout_idle(duration); 1305 pr_alert("%s: Wait complete\n", __func__); 1306 } 1307 } 1308 1309 /* 1310 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1311 * processing. 1312 */ 1313 static void rcu_strict_gp_boundary(void *unused) 1314 { 1315 invoke_rcu_core(); 1316 } 1317 1318 // Make the polled API aware of the beginning of a grace period. 1319 static void rcu_poll_gp_seq_start(unsigned long *snap) 1320 { 1321 struct rcu_node *rnp = rcu_get_root(); 1322 1323 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1324 raw_lockdep_assert_held_rcu_node(rnp); 1325 1326 // If RCU was idle, note beginning of GP. 1327 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1328 rcu_seq_start(&rcu_state.gp_seq_polled); 1329 1330 // Either way, record current state. 1331 *snap = rcu_state.gp_seq_polled; 1332 } 1333 1334 // Make the polled API aware of the end of a grace period. 1335 static void rcu_poll_gp_seq_end(unsigned long *snap) 1336 { 1337 struct rcu_node *rnp = rcu_get_root(); 1338 1339 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1340 raw_lockdep_assert_held_rcu_node(rnp); 1341 1342 // If the previously noted GP is still in effect, record the 1343 // end of that GP. Either way, zero counter to avoid counter-wrap 1344 // problems. 1345 if (*snap && *snap == rcu_state.gp_seq_polled) { 1346 rcu_seq_end(&rcu_state.gp_seq_polled); 1347 rcu_state.gp_seq_polled_snap = 0; 1348 rcu_state.gp_seq_polled_exp_snap = 0; 1349 } else { 1350 *snap = 0; 1351 } 1352 } 1353 1354 // Make the polled API aware of the beginning of a grace period, but 1355 // where caller does not hold the root rcu_node structure's lock. 1356 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1357 { 1358 unsigned long flags; 1359 struct rcu_node *rnp = rcu_get_root(); 1360 1361 if (rcu_init_invoked()) { 1362 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1363 lockdep_assert_irqs_enabled(); 1364 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1365 } 1366 rcu_poll_gp_seq_start(snap); 1367 if (rcu_init_invoked()) 1368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1369 } 1370 1371 // Make the polled API aware of the end of a grace period, but where 1372 // caller does not hold the root rcu_node structure's lock. 1373 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1374 { 1375 unsigned long flags; 1376 struct rcu_node *rnp = rcu_get_root(); 1377 1378 if (rcu_init_invoked()) { 1379 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 1380 lockdep_assert_irqs_enabled(); 1381 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1382 } 1383 rcu_poll_gp_seq_end(snap); 1384 if (rcu_init_invoked()) 1385 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1386 } 1387 1388 /* 1389 * Initialize a new grace period. Return false if no grace period required. 1390 */ 1391 static noinline_for_stack bool rcu_gp_init(void) 1392 { 1393 unsigned long flags; 1394 unsigned long oldmask; 1395 unsigned long mask; 1396 struct rcu_data *rdp; 1397 struct rcu_node *rnp = rcu_get_root(); 1398 1399 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1400 raw_spin_lock_irq_rcu_node(rnp); 1401 if (!READ_ONCE(rcu_state.gp_flags)) { 1402 /* Spurious wakeup, tell caller to go back to sleep. */ 1403 raw_spin_unlock_irq_rcu_node(rnp); 1404 return false; 1405 } 1406 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1407 1408 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1409 /* 1410 * Grace period already in progress, don't start another. 1411 * Not supposed to be able to happen. 1412 */ 1413 raw_spin_unlock_irq_rcu_node(rnp); 1414 return false; 1415 } 1416 1417 /* Advance to a new grace period and initialize state. */ 1418 record_gp_stall_check_time(); 1419 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1420 rcu_seq_start(&rcu_state.gp_seq); 1421 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1422 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1423 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1424 raw_spin_unlock_irq_rcu_node(rnp); 1425 1426 /* 1427 * Apply per-leaf buffered online and offline operations to 1428 * the rcu_node tree. Note that this new grace period need not 1429 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1430 * offlining path, when combined with checks in this function, 1431 * will handle CPUs that are currently going offline or that will 1432 * go offline later. Please also refer to "Hotplug CPU" section 1433 * of RCU's Requirements documentation. 1434 */ 1435 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1436 /* Exclude CPU hotplug operations. */ 1437 rcu_for_each_leaf_node(rnp) { 1438 local_irq_save(flags); 1439 arch_spin_lock(&rcu_state.ofl_lock); 1440 raw_spin_lock_rcu_node(rnp); 1441 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1442 !rnp->wait_blkd_tasks) { 1443 /* Nothing to do on this leaf rcu_node structure. */ 1444 raw_spin_unlock_rcu_node(rnp); 1445 arch_spin_unlock(&rcu_state.ofl_lock); 1446 local_irq_restore(flags); 1447 continue; 1448 } 1449 1450 /* Record old state, apply changes to ->qsmaskinit field. */ 1451 oldmask = rnp->qsmaskinit; 1452 rnp->qsmaskinit = rnp->qsmaskinitnext; 1453 1454 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1455 if (!oldmask != !rnp->qsmaskinit) { 1456 if (!oldmask) { /* First online CPU for rcu_node. */ 1457 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1458 rcu_init_new_rnp(rnp); 1459 } else if (rcu_preempt_has_tasks(rnp)) { 1460 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1461 } else { /* Last offline CPU and can propagate. */ 1462 rcu_cleanup_dead_rnp(rnp); 1463 } 1464 } 1465 1466 /* 1467 * If all waited-on tasks from prior grace period are 1468 * done, and if all this rcu_node structure's CPUs are 1469 * still offline, propagate up the rcu_node tree and 1470 * clear ->wait_blkd_tasks. Otherwise, if one of this 1471 * rcu_node structure's CPUs has since come back online, 1472 * simply clear ->wait_blkd_tasks. 1473 */ 1474 if (rnp->wait_blkd_tasks && 1475 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1476 rnp->wait_blkd_tasks = false; 1477 if (!rnp->qsmaskinit) 1478 rcu_cleanup_dead_rnp(rnp); 1479 } 1480 1481 raw_spin_unlock_rcu_node(rnp); 1482 arch_spin_unlock(&rcu_state.ofl_lock); 1483 local_irq_restore(flags); 1484 } 1485 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1486 1487 /* 1488 * Set the quiescent-state-needed bits in all the rcu_node 1489 * structures for all currently online CPUs in breadth-first 1490 * order, starting from the root rcu_node structure, relying on the 1491 * layout of the tree within the rcu_state.node[] array. Note that 1492 * other CPUs will access only the leaves of the hierarchy, thus 1493 * seeing that no grace period is in progress, at least until the 1494 * corresponding leaf node has been initialized. 1495 * 1496 * The grace period cannot complete until the initialization 1497 * process finishes, because this kthread handles both. 1498 */ 1499 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1500 rcu_for_each_node_breadth_first(rnp) { 1501 rcu_gp_slow(gp_init_delay); 1502 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1503 rdp = this_cpu_ptr(&rcu_data); 1504 rcu_preempt_check_blocked_tasks(rnp); 1505 rnp->qsmask = rnp->qsmaskinit; 1506 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1507 if (rnp == rdp->mynode) 1508 (void)__note_gp_changes(rnp, rdp); 1509 rcu_preempt_boost_start_gp(rnp); 1510 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1511 rnp->level, rnp->grplo, 1512 rnp->grphi, rnp->qsmask); 1513 /* Quiescent states for tasks on any now-offline CPUs. */ 1514 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1515 rnp->rcu_gp_init_mask = mask; 1516 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1517 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1518 else 1519 raw_spin_unlock_irq_rcu_node(rnp); 1520 cond_resched_tasks_rcu_qs(); 1521 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1522 } 1523 1524 // If strict, make all CPUs aware of new grace period. 1525 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1526 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1527 1528 return true; 1529 } 1530 1531 /* 1532 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1533 * time. 1534 */ 1535 static bool rcu_gp_fqs_check_wake(int *gfp) 1536 { 1537 struct rcu_node *rnp = rcu_get_root(); 1538 1539 // If under overload conditions, force an immediate FQS scan. 1540 if (*gfp & RCU_GP_FLAG_OVLD) 1541 return true; 1542 1543 // Someone like call_rcu() requested a force-quiescent-state scan. 1544 *gfp = READ_ONCE(rcu_state.gp_flags); 1545 if (*gfp & RCU_GP_FLAG_FQS) 1546 return true; 1547 1548 // The current grace period has completed. 1549 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1550 return true; 1551 1552 return false; 1553 } 1554 1555 /* 1556 * Do one round of quiescent-state forcing. 1557 */ 1558 static void rcu_gp_fqs(bool first_time) 1559 { 1560 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall); 1561 struct rcu_node *rnp = rcu_get_root(); 1562 1563 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1564 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1565 1566 WARN_ON_ONCE(nr_fqs > 3); 1567 /* Only countdown nr_fqs for stall purposes if jiffies moves. */ 1568 if (nr_fqs) { 1569 if (nr_fqs == 1) { 1570 WRITE_ONCE(rcu_state.jiffies_stall, 1571 jiffies + rcu_jiffies_till_stall_check()); 1572 } 1573 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs); 1574 } 1575 1576 if (first_time) { 1577 /* Collect dyntick-idle snapshots. */ 1578 force_qs_rnp(dyntick_save_progress_counter); 1579 } else { 1580 /* Handle dyntick-idle and offline CPUs. */ 1581 force_qs_rnp(rcu_implicit_dynticks_qs); 1582 } 1583 /* Clear flag to prevent immediate re-entry. */ 1584 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1585 raw_spin_lock_irq_rcu_node(rnp); 1586 WRITE_ONCE(rcu_state.gp_flags, 1587 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1588 raw_spin_unlock_irq_rcu_node(rnp); 1589 } 1590 } 1591 1592 /* 1593 * Loop doing repeated quiescent-state forcing until the grace period ends. 1594 */ 1595 static noinline_for_stack void rcu_gp_fqs_loop(void) 1596 { 1597 bool first_gp_fqs = true; 1598 int gf = 0; 1599 unsigned long j; 1600 int ret; 1601 struct rcu_node *rnp = rcu_get_root(); 1602 1603 j = READ_ONCE(jiffies_till_first_fqs); 1604 if (rcu_state.cbovld) 1605 gf = RCU_GP_FLAG_OVLD; 1606 ret = 0; 1607 for (;;) { 1608 if (rcu_state.cbovld) { 1609 j = (j + 2) / 3; 1610 if (j <= 0) 1611 j = 1; 1612 } 1613 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1614 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1615 /* 1616 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1617 * update; required for stall checks. 1618 */ 1619 smp_wmb(); 1620 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1621 jiffies + (j ? 3 * j : 2)); 1622 } 1623 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1624 TPS("fqswait")); 1625 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1626 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1627 rcu_gp_fqs_check_wake(&gf), j); 1628 rcu_gp_torture_wait(); 1629 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1630 /* Locking provides needed memory barriers. */ 1631 /* 1632 * Exit the loop if the root rcu_node structure indicates that the grace period 1633 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1634 * is required only for single-node rcu_node trees because readers blocking 1635 * the current grace period are queued only on leaf rcu_node structures. 1636 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1637 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1638 * the corresponding leaf nodes have passed through their quiescent state. 1639 */ 1640 if (!READ_ONCE(rnp->qsmask) && 1641 !rcu_preempt_blocked_readers_cgp(rnp)) 1642 break; 1643 /* If time for quiescent-state forcing, do it. */ 1644 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1645 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1646 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1647 TPS("fqsstart")); 1648 rcu_gp_fqs(first_gp_fqs); 1649 gf = 0; 1650 if (first_gp_fqs) { 1651 first_gp_fqs = false; 1652 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1653 } 1654 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1655 TPS("fqsend")); 1656 cond_resched_tasks_rcu_qs(); 1657 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1658 ret = 0; /* Force full wait till next FQS. */ 1659 j = READ_ONCE(jiffies_till_next_fqs); 1660 } else { 1661 /* Deal with stray signal. */ 1662 cond_resched_tasks_rcu_qs(); 1663 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1664 WARN_ON(signal_pending(current)); 1665 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1666 TPS("fqswaitsig")); 1667 ret = 1; /* Keep old FQS timing. */ 1668 j = jiffies; 1669 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1670 j = 1; 1671 else 1672 j = rcu_state.jiffies_force_qs - j; 1673 gf = 0; 1674 } 1675 } 1676 } 1677 1678 /* 1679 * Clean up after the old grace period. 1680 */ 1681 static noinline void rcu_gp_cleanup(void) 1682 { 1683 int cpu; 1684 bool needgp = false; 1685 unsigned long gp_duration; 1686 unsigned long new_gp_seq; 1687 bool offloaded; 1688 struct rcu_data *rdp; 1689 struct rcu_node *rnp = rcu_get_root(); 1690 struct swait_queue_head *sq; 1691 1692 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1693 raw_spin_lock_irq_rcu_node(rnp); 1694 rcu_state.gp_end = jiffies; 1695 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1696 if (gp_duration > rcu_state.gp_max) 1697 rcu_state.gp_max = gp_duration; 1698 1699 /* 1700 * We know the grace period is complete, but to everyone else 1701 * it appears to still be ongoing. But it is also the case 1702 * that to everyone else it looks like there is nothing that 1703 * they can do to advance the grace period. It is therefore 1704 * safe for us to drop the lock in order to mark the grace 1705 * period as completed in all of the rcu_node structures. 1706 */ 1707 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1708 raw_spin_unlock_irq_rcu_node(rnp); 1709 1710 /* 1711 * Propagate new ->gp_seq value to rcu_node structures so that 1712 * other CPUs don't have to wait until the start of the next grace 1713 * period to process their callbacks. This also avoids some nasty 1714 * RCU grace-period initialization races by forcing the end of 1715 * the current grace period to be completely recorded in all of 1716 * the rcu_node structures before the beginning of the next grace 1717 * period is recorded in any of the rcu_node structures. 1718 */ 1719 new_gp_seq = rcu_state.gp_seq; 1720 rcu_seq_end(&new_gp_seq); 1721 rcu_for_each_node_breadth_first(rnp) { 1722 raw_spin_lock_irq_rcu_node(rnp); 1723 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1724 dump_blkd_tasks(rnp, 10); 1725 WARN_ON_ONCE(rnp->qsmask); 1726 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1727 if (!rnp->parent) 1728 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1729 rdp = this_cpu_ptr(&rcu_data); 1730 if (rnp == rdp->mynode) 1731 needgp = __note_gp_changes(rnp, rdp) || needgp; 1732 /* smp_mb() provided by prior unlock-lock pair. */ 1733 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1734 // Reset overload indication for CPUs no longer overloaded 1735 if (rcu_is_leaf_node(rnp)) 1736 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1737 rdp = per_cpu_ptr(&rcu_data, cpu); 1738 check_cb_ovld_locked(rdp, rnp); 1739 } 1740 sq = rcu_nocb_gp_get(rnp); 1741 raw_spin_unlock_irq_rcu_node(rnp); 1742 rcu_nocb_gp_cleanup(sq); 1743 cond_resched_tasks_rcu_qs(); 1744 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1745 rcu_gp_slow(gp_cleanup_delay); 1746 } 1747 rnp = rcu_get_root(); 1748 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1749 1750 /* Declare grace period done, trace first to use old GP number. */ 1751 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1752 rcu_seq_end(&rcu_state.gp_seq); 1753 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1754 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1755 /* Check for GP requests since above loop. */ 1756 rdp = this_cpu_ptr(&rcu_data); 1757 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1758 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1759 TPS("CleanupMore")); 1760 needgp = true; 1761 } 1762 /* Advance CBs to reduce false positives below. */ 1763 offloaded = rcu_rdp_is_offloaded(rdp); 1764 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1765 1766 // We get here if a grace period was needed (“needgp”) 1767 // and the above call to rcu_accelerate_cbs() did not set 1768 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1769 // the need for another grace period). The purpose 1770 // of the “offloaded” check is to avoid invoking 1771 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1772 // hold the ->nocb_lock needed to safely access an offloaded 1773 // ->cblist. We do not want to acquire that lock because 1774 // it can be heavily contended during callback floods. 