1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical version 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/trace_events.h> 49 #include <linux/suspend.h> 50 #include <linux/ftrace.h> 51 #include <linux/tick.h> 52 #include <linux/sysrq.h> 53 #include <linux/kprobes.h> 54 #include <linux/gfp.h> 55 #include <linux/oom.h> 56 #include <linux/smpboot.h> 57 #include <linux/jiffies.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include "../time/tick-internal.h" 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 /* Data structures. */ 71 72 /* 73 * Steal a bit from the bottom of ->dynticks for idle entry/exit 74 * control. Initially this is for TLB flushing. 75 */ 76 #define RCU_DYNTICK_CTRL_MASK 0x1 77 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 78 #ifndef rcu_eqs_special_exit 79 #define rcu_eqs_special_exit() do { } while (0) 80 #endif 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 }; 87 struct rcu_state rcu_state = { 88 .level = { &rcu_state.node[0] }, 89 .gp_state = RCU_GP_IDLE, 90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 97 }; 98 99 /* Dump rcu_node combining tree at boot to verify correct setup. */ 100 static bool dump_tree; 101 module_param(dump_tree, bool, 0444); 102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 103 static bool use_softirq = 1; 104 module_param(use_softirq, bool, 0444); 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 154 /* rcuc/rcub kthread realtime priority */ 155 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 156 module_param(kthread_prio, int, 0444); 157 158 /* Delay in jiffies for grace-period initialization delays, debug only. */ 159 160 static int gp_preinit_delay; 161 module_param(gp_preinit_delay, int, 0444); 162 static int gp_init_delay; 163 module_param(gp_init_delay, int, 0444); 164 static int gp_cleanup_delay; 165 module_param(gp_cleanup_delay, int, 0444); 166 167 /* Retrieve RCU kthreads priority for rcutorture */ 168 int rcu_get_gp_kthreads_prio(void) 169 { 170 return kthread_prio; 171 } 172 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 173 174 /* 175 * Number of grace periods between delays, normalized by the duration of 176 * the delay. The longer the delay, the more the grace periods between 177 * each delay. The reason for this normalization is that it means that, 178 * for non-zero delays, the overall slowdown of grace periods is constant 179 * regardless of the duration of the delay. This arrangement balances 180 * the need for long delays to increase some race probabilities with the 181 * need for fast grace periods to increase other race probabilities. 182 */ 183 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 184 185 /* 186 * Compute the mask of online CPUs for the specified rcu_node structure. 187 * This will not be stable unless the rcu_node structure's ->lock is 188 * held, but the bit corresponding to the current CPU will be stable 189 * in most contexts. 190 */ 191 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 192 { 193 return READ_ONCE(rnp->qsmaskinitnext); 194 } 195 196 /* 197 * Return true if an RCU grace period is in progress. The READ_ONCE()s 198 * permit this function to be invoked without holding the root rcu_node 199 * structure's ->lock, but of course results can be subject to change. 200 */ 201 static int rcu_gp_in_progress(void) 202 { 203 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 204 } 205 206 /* 207 * Return the number of callbacks queued on the specified CPU. 208 * Handles both the nocbs and normal cases. 209 */ 210 static long rcu_get_n_cbs_cpu(int cpu) 211 { 212 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 213 214 if (rcu_segcblist_is_enabled(&rdp->cblist)) 215 return rcu_segcblist_n_cbs(&rdp->cblist); 216 return 0; 217 } 218 219 void rcu_softirq_qs(void) 220 { 221 rcu_qs(); 222 rcu_preempt_deferred_qs(current); 223 } 224 225 /* 226 * Record entry into an extended quiescent state. This is only to be 227 * called when not already in an extended quiescent state. 228 */ 229 static void rcu_dynticks_eqs_enter(void) 230 { 231 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 232 int seq; 233 234 /* 235 * CPUs seeing atomic_add_return() must see prior RCU read-side 236 * critical sections, and we also must force ordering with the 237 * next idle sojourn. 238 */ 239 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 240 /* Better be in an extended quiescent state! */ 241 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 242 (seq & RCU_DYNTICK_CTRL_CTR)); 243 /* Better not have special action (TLB flush) pending! */ 244 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 245 (seq & RCU_DYNTICK_CTRL_MASK)); 246 } 247 248 /* 249 * Record exit from an extended quiescent state. This is only to be 250 * called from an extended quiescent state. 251 */ 252 static void rcu_dynticks_eqs_exit(void) 253 { 254 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 255 int seq; 256 257 /* 258 * CPUs seeing atomic_add_return() must see prior idle sojourns, 259 * and we also must force ordering with the next RCU read-side 260 * critical section. 261 */ 262 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 264 !(seq & RCU_DYNTICK_CTRL_CTR)); 265 if (seq & RCU_DYNTICK_CTRL_MASK) { 266 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 267 smp_mb__after_atomic(); /* _exit after clearing mask. */ 268 /* Prefer duplicate flushes to losing a flush. */ 269 rcu_eqs_special_exit(); 270 } 271 } 272 273 /* 274 * Reset the current CPU's ->dynticks counter to indicate that the 275 * newly onlined CPU is no longer in an extended quiescent state. 276 * This will either leave the counter unchanged, or increment it 277 * to the next non-quiescent value. 278 * 279 * The non-atomic test/increment sequence works because the upper bits 280 * of the ->dynticks counter are manipulated only by the corresponding CPU, 281 * or when the corresponding CPU is offline. 282 */ 283 static void rcu_dynticks_eqs_online(void) 284 { 285 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 286 287 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 288 return; 289 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 290 } 291 292 /* 293 * Is the current CPU in an extended quiescent state? 294 * 295 * No ordering, as we are sampling CPU-local information. 296 */ 297 bool rcu_dynticks_curr_cpu_in_eqs(void) 298 { 299 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 300 301 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 302 } 303 304 /* 305 * Snapshot the ->dynticks counter with full ordering so as to allow 306 * stable comparison of this counter with past and future snapshots. 307 */ 308 int rcu_dynticks_snap(struct rcu_data *rdp) 309 { 310 int snap = atomic_add_return(0, &rdp->dynticks); 311 312 return snap & ~RCU_DYNTICK_CTRL_MASK; 313 } 314 315 /* 316 * Return true if the snapshot returned from rcu_dynticks_snap() 317 * indicates that RCU is in an extended quiescent state. 318 */ 319 static bool rcu_dynticks_in_eqs(int snap) 320 { 321 return !(snap & RCU_DYNTICK_CTRL_CTR); 322 } 323 324 /* 325 * Return true if the CPU corresponding to the specified rcu_data 326 * structure has spent some time in an extended quiescent state since 327 * rcu_dynticks_snap() returned the specified snapshot. 328 */ 329 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 330 { 331 return snap != rcu_dynticks_snap(rdp); 332 } 333 334 /* 335 * Set the special (bottom) bit of the specified CPU so that it 336 * will take special action (such as flushing its TLB) on the 337 * next exit from an extended quiescent state. Returns true if 338 * the bit was successfully set, or false if the CPU was not in 339 * an extended quiescent state. 340 */ 341 bool rcu_eqs_special_set(int cpu) 342 { 343 int old; 344 int new; 345 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 346 347 do { 348 old = atomic_read(&rdp->dynticks); 349 if (old & RCU_DYNTICK_CTRL_CTR) 350 return false; 351 new = old | RCU_DYNTICK_CTRL_MASK; 352 } while (atomic_cmpxchg(&rdp->dynticks, old, new) != old); 353 return true; 354 } 355 356 /* 357 * Let the RCU core know that this CPU has gone through the scheduler, 358 * which is a quiescent state. This is called when the need for a 359 * quiescent state is urgent, so we burn an atomic operation and full 360 * memory barriers to let the RCU core know about it, regardless of what 361 * this CPU might (or might not) do in the near future. 362 * 363 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 364 * 365 * The caller must have disabled interrupts and must not be idle. 366 */ 367 static void __maybe_unused rcu_momentary_dyntick_idle(void) 368 { 369 int special; 370 371 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 372 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 373 &this_cpu_ptr(&rcu_data)->dynticks); 374 /* It is illegal to call this from idle state. */ 375 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 376 rcu_preempt_deferred_qs(current); 377 } 378 379 /** 380 * rcu_is_cpu_rrupt_from_idle - see if interrupted from idle 381 * 382 * If the current CPU is idle and running at a first-level (not nested) 383 * interrupt from idle, return true. The caller must have at least 384 * disabled preemption. 385 */ 386 static int rcu_is_cpu_rrupt_from_idle(void) 387 { 388 /* Called only from within the scheduling-clock interrupt */ 389 lockdep_assert_in_irq(); 390 391 /* Check for counter underflows */ 392 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 393 "RCU dynticks_nesting counter underflow!"); 394 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 395 "RCU dynticks_nmi_nesting counter underflow/zero!"); 396 397 /* Are we at first interrupt nesting level? */ 398 if (__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 1) 399 return false; 400 401 /* Does CPU appear to be idle from an RCU standpoint? */ 402 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 403 } 404 405 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */ 406 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */ 407 static long blimit = DEFAULT_RCU_BLIMIT; 408 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 409 static long qhimark = DEFAULT_RCU_QHIMARK; 410 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 411 static long qlowmark = DEFAULT_RCU_QLOMARK; 412 413 module_param(blimit, long, 0444); 414 module_param(qhimark, long, 0444); 415 module_param(qlowmark, long, 0444); 416 417 static ulong jiffies_till_first_fqs = ULONG_MAX; 418 static ulong jiffies_till_next_fqs = ULONG_MAX; 419 static bool rcu_kick_kthreads; 420 static int rcu_divisor = 7; 421 module_param(rcu_divisor, int, 0644); 422 423 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 424 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 425 module_param(rcu_resched_ns, long, 0644); 426 427 /* 428 * How long the grace period must be before we start recruiting 429 * quiescent-state help from rcu_note_context_switch(). 430 */ 431 static ulong jiffies_till_sched_qs = ULONG_MAX; 432 module_param(jiffies_till_sched_qs, ulong, 0444); 433 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 434 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 435 436 /* 437 * Make sure that we give the grace-period kthread time to detect any 438 * idle CPUs before taking active measures to force quiescent states. 439 * However, don't go below 100 milliseconds, adjusted upwards for really 440 * large systems. 441 */ 442 static void adjust_jiffies_till_sched_qs(void) 443 { 444 unsigned long j; 445 446 /* If jiffies_till_sched_qs was specified, respect the request. */ 447 if (jiffies_till_sched_qs != ULONG_MAX) { 448 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 449 return; 450 } 451 /* Otherwise, set to third fqs scan, but bound below on large system. */ 452 j = READ_ONCE(jiffies_till_first_fqs) + 453 2 * READ_ONCE(jiffies_till_next_fqs); 454 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 455 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 456 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 457 WRITE_ONCE(jiffies_to_sched_qs, j); 458 } 459 460 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 461 { 462 ulong j; 463 int ret = kstrtoul(val, 0, &j); 464 465 if (!ret) { 466 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 467 adjust_jiffies_till_sched_qs(); 468 } 469 return ret; 470 } 471 472 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 473 { 474 ulong j; 475 int ret = kstrtoul(val, 0, &j); 476 477 if (!ret) { 478 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 479 adjust_jiffies_till_sched_qs(); 480 } 481 return ret; 482 } 483 484 static struct kernel_param_ops first_fqs_jiffies_ops = { 485 .set = param_set_first_fqs_jiffies, 486 .get = param_get_ulong, 487 }; 488 489 static struct kernel_param_ops next_fqs_jiffies_ops = { 490 .set = param_set_next_fqs_jiffies, 491 .get = param_get_ulong, 492 }; 493 494 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 495 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 496 module_param(rcu_kick_kthreads, bool, 0644); 497 498 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 499 static int rcu_pending(void); 500 501 /* 502 * Return the number of RCU GPs completed thus far for debug & stats. 503 */ 504 unsigned long rcu_get_gp_seq(void) 505 { 506 return READ_ONCE(rcu_state.gp_seq); 507 } 508 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 509 510 /* 511 * Return the number of RCU expedited batches completed thus far for 512 * debug & stats. Odd numbers mean that a batch is in progress, even 513 * numbers mean idle. The value returned will thus be roughly double 514 * the cumulative batches since boot. 515 */ 516 unsigned long rcu_exp_batches_completed(void) 517 { 518 return rcu_state.expedited_sequence; 519 } 520 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 521 522 /* 523 * Return the root node of the rcu_state structure. 524 */ 525 static struct rcu_node *rcu_get_root(void) 526 { 527 return &rcu_state.node[0]; 528 } 529 530 /* 531 * Convert a ->gp_state value to a character string. 