xref: /openbmc/linux/kernel/rcu/tree.c (revision 4464005a12b5c79e1a364e6272ee10a83413f928)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include "../time/tick-internal.h"
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 #ifndef data_race
71 #define data_race(expr)							\
72 	({								\
73 		expr;							\
74 	})
75 #endif
76 #ifndef ASSERT_EXCLUSIVE_WRITER
77 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
78 #endif
79 #ifndef ASSERT_EXCLUSIVE_ACCESS
80 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
81 #endif
82 
83 /* Data structures. */
84 
85 /*
86  * Steal a bit from the bottom of ->dynticks for idle entry/exit
87  * control.  Initially this is for TLB flushing.
88  */
89 #define RCU_DYNTICK_CTRL_MASK 0x1
90 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
91 
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
93 	.dynticks_nesting = 1,
94 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
95 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
96 };
97 static struct rcu_state rcu_state = {
98 	.level = { &rcu_state.node[0] },
99 	.gp_state = RCU_GP_IDLE,
100 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
101 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
102 	.name = RCU_NAME,
103 	.abbr = RCU_ABBR,
104 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
105 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
106 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
107 };
108 
109 /* Dump rcu_node combining tree at boot to verify correct setup. */
110 static bool dump_tree;
111 module_param(dump_tree, bool, 0444);
112 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
113 static bool use_softirq = true;
114 module_param(use_softirq, bool, 0444);
115 /* Control rcu_node-tree auto-balancing at boot time. */
116 static bool rcu_fanout_exact;
117 module_param(rcu_fanout_exact, bool, 0444);
118 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
119 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
120 module_param(rcu_fanout_leaf, int, 0444);
121 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
122 /* Number of rcu_nodes at specified level. */
123 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
124 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
125 
126 /*
127  * The rcu_scheduler_active variable is initialized to the value
128  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
129  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
130  * RCU can assume that there is but one task, allowing RCU to (for example)
131  * optimize synchronize_rcu() to a simple barrier().  When this variable
132  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
133  * to detect real grace periods.  This variable is also used to suppress
134  * boot-time false positives from lockdep-RCU error checking.  Finally, it
135  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
136  * is fully initialized, including all of its kthreads having been spawned.
137  */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140 
141 /*
142  * The rcu_scheduler_fully_active variable transitions from zero to one
143  * during the early_initcall() processing, which is after the scheduler
144  * is capable of creating new tasks.  So RCU processing (for example,
145  * creating tasks for RCU priority boosting) must be delayed until after
146  * rcu_scheduler_fully_active transitions from zero to one.  We also
147  * currently delay invocation of any RCU callbacks until after this point.
148  *
149  * It might later prove better for people registering RCU callbacks during
150  * early boot to take responsibility for these callbacks, but one step at
151  * a time.
152  */
153 static int rcu_scheduler_fully_active __read_mostly;
154 
155 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
156 			      unsigned long gps, unsigned long flags);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
160 static void invoke_rcu_core(void);
161 static void rcu_report_exp_rdp(struct rcu_data *rdp);
162 static void sync_sched_exp_online_cleanup(int cpu);
163 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
164 
165 /* rcuc/rcub kthread realtime priority */
166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
167 module_param(kthread_prio, int, 0444);
168 
169 /* Delay in jiffies for grace-period initialization delays, debug only. */
170 
171 static int gp_preinit_delay;
172 module_param(gp_preinit_delay, int, 0444);
173 static int gp_init_delay;
174 module_param(gp_init_delay, int, 0444);
175 static int gp_cleanup_delay;
176 module_param(gp_cleanup_delay, int, 0444);
177 
178 /* Retrieve RCU kthreads priority for rcutorture */
179 int rcu_get_gp_kthreads_prio(void)
180 {
181 	return kthread_prio;
182 }
183 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
184 
185 /*
186  * Number of grace periods between delays, normalized by the duration of
187  * the delay.  The longer the delay, the more the grace periods between
188  * each delay.  The reason for this normalization is that it means that,
189  * for non-zero delays, the overall slowdown of grace periods is constant
190  * regardless of the duration of the delay.  This arrangement balances
191  * the need for long delays to increase some race probabilities with the
192  * need for fast grace periods to increase other race probabilities.
193  */
194 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
195 
196 /*
197  * Compute the mask of online CPUs for the specified rcu_node structure.
198  * This will not be stable unless the rcu_node structure's ->lock is
199  * held, but the bit corresponding to the current CPU will be stable
200  * in most contexts.
201  */
202 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
203 {
204 	return READ_ONCE(rnp->qsmaskinitnext);
205 }
206 
207 /*
208  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
209  * permit this function to be invoked without holding the root rcu_node
210  * structure's ->lock, but of course results can be subject to change.
211  */
212 static int rcu_gp_in_progress(void)
213 {
214 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
215 }
216 
217 /*
218  * Return the number of callbacks queued on the specified CPU.
219  * Handles both the nocbs and normal cases.
220  */
221 static long rcu_get_n_cbs_cpu(int cpu)
222 {
223 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
224 
225 	if (rcu_segcblist_is_enabled(&rdp->cblist))
226 		return rcu_segcblist_n_cbs(&rdp->cblist);
227 	return 0;
228 }
229 
230 void rcu_softirq_qs(void)
231 {
232 	rcu_qs();
233 	rcu_preempt_deferred_qs(current);
234 }
235 
236 /*
237  * Record entry into an extended quiescent state.  This is only to be
238  * called when not already in an extended quiescent state, that is,
239  * RCU is watching prior to the call to this function and is no longer
240  * watching upon return.
241  */
242 static noinstr void rcu_dynticks_eqs_enter(void)
243 {
244 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
245 	int seq;
246 
247 	/*
248 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
249 	 * critical sections, and we also must force ordering with the
250 	 * next idle sojourn.
251 	 */
252 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
253 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
254 	// RCU is no longer watching.  Better be in extended quiescent state!
255 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
256 		     (seq & RCU_DYNTICK_CTRL_CTR));
257 	/* Better not have special action (TLB flush) pending! */
258 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
259 		     (seq & RCU_DYNTICK_CTRL_MASK));
260 }
261 
262 /*
263  * Record exit from an extended quiescent state.  This is only to be
264  * called from an extended quiescent state, that is, RCU is not watching
265  * prior to the call to this function and is watching upon return.
266  */
267 static noinstr void rcu_dynticks_eqs_exit(void)
268 {
269 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
270 	int seq;
271 
272 	/*
273 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
274 	 * and we also must force ordering with the next RCU read-side
275 	 * critical section.
276 	 */
277 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
278 	// RCU is now watching.  Better not be in an extended quiescent state!
279 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
280 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
281 		     !(seq & RCU_DYNTICK_CTRL_CTR));
282 	if (seq & RCU_DYNTICK_CTRL_MASK) {
283 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
284 		smp_mb__after_atomic(); /* _exit after clearing mask. */
285 	}
286 }
287 
288 /*
289  * Reset the current CPU's ->dynticks counter to indicate that the
290  * newly onlined CPU is no longer in an extended quiescent state.
291  * This will either leave the counter unchanged, or increment it
292  * to the next non-quiescent value.
293  *
294  * The non-atomic test/increment sequence works because the upper bits
295  * of the ->dynticks counter are manipulated only by the corresponding CPU,
296  * or when the corresponding CPU is offline.
297  */
298 static void rcu_dynticks_eqs_online(void)
299 {
300 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
301 
302 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
303 		return;
304 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
305 }
306 
307 /*
308  * Is the current CPU in an extended quiescent state?
309  *
310  * No ordering, as we are sampling CPU-local information.
311  */
312 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
313 {
314 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
315 
316 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
317 }
318 
319 /*
320  * Snapshot the ->dynticks counter with full ordering so as to allow
321  * stable comparison of this counter with past and future snapshots.
322  */
323 static int rcu_dynticks_snap(struct rcu_data *rdp)
324 {
325 	int snap = atomic_add_return(0, &rdp->dynticks);
326 
327 	return snap & ~RCU_DYNTICK_CTRL_MASK;
328 }
329 
330 /*
331  * Return true if the snapshot returned from rcu_dynticks_snap()
332  * indicates that RCU is in an extended quiescent state.
333  */
334 static bool rcu_dynticks_in_eqs(int snap)
335 {
336 	return !(snap & RCU_DYNTICK_CTRL_CTR);
337 }
338 
339 /*
340  * Return true if the CPU corresponding to the specified rcu_data
341  * structure has spent some time in an extended quiescent state since
342  * rcu_dynticks_snap() returned the specified snapshot.
343  */
344 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
345 {
346 	return snap != rcu_dynticks_snap(rdp);
347 }
348 
349 /*
350  * Return true if the referenced integer is zero while the specified
351  * CPU remains within a single extended quiescent state.
352  */
353 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
354 {
355 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
356 	int snap;
357 
358 	// If not quiescent, force back to earlier extended quiescent state.
359 	snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
360 					       RCU_DYNTICK_CTRL_CTR);
361 
362 	smp_rmb(); // Order ->dynticks and *vp reads.
363 	if (READ_ONCE(*vp))
364 		return false;  // Non-zero, so report failure;
365 	smp_rmb(); // Order *vp read and ->dynticks re-read.
366 
367 	// If still in the same extended quiescent state, we are good!
368 	return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
369 }
370 
371 /*
372  * Set the special (bottom) bit of the specified CPU so that it
373  * will take special action (such as flushing its TLB) on the
374  * next exit from an extended quiescent state.  Returns true if
375  * the bit was successfully set, or false if the CPU was not in
376  * an extended quiescent state.
377  */
378 bool rcu_eqs_special_set(int cpu)
379 {
380 	int old;
381 	int new;
382 	int new_old;
383 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
384 
385 	new_old = atomic_read(&rdp->dynticks);
386 	do {
387 		old = new_old;
388 		if (old & RCU_DYNTICK_CTRL_CTR)
389 			return false;
390 		new = old | RCU_DYNTICK_CTRL_MASK;
391 		new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
392 	} while (new_old != old);
393 	return true;
394 }
395 
396 /*
397  * Let the RCU core know that this CPU has gone through the scheduler,
398  * which is a quiescent state.  This is called when the need for a
399  * quiescent state is urgent, so we burn an atomic operation and full
400  * memory barriers to let the RCU core know about it, regardless of what
401  * this CPU might (or might not) do in the near future.
402  *
403  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
404  *
405  * The caller must have disabled interrupts and must not be idle.
406  */
407 void rcu_momentary_dyntick_idle(void)
408 {
409 	int special;
410 
411 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
412 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
413 				    &this_cpu_ptr(&rcu_data)->dynticks);
414 	/* It is illegal to call this from idle state. */
415 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
416 	rcu_preempt_deferred_qs(current);
417 }
418 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
419 
420 /**
421  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
422  *
423  * If the current CPU is idle and running at a first-level (not nested)
424  * interrupt, or directly, from idle, return true.
425  *
426  * The caller must have at least disabled IRQs.
427  */
428 static int rcu_is_cpu_rrupt_from_idle(void)
429 {
430 	long nesting;
431 
432 	/*
433 	 * Usually called from the tick; but also used from smp_function_call()
434 	 * for expedited grace periods. This latter can result in running from
435 	 * the idle task, instead of an actual IPI.
436 	 */
437 	lockdep_assert_irqs_disabled();
438 
439 	/* Check for counter underflows */
440 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
441 			 "RCU dynticks_nesting counter underflow!");
442 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
443 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
444 
445 	/* Are we at first interrupt nesting level? */
446 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
447 	if (nesting > 1)
448 		return false;
449 
450 	/*
451 	 * If we're not in an interrupt, we must be in the idle task!
452 	 */
453 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
454 
455 	/* Does CPU appear to be idle from an RCU standpoint? */
456 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
457 }
458 
459 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch ... */
460 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
461 static long blimit = DEFAULT_RCU_BLIMIT;
462 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
463 static long qhimark = DEFAULT_RCU_QHIMARK;
464 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
465 static long qlowmark = DEFAULT_RCU_QLOMARK;
466 #define DEFAULT_RCU_QOVLD_MULT 2
467 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
468 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
469 static long qovld_calc = -1;	  /* No pre-initialization lock acquisitions! */
470 
471 module_param(blimit, long, 0444);
472 module_param(qhimark, long, 0444);
473 module_param(qlowmark, long, 0444);
474 module_param(qovld, long, 0444);
475 
476 static ulong jiffies_till_first_fqs = ULONG_MAX;
477 static ulong jiffies_till_next_fqs = ULONG_MAX;
478 static bool rcu_kick_kthreads;
479 static int rcu_divisor = 7;
480 module_param(rcu_divisor, int, 0644);
481 
482 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
483 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
484 module_param(rcu_resched_ns, long, 0644);
485 
486 /*
487  * How long the grace period must be before we start recruiting
488  * quiescent-state help from rcu_note_context_switch().
489  */
490 static ulong jiffies_till_sched_qs = ULONG_MAX;
491 module_param(jiffies_till_sched_qs, ulong, 0444);
492 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
493 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
494 
495 /*
496  * Make sure that we give the grace-period kthread time to detect any
497  * idle CPUs before taking active measures to force quiescent states.
498  * However, don't go below 100 milliseconds, adjusted upwards for really
499  * large systems.
500  */
501 static void adjust_jiffies_till_sched_qs(void)
502 {
503 	unsigned long j;
504 
505 	/* If jiffies_till_sched_qs was specified, respect the request. */
506 	if (jiffies_till_sched_qs != ULONG_MAX) {
507 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
508 		return;
509 	}
510 	/* Otherwise, set to third fqs scan, but bound below on large system. */
511 	j = READ_ONCE(jiffies_till_first_fqs) +
512 		      2 * READ_ONCE(jiffies_till_next_fqs);
513 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
514 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
515 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
516 	WRITE_ONCE(jiffies_to_sched_qs, j);
517 }
518 
519 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
520 {
521 	ulong j;
522 	int ret = kstrtoul(val, 0, &j);
523 
524 	if (!ret) {
525 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
526 		adjust_jiffies_till_sched_qs();
527 	}
528 	return ret;
529 }
530 
531 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
532 {
533 	ulong j;
534 	int ret = kstrtoul(val, 0, &j);
535 
536 	if (!ret) {
537 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
538 		adjust_jiffies_till_sched_qs();
539 	}
540 	return ret;
541 }
542 
543 static struct kernel_param_ops first_fqs_jiffies_ops = {
544 	.set = param_set_first_fqs_jiffies,
545 	.get = param_get_ulong,
546 };
547 
548 static struct kernel_param_ops next_fqs_jiffies_ops = {
549 	.set = param_set_next_fqs_jiffies,
550 	.get = param_get_ulong,
551 };
552 
553 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
554 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
555 module_param(rcu_kick_kthreads, bool, 0644);
556 
557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
558 static int rcu_pending(int user);
559 
560 /*
561  * Return the number of RCU GPs completed thus far for debug & stats.
562  */
563 unsigned long rcu_get_gp_seq(void)
564 {
565 	return READ_ONCE(rcu_state.gp_seq);
566 }
567 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
568 
569 /*
570  * Return the number of RCU expedited batches completed thus far for
571  * debug & stats.  Odd numbers mean that a batch is in progress, even
572  * numbers mean idle.  The value returned will thus be roughly double
573  * the cumulative batches since boot.
574  */
575 unsigned long rcu_exp_batches_completed(void)
576 {
577 	return rcu_state.expedited_sequence;
578 }
579 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
580 
581 /*
582  * Return the root node of the rcu_state structure.
583  */
584 static struct rcu_node *rcu_get_root(void)
585 {
586 	return &rcu_state.node[0];
587 }
588 
589 /*
590  * Send along grace-period-related data for rcutorture diagnostics.
591  */
592 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
593 			    unsigned long *gp_seq)
594 {
595 	switch (test_type) {
596 	case RCU_FLAVOR:
597 		*flags = READ_ONCE(rcu_state.gp_flags);
598 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
599 		break;
600 	default:
601 		break;
602 	}
603 }
604 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
605 
606 /*
607  * Enter an RCU extended quiescent state, which can be either the
608  * idle loop or adaptive-tickless usermode execution.
609  *
610  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
611  * the possibility of usermode upcalls having messed up our count
612  * of interrupt nesting level during the prior busy period.
613  */
614 static noinstr void rcu_eqs_enter(bool user)
615 {
616 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
617 
618 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
619 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
620 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
621 		     rdp->dynticks_nesting == 0);
622 	if (rdp->dynticks_nesting != 1) {
623 		// RCU will still be watching, so just do accounting and leave.
624 		rdp->dynticks_nesting--;
625 		return;
626 	}
627 
628 	lockdep_assert_irqs_disabled();
629 	instrumentation_begin();
630 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
631 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
632 	rdp = this_cpu_ptr(&rcu_data);
633 	do_nocb_deferred_wakeup(rdp);
634 	rcu_prepare_for_idle();
635 	rcu_preempt_deferred_qs(current);
636 	instrumentation_end();
637 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
638 	// RCU is watching here ...