1775 1776 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1777 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1778 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1779 } else { 1780 1781 // We get here either if there is no need for an 1782 // additional grace period or if rcu_accelerate_cbs() has 1783 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1784 // So all we need to do is to clear all of the other 1785 // ->gp_flags bits. 1786 1787 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1788 } 1789 raw_spin_unlock_irq_rcu_node(rnp); 1790 1791 // If strict, make all CPUs aware of the end of the old grace period. 1792 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1793 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1794 } 1795 1796 /* 1797 * Body of kthread that handles grace periods. 1798 */ 1799 static int __noreturn rcu_gp_kthread(void *unused) 1800 { 1801 rcu_bind_gp_kthread(); 1802 for (;;) { 1803 1804 /* Handle grace-period start. */ 1805 for (;;) { 1806 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1807 TPS("reqwait")); 1808 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1809 swait_event_idle_exclusive(rcu_state.gp_wq, 1810 READ_ONCE(rcu_state.gp_flags) & 1811 RCU_GP_FLAG_INIT); 1812 rcu_gp_torture_wait(); 1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1814 /* Locking provides needed memory barrier. */ 1815 if (rcu_gp_init()) 1816 break; 1817 cond_resched_tasks_rcu_qs(); 1818 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1819 WARN_ON(signal_pending(current)); 1820 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1821 TPS("reqwaitsig")); 1822 } 1823 1824 /* Handle quiescent-state forcing. */ 1825 rcu_gp_fqs_loop(); 1826 1827 /* Handle grace-period end. */ 1828 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1829 rcu_gp_cleanup(); 1830 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1831 } 1832 } 1833 1834 /* 1835 * Report a full set of quiescent states to the rcu_state data structure. 1836 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1837 * another grace period is required. Whether we wake the grace-period 1838 * kthread or it awakens itself for the next round of quiescent-state 1839 * forcing, that kthread will clean up after the just-completed grace 1840 * period. Note that the caller must hold rnp->lock, which is released 1841 * before return. 1842 */ 1843 static void rcu_report_qs_rsp(unsigned long flags) 1844 __releases(rcu_get_root()->lock) 1845 { 1846 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1847 WARN_ON_ONCE(!rcu_gp_in_progress()); 1848 WRITE_ONCE(rcu_state.gp_flags, 1849 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1850 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1851 rcu_gp_kthread_wake(); 1852 } 1853 1854 /* 1855 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1856 * Allows quiescent states for a group of CPUs to be reported at one go 1857 * to the specified rcu_node structure, though all the CPUs in the group 1858 * must be represented by the same rcu_node structure (which need not be a 1859 * leaf rcu_node structure, though it often will be). The gps parameter 1860 * is the grace-period snapshot, which means that the quiescent states 1861 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1862 * must be held upon entry, and it is released before return. 1863 * 1864 * As a special case, if mask is zero, the bit-already-cleared check is 1865 * disabled. This allows propagating quiescent state due to resumed tasks 1866 * during grace-period initialization. 1867 */ 1868 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1869 unsigned long gps, unsigned long flags) 1870 __releases(rnp->lock) 1871 { 1872 unsigned long oldmask = 0; 1873 struct rcu_node *rnp_c; 1874 1875 raw_lockdep_assert_held_rcu_node(rnp); 1876 1877 /* Walk up the rcu_node hierarchy. */ 1878 for (;;) { 1879 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1880 1881 /* 1882 * Our bit has already been cleared, or the 1883 * relevant grace period is already over, so done. 1884 */ 1885 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1886 return; 1887 } 1888 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1889 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1890 rcu_preempt_blocked_readers_cgp(rnp)); 1891 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1892 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1893 mask, rnp->qsmask, rnp->level, 1894 rnp->grplo, rnp->grphi, 1895 !!rnp->gp_tasks); 1896 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1897 1898 /* Other bits still set at this level, so done. */ 1899 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1900 return; 1901 } 1902 rnp->completedqs = rnp->gp_seq; 1903 mask = rnp->grpmask; 1904 if (rnp->parent == NULL) { 1905 1906 /* No more levels. Exit loop holding root lock. */ 1907 1908 break; 1909 } 1910 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1911 rnp_c = rnp; 1912 rnp = rnp->parent; 1913 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1914 oldmask = READ_ONCE(rnp_c->qsmask); 1915 } 1916 1917 /* 1918 * Get here if we are the last CPU to pass through a quiescent 1919 * state for this grace period. Invoke rcu_report_qs_rsp() 1920 * to clean up and start the next grace period if one is needed. 1921 */ 1922 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1923 } 1924 1925 /* 1926 * Record a quiescent state for all tasks that were previously queued 1927 * on the specified rcu_node structure and that were blocking the current 1928 * RCU grace period. The caller must hold the corresponding rnp->lock with 1929 * irqs disabled, and this lock is released upon return, but irqs remain 1930 * disabled. 1931 */ 1932 static void __maybe_unused 1933 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1934 __releases(rnp->lock) 1935 { 1936 unsigned long gps; 1937 unsigned long mask; 1938 struct rcu_node *rnp_p; 1939 1940 raw_lockdep_assert_held_rcu_node(rnp); 1941 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1942 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1943 rnp->qsmask != 0) { 1944 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1945 return; /* Still need more quiescent states! */ 1946 } 1947 1948 rnp->completedqs = rnp->gp_seq; 1949 rnp_p = rnp->parent; 1950 if (rnp_p == NULL) { 1951 /* 1952 * Only one rcu_node structure in the tree, so don't 1953 * try to report up to its nonexistent parent! 1954 */ 1955 rcu_report_qs_rsp(flags); 1956 return; 1957 } 1958 1959 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1960 gps = rnp->gp_seq; 1961 mask = rnp->grpmask; 1962 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1963 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1964 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1965 } 1966 1967 /* 1968 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1969 * structure. This must be called from the specified CPU. 1970 */ 1971 static void 1972 rcu_report_qs_rdp(struct rcu_data *rdp) 1973 { 1974 unsigned long flags; 1975 unsigned long mask; 1976 bool needacc = false; 1977 struct rcu_node *rnp; 1978 1979 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 1980 rnp = rdp->mynode; 1981 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1982 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1983 rdp->gpwrap) { 1984 1985 /* 1986 * The grace period in which this quiescent state was 1987 * recorded has ended, so don't report it upwards. 1988 * We will instead need a new quiescent state that lies 1989 * within the current grace period. 1990 */ 1991 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1992 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1993 return; 1994 } 1995 mask = rdp->grpmask; 1996 rdp->core_needs_qs = false; 1997 if ((rnp->qsmask & mask) == 0) { 1998 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1999 } else { 2000 /* 2001 * This GP can't end until cpu checks in, so all of our 2002 * callbacks can be processed during the next GP. 2003 * 2004 * NOCB kthreads have their own way to deal with that... 2005 */ 2006 if (!rcu_rdp_is_offloaded(rdp)) { 2007 /* 2008 * The current GP has not yet ended, so it 2009 * should not be possible for rcu_accelerate_cbs() 2010 * to return true. So complain, but don't awaken. 2011 */ 2012 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp)); 2013 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2014 /* 2015 * ...but NOCB kthreads may miss or delay callbacks acceleration 2016 * if in the middle of a (de-)offloading process. 2017 */ 2018 needacc = true; 2019 } 2020 2021 rcu_disable_urgency_upon_qs(rdp); 2022 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2023 /* ^^^ Released rnp->lock */ 2024 2025 if (needacc) { 2026 rcu_nocb_lock_irqsave(rdp, flags); 2027 rcu_accelerate_cbs_unlocked(rnp, rdp); 2028 rcu_nocb_unlock_irqrestore(rdp, flags); 2029 } 2030 } 2031 } 2032 2033 /* 2034 * Check to see if there is a new grace period of which this CPU 2035 * is not yet aware, and if so, set up local rcu_data state for it. 2036 * Otherwise, see if this CPU has just passed through its first 2037 * quiescent state for this grace period, and record that fact if so. 2038 */ 2039 static void 2040 rcu_check_quiescent_state(struct rcu_data *rdp) 2041 { 2042 /* Check for grace-period ends and beginnings. */ 2043 note_gp_changes(rdp); 2044 2045 /* 2046 * Does this CPU still need to do its part for current grace period? 2047 * If no, return and let the other CPUs do their part as well. 2048 */ 2049 if (!rdp->core_needs_qs) 2050 return; 2051 2052 /* 2053 * Was there a quiescent state since the beginning of the grace 2054 * period? If no, then exit and wait for the next call. 2055 */ 2056 if (rdp->cpu_no_qs.b.norm) 2057 return; 2058 2059 /* 2060 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2061 * judge of that). 2062 */ 2063 rcu_report_qs_rdp(rdp); 2064 } 2065 2066 /* Return true if callback-invocation time limit exceeded. */ 2067 static bool rcu_do_batch_check_time(long count, long tlimit, 2068 bool jlimit_check, unsigned long jlimit) 2069 { 2070 // Invoke local_clock() only once per 32 consecutive callbacks. 2071 return unlikely(tlimit) && 2072 (!likely(count & 31) || 2073 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) && 2074 jlimit_check && time_after(jiffies, jlimit))) && 2075 local_clock() >= tlimit; 2076 } 2077 2078 /* 2079 * Invoke any RCU callbacks that have made it to the end of their grace 2080 * period. Throttle as specified by rdp->blimit. 2081 */ 2082 static void rcu_do_batch(struct rcu_data *rdp) 2083 { 2084 long bl; 2085 long count = 0; 2086 int div; 2087 bool __maybe_unused empty; 2088 unsigned long flags; 2089 unsigned long jlimit; 2090 bool jlimit_check = false; 2091 long pending; 2092 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2093 struct rcu_head *rhp; 2094 long tlimit = 0; 2095 2096 /* If no callbacks are ready, just return. */ 2097 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2098 trace_rcu_batch_start(rcu_state.name, 2099 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2100 trace_rcu_batch_end(rcu_state.name, 0, 2101 !rcu_segcblist_empty(&rdp->cblist), 2102 need_resched(), is_idle_task(current), 2103 rcu_is_callbacks_kthread(rdp)); 2104 return; 2105 } 2106 2107 /* 2108 * Extract the list of ready callbacks, disabling IRQs to prevent 2109 * races with call_rcu() from interrupt handlers. Leave the 2110 * callback counts, as rcu_barrier() needs to be conservative. 2111 */ 2112 rcu_nocb_lock_irqsave(rdp, flags); 2113 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2114 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL); 2115 div = READ_ONCE(rcu_divisor); 2116 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2117 bl = max(rdp->blimit, pending >> div); 2118 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) && 2119 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) { 2120 const long npj = NSEC_PER_SEC / HZ; 2121 long rrn = READ_ONCE(rcu_resched_ns); 2122 2123 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2124 tlimit = local_clock() + rrn; 2125 jlimit = jiffies + (rrn + npj + 1) / npj; 2126 jlimit_check = true; 2127 } 2128 trace_rcu_batch_start(rcu_state.name, 2129 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2130 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2131 if (rcu_rdp_is_offloaded(rdp)) 2132 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2133 2134 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2135 rcu_nocb_unlock_irqrestore(rdp, flags); 2136 2137 /* Invoke callbacks. */ 2138 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2139 rhp = rcu_cblist_dequeue(&rcl); 2140 2141 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2142 rcu_callback_t f; 2143 2144 count++; 2145 debug_rcu_head_unqueue(rhp); 2146 2147 rcu_lock_acquire(&rcu_callback_map); 2148 trace_rcu_invoke_callback(rcu_state.name, rhp); 2149 2150 f = rhp->func; 2151 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2152 f(rhp); 2153 2154 rcu_lock_release(&rcu_callback_map); 2155 2156 /* 2157 * Stop only if limit reached and CPU has something to do. 2158 */ 2159 if (in_serving_softirq()) { 2160 if (count >= bl && (need_resched() || !is_idle_task(current))) 2161 break; 2162 /* 2163 * Make sure we don't spend too much time here and deprive other 2164 * softirq vectors of CPU cycles. 2165 */ 2166 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) 2167 break; 2168 } else { 2169 // In rcuc/rcuoc context, so no worries about 2170 // depriving other softirq vectors of CPU cycles. 2171 local_bh_enable(); 2172 lockdep_assert_irqs_enabled(); 2173 cond_resched_tasks_rcu_qs(); 2174 lockdep_assert_irqs_enabled(); 2175 local_bh_disable(); 2176 // But rcuc kthreads can delay quiescent-state 2177 // reporting, so check time limits for them. 2178 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING && 2179 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) { 2180 rdp->rcu_cpu_has_work = 1; 2181 break; 2182 } 2183 } 2184 } 2185 2186 rcu_nocb_lock_irqsave(rdp, flags); 2187 rdp->n_cbs_invoked += count; 2188 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2189 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2190 2191 /* Update counts and requeue any remaining callbacks. */ 2192 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2193 rcu_segcblist_add_len(&rdp->cblist, -count); 2194 2195 /* Reinstate batch limit if we have worked down the excess. */ 2196 count = rcu_segcblist_n_cbs(&rdp->cblist); 2197 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2198 rdp->blimit = blimit; 2199 2200 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2201 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2202 rdp->qlen_last_fqs_check = 0; 2203 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2204 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2205 rdp->qlen_last_fqs_check = count; 2206 2207 /* 2208 * The following usually indicates a double call_rcu(). To track 2209 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2210 */ 2211 empty = rcu_segcblist_empty(&rdp->cblist); 2212 WARN_ON_ONCE(count == 0 && !empty); 2213 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2214 count != 0 && empty); 2215 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2216 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2217 2218 rcu_nocb_unlock_irqrestore(rdp, flags); 2219 2220 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2221 } 2222 2223 /* 2224 * This function is invoked from each scheduling-clock interrupt, 2225 * and checks to see if this CPU is in a non-context-switch quiescent 2226 * state, for example, user mode or idle loop. It also schedules RCU 2227 * core processing. If the current grace period has gone on too long, 2228 * it will ask the scheduler to manufacture a context switch for the sole 2229 * purpose of providing the needed quiescent state. 