532 */ 533 static const char *gp_state_getname(short gs) 534 { 535 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) 536 return "???"; 537 return gp_state_names[gs]; 538 } 539 540 /* 541 * Send along grace-period-related data for rcutorture diagnostics. 542 */ 543 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 544 unsigned long *gp_seq) 545 { 546 switch (test_type) { 547 case RCU_FLAVOR: 548 *flags = READ_ONCE(rcu_state.gp_flags); 549 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 550 break; 551 default: 552 break; 553 } 554 } 555 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 556 557 /* 558 * Enter an RCU extended quiescent state, which can be either the 559 * idle loop or adaptive-tickless usermode execution. 560 * 561 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 562 * the possibility of usermode upcalls having messed up our count 563 * of interrupt nesting level during the prior busy period. 564 */ 565 static void rcu_eqs_enter(bool user) 566 { 567 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 568 569 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 570 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 571 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 572 rdp->dynticks_nesting == 0); 573 if (rdp->dynticks_nesting != 1) { 574 rdp->dynticks_nesting--; 575 return; 576 } 577 578 lockdep_assert_irqs_disabled(); 579 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks); 580 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 581 rdp = this_cpu_ptr(&rcu_data); 582 do_nocb_deferred_wakeup(rdp); 583 rcu_prepare_for_idle(); 584 rcu_preempt_deferred_qs(current); 585 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 586 rcu_dynticks_eqs_enter(); 587 rcu_dynticks_task_enter(); 588 } 589 590 /** 591 * rcu_idle_enter - inform RCU that current CPU is entering idle 592 * 593 * Enter idle mode, in other words, -leave- the mode in which RCU 594 * read-side critical sections can occur. (Though RCU read-side 595 * critical sections can occur in irq handlers in idle, a possibility 596 * handled by irq_enter() and irq_exit().) 597 * 598 * If you add or remove a call to rcu_idle_enter(), be sure to test with 599 * CONFIG_RCU_EQS_DEBUG=y. 600 */ 601 void rcu_idle_enter(void) 602 { 603 lockdep_assert_irqs_disabled(); 604 rcu_eqs_enter(false); 605 } 606 607 #ifdef CONFIG_NO_HZ_FULL 608 /** 609 * rcu_user_enter - inform RCU that we are resuming userspace. 610 * 611 * Enter RCU idle mode right before resuming userspace. No use of RCU 612 * is permitted between this call and rcu_user_exit(). This way the 613 * CPU doesn't need to maintain the tick for RCU maintenance purposes 614 * when the CPU runs in userspace. 615 * 616 * If you add or remove a call to rcu_user_enter(), be sure to test with 617 * CONFIG_RCU_EQS_DEBUG=y. 618 */ 619 void rcu_user_enter(void) 620 { 621 lockdep_assert_irqs_disabled(); 622 rcu_eqs_enter(true); 623 } 624 #endif /* CONFIG_NO_HZ_FULL */ 625 626 /* 627 * If we are returning from the outermost NMI handler that interrupted an 628 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 629 * to let the RCU grace-period handling know that the CPU is back to 630 * being RCU-idle. 631 * 632 * If you add or remove a call to rcu_nmi_exit_common(), be sure to test 633 * with CONFIG_RCU_EQS_DEBUG=y. 634 */ 635 static __always_inline void rcu_nmi_exit_common(bool irq) 636 { 637 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 638 639 /* 640 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 641 * (We are exiting an NMI handler, so RCU better be paying attention 642 * to us!) 643 */ 644 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 645 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 646 647 /* 648 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 649 * leave it in non-RCU-idle state. 650 */ 651 if (rdp->dynticks_nmi_nesting != 1) { 652 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks); 653 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 654 rdp->dynticks_nmi_nesting - 2); 655 return; 656 } 657 658 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 659 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks); 660 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 661 662 if (irq) 663 rcu_prepare_for_idle(); 664 665 rcu_dynticks_eqs_enter(); 666 667 if (irq) 668 rcu_dynticks_task_enter(); 669 } 670 671 /** 672 * rcu_nmi_exit - inform RCU of exit from NMI context 673 * 674 * If you add or remove a call to rcu_nmi_exit(), be sure to test 675 * with CONFIG_RCU_EQS_DEBUG=y. 676 */ 677 void rcu_nmi_exit(void) 678 { 679 rcu_nmi_exit_common(false); 680 } 681 682 /** 683 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 684 * 685 * Exit from an interrupt handler, which might possibly result in entering 686 * idle mode, in other words, leaving the mode in which read-side critical 687 * sections can occur. The caller must have disabled interrupts. 688 * 689 * This code assumes that the idle loop never does anything that might 690 * result in unbalanced calls to irq_enter() and irq_exit(). If your 691 * architecture's idle loop violates this assumption, RCU will give you what 692 * you deserve, good and hard. But very infrequently and irreproducibly. 693 * 694 * Use things like work queues to work around this limitation. 695 * 696 * You have been warned. 697 * 698 * If you add or remove a call to rcu_irq_exit(), be sure to test with 699 * CONFIG_RCU_EQS_DEBUG=y. 700 */ 701 void rcu_irq_exit(void) 702 { 703 lockdep_assert_irqs_disabled(); 704 rcu_nmi_exit_common(true); 705 } 706 707 /* 708 * Wrapper for rcu_irq_exit() where interrupts are enabled. 709 * 710 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 711 * with CONFIG_RCU_EQS_DEBUG=y. 712 */ 713 void rcu_irq_exit_irqson(void) 714 { 715 unsigned long flags; 716 717 local_irq_save(flags); 718 rcu_irq_exit(); 719 local_irq_restore(flags); 720 } 721 722 /* 723 * Exit an RCU extended quiescent state, which can be either the 724 * idle loop or adaptive-tickless usermode execution. 725 * 726 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 727 * allow for the possibility of usermode upcalls messing up our count of 728 * interrupt nesting level during the busy period that is just now starting. 729 */ 730 static void rcu_eqs_exit(bool user) 731 { 732 struct rcu_data *rdp; 733 long oldval; 734 735 lockdep_assert_irqs_disabled(); 736 rdp = this_cpu_ptr(&rcu_data); 737 oldval = rdp->dynticks_nesting; 738 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 739 if (oldval) { 740 rdp->dynticks_nesting++; 741 return; 742 } 743 rcu_dynticks_task_exit(); 744 rcu_dynticks_eqs_exit(); 745 rcu_cleanup_after_idle(); 746 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks); 747 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 748 WRITE_ONCE(rdp->dynticks_nesting, 1); 749 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 750 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 751 } 752 753 /** 754 * rcu_idle_exit - inform RCU that current CPU is leaving idle 755 * 756 * Exit idle mode, in other words, -enter- the mode in which RCU 757 * read-side critical sections can occur. 758 * 759 * If you add or remove a call to rcu_idle_exit(), be sure to test with 760 * CONFIG_RCU_EQS_DEBUG=y. 761 */ 762 void rcu_idle_exit(void) 763 { 764 unsigned long flags; 765 766 local_irq_save(flags); 767 rcu_eqs_exit(false); 768 local_irq_restore(flags); 769 } 770 771 #ifdef CONFIG_NO_HZ_FULL 772 /** 773 * rcu_user_exit - inform RCU that we are exiting userspace. 774 * 775 * Exit RCU idle mode while entering the kernel because it can 776 * run a RCU read side critical section anytime. 777 * 778 * If you add or remove a call to rcu_user_exit(), be sure to test with 779 * CONFIG_RCU_EQS_DEBUG=y. 780 */ 781 void rcu_user_exit(void) 782 { 783 rcu_eqs_exit(1); 784 } 785 #endif /* CONFIG_NO_HZ_FULL */ 786 787 /** 788 * rcu_nmi_enter_common - inform RCU of entry to NMI context 789 * @irq: Is this call from rcu_irq_enter? 790 * 791 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 792 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 793 * that the CPU is active. This implementation permits nested NMIs, as 794 * long as the nesting level does not overflow an int. (You will probably 795 * run out of stack space first.) 796 * 797 * If you add or remove a call to rcu_nmi_enter_common(), be sure to test 798 * with CONFIG_RCU_EQS_DEBUG=y. 799 */ 800 static __always_inline void rcu_nmi_enter_common(bool irq) 801 { 802 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 803 long incby = 2; 804 805 /* Complain about underflow. */ 806 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 807 808 /* 809 * If idle from RCU viewpoint, atomically increment ->dynticks 810 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 811 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 812 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 813 * to be in the outermost NMI handler that interrupted an RCU-idle 814 * period (observation due to Andy Lutomirski). 815 */ 816 if (rcu_dynticks_curr_cpu_in_eqs()) { 817 818 if (irq) 819 rcu_dynticks_task_exit(); 820 821 rcu_dynticks_eqs_exit(); 822 823 if (irq) 824 rcu_cleanup_after_idle(); 825 826 incby = 1; 827 } 828 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 829 rdp->dynticks_nmi_nesting, 830 rdp->dynticks_nmi_nesting + incby, rdp->dynticks); 831 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 832 rdp->dynticks_nmi_nesting + incby); 833 barrier(); 834 } 835 836 /** 837 * rcu_nmi_enter - inform RCU of entry to NMI context 838 */ 839 void rcu_nmi_enter(void) 840 { 841 rcu_nmi_enter_common(false); 842 } 843 NOKPROBE_SYMBOL(rcu_nmi_enter); 844 845 /** 846 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 847 * 848 * Enter an interrupt handler, which might possibly result in exiting 849 * idle mode, in other words, entering the mode in which read-side critical 850 * sections can occur. The caller must have disabled interrupts. 851 * 852 * Note that the Linux kernel is fully capable of entering an interrupt 853 * handler that it never exits, for example when doing upcalls to user mode! 854 * This code assumes that the idle loop never does upcalls to user mode. 855 * If your architecture's idle loop does do upcalls to user mode (or does 856 * anything else that results in unbalanced calls to the irq_enter() and 857 * irq_exit() functions), RCU will give you what you deserve, good and hard. 858 * But very infrequently and irreproducibly. 859 * 860 * Use things like work queues to work around this limitation. 861 * 862 * You have been warned. 863 * 864 * If you add or remove a call to rcu_irq_enter(), be sure to test with 865 * CONFIG_RCU_EQS_DEBUG=y. 866 */ 867 void rcu_irq_enter(void) 868 { 869 lockdep_assert_irqs_disabled(); 870 rcu_nmi_enter_common(true); 871 } 872 873 /* 874 * Wrapper for rcu_irq_enter() where interrupts are enabled. 875 * 876 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 877 * with CONFIG_RCU_EQS_DEBUG=y. 878 */ 879 void rcu_irq_enter_irqson(void) 880 { 881 unsigned long flags; 882 883 local_irq_save(flags); 884 rcu_irq_enter(); 885 local_irq_restore(flags); 886 } 887 888 /** 889 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 890 * 891 * Return true if RCU is watching the running CPU, which means that this 892 * CPU can safely enter RCU read-side critical sections. In other words, 893 * if the current CPU is not in its idle loop or is in an interrupt or 894 * NMI handler, return true. 895 */ 896 bool notrace rcu_is_watching(void) 897 { 898 bool ret; 899 900 preempt_disable_notrace(); 901 ret = !rcu_dynticks_curr_cpu_in_eqs(); 902 preempt_enable_notrace(); 903 return ret; 904 } 905 EXPORT_SYMBOL_GPL(rcu_is_watching); 906 907 /* 908 * If a holdout task is actually running, request an urgent quiescent 909 * state from its CPU. This is unsynchronized, so migrations can cause 910 * the request to go to the wrong CPU. Which is OK, all that will happen 911 * is that the CPU's next context switch will be a bit slower and next 912 * time around this task will generate another request. 913 */ 914 void rcu_request_urgent_qs_task(struct task_struct *t) 915 { 916 int cpu; 917 918 barrier(); 919 cpu = task_cpu(t); 920 if (!task_curr(t)) 921 return; /* This task is not running on that CPU. */ 922 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 923 } 924 925 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 926 927 /* 928 * Is the current CPU online as far as RCU is concerned? 929 * 930 * Disable preemption to avoid false positives that could otherwise 931 * happen due to the current CPU number being sampled, this task being 932 * preempted, its old CPU being taken offline, resuming on some other CPU, 933 * then determining that its old CPU is now offline. 934 * 935 * Disable checking if in an NMI handler because we cannot safely 936 * report errors from NMI handlers anyway. In addition, it is OK to use 937 * RCU on an offline processor during initial boot, hence the check for 938 * rcu_scheduler_fully_active. 939 */ 940 bool rcu_lockdep_current_cpu_online(void) 941 { 942 struct rcu_data *rdp; 943 struct rcu_node *rnp; 944 bool ret = false; 945 946 if (in_nmi() || !rcu_scheduler_fully_active) 947 return true; 948 preempt_disable(); 949 rdp = this_cpu_ptr(&rcu_data); 950 rnp = rdp->mynode; 951 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 952 ret = true; 953 preempt_enable(); 954 return ret; 955 } 956 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 957 958 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 959 960 /* 961 * We are reporting a quiescent state on behalf of some other CPU, so 962 * it is our responsibility to check for and handle potential overflow 963 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 964 * After all, the CPU might be in deep idle state, and thus executing no 965 * code whatsoever. 966 */ 967 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 968 { 969 raw_lockdep_assert_held_rcu_node(rnp); 970 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 971 rnp->gp_seq)) 972 WRITE_ONCE(rdp->gpwrap, true); 973 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 974 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 975 } 976 977 /* 978 * Snapshot the specified CPU's dynticks counter so that we can later 979 * credit them with an implicit quiescent state. Return 1 if this CPU 980 * is in dynticks idle mode, which is an extended quiescent state. 