639 	rcu_dynticks_eqs_enter();
640 	// ... but is no longer watching here.
641 	rcu_dynticks_task_enter();
642 }
643 
644 /**
645  * rcu_idle_enter - inform RCU that current CPU is entering idle
646  *
647  * Enter idle mode, in other words, -leave- the mode in which RCU
648  * read-side critical sections can occur.  (Though RCU read-side
649  * critical sections can occur in irq handlers in idle, a possibility
650  * handled by irq_enter() and irq_exit().)
651  *
652  * If you add or remove a call to rcu_idle_enter(), be sure to test with
653  * CONFIG_RCU_EQS_DEBUG=y.
654  */
655 void rcu_idle_enter(void)
656 {
657 	lockdep_assert_irqs_disabled();
658 	rcu_eqs_enter(false);
659 }
660 
661 #ifdef CONFIG_NO_HZ_FULL
662 /**
663  * rcu_user_enter - inform RCU that we are resuming userspace.
664  *
665  * Enter RCU idle mode right before resuming userspace.  No use of RCU
666  * is permitted between this call and rcu_user_exit(). This way the
667  * CPU doesn't need to maintain the tick for RCU maintenance purposes
668  * when the CPU runs in userspace.
669  *
670  * If you add or remove a call to rcu_user_enter(), be sure to test with
671  * CONFIG_RCU_EQS_DEBUG=y.
672  */
673 noinstr void rcu_user_enter(void)
674 {
675 	lockdep_assert_irqs_disabled();
676 	rcu_eqs_enter(true);
677 }
678 #endif /* CONFIG_NO_HZ_FULL */
679 
680 /**
681  * rcu_nmi_exit - inform RCU of exit from NMI context
682  *
683  * If we are returning from the outermost NMI handler that interrupted an
684  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
685  * to let the RCU grace-period handling know that the CPU is back to
686  * being RCU-idle.
687  *
688  * If you add or remove a call to rcu_nmi_exit(), be sure to test
689  * with CONFIG_RCU_EQS_DEBUG=y.
690  */
691 noinstr void rcu_nmi_exit(void)
692 {
693 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
694 
695 	/*
696 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
697 	 * (We are exiting an NMI handler, so RCU better be paying attention
698 	 * to us!)
699 	 */
700 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
701 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
702 
703 	/*
704 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
705 	 * leave it in non-RCU-idle state.
706 	 */
707 	if (rdp->dynticks_nmi_nesting != 1) {
708 		instrumentation_begin();
709 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
710 				  atomic_read(&rdp->dynticks));
711 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
712 			   rdp->dynticks_nmi_nesting - 2);
713 		instrumentation_end();
714 		return;
715 	}
716 
717 	instrumentation_begin();
718 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
719 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
720 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
721 
722 	if (!in_nmi())
723 		rcu_prepare_for_idle();
724 	instrumentation_end();
725 
726 	// RCU is watching here ...
727 	rcu_dynticks_eqs_enter();
728 	// ... but is no longer watching here.
729 
730 	if (!in_nmi())
731 		rcu_dynticks_task_enter();
732 }
733 
734 /**
735  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
736  *
737  * Exit from an interrupt handler, which might possibly result in entering
738  * idle mode, in other words, leaving the mode in which read-side critical
739  * sections can occur.  The caller must have disabled interrupts.
740  *
741  * This code assumes that the idle loop never does anything that might
742  * result in unbalanced calls to irq_enter() and irq_exit().  If your
743  * architecture's idle loop violates this assumption, RCU will give you what
744  * you deserve, good and hard.  But very infrequently and irreproducibly.
745  *
746  * Use things like work queues to work around this limitation.
747  *
748  * You have been warned.
749  *
750  * If you add or remove a call to rcu_irq_exit(), be sure to test with
751  * CONFIG_RCU_EQS_DEBUG=y.
752  */
753 void noinstr rcu_irq_exit(void)
754 {
755 	lockdep_assert_irqs_disabled();
756 	rcu_nmi_exit();
757 }
758 
759 /**
760  * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
761  *			  towards in kernel preemption
762  *
763  * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
764  * from RCU point of view. Invoked from return from interrupt before kernel
765  * preemption.
766  */
767 void rcu_irq_exit_preempt(void)
768 {
769 	lockdep_assert_irqs_disabled();
770 	rcu_nmi_exit();
771 
772 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
773 			 "RCU dynticks_nesting counter underflow/zero!");
774 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
775 			 DYNTICK_IRQ_NONIDLE,
776 			 "Bad RCU  dynticks_nmi_nesting counter\n");
777 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
778 			 "RCU in extended quiescent state!");
779 }
780 
781 #ifdef CONFIG_PROVE_RCU
782 /**
783  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
784  */
785 void rcu_irq_exit_check_preempt(void)
786 {
787 	lockdep_assert_irqs_disabled();
788 
789 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
790 			 "RCU dynticks_nesting counter underflow/zero!");
791 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
792 			 DYNTICK_IRQ_NONIDLE,
793 			 "Bad RCU  dynticks_nmi_nesting counter\n");
794 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
795 			 "RCU in extended quiescent state!");
796 }
797 #endif /* #ifdef CONFIG_PROVE_RCU */
798 
799 /*
800  * Wrapper for rcu_irq_exit() where interrupts are enabled.
801  *
802  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
803  * with CONFIG_RCU_EQS_DEBUG=y.
804  */
805 void rcu_irq_exit_irqson(void)
806 {
807 	unsigned long flags;
808 
809 	local_irq_save(flags);
810 	rcu_irq_exit();
811 	local_irq_restore(flags);
812 }
813 
814 /*
815  * Exit an RCU extended quiescent state, which can be either the
816  * idle loop or adaptive-tickless usermode execution.
817  *
818  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
819  * allow for the possibility of usermode upcalls messing up our count of
820  * interrupt nesting level during the busy period that is just now starting.
821  */
822 static void noinstr rcu_eqs_exit(bool user)
823 {
824 	struct rcu_data *rdp;
825 	long oldval;
826 
827 	lockdep_assert_irqs_disabled();
828 	rdp = this_cpu_ptr(&rcu_data);
829 	oldval = rdp->dynticks_nesting;
830 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
831 	if (oldval) {
832 		// RCU was already watching, so just do accounting and leave.
833 		rdp->dynticks_nesting++;
834 		return;
835 	}
836 	rcu_dynticks_task_exit();
837 	// RCU is not watching here ...
838 	rcu_dynticks_eqs_exit();
839 	// ... but is watching here.
840 	instrumentation_begin();
841 	rcu_cleanup_after_idle();
842 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
843 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
844 	WRITE_ONCE(rdp->dynticks_nesting, 1);
845 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
846 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
847 	instrumentation_end();
848 }
849 
850 /**
851  * rcu_idle_exit - inform RCU that current CPU is leaving idle
852  *
853  * Exit idle mode, in other words, -enter- the mode in which RCU
854  * read-side critical sections can occur.
855  *
856  * If you add or remove a call to rcu_idle_exit(), be sure to test with
857  * CONFIG_RCU_EQS_DEBUG=y.
858  */
859 void rcu_idle_exit(void)
860 {
861 	unsigned long flags;
862 
863 	local_irq_save(flags);
864 	rcu_eqs_exit(false);
865 	local_irq_restore(flags);
866 }
867 
868 #ifdef CONFIG_NO_HZ_FULL
869 /**
870  * rcu_user_exit - inform RCU that we are exiting userspace.
871  *
872  * Exit RCU idle mode while entering the kernel because it can
873  * run a RCU read side critical section anytime.
874  *
875  * If you add or remove a call to rcu_user_exit(), be sure to test with
876  * CONFIG_RCU_EQS_DEBUG=y.
877  */
878 void noinstr rcu_user_exit(void)
879 {
880 	rcu_eqs_exit(1);
881 }
882 
883 /**
884  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
885  *
886  * The scheduler tick is not normally enabled when CPUs enter the kernel
887  * from nohz_full userspace execution.  After all, nohz_full userspace
888  * execution is an RCU quiescent state and the time executing in the kernel
889  * is quite short.  Except of course when it isn't.  And it is not hard to
890  * cause a large system to spend tens of seconds or even minutes looping
891  * in the kernel, which can cause a number of problems, include RCU CPU
892  * stall warnings.
893  *
894  * Therefore, if a nohz_full CPU fails to report a quiescent state
895  * in a timely manner, the RCU grace-period kthread sets that CPU's
896  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
897  * exception will invoke this function, which will turn on the scheduler
898  * tick, which will enable RCU to detect that CPU's quiescent states,
899  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
900  * The tick will be disabled once a quiescent state is reported for
901  * this CPU.
902  *
903  * Of course, in carefully tuned systems, there might never be an
904  * interrupt or exception.  In that case, the RCU grace-period kthread
905  * will eventually cause one to happen.  However, in less carefully
906  * controlled environments, this function allows RCU to get what it
907  * needs without creating otherwise useless interruptions.
908  */
909 void __rcu_irq_enter_check_tick(void)
910 {
911 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
912 
913 	 // Enabling the tick is unsafe in NMI handlers.
914 	if (WARN_ON_ONCE(in_nmi()))
915 		return;
916 
917 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
918 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
919 
920 	if (!tick_nohz_full_cpu(rdp->cpu) ||
921 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
922 	    READ_ONCE(rdp->rcu_forced_tick)) {
923 		// RCU doesn't need nohz_full help from this CPU, or it is
924 		// already getting that help.
925 		return;
926 	}
927 
928 	// We get here only when not in an extended quiescent state and
929 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
930 	// already watching and (2) The fact that we are in an interrupt
931 	// handler and that the rcu_node lock is an irq-disabled lock
932 	// prevents self-deadlock.  So we can safely recheck under the lock.
933 	// Note that the nohz_full state currently cannot change.
934 	raw_spin_lock_rcu_node(rdp->mynode);
935 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
936 		// A nohz_full CPU is in the kernel and RCU needs a
937 		// quiescent state.  Turn on the tick!
938 		WRITE_ONCE(rdp->rcu_forced_tick, true);
939 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
940 	}
941 	raw_spin_unlock_rcu_node(rdp->mynode);
942 }
943 #endif /* CONFIG_NO_HZ_FULL */
944 
945 /**
946  * rcu_nmi_enter - inform RCU of entry to NMI context
947  * @irq: Is this call from rcu_irq_enter?
948  *
949  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
950  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
951  * that the CPU is active.  This implementation permits nested NMIs, as
952  * long as the nesting level does not overflow an int.  (You will probably
953  * run out of stack space first.)
954  *
955  * If you add or remove a call to rcu_nmi_enter(), be sure to test
956  * with CONFIG_RCU_EQS_DEBUG=y.
957  */
958 noinstr void rcu_nmi_enter(void)
959 {
960 	long incby = 2;
961 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
962 
963 	/* Complain about underflow. */
964 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
965 
966 	/*
967 	 * If idle from RCU viewpoint, atomically increment ->dynticks
968 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
969 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
970 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
971 	 * to be in the outermost NMI handler that interrupted an RCU-idle
972 	 * period (observation due to Andy Lutomirski).
973 	 */
974 	if (rcu_dynticks_curr_cpu_in_eqs()) {
975 
976 		if (!in_nmi())
977 			rcu_dynticks_task_exit();
978 
979 		// RCU is not watching here ...
980 		rcu_dynticks_eqs_exit();
981 		// ... but is watching here.
982 
983 		if (!in_nmi())
984 			rcu_cleanup_after_idle();
985 
986 		incby = 1;
987 	} else if (!in_nmi()) {
988 		instrumentation_begin();
989 		rcu_irq_enter_check_tick();
990 		instrumentation_end();
991 	}
992 	instrumentation_begin();
993 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
994 			  rdp->dynticks_nmi_nesting,
995 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
996 	instrumentation_end();
997 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
998 		   rdp->dynticks_nmi_nesting + incby);
999 	barrier();
1000 }
1001 
1002 /**
1003  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1004  *
1005  * Enter an interrupt handler, which might possibly result in exiting
1006  * idle mode, in other words, entering the mode in which read-side critical
1007  * sections can occur.  The caller must have disabled interrupts.
1008  *
1009  * Note that the Linux kernel is fully capable of entering an interrupt
1010  * handler that it never exits, for example when doing upcalls to user mode!
1011  * This code assumes that the idle loop never does upcalls to user mode.
1012  * If your architecture's idle loop does do upcalls to user mode (or does
1013  * anything else that results in unbalanced calls to the irq_enter() and
1014  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1015  * But very infrequently and irreproducibly.
1016  *
1017  * Use things like work queues to work around this limitation.
1018  *
1019  * You have been warned.
1020  *
1021  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1022  * CONFIG_RCU_EQS_DEBUG=y.
1023  */
1024 noinstr void rcu_irq_enter(void)
1025 {
1026 	lockdep_assert_irqs_disabled();
1027 	rcu_nmi_enter();
1028 }
1029 
1030 /*
1031  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1032  *
1033  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1034  * with CONFIG_RCU_EQS_DEBUG=y.
1035  */
1036 void rcu_irq_enter_irqson(void)
1037 {
1038 	unsigned long flags;
1039 
1040 	local_irq_save(flags);
1041 	rcu_irq_enter();
1042 	local_irq_restore(flags);
1043 }
1044 
1045 /*
1046  * If any sort of urgency was applied to the current CPU (for example,
1047  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1048  * to get to a quiescent state, disable it.
1049  */
1050 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1051 {
1052 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1053 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1054 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1055 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1056 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1057 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1058 	}
1059 }
1060 
1061 noinstr bool __rcu_is_watching(void)
1062 {
1063 	return !rcu_dynticks_curr_cpu_in_eqs();
1064 }
1065 
1066 /**
1067  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1068  *
1069  * Return true if RCU is watching the running CPU, which means that this
1070  * CPU can safely enter RCU read-side critical sections.  In other words,
1071  * if the current CPU is not in its idle loop or is in an interrupt or
1072  * NMI handler, return true.
1073  */
1074 bool rcu_is_watching(void)
1075 {
1076 	bool ret;
1077 
1078 	preempt_disable_notrace();
1079 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1080 	preempt_enable_notrace();
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(rcu_is_watching);
1084 
1085 /*
1086  * If a holdout task is actually running, request an urgent quiescent
1087  * state from its CPU.  This is unsynchronized, so migrations can cause
1088  * the request to go to the wrong CPU.  Which is OK, all that will happen
1089  * is that the CPU's next context switch will be a bit slower and next
1090  * time around this task will generate another request.
1091  */
1092 void rcu_request_urgent_qs_task(struct task_struct *t)
1093 {
1094 	int cpu;
1095 
1096 	barrier();
1097 	cpu = task_cpu(t);
1098 	if (!task_curr(t))
1099 		return; /* This task is not running on that CPU. */
1100 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1101 }
1102 
1103 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1104 
1105 /*
1106  * Is the current CPU online as far as RCU is concerned?
1107  *
1108  * Disable preemption to avoid false positives that could otherwise
1109  * happen due to the current CPU number being sampled, this task being
1110  * preempted, its old CPU being taken offline, resuming on some other CPU,
1111  * then determining that its old CPU is now offline.
1112  *
1113  * Disable checking if in an NMI handler because we cannot safely
1114  * report errors from NMI handlers anyway.  In addition, it is OK to use
1115  * RCU on an offline processor during initial boot, hence the check for
1116  * rcu_scheduler_fully_active.
1117  */
1118 bool rcu_lockdep_current_cpu_online(void)
1119 {
1120 	struct rcu_data *rdp;
1121 	struct rcu_node *rnp;
1122 	bool ret = false;
1123 
1124 	if (in_nmi() || !rcu_scheduler_fully_active)
1125 		return true;
1126 	preempt_disable_notrace();
1127 	rdp = this_cpu_ptr(&rcu_data);
1128 	rnp = rdp->mynode;
1129 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1130 		ret = true;
1131 	preempt_enable_notrace();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1135 
1136 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1137 
1138 /*
1139  * We are reporting a quiescent state on behalf of some other CPU, so
1140  * it is our responsibility to check for and handle potential overflow
1141  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1142  * After all, the CPU might be in deep idle state, and thus executing no
1143  * code whatsoever.
1144  */
1145 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1146 {
1147 	raw_lockdep_assert_held_rcu_node(rnp);
1148 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1149 			 rnp->gp_seq))
1150 		WRITE_ONCE(rdp->gpwrap, true);
1151 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1152 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1153 }
1154 
1155 /*
1156  * Snapshot the specified CPU's dynticks counter so that we can later
1157  * credit them with an implicit quiescent state.  Return 1 if this CPU
1158  * is in dynticks idle mode, which is an extended quiescent state.