2230 */ 2231 void rcu_sched_clock_irq(int user) 2232 { 2233 unsigned long j; 2234 2235 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2236 j = jiffies; 2237 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2238 __this_cpu_write(rcu_data.last_sched_clock, j); 2239 } 2240 trace_rcu_utilization(TPS("Start scheduler-tick")); 2241 lockdep_assert_irqs_disabled(); 2242 raw_cpu_inc(rcu_data.ticks_this_gp); 2243 /* The load-acquire pairs with the store-release setting to true. */ 2244 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2245 /* Idle and userspace execution already are quiescent states. */ 2246 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2247 set_tsk_need_resched(current); 2248 set_preempt_need_resched(); 2249 } 2250 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2251 } 2252 rcu_flavor_sched_clock_irq(user); 2253 if (rcu_pending(user)) 2254 invoke_rcu_core(); 2255 if (user || rcu_is_cpu_rrupt_from_idle()) 2256 rcu_note_voluntary_context_switch(current); 2257 lockdep_assert_irqs_disabled(); 2258 2259 trace_rcu_utilization(TPS("End scheduler-tick")); 2260 } 2261 2262 /* 2263 * Scan the leaf rcu_node structures. For each structure on which all 2264 * CPUs have reported a quiescent state and on which there are tasks 2265 * blocking the current grace period, initiate RCU priority boosting. 2266 * Otherwise, invoke the specified function to check dyntick state for 2267 * each CPU that has not yet reported a quiescent state. 2268 */ 2269 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2270 { 2271 int cpu; 2272 unsigned long flags; 2273 unsigned long mask; 2274 struct rcu_data *rdp; 2275 struct rcu_node *rnp; 2276 2277 rcu_state.cbovld = rcu_state.cbovldnext; 2278 rcu_state.cbovldnext = false; 2279 rcu_for_each_leaf_node(rnp) { 2280 cond_resched_tasks_rcu_qs(); 2281 mask = 0; 2282 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2283 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2284 if (rnp->qsmask == 0) { 2285 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2286 /* 2287 * No point in scanning bits because they 2288 * are all zero. But we might need to 2289 * priority-boost blocked readers. 2290 */ 2291 rcu_initiate_boost(rnp, flags); 2292 /* rcu_initiate_boost() releases rnp->lock */ 2293 continue; 2294 } 2295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2296 continue; 2297 } 2298 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2299 rdp = per_cpu_ptr(&rcu_data, cpu); 2300 if (f(rdp)) { 2301 mask |= rdp->grpmask; 2302 rcu_disable_urgency_upon_qs(rdp); 2303 } 2304 } 2305 if (mask != 0) { 2306 /* Idle/offline CPUs, report (releases rnp->lock). */ 2307 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2308 } else { 2309 /* Nothing to do here, so just drop the lock. */ 2310 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2311 } 2312 } 2313 } 2314 2315 /* 2316 * Force quiescent states on reluctant CPUs, and also detect which 2317 * CPUs are in dyntick-idle mode. 2318 */ 2319 void rcu_force_quiescent_state(void) 2320 { 2321 unsigned long flags; 2322 bool ret; 2323 struct rcu_node *rnp; 2324 struct rcu_node *rnp_old = NULL; 2325 2326 /* Funnel through hierarchy to reduce memory contention. */ 2327 rnp = raw_cpu_read(rcu_data.mynode); 2328 for (; rnp != NULL; rnp = rnp->parent) { 2329 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2330 !raw_spin_trylock(&rnp->fqslock); 2331 if (rnp_old != NULL) 2332 raw_spin_unlock(&rnp_old->fqslock); 2333 if (ret) 2334 return; 2335 rnp_old = rnp; 2336 } 2337 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2338 2339 /* Reached the root of the rcu_node tree, acquire lock. */ 2340 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2341 raw_spin_unlock(&rnp_old->fqslock); 2342 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2343 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2344 return; /* Someone beat us to it. */ 2345 } 2346 WRITE_ONCE(rcu_state.gp_flags, 2347 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2348 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2349 rcu_gp_kthread_wake(); 2350 } 2351 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2352 2353 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2354 // grace periods. 2355 static void strict_work_handler(struct work_struct *work) 2356 { 2357 rcu_read_lock(); 2358 rcu_read_unlock(); 2359 } 2360 2361 /* Perform RCU core processing work for the current CPU. */ 2362 static __latent_entropy void rcu_core(void) 2363 { 2364 unsigned long flags; 2365 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2366 struct rcu_node *rnp = rdp->mynode; 2367 /* 2368 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2369 * Therefore this function can race with concurrent NOCB (de-)offloading 2370 * on this CPU and the below condition must be considered volatile. 2371 * However if we race with: 2372 * 2373 * _ Offloading: In the worst case we accelerate or process callbacks 2374 * concurrently with NOCB kthreads. We are guaranteed to 2375 * call rcu_nocb_lock() if that happens. 2376 * 2377 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2378 * processing. This is fine because the early stage 2379 * of deoffloading invokes rcu_core() after setting 2380 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2381 * what could have been dismissed without the need to wait 2382 * for the next rcu_pending() check in the next jiffy. 2383 */ 2384 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2385 2386 if (cpu_is_offline(smp_processor_id())) 2387 return; 2388 trace_rcu_utilization(TPS("Start RCU core")); 2389 WARN_ON_ONCE(!rdp->beenonline); 2390 2391 /* Report any deferred quiescent states if preemption enabled. */ 2392 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2393 rcu_preempt_deferred_qs(current); 2394 } else if (rcu_preempt_need_deferred_qs(current)) { 2395 set_tsk_need_resched(current); 2396 set_preempt_need_resched(); 2397 } 2398 2399 /* Update RCU state based on any recent quiescent states. */ 2400 rcu_check_quiescent_state(rdp); 2401 2402 /* No grace period and unregistered callbacks? */ 2403 if (!rcu_gp_in_progress() && 2404 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2405 rcu_nocb_lock_irqsave(rdp, flags); 2406 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2407 rcu_accelerate_cbs_unlocked(rnp, rdp); 2408 rcu_nocb_unlock_irqrestore(rdp, flags); 2409 } 2410 2411 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2412 2413 /* If there are callbacks ready, invoke them. */ 2414 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2415 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2416 rcu_do_batch(rdp); 2417 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2418 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2419 invoke_rcu_core(); 2420 } 2421 2422 /* Do any needed deferred wakeups of rcuo kthreads. */ 2423 do_nocb_deferred_wakeup(rdp); 2424 trace_rcu_utilization(TPS("End RCU core")); 2425 2426 // If strict GPs, schedule an RCU reader in a clean environment. 2427 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2428 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2429 } 2430 2431 static void rcu_core_si(struct softirq_action *h) 2432 { 2433 rcu_core(); 2434 } 2435 2436 static void rcu_wake_cond(struct task_struct *t, int status) 2437 { 2438 /* 2439 * If the thread is yielding, only wake it when this 2440 * is invoked from idle 2441 */ 2442 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2443 wake_up_process(t); 2444 } 2445 2446 static void invoke_rcu_core_kthread(void) 2447 { 2448 struct task_struct *t; 2449 unsigned long flags; 2450 2451 local_irq_save(flags); 2452 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2453 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2454 if (t != NULL && t != current) 2455 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2456 local_irq_restore(flags); 2457 } 2458 2459 /* 2460 * Wake up this CPU's rcuc kthread to do RCU core processing. 2461 */ 2462 static void invoke_rcu_core(void) 2463 { 2464 if (!cpu_online(smp_processor_id())) 2465 return; 2466 if (use_softirq) 2467 raise_softirq(RCU_SOFTIRQ); 2468 else 2469 invoke_rcu_core_kthread(); 2470 } 2471 2472 static void rcu_cpu_kthread_park(unsigned int cpu) 2473 { 2474 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2475 } 2476 2477 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2478 { 2479 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2480 } 2481 2482 /* 2483 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2484 * the RCU softirq used in configurations of RCU that do not support RCU 2485 * priority boosting. 2486 */ 2487 static void rcu_cpu_kthread(unsigned int cpu) 2488 { 2489 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2490 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2491 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2492 int spincnt; 2493 2494 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2495 for (spincnt = 0; spincnt < 10; spincnt++) { 2496 WRITE_ONCE(*j, jiffies); 2497 local_bh_disable(); 2498 *statusp = RCU_KTHREAD_RUNNING; 2499 local_irq_disable(); 2500 work = *workp; 2501 WRITE_ONCE(*workp, 0); 2502 local_irq_enable(); 2503 if (work) 2504 rcu_core(); 2505 local_bh_enable(); 2506 if (!READ_ONCE(*workp)) { 2507 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2508 *statusp = RCU_KTHREAD_WAITING; 2509 return; 2510 } 2511 } 2512 *statusp = RCU_KTHREAD_YIELDING; 2513 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2514 schedule_timeout_idle(2); 2515 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2516 *statusp = RCU_KTHREAD_WAITING; 2517 WRITE_ONCE(*j, jiffies); 2518 } 2519 2520 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2521 .store = &rcu_data.rcu_cpu_kthread_task, 2522 .thread_should_run = rcu_cpu_kthread_should_run, 2523 .thread_fn = rcu_cpu_kthread, 2524 .thread_comm = "rcuc/%u", 2525 .setup = rcu_cpu_kthread_setup, 2526 .park = rcu_cpu_kthread_park, 2527 }; 2528 2529 /* 2530 * Spawn per-CPU RCU core processing kthreads. 2531 */ 2532 static int __init rcu_spawn_core_kthreads(void) 2533 { 2534 int cpu; 2535 2536 for_each_possible_cpu(cpu) 2537 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2538 if (use_softirq) 2539 return 0; 2540 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2541 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2542 return 0; 2543 } 2544 2545 /* 2546 * Handle any core-RCU processing required by a call_rcu() invocation. 2547 */ 2548 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2549 unsigned long flags) 2550 { 2551 /* 2552 * If called from an extended quiescent state, invoke the RCU 2553 * core in order to force a re-evaluation of RCU's idleness. 2554 */ 2555 if (!rcu_is_watching()) 2556 invoke_rcu_core(); 2557 2558 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2559 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2560 return; 2561 2562 /* 2563 * Force the grace period if too many callbacks or too long waiting. 2564 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2565 * if some other CPU has recently done so. Also, don't bother 2566 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2567 * is the only one waiting for a grace period to complete. 2568 */ 2569 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2570 rdp->qlen_last_fqs_check + qhimark)) { 2571 2572 /* Are we ignoring a completed grace period? */ 2573 note_gp_changes(rdp); 2574 2575 /* Start a new grace period if one not already started. */ 2576 if (!rcu_gp_in_progress()) { 2577 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2578 } else { 2579 /* Give the grace period a kick. */ 2580 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2581 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2582 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2583 rcu_force_quiescent_state(); 2584 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2585 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2586 } 2587 } 2588 } 2589 2590 /* 2591 * RCU callback function to leak a callback. 2592 */ 2593 static void rcu_leak_callback(struct rcu_head *rhp) 2594 { 2595 } 2596 2597 /* 2598 * Check and if necessary update the leaf rcu_node structure's 2599 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2600 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2601 * structure's ->lock. 2602 */ 2603 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2604 { 2605 raw_lockdep_assert_held_rcu_node(rnp); 2606 if (qovld_calc <= 0) 2607 return; // Early boot and wildcard value set. 2608 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2609 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2610 else 2611 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2612 } 2613 2614 /* 2615 * Check and if necessary update the leaf rcu_node structure's 2616 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2617 * number of queued RCU callbacks. No locks need be held, but the 2618 * caller must have disabled interrupts. 2619 * 2620 * Note that this function ignores the possibility that there are a lot 2621 * of callbacks all of which have already seen the end of their respective 2622 * grace periods. This omission is due to the need for no-CBs CPUs to 2623 * be holding ->nocb_lock to do this check, which is too heavy for a 2624 * common-case operation. 2625 */ 2626 static void check_cb_ovld(struct rcu_data *rdp) 2627 { 2628 struct rcu_node *const rnp = rdp->mynode; 2629 2630 if (qovld_calc <= 0 || 2631 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2632 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2633 return; // Early boot wildcard value or already set correctly. 2634 raw_spin_lock_rcu_node(rnp); 2635 check_cb_ovld_locked(rdp, rnp); 2636 raw_spin_unlock_rcu_node(rnp); 2637 } 2638 2639 static void 2640 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in) 2641 { 2642 static atomic_t doublefrees; 2643 unsigned long flags; 2644 bool lazy; 2645 struct rcu_data *rdp; 2646 bool was_alldone; 2647 2648 /* Misaligned rcu_head! */ 2649 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2650 2651 if (debug_rcu_head_queue(head)) { 2652 /* 2653 * Probable double call_rcu(), so leak the callback. 2654 * Use rcu:rcu_callback trace event to find the previous 2655 * time callback was passed to call_rcu(). 2656 */ 2657 if (atomic_inc_return(&doublefrees) < 4) { 2658 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2659 mem_dump_obj(head); 2660 } 2661 WRITE_ONCE(head->func, rcu_leak_callback); 2662 return; 2663 } 2664 head->func = func; 2665 head->next = NULL; 2666 kasan_record_aux_stack_noalloc(head); 2667 local_irq_save(flags); 2668 rdp = this_cpu_ptr(&rcu_data); 2669 lazy = lazy_in && !rcu_async_should_hurry(); 2670 2671 /* Add the callback to our list. */ 2672 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2673 // This can trigger due to call_rcu() from offline CPU: 2674 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2675 WARN_ON_ONCE(!rcu_is_watching()); 2676 // Very early boot, before rcu_init(). Initialize if needed 2677 // and then drop through to queue the callback. 2678 if (rcu_segcblist_empty(&rdp->cblist)) 2679 rcu_segcblist_init(&rdp->cblist); 2680 } 2681 2682 check_cb_ovld(rdp); 2683 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) 2684 return; // Enqueued onto ->nocb_bypass, so just leave. 2685 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2686 rcu_segcblist_enqueue(&rdp->cblist, head); 2687 if (__is_kvfree_rcu_offset((unsigned long)func)) 2688 trace_rcu_kvfree_callback(rcu_state.name, head, 2689 (unsigned long)func, 2690 rcu_segcblist_n_cbs(&rdp->cblist)); 2691 else 2692 trace_rcu_callback(rcu_state.name, head, 2693 rcu_segcblist_n_cbs(&rdp->cblist)); 2694 2695 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2696 2697 /* Go handle any RCU core processing required. */ 2698 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2699 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2700 } else { 2701 __call_rcu_core(rdp, head, flags); 2702 local_irq_restore(flags); 2703 } 2704 } 2705 2706 #ifdef CONFIG_RCU_LAZY 2707 /** 2708 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and 2709 * flush all lazy callbacks (including the new one) to the main ->cblist while 2710 * doing so. 2711 * 2712 * @head: structure to be used for queueing the RCU updates. 2713 * @func: actual callback function to be invoked after the grace period 2714 * 2715 * The callback function will be invoked some time after a full grace 2716 * period elapses, in other words after all pre-existing RCU read-side 2717 * critical sections have completed. 