981 */ 982 static int dyntick_save_progress_counter(struct rcu_data *rdp) 983 { 984 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 985 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 986 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 987 rcu_gpnum_ovf(rdp->mynode, rdp); 988 return 1; 989 } 990 return 0; 991 } 992 993 /* 994 * Return true if the specified CPU has passed through a quiescent 995 * state by virtue of being in or having passed through an dynticks 996 * idle state since the last call to dyntick_save_progress_counter() 997 * for this same CPU, or by virtue of having been offline. 998 */ 999 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1000 { 1001 unsigned long jtsq; 1002 bool *rnhqp; 1003 bool *ruqp; 1004 struct rcu_node *rnp = rdp->mynode; 1005 1006 /* 1007 * If the CPU passed through or entered a dynticks idle phase with 1008 * no active irq/NMI handlers, then we can safely pretend that the CPU 1009 * already acknowledged the request to pass through a quiescent 1010 * state. Either way, that CPU cannot possibly be in an RCU 1011 * read-side critical section that started before the beginning 1012 * of the current RCU grace period. 1013 */ 1014 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1015 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1016 rcu_gpnum_ovf(rnp, rdp); 1017 return 1; 1018 } 1019 1020 /* If waiting too long on an offline CPU, complain. */ 1021 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1022 time_after(jiffies, rcu_state.gp_start + HZ)) { 1023 bool onl; 1024 struct rcu_node *rnp1; 1025 1026 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1027 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1028 __func__, rnp->grplo, rnp->grphi, rnp->level, 1029 (long)rnp->gp_seq, (long)rnp->completedqs); 1030 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1031 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1032 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1033 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1034 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1035 __func__, rdp->cpu, ".o"[onl], 1036 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1037 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1038 return 1; /* Break things loose after complaining. */ 1039 } 1040 1041 /* 1042 * A CPU running for an extended time within the kernel can 1043 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1044 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1045 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1046 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1047 * variable are safe because the assignments are repeated if this 1048 * CPU failed to pass through a quiescent state. This code 1049 * also checks .jiffies_resched in case jiffies_to_sched_qs 1050 * is set way high. 1051 */ 1052 jtsq = READ_ONCE(jiffies_to_sched_qs); 1053 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1054 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1055 if (!READ_ONCE(*rnhqp) && 1056 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1057 time_after(jiffies, rcu_state.jiffies_resched))) { 1058 WRITE_ONCE(*rnhqp, true); 1059 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1060 smp_store_release(ruqp, true); 1061 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1062 WRITE_ONCE(*ruqp, true); 1063 } 1064 1065 /* 1066 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1067 * The above code handles this, but only for straight cond_resched(). 1068 * And some in-kernel loops check need_resched() before calling 1069 * cond_resched(), which defeats the above code for CPUs that are 1070 * running in-kernel with scheduling-clock interrupts disabled. 1071 * So hit them over the head with the resched_cpu() hammer! 1072 */ 1073 if (tick_nohz_full_cpu(rdp->cpu) && 1074 time_after(jiffies, 1075 READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) { 1076 resched_cpu(rdp->cpu); 1077 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1078 } 1079 1080 /* 1081 * If more than halfway to RCU CPU stall-warning time, invoke 1082 * resched_cpu() more frequently to try to loosen things up a bit. 1083 * Also check to see if the CPU is getting hammered with interrupts, 1084 * but only once per grace period, just to keep the IPIs down to 1085 * a dull roar. 1086 */ 1087 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1088 if (time_after(jiffies, 1089 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1090 resched_cpu(rdp->cpu); 1091 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1092 } 1093 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1094 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1095 (rnp->ffmask & rdp->grpmask)) { 1096 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1097 rdp->rcu_iw_pending = true; 1098 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1099 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1100 } 1101 } 1102 1103 return 0; 1104 } 1105 1106 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1107 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1108 unsigned long gp_seq_req, const char *s) 1109 { 1110 trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req, 1111 rnp->level, rnp->grplo, rnp->grphi, s); 1112 } 1113 1114 /* 1115 * rcu_start_this_gp - Request the start of a particular grace period 1116 * @rnp_start: The leaf node of the CPU from which to start. 1117 * @rdp: The rcu_data corresponding to the CPU from which to start. 1118 * @gp_seq_req: The gp_seq of the grace period to start. 1119 * 1120 * Start the specified grace period, as needed to handle newly arrived 1121 * callbacks. The required future grace periods are recorded in each 1122 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1123 * is reason to awaken the grace-period kthread. 1124 * 1125 * The caller must hold the specified rcu_node structure's ->lock, which 1126 * is why the caller is responsible for waking the grace-period kthread. 1127 * 1128 * Returns true if the GP thread needs to be awakened else false. 1129 */ 1130 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1131 unsigned long gp_seq_req) 1132 { 1133 bool ret = false; 1134 struct rcu_node *rnp; 1135 1136 /* 1137 * Use funnel locking to either acquire the root rcu_node 1138 * structure's lock or bail out if the need for this grace period 1139 * has already been recorded -- or if that grace period has in 1140 * fact already started. If there is already a grace period in 1141 * progress in a non-leaf node, no recording is needed because the 1142 * end of the grace period will scan the leaf rcu_node structures. 1143 * Note that rnp_start->lock must not be released. 1144 */ 1145 raw_lockdep_assert_held_rcu_node(rnp_start); 1146 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1147 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1148 if (rnp != rnp_start) 1149 raw_spin_lock_rcu_node(rnp); 1150 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1151 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1152 (rnp != rnp_start && 1153 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1154 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1155 TPS("Prestarted")); 1156 goto unlock_out; 1157 } 1158 rnp->gp_seq_needed = gp_seq_req; 1159 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1160 /* 1161 * We just marked the leaf or internal node, and a 1162 * grace period is in progress, which means that 1163 * rcu_gp_cleanup() will see the marking. Bail to 1164 * reduce contention. 1165 */ 1166 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1167 TPS("Startedleaf")); 1168 goto unlock_out; 1169 } 1170 if (rnp != rnp_start && rnp->parent != NULL) 1171 raw_spin_unlock_rcu_node(rnp); 1172 if (!rnp->parent) 1173 break; /* At root, and perhaps also leaf. */ 1174 } 1175 1176 /* If GP already in progress, just leave, otherwise start one. */ 1177 if (rcu_gp_in_progress()) { 1178 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1179 goto unlock_out; 1180 } 1181 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1182 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1183 rcu_state.gp_req_activity = jiffies; 1184 if (!rcu_state.gp_kthread) { 1185 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1186 goto unlock_out; 1187 } 1188 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq")); 1189 ret = true; /* Caller must wake GP kthread. */ 1190 unlock_out: 1191 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1192 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1193 rnp_start->gp_seq_needed = rnp->gp_seq_needed; 1194 rdp->gp_seq_needed = rnp->gp_seq_needed; 1195 } 1196 if (rnp != rnp_start) 1197 raw_spin_unlock_rcu_node(rnp); 1198 return ret; 1199 } 1200 1201 /* 1202 * Clean up any old requests for the just-ended grace period. Also return 1203 * whether any additional grace periods have been requested. 1204 */ 1205 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1206 { 1207 bool needmore; 1208 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1209 1210 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1211 if (!needmore) 1212 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1213 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1214 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1215 return needmore; 1216 } 1217 1218 /* 1219 * Awaken the grace-period kthread. Don't do a self-awaken (unless in 1220 * an interrupt or softirq handler), and don't bother awakening when there 1221 * is nothing for the grace-period kthread to do (as in several CPUs raced 1222 * to awaken, and we lost), and finally don't try to awaken a kthread that 1223 * has not yet been created. If all those checks are passed, track some 1224 * debug information and awaken. 1225 * 1226 * So why do the self-wakeup when in an interrupt or softirq handler 1227 * in the grace-period kthread's context? Because the kthread might have 1228 * been interrupted just as it was going to sleep, and just after the final 1229 * pre-sleep check of the awaken condition. In this case, a wakeup really 1230 * is required, and is therefore supplied. 1231 */ 1232 static void rcu_gp_kthread_wake(void) 1233 { 1234 if ((current == rcu_state.gp_kthread && 1235 !in_irq() && !in_serving_softirq()) || 1236 !READ_ONCE(rcu_state.gp_flags) || 1237 !rcu_state.gp_kthread) 1238 return; 1239 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1240 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1241 swake_up_one(&rcu_state.gp_wq); 1242 } 1243 1244 /* 1245 * If there is room, assign a ->gp_seq number to any callbacks on this 1246 * CPU that have not already been assigned. Also accelerate any callbacks 1247 * that were previously assigned a ->gp_seq number that has since proven 1248 * to be too conservative, which can happen if callbacks get assigned a 1249 * ->gp_seq number while RCU is idle, but with reference to a non-root 1250 * rcu_node structure. This function is idempotent, so it does not hurt 1251 * to call it repeatedly. Returns an flag saying that we should awaken 1252 * the RCU grace-period kthread. 1253 * 1254 * The caller must hold rnp->lock with interrupts disabled. 1255 */ 1256 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1257 { 1258 unsigned long gp_seq_req; 1259 bool ret = false; 1260 1261 rcu_lockdep_assert_cblist_protected(rdp); 1262 raw_lockdep_assert_held_rcu_node(rnp); 1263 1264 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1265 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1266 return false; 1267 1268 /* 1269 * Callbacks are often registered with incomplete grace-period 1270 * information. Something about the fact that getting exact 1271 * information requires acquiring a global lock... RCU therefore 1272 * makes a conservative estimate of the grace period number at which 1273 * a given callback will become ready to invoke. The following 1274 * code checks this estimate and improves it when possible, thus 1275 * accelerating callback invocation to an earlier grace-period 1276 * number. 1277 */ 1278 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1279 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1280 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1281 1282 /* Trace depending on how much we were able to accelerate. */ 1283 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1284 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1285 else 1286 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1287 return ret; 1288 } 1289 1290 /* 1291 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1292 * rcu_node structure's ->lock be held. It consults the cached value 1293 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1294 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1295 * while holding the leaf rcu_node structure's ->lock. 1296 */ 1297 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1298 struct rcu_data *rdp) 1299 { 1300 unsigned long c; 1301 bool needwake; 1302 1303 rcu_lockdep_assert_cblist_protected(rdp); 1304 c = rcu_seq_snap(&rcu_state.gp_seq); 1305 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1306 /* Old request still live, so mark recent callbacks. */ 1307 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1308 return; 1309 } 1310 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1311 needwake = rcu_accelerate_cbs(rnp, rdp); 1312 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1313 if (needwake) 1314 rcu_gp_kthread_wake(); 1315 } 1316 1317 /* 1318 * Move any callbacks whose grace period has completed to the 1319 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1320 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1321 * sublist. This function is idempotent, so it does not hurt to 1322 * invoke it repeatedly. As long as it is not invoked -too- often... 1323 * Returns true if the RCU grace-period kthread needs to be awakened. 1324 * 1325 * The caller must hold rnp->lock with interrupts disabled. 