1159  */
1160 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1161 {
1162 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1163 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1164 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1165 		rcu_gpnum_ovf(rdp->mynode, rdp);
1166 		return 1;
1167 	}
1168 	return 0;
1169 }
1170 
1171 /*
1172  * Return true if the specified CPU has passed through a quiescent
1173  * state by virtue of being in or having passed through an dynticks
1174  * idle state since the last call to dyntick_save_progress_counter()
1175  * for this same CPU, or by virtue of having been offline.
1176  */
1177 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1178 {
1179 	unsigned long jtsq;
1180 	bool *rnhqp;
1181 	bool *ruqp;
1182 	struct rcu_node *rnp = rdp->mynode;
1183 
1184 	/*
1185 	 * If the CPU passed through or entered a dynticks idle phase with
1186 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1187 	 * already acknowledged the request to pass through a quiescent
1188 	 * state.  Either way, that CPU cannot possibly be in an RCU
1189 	 * read-side critical section that started before the beginning
1190 	 * of the current RCU grace period.
1191 	 */
1192 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1193 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1194 		rcu_gpnum_ovf(rnp, rdp);
1195 		return 1;
1196 	}
1197 
1198 	/* If waiting too long on an offline CPU, complain. */
1199 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1200 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1201 		bool onl;
1202 		struct rcu_node *rnp1;
1203 
1204 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1205 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1206 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1207 			(long)rnp->gp_seq, (long)rnp->completedqs);
1208 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1209 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1210 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1211 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1212 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1213 			__func__, rdp->cpu, ".o"[onl],
1214 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1215 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1216 		return 1; /* Break things loose after complaining. */
1217 	}
1218 
1219 	/*
1220 	 * A CPU running for an extended time within the kernel can
1221 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1222 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1223 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1224 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1225 	 * variable are safe because the assignments are repeated if this
1226 	 * CPU failed to pass through a quiescent state.  This code
1227 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1228 	 * is set way high.
1229 	 */
1230 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1231 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1232 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1233 	if (!READ_ONCE(*rnhqp) &&
1234 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1235 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1236 	     rcu_state.cbovld)) {
1237 		WRITE_ONCE(*rnhqp, true);
1238 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1239 		smp_store_release(ruqp, true);
1240 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1241 		WRITE_ONCE(*ruqp, true);
1242 	}
1243 
1244 	/*
1245 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1246 	 * The above code handles this, but only for straight cond_resched().
1247 	 * And some in-kernel loops check need_resched() before calling
1248 	 * cond_resched(), which defeats the above code for CPUs that are
1249 	 * running in-kernel with scheduling-clock interrupts disabled.
1250 	 * So hit them over the head with the resched_cpu() hammer!
1251 	 */
1252 	if (tick_nohz_full_cpu(rdp->cpu) &&
1253 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1254 	     rcu_state.cbovld)) {
1255 		WRITE_ONCE(*ruqp, true);
1256 		resched_cpu(rdp->cpu);
1257 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1258 	}
1259 
1260 	/*
1261 	 * If more than halfway to RCU CPU stall-warning time, invoke
1262 	 * resched_cpu() more frequently to try to loosen things up a bit.
1263 	 * Also check to see if the CPU is getting hammered with interrupts,
1264 	 * but only once per grace period, just to keep the IPIs down to
1265 	 * a dull roar.
1266 	 */
1267 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1268 		if (time_after(jiffies,
1269 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1270 			resched_cpu(rdp->cpu);
1271 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1272 		}
1273 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1274 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1275 		    (rnp->ffmask & rdp->grpmask)) {
1276 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1277 			atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
1278 			rdp->rcu_iw_pending = true;
1279 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1280 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1281 		}
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1288 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1289 			      unsigned long gp_seq_req, const char *s)
1290 {
1291 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1292 				      gp_seq_req, rnp->level,
1293 				      rnp->grplo, rnp->grphi, s);
1294 }
1295 
1296 /*
1297  * rcu_start_this_gp - Request the start of a particular grace period
1298  * @rnp_start: The leaf node of the CPU from which to start.
1299  * @rdp: The rcu_data corresponding to the CPU from which to start.
1300  * @gp_seq_req: The gp_seq of the grace period to start.
1301  *
1302  * Start the specified grace period, as needed to handle newly arrived
1303  * callbacks.  The required future grace periods are recorded in each
1304  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1305  * is reason to awaken the grace-period kthread.
1306  *
1307  * The caller must hold the specified rcu_node structure's ->lock, which
1308  * is why the caller is responsible for waking the grace-period kthread.
1309  *
1310  * Returns true if the GP thread needs to be awakened else false.
1311  */
1312 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1313 			      unsigned long gp_seq_req)
1314 {
1315 	bool ret = false;
1316 	struct rcu_node *rnp;
1317 
1318 	/*
1319 	 * Use funnel locking to either acquire the root rcu_node
1320 	 * structure's lock or bail out if the need for this grace period
1321 	 * has already been recorded -- or if that grace period has in
1322 	 * fact already started.  If there is already a grace period in
1323 	 * progress in a non-leaf node, no recording is needed because the
1324 	 * end of the grace period will scan the leaf rcu_node structures.
1325 	 * Note that rnp_start->lock must not be released.
1326 	 */
1327 	raw_lockdep_assert_held_rcu_node(rnp_start);
1328 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1329 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1330 		if (rnp != rnp_start)
1331 			raw_spin_lock_rcu_node(rnp);
1332 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1333 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1334 		    (rnp != rnp_start &&
1335 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1336 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1337 					  TPS("Prestarted"));
1338 			goto unlock_out;
1339 		}
1340 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1341 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1342 			/*
1343 			 * We just marked the leaf or internal node, and a
1344 			 * grace period is in progress, which means that
1345 			 * rcu_gp_cleanup() will see the marking.  Bail to
1346 			 * reduce contention.
1347 			 */
1348 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1349 					  TPS("Startedleaf"));
1350 			goto unlock_out;
1351 		}
1352 		if (rnp != rnp_start && rnp->parent != NULL)
1353 			raw_spin_unlock_rcu_node(rnp);
1354 		if (!rnp->parent)
1355 			break;  /* At root, and perhaps also leaf. */
1356 	}
1357 
1358 	/* If GP already in progress, just leave, otherwise start one. */
1359 	if (rcu_gp_in_progress()) {
1360 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1361 		goto unlock_out;
1362 	}
1363 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1364 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1365 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1366 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1367 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1368 		goto unlock_out;
1369 	}
1370 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1371 	ret = true;  /* Caller must wake GP kthread. */
1372 unlock_out:
1373 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1374 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1375 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1376 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1377 	}
1378 	if (rnp != rnp_start)
1379 		raw_spin_unlock_rcu_node(rnp);
1380 	return ret;
1381 }
1382 
1383 /*
1384  * Clean up any old requests for the just-ended grace period.  Also return
1385  * whether any additional grace periods have been requested.
1386  */
1387 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1388 {
1389 	bool needmore;
1390 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1391 
1392 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1393 	if (!needmore)
1394 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1395 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1396 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1397 	return needmore;
1398 }
1399 
1400 /*
1401  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1402  * interrupt or softirq handler, in which case we just might immediately
1403  * sleep upon return, resulting in a grace-period hang), and don't bother
1404  * awakening when there is nothing for the grace-period kthread to do
1405  * (as in several CPUs raced to awaken, we lost), and finally don't try
1406  * to awaken a kthread that has not yet been created.  If all those checks
1407  * are passed, track some debug information and awaken.
1408  *
1409  * So why do the self-wakeup when in an interrupt or softirq handler
1410  * in the grace-period kthread's context?  Because the kthread might have
1411  * been interrupted just as it was going to sleep, and just after the final
1412  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1413  * is required, and is therefore supplied.
1414  */
1415 static void rcu_gp_kthread_wake(void)
1416 {
1417 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1418 
1419 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1420 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1421 		return;
1422 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1423 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1424 	swake_up_one(&rcu_state.gp_wq);
1425 }
1426 
1427 /*
1428  * If there is room, assign a ->gp_seq number to any callbacks on this
1429  * CPU that have not already been assigned.  Also accelerate any callbacks
1430  * that were previously assigned a ->gp_seq number that has since proven
1431  * to be too conservative, which can happen if callbacks get assigned a
1432  * ->gp_seq number while RCU is idle, but with reference to a non-root
1433  * rcu_node structure.  This function is idempotent, so it does not hurt
1434  * to call it repeatedly.  Returns an flag saying that we should awaken
1435  * the RCU grace-period kthread.
1436  *
1437  * The caller must hold rnp->lock with interrupts disabled.
1438  */
1439 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1440 {
1441 	unsigned long gp_seq_req;
1442 	bool ret = false;
1443 
1444 	rcu_lockdep_assert_cblist_protected(rdp);
1445 	raw_lockdep_assert_held_rcu_node(rnp);
1446 
1447 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1448 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1449 		return false;
1450 
1451 	/*
1452 	 * Callbacks are often registered with incomplete grace-period
1453 	 * information.  Something about the fact that getting exact
1454 	 * information requires acquiring a global lock...  RCU therefore
1455 	 * makes a conservative estimate of the grace period number at which
1456 	 * a given callback will become ready to invoke.	The following
1457 	 * code checks this estimate and improves it when possible, thus
1458 	 * accelerating callback invocation to an earlier grace-period
1459 	 * number.
1460 	 */
1461 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1462 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1463 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1464 
1465 	/* Trace depending on how much we were able to accelerate. */
1466 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1467 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1468 	else
1469 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1470 	return ret;
1471 }
1472 
1473 /*
1474  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1475  * rcu_node structure's ->lock be held.  It consults the cached value
1476  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1477  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1478  * while holding the leaf rcu_node structure's ->lock.
1479  */
1480 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1481 					struct rcu_data *rdp)
1482 {
1483 	unsigned long c;
1484 	bool needwake;
1485 
1486 	rcu_lockdep_assert_cblist_protected(rdp);
1487 	c = rcu_seq_snap(&rcu_state.gp_seq);
1488 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1489 		/* Old request still live, so mark recent callbacks. */
1490 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1491 		return;
1492 	}
1493 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1494 	needwake = rcu_accelerate_cbs(rnp, rdp);
1495 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1496 	if (needwake)
1497 		rcu_gp_kthread_wake();
1498 }
1499 
1500 /*
1501  * Move any callbacks whose grace period has completed to the
1502  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1503  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1504  * sublist.  This function is idempotent, so it does not hurt to
1505  * invoke it repeatedly.  As long as it is not invoked -too- often...
1506  * Returns true if the RCU grace-period kthread needs to be awakened.
1507  *
1508  * The caller must hold rnp->lock with interrupts disabled.
1509  */
1510 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1511 {
1512 	rcu_lockdep_assert_cblist_protected(rdp);
1513 	raw_lockdep_assert_held_rcu_node(rnp);
1514 
1515 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1516 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1517 		return false;
1518 
1519 	/*
1520 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1521 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1522 	 */
1523 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1524 
1525 	/* Classify any remaining callbacks. */
1526 	return rcu_accelerate_cbs(rnp, rdp);
1527 }
1528 
1529 /*
1530  * Move and classify callbacks, but only if doing so won't require
1531  * that the RCU grace-period kthread be awakened.
1532  */
1533 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1534 						  struct rcu_data *rdp)
1535 {
1536 	rcu_lockdep_assert_cblist_protected(rdp);
1537 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1538 	    !raw_spin_trylock_rcu_node(rnp))
1539 		return;
1540 	WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1541 	raw_spin_unlock_rcu_node(rnp);
1542 }
1543 
1544 /*
1545  * Update CPU-local rcu_data state to record the beginnings and ends of
1546  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1547  * structure corresponding to the current CPU, and must have irqs disabled.
1548  * Returns true if the grace-period kthread needs to be awakened.
1549  */
1550 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1551 {
1552 	bool ret = false;
1553 	bool need_qs;
1554 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1555 			       rcu_segcblist_is_offloaded(&rdp->cblist);
1556 
1557 	raw_lockdep_assert_held_rcu_node(rnp);
1558 
1559 	if (rdp->gp_seq == rnp->gp_seq)
1560 		return false; /* Nothing to do. */
1561 
1562 	/* Handle the ends of any preceding grace periods first. */
1563 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1564 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1565 		if (!offloaded)
1566 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1567 		rdp->core_needs_qs = false;
1568 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1569 	} else {
1570 		if (!offloaded)
1571 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1572 		if (rdp->core_needs_qs)
1573 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1574 	}
1575 
1576 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1577 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1578 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1579 		/*
1580 		 * If the current grace period is waiting for this CPU,
1581 		 * set up to detect a quiescent state, otherwise don't
1582 		 * go looking for one.
1583 		 */
1584 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1585 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1586 		rdp->cpu_no_qs.b.norm = need_qs;
1587 		rdp->core_needs_qs = need_qs;
1588 		zero_cpu_stall_ticks(rdp);
1589 	}
1590 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1591 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1592 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1593 	WRITE_ONCE(rdp->gpwrap, false);
1594 	rcu_gpnum_ovf(rnp, rdp);
1595 	return ret;
1596 }
1597 
1598 static void note_gp_changes(struct rcu_data *rdp)
1599 {
1600 	unsigned long flags;
1601 	bool needwake;
1602 	struct rcu_node *rnp;
1603 
1604 	local_irq_save(flags);
1605 	rnp = rdp->mynode;
1606 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1607 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1608 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1609 		local_irq_restore(flags);
1610 		return;
1611 	}
1612 	needwake = __note_gp_changes(rnp, rdp);
1613 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1614 	if (needwake)
1615 		rcu_gp_kthread_wake();
1616 }
1617 
1618 static void rcu_gp_slow(int delay)
1619 {
1620 	if (delay > 0 &&
1621 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1622 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1623 		schedule_timeout_uninterruptible(delay);
1624 }
1625 
1626 static unsigned long sleep_duration;
1627 
1628 /* Allow rcutorture to stall the grace-period kthread. */
1629 void rcu_gp_set_torture_wait(int duration)
1630 {
1631 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1632 		WRITE_ONCE(sleep_duration, duration);
1633 }
1634 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1635 
1636 /* Actually implement the aforementioned wait. */
1637 static void rcu_gp_torture_wait(void)
1638 {
1639 	unsigned long duration;
1640 
1641 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1642 		return;
1643 	duration = xchg(&sleep_duration, 0UL);
1644 	if (duration > 0) {
1645 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1646 		schedule_timeout_uninterruptible(duration);
1647 		pr_alert("%s: Wait complete\n", __func__);
1648 	}
1649 }
1650 
1651 /*
1652  * Initialize a new grace period.  Return false if no grace period required.
1653  */
1654 static bool rcu_gp_init(void)
1655 {
1656 	unsigned long flags;
1657 	unsigned long oldmask;
1658 	unsigned long mask;
1659 	struct rcu_data *rdp;
1660 	struct rcu_node *rnp = rcu_get_root();
1661 
1662 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1663 	raw_spin_lock_irq_rcu_node(rnp);
1664 	if (!READ_ONCE(rcu_state.gp_flags)) {
1665 		/* Spurious wakeup, tell caller to go back to sleep.  */
1666 		raw_spin_unlock_irq_rcu_node(rnp);
1667 		return false;
1668 	}
1669 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1670 
1671 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1672 		/*
1673 		 * Grace period already in progress, don't start another.
1674 		 * Not supposed to be able to happen.
1675 		 */
1676 		raw_spin_unlock_irq_rcu_node(rnp);
1677 		return false;
1678 	}
1679 
1680 	/* Advance to a new grace period and initialize state. */
1681 	record_gp_stall_check_time();
1682 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1683 	rcu_seq_start(&rcu_state.gp_seq);
1684 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1685 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1686 	raw_spin_unlock_irq_rcu_node(rnp);
1687 
1688 	/*
1689 	 * Apply per-leaf buffered online and offline operations to the
1690 	 * rcu_node tree.  Note that this new grace period need not wait
1691 	 * for subsequent online CPUs, and that quiescent-state forcing
1692 	 * will handle subsequent offline CPUs.
1693 	 */
1694 	rcu_state.gp_state = RCU_GP_ONOFF;
1695 	rcu_for_each_leaf_node(rnp) {
1696 		raw_spin_lock(&rcu_state.ofl_lock);
1697 		raw_spin_lock_irq_rcu_node(rnp);
1698 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1699 		    !rnp->wait_blkd_tasks) {
1700 			/* Nothing to do on this leaf rcu_node structure. */
1701 			raw_spin_unlock_irq_rcu_node(rnp);
1702 			raw_spin_unlock(&rcu_state.ofl_lock);
1703 			continue;
1704 		}
1705 
1706 		/* Record old state, apply changes to ->qsmaskinit field. */
1707 		oldmask = rnp->qsmaskinit;
1708 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1709 
1710 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1711 		if (!oldmask != !rnp->qsmaskinit) {
1712 			if (!oldmask) { /* First online CPU for rcu_node. */
1713 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1714 					rcu_init_new_rnp(rnp);
1715 			} else if (rcu_preempt_has_tasks(rnp)) {
1716 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1717 			} else { /* Last offline CPU and can propagate. */
1718 				rcu_cleanup_dead_rnp(rnp);
1719 			}
1720 		}
1721 
1722 		/*
1723 		 * If all waited-on tasks from prior grace period are
1724 		 * done, and if all this rcu_node structure's CPUs are
1725 		 * still offline, propagate up the rcu_node tree and
1726 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1727 		 * rcu_node structure's CPUs has since come back online,
1728 		 * simply clear ->wait_blkd_tasks.