2718 * 2719 * Use this API instead of call_rcu() if you don't want the callback to be 2720 * invoked after very long periods of time, which can happen on systems without 2721 * memory pressure and on systems which are lightly loaded or mostly idle. 2722 * This function will cause callbacks to be invoked sooner than later at the 2723 * expense of extra power. Other than that, this function is identical to, and 2724 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory 2725 * ordering and other functionality. 2726 */ 2727 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func) 2728 { 2729 return __call_rcu_common(head, func, false); 2730 } 2731 EXPORT_SYMBOL_GPL(call_rcu_hurry); 2732 #endif 2733 2734 /** 2735 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2736 * By default the callbacks are 'lazy' and are kept hidden from the main 2737 * ->cblist to prevent starting of grace periods too soon. 2738 * If you desire grace periods to start very soon, use call_rcu_hurry(). 2739 * 2740 * @head: structure to be used for queueing the RCU updates. 2741 * @func: actual callback function to be invoked after the grace period 2742 * 2743 * The callback function will be invoked some time after a full grace 2744 * period elapses, in other words after all pre-existing RCU read-side 2745 * critical sections have completed. However, the callback function 2746 * might well execute concurrently with RCU read-side critical sections 2747 * that started after call_rcu() was invoked. 2748 * 2749 * RCU read-side critical sections are delimited by rcu_read_lock() 2750 * and rcu_read_unlock(), and may be nested. In addition, but only in 2751 * v5.0 and later, regions of code across which interrupts, preemption, 2752 * or softirqs have been disabled also serve as RCU read-side critical 2753 * sections. This includes hardware interrupt handlers, softirq handlers, 2754 * and NMI handlers. 2755 * 2756 * Note that all CPUs must agree that the grace period extended beyond 2757 * all pre-existing RCU read-side critical section. On systems with more 2758 * than one CPU, this means that when "func()" is invoked, each CPU is 2759 * guaranteed to have executed a full memory barrier since the end of its 2760 * last RCU read-side critical section whose beginning preceded the call 2761 * to call_rcu(). It also means that each CPU executing an RCU read-side 2762 * critical section that continues beyond the start of "func()" must have 2763 * executed a memory barrier after the call_rcu() but before the beginning 2764 * of that RCU read-side critical section. Note that these guarantees 2765 * include CPUs that are offline, idle, or executing in user mode, as 2766 * well as CPUs that are executing in the kernel. 2767 * 2768 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2769 * resulting RCU callback function "func()", then both CPU A and CPU B are 2770 * guaranteed to execute a full memory barrier during the time interval 2771 * between the call to call_rcu() and the invocation of "func()" -- even 2772 * if CPU A and CPU B are the same CPU (but again only if the system has 2773 * more than one CPU). 2774 * 2775 * Implementation of these memory-ordering guarantees is described here: 2776 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2777 */ 2778 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2779 { 2780 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY)); 2781 } 2782 EXPORT_SYMBOL_GPL(call_rcu); 2783 2784 /* Maximum number of jiffies to wait before draining a batch. */ 2785 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2786 #define KFREE_N_BATCHES 2 2787 #define FREE_N_CHANNELS 2 2788 2789 /** 2790 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2791 * @list: List node. All blocks are linked between each other 2792 * @gp_snap: Snapshot of RCU state for objects placed to this bulk 2793 * @nr_records: Number of active pointers in the array 2794 * @records: Array of the kvfree_rcu() pointers 2795 */ 2796 struct kvfree_rcu_bulk_data { 2797 struct list_head list; 2798 struct rcu_gp_oldstate gp_snap; 2799 unsigned long nr_records; 2800 void *records[]; 2801 }; 2802 2803 /* 2804 * This macro defines how many entries the "records" array 2805 * will contain. It is based on the fact that the size of 2806 * kvfree_rcu_bulk_data structure becomes exactly one page. 2807 */ 2808 #define KVFREE_BULK_MAX_ENTR \ 2809 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2810 2811 /** 2812 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2813 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2814 * @head_free: List of kfree_rcu() objects waiting for a grace period 2815 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees. 2816 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2817 * @krcp: Pointer to @kfree_rcu_cpu structure 2818 */ 2819 2820 struct kfree_rcu_cpu_work { 2821 struct rcu_work rcu_work; 2822 struct rcu_head *head_free; 2823 struct rcu_gp_oldstate head_free_gp_snap; 2824 struct list_head bulk_head_free[FREE_N_CHANNELS]; 2825 struct kfree_rcu_cpu *krcp; 2826 }; 2827 2828 /** 2829 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2830 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2831 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head" 2832 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2833 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2834 * @lock: Synchronize access to this structure 2835 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2836 * @initialized: The @rcu_work fields have been initialized 2837 * @head_count: Number of objects in rcu_head singular list 2838 * @bulk_count: Number of objects in bulk-list 2839 * @bkvcache: 2840 * A simple cache list that contains objects for reuse purpose. 2841 * In order to save some per-cpu space the list is singular. 2842 * Even though it is lockless an access has to be protected by the 2843 * per-cpu lock. 2844 * @page_cache_work: A work to refill the cache when it is empty 2845 * @backoff_page_cache_fill: Delay cache refills 2846 * @work_in_progress: Indicates that page_cache_work is running 2847 * @hrtimer: A hrtimer for scheduling a page_cache_work 2848 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2849 * 2850 * This is a per-CPU structure. The reason that it is not included in 2851 * the rcu_data structure is to permit this code to be extracted from 2852 * the RCU files. Such extraction could allow further optimization of 2853 * the interactions with the slab allocators. 2854 */ 2855 struct kfree_rcu_cpu { 2856 // Objects queued on a linked list 2857 // through their rcu_head structures. 2858 struct rcu_head *head; 2859 unsigned long head_gp_snap; 2860 atomic_t head_count; 2861 2862 // Objects queued on a bulk-list. 2863 struct list_head bulk_head[FREE_N_CHANNELS]; 2864 atomic_t bulk_count[FREE_N_CHANNELS]; 2865 2866 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2867 raw_spinlock_t lock; 2868 struct delayed_work monitor_work; 2869 bool initialized; 2870 2871 struct delayed_work page_cache_work; 2872 atomic_t backoff_page_cache_fill; 2873 atomic_t work_in_progress; 2874 struct hrtimer hrtimer; 2875 2876 struct llist_head bkvcache; 2877 int nr_bkv_objs; 2878 }; 2879 2880 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2881 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2882 }; 2883 2884 static __always_inline void 2885 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2886 { 2887 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2888 int i; 2889 2890 for (i = 0; i < bhead->nr_records; i++) 2891 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2892 #endif 2893 } 2894 2895 static inline struct kfree_rcu_cpu * 2896 krc_this_cpu_lock(unsigned long *flags) 2897 { 2898 struct kfree_rcu_cpu *krcp; 2899 2900 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2901 krcp = this_cpu_ptr(&krc); 2902 raw_spin_lock(&krcp->lock); 2903 2904 return krcp; 2905 } 2906 2907 static inline void 2908 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2909 { 2910 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2911 } 2912 2913 static inline struct kvfree_rcu_bulk_data * 2914 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2915 { 2916 if (!krcp->nr_bkv_objs) 2917 return NULL; 2918 2919 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2920 return (struct kvfree_rcu_bulk_data *) 2921 llist_del_first(&krcp->bkvcache); 2922 } 2923 2924 static inline bool 2925 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2926 struct kvfree_rcu_bulk_data *bnode) 2927 { 2928 // Check the limit. 2929 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2930 return false; 2931 2932 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2933 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2934 return true; 2935 } 2936 2937 static int 2938 drain_page_cache(struct kfree_rcu_cpu *krcp) 2939 { 2940 unsigned long flags; 2941 struct llist_node *page_list, *pos, *n; 2942 int freed = 0; 2943 2944 if (!rcu_min_cached_objs) 2945 return 0; 2946 2947 raw_spin_lock_irqsave(&krcp->lock, flags); 2948 page_list = llist_del_all(&krcp->bkvcache); 2949 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2950 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2951 2952 llist_for_each_safe(pos, n, page_list) { 2953 free_page((unsigned long)pos); 2954 freed++; 2955 } 2956 2957 return freed; 2958 } 2959 2960 static void 2961 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp, 2962 struct kvfree_rcu_bulk_data *bnode, int idx) 2963 { 2964 unsigned long flags; 2965 int i; 2966 2967 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) { 2968 debug_rcu_bhead_unqueue(bnode); 2969 rcu_lock_acquire(&rcu_callback_map); 2970 if (idx == 0) { // kmalloc() / kfree(). 2971 trace_rcu_invoke_kfree_bulk_callback( 2972 rcu_state.name, bnode->nr_records, 2973 bnode->records); 2974 2975 kfree_bulk(bnode->nr_records, bnode->records); 2976 } else { // vmalloc() / vfree(). 2977 for (i = 0; i < bnode->nr_records; i++) { 2978 trace_rcu_invoke_kvfree_callback( 2979 rcu_state.name, bnode->records[i], 0); 2980 2981 vfree(bnode->records[i]); 2982 } 2983 } 2984 rcu_lock_release(&rcu_callback_map); 2985 } 2986 2987 raw_spin_lock_irqsave(&krcp->lock, flags); 2988 if (put_cached_bnode(krcp, bnode)) 2989 bnode = NULL; 2990 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2991 2992 if (bnode) 2993 free_page((unsigned long) bnode); 2994 2995 cond_resched_tasks_rcu_qs(); 2996 } 2997 2998 static void 2999 kvfree_rcu_list(struct rcu_head *head) 3000 { 3001 struct rcu_head *next; 3002 3003 for (; head; head = next) { 3004 void *ptr = (void *) head->func; 3005 unsigned long offset = (void *) head - ptr; 3006 3007 next = head->next; 3008 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3009 rcu_lock_acquire(&rcu_callback_map); 3010 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3011 3012 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3013 kvfree(ptr); 3014 3015 rcu_lock_release(&rcu_callback_map); 3016 cond_resched_tasks_rcu_qs(); 3017 } 3018 } 3019 3020 /* 3021 * This function is invoked in workqueue context after a grace period. 3022 * It frees all the objects queued on ->bulk_head_free or ->head_free. 3023 */ 3024 static void kfree_rcu_work(struct work_struct *work) 3025 { 3026 unsigned long flags; 3027 struct kvfree_rcu_bulk_data *bnode, *n; 3028 struct list_head bulk_head[FREE_N_CHANNELS]; 3029 struct rcu_head *head; 3030 struct kfree_rcu_cpu *krcp; 3031 struct kfree_rcu_cpu_work *krwp; 3032 struct rcu_gp_oldstate head_gp_snap; 3033 int i; 3034 3035 krwp = container_of(to_rcu_work(work), 3036 struct kfree_rcu_cpu_work, rcu_work); 3037 krcp = krwp->krcp; 3038 3039 raw_spin_lock_irqsave(&krcp->lock, flags); 3040 // Channels 1 and 2. 3041 for (i = 0; i < FREE_N_CHANNELS; i++) 3042 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]); 3043 3044 // Channel 3. 3045 head = krwp->head_free; 3046 krwp->head_free = NULL; 3047 head_gp_snap = krwp->head_free_gp_snap; 3048 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3049 3050 // Handle the first two channels. 3051 for (i = 0; i < FREE_N_CHANNELS; i++) { 3052 // Start from the tail page, so a GP is likely passed for it. 3053 list_for_each_entry_safe(bnode, n, &bulk_head[i], list) 3054 kvfree_rcu_bulk(krcp, bnode, i); 3055 } 3056 3057 /* 3058 * This is used when the "bulk" path can not be used for the 3059 * double-argument of kvfree_rcu(). This happens when the 3060 * page-cache is empty, which means that objects are instead 3061 * queued on a linked list through their rcu_head structures. 3062 * This list is named "Channel 3". 3063 */ 3064 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap))) 3065 kvfree_rcu_list(head); 3066 } 3067 3068 static bool 3069 need_offload_krc(struct kfree_rcu_cpu *krcp) 3070 { 3071 int i; 3072 3073 for (i = 0; i < FREE_N_CHANNELS; i++) 3074 if (!list_empty(&krcp->bulk_head[i])) 3075 return true; 3076 3077 return !!READ_ONCE(krcp->head); 3078 } 3079 3080 static bool 3081 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp) 3082 { 3083 int i; 3084 3085 for (i = 0; i < FREE_N_CHANNELS; i++) 3086 if (!list_empty(&krwp->bulk_head_free[i])) 3087 return true; 3088 3089 return !!krwp->head_free; 3090 } 3091 3092 static int krc_count(struct kfree_rcu_cpu *krcp) 3093 { 3094 int sum = atomic_read(&krcp->head_count); 3095 int i; 3096 3097 for (i = 0; i < FREE_N_CHANNELS; i++) 3098 sum += atomic_read(&krcp->bulk_count[i]); 3099 3100 return sum; 3101 } 3102 3103 static void 3104 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3105 { 3106 long delay, delay_left; 3107 3108 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3109 if (delayed_work_pending(&krcp->monitor_work)) { 3110 delay_left = krcp->monitor_work.timer.expires - jiffies; 3111 if (delay < delay_left) 3112 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3113 return; 3114 } 3115 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3116 } 3117 3118 static void 3119 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp) 3120 { 3121 struct list_head bulk_ready[FREE_N_CHANNELS]; 3122 struct kvfree_rcu_bulk_data *bnode, *n; 3123 struct rcu_head *head_ready = NULL; 3124 unsigned long flags; 3125 int i; 3126 3127 raw_spin_lock_irqsave(&krcp->lock, flags); 3128 for (i = 0; i < FREE_N_CHANNELS; i++) { 3129 INIT_LIST_HEAD(&bulk_ready[i]); 3130 3131 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) { 3132 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap)) 3133 break; 3134 3135 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]); 3136 list_move(&bnode->list, &bulk_ready[i]); 3137 } 3138 } 3139 3140 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) { 3141 head_ready = krcp->head; 3142 atomic_set(&krcp->head_count, 0); 3143 WRITE_ONCE(krcp->head, NULL); 3144 } 3145 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3146 3147 for (i = 0; i < FREE_N_CHANNELS; i++) { 3148 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list) 3149 kvfree_rcu_bulk(krcp, bnode, i); 3150 } 3151 3152 if (head_ready) 3153 kvfree_rcu_list(head_ready); 3154 } 3155 3156 /* 3157 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3158 */ 3159 static void kfree_rcu_monitor(struct work_struct *work) 3160 { 3161 struct kfree_rcu_cpu *krcp = container_of(work, 3162 struct kfree_rcu_cpu, monitor_work.work); 3163 unsigned long flags; 3164 int i, j; 3165 3166 // Drain ready for reclaim. 3167 kvfree_rcu_drain_ready(krcp); 3168 3169 raw_spin_lock_irqsave(&krcp->lock, flags); 3170 3171 // Attempt to start a new batch. 3172 for (i = 0; i < KFREE_N_BATCHES; i++) { 3173 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3174 3175 // Try to detach bulk_head or head and attach it, only when 3176 // all channels are free. Any channel is not free means at krwp 3177 // there is on-going rcu work to handle krwp's free business. 3178 if (need_wait_for_krwp_work(krwp)) 3179 continue; 3180 3181 // kvfree_rcu_drain_ready() might handle this krcp, if so give up. 3182 if (need_offload_krc(krcp)) { 3183 // Channel 1 corresponds to the SLAB-pointer bulk path. 3184 // Channel 2 corresponds to vmalloc-pointer bulk path. 3185 for (j = 0; j < FREE_N_CHANNELS; j++) { 3186 if (list_empty(&krwp->bulk_head_free[j])) { 3187 atomic_set(&krcp->bulk_count[j], 0); 3188 list_replace_init(&krcp->bulk_head[j], 3189 &krwp->bulk_head_free[j]); 3190 } 3191 } 3192 3193 // Channel 3 corresponds to both SLAB and vmalloc 3194 // objects queued on the linked list. 3195 if (!krwp->head_free) { 3196 krwp->head_free = krcp->head; 3197 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap); 3198 atomic_set(&krcp->head_count, 0); 3199 WRITE_ONCE(krcp->head, NULL); 3200 } 3201 3202 // One work is per one batch, so there are three 3203 // "free channels", the batch can handle. It can 3204 // be that the work is in the pending state when 3205 // channels have been detached following by each 3206 // other. 