1326 */ 1327 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1328 { 1329 rcu_lockdep_assert_cblist_protected(rdp); 1330 raw_lockdep_assert_held_rcu_node(rnp); 1331 1332 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1333 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1334 return false; 1335 1336 /* 1337 * Find all callbacks whose ->gp_seq numbers indicate that they 1338 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1339 */ 1340 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1341 1342 /* Classify any remaining callbacks. */ 1343 return rcu_accelerate_cbs(rnp, rdp); 1344 } 1345 1346 /* 1347 * Move and classify callbacks, but only if doing so won't require 1348 * that the RCU grace-period kthread be awakened. 1349 */ 1350 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1351 struct rcu_data *rdp) 1352 { 1353 rcu_lockdep_assert_cblist_protected(rdp); 1354 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1355 !raw_spin_trylock_rcu_node(rnp)) 1356 return; 1357 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1358 raw_spin_unlock_rcu_node(rnp); 1359 } 1360 1361 /* 1362 * Update CPU-local rcu_data state to record the beginnings and ends of 1363 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1364 * structure corresponding to the current CPU, and must have irqs disabled. 1365 * Returns true if the grace-period kthread needs to be awakened. 1366 */ 1367 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1368 { 1369 bool ret = false; 1370 bool need_gp; 1371 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1372 rcu_segcblist_is_offloaded(&rdp->cblist); 1373 1374 raw_lockdep_assert_held_rcu_node(rnp); 1375 1376 if (rdp->gp_seq == rnp->gp_seq) 1377 return false; /* Nothing to do. */ 1378 1379 /* Handle the ends of any preceding grace periods first. */ 1380 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1381 unlikely(READ_ONCE(rdp->gpwrap))) { 1382 if (!offloaded) 1383 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1384 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1385 } else { 1386 if (!offloaded) 1387 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1388 } 1389 1390 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1391 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1392 unlikely(READ_ONCE(rdp->gpwrap))) { 1393 /* 1394 * If the current grace period is waiting for this CPU, 1395 * set up to detect a quiescent state, otherwise don't 1396 * go looking for one. 1397 */ 1398 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1399 need_gp = !!(rnp->qsmask & rdp->grpmask); 1400 rdp->cpu_no_qs.b.norm = need_gp; 1401 rdp->core_needs_qs = need_gp; 1402 zero_cpu_stall_ticks(rdp); 1403 } 1404 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1405 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1406 rdp->gp_seq_needed = rnp->gp_seq_needed; 1407 WRITE_ONCE(rdp->gpwrap, false); 1408 rcu_gpnum_ovf(rnp, rdp); 1409 return ret; 1410 } 1411 1412 static void note_gp_changes(struct rcu_data *rdp) 1413 { 1414 unsigned long flags; 1415 bool needwake; 1416 struct rcu_node *rnp; 1417 1418 local_irq_save(flags); 1419 rnp = rdp->mynode; 1420 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1421 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1422 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1423 local_irq_restore(flags); 1424 return; 1425 } 1426 needwake = __note_gp_changes(rnp, rdp); 1427 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1428 if (needwake) 1429 rcu_gp_kthread_wake(); 1430 } 1431 1432 static void rcu_gp_slow(int delay) 1433 { 1434 if (delay > 0 && 1435 !(rcu_seq_ctr(rcu_state.gp_seq) % 1436 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1437 schedule_timeout_uninterruptible(delay); 1438 } 1439 1440 /* 1441 * Initialize a new grace period. Return false if no grace period required. 1442 */ 1443 static bool rcu_gp_init(void) 1444 { 1445 unsigned long flags; 1446 unsigned long oldmask; 1447 unsigned long mask; 1448 struct rcu_data *rdp; 1449 struct rcu_node *rnp = rcu_get_root(); 1450 1451 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1452 raw_spin_lock_irq_rcu_node(rnp); 1453 if (!READ_ONCE(rcu_state.gp_flags)) { 1454 /* Spurious wakeup, tell caller to go back to sleep. */ 1455 raw_spin_unlock_irq_rcu_node(rnp); 1456 return false; 1457 } 1458 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1459 1460 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1461 /* 1462 * Grace period already in progress, don't start another. 1463 * Not supposed to be able to happen. 1464 */ 1465 raw_spin_unlock_irq_rcu_node(rnp); 1466 return false; 1467 } 1468 1469 /* Advance to a new grace period and initialize state. */ 1470 record_gp_stall_check_time(); 1471 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1472 rcu_seq_start(&rcu_state.gp_seq); 1473 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1474 raw_spin_unlock_irq_rcu_node(rnp); 1475 1476 /* 1477 * Apply per-leaf buffered online and offline operations to the 1478 * rcu_node tree. Note that this new grace period need not wait 1479 * for subsequent online CPUs, and that quiescent-state forcing 1480 * will handle subsequent offline CPUs. 1481 */ 1482 rcu_state.gp_state = RCU_GP_ONOFF; 1483 rcu_for_each_leaf_node(rnp) { 1484 raw_spin_lock(&rcu_state.ofl_lock); 1485 raw_spin_lock_irq_rcu_node(rnp); 1486 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1487 !rnp->wait_blkd_tasks) { 1488 /* Nothing to do on this leaf rcu_node structure. */ 1489 raw_spin_unlock_irq_rcu_node(rnp); 1490 raw_spin_unlock(&rcu_state.ofl_lock); 1491 continue; 1492 } 1493 1494 /* Record old state, apply changes to ->qsmaskinit field. */ 1495 oldmask = rnp->qsmaskinit; 1496 rnp->qsmaskinit = rnp->qsmaskinitnext; 1497 1498 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1499 if (!oldmask != !rnp->qsmaskinit) { 1500 if (!oldmask) { /* First online CPU for rcu_node. */ 1501 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1502 rcu_init_new_rnp(rnp); 1503 } else if (rcu_preempt_has_tasks(rnp)) { 1504 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1505 } else { /* Last offline CPU and can propagate. */ 1506 rcu_cleanup_dead_rnp(rnp); 1507 } 1508 } 1509 1510 /* 1511 * If all waited-on tasks from prior grace period are 1512 * done, and if all this rcu_node structure's CPUs are 1513 * still offline, propagate up the rcu_node tree and 1514 * clear ->wait_blkd_tasks. Otherwise, if one of this 1515 * rcu_node structure's CPUs has since come back online, 1516 * simply clear ->wait_blkd_tasks. 1517 */ 1518 if (rnp->wait_blkd_tasks && 1519 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1520 rnp->wait_blkd_tasks = false; 1521 if (!rnp->qsmaskinit) 1522 rcu_cleanup_dead_rnp(rnp); 1523 } 1524 1525 raw_spin_unlock_irq_rcu_node(rnp); 1526 raw_spin_unlock(&rcu_state.ofl_lock); 1527 } 1528 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1529 1530 /* 1531 * Set the quiescent-state-needed bits in all the rcu_node 1532 * structures for all currently online CPUs in breadth-first 1533 * order, starting from the root rcu_node structure, relying on the 1534 * layout of the tree within the rcu_state.node[] array. Note that 1535 * other CPUs will access only the leaves of the hierarchy, thus 1536 * seeing that no grace period is in progress, at least until the 1537 * corresponding leaf node has been initialized. 1538 * 1539 * The grace period cannot complete until the initialization 1540 * process finishes, because this kthread handles both. 1541 */ 1542 rcu_state.gp_state = RCU_GP_INIT; 1543 rcu_for_each_node_breadth_first(rnp) { 1544 rcu_gp_slow(gp_init_delay); 1545 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1546 rdp = this_cpu_ptr(&rcu_data); 1547 rcu_preempt_check_blocked_tasks(rnp); 1548 rnp->qsmask = rnp->qsmaskinit; 1549 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1550 if (rnp == rdp->mynode) 1551 (void)__note_gp_changes(rnp, rdp); 1552 rcu_preempt_boost_start_gp(rnp); 1553 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1554 rnp->level, rnp->grplo, 1555 rnp->grphi, rnp->qsmask); 1556 /* Quiescent states for tasks on any now-offline CPUs. */ 1557 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1558 rnp->rcu_gp_init_mask = mask; 1559 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1560 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1561 else 1562 raw_spin_unlock_irq_rcu_node(rnp); 1563 cond_resched_tasks_rcu_qs(); 1564 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1565 } 1566 1567 return true; 1568 } 1569 1570 /* 1571 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1572 * time. 1573 */ 1574 static bool rcu_gp_fqs_check_wake(int *gfp) 1575 { 1576 struct rcu_node *rnp = rcu_get_root(); 1577 1578 /* Someone like call_rcu() requested a force-quiescent-state scan. */ 1579 *gfp = READ_ONCE(rcu_state.gp_flags); 1580 if (*gfp & RCU_GP_FLAG_FQS) 1581 return true; 1582 1583 /* The current grace period has completed. */ 1584 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1585 return true; 1586 1587 return false; 1588 } 1589 1590 /* 1591 * Do one round of quiescent-state forcing. 1592 */ 1593 static void rcu_gp_fqs(bool first_time) 1594 { 1595 struct rcu_node *rnp = rcu_get_root(); 1596 1597 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1598 rcu_state.n_force_qs++; 1599 if (first_time) { 1600 /* Collect dyntick-idle snapshots. */ 1601 force_qs_rnp(dyntick_save_progress_counter); 1602 } else { 1603 /* Handle dyntick-idle and offline CPUs. */ 1604 force_qs_rnp(rcu_implicit_dynticks_qs); 1605 } 1606 /* Clear flag to prevent immediate re-entry. */ 1607 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1608 raw_spin_lock_irq_rcu_node(rnp); 1609 WRITE_ONCE(rcu_state.gp_flags, 1610 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1611 raw_spin_unlock_irq_rcu_node(rnp); 1612 } 1613 } 1614 1615 /* 1616 * Loop doing repeated quiescent-state forcing until the grace period ends. 1617 */ 1618 static void rcu_gp_fqs_loop(void) 1619 { 1620 bool first_gp_fqs; 1621 int gf; 1622 unsigned long j; 1623 int ret; 1624 struct rcu_node *rnp = rcu_get_root(); 1625 1626 first_gp_fqs = true; 1627 j = READ_ONCE(jiffies_till_first_fqs); 1628 ret = 0; 1629 for (;;) { 1630 if (!ret) { 1631 rcu_state.jiffies_force_qs = jiffies + j; 1632 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1633 jiffies + (j ? 3 * j : 2)); 1634 } 1635 trace_rcu_grace_period(rcu_state.name, 1636 READ_ONCE(rcu_state.gp_seq), 1637 TPS("fqswait")); 1638 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1639 ret = swait_event_idle_timeout_exclusive( 1640 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1641 rcu_state.gp_state = RCU_GP_DOING_FQS; 1642 /* Locking provides needed memory barriers. */ 1643 /* If grace period done, leave loop. */ 1644 if (!READ_ONCE(rnp->qsmask) && 1645 !rcu_preempt_blocked_readers_cgp(rnp)) 1646 break; 1647 /* If time for quiescent-state forcing, do it. */ 1648 if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) || 1649 (gf & RCU_GP_FLAG_FQS)) { 1650 trace_rcu_grace_period(rcu_state.name, 1651 READ_ONCE(rcu_state.gp_seq), 1652 TPS("fqsstart")); 1653 rcu_gp_fqs(first_gp_fqs); 1654 first_gp_fqs = false; 1655 trace_rcu_grace_period(rcu_state.name, 1656 READ_ONCE(rcu_state.gp_seq), 1657 TPS("fqsend")); 1658 cond_resched_tasks_rcu_qs(); 1659 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1660 ret = 0; /* Force full wait till next FQS. */ 1661 j = READ_ONCE(jiffies_till_next_fqs); 1662 } else { 1663 /* Deal with stray signal. */ 1664 cond_resched_tasks_rcu_qs(); 1665 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1666 WARN_ON(signal_pending(current)); 1667 trace_rcu_grace_period(rcu_state.name, 1668 READ_ONCE(rcu_state.gp_seq), 1669 TPS("fqswaitsig")); 1670 ret = 1; /* Keep old FQS timing. */ 1671 j = jiffies; 1672 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1673 j = 1; 1674 else 1675 j = rcu_state.jiffies_force_qs - j; 1676 } 1677 } 1678 } 1679 1680 /* 1681 * Clean up after the old grace period. 1682 */ 1683 static void rcu_gp_cleanup(void) 1684 { 1685 unsigned long gp_duration; 1686 bool needgp = false; 1687 unsigned long new_gp_seq; 1688 bool offloaded; 1689 struct rcu_data *rdp; 1690 struct rcu_node *rnp = rcu_get_root(); 1691 struct swait_queue_head *sq; 1692 1693 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1694 raw_spin_lock_irq_rcu_node(rnp); 1695 rcu_state.gp_end = jiffies; 1696 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1697 if (gp_duration > rcu_state.gp_max) 1698 rcu_state.gp_max = gp_duration; 1699 1700 /* 1701 * We know the grace period is complete, but to everyone else 1702 * it appears to still be ongoing. But it is also the case 1703 * that to everyone else it looks like there is nothing that 1704 * they can do to advance the grace period. It is therefore 1705 * safe for us to drop the lock in order to mark the grace 1706 * period as completed in all of the rcu_node structures. 1707 */ 1708 raw_spin_unlock_irq_rcu_node(rnp); 1709 1710 /* 1711 * Propagate new ->gp_seq value to rcu_node structures so that 1712 * other CPUs don't have to wait until the start of the next grace 1713 * period to process their callbacks. This also avoids some nasty 1714 * RCU grace-period initialization races by forcing the end of 1715 * the current grace period to be completely recorded in all of 1716 * the rcu_node structures before the beginning of the next grace 1717 * period is recorded in any of the rcu_node structures. 