1729 		 */
1730 		if (rnp->wait_blkd_tasks &&
1731 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1732 			rnp->wait_blkd_tasks = false;
1733 			if (!rnp->qsmaskinit)
1734 				rcu_cleanup_dead_rnp(rnp);
1735 		}
1736 
1737 		raw_spin_unlock_irq_rcu_node(rnp);
1738 		raw_spin_unlock(&rcu_state.ofl_lock);
1739 	}
1740 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1741 
1742 	/*
1743 	 * Set the quiescent-state-needed bits in all the rcu_node
1744 	 * structures for all currently online CPUs in breadth-first
1745 	 * order, starting from the root rcu_node structure, relying on the
1746 	 * layout of the tree within the rcu_state.node[] array.  Note that
1747 	 * other CPUs will access only the leaves of the hierarchy, thus
1748 	 * seeing that no grace period is in progress, at least until the
1749 	 * corresponding leaf node has been initialized.
1750 	 *
1751 	 * The grace period cannot complete until the initialization
1752 	 * process finishes, because this kthread handles both.
1753 	 */
1754 	rcu_state.gp_state = RCU_GP_INIT;
1755 	rcu_for_each_node_breadth_first(rnp) {
1756 		rcu_gp_slow(gp_init_delay);
1757 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1758 		rdp = this_cpu_ptr(&rcu_data);
1759 		rcu_preempt_check_blocked_tasks(rnp);
1760 		rnp->qsmask = rnp->qsmaskinit;
1761 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1762 		if (rnp == rdp->mynode)
1763 			(void)__note_gp_changes(rnp, rdp);
1764 		rcu_preempt_boost_start_gp(rnp);
1765 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1766 					    rnp->level, rnp->grplo,
1767 					    rnp->grphi, rnp->qsmask);
1768 		/* Quiescent states for tasks on any now-offline CPUs. */
1769 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1770 		rnp->rcu_gp_init_mask = mask;
1771 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1772 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1773 		else
1774 			raw_spin_unlock_irq_rcu_node(rnp);
1775 		cond_resched_tasks_rcu_qs();
1776 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1777 	}
1778 
1779 	return true;
1780 }
1781 
1782 /*
1783  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1784  * time.
1785  */
1786 static bool rcu_gp_fqs_check_wake(int *gfp)
1787 {
1788 	struct rcu_node *rnp = rcu_get_root();
1789 
1790 	// If under overload conditions, force an immediate FQS scan.
1791 	if (*gfp & RCU_GP_FLAG_OVLD)
1792 		return true;
1793 
1794 	// Someone like call_rcu() requested a force-quiescent-state scan.
1795 	*gfp = READ_ONCE(rcu_state.gp_flags);
1796 	if (*gfp & RCU_GP_FLAG_FQS)
1797 		return true;
1798 
1799 	// The current grace period has completed.
1800 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1801 		return true;
1802 
1803 	return false;
1804 }
1805 
1806 /*
1807  * Do one round of quiescent-state forcing.
1808  */
1809 static void rcu_gp_fqs(bool first_time)
1810 {
1811 	struct rcu_node *rnp = rcu_get_root();
1812 
1813 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1814 	rcu_state.n_force_qs++;
1815 	if (first_time) {
1816 		/* Collect dyntick-idle snapshots. */
1817 		force_qs_rnp(dyntick_save_progress_counter);
1818 	} else {
1819 		/* Handle dyntick-idle and offline CPUs. */
1820 		force_qs_rnp(rcu_implicit_dynticks_qs);
1821 	}
1822 	/* Clear flag to prevent immediate re-entry. */
1823 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1824 		raw_spin_lock_irq_rcu_node(rnp);
1825 		WRITE_ONCE(rcu_state.gp_flags,
1826 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1827 		raw_spin_unlock_irq_rcu_node(rnp);
1828 	}
1829 }
1830 
1831 /*
1832  * Loop doing repeated quiescent-state forcing until the grace period ends.
1833  */
1834 static void rcu_gp_fqs_loop(void)
1835 {
1836 	bool first_gp_fqs;
1837 	int gf = 0;
1838 	unsigned long j;
1839 	int ret;
1840 	struct rcu_node *rnp = rcu_get_root();
1841 
1842 	first_gp_fqs = true;
1843 	j = READ_ONCE(jiffies_till_first_fqs);
1844 	if (rcu_state.cbovld)
1845 		gf = RCU_GP_FLAG_OVLD;
1846 	ret = 0;
1847 	for (;;) {
1848 		if (!ret) {
1849 			rcu_state.jiffies_force_qs = jiffies + j;
1850 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1851 				   jiffies + (j ? 3 * j : 2));
1852 		}
1853 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1854 				       TPS("fqswait"));
1855 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1856 		ret = swait_event_idle_timeout_exclusive(
1857 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1858 		rcu_gp_torture_wait();
1859 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1860 		/* Locking provides needed memory barriers. */
1861 		/* If grace period done, leave loop. */
1862 		if (!READ_ONCE(rnp->qsmask) &&
1863 		    !rcu_preempt_blocked_readers_cgp(rnp))
1864 			break;
1865 		/* If time for quiescent-state forcing, do it. */
1866 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1867 		    (gf & RCU_GP_FLAG_FQS)) {
1868 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1869 					       TPS("fqsstart"));
1870 			rcu_gp_fqs(first_gp_fqs);
1871 			gf = 0;
1872 			if (first_gp_fqs) {
1873 				first_gp_fqs = false;
1874 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1875 			}
1876 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1877 					       TPS("fqsend"));
1878 			cond_resched_tasks_rcu_qs();
1879 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1880 			ret = 0; /* Force full wait till next FQS. */
1881 			j = READ_ONCE(jiffies_till_next_fqs);
1882 		} else {
1883 			/* Deal with stray signal. */
1884 			cond_resched_tasks_rcu_qs();
1885 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1886 			WARN_ON(signal_pending(current));
1887 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1888 					       TPS("fqswaitsig"));
1889 			ret = 1; /* Keep old FQS timing. */
1890 			j = jiffies;
1891 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1892 				j = 1;
1893 			else
1894 				j = rcu_state.jiffies_force_qs - j;
1895 			gf = 0;
1896 		}
1897 	}
1898 }
1899 
1900 /*
1901  * Clean up after the old grace period.
1902  */
1903 static void rcu_gp_cleanup(void)
1904 {
1905 	int cpu;
1906 	bool needgp = false;
1907 	unsigned long gp_duration;
1908 	unsigned long new_gp_seq;
1909 	bool offloaded;
1910 	struct rcu_data *rdp;
1911 	struct rcu_node *rnp = rcu_get_root();
1912 	struct swait_queue_head *sq;
1913 
1914 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1915 	raw_spin_lock_irq_rcu_node(rnp);
1916 	rcu_state.gp_end = jiffies;
1917 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1918 	if (gp_duration > rcu_state.gp_max)
1919 		rcu_state.gp_max = gp_duration;
1920 
1921 	/*
1922 	 * We know the grace period is complete, but to everyone else
1923 	 * it appears to still be ongoing.  But it is also the case
1924 	 * that to everyone else it looks like there is nothing that
1925 	 * they can do to advance the grace period.  It is therefore
1926 	 * safe for us to drop the lock in order to mark the grace
1927 	 * period as completed in all of the rcu_node structures.
1928 	 */
1929 	raw_spin_unlock_irq_rcu_node(rnp);
1930 
1931 	/*
1932 	 * Propagate new ->gp_seq value to rcu_node structures so that
1933 	 * other CPUs don't have to wait until the start of the next grace
1934 	 * period to process their callbacks.  This also avoids some nasty
1935 	 * RCU grace-period initialization races by forcing the end of
1936 	 * the current grace period to be completely recorded in all of
1937 	 * the rcu_node structures before the beginning of the next grace
1938 	 * period is recorded in any of the rcu_node structures.
1939 	 */
1940 	new_gp_seq = rcu_state.gp_seq;
1941 	rcu_seq_end(&new_gp_seq);
1942 	rcu_for_each_node_breadth_first(rnp) {
1943 		raw_spin_lock_irq_rcu_node(rnp);
1944 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1945 			dump_blkd_tasks(rnp, 10);
1946 		WARN_ON_ONCE(rnp->qsmask);
1947 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1948 		rdp = this_cpu_ptr(&rcu_data);
1949 		if (rnp == rdp->mynode)
1950 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1951 		/* smp_mb() provided by prior unlock-lock pair. */
1952 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1953 		// Reset overload indication for CPUs no longer overloaded
1954 		if (rcu_is_leaf_node(rnp))
1955 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1956 				rdp = per_cpu_ptr(&rcu_data, cpu);
1957 				check_cb_ovld_locked(rdp, rnp);
1958 			}
1959 		sq = rcu_nocb_gp_get(rnp);
1960 		raw_spin_unlock_irq_rcu_node(rnp);
1961 		rcu_nocb_gp_cleanup(sq);
1962 		cond_resched_tasks_rcu_qs();
1963 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1964 		rcu_gp_slow(gp_cleanup_delay);
1965 	}
1966 	rnp = rcu_get_root();
1967 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1968 
1969 	/* Declare grace period done, trace first to use old GP number. */
1970 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1971 	rcu_seq_end(&rcu_state.gp_seq);
1972 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1973 	rcu_state.gp_state = RCU_GP_IDLE;
1974 	/* Check for GP requests since above loop. */
1975 	rdp = this_cpu_ptr(&rcu_data);
1976 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1977 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1978 				  TPS("CleanupMore"));
1979 		needgp = true;
1980 	}
1981 	/* Advance CBs to reduce false positives below. */
1982 	offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1983 		    rcu_segcblist_is_offloaded(&rdp->cblist);
1984 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1985 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1986 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1987 		trace_rcu_grace_period(rcu_state.name,
1988 				       rcu_state.gp_seq,
1989 				       TPS("newreq"));
1990 	} else {
1991 		WRITE_ONCE(rcu_state.gp_flags,
1992 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1993 	}
1994 	raw_spin_unlock_irq_rcu_node(rnp);
1995 }
1996 
1997 /*
1998  * Body of kthread that handles grace periods.
1999  */
2000 static int __noreturn rcu_gp_kthread(void *unused)
2001 {
2002 	rcu_bind_gp_kthread();
2003 	for (;;) {
2004 
2005 		/* Handle grace-period start. */
2006 		for (;;) {
2007 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2008 					       TPS("reqwait"));
2009 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2010 			swait_event_idle_exclusive(rcu_state.gp_wq,
2011 					 READ_ONCE(rcu_state.gp_flags) &
2012 					 RCU_GP_FLAG_INIT);
2013 			rcu_gp_torture_wait();
2014 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2015 			/* Locking provides needed memory barrier. */
2016 			if (rcu_gp_init())
2017 				break;
2018 			cond_resched_tasks_rcu_qs();
2019 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2020 			WARN_ON(signal_pending(current));
2021 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2022 					       TPS("reqwaitsig"));
2023 		}
2024 
2025 		/* Handle quiescent-state forcing. */
2026 		rcu_gp_fqs_loop();
2027 
2028 		/* Handle grace-period end. */
2029 		rcu_state.gp_state = RCU_GP_CLEANUP;
2030 		rcu_gp_cleanup();
2031 		rcu_state.gp_state = RCU_GP_CLEANED;
2032 	}
2033 }
2034 
2035 /*
2036  * Report a full set of quiescent states to the rcu_state data structure.
2037  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2038  * another grace period is required.  Whether we wake the grace-period
2039  * kthread or it awakens itself for the next round of quiescent-state
2040  * forcing, that kthread will clean up after the just-completed grace
2041  * period.  Note that the caller must hold rnp->lock, which is released
2042  * before return.
2043  */
2044 static void rcu_report_qs_rsp(unsigned long flags)
2045 	__releases(rcu_get_root()->lock)
2046 {
2047 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2048 	WARN_ON_ONCE(!rcu_gp_in_progress());
2049 	WRITE_ONCE(rcu_state.gp_flags,
2050 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2051 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2052 	rcu_gp_kthread_wake();
2053 }
2054 
2055 /*
2056  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2057  * Allows quiescent states for a group of CPUs to be reported at one go
2058  * to the specified rcu_node structure, though all the CPUs in the group
2059  * must be represented by the same rcu_node structure (which need not be a
2060  * leaf rcu_node structure, though it often will be).  The gps parameter
2061  * is the grace-period snapshot, which means that the quiescent states
2062  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2063  * must be held upon entry, and it is released before return.
2064  *
2065  * As a special case, if mask is zero, the bit-already-cleared check is
2066  * disabled.  This allows propagating quiescent state due to resumed tasks
2067  * during grace-period initialization.
2068  */
2069 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2070 			      unsigned long gps, unsigned long flags)
2071 	__releases(rnp->lock)
2072 {
2073 	unsigned long oldmask = 0;
2074 	struct rcu_node *rnp_c;
2075 
2076 	raw_lockdep_assert_held_rcu_node(rnp);
2077 
2078 	/* Walk up the rcu_node hierarchy. */
2079 	for (;;) {
2080 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2081 
2082 			/*
2083 			 * Our bit has already been cleared, or the
2084 			 * relevant grace period is already over, so done.
2085 			 */
2086 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2087 			return;
2088 		}
2089 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2090 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2091 			     rcu_preempt_blocked_readers_cgp(rnp));
2092 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2093 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2094 						 mask, rnp->qsmask, rnp->level,
2095 						 rnp->grplo, rnp->grphi,
2096 						 !!rnp->gp_tasks);
2097 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2098 
2099 			/* Other bits still set at this level, so done. */
2100 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2101 			return;
2102 		}
2103 		rnp->completedqs = rnp->gp_seq;
2104 		mask = rnp->grpmask;
2105 		if (rnp->parent == NULL) {
2106 
2107 			/* No more levels.  Exit loop holding root lock. */
2108 
2109 			break;
2110 		}
2111 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2112 		rnp_c = rnp;
2113 		rnp = rnp->parent;
2114 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2115 		oldmask = READ_ONCE(rnp_c->qsmask);
2116 	}
2117 
2118 	/*
2119 	 * Get here if we are the last CPU to pass through a quiescent
2120 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2121 	 * to clean up and start the next grace period if one is needed.
2122 	 */
2123 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2124 }
2125 
2126 /*
2127  * Record a quiescent state for all tasks that were previously queued
2128  * on the specified rcu_node structure and that were blocking the current
2129  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2130  * irqs disabled, and this lock is released upon return, but irqs remain
2131  * disabled.
2132  */
2133 static void __maybe_unused
2134 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2135 	__releases(rnp->lock)
2136 {
2137 	unsigned long gps;
2138 	unsigned long mask;
2139 	struct rcu_node *rnp_p;
2140 
2141 	raw_lockdep_assert_held_rcu_node(rnp);
2142 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2143 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2144 	    rnp->qsmask != 0) {
2145 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2146 		return;  /* Still need more quiescent states! */
2147 	}
2148 
2149 	rnp->completedqs = rnp->gp_seq;
2150 	rnp_p = rnp->parent;
2151 	if (rnp_p == NULL) {
2152 		/*
2153 		 * Only one rcu_node structure in the tree, so don't
2154 		 * try to report up to its nonexistent parent!
2155 		 */
2156 		rcu_report_qs_rsp(flags);
2157 		return;
2158 	}
2159 
2160 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2161 	gps = rnp->gp_seq;
2162 	mask = rnp->grpmask;
2163 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2164 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2165 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2166 }
2167 
2168 /*
2169  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2170  * structure.  This must be called from the specified CPU.
2171  */
2172 static void
2173 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2174 {
2175 	unsigned long flags;
2176 	unsigned long mask;
2177 	bool needwake = false;
2178 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2179 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2180 	struct rcu_node *rnp;
2181 
2182 	rnp = rdp->mynode;
2183 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2184 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2185 	    rdp->gpwrap) {
2186 
2187 		/*
2188 		 * The grace period in which this quiescent state was
2189 		 * recorded has ended, so don't report it upwards.
2190 		 * We will instead need a new quiescent state that lies
2191 		 * within the current grace period.
2192 		 */
2193 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2194 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2195 		return;
2196 	}
2197 	mask = rdp->grpmask;
2198 	if (rdp->cpu == smp_processor_id())
2199 		rdp->core_needs_qs = false;
2200 	if ((rnp->qsmask & mask) == 0) {
2201 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2202 	} else {
2203 		/*
2204 		 * This GP can't end until cpu checks in, so all of our
2205 		 * callbacks can be processed during the next GP.