3207 queue_rcu_work(system_wq, &krwp->rcu_work); 3208 } 3209 } 3210 3211 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3212 3213 // If there is nothing to detach, it means that our job is 3214 // successfully done here. In case of having at least one 3215 // of the channels that is still busy we should rearm the 3216 // work to repeat an attempt. Because previous batches are 3217 // still in progress. 3218 if (need_offload_krc(krcp)) 3219 schedule_delayed_monitor_work(krcp); 3220 } 3221 3222 static enum hrtimer_restart 3223 schedule_page_work_fn(struct hrtimer *t) 3224 { 3225 struct kfree_rcu_cpu *krcp = 3226 container_of(t, struct kfree_rcu_cpu, hrtimer); 3227 3228 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3229 return HRTIMER_NORESTART; 3230 } 3231 3232 static void fill_page_cache_func(struct work_struct *work) 3233 { 3234 struct kvfree_rcu_bulk_data *bnode; 3235 struct kfree_rcu_cpu *krcp = 3236 container_of(work, struct kfree_rcu_cpu, 3237 page_cache_work.work); 3238 unsigned long flags; 3239 int nr_pages; 3240 bool pushed; 3241 int i; 3242 3243 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3244 1 : rcu_min_cached_objs; 3245 3246 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) { 3247 bnode = (struct kvfree_rcu_bulk_data *) 3248 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3249 3250 if (!bnode) 3251 break; 3252 3253 raw_spin_lock_irqsave(&krcp->lock, flags); 3254 pushed = put_cached_bnode(krcp, bnode); 3255 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3256 3257 if (!pushed) { 3258 free_page((unsigned long) bnode); 3259 break; 3260 } 3261 } 3262 3263 atomic_set(&krcp->work_in_progress, 0); 3264 atomic_set(&krcp->backoff_page_cache_fill, 0); 3265 } 3266 3267 static void 3268 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3269 { 3270 // If cache disabled, bail out. 3271 if (!rcu_min_cached_objs) 3272 return; 3273 3274 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3275 !atomic_xchg(&krcp->work_in_progress, 1)) { 3276 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3277 queue_delayed_work(system_wq, 3278 &krcp->page_cache_work, 3279 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3280 } else { 3281 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3282 krcp->hrtimer.function = schedule_page_work_fn; 3283 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3284 } 3285 } 3286 } 3287 3288 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3289 // state specified by flags. If can_alloc is true, the caller must 3290 // be schedulable and not be holding any locks or mutexes that might be 3291 // acquired by the memory allocator or anything that it might invoke. 3292 // Returns true if ptr was successfully recorded, else the caller must 3293 // use a fallback. 3294 static inline bool 3295 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3296 unsigned long *flags, void *ptr, bool can_alloc) 3297 { 3298 struct kvfree_rcu_bulk_data *bnode; 3299 int idx; 3300 3301 *krcp = krc_this_cpu_lock(flags); 3302 if (unlikely(!(*krcp)->initialized)) 3303 return false; 3304 3305 idx = !!is_vmalloc_addr(ptr); 3306 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx], 3307 struct kvfree_rcu_bulk_data, list); 3308 3309 /* Check if a new block is required. */ 3310 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) { 3311 bnode = get_cached_bnode(*krcp); 3312 if (!bnode && can_alloc) { 3313 krc_this_cpu_unlock(*krcp, *flags); 3314 3315 // __GFP_NORETRY - allows a light-weight direct reclaim 3316 // what is OK from minimizing of fallback hitting point of 3317 // view. Apart of that it forbids any OOM invoking what is 3318 // also beneficial since we are about to release memory soon. 3319 // 3320 // __GFP_NOMEMALLOC - prevents from consuming of all the 3321 // memory reserves. Please note we have a fallback path. 3322 // 3323 // __GFP_NOWARN - it is supposed that an allocation can 3324 // be failed under low memory or high memory pressure 3325 // scenarios. 3326 bnode = (struct kvfree_rcu_bulk_data *) 3327 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3328 raw_spin_lock_irqsave(&(*krcp)->lock, *flags); 3329 } 3330 3331 if (!bnode) 3332 return false; 3333 3334 // Initialize the new block and attach it. 3335 bnode->nr_records = 0; 3336 list_add(&bnode->list, &(*krcp)->bulk_head[idx]); 3337 } 3338 3339 // Finally insert and update the GP for this page. 3340 bnode->records[bnode->nr_records++] = ptr; 3341 get_state_synchronize_rcu_full(&bnode->gp_snap); 3342 atomic_inc(&(*krcp)->bulk_count[idx]); 3343 3344 return true; 3345 } 3346 3347 /* 3348 * Queue a request for lazy invocation of the appropriate free routine 3349 * after a grace period. Please note that three paths are maintained, 3350 * two for the common case using arrays of pointers and a third one that 3351 * is used only when the main paths cannot be used, for example, due to 3352 * memory pressure. 3353 * 3354 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3355 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3356 * be free'd in workqueue context. This allows us to: batch requests together to 3357 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3358 */ 3359 void kvfree_call_rcu(struct rcu_head *head, void *ptr) 3360 { 3361 unsigned long flags; 3362 struct kfree_rcu_cpu *krcp; 3363 bool success; 3364 3365 /* 3366 * Please note there is a limitation for the head-less 3367 * variant, that is why there is a clear rule for such 3368 * objects: it can be used from might_sleep() context 3369 * only. For other places please embed an rcu_head to 3370 * your data. 3371 */ 3372 if (!head) 3373 might_sleep(); 3374 3375 // Queue the object but don't yet schedule the batch. 3376 if (debug_rcu_head_queue(ptr)) { 3377 // Probable double kfree_rcu(), just leak. 3378 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3379 __func__, head); 3380 3381 // Mark as success and leave. 3382 return; 3383 } 3384 3385 kasan_record_aux_stack_noalloc(ptr); 3386 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3387 if (!success) { 3388 run_page_cache_worker(krcp); 3389 3390 if (head == NULL) 3391 // Inline if kvfree_rcu(one_arg) call. 3392 goto unlock_return; 3393 3394 head->func = ptr; 3395 head->next = krcp->head; 3396 WRITE_ONCE(krcp->head, head); 3397 atomic_inc(&krcp->head_count); 3398 3399 // Take a snapshot for this krcp. 3400 krcp->head_gp_snap = get_state_synchronize_rcu(); 3401 success = true; 3402 } 3403 3404 /* 3405 * The kvfree_rcu() caller considers the pointer freed at this point 3406 * and likely removes any references to it. Since the actual slab 3407 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore 3408 * this object (no scanning or false positives reporting). 3409 */ 3410 kmemleak_ignore(ptr); 3411 3412 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3413 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3414 schedule_delayed_monitor_work(krcp); 3415 3416 unlock_return: 3417 krc_this_cpu_unlock(krcp, flags); 3418 3419 /* 3420 * Inline kvfree() after synchronize_rcu(). We can do 3421 * it from might_sleep() context only, so the current 3422 * CPU can pass the QS state. 3423 */ 3424 if (!success) { 3425 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3426 synchronize_rcu(); 3427 kvfree(ptr); 3428 } 3429 } 3430 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3431 3432 static unsigned long 3433 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3434 { 3435 int cpu; 3436 unsigned long count = 0; 3437 3438 /* Snapshot count of all CPUs */ 3439 for_each_possible_cpu(cpu) { 3440 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3441 3442 count += krc_count(krcp); 3443 count += READ_ONCE(krcp->nr_bkv_objs); 3444 atomic_set(&krcp->backoff_page_cache_fill, 1); 3445 } 3446 3447 return count == 0 ? SHRINK_EMPTY : count; 3448 } 3449 3450 static unsigned long 3451 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3452 { 3453 int cpu, freed = 0; 3454 3455 for_each_possible_cpu(cpu) { 3456 int count; 3457 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3458 3459 count = krc_count(krcp); 3460 count += drain_page_cache(krcp); 3461 kfree_rcu_monitor(&krcp->monitor_work.work); 3462 3463 sc->nr_to_scan -= count; 3464 freed += count; 3465 3466 if (sc->nr_to_scan <= 0) 3467 break; 3468 } 3469 3470 return freed == 0 ? SHRINK_STOP : freed; 3471 } 3472 3473 static struct shrinker kfree_rcu_shrinker = { 3474 .count_objects = kfree_rcu_shrink_count, 3475 .scan_objects = kfree_rcu_shrink_scan, 3476 .batch = 0, 3477 .seeks = DEFAULT_SEEKS, 3478 }; 3479 3480 void __init kfree_rcu_scheduler_running(void) 3481 { 3482 int cpu; 3483 3484 for_each_possible_cpu(cpu) { 3485 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3486 3487 if (need_offload_krc(krcp)) 3488 schedule_delayed_monitor_work(krcp); 3489 } 3490 } 3491 3492 /* 3493 * During early boot, any blocking grace-period wait automatically 3494 * implies a grace period. 3495 * 3496 * Later on, this could in theory be the case for kernels built with 3497 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3498 * is not a common case. Furthermore, this optimization would cause 3499 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3500 * grace-period optimization is ignored once the scheduler is running. 3501 */ 3502 static int rcu_blocking_is_gp(void) 3503 { 3504 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) { 3505 might_sleep(); 3506 return false; 3507 } 3508 return true; 3509 } 3510 3511 /** 3512 * synchronize_rcu - wait until a grace period has elapsed. 3513 * 3514 * Control will return to the caller some time after a full grace 3515 * period has elapsed, in other words after all currently executing RCU 3516 * read-side critical sections have completed. Note, however, that 3517 * upon return from synchronize_rcu(), the caller might well be executing 3518 * concurrently with new RCU read-side critical sections that began while 3519 * synchronize_rcu() was waiting. 3520 * 3521 * RCU read-side critical sections are delimited by rcu_read_lock() 3522 * and rcu_read_unlock(), and may be nested. In addition, but only in 3523 * v5.0 and later, regions of code across which interrupts, preemption, 3524 * or softirqs have been disabled also serve as RCU read-side critical 3525 * sections. This includes hardware interrupt handlers, softirq handlers, 3526 * and NMI handlers. 3527 * 3528 * Note that this guarantee implies further memory-ordering guarantees. 3529 * On systems with more than one CPU, when synchronize_rcu() returns, 3530 * each CPU is guaranteed to have executed a full memory barrier since 3531 * the end of its last RCU read-side critical section whose beginning 3532 * preceded the call to synchronize_rcu(). In addition, each CPU having 3533 * an RCU read-side critical section that extends beyond the return from 3534 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3535 * after the beginning of synchronize_rcu() and before the beginning of 3536 * that RCU read-side critical section. Note that these guarantees include 3537 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3538 * that are executing in the kernel. 3539 * 3540 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3541 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3542 * to have executed a full memory barrier during the execution of 3543 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3544 * again only if the system has more than one CPU). 3545 * 3546 * Implementation of these memory-ordering guarantees is described here: 3547 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3548 */ 3549 void synchronize_rcu(void) 3550 { 3551 unsigned long flags; 3552 struct rcu_node *rnp; 3553 3554 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3555 lock_is_held(&rcu_lock_map) || 3556 lock_is_held(&rcu_sched_lock_map), 3557 "Illegal synchronize_rcu() in RCU read-side critical section"); 3558 if (!rcu_blocking_is_gp()) { 3559 if (rcu_gp_is_expedited()) 3560 synchronize_rcu_expedited(); 3561 else 3562 wait_rcu_gp(call_rcu_hurry); 3563 return; 3564 } 3565 3566 // Context allows vacuous grace periods. 3567 // Note well that this code runs with !PREEMPT && !SMP. 3568 // In addition, all code that advances grace periods runs at 3569 // process level. Therefore, this normal GP overlaps with other 3570 // normal GPs only by being fully nested within them, which allows 3571 // reuse of ->gp_seq_polled_snap. 3572 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3573 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3574 3575 // Update the normal grace-period counters to record 3576 // this grace period, but only those used by the boot CPU. 3577 // The rcu_scheduler_starting() will take care of the rest of 3578 // these counters. 3579 local_irq_save(flags); 3580 WARN_ON_ONCE(num_online_cpus() > 1); 3581 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3582 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3583 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3584 local_irq_restore(flags); 3585 } 3586 EXPORT_SYMBOL_GPL(synchronize_rcu); 3587 3588 /** 3589 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3590 * @rgosp: Place to put state cookie 3591 * 3592 * Stores into @rgosp a value that will always be treated by functions 3593 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3594 * has already completed. 3595 */ 3596 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3597 { 3598 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3599 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3600 } 3601 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3602 3603 /** 3604 * get_state_synchronize_rcu - Snapshot current RCU state 3605 * 3606 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3607 * or poll_state_synchronize_rcu() to determine whether or not a full 3608 * grace period has elapsed in the meantime. 3609 */ 3610 unsigned long get_state_synchronize_rcu(void) 3611 { 3612 /* 3613 * Any prior manipulation of RCU-protected data must happen 3614 * before the load from ->gp_seq. 3615 */ 3616 smp_mb(); /* ^^^ */ 3617 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3618 } 3619 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3620 3621 /** 3622 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3623 * @rgosp: location to place combined normal/expedited grace-period state 3624 * 3625 * Places the normal and expedited grace-period states in @rgosp. This 3626 * state value can be passed to a later call to cond_synchronize_rcu_full() 3627 * or poll_state_synchronize_rcu_full() to determine whether or not a 3628 * grace period (whether normal or expedited) has elapsed in the meantime. 3629 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3630 * long, but is guaranteed to see all grace periods. In contrast, the 3631 * combined state occupies less memory, but can sometimes fail to take 3632 * grace periods into account. 3633 * 3634 * This does not guarantee that the needed grace period will actually 3635 * start. 3636 */ 3637 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3638 { 3639 struct rcu_node *rnp = rcu_get_root(); 3640 3641 /* 3642 * Any prior manipulation of RCU-protected data must happen 3643 * before the loads from ->gp_seq and ->expedited_sequence. 3644 */ 3645 smp_mb(); /* ^^^ */ 3646 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3647 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3648 } 3649 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3650 3651 /* 3652 * Helper function for start_poll_synchronize_rcu() and 3653 * start_poll_synchronize_rcu_full(). 3654 */ 3655 static void start_poll_synchronize_rcu_common(void) 3656 { 3657 unsigned long flags; 3658 bool needwake; 3659 struct rcu_data *rdp; 3660 struct rcu_node *rnp; 3661 3662 lockdep_assert_irqs_enabled(); 3663 local_irq_save(flags); 3664 rdp = this_cpu_ptr(&rcu_data); 3665 rnp = rdp->mynode; 3666 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3667 // Note it is possible for a grace period to have elapsed between 3668 // the above call to get_state_synchronize_rcu() and the below call 3669 // to rcu_seq_snap. This is OK, the worst that happens is that we 3670 // get a grace period that no one needed. These accesses are ordered 3671 // by smp_mb(), and we are accessing them in the opposite order 3672 // from which they are updated at grace-period start, as required. 