1718 */ 1719 new_gp_seq = rcu_state.gp_seq; 1720 rcu_seq_end(&new_gp_seq); 1721 rcu_for_each_node_breadth_first(rnp) { 1722 raw_spin_lock_irq_rcu_node(rnp); 1723 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1724 dump_blkd_tasks(rnp, 10); 1725 WARN_ON_ONCE(rnp->qsmask); 1726 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1727 rdp = this_cpu_ptr(&rcu_data); 1728 if (rnp == rdp->mynode) 1729 needgp = __note_gp_changes(rnp, rdp) || needgp; 1730 /* smp_mb() provided by prior unlock-lock pair. */ 1731 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1732 sq = rcu_nocb_gp_get(rnp); 1733 raw_spin_unlock_irq_rcu_node(rnp); 1734 rcu_nocb_gp_cleanup(sq); 1735 cond_resched_tasks_rcu_qs(); 1736 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1737 rcu_gp_slow(gp_cleanup_delay); 1738 } 1739 rnp = rcu_get_root(); 1740 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1741 1742 /* Declare grace period done, trace first to use old GP number. */ 1743 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1744 rcu_seq_end(&rcu_state.gp_seq); 1745 rcu_state.gp_state = RCU_GP_IDLE; 1746 /* Check for GP requests since above loop. */ 1747 rdp = this_cpu_ptr(&rcu_data); 1748 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1749 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1750 TPS("CleanupMore")); 1751 needgp = true; 1752 } 1753 /* Advance CBs to reduce false positives below. */ 1754 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1755 rcu_segcblist_is_offloaded(&rdp->cblist); 1756 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1757 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1758 rcu_state.gp_req_activity = jiffies; 1759 trace_rcu_grace_period(rcu_state.name, 1760 READ_ONCE(rcu_state.gp_seq), 1761 TPS("newreq")); 1762 } else { 1763 WRITE_ONCE(rcu_state.gp_flags, 1764 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1765 } 1766 raw_spin_unlock_irq_rcu_node(rnp); 1767 } 1768 1769 /* 1770 * Body of kthread that handles grace periods. 1771 */ 1772 static int __noreturn rcu_gp_kthread(void *unused) 1773 { 1774 rcu_bind_gp_kthread(); 1775 for (;;) { 1776 1777 /* Handle grace-period start. */ 1778 for (;;) { 1779 trace_rcu_grace_period(rcu_state.name, 1780 READ_ONCE(rcu_state.gp_seq), 1781 TPS("reqwait")); 1782 rcu_state.gp_state = RCU_GP_WAIT_GPS; 1783 swait_event_idle_exclusive(rcu_state.gp_wq, 1784 READ_ONCE(rcu_state.gp_flags) & 1785 RCU_GP_FLAG_INIT); 1786 rcu_state.gp_state = RCU_GP_DONE_GPS; 1787 /* Locking provides needed memory barrier. */ 1788 if (rcu_gp_init()) 1789 break; 1790 cond_resched_tasks_rcu_qs(); 1791 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1792 WARN_ON(signal_pending(current)); 1793 trace_rcu_grace_period(rcu_state.name, 1794 READ_ONCE(rcu_state.gp_seq), 1795 TPS("reqwaitsig")); 1796 } 1797 1798 /* Handle quiescent-state forcing. */ 1799 rcu_gp_fqs_loop(); 1800 1801 /* Handle grace-period end. */ 1802 rcu_state.gp_state = RCU_GP_CLEANUP; 1803 rcu_gp_cleanup(); 1804 rcu_state.gp_state = RCU_GP_CLEANED; 1805 } 1806 } 1807 1808 /* 1809 * Report a full set of quiescent states to the rcu_state data structure. 1810 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1811 * another grace period is required. Whether we wake the grace-period 1812 * kthread or it awakens itself for the next round of quiescent-state 1813 * forcing, that kthread will clean up after the just-completed grace 1814 * period. Note that the caller must hold rnp->lock, which is released 1815 * before return. 1816 */ 1817 static void rcu_report_qs_rsp(unsigned long flags) 1818 __releases(rcu_get_root()->lock) 1819 { 1820 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1821 WARN_ON_ONCE(!rcu_gp_in_progress()); 1822 WRITE_ONCE(rcu_state.gp_flags, 1823 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1824 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1825 rcu_gp_kthread_wake(); 1826 } 1827 1828 /* 1829 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1830 * Allows quiescent states for a group of CPUs to be reported at one go 1831 * to the specified rcu_node structure, though all the CPUs in the group 1832 * must be represented by the same rcu_node structure (which need not be a 1833 * leaf rcu_node structure, though it often will be). The gps parameter 1834 * is the grace-period snapshot, which means that the quiescent states 1835 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1836 * must be held upon entry, and it is released before return. 1837 * 1838 * As a special case, if mask is zero, the bit-already-cleared check is 1839 * disabled. This allows propagating quiescent state due to resumed tasks 1840 * during grace-period initialization. 1841 */ 1842 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1843 unsigned long gps, unsigned long flags) 1844 __releases(rnp->lock) 1845 { 1846 unsigned long oldmask = 0; 1847 struct rcu_node *rnp_c; 1848 1849 raw_lockdep_assert_held_rcu_node(rnp); 1850 1851 /* Walk up the rcu_node hierarchy. */ 1852 for (;;) { 1853 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1854 1855 /* 1856 * Our bit has already been cleared, or the 1857 * relevant grace period is already over, so done. 1858 */ 1859 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1860 return; 1861 } 1862 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1863 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1864 rcu_preempt_blocked_readers_cgp(rnp)); 1865 rnp->qsmask &= ~mask; 1866 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1867 mask, rnp->qsmask, rnp->level, 1868 rnp->grplo, rnp->grphi, 1869 !!rnp->gp_tasks); 1870 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1871 1872 /* Other bits still set at this level, so done. */ 1873 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1874 return; 1875 } 1876 rnp->completedqs = rnp->gp_seq; 1877 mask = rnp->grpmask; 1878 if (rnp->parent == NULL) { 1879 1880 /* No more levels. Exit loop holding root lock. */ 1881 1882 break; 1883 } 1884 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1885 rnp_c = rnp; 1886 rnp = rnp->parent; 1887 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1888 oldmask = rnp_c->qsmask; 1889 } 1890 1891 /* 1892 * Get here if we are the last CPU to pass through a quiescent 1893 * state for this grace period. Invoke rcu_report_qs_rsp() 1894 * to clean up and start the next grace period if one is needed. 1895 */ 1896 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1897 } 1898 1899 /* 1900 * Record a quiescent state for all tasks that were previously queued 1901 * on the specified rcu_node structure and that were blocking the current 1902 * RCU grace period. The caller must hold the corresponding rnp->lock with 1903 * irqs disabled, and this lock is released upon return, but irqs remain 1904 * disabled. 1905 */ 1906 static void __maybe_unused 1907 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1908 __releases(rnp->lock) 1909 { 1910 unsigned long gps; 1911 unsigned long mask; 1912 struct rcu_node *rnp_p; 1913 1914 raw_lockdep_assert_held_rcu_node(rnp); 1915 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPTION)) || 1916 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1917 rnp->qsmask != 0) { 1918 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1919 return; /* Still need more quiescent states! */ 1920 } 1921 1922 rnp->completedqs = rnp->gp_seq; 1923 rnp_p = rnp->parent; 1924 if (rnp_p == NULL) { 1925 /* 1926 * Only one rcu_node structure in the tree, so don't 1927 * try to report up to its nonexistent parent! 1928 */ 1929 rcu_report_qs_rsp(flags); 1930 return; 1931 } 1932 1933 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1934 gps = rnp->gp_seq; 1935 mask = rnp->grpmask; 1936 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1937 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1938 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1939 } 1940 1941 /* 1942 * Record a quiescent state for the specified CPU to that CPU's rcu_data 1943 * structure. This must be called from the specified CPU. 1944 */ 1945 static void 1946 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 1947 { 1948 unsigned long flags; 1949 unsigned long mask; 1950 bool needwake = false; 1951 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1952 rcu_segcblist_is_offloaded(&rdp->cblist); 1953 struct rcu_node *rnp; 1954 1955 rnp = rdp->mynode; 1956 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1957 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 1958 rdp->gpwrap) { 1959 1960 /* 1961 * The grace period in which this quiescent state was 1962 * recorded has ended, so don't report it upwards. 1963 * We will instead need a new quiescent state that lies 1964 * within the current grace period. 1965 */ 1966 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 1967 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1968 return; 1969 } 1970 mask = rdp->grpmask; 1971 rdp->core_needs_qs = false; 1972 if ((rnp->qsmask & mask) == 0) { 1973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1974 } else { 1975 /* 1976 * This GP can't end until cpu checks in, so all of our 1977 * callbacks can be processed during the next GP. 1978 */ 1979 if (!offloaded) 1980 needwake = rcu_accelerate_cbs(rnp, rdp); 1981 1982 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1983 /* ^^^ Released rnp->lock */ 1984 if (needwake) 1985 rcu_gp_kthread_wake(); 1986 } 1987 } 1988 1989 /* 1990 * Check to see if there is a new grace period of which this CPU 1991 * is not yet aware, and if so, set up local rcu_data state for it. 1992 * Otherwise, see if this CPU has just passed through its first 1993 * quiescent state for this grace period, and record that fact if so. 1994 */ 1995 static void 1996 rcu_check_quiescent_state(struct rcu_data *rdp) 1997 { 1998 /* Check for grace-period ends and beginnings. */ 1999 note_gp_changes(rdp); 2000 2001 /* 2002 * Does this CPU still need to do its part for current grace period? 2003 * If no, return and let the other CPUs do their part as well. 2004 */ 2005 if (!rdp->core_needs_qs) 2006 return; 2007 2008 /* 2009 * Was there a quiescent state since the beginning of the grace 2010 * period? If no, then exit and wait for the next call. 2011 */ 2012 if (rdp->cpu_no_qs.b.norm) 2013 return; 2014 2015 /* 2016 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2017 * judge of that). 2018 */ 2019 rcu_report_qs_rdp(rdp->cpu, rdp); 2020 } 2021 2022 /* 2023 * Near the end of the offline process. Trace the fact that this CPU 2024 * is going offline. 2025 */ 2026 int rcutree_dying_cpu(unsigned int cpu) 2027 { 2028 bool blkd; 2029 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2030 struct rcu_node *rnp = rdp->mynode; 2031 2032 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2033 return 0; 2034 2035 blkd = !!(rnp->qsmask & rdp->grpmask); 2036 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, 2037 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2038 return 0; 2039 } 2040 2041 /* 2042 * All CPUs for the specified rcu_node structure have gone offline, 2043 * and all tasks that were preempted within an RCU read-side critical 2044 * section while running on one of those CPUs have since exited their RCU 2045 * read-side critical section. Some other CPU is reporting this fact with 2046 * the specified rcu_node structure's ->lock held and interrupts disabled. 2047 * This function therefore goes up the tree of rcu_node structures, 2048 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2049 * the leaf rcu_node structure's ->qsmaskinit field has already been 2050 * updated. 2051 * 2052 * This function does check that the specified rcu_node structure has 2053 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2054 * prematurely. That said, invoking it after the fact will cost you 2055 * a needless lock acquisition. So once it has done its work, don't 2056 * invoke it again. 2057 */ 2058 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2059 { 2060 long mask; 2061 struct rcu_node *rnp = rnp_leaf; 2062 2063 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2064 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2065 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2066 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2067 return; 2068 for (;;) { 2069 mask = rnp->grpmask; 2070 rnp = rnp->parent; 2071 if (!rnp) 2072 break; 2073 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2074 rnp->qsmaskinit &= ~mask; 2075 /* Between grace periods, so better already be zero! */ 2076 WARN_ON_ONCE(rnp->qsmask); 2077 if (rnp->qsmaskinit) { 2078 raw_spin_unlock_rcu_node(rnp); 2079 /* irqs remain disabled. */ 2080 return; 2081 } 2082 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2083 } 2084 } 2085 2086 /* 2087 * The CPU has been completely removed, and some other CPU is reporting 2088 * this fact from process context. Do the remainder of the cleanup. 2089 * There can only be one CPU hotplug operation at a time, so no need for 2090 * explicit locking. 2091 */ 2092 int rcutree_dead_cpu(unsigned int cpu) 2093 { 2094 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2095 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2096 2097 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2098 return 0; 2099 2100 /* Adjust any no-longer-needed kthreads. */ 2101 rcu_boost_kthread_setaffinity(rnp, -1); 2102 /* Do any needed no-CB deferred wakeups from this CPU. */ 2103 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2104 return 0; 2105 } 2106 2107 /* 2108 * Invoke any RCU callbacks that have made it to the end of their grace 2109 * period. Thottle as specified by rdp->blimit. 2110 */ 2111 static void rcu_do_batch(struct rcu_data *rdp) 2112 { 2113 unsigned long flags; 2114 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2115 rcu_segcblist_is_offloaded(&rdp->cblist); 2116 struct rcu_head *rhp; 2117 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2118 long bl, count; 2119 long pending, tlimit = 0; 2120 2121 /* If no callbacks are ready, just return. */ 2122 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2123 trace_rcu_batch_start(rcu_state.name, 2124 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2125 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2126 trace_rcu_batch_end(rcu_state.name, 0, 2127 !rcu_segcblist_empty(&rdp->cblist), 2128 need_resched(), is_idle_task(current), 2129 rcu_is_callbacks_kthread()); 2130 return; 2131 } 2132 2133 /* 2134 * Extract the list of ready callbacks, disabling to prevent 2135 * races with call_rcu() from interrupt handlers. Leave the 2136 * callback counts, as rcu_barrier() needs to be conservative. 