2206 		 */
2207 		if (!offloaded)
2208 			needwake = rcu_accelerate_cbs(rnp, rdp);
2209 
2210 		rcu_disable_urgency_upon_qs(rdp);
2211 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2212 		/* ^^^ Released rnp->lock */
2213 		if (needwake)
2214 			rcu_gp_kthread_wake();
2215 	}
2216 }
2217 
2218 /*
2219  * Check to see if there is a new grace period of which this CPU
2220  * is not yet aware, and if so, set up local rcu_data state for it.
2221  * Otherwise, see if this CPU has just passed through its first
2222  * quiescent state for this grace period, and record that fact if so.
2223  */
2224 static void
2225 rcu_check_quiescent_state(struct rcu_data *rdp)
2226 {
2227 	/* Check for grace-period ends and beginnings. */
2228 	note_gp_changes(rdp);
2229 
2230 	/*
2231 	 * Does this CPU still need to do its part for current grace period?
2232 	 * If no, return and let the other CPUs do their part as well.
2233 	 */
2234 	if (!rdp->core_needs_qs)
2235 		return;
2236 
2237 	/*
2238 	 * Was there a quiescent state since the beginning of the grace
2239 	 * period? If no, then exit and wait for the next call.
2240 	 */
2241 	if (rdp->cpu_no_qs.b.norm)
2242 		return;
2243 
2244 	/*
2245 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2246 	 * judge of that).
2247 	 */
2248 	rcu_report_qs_rdp(rdp->cpu, rdp);
2249 }
2250 
2251 /*
2252  * Near the end of the offline process.  Trace the fact that this CPU
2253  * is going offline.
2254  */
2255 int rcutree_dying_cpu(unsigned int cpu)
2256 {
2257 	bool blkd;
2258 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2259 	struct rcu_node *rnp = rdp->mynode;
2260 
2261 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2262 		return 0;
2263 
2264 	blkd = !!(rnp->qsmask & rdp->grpmask);
2265 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2266 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2267 	return 0;
2268 }
2269 
2270 /*
2271  * All CPUs for the specified rcu_node structure have gone offline,
2272  * and all tasks that were preempted within an RCU read-side critical
2273  * section while running on one of those CPUs have since exited their RCU
2274  * read-side critical section.  Some other CPU is reporting this fact with
2275  * the specified rcu_node structure's ->lock held and interrupts disabled.
2276  * This function therefore goes up the tree of rcu_node structures,
2277  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2278  * the leaf rcu_node structure's ->qsmaskinit field has already been
2279  * updated.
2280  *
2281  * This function does check that the specified rcu_node structure has
2282  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2283  * prematurely.  That said, invoking it after the fact will cost you
2284  * a needless lock acquisition.  So once it has done its work, don't
2285  * invoke it again.
2286  */
2287 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2288 {
2289 	long mask;
2290 	struct rcu_node *rnp = rnp_leaf;
2291 
2292 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2293 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2294 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2295 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2296 		return;
2297 	for (;;) {
2298 		mask = rnp->grpmask;
2299 		rnp = rnp->parent;
2300 		if (!rnp)
2301 			break;
2302 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2303 		rnp->qsmaskinit &= ~mask;
2304 		/* Between grace periods, so better already be zero! */
2305 		WARN_ON_ONCE(rnp->qsmask);
2306 		if (rnp->qsmaskinit) {
2307 			raw_spin_unlock_rcu_node(rnp);
2308 			/* irqs remain disabled. */
2309 			return;
2310 		}
2311 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2312 	}
2313 }
2314 
2315 /*
2316  * The CPU has been completely removed, and some other CPU is reporting
2317  * this fact from process context.  Do the remainder of the cleanup.
2318  * There can only be one CPU hotplug operation at a time, so no need for
2319  * explicit locking.
2320  */
2321 int rcutree_dead_cpu(unsigned int cpu)
2322 {
2323 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2324 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2325 
2326 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2327 		return 0;
2328 
2329 	/* Adjust any no-longer-needed kthreads. */
2330 	rcu_boost_kthread_setaffinity(rnp, -1);
2331 	/* Do any needed no-CB deferred wakeups from this CPU. */
2332 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2333 
2334 	// Stop-machine done, so allow nohz_full to disable tick.
2335 	tick_dep_clear(TICK_DEP_BIT_RCU);
2336 	return 0;
2337 }
2338 
2339 /*
2340  * Invoke any RCU callbacks that have made it to the end of their grace
2341  * period.  Thottle as specified by rdp->blimit.
2342  */
2343 static void rcu_do_batch(struct rcu_data *rdp)
2344 {
2345 	unsigned long flags;
2346 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2347 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2348 	struct rcu_head *rhp;
2349 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2350 	long bl, count;
2351 	long pending, tlimit = 0;
2352 
2353 	/* If no callbacks are ready, just return. */
2354 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2355 		trace_rcu_batch_start(rcu_state.name,
2356 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2357 		trace_rcu_batch_end(rcu_state.name, 0,
2358 				    !rcu_segcblist_empty(&rdp->cblist),
2359 				    need_resched(), is_idle_task(current),
2360 				    rcu_is_callbacks_kthread());
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * Extract the list of ready callbacks, disabling to prevent
2366 	 * races with call_rcu() from interrupt handlers.  Leave the
2367 	 * callback counts, as rcu_barrier() needs to be conservative.
2368 	 */
2369 	local_irq_save(flags);
2370 	rcu_nocb_lock(rdp);
2371 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2372 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2373 	bl = max(rdp->blimit, pending >> rcu_divisor);
2374 	if (unlikely(bl > 100))
2375 		tlimit = local_clock() + rcu_resched_ns;
2376 	trace_rcu_batch_start(rcu_state.name,
2377 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2378 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2379 	if (offloaded)
2380 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2381 	rcu_nocb_unlock_irqrestore(rdp, flags);
2382 
2383 	/* Invoke callbacks. */
2384 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2385 	rhp = rcu_cblist_dequeue(&rcl);
2386 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2387 		rcu_callback_t f;
2388 
2389 		debug_rcu_head_unqueue(rhp);
2390 
2391 		rcu_lock_acquire(&rcu_callback_map);
2392 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2393 
2394 		f = rhp->func;
2395 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2396 		f(rhp);
2397 
2398 		rcu_lock_release(&rcu_callback_map);
2399 
2400 		/*
2401 		 * Stop only if limit reached and CPU has something to do.
2402 		 * Note: The rcl structure counts down from zero.
2403 		 */
2404 		if (-rcl.len >= bl && !offloaded &&
2405 		    (need_resched() ||
2406 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2407 			break;
2408 		if (unlikely(tlimit)) {
2409 			/* only call local_clock() every 32 callbacks */
2410 			if (likely((-rcl.len & 31) || local_clock() < tlimit))
2411 				continue;
2412 			/* Exceeded the time limit, so leave. */
2413 			break;
2414 		}
2415 		if (offloaded) {
2416 			WARN_ON_ONCE(in_serving_softirq());
2417 			local_bh_enable();
2418 			lockdep_assert_irqs_enabled();
2419 			cond_resched_tasks_rcu_qs();
2420 			lockdep_assert_irqs_enabled();
2421 			local_bh_disable();
2422 		}
2423 	}
2424 
2425 	local_irq_save(flags);
2426 	rcu_nocb_lock(rdp);
2427 	count = -rcl.len;
2428 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2429 			    is_idle_task(current), rcu_is_callbacks_kthread());
2430 
2431 	/* Update counts and requeue any remaining callbacks. */
2432 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2433 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2434 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2435 
2436 	/* Reinstate batch limit if we have worked down the excess. */
2437 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2438 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2439 		rdp->blimit = blimit;
2440 
2441 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2442 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2443 		rdp->qlen_last_fqs_check = 0;
2444 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2445 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2446 		rdp->qlen_last_fqs_check = count;
2447 
2448 	/*
2449 	 * The following usually indicates a double call_rcu().  To track
2450 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2451 	 */
2452 	WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2453 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2454 		     count != 0 && rcu_segcblist_empty(&rdp->cblist));
2455 
2456 	rcu_nocb_unlock_irqrestore(rdp, flags);
2457 
2458 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2459 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2460 		invoke_rcu_core();
2461 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2462 }
2463 
2464 /*
2465  * This function is invoked from each scheduling-clock interrupt,
2466  * and checks to see if this CPU is in a non-context-switch quiescent
2467  * state, for example, user mode or idle loop.  It also schedules RCU
2468  * core processing.  If the current grace period has gone on too long,
2469  * it will ask the scheduler to manufacture a context switch for the sole
2470  * purpose of providing a providing the needed quiescent state.
2471  */
2472 void rcu_sched_clock_irq(int user)
2473 {
2474 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2475 	raw_cpu_inc(rcu_data.ticks_this_gp);
2476 	/* The load-acquire pairs with the store-release setting to true. */
2477 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2478 		/* Idle and userspace execution already are quiescent states. */
2479 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2480 			set_tsk_need_resched(current);
2481 			set_preempt_need_resched();
2482 		}
2483 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2484 	}
2485 	rcu_flavor_sched_clock_irq(user);
2486 	if (rcu_pending(user))
2487 		invoke_rcu_core();
2488 
2489 	trace_rcu_utilization(TPS("End scheduler-tick"));
2490 }
2491 
2492 /*
2493  * Scan the leaf rcu_node structures.  For each structure on which all
2494  * CPUs have reported a quiescent state and on which there are tasks
2495  * blocking the current grace period, initiate RCU priority boosting.
2496  * Otherwise, invoke the specified function to check dyntick state for
2497  * each CPU that has not yet reported a quiescent state.
2498  */
2499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2500 {
2501 	int cpu;
2502 	unsigned long flags;
2503 	unsigned long mask;
2504 	struct rcu_data *rdp;
2505 	struct rcu_node *rnp;
2506 
2507 	rcu_state.cbovld = rcu_state.cbovldnext;
2508 	rcu_state.cbovldnext = false;
2509 	rcu_for_each_leaf_node(rnp) {
2510 		cond_resched_tasks_rcu_qs();
2511 		mask = 0;
2512 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2513 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2514 		if (rnp->qsmask == 0) {
2515 			if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
2516 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2517 				/*
2518 				 * No point in scanning bits because they
2519 				 * are all zero.  But we might need to
2520 				 * priority-boost blocked readers.
2521 				 */
2522 				rcu_initiate_boost(rnp, flags);
2523 				/* rcu_initiate_boost() releases rnp->lock */
2524 				continue;
2525 			}
2526 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2527 			continue;
2528 		}
2529 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2530 			rdp = per_cpu_ptr(&rcu_data, cpu);
2531 			if (f(rdp)) {
2532 				mask |= rdp->grpmask;
2533 				rcu_disable_urgency_upon_qs(rdp);
2534 			}
2535 		}
2536 		if (mask != 0) {
2537 			/* Idle/offline CPUs, report (releases rnp->lock). */
2538 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2539 		} else {
2540 			/* Nothing to do here, so just drop the lock. */
2541 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2542 		}
2543 	}
2544 }
2545 
2546 /*
2547  * Force quiescent states on reluctant CPUs, and also detect which
2548  * CPUs are in dyntick-idle mode.
2549  */
2550 void rcu_force_quiescent_state(void)
2551 {
2552 	unsigned long flags;
2553 	bool ret;
2554 	struct rcu_node *rnp;
2555 	struct rcu_node *rnp_old = NULL;
2556 
2557 	/* Funnel through hierarchy to reduce memory contention. */
2558 	rnp = __this_cpu_read(rcu_data.mynode);
2559 	for (; rnp != NULL; rnp = rnp->parent) {
2560 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2561 		       !raw_spin_trylock(&rnp->fqslock);
2562 		if (rnp_old != NULL)
2563 			raw_spin_unlock(&rnp_old->fqslock);
2564 		if (ret)
2565 			return;
2566 		rnp_old = rnp;
2567 	}
2568 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2569 
2570 	/* Reached the root of the rcu_node tree, acquire lock. */
2571 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2572 	raw_spin_unlock(&rnp_old->fqslock);
2573 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2574 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2575 		return;  /* Someone beat us to it. */
2576 	}
2577 	WRITE_ONCE(rcu_state.gp_flags,
2578 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2579 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2580 	rcu_gp_kthread_wake();
2581 }
2582 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2583 
2584 /* Perform RCU core processing work for the current CPU.  */
2585 static __latent_entropy void rcu_core(void)
2586 {
2587 	unsigned long flags;
2588 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2589 	struct rcu_node *rnp = rdp->mynode;
2590 	const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2591 			       rcu_segcblist_is_offloaded(&rdp->cblist);
2592 
2593 	if (cpu_is_offline(smp_processor_id()))
2594 		return;
2595 	trace_rcu_utilization(TPS("Start RCU core"));
2596 	WARN_ON_ONCE(!rdp->beenonline);
2597 
2598 	/* Report any deferred quiescent states if preemption enabled. */
2599 	if (!(preempt_count() & PREEMPT_MASK)) {
2600 		rcu_preempt_deferred_qs(current);
2601 	} else if (rcu_preempt_need_deferred_qs(current)) {
2602 		set_tsk_need_resched(current);
2603 		set_preempt_need_resched();
2604 	}
2605 
2606 	/* Update RCU state based on any recent quiescent states. */
2607 	rcu_check_quiescent_state(rdp);
2608 
2609 	/* No grace period and unregistered callbacks? */
2610 	if (!rcu_gp_in_progress() &&
2611 	    rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
2612 		local_irq_save(flags);
2613 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2614 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2615 		local_irq_restore(flags);
2616 	}
2617 
2618 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2619 
2620 	/* If there are callbacks ready, invoke them. */
2621 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2622 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2623 		rcu_do_batch(rdp);
2624 
2625 	/* Do any needed deferred wakeups of rcuo kthreads. */
2626 	do_nocb_deferred_wakeup(rdp);
2627 	trace_rcu_utilization(TPS("End RCU core"));
2628 }
2629 
2630 static void rcu_core_si(struct softirq_action *h)
2631 {
2632 	rcu_core();
2633 }
2634 
2635 static void rcu_wake_cond(struct task_struct *t, int status)
2636 {
2637 	/*
2638 	 * If the thread is yielding, only wake it when this
2639 	 * is invoked from idle
2640 	 */
2641 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2642 		wake_up_process(t);
2643 }
2644 
2645 static void invoke_rcu_core_kthread(void)
2646 {
2647 	struct task_struct *t;
2648 	unsigned long flags;
2649 
2650 	local_irq_save(flags);
2651 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2652 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2653 	if (t != NULL && t != current)
2654 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2655 	local_irq_restore(flags);
2656 }
2657 
2658 /*
2659  * Wake up this CPU's rcuc kthread to do RCU core processing.
2660  */
2661 static void invoke_rcu_core(void)
2662 {
2663 	if (!cpu_online(smp_processor_id()))
2664 		return;
2665 	if (use_softirq)
2666 		raise_softirq(RCU_SOFTIRQ);
2667 	else
2668 		invoke_rcu_core_kthread();
2669 }
2670 
2671 static void rcu_cpu_kthread_park(unsigned int cpu)
2672 {
2673 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2674 }
2675 
2676 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2677 {
2678 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2679 }
2680 
2681 /*
2682  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2683  * the RCU softirq used in configurations of RCU that do not support RCU
2684  * priority boosting.
2685  */
2686 static void rcu_cpu_kthread(unsigned int cpu)
2687 {
2688 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2689 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2690 	int spincnt;
2691 
2692 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2693 	for (spincnt = 0; spincnt < 10; spincnt++) {
2694 		local_bh_disable();
2695 		*statusp = RCU_KTHREAD_RUNNING;
2696 		local_irq_disable();
2697 		work = *workp;
2698 		*workp = 0;
2699 		local_irq_enable();
2700 		if (work)
2701 			rcu_core();
2702 		local_bh_enable();
2703 		if (*workp == 0) {
2704 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2705 			*statusp = RCU_KTHREAD_WAITING;
2706 			return;
2707 		}
2708 	}
2709 	*statusp = RCU_KTHREAD_YIELDING;
2710 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2711 	schedule_timeout_interruptible(2);
2712 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2713 	*statusp = RCU_KTHREAD_WAITING;
2714 }
2715 
2716 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2717 	.store			= &rcu_data.rcu_cpu_kthread_task,
2718 	.thread_should_run	= rcu_cpu_kthread_should_run,
2719 	.thread_fn		= rcu_cpu_kthread,
2720 	.thread_comm		= "rcuc/%u",
2721 	.setup			= rcu_cpu_kthread_setup,
2722 	.park			= rcu_cpu_kthread_park,
2723 };
2724 
2725 /*
2726  * Spawn per-CPU RCU core processing kthreads.