3673 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3674 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3675 if (needwake) 3676 rcu_gp_kthread_wake(); 3677 } 3678 3679 /** 3680 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3681 * 3682 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3683 * or poll_state_synchronize_rcu() to determine whether or not a full 3684 * grace period has elapsed in the meantime. If the needed grace period 3685 * is not already slated to start, notifies RCU core of the need for that 3686 * grace period. 3687 * 3688 * Interrupts must be enabled for the case where it is necessary to awaken 3689 * the grace-period kthread. 3690 */ 3691 unsigned long start_poll_synchronize_rcu(void) 3692 { 3693 unsigned long gp_seq = get_state_synchronize_rcu(); 3694 3695 start_poll_synchronize_rcu_common(); 3696 return gp_seq; 3697 } 3698 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3699 3700 /** 3701 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3702 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3703 * 3704 * Places the normal and expedited grace-period states in *@rgos. This 3705 * state value can be passed to a later call to cond_synchronize_rcu_full() 3706 * or poll_state_synchronize_rcu_full() to determine whether or not a 3707 * grace period (whether normal or expedited) has elapsed in the meantime. 3708 * If the needed grace period is not already slated to start, notifies 3709 * RCU core of the need for that grace period. 3710 * 3711 * Interrupts must be enabled for the case where it is necessary to awaken 3712 * the grace-period kthread. 3713 */ 3714 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3715 { 3716 get_state_synchronize_rcu_full(rgosp); 3717 3718 start_poll_synchronize_rcu_common(); 3719 } 3720 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3721 3722 /** 3723 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3724 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3725 * 3726 * If a full RCU grace period has elapsed since the earlier call from 3727 * which @oldstate was obtained, return @true, otherwise return @false. 3728 * If @false is returned, it is the caller's responsibility to invoke this 3729 * function later on until it does return @true. Alternatively, the caller 3730 * can explicitly wait for a grace period, for example, by passing @oldstate 3731 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited() 3732 * on the one hand or by directly invoking either synchronize_rcu() or 3733 * synchronize_rcu_expedited() on the other. 3734 * 3735 * Yes, this function does not take counter wrap into account. 3736 * But counter wrap is harmless. If the counter wraps, we have waited for 3737 * more than a billion grace periods (and way more on a 64-bit system!). 3738 * Those needing to keep old state values for very long time periods 3739 * (many hours even on 32-bit systems) should check them occasionally and 3740 * either refresh them or set a flag indicating that the grace period has 3741 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3742 * to get a guaranteed-completed grace-period state. 3743 * 3744 * In addition, because oldstate compresses the grace-period state for 3745 * both normal and expedited grace periods into a single unsigned long, 3746 * it can miss a grace period when synchronize_rcu() runs concurrently 3747 * with synchronize_rcu_expedited(). If this is unacceptable, please 3748 * instead use the _full() variant of these polling APIs. 3749 * 3750 * This function provides the same memory-ordering guarantees that 3751 * would be provided by a synchronize_rcu() that was invoked at the call 3752 * to the function that provided @oldstate, and that returned at the end 3753 * of this function. 3754 */ 3755 bool poll_state_synchronize_rcu(unsigned long oldstate) 3756 { 3757 if (oldstate == RCU_GET_STATE_COMPLETED || 3758 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3759 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3760 return true; 3761 } 3762 return false; 3763 } 3764 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3765 3766 /** 3767 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3768 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3769 * 3770 * If a full RCU grace period has elapsed since the earlier call from 3771 * which *rgosp was obtained, return @true, otherwise return @false. 3772 * If @false is returned, it is the caller's responsibility to invoke this 3773 * function later on until it does return @true. Alternatively, the caller 3774 * can explicitly wait for a grace period, for example, by passing @rgosp 3775 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3776 * 3777 * Yes, this function does not take counter wrap into account. 3778 * But counter wrap is harmless. If the counter wraps, we have waited 3779 * for more than a billion grace periods (and way more on a 64-bit 3780 * system!). Those needing to keep rcu_gp_oldstate values for very 3781 * long time periods (many hours even on 32-bit systems) should check 3782 * them occasionally and either refresh them or set a flag indicating 3783 * that the grace period has completed. Alternatively, they can use 3784 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3785 * grace-period state. 3786 * 3787 * This function provides the same memory-ordering guarantees that would 3788 * be provided by a synchronize_rcu() that was invoked at the call to 3789 * the function that provided @rgosp, and that returned at the end of this 3790 * function. And this guarantee requires that the root rcu_node structure's 3791 * ->gp_seq field be checked instead of that of the rcu_state structure. 3792 * The problem is that the just-ending grace-period's callbacks can be 3793 * invoked between the time that the root rcu_node structure's ->gp_seq 3794 * field is updated and the time that the rcu_state structure's ->gp_seq 3795 * field is updated. Therefore, if a single synchronize_rcu() is to 3796 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3797 * then the root rcu_node structure is the one that needs to be polled. 3798 */ 3799 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3800 { 3801 struct rcu_node *rnp = rcu_get_root(); 3802 3803 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3804 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3805 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3806 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3807 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3808 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3809 return true; 3810 } 3811 return false; 3812 } 3813 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3814 3815 /** 3816 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3817 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3818 * 3819 * If a full RCU grace period has elapsed since the earlier call to 3820 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3821 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3822 * 3823 * Yes, this function does not take counter wrap into account. 3824 * But counter wrap is harmless. If the counter wraps, we have waited for 3825 * more than 2 billion grace periods (and way more on a 64-bit system!), 3826 * so waiting for a couple of additional grace periods should be just fine. 3827 * 3828 * This function provides the same memory-ordering guarantees that 3829 * would be provided by a synchronize_rcu() that was invoked at the call 3830 * to the function that provided @oldstate and that returned at the end 3831 * of this function. 3832 */ 3833 void cond_synchronize_rcu(unsigned long oldstate) 3834 { 3835 if (!poll_state_synchronize_rcu(oldstate)) 3836 synchronize_rcu(); 3837 } 3838 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3839 3840 /** 3841 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3842 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3843 * 3844 * If a full RCU grace period has elapsed since the call to 3845 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3846 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3847 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3848 * for a full grace period. 3849 * 3850 * Yes, this function does not take counter wrap into account. 3851 * But counter wrap is harmless. If the counter wraps, we have waited for 3852 * more than 2 billion grace periods (and way more on a 64-bit system!), 3853 * so waiting for a couple of additional grace periods should be just fine. 3854 * 3855 * This function provides the same memory-ordering guarantees that 3856 * would be provided by a synchronize_rcu() that was invoked at the call 3857 * to the function that provided @rgosp and that returned at the end of 3858 * this function. 3859 */ 3860 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3861 { 3862 if (!poll_state_synchronize_rcu_full(rgosp)) 3863 synchronize_rcu(); 3864 } 3865 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3866 3867 /* 3868 * Check to see if there is any immediate RCU-related work to be done by 3869 * the current CPU, returning 1 if so and zero otherwise. The checks are 3870 * in order of increasing expense: checks that can be carried out against 3871 * CPU-local state are performed first. However, we must check for CPU 3872 * stalls first, else we might not get a chance. 3873 */ 3874 static int rcu_pending(int user) 3875 { 3876 bool gp_in_progress; 3877 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3878 struct rcu_node *rnp = rdp->mynode; 3879 3880 lockdep_assert_irqs_disabled(); 3881 3882 /* Check for CPU stalls, if enabled. */ 3883 check_cpu_stall(rdp); 3884 3885 /* Does this CPU need a deferred NOCB wakeup? */ 3886 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3887 return 1; 3888 3889 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3890 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3891 return 0; 3892 3893 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3894 gp_in_progress = rcu_gp_in_progress(); 3895 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3896 return 1; 3897 3898 /* Does this CPU have callbacks ready to invoke? */ 3899 if (!rcu_rdp_is_offloaded(rdp) && 3900 rcu_segcblist_ready_cbs(&rdp->cblist)) 3901 return 1; 3902 3903 /* Has RCU gone idle with this CPU needing another grace period? */ 3904 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3905 !rcu_rdp_is_offloaded(rdp) && 3906 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3907 return 1; 3908 3909 /* Have RCU grace period completed or started? */ 3910 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3911 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3912 return 1; 3913 3914 /* nothing to do */ 3915 return 0; 3916 } 3917 3918 /* 3919 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3920 * the compiler is expected to optimize this away. 3921 */ 3922 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3923 { 3924 trace_rcu_barrier(rcu_state.name, s, cpu, 3925 atomic_read(&rcu_state.barrier_cpu_count), done); 3926 } 3927 3928 /* 3929 * RCU callback function for rcu_barrier(). If we are last, wake 3930 * up the task executing rcu_barrier(). 3931 * 3932 * Note that the value of rcu_state.barrier_sequence must be captured 3933 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3934 * other CPUs might count the value down to zero before this CPU gets 3935 * around to invoking rcu_barrier_trace(), which might result in bogus 3936 * data from the next instance of rcu_barrier(). 3937 */ 3938 static void rcu_barrier_callback(struct rcu_head *rhp) 3939 { 3940 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3941 3942 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3943 rcu_barrier_trace(TPS("LastCB"), -1, s); 3944 complete(&rcu_state.barrier_completion); 3945 } else { 3946 rcu_barrier_trace(TPS("CB"), -1, s); 3947 } 3948 } 3949 3950 /* 3951 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3952 */ 3953 static void rcu_barrier_entrain(struct rcu_data *rdp) 3954 { 3955 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3956 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3957 bool wake_nocb = false; 3958 bool was_alldone = false; 3959 3960 lockdep_assert_held(&rcu_state.barrier_lock); 3961 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3962 return; 3963 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3964 rdp->barrier_head.func = rcu_barrier_callback; 3965 debug_rcu_head_queue(&rdp->barrier_head); 3966 rcu_nocb_lock(rdp); 3967 /* 3968 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular 3969 * queue. This way we don't wait for bypass timer that can reach seconds 3970 * if it's fully lazy. 3971 */ 3972 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist); 3973 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false)); 3974 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist); 3975 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3976 atomic_inc(&rcu_state.barrier_cpu_count); 3977 } else { 3978 debug_rcu_head_unqueue(&rdp->barrier_head); 3979 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3980 } 3981 rcu_nocb_unlock(rdp); 3982 if (wake_nocb) 3983 wake_nocb_gp(rdp, false); 3984 smp_store_release(&rdp->barrier_seq_snap, gseq); 3985 } 3986 3987 /* 3988 * Called with preemption disabled, and from cross-cpu IRQ context. 3989 */ 3990 static void rcu_barrier_handler(void *cpu_in) 3991 { 3992 uintptr_t cpu = (uintptr_t)cpu_in; 3993 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3994 3995 lockdep_assert_irqs_disabled(); 3996 WARN_ON_ONCE(cpu != rdp->cpu); 3997 WARN_ON_ONCE(cpu != smp_processor_id()); 3998 raw_spin_lock(&rcu_state.barrier_lock); 3999 rcu_barrier_entrain(rdp); 4000 raw_spin_unlock(&rcu_state.barrier_lock); 4001 } 4002 4003 /** 4004 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4005 * 4006 * Note that this primitive does not necessarily wait for an RCU grace period 4007 * to complete. For example, if there are no RCU callbacks queued anywhere 4008 * in the system, then rcu_barrier() is within its rights to return 4009 * immediately, without waiting for anything, much less an RCU grace period. 4010 */ 4011 void rcu_barrier(void) 4012 { 4013 uintptr_t cpu; 4014 unsigned long flags; 4015 unsigned long gseq; 4016 struct rcu_data *rdp; 4017 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4018 4019 rcu_barrier_trace(TPS("Begin"), -1, s); 4020 4021 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4022 mutex_lock(&rcu_state.barrier_mutex); 4023 4024 /* Did someone else do our work for us? */ 4025 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4026 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 4027 smp_mb(); /* caller's subsequent code after above check. */ 4028 mutex_unlock(&rcu_state.barrier_mutex); 4029 return; 4030 } 4031 4032 /* Mark the start of the barrier operation. */ 4033 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4034 rcu_seq_start(&rcu_state.barrier_sequence); 4035 gseq = rcu_state.barrier_sequence; 4036 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4037 4038 /* 4039 * Initialize the count to two rather than to zero in order 4040 * to avoid a too-soon return to zero in case of an immediate 4041 * invocation of the just-enqueued callback (or preemption of 4042 * this task). Exclude CPU-hotplug operations to ensure that no 4043 * offline non-offloaded CPU has callbacks queued. 4044 */ 4045 init_completion(&rcu_state.barrier_completion); 4046 atomic_set(&rcu_state.barrier_cpu_count, 2); 4047 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4048 4049 /* 4050 * Force each CPU with callbacks to register a new callback. 4051 * When that callback is invoked, we will know that all of the 4052 * corresponding CPU's preceding callbacks have been invoked. 4053 */ 4054 for_each_possible_cpu(cpu) { 4055 rdp = per_cpu_ptr(&rcu_data, cpu); 4056 retry: 4057 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 4058 continue; 4059 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4060 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 4061 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4062 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4063 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 4064 continue; 4065 } 4066 if (!rcu_rdp_cpu_online(rdp)) { 4067 rcu_barrier_entrain(rdp); 4068 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4069 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4070 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4071 continue; 4072 } 4073 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4074 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4075 schedule_timeout_uninterruptible(1); 4076 goto retry; 4077 } 4078 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4079 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4080 } 4081 4082 /* 4083 * Now that we have an rcu_barrier_callback() callback on each 4084 * CPU, and thus each counted, remove the initial count. 