2137 */ 2138 local_irq_save(flags); 2139 rcu_nocb_lock(rdp); 2140 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2141 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2142 bl = max(rdp->blimit, pending >> rcu_divisor); 2143 if (unlikely(bl > 100)) 2144 tlimit = local_clock() + rcu_resched_ns; 2145 trace_rcu_batch_start(rcu_state.name, 2146 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2147 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2148 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2149 if (offloaded) 2150 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2151 rcu_nocb_unlock_irqrestore(rdp, flags); 2152 2153 /* Invoke callbacks. */ 2154 rhp = rcu_cblist_dequeue(&rcl); 2155 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2156 debug_rcu_head_unqueue(rhp); 2157 if (__rcu_reclaim(rcu_state.name, rhp)) 2158 rcu_cblist_dequeued_lazy(&rcl); 2159 /* 2160 * Stop only if limit reached and CPU has something to do. 2161 * Note: The rcl structure counts down from zero. 2162 */ 2163 if (-rcl.len >= bl && !offloaded && 2164 (need_resched() || 2165 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2166 break; 2167 if (unlikely(tlimit)) { 2168 /* only call local_clock() every 32 callbacks */ 2169 if (likely((-rcl.len & 31) || local_clock() < tlimit)) 2170 continue; 2171 /* Exceeded the time limit, so leave. */ 2172 break; 2173 } 2174 if (offloaded) { 2175 WARN_ON_ONCE(in_serving_softirq()); 2176 local_bh_enable(); 2177 lockdep_assert_irqs_enabled(); 2178 cond_resched_tasks_rcu_qs(); 2179 lockdep_assert_irqs_enabled(); 2180 local_bh_disable(); 2181 } 2182 } 2183 2184 local_irq_save(flags); 2185 rcu_nocb_lock(rdp); 2186 count = -rcl.len; 2187 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2188 is_idle_task(current), rcu_is_callbacks_kthread()); 2189 2190 /* Update counts and requeue any remaining callbacks. */ 2191 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2192 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2193 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2194 2195 /* Reinstate batch limit if we have worked down the excess. */ 2196 count = rcu_segcblist_n_cbs(&rdp->cblist); 2197 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2198 rdp->blimit = blimit; 2199 2200 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2201 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2202 rdp->qlen_last_fqs_check = 0; 2203 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2204 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2205 rdp->qlen_last_fqs_check = count; 2206 2207 /* 2208 * The following usually indicates a double call_rcu(). To track 2209 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2210 */ 2211 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist)); 2212 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2213 count != 0 && rcu_segcblist_empty(&rdp->cblist)); 2214 2215 rcu_nocb_unlock_irqrestore(rdp, flags); 2216 2217 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2218 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2219 invoke_rcu_core(); 2220 } 2221 2222 /* 2223 * This function is invoked from each scheduling-clock interrupt, 2224 * and checks to see if this CPU is in a non-context-switch quiescent 2225 * state, for example, user mode or idle loop. It also schedules RCU 2226 * core processing. If the current grace period has gone on too long, 2227 * it will ask the scheduler to manufacture a context switch for the sole 2228 * purpose of providing a providing the needed quiescent state. 2229 */ 2230 void rcu_sched_clock_irq(int user) 2231 { 2232 trace_rcu_utilization(TPS("Start scheduler-tick")); 2233 raw_cpu_inc(rcu_data.ticks_this_gp); 2234 /* The load-acquire pairs with the store-release setting to true. */ 2235 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2236 /* Idle and userspace execution already are quiescent states. */ 2237 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2238 set_tsk_need_resched(current); 2239 set_preempt_need_resched(); 2240 } 2241 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2242 } 2243 rcu_flavor_sched_clock_irq(user); 2244 if (rcu_pending()) 2245 invoke_rcu_core(); 2246 2247 trace_rcu_utilization(TPS("End scheduler-tick")); 2248 } 2249 2250 /* 2251 * Scan the leaf rcu_node structures. For each structure on which all 2252 * CPUs have reported a quiescent state and on which there are tasks 2253 * blocking the current grace period, initiate RCU priority boosting. 2254 * Otherwise, invoke the specified function to check dyntick state for 2255 * each CPU that has not yet reported a quiescent state. 2256 */ 2257 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2258 { 2259 int cpu; 2260 unsigned long flags; 2261 unsigned long mask; 2262 struct rcu_node *rnp; 2263 2264 rcu_for_each_leaf_node(rnp) { 2265 cond_resched_tasks_rcu_qs(); 2266 mask = 0; 2267 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2268 if (rnp->qsmask == 0) { 2269 if (!IS_ENABLED(CONFIG_PREEMPTION) || 2270 rcu_preempt_blocked_readers_cgp(rnp)) { 2271 /* 2272 * No point in scanning bits because they 2273 * are all zero. But we might need to 2274 * priority-boost blocked readers. 2275 */ 2276 rcu_initiate_boost(rnp, flags); 2277 /* rcu_initiate_boost() releases rnp->lock */ 2278 continue; 2279 } 2280 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2281 continue; 2282 } 2283 for_each_leaf_node_possible_cpu(rnp, cpu) { 2284 unsigned long bit = leaf_node_cpu_bit(rnp, cpu); 2285 if ((rnp->qsmask & bit) != 0) { 2286 if (f(per_cpu_ptr(&rcu_data, cpu))) 2287 mask |= bit; 2288 } 2289 } 2290 if (mask != 0) { 2291 /* Idle/offline CPUs, report (releases rnp->lock). */ 2292 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2293 } else { 2294 /* Nothing to do here, so just drop the lock. */ 2295 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2296 } 2297 } 2298 } 2299 2300 /* 2301 * Force quiescent states on reluctant CPUs, and also detect which 2302 * CPUs are in dyntick-idle mode. 2303 */ 2304 void rcu_force_quiescent_state(void) 2305 { 2306 unsigned long flags; 2307 bool ret; 2308 struct rcu_node *rnp; 2309 struct rcu_node *rnp_old = NULL; 2310 2311 /* Funnel through hierarchy to reduce memory contention. */ 2312 rnp = __this_cpu_read(rcu_data.mynode); 2313 for (; rnp != NULL; rnp = rnp->parent) { 2314 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2315 !raw_spin_trylock(&rnp->fqslock); 2316 if (rnp_old != NULL) 2317 raw_spin_unlock(&rnp_old->fqslock); 2318 if (ret) 2319 return; 2320 rnp_old = rnp; 2321 } 2322 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2323 2324 /* Reached the root of the rcu_node tree, acquire lock. */ 2325 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2326 raw_spin_unlock(&rnp_old->fqslock); 2327 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2328 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2329 return; /* Someone beat us to it. */ 2330 } 2331 WRITE_ONCE(rcu_state.gp_flags, 2332 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2333 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2334 rcu_gp_kthread_wake(); 2335 } 2336 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2337 2338 /* Perform RCU core processing work for the current CPU. */ 2339 static __latent_entropy void rcu_core(void) 2340 { 2341 unsigned long flags; 2342 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2343 struct rcu_node *rnp = rdp->mynode; 2344 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2345 rcu_segcblist_is_offloaded(&rdp->cblist); 2346 2347 if (cpu_is_offline(smp_processor_id())) 2348 return; 2349 trace_rcu_utilization(TPS("Start RCU core")); 2350 WARN_ON_ONCE(!rdp->beenonline); 2351 2352 /* Report any deferred quiescent states if preemption enabled. */ 2353 if (!(preempt_count() & PREEMPT_MASK)) { 2354 rcu_preempt_deferred_qs(current); 2355 } else if (rcu_preempt_need_deferred_qs(current)) { 2356 set_tsk_need_resched(current); 2357 set_preempt_need_resched(); 2358 } 2359 2360 /* Update RCU state based on any recent quiescent states. */ 2361 rcu_check_quiescent_state(rdp); 2362 2363 /* No grace period and unregistered callbacks? */ 2364 if (!rcu_gp_in_progress() && 2365 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) { 2366 local_irq_save(flags); 2367 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2368 rcu_accelerate_cbs_unlocked(rnp, rdp); 2369 local_irq_restore(flags); 2370 } 2371 2372 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2373 2374 /* If there are callbacks ready, invoke them. */ 2375 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) && 2376 likely(READ_ONCE(rcu_scheduler_fully_active))) 2377 rcu_do_batch(rdp); 2378 2379 /* Do any needed deferred wakeups of rcuo kthreads. */ 2380 do_nocb_deferred_wakeup(rdp); 2381 trace_rcu_utilization(TPS("End RCU core")); 2382 } 2383 2384 static void rcu_core_si(struct softirq_action *h) 2385 { 2386 rcu_core(); 2387 } 2388 2389 static void rcu_wake_cond(struct task_struct *t, int status) 2390 { 2391 /* 2392 * If the thread is yielding, only wake it when this 2393 * is invoked from idle 2394 */ 2395 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2396 wake_up_process(t); 2397 } 2398 2399 static void invoke_rcu_core_kthread(void) 2400 { 2401 struct task_struct *t; 2402 unsigned long flags; 2403 2404 local_irq_save(flags); 2405 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2406 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2407 if (t != NULL && t != current) 2408 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2409 local_irq_restore(flags); 2410 } 2411 2412 /* 2413 * Wake up this CPU's rcuc kthread to do RCU core processing. 2414 */ 2415 static void invoke_rcu_core(void) 2416 { 2417 if (!cpu_online(smp_processor_id())) 2418 return; 2419 if (use_softirq) 2420 raise_softirq(RCU_SOFTIRQ); 2421 else 2422 invoke_rcu_core_kthread(); 2423 } 2424 2425 static void rcu_cpu_kthread_park(unsigned int cpu) 2426 { 2427 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2428 } 2429 2430 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2431 { 2432 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2433 } 2434 2435 /* 2436 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2437 * the RCU softirq used in configurations of RCU that do not support RCU 2438 * priority boosting. 2439 */ 2440 static void rcu_cpu_kthread(unsigned int cpu) 2441 { 2442 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2443 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2444 int spincnt; 2445 2446 for (spincnt = 0; spincnt < 10; spincnt++) { 2447 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait")); 2448 local_bh_disable(); 2449 *statusp = RCU_KTHREAD_RUNNING; 2450 local_irq_disable(); 2451 work = *workp; 2452 *workp = 0; 2453 local_irq_enable(); 2454 if (work) 2455 rcu_core(); 2456 local_bh_enable(); 2457 if (*workp == 0) { 2458 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2459 *statusp = RCU_KTHREAD_WAITING; 2460 return; 2461 } 2462 } 2463 *statusp = RCU_KTHREAD_YIELDING; 2464 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2465 schedule_timeout_interruptible(2); 2466 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2467 *statusp = RCU_KTHREAD_WAITING; 2468 } 2469 2470 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2471 .store = &rcu_data.rcu_cpu_kthread_task, 2472 .thread_should_run = rcu_cpu_kthread_should_run, 2473 .thread_fn = rcu_cpu_kthread, 2474 .thread_comm = "rcuc/%u", 2475 .setup = rcu_cpu_kthread_setup, 2476 .park = rcu_cpu_kthread_park, 2477 }; 2478 2479 /* 2480 * Spawn per-CPU RCU core processing kthreads. 2481 */ 2482 static int __init rcu_spawn_core_kthreads(void) 2483 { 2484 int cpu; 2485 2486 for_each_possible_cpu(cpu) 2487 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2488 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2489 return 0; 2490 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2491 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2492 return 0; 2493 } 2494 early_initcall(rcu_spawn_core_kthreads); 2495 2496 /* 2497 * Handle any core-RCU processing required by a call_rcu() invocation. 2498 */ 2499 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2500 unsigned long flags) 2501 { 2502 /* 2503 * If called from an extended quiescent state, invoke the RCU 2504 * core in order to force a re-evaluation of RCU's idleness. 2505 */ 2506 if (!rcu_is_watching()) 2507 invoke_rcu_core(); 2508 2509 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2510 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2511 return; 2512 2513 /* 2514 * Force the grace period if too many callbacks or too long waiting. 2515 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2516 * if some other CPU has recently done so. Also, don't bother 2517 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2518 * is the only one waiting for a grace period to complete. 2519 */ 2520 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2521 rdp->qlen_last_fqs_check + qhimark)) { 2522 2523 /* Are we ignoring a completed grace period? */ 2524 note_gp_changes(rdp); 2525 2526 /* Start a new grace period if one not already started. */ 2527 if (!rcu_gp_in_progress()) { 2528 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2529 } else { 2530 /* Give the grace period a kick. */ 2531 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2532 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2533 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2534 rcu_force_quiescent_state(); 2535 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2536 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2537 } 2538 } 2539 } 2540 2541 /* 2542 * RCU callback function to leak a callback. 2543 */ 2544 static void rcu_leak_callback(struct rcu_head *rhp) 2545 { 2546 } 2547 2548 /* 2549 * Helper function for call_rcu() and friends. The cpu argument will 2550 * normally be -1, indicating "currently running CPU". It may specify 2551 * a CPU only if that CPU is a no-CBs CPU. Currently, only rcu_barrier() 2552 * is expected to specify a CPU. 2553 */ 2554 static void 2555 __call_rcu(struct rcu_head *head, rcu_callback_t func, bool lazy) 2556 { 2557 unsigned long flags; 2558 struct rcu_data *rdp; 2559 bool was_alldone; 2560 2561 /* Misaligned rcu_head! */ 2562 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2563 2564 if (debug_rcu_head_queue(head)) { 2565 /* 2566 * Probable double call_rcu(), so leak the callback. 