2727  */
2728 static int __init rcu_spawn_core_kthreads(void)
2729 {
2730 	int cpu;
2731 
2732 	for_each_possible_cpu(cpu)
2733 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2734 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2735 		return 0;
2736 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2737 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2738 	return 0;
2739 }
2740 early_initcall(rcu_spawn_core_kthreads);
2741 
2742 /*
2743  * Handle any core-RCU processing required by a call_rcu() invocation.
2744  */
2745 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2746 			    unsigned long flags)
2747 {
2748 	/*
2749 	 * If called from an extended quiescent state, invoke the RCU
2750 	 * core in order to force a re-evaluation of RCU's idleness.
2751 	 */
2752 	if (!rcu_is_watching())
2753 		invoke_rcu_core();
2754 
2755 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2756 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2757 		return;
2758 
2759 	/*
2760 	 * Force the grace period if too many callbacks or too long waiting.
2761 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2762 	 * if some other CPU has recently done so.  Also, don't bother
2763 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2764 	 * is the only one waiting for a grace period to complete.
2765 	 */
2766 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2767 		     rdp->qlen_last_fqs_check + qhimark)) {
2768 
2769 		/* Are we ignoring a completed grace period? */
2770 		note_gp_changes(rdp);
2771 
2772 		/* Start a new grace period if one not already started. */
2773 		if (!rcu_gp_in_progress()) {
2774 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2775 		} else {
2776 			/* Give the grace period a kick. */
2777 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2778 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2779 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2780 				rcu_force_quiescent_state();
2781 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2782 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2783 		}
2784 	}
2785 }
2786 
2787 /*
2788  * RCU callback function to leak a callback.
2789  */
2790 static void rcu_leak_callback(struct rcu_head *rhp)
2791 {
2792 }
2793 
2794 /*
2795  * Check and if necessary update the leaf rcu_node structure's
2796  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2797  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2798  * structure's ->lock.
2799  */
2800 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2801 {
2802 	raw_lockdep_assert_held_rcu_node(rnp);
2803 	if (qovld_calc <= 0)
2804 		return; // Early boot and wildcard value set.
2805 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2806 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2807 	else
2808 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2809 }
2810 
2811 /*
2812  * Check and if necessary update the leaf rcu_node structure's
2813  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2814  * number of queued RCU callbacks.  No locks need be held, but the
2815  * caller must have disabled interrupts.
2816  *
2817  * Note that this function ignores the possibility that there are a lot
2818  * of callbacks all of which have already seen the end of their respective
2819  * grace periods.  This omission is due to the need for no-CBs CPUs to
2820  * be holding ->nocb_lock to do this check, which is too heavy for a
2821  * common-case operation.
2822  */
2823 static void check_cb_ovld(struct rcu_data *rdp)
2824 {
2825 	struct rcu_node *const rnp = rdp->mynode;
2826 
2827 	if (qovld_calc <= 0 ||
2828 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2829 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2830 		return; // Early boot wildcard value or already set correctly.
2831 	raw_spin_lock_rcu_node(rnp);
2832 	check_cb_ovld_locked(rdp, rnp);
2833 	raw_spin_unlock_rcu_node(rnp);
2834 }
2835 
2836 /* Helper function for call_rcu() and friends.  */
2837 static void
2838 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2839 {
2840 	unsigned long flags;
2841 	struct rcu_data *rdp;
2842 	bool was_alldone;
2843 
2844 	/* Misaligned rcu_head! */
2845 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2846 
2847 	if (debug_rcu_head_queue(head)) {
2848 		/*
2849 		 * Probable double call_rcu(), so leak the callback.
2850 		 * Use rcu:rcu_callback trace event to find the previous
2851 		 * time callback was passed to __call_rcu().
2852 		 */
2853 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2854 			  head, head->func);
2855 		WRITE_ONCE(head->func, rcu_leak_callback);
2856 		return;
2857 	}
2858 	head->func = func;
2859 	head->next = NULL;
2860 	local_irq_save(flags);
2861 	rdp = this_cpu_ptr(&rcu_data);
2862 
2863 	/* Add the callback to our list. */
2864 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2865 		// This can trigger due to call_rcu() from offline CPU:
2866 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2867 		WARN_ON_ONCE(!rcu_is_watching());
2868 		// Very early boot, before rcu_init().  Initialize if needed
2869 		// and then drop through to queue the callback.
2870 		if (rcu_segcblist_empty(&rdp->cblist))
2871 			rcu_segcblist_init(&rdp->cblist);
2872 	}
2873 
2874 	check_cb_ovld(rdp);
2875 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2876 		return; // Enqueued onto ->nocb_bypass, so just leave.
2877 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2878 	rcu_segcblist_enqueue(&rdp->cblist, head);
2879 	if (__is_kfree_rcu_offset((unsigned long)func))
2880 		trace_rcu_kfree_callback(rcu_state.name, head,
2881 					 (unsigned long)func,
2882 					 rcu_segcblist_n_cbs(&rdp->cblist));
2883 	else
2884 		trace_rcu_callback(rcu_state.name, head,
2885 				   rcu_segcblist_n_cbs(&rdp->cblist));
2886 
2887 	/* Go handle any RCU core processing required. */
2888 	if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2889 	    unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2890 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2891 	} else {
2892 		__call_rcu_core(rdp, head, flags);
2893 		local_irq_restore(flags);
2894 	}
2895 }
2896 
2897 /**
2898  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2899  * @head: structure to be used for queueing the RCU updates.
2900  * @func: actual callback function to be invoked after the grace period
2901  *
2902  * The callback function will be invoked some time after a full grace
2903  * period elapses, in other words after all pre-existing RCU read-side
2904  * critical sections have completed.  However, the callback function
2905  * might well execute concurrently with RCU read-side critical sections
2906  * that started after call_rcu() was invoked.  RCU read-side critical
2907  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2908  * may be nested.  In addition, regions of code across which interrupts,
2909  * preemption, or softirqs have been disabled also serve as RCU read-side
2910  * critical sections.  This includes hardware interrupt handlers, softirq
2911  * handlers, and NMI handlers.
2912  *
2913  * Note that all CPUs must agree that the grace period extended beyond
2914  * all pre-existing RCU read-side critical section.  On systems with more
2915  * than one CPU, this means that when "func()" is invoked, each CPU is
2916  * guaranteed to have executed a full memory barrier since the end of its
2917  * last RCU read-side critical section whose beginning preceded the call
2918  * to call_rcu().  It also means that each CPU executing an RCU read-side
2919  * critical section that continues beyond the start of "func()" must have
2920  * executed a memory barrier after the call_rcu() but before the beginning
2921  * of that RCU read-side critical section.  Note that these guarantees
2922  * include CPUs that are offline, idle, or executing in user mode, as
2923  * well as CPUs that are executing in the kernel.
2924  *
2925  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2926  * resulting RCU callback function "func()", then both CPU A and CPU B are
2927  * guaranteed to execute a full memory barrier during the time interval
2928  * between the call to call_rcu() and the invocation of "func()" -- even
2929  * if CPU A and CPU B are the same CPU (but again only if the system has
2930  * more than one CPU).
2931  */
2932 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2933 {
2934 	__call_rcu(head, func);
2935 }
2936 EXPORT_SYMBOL_GPL(call_rcu);
2937 
2938 
2939 /* Maximum number of jiffies to wait before draining a batch. */
2940 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2941 #define KFREE_N_BATCHES 2
2942 
2943 /*
2944  * This macro defines how many entries the "records" array
2945  * will contain. It is based on the fact that the size of
2946  * kfree_rcu_bulk_data structure becomes exactly one page.
2947  */
2948 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3)
2949 
2950 /**
2951  * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers
2952  * @nr_records: Number of active pointers in the array
2953  * @records: Array of the kfree_rcu() pointers
2954  * @next: Next bulk object in the block chain
2955  * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set
2956  */
2957 struct kfree_rcu_bulk_data {
2958 	unsigned long nr_records;
2959 	void *records[KFREE_BULK_MAX_ENTR];
2960 	struct kfree_rcu_bulk_data *next;
2961 	struct rcu_head *head_free_debug;
2962 };
2963 
2964 /**
2965  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2966  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2967  * @head_free: List of kfree_rcu() objects waiting for a grace period
2968  * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period
2969  * @krcp: Pointer to @kfree_rcu_cpu structure
2970  */
2971 
2972 struct kfree_rcu_cpu_work {
2973 	struct rcu_work rcu_work;
2974 	struct rcu_head *head_free;
2975 	struct kfree_rcu_bulk_data *bhead_free;
2976 	struct kfree_rcu_cpu *krcp;
2977 };
2978 
2979 /**
2980  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2981  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2982  * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period
2983  * @bcached: Keeps at most one object for later reuse when build chain blocks
2984  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2985  * @lock: Synchronize access to this structure
2986  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2987  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2988  * @initialized: The @lock and @rcu_work fields have been initialized
2989  *
2990  * This is a per-CPU structure.  The reason that it is not included in
2991  * the rcu_data structure is to permit this code to be extracted from
2992  * the RCU files.  Such extraction could allow further optimization of
2993  * the interactions with the slab allocators.
2994  */
2995 struct kfree_rcu_cpu {
2996 	struct rcu_head *head;
2997 	struct kfree_rcu_bulk_data *bhead;
2998 	struct kfree_rcu_bulk_data *bcached;
2999 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3000 	spinlock_t lock;
3001 	struct delayed_work monitor_work;
3002 	bool monitor_todo;
3003 	bool initialized;
3004 	// Number of objects for which GP not started
3005 	int count;
3006 };
3007 
3008 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
3009 
3010 static __always_inline void
3011 debug_rcu_head_unqueue_bulk(struct rcu_head *head)
3012 {
3013 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3014 	for (; head; head = head->next)
3015 		debug_rcu_head_unqueue(head);
3016 #endif
3017 }
3018 
3019 /*
3020  * This function is invoked in workqueue context after a grace period.
3021  * It frees all the objects queued on ->bhead_free or ->head_free.
3022  */
3023 static void kfree_rcu_work(struct work_struct *work)
3024 {
3025 	unsigned long flags;
3026 	struct rcu_head *head, *next;
3027 	struct kfree_rcu_bulk_data *bhead, *bnext;
3028 	struct kfree_rcu_cpu *krcp;
3029 	struct kfree_rcu_cpu_work *krwp;
3030 
3031 	krwp = container_of(to_rcu_work(work),
3032 			    struct kfree_rcu_cpu_work, rcu_work);
3033 	krcp = krwp->krcp;
3034 	spin_lock_irqsave(&krcp->lock, flags);
3035 	head = krwp->head_free;
3036 	krwp->head_free = NULL;
3037 	bhead = krwp->bhead_free;
3038 	krwp->bhead_free = NULL;
3039 	spin_unlock_irqrestore(&krcp->lock, flags);
3040 
3041 	/* "bhead" is now private, so traverse locklessly. */
3042 	for (; bhead; bhead = bnext) {
3043 		bnext = bhead->next;
3044 
3045 		debug_rcu_head_unqueue_bulk(bhead->head_free_debug);
3046 
3047 		rcu_lock_acquire(&rcu_callback_map);
3048 		trace_rcu_invoke_kfree_bulk_callback(rcu_state.name,
3049 			bhead->nr_records, bhead->records);
3050 
3051 		kfree_bulk(bhead->nr_records, bhead->records);
3052 		rcu_lock_release(&rcu_callback_map);
3053 
3054 		if (cmpxchg(&krcp->bcached, NULL, bhead))
3055 			free_page((unsigned long) bhead);
3056 
3057 		cond_resched_tasks_rcu_qs();
3058 	}
3059 
3060 	/*
3061 	 * Emergency case only. It can happen under low memory
3062 	 * condition when an allocation gets failed, so the "bulk"
3063 	 * path can not be temporary maintained.
3064 	 */
3065 	for (; head; head = next) {
3066 		unsigned long offset = (unsigned long)head->func;
3067 
3068 		next = head->next;
3069 		debug_rcu_head_unqueue(head);
3070 		rcu_lock_acquire(&rcu_callback_map);
3071 		trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
3072 
3073 		if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset)))
3074 			kfree((void *)head - offset);
3075 
3076 		rcu_lock_release(&rcu_callback_map);
3077 		cond_resched_tasks_rcu_qs();
3078 	}
3079 }
3080 
3081 /*
3082  * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3083  *
3084  * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3085  * timeout has been reached.
3086  */
3087 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3088 {
3089 	struct kfree_rcu_cpu_work *krwp;
3090 	bool queued = false;
3091 	int i;
3092 
3093 	lockdep_assert_held(&krcp->lock);
3094 
3095 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3096 		krwp = &(krcp->krw_arr[i]);
3097 
3098 		/*
3099 		 * Try to detach bhead or head and attach it over any
3100 		 * available corresponding free channel. It can be that
3101 		 * a previous RCU batch is in progress, it means that
3102 		 * immediately to queue another one is not possible so
3103 		 * return false to tell caller to retry.
3104 		 */
3105 		if ((krcp->bhead && !krwp->bhead_free) ||
3106 				(krcp->head && !krwp->head_free)) {
3107 			/* Channel 1. */
3108 			if (!krwp->bhead_free) {
3109 				krwp->bhead_free = krcp->bhead;
3110 				krcp->bhead = NULL;
3111 			}
3112 
3113 			/* Channel 2. */
3114 			if (!krwp->head_free) {
3115 				krwp->head_free = krcp->head;
3116 				krcp->head = NULL;
3117 			}
3118 
3119 			WRITE_ONCE(krcp->count, 0);
3120 
3121 			/*
3122 			 * One work is per one batch, so there are two "free channels",
3123 			 * "bhead_free" and "head_free" the batch can handle. It can be
3124 			 * that the work is in the pending state when two channels have
3125 			 * been detached following each other, one by one.
3126 			 */
3127 			queue_rcu_work(system_wq, &krwp->rcu_work);
3128 			queued = true;
3129 		}
3130 	}
3131 
3132 	return queued;
3133 }
3134 
3135 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3136 					  unsigned long flags)
3137 {
3138 	// Attempt to start a new batch.
3139 	krcp->monitor_todo = false;
3140 	if (queue_kfree_rcu_work(krcp)) {
3141 		// Success! Our job is done here.
3142 		spin_unlock_irqrestore(&krcp->lock, flags);
3143 		return;
3144 	}
3145 
3146 	// Previous RCU batch still in progress, try again later.
3147 	krcp->monitor_todo = true;
3148 	schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3149 	spin_unlock_irqrestore(&krcp->lock, flags);
3150 }
3151 
3152 /*
3153  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3154  * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3155  */
3156 static void kfree_rcu_monitor(struct work_struct *work)
3157 {
3158 	unsigned long flags;
3159 	struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3160 						 monitor_work.work);
3161 
3162 	spin_lock_irqsave(&krcp->lock, flags);
3163 	if (krcp->monitor_todo)
3164 		kfree_rcu_drain_unlock(krcp, flags);
3165 	else
3166 		spin_unlock_irqrestore(&krcp->lock, flags);
3167 }
3168 
3169 static inline bool
3170 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp,
3171 	struct rcu_head *head, rcu_callback_t func)
3172 {
3173 	struct kfree_rcu_bulk_data *bnode;
3174 
3175 	if (unlikely(!krcp->initialized))
3176 		return false;
3177 
3178 	lockdep_assert_held(&krcp->lock);
3179 
3180 	/* Check if a new block is required. */
3181 	if (!krcp->bhead ||
3182 			krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) {
3183 		bnode = xchg(&krcp->bcached, NULL);
3184 		if (!bnode) {
3185 			WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE);
3186 
3187 			bnode = (struct kfree_rcu_bulk_data *)
3188 				__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3189 		}
3190 
3191 		/* Switch to emergency path. */
3192 		if (unlikely(!bnode))
3193 			return false;
3194 
3195 		/* Initialize the new block. */
3196 		bnode->nr_records = 0;
3197 		bnode->next = krcp->bhead;
3198 		bnode->head_free_debug = NULL;
3199 
3200 		/* Attach it to the head. */
3201 		krcp->bhead = bnode;
3202 	}
3203 
3204 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3205 	head->func = func;
3206 	head->next = krcp->bhead->head_free_debug;
3207 	krcp->bhead->head_free_debug = head;
3208 #endif
3209 
3210 	/* Finally insert. */
3211 	krcp->bhead->records[krcp->bhead->nr_records++] =
3212 		(void *) head - (unsigned long) func;
3213 
3214 	return true;
3215 }
3216 
3217 /*
3218  * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace
3219  * period. Please note there are two paths are maintained, one is the main one
3220  * that uses kfree_bulk() interface and second one is emergency one, that is
3221  * used only when the main path can not be maintained temporary, due to memory
3222  * pressure.
3223  *
3224  * Each kfree_call_rcu() request is added to a batch. The batch will be drained
3225  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3226  * be free'd in workqueue context. This allows us to: batch requests together to
3227  * reduce the number of grace periods during heavy kfree_rcu() load.