4085 */ 4086 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4087 complete(&rcu_state.barrier_completion); 4088 4089 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4090 wait_for_completion(&rcu_state.barrier_completion); 4091 4092 /* Mark the end of the barrier operation. */ 4093 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4094 rcu_seq_end(&rcu_state.barrier_sequence); 4095 gseq = rcu_state.barrier_sequence; 4096 for_each_possible_cpu(cpu) { 4097 rdp = per_cpu_ptr(&rcu_data, cpu); 4098 4099 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4100 } 4101 4102 /* Other rcu_barrier() invocations can now safely proceed. */ 4103 mutex_unlock(&rcu_state.barrier_mutex); 4104 } 4105 EXPORT_SYMBOL_GPL(rcu_barrier); 4106 4107 /* 4108 * Compute the mask of online CPUs for the specified rcu_node structure. 4109 * This will not be stable unless the rcu_node structure's ->lock is 4110 * held, but the bit corresponding to the current CPU will be stable 4111 * in most contexts. 4112 */ 4113 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 4114 { 4115 return READ_ONCE(rnp->qsmaskinitnext); 4116 } 4117 4118 /* 4119 * Is the CPU corresponding to the specified rcu_data structure online 4120 * from RCU's perspective? This perspective is given by that structure's 4121 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 4122 */ 4123 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 4124 { 4125 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 4126 } 4127 4128 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 4129 4130 /* 4131 * Is the current CPU online as far as RCU is concerned? 4132 * 4133 * Disable preemption to avoid false positives that could otherwise 4134 * happen due to the current CPU number being sampled, this task being 4135 * preempted, its old CPU being taken offline, resuming on some other CPU, 4136 * then determining that its old CPU is now offline. 4137 * 4138 * Disable checking if in an NMI handler because we cannot safely 4139 * report errors from NMI handlers anyway. In addition, it is OK to use 4140 * RCU on an offline processor during initial boot, hence the check for 4141 * rcu_scheduler_fully_active. 4142 */ 4143 bool rcu_lockdep_current_cpu_online(void) 4144 { 4145 struct rcu_data *rdp; 4146 bool ret = false; 4147 4148 if (in_nmi() || !rcu_scheduler_fully_active) 4149 return true; 4150 preempt_disable_notrace(); 4151 rdp = this_cpu_ptr(&rcu_data); 4152 /* 4153 * Strictly, we care here about the case where the current CPU is 4154 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 4155 * not being up to date. So arch_spin_is_locked() might have a 4156 * false positive if it's held by some *other* CPU, but that's 4157 * OK because that just means a false *negative* on the warning. 4158 */ 4159 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 4160 ret = true; 4161 preempt_enable_notrace(); 4162 return ret; 4163 } 4164 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 4165 4166 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 4167 4168 // Has rcu_init() been invoked? This is used (for example) to determine 4169 // whether spinlocks may be acquired safely. 4170 static bool rcu_init_invoked(void) 4171 { 4172 return !!rcu_state.n_online_cpus; 4173 } 4174 4175 /* 4176 * Near the end of the offline process. Trace the fact that this CPU 4177 * is going offline. 4178 */ 4179 int rcutree_dying_cpu(unsigned int cpu) 4180 { 4181 bool blkd; 4182 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4183 struct rcu_node *rnp = rdp->mynode; 4184 4185 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4186 return 0; 4187 4188 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask); 4189 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 4190 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 4191 return 0; 4192 } 4193 4194 /* 4195 * All CPUs for the specified rcu_node structure have gone offline, 4196 * and all tasks that were preempted within an RCU read-side critical 4197 * section while running on one of those CPUs have since exited their RCU 4198 * read-side critical section. Some other CPU is reporting this fact with 4199 * the specified rcu_node structure's ->lock held and interrupts disabled. 4200 * This function therefore goes up the tree of rcu_node structures, 4201 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 4202 * the leaf rcu_node structure's ->qsmaskinit field has already been 4203 * updated. 4204 * 4205 * This function does check that the specified rcu_node structure has 4206 * all CPUs offline and no blocked tasks, so it is OK to invoke it 4207 * prematurely. That said, invoking it after the fact will cost you 4208 * a needless lock acquisition. So once it has done its work, don't 4209 * invoke it again. 4210 */ 4211 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 4212 { 4213 long mask; 4214 struct rcu_node *rnp = rnp_leaf; 4215 4216 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4217 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 4218 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 4219 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 4220 return; 4221 for (;;) { 4222 mask = rnp->grpmask; 4223 rnp = rnp->parent; 4224 if (!rnp) 4225 break; 4226 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4227 rnp->qsmaskinit &= ~mask; 4228 /* Between grace periods, so better already be zero! */ 4229 WARN_ON_ONCE(rnp->qsmask); 4230 if (rnp->qsmaskinit) { 4231 raw_spin_unlock_rcu_node(rnp); 4232 /* irqs remain disabled. */ 4233 return; 4234 } 4235 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4236 } 4237 } 4238 4239 /* 4240 * The CPU has been completely removed, and some other CPU is reporting 4241 * this fact from process context. Do the remainder of the cleanup. 4242 * There can only be one CPU hotplug operation at a time, so no need for 4243 * explicit locking. 4244 */ 4245 int rcutree_dead_cpu(unsigned int cpu) 4246 { 4247 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 4248 return 0; 4249 4250 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 4251 // Stop-machine done, so allow nohz_full to disable tick. 4252 tick_dep_clear(TICK_DEP_BIT_RCU); 4253 return 0; 4254 } 4255 4256 /* 4257 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4258 * first CPU in a given leaf rcu_node structure coming online. The caller 4259 * must hold the corresponding leaf rcu_node ->lock with interrupts 4260 * disabled. 4261 */ 4262 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4263 { 4264 long mask; 4265 long oldmask; 4266 struct rcu_node *rnp = rnp_leaf; 4267 4268 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4269 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4270 for (;;) { 4271 mask = rnp->grpmask; 4272 rnp = rnp->parent; 4273 if (rnp == NULL) 4274 return; 4275 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4276 oldmask = rnp->qsmaskinit; 4277 rnp->qsmaskinit |= mask; 4278 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4279 if (oldmask) 4280 return; 4281 } 4282 } 4283 4284 /* 4285 * Do boot-time initialization of a CPU's per-CPU RCU data. 4286 */ 4287 static void __init 4288 rcu_boot_init_percpu_data(int cpu) 4289 { 4290 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4291 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4292 4293 /* Set up local state, ensuring consistent view of global state. */ 4294 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4295 INIT_WORK(&rdp->strict_work, strict_work_handler); 4296 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4297 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4298 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4299 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4300 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4301 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4302 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4303 rdp->last_sched_clock = jiffies; 4304 rdp->cpu = cpu; 4305 rcu_boot_init_nocb_percpu_data(rdp); 4306 } 4307 4308 /* 4309 * Invoked early in the CPU-online process, when pretty much all services 4310 * are available. The incoming CPU is not present. 4311 * 4312 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4313 * offline event can be happening at a given time. Note also that we can 4314 * accept some slop in the rsp->gp_seq access due to the fact that this 4315 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4316 * And any offloaded callbacks are being numbered elsewhere. 4317 */ 4318 int rcutree_prepare_cpu(unsigned int cpu) 4319 { 4320 unsigned long flags; 4321 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4322 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4323 struct rcu_node *rnp = rcu_get_root(); 4324 4325 /* Set up local state, ensuring consistent view of global state. */ 4326 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4327 rdp->qlen_last_fqs_check = 0; 4328 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4329 rdp->blimit = blimit; 4330 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4331 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4332 4333 /* 4334 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4335 * (re-)initialized. 4336 */ 4337 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4338 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4339 4340 /* 4341 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4342 * propagation up the rcu_node tree will happen at the beginning 4343 * of the next grace period. 4344 */ 4345 rnp = rdp->mynode; 4346 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4347 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4348 rdp->gp_seq_needed = rdp->gp_seq; 4349 rdp->cpu_no_qs.b.norm = true; 4350 rdp->core_needs_qs = false; 4351 rdp->rcu_iw_pending = false; 4352 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4353 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4354 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4355 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4356 rcu_spawn_one_boost_kthread(rnp); 4357 rcu_spawn_cpu_nocb_kthread(cpu); 4358 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4359 4360 return 0; 4361 } 4362 4363 /* 4364 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4365 */ 4366 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4367 { 4368 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4369 4370 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4371 } 4372 4373 /* 4374 * Has the specified (known valid) CPU ever been fully online? 4375 */ 4376 bool rcu_cpu_beenfullyonline(int cpu) 4377 { 4378 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4379 4380 return smp_load_acquire(&rdp->beenonline); 4381 } 4382 4383 /* 4384 * Near the end of the CPU-online process. Pretty much all services 4385 * enabled, and the CPU is now very much alive. 4386 */ 4387 int rcutree_online_cpu(unsigned int cpu) 4388 { 4389 unsigned long flags; 4390 struct rcu_data *rdp; 4391 struct rcu_node *rnp; 4392 4393 rdp = per_cpu_ptr(&rcu_data, cpu); 4394 rnp = rdp->mynode; 4395 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4396 rnp->ffmask |= rdp->grpmask; 4397 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4398 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4399 return 0; /* Too early in boot for scheduler work. */ 4400 sync_sched_exp_online_cleanup(cpu); 4401 rcutree_affinity_setting(cpu, -1); 4402 4403 // Stop-machine done, so allow nohz_full to disable tick. 4404 tick_dep_clear(TICK_DEP_BIT_RCU); 4405 return 0; 4406 } 4407 4408 /* 4409 * Near the beginning of the process. The CPU is still very much alive 4410 * with pretty much all services enabled. 4411 */ 4412 int rcutree_offline_cpu(unsigned int cpu) 4413 { 4414 unsigned long flags; 4415 struct rcu_data *rdp; 4416 struct rcu_node *rnp; 4417 4418 rdp = per_cpu_ptr(&rcu_data, cpu); 4419 rnp = rdp->mynode; 4420 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4421 rnp->ffmask &= ~rdp->grpmask; 4422 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4423 4424 rcutree_affinity_setting(cpu, cpu); 4425 4426 // nohz_full CPUs need the tick for stop-machine to work quickly 4427 tick_dep_set(TICK_DEP_BIT_RCU); 4428 return 0; 4429 } 4430 4431 /* 4432 * Mark the specified CPU as being online so that subsequent grace periods 4433 * (both expedited and normal) will wait on it. Note that this means that 4434 * incoming CPUs are not allowed to use RCU read-side critical sections 4435 * until this function is called. Failing to observe this restriction 4436 * will result in lockdep splats. 4437 * 4438 * Note that this function is special in that it is invoked directly 4439 * from the incoming CPU rather than from the cpuhp_step mechanism. 4440 * This is because this function must be invoked at a precise location. 4441 * This incoming CPU must not have enabled interrupts yet. 4442 */ 4443 void rcu_cpu_starting(unsigned int cpu) 4444 { 4445 unsigned long mask; 4446 struct rcu_data *rdp; 4447 struct rcu_node *rnp; 4448 bool newcpu; 4449 4450 lockdep_assert_irqs_disabled(); 4451 rdp = per_cpu_ptr(&rcu_data, cpu); 4452 if (rdp->cpu_started) 4453 return; 4454 rdp->cpu_started = true; 4455 4456 rnp = rdp->mynode; 4457 mask = rdp->grpmask; 4458 arch_spin_lock(&rcu_state.ofl_lock); 4459 rcu_dynticks_eqs_online(); 4460 raw_spin_lock(&rcu_state.barrier_lock); 4461 raw_spin_lock_rcu_node(rnp); 4462 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4463 raw_spin_unlock(&rcu_state.barrier_lock); 4464 newcpu = !(rnp->expmaskinitnext & mask); 4465 rnp->expmaskinitnext |= mask; 4466 /* Allow lockless access for expedited grace periods. */ 4467 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4468 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4469 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4470 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4471 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4472 4473 /* An incoming CPU should never be blocking a grace period. */ 4474 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4475 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4476 unsigned long flags; 4477 4478 local_irq_save(flags); 4479 rcu_disable_urgency_upon_qs(rdp); 4480 /* Report QS -after- changing ->qsmaskinitnext! */ 4481 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4482 } else { 4483 raw_spin_unlock_rcu_node(rnp); 4484 } 4485 arch_spin_unlock(&rcu_state.ofl_lock); 4486 smp_store_release(&rdp->beenonline, true); 4487 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4488 } 4489 4490 /* 4491 * The outgoing function has no further need of RCU, so remove it from 4492 * the rcu_node tree's ->qsmaskinitnext bit masks. 4493 * 4494 * Note that this function is special in that it is invoked directly 4495 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4496 * This is because this function must be invoked at a precise location. 4497 */ 4498 void rcu_report_dead(unsigned int cpu) 4499 { 4500 unsigned long flags, seq_flags; 4501 unsigned long mask; 4502 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4503 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4504 4505 // Do any dangling deferred wakeups. 