2567 * Use rcu:rcu_callback trace event to find the previous 2568 * time callback was passed to __call_rcu(). 2569 */ 2570 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2571 head, head->func); 2572 WRITE_ONCE(head->func, rcu_leak_callback); 2573 return; 2574 } 2575 head->func = func; 2576 head->next = NULL; 2577 local_irq_save(flags); 2578 rdp = this_cpu_ptr(&rcu_data); 2579 2580 /* Add the callback to our list. */ 2581 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2582 // This can trigger due to call_rcu() from offline CPU: 2583 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2584 WARN_ON_ONCE(!rcu_is_watching()); 2585 // Very early boot, before rcu_init(). Initialize if needed 2586 // and then drop through to queue the callback. 2587 if (rcu_segcblist_empty(&rdp->cblist)) 2588 rcu_segcblist_init(&rdp->cblist); 2589 } 2590 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2591 return; // Enqueued onto ->nocb_bypass, so just leave. 2592 /* If we get here, rcu_nocb_try_bypass() acquired ->nocb_lock. */ 2593 rcu_segcblist_enqueue(&rdp->cblist, head, lazy); 2594 if (__is_kfree_rcu_offset((unsigned long)func)) 2595 trace_rcu_kfree_callback(rcu_state.name, head, 2596 (unsigned long)func, 2597 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2598 rcu_segcblist_n_cbs(&rdp->cblist)); 2599 else 2600 trace_rcu_callback(rcu_state.name, head, 2601 rcu_segcblist_n_lazy_cbs(&rdp->cblist), 2602 rcu_segcblist_n_cbs(&rdp->cblist)); 2603 2604 /* Go handle any RCU core processing required. */ 2605 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2606 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 2607 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2608 } else { 2609 __call_rcu_core(rdp, head, flags); 2610 local_irq_restore(flags); 2611 } 2612 } 2613 2614 /** 2615 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2616 * @head: structure to be used for queueing the RCU updates. 2617 * @func: actual callback function to be invoked after the grace period 2618 * 2619 * The callback function will be invoked some time after a full grace 2620 * period elapses, in other words after all pre-existing RCU read-side 2621 * critical sections have completed. However, the callback function 2622 * might well execute concurrently with RCU read-side critical sections 2623 * that started after call_rcu() was invoked. RCU read-side critical 2624 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2625 * may be nested. In addition, regions of code across which interrupts, 2626 * preemption, or softirqs have been disabled also serve as RCU read-side 2627 * critical sections. This includes hardware interrupt handlers, softirq 2628 * handlers, and NMI handlers. 2629 * 2630 * Note that all CPUs must agree that the grace period extended beyond 2631 * all pre-existing RCU read-side critical section. On systems with more 2632 * than one CPU, this means that when "func()" is invoked, each CPU is 2633 * guaranteed to have executed a full memory barrier since the end of its 2634 * last RCU read-side critical section whose beginning preceded the call 2635 * to call_rcu(). It also means that each CPU executing an RCU read-side 2636 * critical section that continues beyond the start of "func()" must have 2637 * executed a memory barrier after the call_rcu() but before the beginning 2638 * of that RCU read-side critical section. Note that these guarantees 2639 * include CPUs that are offline, idle, or executing in user mode, as 2640 * well as CPUs that are executing in the kernel. 2641 * 2642 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2643 * resulting RCU callback function "func()", then both CPU A and CPU B are 2644 * guaranteed to execute a full memory barrier during the time interval 2645 * between the call to call_rcu() and the invocation of "func()" -- even 2646 * if CPU A and CPU B are the same CPU (but again only if the system has 2647 * more than one CPU). 2648 */ 2649 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2650 { 2651 __call_rcu(head, func, 0); 2652 } 2653 EXPORT_SYMBOL_GPL(call_rcu); 2654 2655 /* 2656 * Queue an RCU callback for lazy invocation after a grace period. 2657 * This will likely be later named something like "call_rcu_lazy()", 2658 * but this change will require some way of tagging the lazy RCU 2659 * callbacks in the list of pending callbacks. Until then, this 2660 * function may only be called from __kfree_rcu(). 2661 */ 2662 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 2663 { 2664 __call_rcu(head, func, 1); 2665 } 2666 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2667 2668 /* 2669 * During early boot, any blocking grace-period wait automatically 2670 * implies a grace period. Later on, this is never the case for PREEMPT. 2671 * 2672 * Howevr, because a context switch is a grace period for !PREEMPT, any 2673 * blocking grace-period wait automatically implies a grace period if 2674 * there is only one CPU online at any point time during execution of 2675 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 2676 * occasionally incorrectly indicate that there are multiple CPUs online 2677 * when there was in fact only one the whole time, as this just adds some 2678 * overhead: RCU still operates correctly. 2679 */ 2680 static int rcu_blocking_is_gp(void) 2681 { 2682 int ret; 2683 2684 if (IS_ENABLED(CONFIG_PREEMPTION)) 2685 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 2686 might_sleep(); /* Check for RCU read-side critical section. */ 2687 preempt_disable(); 2688 ret = num_online_cpus() <= 1; 2689 preempt_enable(); 2690 return ret; 2691 } 2692 2693 /** 2694 * synchronize_rcu - wait until a grace period has elapsed. 2695 * 2696 * Control will return to the caller some time after a full grace 2697 * period has elapsed, in other words after all currently executing RCU 2698 * read-side critical sections have completed. Note, however, that 2699 * upon return from synchronize_rcu(), the caller might well be executing 2700 * concurrently with new RCU read-side critical sections that began while 2701 * synchronize_rcu() was waiting. RCU read-side critical sections are 2702 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 2703 * In addition, regions of code across which interrupts, preemption, or 2704 * softirqs have been disabled also serve as RCU read-side critical 2705 * sections. This includes hardware interrupt handlers, softirq handlers, 2706 * and NMI handlers. 2707 * 2708 * Note that this guarantee implies further memory-ordering guarantees. 2709 * On systems with more than one CPU, when synchronize_rcu() returns, 2710 * each CPU is guaranteed to have executed a full memory barrier since 2711 * the end of its last RCU read-side critical section whose beginning 2712 * preceded the call to synchronize_rcu(). In addition, each CPU having 2713 * an RCU read-side critical section that extends beyond the return from 2714 * synchronize_rcu() is guaranteed to have executed a full memory barrier 2715 * after the beginning of synchronize_rcu() and before the beginning of 2716 * that RCU read-side critical section. Note that these guarantees include 2717 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2718 * that are executing in the kernel. 2719 * 2720 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 2721 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2722 * to have executed a full memory barrier during the execution of 2723 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 2724 * again only if the system has more than one CPU). 2725 */ 2726 void synchronize_rcu(void) 2727 { 2728 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 2729 lock_is_held(&rcu_lock_map) || 2730 lock_is_held(&rcu_sched_lock_map), 2731 "Illegal synchronize_rcu() in RCU read-side critical section"); 2732 if (rcu_blocking_is_gp()) 2733 return; 2734 if (rcu_gp_is_expedited()) 2735 synchronize_rcu_expedited(); 2736 else 2737 wait_rcu_gp(call_rcu); 2738 } 2739 EXPORT_SYMBOL_GPL(synchronize_rcu); 2740 2741 /** 2742 * get_state_synchronize_rcu - Snapshot current RCU state 2743 * 2744 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2745 * to determine whether or not a full grace period has elapsed in the 2746 * meantime. 2747 */ 2748 unsigned long get_state_synchronize_rcu(void) 2749 { 2750 /* 2751 * Any prior manipulation of RCU-protected data must happen 2752 * before the load from ->gp_seq. 2753 */ 2754 smp_mb(); /* ^^^ */ 2755 return rcu_seq_snap(&rcu_state.gp_seq); 2756 } 2757 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 2758 2759 /** 2760 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 2761 * 2762 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 2763 * 2764 * If a full RCU grace period has elapsed since the earlier call to 2765 * get_state_synchronize_rcu(), just return. Otherwise, invoke 2766 * synchronize_rcu() to wait for a full grace period. 2767 * 2768 * Yes, this function does not take counter wrap into account. But 2769 * counter wrap is harmless. If the counter wraps, we have waited for 2770 * more than 2 billion grace periods (and way more on a 64-bit system!), 2771 * so waiting for one additional grace period should be just fine. 2772 */ 2773 void cond_synchronize_rcu(unsigned long oldstate) 2774 { 2775 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 2776 synchronize_rcu(); 2777 else 2778 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 2779 } 2780 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 2781 2782 /* 2783 * Check to see if there is any immediate RCU-related work to be done by 2784 * the current CPU, returning 1 if so and zero otherwise. The checks are 2785 * in order of increasing expense: checks that can be carried out against 2786 * CPU-local state are performed first. However, we must check for CPU 2787 * stalls first, else we might not get a chance. 2788 */ 2789 static int rcu_pending(void) 2790 { 2791 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2792 struct rcu_node *rnp = rdp->mynode; 2793 2794 /* Check for CPU stalls, if enabled. */ 2795 check_cpu_stall(rdp); 2796 2797 /* Does this CPU need a deferred NOCB wakeup? */ 2798 if (rcu_nocb_need_deferred_wakeup(rdp)) 2799 return 1; 2800 2801 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 2802 if (rcu_nohz_full_cpu()) 2803 return 0; 2804 2805 /* Is the RCU core waiting for a quiescent state from this CPU? */ 2806 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) 2807 return 1; 2808 2809 /* Does this CPU have callbacks ready to invoke? */ 2810 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2811 return 1; 2812 2813 /* Has RCU gone idle with this CPU needing another grace period? */ 2814 if (!rcu_gp_in_progress() && 2815 rcu_segcblist_is_enabled(&rdp->cblist) && 2816 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) || 2817 !rcu_segcblist_is_offloaded(&rdp->cblist)) && 2818 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2819 return 1; 2820 2821 /* Have RCU grace period completed or started? */ 2822 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 2823 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 2824 return 1; 2825 2826 /* nothing to do */ 2827 return 0; 2828 } 2829 2830 /* 2831 * Helper function for rcu_barrier() tracing. If tracing is disabled, 2832 * the compiler is expected to optimize this away. 2833 */ 2834 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 2835 { 2836 trace_rcu_barrier(rcu_state.name, s, cpu, 2837 atomic_read(&rcu_state.barrier_cpu_count), done); 2838 } 2839 2840 /* 2841 * RCU callback function for rcu_barrier(). If we are last, wake 2842 * up the task executing rcu_barrier(). 2843 */ 2844 static void rcu_barrier_callback(struct rcu_head *rhp) 2845 { 2846 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 2847 rcu_barrier_trace(TPS("LastCB"), -1, 2848 rcu_state.barrier_sequence); 2849 complete(&rcu_state.barrier_completion); 2850 } else { 2851 rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence); 2852 } 2853 } 2854 2855 /* 2856 * Called with preemption disabled, and from cross-cpu IRQ context. 2857 */ 2858 static void rcu_barrier_func(void *unused) 2859 { 2860 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2861 2862 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 2863 rdp->barrier_head.func = rcu_barrier_callback; 2864 debug_rcu_head_queue(&rdp->barrier_head); 2865 rcu_nocb_lock(rdp); 2866 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 2867 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { 2868 atomic_inc(&rcu_state.barrier_cpu_count); 2869 } else { 2870 debug_rcu_head_unqueue(&rdp->barrier_head); 2871 rcu_barrier_trace(TPS("IRQNQ"), -1, 2872 rcu_state.barrier_sequence); 2873 } 2874 rcu_nocb_unlock(rdp); 2875 } 2876 2877 /** 2878 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 2879 * 2880 * Note that this primitive does not necessarily wait for an RCU grace period 2881 * to complete. For example, if there are no RCU callbacks queued anywhere 2882 * in the system, then rcu_barrier() is within its rights to return 2883 * immediately, without waiting for anything, much less an RCU grace period. 2884 */ 2885 void rcu_barrier(void) 2886 { 2887 int cpu; 2888 struct rcu_data *rdp; 2889 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 2890 2891 rcu_barrier_trace(TPS("Begin"), -1, s); 2892 2893 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 2894 mutex_lock(&rcu_state.barrier_mutex); 2895 2896 /* Did someone else do our work for us? */ 2897 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 2898 rcu_barrier_trace(TPS("EarlyExit"), -1, 2899 rcu_state.barrier_sequence); 2900 smp_mb(); /* caller's subsequent code after above check. */ 2901 mutex_unlock(&rcu_state.barrier_mutex); 2902 return; 2903 } 2904 2905 /* Mark the start of the barrier operation. */ 2906 rcu_seq_start(&rcu_state.barrier_sequence); 2907 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 2908 2909 /* 2910 * Initialize the count to one rather than to zero in order to 2911 * avoid a too-soon return to zero in case of a short grace period 2912 * (or preemption of this task). Exclude CPU-hotplug operations 2913 * to ensure that no offline CPU has callbacks queued. 