3228  */
3229 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3230 {
3231 	unsigned long flags;
3232 	struct kfree_rcu_cpu *krcp;
3233 
3234 	local_irq_save(flags);	// For safely calling this_cpu_ptr().
3235 	krcp = this_cpu_ptr(&krc);
3236 	if (krcp->initialized)
3237 		spin_lock(&krcp->lock);
3238 
3239 	// Queue the object but don't yet schedule the batch.
3240 	if (debug_rcu_head_queue(head)) {
3241 		// Probable double kfree_rcu(), just leak.
3242 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3243 			  __func__, head);
3244 		goto unlock_return;
3245 	}
3246 
3247 	/*
3248 	 * Under high memory pressure GFP_NOWAIT can fail,
3249 	 * in that case the emergency path is maintained.
3250 	 */
3251 	if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) {
3252 		head->func = func;
3253 		head->next = krcp->head;
3254 		krcp->head = head;
3255 	}
3256 
3257 	WRITE_ONCE(krcp->count, krcp->count + 1);
3258 
3259 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3260 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3261 	    !krcp->monitor_todo) {
3262 		krcp->monitor_todo = true;
3263 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3264 	}
3265 
3266 unlock_return:
3267 	if (krcp->initialized)
3268 		spin_unlock(&krcp->lock);
3269 	local_irq_restore(flags);
3270 }
3271 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3272 
3273 static unsigned long
3274 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3275 {
3276 	int cpu;
3277 	unsigned long count = 0;
3278 
3279 	/* Snapshot count of all CPUs */
3280 	for_each_online_cpu(cpu) {
3281 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3282 
3283 		count += READ_ONCE(krcp->count);
3284 	}
3285 
3286 	return count;
3287 }
3288 
3289 static unsigned long
3290 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3291 {
3292 	int cpu, freed = 0;
3293 	unsigned long flags;
3294 
3295 	for_each_online_cpu(cpu) {
3296 		int count;
3297 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3298 
3299 		count = krcp->count;
3300 		spin_lock_irqsave(&krcp->lock, flags);
3301 		if (krcp->monitor_todo)
3302 			kfree_rcu_drain_unlock(krcp, flags);
3303 		else
3304 			spin_unlock_irqrestore(&krcp->lock, flags);
3305 
3306 		sc->nr_to_scan -= count;
3307 		freed += count;
3308 
3309 		if (sc->nr_to_scan <= 0)
3310 			break;
3311 	}
3312 
3313 	return freed;
3314 }
3315 
3316 static struct shrinker kfree_rcu_shrinker = {
3317 	.count_objects = kfree_rcu_shrink_count,
3318 	.scan_objects = kfree_rcu_shrink_scan,
3319 	.batch = 0,
3320 	.seeks = DEFAULT_SEEKS,
3321 };
3322 
3323 void __init kfree_rcu_scheduler_running(void)
3324 {
3325 	int cpu;
3326 	unsigned long flags;
3327 
3328 	for_each_online_cpu(cpu) {
3329 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3330 
3331 		spin_lock_irqsave(&krcp->lock, flags);
3332 		if (!krcp->head || krcp->monitor_todo) {
3333 			spin_unlock_irqrestore(&krcp->lock, flags);
3334 			continue;
3335 		}
3336 		krcp->monitor_todo = true;
3337 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3338 					 KFREE_DRAIN_JIFFIES);
3339 		spin_unlock_irqrestore(&krcp->lock, flags);
3340 	}
3341 }
3342 
3343 /*
3344  * During early boot, any blocking grace-period wait automatically
3345  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3346  *
3347  * Howevr, because a context switch is a grace period for !PREEMPTION, any
3348  * blocking grace-period wait automatically implies a grace period if
3349  * there is only one CPU online at any point time during execution of
3350  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3351  * occasionally incorrectly indicate that there are multiple CPUs online
3352  * when there was in fact only one the whole time, as this just adds some
3353  * overhead: RCU still operates correctly.
3354  */
3355 static int rcu_blocking_is_gp(void)
3356 {
3357 	int ret;
3358 
3359 	if (IS_ENABLED(CONFIG_PREEMPTION))
3360 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3361 	might_sleep();  /* Check for RCU read-side critical section. */
3362 	preempt_disable();
3363 	ret = num_online_cpus() <= 1;
3364 	preempt_enable();
3365 	return ret;
3366 }
3367 
3368 /**
3369  * synchronize_rcu - wait until a grace period has elapsed.
3370  *
3371  * Control will return to the caller some time after a full grace
3372  * period has elapsed, in other words after all currently executing RCU
3373  * read-side critical sections have completed.  Note, however, that
3374  * upon return from synchronize_rcu(), the caller might well be executing
3375  * concurrently with new RCU read-side critical sections that began while
3376  * synchronize_rcu() was waiting.  RCU read-side critical sections are
3377  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3378  * In addition, regions of code across which interrupts, preemption, or
3379  * softirqs have been disabled also serve as RCU read-side critical
3380  * sections.  This includes hardware interrupt handlers, softirq handlers,
3381  * and NMI handlers.
3382  *
3383  * Note that this guarantee implies further memory-ordering guarantees.
3384  * On systems with more than one CPU, when synchronize_rcu() returns,
3385  * each CPU is guaranteed to have executed a full memory barrier since
3386  * the end of its last RCU read-side critical section whose beginning
3387  * preceded the call to synchronize_rcu().  In addition, each CPU having
3388  * an RCU read-side critical section that extends beyond the return from
3389  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3390  * after the beginning of synchronize_rcu() and before the beginning of
3391  * that RCU read-side critical section.  Note that these guarantees include
3392  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3393  * that are executing in the kernel.
3394  *
3395  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3396  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3397  * to have executed a full memory barrier during the execution of
3398  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3399  * again only if the system has more than one CPU).
3400  */
3401 void synchronize_rcu(void)
3402 {
3403 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3404 			 lock_is_held(&rcu_lock_map) ||
3405 			 lock_is_held(&rcu_sched_lock_map),
3406 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3407 	if (rcu_blocking_is_gp())
3408 		return;
3409 	if (rcu_gp_is_expedited())
3410 		synchronize_rcu_expedited();
3411 	else
3412 		wait_rcu_gp(call_rcu);
3413 }
3414 EXPORT_SYMBOL_GPL(synchronize_rcu);
3415 
3416 /**
3417  * get_state_synchronize_rcu - Snapshot current RCU state
3418  *
3419  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3420  * to determine whether or not a full grace period has elapsed in the
3421  * meantime.
3422  */
3423 unsigned long get_state_synchronize_rcu(void)
3424 {
3425 	/*
3426 	 * Any prior manipulation of RCU-protected data must happen
3427 	 * before the load from ->gp_seq.
3428 	 */
3429 	smp_mb();  /* ^^^ */
3430 	return rcu_seq_snap(&rcu_state.gp_seq);
3431 }
3432 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3433 
3434 /**
3435  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3436  *
3437  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3438  *
3439  * If a full RCU grace period has elapsed since the earlier call to
3440  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3441  * synchronize_rcu() to wait for a full grace period.
3442  *
3443  * Yes, this function does not take counter wrap into account.  But
3444  * counter wrap is harmless.  If the counter wraps, we have waited for
3445  * more than 2 billion grace periods (and way more on a 64-bit system!),
3446  * so waiting for one additional grace period should be just fine.
3447  */
3448 void cond_synchronize_rcu(unsigned long oldstate)
3449 {
3450 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
3451 		synchronize_rcu();
3452 	else
3453 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3454 }
3455 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3456 
3457 /*
3458  * Check to see if there is any immediate RCU-related work to be done by
3459  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3460  * in order of increasing expense: checks that can be carried out against
3461  * CPU-local state are performed first.  However, we must check for CPU
3462  * stalls first, else we might not get a chance.
3463  */
3464 static int rcu_pending(int user)
3465 {
3466 	bool gp_in_progress;
3467 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3468 	struct rcu_node *rnp = rdp->mynode;
3469 
3470 	/* Check for CPU stalls, if enabled. */
3471 	check_cpu_stall(rdp);
3472 
3473 	/* Does this CPU need a deferred NOCB wakeup? */
3474 	if (rcu_nocb_need_deferred_wakeup(rdp))
3475 		return 1;
3476 
3477 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3478 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3479 		return 0;
3480 
3481 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3482 	gp_in_progress = rcu_gp_in_progress();
3483 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3484 		return 1;
3485 
3486 	/* Does this CPU have callbacks ready to invoke? */
3487 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3488 		return 1;
3489 
3490 	/* Has RCU gone idle with this CPU needing another grace period? */
3491 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3492 	    (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3493 	     !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
3494 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3495 		return 1;
3496 
3497 	/* Have RCU grace period completed or started?  */
3498 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3499 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3500 		return 1;
3501 
3502 	/* nothing to do */
3503 	return 0;
3504 }
3505 
3506 /*
3507  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3508  * the compiler is expected to optimize this away.
3509  */
3510 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3511 {
3512 	trace_rcu_barrier(rcu_state.name, s, cpu,
3513 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3514 }
3515 
3516 /*
3517  * RCU callback function for rcu_barrier().  If we are last, wake
3518  * up the task executing rcu_barrier().
3519  *
3520  * Note that the value of rcu_state.barrier_sequence must be captured
3521  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3522  * other CPUs might count the value down to zero before this CPU gets
3523  * around to invoking rcu_barrier_trace(), which might result in bogus
3524  * data from the next instance of rcu_barrier().
3525  */
3526 static void rcu_barrier_callback(struct rcu_head *rhp)
3527 {
3528 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3529 
3530 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3531 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3532 		complete(&rcu_state.barrier_completion);
3533 	} else {
3534 		rcu_barrier_trace(TPS("CB"), -1, s);
3535 	}
3536 }
3537 
3538 /*
3539  * Called with preemption disabled, and from cross-cpu IRQ context.
3540  */
3541 static void rcu_barrier_func(void *cpu_in)
3542 {
3543 	uintptr_t cpu = (uintptr_t)cpu_in;
3544 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3545 
3546 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3547 	rdp->barrier_head.func = rcu_barrier_callback;
3548 	debug_rcu_head_queue(&rdp->barrier_head);
3549 	rcu_nocb_lock(rdp);
3550 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3551 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3552 		atomic_inc(&rcu_state.barrier_cpu_count);
3553 	} else {
3554 		debug_rcu_head_unqueue(&rdp->barrier_head);
3555 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3556 				  rcu_state.barrier_sequence);
3557 	}
3558 	rcu_nocb_unlock(rdp);
3559 }
3560 
3561 /**
3562  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3563  *
3564  * Note that this primitive does not necessarily wait for an RCU grace period
3565  * to complete.  For example, if there are no RCU callbacks queued anywhere
3566  * in the system, then rcu_barrier() is within its rights to return
3567  * immediately, without waiting for anything, much less an RCU grace period.
3568  */
3569 void rcu_barrier(void)
3570 {
3571 	uintptr_t cpu;
3572 	struct rcu_data *rdp;
3573 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3574 
3575 	rcu_barrier_trace(TPS("Begin"), -1, s);
3576 
3577 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3578 	mutex_lock(&rcu_state.barrier_mutex);
3579 
3580 	/* Did someone else do our work for us? */
3581 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3582 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3583 				  rcu_state.barrier_sequence);
3584 		smp_mb(); /* caller's subsequent code after above check. */
3585 		mutex_unlock(&rcu_state.barrier_mutex);
3586 		return;
3587 	}
3588 
3589 	/* Mark the start of the barrier operation. */
3590 	rcu_seq_start(&rcu_state.barrier_sequence);
3591 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3592 
3593 	/*
3594 	 * Initialize the count to two rather than to zero in order
3595 	 * to avoid a too-soon return to zero in case of an immediate
3596 	 * invocation of the just-enqueued callback (or preemption of
3597 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3598 	 * offline non-offloaded CPU has callbacks queued.
3599 	 */
3600 	init_completion(&rcu_state.barrier_completion);
3601 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3602 	get_online_cpus();
3603 
3604 	/*
3605 	 * Force each CPU with callbacks to register a new callback.
3606 	 * When that callback is invoked, we will know that all of the
3607 	 * corresponding CPU's preceding callbacks have been invoked.
3608 	 */
3609 	for_each_possible_cpu(cpu) {
3610 		rdp = per_cpu_ptr(&rcu_data, cpu);
3611 		if (cpu_is_offline(cpu) &&
3612 		    !rcu_segcblist_is_offloaded(&rdp->cblist))
3613 			continue;
3614 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
3615 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3616 					  rcu_state.barrier_sequence);
3617 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3618 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3619 			   cpu_is_offline(cpu)) {
3620 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3621 					  rcu_state.barrier_sequence);
3622 			local_irq_disable();
3623 			rcu_barrier_func((void *)cpu);
3624 			local_irq_enable();
3625 		} else if (cpu_is_offline(cpu)) {
3626 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3627 					  rcu_state.barrier_sequence);
3628 		} else {
3629 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3630 					  rcu_state.barrier_sequence);
3631 		}
3632 	}
3633 	put_online_cpus();
3634 
3635 	/*
3636 	 * Now that we have an rcu_barrier_callback() callback on each
3637 	 * CPU, and thus each counted, remove the initial count.
3638 	 */
3639 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3640 		complete(&rcu_state.barrier_completion);
3641 
3642 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3643 	wait_for_completion(&rcu_state.barrier_completion);
3644 
3645 	/* Mark the end of the barrier operation. */
3646 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3647 	rcu_seq_end(&rcu_state.barrier_sequence);
3648 
3649 	/* Other rcu_barrier() invocations can now safely proceed. */
3650 	mutex_unlock(&rcu_state.barrier_mutex);
3651 }
3652 EXPORT_SYMBOL_GPL(rcu_barrier);
3653 
3654 /*
3655  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3656  * first CPU in a given leaf rcu_node structure coming online.  The caller
3657  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3658  * disabled.
3659  */
3660 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3661 {
3662 	long mask;
3663 	long oldmask;
3664 	struct rcu_node *rnp = rnp_leaf;
3665 
3666 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3667 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3668 	for (;;) {
3669 		mask = rnp->grpmask;
3670 		rnp = rnp->parent;
3671 		if (rnp == NULL)
3672 			return;
3673 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3674 		oldmask = rnp->qsmaskinit;
3675 		rnp->qsmaskinit |= mask;
3676 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3677 		if (oldmask)
3678 			return;
3679 	}
3680 }
3681 
3682 /*
3683  * Do boot-time initialization of a CPU's per-CPU RCU data.
3684  */
3685 static void __init
3686 rcu_boot_init_percpu_data(int cpu)
3687 {
3688 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3689 
3690 	/* Set up local state, ensuring consistent view of global state. */
3691 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3692 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3693 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3694 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3695 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3696 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3697 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3698 	rdp->cpu = cpu;
3699 	rcu_boot_init_nocb_percpu_data(rdp);
3700 }
3701 
3702 /*
3703  * Invoked early in the CPU-online process, when pretty much all services
3704  * are available.  The incoming CPU is not present.
3705  *
3706  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3707  * offline event can be happening at a given time.  Note also that we can
3708  * accept some slop in the rsp->gp_seq access due to the fact that this
3709  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3710  * And any offloaded callbacks are being numbered elsewhere.
3711  */
3712 int rcutree_prepare_cpu(unsigned int cpu)
3713 {
3714 	unsigned long flags;
3715 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3716 	struct rcu_node *rnp = rcu_get_root();
3717 
3718 	/* Set up local state, ensuring consistent view of global state. */
3719 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3720 	rdp->qlen_last_fqs_check = 0;
3721 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3722 	rdp->blimit = blimit;
3723 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3724 	    !rcu_segcblist_is_offloaded(&rdp->cblist))
3725 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3726 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3727 	rcu_dynticks_eqs_online();
3728 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3729 
3730 	/*
3731 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3732 	 * propagation up the rcu_node tree will happen at the beginning
3733 	 * of the next grace period.
3734 	 */
3735 	rnp = rdp->mynode;
3736 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3737 	rdp->beenonline = true;	 /* We have now been online. */
3738 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3739 	rdp->gp_seq_needed = rdp->gp_seq;
3740 	rdp->cpu_no_qs.b.norm = true;
3741 	rdp->core_needs_qs = false;
3742 	rdp->rcu_iw_pending = false;
3743 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
3744 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3745 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3746 	rcu_prepare_kthreads(cpu);
3747 	rcu_spawn_cpu_nocb_kthread(cpu);
3748 
3749 	return 0;
3750 }
3751 
3752 /*
3753  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3754  */
3755 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3756 {
3757 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3758 
3759 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3760 }
3761 
3762 /*
3763  * Near the end of the CPU-online process.  Pretty much all services
3764  * enabled, and the CPU is now very much alive.