4506 do_nocb_deferred_wakeup(rdp); 4507 4508 rcu_preempt_deferred_qs(current); 4509 4510 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4511 mask = rdp->grpmask; 4512 local_irq_save(seq_flags); 4513 arch_spin_lock(&rcu_state.ofl_lock); 4514 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4515 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4516 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4517 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4518 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4519 rcu_disable_urgency_upon_qs(rdp); 4520 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4521 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4522 } 4523 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4524 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4525 arch_spin_unlock(&rcu_state.ofl_lock); 4526 local_irq_restore(seq_flags); 4527 4528 rdp->cpu_started = false; 4529 } 4530 4531 #ifdef CONFIG_HOTPLUG_CPU 4532 /* 4533 * The outgoing CPU has just passed through the dying-idle state, and we 4534 * are being invoked from the CPU that was IPIed to continue the offline 4535 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4536 */ 4537 void rcutree_migrate_callbacks(int cpu) 4538 { 4539 unsigned long flags; 4540 struct rcu_data *my_rdp; 4541 struct rcu_node *my_rnp; 4542 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4543 bool needwake; 4544 4545 if (rcu_rdp_is_offloaded(rdp) || 4546 rcu_segcblist_empty(&rdp->cblist)) 4547 return; /* No callbacks to migrate. */ 4548 4549 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4550 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4551 rcu_barrier_entrain(rdp); 4552 my_rdp = this_cpu_ptr(&rcu_data); 4553 my_rnp = my_rdp->mynode; 4554 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4555 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false)); 4556 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4557 /* Leverage recent GPs and set GP for new callbacks. */ 4558 needwake = rcu_advance_cbs(my_rnp, rdp) || 4559 rcu_advance_cbs(my_rnp, my_rdp); 4560 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4561 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4562 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4563 rcu_segcblist_disable(&rdp->cblist); 4564 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4565 check_cb_ovld_locked(my_rdp, my_rnp); 4566 if (rcu_rdp_is_offloaded(my_rdp)) { 4567 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4568 __call_rcu_nocb_wake(my_rdp, true, flags); 4569 } else { 4570 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4571 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4572 } 4573 if (needwake) 4574 rcu_gp_kthread_wake(); 4575 lockdep_assert_irqs_enabled(); 4576 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4577 !rcu_segcblist_empty(&rdp->cblist), 4578 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4579 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4580 rcu_segcblist_first_cb(&rdp->cblist)); 4581 } 4582 #endif 4583 4584 /* 4585 * On non-huge systems, use expedited RCU grace periods to make suspend 4586 * and hibernation run faster. 4587 */ 4588 static int rcu_pm_notify(struct notifier_block *self, 4589 unsigned long action, void *hcpu) 4590 { 4591 switch (action) { 4592 case PM_HIBERNATION_PREPARE: 4593 case PM_SUSPEND_PREPARE: 4594 rcu_async_hurry(); 4595 rcu_expedite_gp(); 4596 break; 4597 case PM_POST_HIBERNATION: 4598 case PM_POST_SUSPEND: 4599 rcu_unexpedite_gp(); 4600 rcu_async_relax(); 4601 break; 4602 default: 4603 break; 4604 } 4605 return NOTIFY_OK; 4606 } 4607 4608 #ifdef CONFIG_RCU_EXP_KTHREAD 4609 struct kthread_worker *rcu_exp_gp_kworker; 4610 struct kthread_worker *rcu_exp_par_gp_kworker; 4611 4612 static void __init rcu_start_exp_gp_kworkers(void) 4613 { 4614 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4615 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4616 struct sched_param param = { .sched_priority = kthread_prio }; 4617 4618 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4619 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4620 pr_err("Failed to create %s!\n", gp_kworker_name); 4621 return; 4622 } 4623 4624 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4625 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4626 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4627 kthread_destroy_worker(rcu_exp_gp_kworker); 4628 return; 4629 } 4630 4631 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4632 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4633 ¶m); 4634 } 4635 4636 static inline void rcu_alloc_par_gp_wq(void) 4637 { 4638 } 4639 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4640 struct workqueue_struct *rcu_par_gp_wq; 4641 4642 static void __init rcu_start_exp_gp_kworkers(void) 4643 { 4644 } 4645 4646 static inline void rcu_alloc_par_gp_wq(void) 4647 { 4648 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4649 WARN_ON(!rcu_par_gp_wq); 4650 } 4651 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4652 4653 /* 4654 * Spawn the kthreads that handle RCU's grace periods. 4655 */ 4656 static int __init rcu_spawn_gp_kthread(void) 4657 { 4658 unsigned long flags; 4659 struct rcu_node *rnp; 4660 struct sched_param sp; 4661 struct task_struct *t; 4662 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4663 4664 rcu_scheduler_fully_active = 1; 4665 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4666 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4667 return 0; 4668 if (kthread_prio) { 4669 sp.sched_priority = kthread_prio; 4670 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4671 } 4672 rnp = rcu_get_root(); 4673 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4674 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4675 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4676 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4677 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4678 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4679 wake_up_process(t); 4680 /* This is a pre-SMP initcall, we expect a single CPU */ 4681 WARN_ON(num_online_cpus() > 1); 4682 /* 4683 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4684 * due to rcu_scheduler_fully_active. 4685 */ 4686 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4687 rcu_spawn_one_boost_kthread(rdp->mynode); 4688 rcu_spawn_core_kthreads(); 4689 /* Create kthread worker for expedited GPs */ 4690 rcu_start_exp_gp_kworkers(); 4691 return 0; 4692 } 4693 early_initcall(rcu_spawn_gp_kthread); 4694 4695 /* 4696 * This function is invoked towards the end of the scheduler's 4697 * initialization process. Before this is called, the idle task might 4698 * contain synchronous grace-period primitives (during which time, this idle 4699 * task is booting the system, and such primitives are no-ops). After this 4700 * function is called, any synchronous grace-period primitives are run as 4701 * expedited, with the requesting task driving the grace period forward. 4702 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4703 * runtime RCU functionality. 4704 */ 4705 void rcu_scheduler_starting(void) 4706 { 4707 unsigned long flags; 4708 struct rcu_node *rnp; 4709 4710 WARN_ON(num_online_cpus() != 1); 4711 WARN_ON(nr_context_switches() > 0); 4712 rcu_test_sync_prims(); 4713 4714 // Fix up the ->gp_seq counters. 4715 local_irq_save(flags); 4716 rcu_for_each_node_breadth_first(rnp) 4717 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4718 local_irq_restore(flags); 4719 4720 // Switch out of early boot mode. 4721 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4722 rcu_test_sync_prims(); 4723 } 4724 4725 /* 4726 * Helper function for rcu_init() that initializes the rcu_state structure. 4727 */ 4728 static void __init rcu_init_one(void) 4729 { 4730 static const char * const buf[] = RCU_NODE_NAME_INIT; 4731 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4732 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4733 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4734 4735 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4736 int cpustride = 1; 4737 int i; 4738 int j; 4739 struct rcu_node *rnp; 4740 4741 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4742 4743 /* Silence gcc 4.8 false positive about array index out of range. */ 4744 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4745 panic("rcu_init_one: rcu_num_lvls out of range"); 4746 4747 /* Initialize the level-tracking arrays. */ 4748 4749 for (i = 1; i < rcu_num_lvls; i++) 4750 rcu_state.level[i] = 4751 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4752 rcu_init_levelspread(levelspread, num_rcu_lvl); 4753 4754 /* Initialize the elements themselves, starting from the leaves. */ 4755 4756 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4757 cpustride *= levelspread[i]; 4758 rnp = rcu_state.level[i]; 4759 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4760 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4761 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4762 &rcu_node_class[i], buf[i]); 4763 raw_spin_lock_init(&rnp->fqslock); 4764 lockdep_set_class_and_name(&rnp->fqslock, 4765 &rcu_fqs_class[i], fqs[i]); 4766 rnp->gp_seq = rcu_state.gp_seq; 4767 rnp->gp_seq_needed = rcu_state.gp_seq; 4768 rnp->completedqs = rcu_state.gp_seq; 4769 rnp->qsmask = 0; 4770 rnp->qsmaskinit = 0; 4771 rnp->grplo = j * cpustride; 4772 rnp->grphi = (j + 1) * cpustride - 1; 4773 if (rnp->grphi >= nr_cpu_ids) 4774 rnp->grphi = nr_cpu_ids - 1; 4775 if (i == 0) { 4776 rnp->grpnum = 0; 4777 rnp->grpmask = 0; 4778 rnp->parent = NULL; 4779 } else { 4780 rnp->grpnum = j % levelspread[i - 1]; 4781 rnp->grpmask = BIT(rnp->grpnum); 4782 rnp->parent = rcu_state.level[i - 1] + 4783 j / levelspread[i - 1]; 4784 } 4785 rnp->level = i; 4786 INIT_LIST_HEAD(&rnp->blkd_tasks); 4787 rcu_init_one_nocb(rnp); 4788 init_waitqueue_head(&rnp->exp_wq[0]); 4789 init_waitqueue_head(&rnp->exp_wq[1]); 4790 init_waitqueue_head(&rnp->exp_wq[2]); 4791 init_waitqueue_head(&rnp->exp_wq[3]); 4792 spin_lock_init(&rnp->exp_lock); 4793 mutex_init(&rnp->boost_kthread_mutex); 4794 raw_spin_lock_init(&rnp->exp_poll_lock); 4795 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4796 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4797 } 4798 } 4799 4800 init_swait_queue_head(&rcu_state.gp_wq); 4801 init_swait_queue_head(&rcu_state.expedited_wq); 4802 rnp = rcu_first_leaf_node(); 4803 for_each_possible_cpu(i) { 4804 while (i > rnp->grphi) 4805 rnp++; 4806 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4807 rcu_boot_init_percpu_data(i); 4808 } 4809 } 4810 4811 /* 4812 * Force priority from the kernel command-line into range. 4813 */ 4814 static void __init sanitize_kthread_prio(void) 4815 { 4816 int kthread_prio_in = kthread_prio; 4817 4818 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4819 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4820 kthread_prio = 2; 4821 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4822 kthread_prio = 1; 4823 else if (kthread_prio < 0) 4824 kthread_prio = 0; 4825 else if (kthread_prio > 99) 4826 kthread_prio = 99; 4827 4828 if (kthread_prio != kthread_prio_in) 4829 pr_alert("%s: Limited prio to %d from %d\n", 4830 __func__, kthread_prio, kthread_prio_in); 4831 } 4832 4833 /* 4834 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4835 * replace the definitions in tree.h because those are needed to size 4836 * the ->node array in the rcu_state structure. 4837 */ 4838 void rcu_init_geometry(void) 4839 { 4840 ulong d; 4841 int i; 4842 static unsigned long old_nr_cpu_ids; 4843 int rcu_capacity[RCU_NUM_LVLS]; 4844 static bool initialized; 4845 4846 if (initialized) { 4847 /* 4848 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4849 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4850 */ 4851 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4852 return; 4853 } 4854 4855 old_nr_cpu_ids = nr_cpu_ids; 4856 initialized = true; 4857 4858 /* 4859 * Initialize any unspecified boot parameters. 4860 * The default values of jiffies_till_first_fqs and 4861 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4862 * value, which is a function of HZ, then adding one for each 4863 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4864 */ 4865 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4866 if (jiffies_till_first_fqs == ULONG_MAX) 4867 jiffies_till_first_fqs = d; 4868 if (jiffies_till_next_fqs == ULONG_MAX) 4869 jiffies_till_next_fqs = d; 4870 adjust_jiffies_till_sched_qs(); 4871 4872 /* If the compile-time values are accurate, just leave. */ 4873 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4874 nr_cpu_ids == NR_CPUS) 4875 return; 4876 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4877 rcu_fanout_leaf, nr_cpu_ids); 4878 4879 /* 4880 * The boot-time rcu_fanout_leaf parameter must be at least two 4881 * and cannot exceed the number of bits in the rcu_node masks. 4882 * Complain and fall back to the compile-time values if this 4883 * limit is exceeded. 4884 */ 4885 if (rcu_fanout_leaf < 2 || 4886 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4887 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4888 WARN_ON(1); 4889 return; 4890 } 4891 4892 /* 4893 * Compute number of nodes that can be handled an rcu_node tree 4894 * with the given number of levels. 4895 */ 4896 rcu_capacity[0] = rcu_fanout_leaf; 4897 for (i = 1; i < RCU_NUM_LVLS; i++) 4898 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4899 4900 /* 4901 * The tree must be able to accommodate the configured number of CPUs. 4902 * If this limit is exceeded, fall back to the compile-time values. 4903 */ 4904 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4905 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4906 WARN_ON(1); 4907 return; 4908 } 4909 4910 /* Calculate the number of levels in the tree. */ 4911 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4912 } 4913 rcu_num_lvls = i + 1; 4914 4915 /* Calculate the number of rcu_nodes at each level of the tree. */ 4916 for (i = 0; i < rcu_num_lvls; i++) { 4917 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4918 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4919 } 4920 4921 /* Calculate the total number of rcu_node structures. */ 4922 rcu_num_nodes = 0; 4923 for (i = 0; i < rcu_num_lvls; i++) 4924 rcu_num_nodes += num_rcu_lvl[i]; 4925 } 4926 4927 /* 4928 * Dump out the structure of the rcu_node combining tree associated 4929 * with the rcu_state structure. 4930 */ 4931 static void __init rcu_dump_rcu_node_tree(void) 4932 { 4933 int level = 0; 4934 struct rcu_node *rnp; 4935 4936 pr_info("rcu_node tree layout dump\n"); 4937 pr_info(" "); 4938 rcu_for_each_node_breadth_first(rnp) { 4939 if (rnp->level != level) { 4940 pr_cont("\n"); 4941 pr_info(" "); 4942 level = rnp->level; 4943 } 4944 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4945 } 4946 pr_cont("\n"); 4947 } 4948 4949 struct workqueue_struct *rcu_gp_wq; 4950 4951 static void __init kfree_rcu_batch_init(void) 4952 { 4953 int cpu; 4954 int i, j; 4955 4956 /* Clamp it to [0:100] seconds interval. */ 4957 if (rcu_delay_page_cache_fill_msec < 0 || 4958 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4959 4960 rcu_delay_page_cache_fill_msec = 4961 clamp(rcu_delay_page_cache_fill_msec, 0, 4962 (int) (100 * MSEC_PER_SEC)); 4963 4964 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4965 rcu_delay_page_cache_fill_msec); 4966 } 4967 4968 for_each_possible_cpu(cpu) { 4969 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4970 4971 for (i = 0; i < KFREE_N_BATCHES; i++) { 4972 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4973 krcp->krw_arr[i].krcp = krcp; 4974 4975 for (j = 0; j < FREE_N_CHANNELS; j++) 4976 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]); 4977 } 4978 4979 for (i = 0; i < FREE_N_CHANNELS; i++) 4980 INIT_LIST_HEAD(&krcp->bulk_head[i]); 4981 4982 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4983 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4984 krcp->initialized = true; 4985 } 4986 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4987 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4988 } 4989 4990 void __init rcu_init(void) 4991 { 4992 int cpu = smp_processor_id(); 4993 4994 rcu_early_boot_tests(); 4995 4996 kfree_rcu_batch_init(); 4997 rcu_bootup_announce(); 4998 sanitize_kthread_prio(); 4999 rcu_init_geometry(); 5000 rcu_init_one(); 5001 if (dump_tree) 5002 rcu_dump_rcu_node_tree(); 5003 if (use_softirq) 5004 open_softirq(RCU_SOFTIRQ, rcu_core_si); 5005 5006 /* 5007 * We don't need protection against CPU-hotplug here because 5008 * this is called early in boot, before either interrupts 5009 * or the scheduler are operational. 5010 */ 5011 pm_notifier(rcu_pm_notify, 0); 5012 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 5013 rcutree_prepare_cpu(cpu); 5014 rcu_cpu_starting(cpu); 5015 rcutree_online_cpu(cpu); 5016 5017 /* Create workqueue for Tree SRCU and for expedited GPs. */ 5018 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 5019 WARN_ON(!rcu_gp_wq); 5020 rcu_alloc_par_gp_wq(); 5021 5022 /* Fill in default value for rcutree.qovld boot parameter. */ 5023 /* -After- the rcu_node ->lock fields are initialized! */ 5024 if (qovld < 0) 5025 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 5026 else 5027 qovld_calc = qovld; 5028 5029 // Kick-start in case any polled grace periods started early. 5030 (void)start_poll_synchronize_rcu_expedited(); 5031 5032 rcu_test_sync_prims(); 5033 } 5034 5035 #include "tree_stall.h" 5036 #include "tree_exp.h" 5037 #include "tree_nocb.h" 5038 #include "tree_plugin.h" 5039