3765  */
3766 int rcutree_online_cpu(unsigned int cpu)
3767 {
3768 	unsigned long flags;
3769 	struct rcu_data *rdp;
3770 	struct rcu_node *rnp;
3771 
3772 	rdp = per_cpu_ptr(&rcu_data, cpu);
3773 	rnp = rdp->mynode;
3774 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3775 	rnp->ffmask |= rdp->grpmask;
3776 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3777 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3778 		return 0; /* Too early in boot for scheduler work. */
3779 	sync_sched_exp_online_cleanup(cpu);
3780 	rcutree_affinity_setting(cpu, -1);
3781 
3782 	// Stop-machine done, so allow nohz_full to disable tick.
3783 	tick_dep_clear(TICK_DEP_BIT_RCU);
3784 	return 0;
3785 }
3786 
3787 /*
3788  * Near the beginning of the process.  The CPU is still very much alive
3789  * with pretty much all services enabled.
3790  */
3791 int rcutree_offline_cpu(unsigned int cpu)
3792 {
3793 	unsigned long flags;
3794 	struct rcu_data *rdp;
3795 	struct rcu_node *rnp;
3796 
3797 	rdp = per_cpu_ptr(&rcu_data, cpu);
3798 	rnp = rdp->mynode;
3799 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3800 	rnp->ffmask &= ~rdp->grpmask;
3801 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3802 
3803 	rcutree_affinity_setting(cpu, cpu);
3804 
3805 	// nohz_full CPUs need the tick for stop-machine to work quickly
3806 	tick_dep_set(TICK_DEP_BIT_RCU);
3807 	return 0;
3808 }
3809 
3810 static DEFINE_PER_CPU(int, rcu_cpu_started);
3811 
3812 /*
3813  * Mark the specified CPU as being online so that subsequent grace periods
3814  * (both expedited and normal) will wait on it.  Note that this means that
3815  * incoming CPUs are not allowed to use RCU read-side critical sections
3816  * until this function is called.  Failing to observe this restriction
3817  * will result in lockdep splats.
3818  *
3819  * Note that this function is special in that it is invoked directly
3820  * from the incoming CPU rather than from the cpuhp_step mechanism.
3821  * This is because this function must be invoked at a precise location.
3822  */
3823 void rcu_cpu_starting(unsigned int cpu)
3824 {
3825 	unsigned long flags;
3826 	unsigned long mask;
3827 	int nbits;
3828 	unsigned long oldmask;
3829 	struct rcu_data *rdp;
3830 	struct rcu_node *rnp;
3831 
3832 	if (per_cpu(rcu_cpu_started, cpu))
3833 		return;
3834 
3835 	per_cpu(rcu_cpu_started, cpu) = 1;
3836 
3837 	rdp = per_cpu_ptr(&rcu_data, cpu);
3838 	rnp = rdp->mynode;
3839 	mask = rdp->grpmask;
3840 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3841 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
3842 	oldmask = rnp->expmaskinitnext;
3843 	rnp->expmaskinitnext |= mask;
3844 	oldmask ^= rnp->expmaskinitnext;
3845 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3846 	/* Allow lockless access for expedited grace periods. */
3847 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3848 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
3849 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3850 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3851 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3852 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3853 		rcu_disable_urgency_upon_qs(rdp);
3854 		/* Report QS -after- changing ->qsmaskinitnext! */
3855 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3856 	} else {
3857 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3858 	}
3859 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3860 }
3861 
3862 #ifdef CONFIG_HOTPLUG_CPU
3863 /*
3864  * The outgoing function has no further need of RCU, so remove it from
3865  * the rcu_node tree's ->qsmaskinitnext bit masks.
3866  *
3867  * Note that this function is special in that it is invoked directly
3868  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3869  * This is because this function must be invoked at a precise location.
3870  */
3871 void rcu_report_dead(unsigned int cpu)
3872 {
3873 	unsigned long flags;
3874 	unsigned long mask;
3875 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3876 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3877 
3878 	/* QS for any half-done expedited grace period. */
3879 	preempt_disable();
3880 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3881 	preempt_enable();
3882 	rcu_preempt_deferred_qs(current);
3883 
3884 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3885 	mask = rdp->grpmask;
3886 	raw_spin_lock(&rcu_state.ofl_lock);
3887 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3888 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3889 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3890 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3891 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3892 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3893 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 	}
3895 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
3896 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 	raw_spin_unlock(&rcu_state.ofl_lock);
3898 
3899 	per_cpu(rcu_cpu_started, cpu) = 0;
3900 }
3901 
3902 /*
3903  * The outgoing CPU has just passed through the dying-idle state, and we
3904  * are being invoked from the CPU that was IPIed to continue the offline
3905  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3906  */
3907 void rcutree_migrate_callbacks(int cpu)
3908 {
3909 	unsigned long flags;
3910 	struct rcu_data *my_rdp;
3911 	struct rcu_node *my_rnp;
3912 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3913 	bool needwake;
3914 
3915 	if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3916 	    rcu_segcblist_empty(&rdp->cblist))
3917 		return;  /* No callbacks to migrate. */
3918 
3919 	local_irq_save(flags);
3920 	my_rdp = this_cpu_ptr(&rcu_data);
3921 	my_rnp = my_rdp->mynode;
3922 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
3923 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
3924 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
3925 	/* Leverage recent GPs and set GP for new callbacks. */
3926 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
3927 		   rcu_advance_cbs(my_rnp, my_rdp);
3928 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3929 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
3930 	rcu_segcblist_disable(&rdp->cblist);
3931 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3932 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3933 	if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3934 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3935 		__call_rcu_nocb_wake(my_rdp, true, flags);
3936 	} else {
3937 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3938 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3939 	}
3940 	if (needwake)
3941 		rcu_gp_kthread_wake();
3942 	lockdep_assert_irqs_enabled();
3943 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3944 		  !rcu_segcblist_empty(&rdp->cblist),
3945 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3946 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3947 		  rcu_segcblist_first_cb(&rdp->cblist));
3948 }
3949 #endif
3950 
3951 /*
3952  * On non-huge systems, use expedited RCU grace periods to make suspend
3953  * and hibernation run faster.
3954  */
3955 static int rcu_pm_notify(struct notifier_block *self,
3956 			 unsigned long action, void *hcpu)
3957 {
3958 	switch (action) {
3959 	case PM_HIBERNATION_PREPARE:
3960 	case PM_SUSPEND_PREPARE:
3961 		rcu_expedite_gp();
3962 		break;
3963 	case PM_POST_HIBERNATION:
3964 	case PM_POST_SUSPEND:
3965 		rcu_unexpedite_gp();
3966 		break;
3967 	default:
3968 		break;
3969 	}
3970 	return NOTIFY_OK;
3971 }
3972 
3973 /*
3974  * Spawn the kthreads that handle RCU's grace periods.
3975  */
3976 static int __init rcu_spawn_gp_kthread(void)
3977 {
3978 	unsigned long flags;
3979 	int kthread_prio_in = kthread_prio;
3980 	struct rcu_node *rnp;
3981 	struct sched_param sp;
3982 	struct task_struct *t;
3983 
3984 	/* Force priority into range. */
3985 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3986 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3987 		kthread_prio = 2;
3988 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3989 		kthread_prio = 1;
3990 	else if (kthread_prio < 0)
3991 		kthread_prio = 0;
3992 	else if (kthread_prio > 99)
3993 		kthread_prio = 99;
3994 
3995 	if (kthread_prio != kthread_prio_in)
3996 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3997 			 kthread_prio, kthread_prio_in);
3998 
3999 	rcu_scheduler_fully_active = 1;
4000 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4001 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4002 		return 0;
4003 	if (kthread_prio) {
4004 		sp.sched_priority = kthread_prio;
4005 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4006 	}
4007 	rnp = rcu_get_root();
4008 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4009 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4010 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4011 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4012 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4013 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4014 	wake_up_process(t);
4015 	rcu_spawn_nocb_kthreads();
4016 	rcu_spawn_boost_kthreads();
4017 	return 0;
4018 }
4019 early_initcall(rcu_spawn_gp_kthread);
4020 
4021 /*
4022  * This function is invoked towards the end of the scheduler's
4023  * initialization process.  Before this is called, the idle task might
4024  * contain synchronous grace-period primitives (during which time, this idle
4025  * task is booting the system, and such primitives are no-ops).  After this
4026  * function is called, any synchronous grace-period primitives are run as
4027  * expedited, with the requesting task driving the grace period forward.
4028  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4029  * runtime RCU functionality.
4030  */
4031 void rcu_scheduler_starting(void)
4032 {
4033 	WARN_ON(num_online_cpus() != 1);
4034 	WARN_ON(nr_context_switches() > 0);
4035 	rcu_test_sync_prims();
4036 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4037 	rcu_test_sync_prims();
4038 }
4039 
4040 /*
4041  * Helper function for rcu_init() that initializes the rcu_state structure.
4042  */
4043 static void __init rcu_init_one(void)
4044 {
4045 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4046 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4047 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4048 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4049 
4050 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4051 	int cpustride = 1;
4052 	int i;
4053 	int j;
4054 	struct rcu_node *rnp;
4055 
4056 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4057 
4058 	/* Silence gcc 4.8 false positive about array index out of range. */
4059 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4060 		panic("rcu_init_one: rcu_num_lvls out of range");
4061 
4062 	/* Initialize the level-tracking arrays. */
4063 
4064 	for (i = 1; i < rcu_num_lvls; i++)
4065 		rcu_state.level[i] =
4066 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4067 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4068 
4069 	/* Initialize the elements themselves, starting from the leaves. */
4070 
4071 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4072 		cpustride *= levelspread[i];
4073 		rnp = rcu_state.level[i];
4074 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4075 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4076 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4077 						   &rcu_node_class[i], buf[i]);
4078 			raw_spin_lock_init(&rnp->fqslock);
4079 			lockdep_set_class_and_name(&rnp->fqslock,
4080 						   &rcu_fqs_class[i], fqs[i]);
4081 			rnp->gp_seq = rcu_state.gp_seq;
4082 			rnp->gp_seq_needed = rcu_state.gp_seq;
4083 			rnp->completedqs = rcu_state.gp_seq;
4084 			rnp->qsmask = 0;
4085 			rnp->qsmaskinit = 0;
4086 			rnp->grplo = j * cpustride;
4087 			rnp->grphi = (j + 1) * cpustride - 1;
4088 			if (rnp->grphi >= nr_cpu_ids)
4089 				rnp->grphi = nr_cpu_ids - 1;
4090 			if (i == 0) {
4091 				rnp->grpnum = 0;
4092 				rnp->grpmask = 0;
4093 				rnp->parent = NULL;
4094 			} else {
4095 				rnp->grpnum = j % levelspread[i - 1];
4096 				rnp->grpmask = BIT(rnp->grpnum);
4097 				rnp->parent = rcu_state.level[i - 1] +
4098 					      j / levelspread[i - 1];
4099 			}
4100 			rnp->level = i;
4101 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4102 			rcu_init_one_nocb(rnp);
4103 			init_waitqueue_head(&rnp->exp_wq[0]);
4104 			init_waitqueue_head(&rnp->exp_wq[1]);
4105 			init_waitqueue_head(&rnp->exp_wq[2]);
4106 			init_waitqueue_head(&rnp->exp_wq[3]);
4107 			spin_lock_init(&rnp->exp_lock);
4108 		}
4109 	}
4110 
4111 	init_swait_queue_head(&rcu_state.gp_wq);
4112 	init_swait_queue_head(&rcu_state.expedited_wq);
4113 	rnp = rcu_first_leaf_node();
4114 	for_each_possible_cpu(i) {
4115 		while (i > rnp->grphi)
4116 			rnp++;
4117 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4118 		rcu_boot_init_percpu_data(i);
4119 	}
4120 }
4121 
4122 /*
4123  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4124  * replace the definitions in tree.h because those are needed to size
4125  * the ->node array in the rcu_state structure.
4126  */
4127 static void __init rcu_init_geometry(void)
4128 {
4129 	ulong d;
4130 	int i;
4131 	int rcu_capacity[RCU_NUM_LVLS];
4132 
4133 	/*
4134 	 * Initialize any unspecified boot parameters.
4135 	 * The default values of jiffies_till_first_fqs and
4136 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4137 	 * value, which is a function of HZ, then adding one for each
4138 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4139 	 */
4140 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4141 	if (jiffies_till_first_fqs == ULONG_MAX)
4142 		jiffies_till_first_fqs = d;
4143 	if (jiffies_till_next_fqs == ULONG_MAX)
4144 		jiffies_till_next_fqs = d;
4145 	adjust_jiffies_till_sched_qs();
4146 
4147 	/* If the compile-time values are accurate, just leave. */
4148 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4149 	    nr_cpu_ids == NR_CPUS)
4150 		return;
4151 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4152 		rcu_fanout_leaf, nr_cpu_ids);
4153 
4154 	/*
4155 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4156 	 * and cannot exceed the number of bits in the rcu_node masks.
4157 	 * Complain and fall back to the compile-time values if this
4158 	 * limit is exceeded.
4159 	 */
4160 	if (rcu_fanout_leaf < 2 ||
4161 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4162 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4163 		WARN_ON(1);
4164 		return;
4165 	}
4166 
4167 	/*
4168 	 * Compute number of nodes that can be handled an rcu_node tree
4169 	 * with the given number of levels.
4170 	 */
4171 	rcu_capacity[0] = rcu_fanout_leaf;
4172 	for (i = 1; i < RCU_NUM_LVLS; i++)
4173 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4174 
4175 	/*
4176 	 * The tree must be able to accommodate the configured number of CPUs.
4177 	 * If this limit is exceeded, fall back to the compile-time values.
4178 	 */
4179 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4180 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4181 		WARN_ON(1);
4182 		return;
4183 	}
4184 
4185 	/* Calculate the number of levels in the tree. */
4186 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4187 	}
4188 	rcu_num_lvls = i + 1;
4189 
4190 	/* Calculate the number of rcu_nodes at each level of the tree. */
4191 	for (i = 0; i < rcu_num_lvls; i++) {
4192 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4193 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4194 	}
4195 
4196 	/* Calculate the total number of rcu_node structures. */
4197 	rcu_num_nodes = 0;
4198 	for (i = 0; i < rcu_num_lvls; i++)
4199 		rcu_num_nodes += num_rcu_lvl[i];
4200 }
4201 
4202 /*
4203  * Dump out the structure of the rcu_node combining tree associated
4204  * with the rcu_state structure.
4205  */
4206 static void __init rcu_dump_rcu_node_tree(void)
4207 {
4208 	int level = 0;
4209 	struct rcu_node *rnp;
4210 
4211 	pr_info("rcu_node tree layout dump\n");
4212 	pr_info(" ");
4213 	rcu_for_each_node_breadth_first(rnp) {
4214 		if (rnp->level != level) {
4215 			pr_cont("\n");
4216 			pr_info(" ");
4217 			level = rnp->level;
4218 		}
4219 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4220 	}
4221 	pr_cont("\n");
4222 }
4223 
4224 struct workqueue_struct *rcu_gp_wq;
4225 struct workqueue_struct *rcu_par_gp_wq;
4226 
4227 static void __init kfree_rcu_batch_init(void)
4228 {
4229 	int cpu;
4230 	int i;
4231 
4232 	for_each_possible_cpu(cpu) {
4233 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4234 
4235 		spin_lock_init(&krcp->lock);
4236 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4237 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4238 			krcp->krw_arr[i].krcp = krcp;
4239 		}
4240 
4241 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4242 		krcp->initialized = true;
4243 	}
4244 	if (register_shrinker(&kfree_rcu_shrinker))
4245 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4246 }
4247 
4248 void __init rcu_init(void)
4249 {
4250 	int cpu;
4251 
4252 	rcu_early_boot_tests();
4253 
4254 	kfree_rcu_batch_init();
4255 	rcu_bootup_announce();
4256 	rcu_init_geometry();
4257 	rcu_init_one();
4258 	if (dump_tree)
4259 		rcu_dump_rcu_node_tree();
4260 	if (use_softirq)
4261 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4262 
4263 	/*
4264 	 * We don't need protection against CPU-hotplug here because
4265 	 * this is called early in boot, before either interrupts
4266 	 * or the scheduler are operational.
4267 	 */
4268 	pm_notifier(rcu_pm_notify, 0);
4269 	for_each_online_cpu(cpu) {
4270 		rcutree_prepare_cpu(cpu);
4271 		rcu_cpu_starting(cpu);
4272 		rcutree_online_cpu(cpu);
4273 	}
4274 
4275 	/* Create workqueue for expedited GPs and for Tree SRCU. */
4276 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4277 	WARN_ON(!rcu_gp_wq);
4278 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4279 	WARN_ON(!rcu_par_gp_wq);
4280 	srcu_init();
4281 
4282 	/* Fill in default value for rcutree.qovld boot parameter. */
4283 	/* -After- the rcu_node ->lock fields are initialized! */
4284 	if (qovld < 0)
4285 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4286 	else
4287 		qovld_calc = qovld;
4288 }
4289 
4290 #include "tree_stall.h"
4291 #include "tree_exp.h"
4292 #include "tree_plugin.h"
4293