2914 */ 2915 init_completion(&rcu_state.barrier_completion); 2916 atomic_set(&rcu_state.barrier_cpu_count, 1); 2917 get_online_cpus(); 2918 2919 /* 2920 * Force each CPU with callbacks to register a new callback. 2921 * When that callback is invoked, we will know that all of the 2922 * corresponding CPU's preceding callbacks have been invoked. 2923 */ 2924 for_each_possible_cpu(cpu) { 2925 rdp = per_cpu_ptr(&rcu_data, cpu); 2926 if (!cpu_online(cpu) && 2927 !rcu_segcblist_is_offloaded(&rdp->cblist)) 2928 continue; 2929 if (rcu_segcblist_n_cbs(&rdp->cblist)) { 2930 rcu_barrier_trace(TPS("OnlineQ"), cpu, 2931 rcu_state.barrier_sequence); 2932 smp_call_function_single(cpu, rcu_barrier_func, NULL, 1); 2933 } else { 2934 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 2935 rcu_state.barrier_sequence); 2936 } 2937 } 2938 put_online_cpus(); 2939 2940 /* 2941 * Now that we have an rcu_barrier_callback() callback on each 2942 * CPU, and thus each counted, remove the initial count. 2943 */ 2944 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) 2945 complete(&rcu_state.barrier_completion); 2946 2947 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 2948 wait_for_completion(&rcu_state.barrier_completion); 2949 2950 /* Mark the end of the barrier operation. */ 2951 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 2952 rcu_seq_end(&rcu_state.barrier_sequence); 2953 2954 /* Other rcu_barrier() invocations can now safely proceed. */ 2955 mutex_unlock(&rcu_state.barrier_mutex); 2956 } 2957 EXPORT_SYMBOL_GPL(rcu_barrier); 2958 2959 /* 2960 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 2961 * first CPU in a given leaf rcu_node structure coming online. The caller 2962 * must hold the corresponding leaf rcu_node ->lock with interrrupts 2963 * disabled. 2964 */ 2965 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 2966 { 2967 long mask; 2968 long oldmask; 2969 struct rcu_node *rnp = rnp_leaf; 2970 2971 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2972 WARN_ON_ONCE(rnp->wait_blkd_tasks); 2973 for (;;) { 2974 mask = rnp->grpmask; 2975 rnp = rnp->parent; 2976 if (rnp == NULL) 2977 return; 2978 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 2979 oldmask = rnp->qsmaskinit; 2980 rnp->qsmaskinit |= mask; 2981 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 2982 if (oldmask) 2983 return; 2984 } 2985 } 2986 2987 /* 2988 * Do boot-time initialization of a CPU's per-CPU RCU data. 2989 */ 2990 static void __init 2991 rcu_boot_init_percpu_data(int cpu) 2992 { 2993 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2994 2995 /* Set up local state, ensuring consistent view of global state. */ 2996 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 2997 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 2998 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 2999 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3000 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3001 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3002 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3003 rdp->cpu = cpu; 3004 rcu_boot_init_nocb_percpu_data(rdp); 3005 } 3006 3007 /* 3008 * Invoked early in the CPU-online process, when pretty much all services 3009 * are available. The incoming CPU is not present. 3010 * 3011 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3012 * offline event can be happening at a given time. Note also that we can 3013 * accept some slop in the rsp->gp_seq access due to the fact that this 3014 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3015 * And any offloaded callbacks are being numbered elsewhere. 3016 */ 3017 int rcutree_prepare_cpu(unsigned int cpu) 3018 { 3019 unsigned long flags; 3020 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3021 struct rcu_node *rnp = rcu_get_root(); 3022 3023 /* Set up local state, ensuring consistent view of global state. */ 3024 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3025 rdp->qlen_last_fqs_check = 0; 3026 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3027 rdp->blimit = blimit; 3028 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3029 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3030 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3031 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3032 rcu_dynticks_eqs_online(); 3033 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3034 3035 /* 3036 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3037 * propagation up the rcu_node tree will happen at the beginning 3038 * of the next grace period. 3039 */ 3040 rnp = rdp->mynode; 3041 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3042 rdp->beenonline = true; /* We have now been online. */ 3043 rdp->gp_seq = rnp->gp_seq; 3044 rdp->gp_seq_needed = rnp->gp_seq; 3045 rdp->cpu_no_qs.b.norm = true; 3046 rdp->core_needs_qs = false; 3047 rdp->rcu_iw_pending = false; 3048 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; 3049 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3050 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3051 rcu_prepare_kthreads(cpu); 3052 rcu_spawn_cpu_nocb_kthread(cpu); 3053 3054 return 0; 3055 } 3056 3057 /* 3058 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3059 */ 3060 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3061 { 3062 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3063 3064 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3065 } 3066 3067 /* 3068 * Near the end of the CPU-online process. Pretty much all services 3069 * enabled, and the CPU is now very much alive. 3070 */ 3071 int rcutree_online_cpu(unsigned int cpu) 3072 { 3073 unsigned long flags; 3074 struct rcu_data *rdp; 3075 struct rcu_node *rnp; 3076 3077 rdp = per_cpu_ptr(&rcu_data, cpu); 3078 rnp = rdp->mynode; 3079 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3080 rnp->ffmask |= rdp->grpmask; 3081 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3082 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3083 return 0; /* Too early in boot for scheduler work. */ 3084 sync_sched_exp_online_cleanup(cpu); 3085 rcutree_affinity_setting(cpu, -1); 3086 return 0; 3087 } 3088 3089 /* 3090 * Near the beginning of the process. The CPU is still very much alive 3091 * with pretty much all services enabled. 3092 */ 3093 int rcutree_offline_cpu(unsigned int cpu) 3094 { 3095 unsigned long flags; 3096 struct rcu_data *rdp; 3097 struct rcu_node *rnp; 3098 3099 rdp = per_cpu_ptr(&rcu_data, cpu); 3100 rnp = rdp->mynode; 3101 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3102 rnp->ffmask &= ~rdp->grpmask; 3103 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3104 3105 rcutree_affinity_setting(cpu, cpu); 3106 return 0; 3107 } 3108 3109 static DEFINE_PER_CPU(int, rcu_cpu_started); 3110 3111 /* 3112 * Mark the specified CPU as being online so that subsequent grace periods 3113 * (both expedited and normal) will wait on it. Note that this means that 3114 * incoming CPUs are not allowed to use RCU read-side critical sections 3115 * until this function is called. Failing to observe this restriction 3116 * will result in lockdep splats. 3117 * 3118 * Note that this function is special in that it is invoked directly 3119 * from the incoming CPU rather than from the cpuhp_step mechanism. 3120 * This is because this function must be invoked at a precise location. 3121 */ 3122 void rcu_cpu_starting(unsigned int cpu) 3123 { 3124 unsigned long flags; 3125 unsigned long mask; 3126 int nbits; 3127 unsigned long oldmask; 3128 struct rcu_data *rdp; 3129 struct rcu_node *rnp; 3130 3131 if (per_cpu(rcu_cpu_started, cpu)) 3132 return; 3133 3134 per_cpu(rcu_cpu_started, cpu) = 1; 3135 3136 rdp = per_cpu_ptr(&rcu_data, cpu); 3137 rnp = rdp->mynode; 3138 mask = rdp->grpmask; 3139 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3140 rnp->qsmaskinitnext |= mask; 3141 oldmask = rnp->expmaskinitnext; 3142 rnp->expmaskinitnext |= mask; 3143 oldmask ^= rnp->expmaskinitnext; 3144 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3145 /* Allow lockless access for expedited grace periods. */ 3146 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3147 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3148 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3149 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3150 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3151 /* Report QS -after- changing ->qsmaskinitnext! */ 3152 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3153 } else { 3154 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3155 } 3156 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3157 } 3158 3159 #ifdef CONFIG_HOTPLUG_CPU 3160 /* 3161 * The outgoing function has no further need of RCU, so remove it from 3162 * the rcu_node tree's ->qsmaskinitnext bit masks. 3163 * 3164 * Note that this function is special in that it is invoked directly 3165 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3166 * This is because this function must be invoked at a precise location. 3167 */ 3168 void rcu_report_dead(unsigned int cpu) 3169 { 3170 unsigned long flags; 3171 unsigned long mask; 3172 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3173 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3174 3175 /* QS for any half-done expedited grace period. */ 3176 preempt_disable(); 3177 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3178 preempt_enable(); 3179 rcu_preempt_deferred_qs(current); 3180 3181 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3182 mask = rdp->grpmask; 3183 raw_spin_lock(&rcu_state.ofl_lock); 3184 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3185 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3186 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3187 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3188 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3189 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3190 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3191 } 3192 rnp->qsmaskinitnext &= ~mask; 3193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3194 raw_spin_unlock(&rcu_state.ofl_lock); 3195 3196 per_cpu(rcu_cpu_started, cpu) = 0; 3197 } 3198 3199 /* 3200 * The outgoing CPU has just passed through the dying-idle state, and we 3201 * are being invoked from the CPU that was IPIed to continue the offline 3202 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3203 */ 3204 void rcutree_migrate_callbacks(int cpu) 3205 { 3206 unsigned long flags; 3207 struct rcu_data *my_rdp; 3208 struct rcu_node *my_rnp; 3209 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3210 bool needwake; 3211 3212 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 3213 rcu_segcblist_empty(&rdp->cblist)) 3214 return; /* No callbacks to migrate. */ 3215 3216 local_irq_save(flags); 3217 my_rdp = this_cpu_ptr(&rcu_data); 3218 my_rnp = my_rdp->mynode; 3219 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 3220 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 3221 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 3222 /* Leverage recent GPs and set GP for new callbacks. */ 3223 needwake = rcu_advance_cbs(my_rnp, rdp) || 3224 rcu_advance_cbs(my_rnp, my_rdp); 3225 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3226 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 3227 rcu_segcblist_disable(&rdp->cblist); 3228 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3229 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3230 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 3231 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 3232 __call_rcu_nocb_wake(my_rdp, true, flags); 3233 } else { 3234 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 3235 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 3236 } 3237 if (needwake) 3238 rcu_gp_kthread_wake(); 3239 lockdep_assert_irqs_enabled(); 3240 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3241 !rcu_segcblist_empty(&rdp->cblist), 3242 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3243 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3244 rcu_segcblist_first_cb(&rdp->cblist)); 3245 } 3246 #endif 3247 3248 /* 3249 * On non-huge systems, use expedited RCU grace periods to make suspend 3250 * and hibernation run faster. 3251 */ 3252 static int rcu_pm_notify(struct notifier_block *self, 3253 unsigned long action, void *hcpu) 3254 { 3255 switch (action) { 3256 case PM_HIBERNATION_PREPARE: 3257 case PM_SUSPEND_PREPARE: 3258 rcu_expedite_gp(); 3259 break; 3260 case PM_POST_HIBERNATION: 3261 case PM_POST_SUSPEND: 3262 rcu_unexpedite_gp(); 3263 break; 3264 default: 3265 break; 3266 } 3267 return NOTIFY_OK; 3268 } 3269 3270 /* 3271 * Spawn the kthreads that handle RCU's grace periods. 3272 */ 3273 static int __init rcu_spawn_gp_kthread(void) 3274 { 3275 unsigned long flags; 3276 int kthread_prio_in = kthread_prio; 3277 struct rcu_node *rnp; 3278 struct sched_param sp; 3279 struct task_struct *t; 3280 3281 /* Force priority into range. */ 3282 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3283 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3284 kthread_prio = 2; 3285 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3286 kthread_prio = 1; 3287 else if (kthread_prio < 0) 3288 kthread_prio = 0; 3289 else if (kthread_prio > 99) 3290 kthread_prio = 99; 3291 3292 if (kthread_prio != kthread_prio_in) 3293 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3294 kthread_prio, kthread_prio_in); 3295 3296 rcu_scheduler_fully_active = 1; 3297 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 3298 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 3299 return 0; 3300 if (kthread_prio) { 3301 sp.sched_priority = kthread_prio; 3302 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3303 } 3304 rnp = rcu_get_root(); 3305 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3306 rcu_state.gp_kthread = t; 3307 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3308 wake_up_process(t); 3309 rcu_spawn_nocb_kthreads(); 3310 rcu_spawn_boost_kthreads(); 3311 return 0; 3312 } 3313 early_initcall(rcu_spawn_gp_kthread); 3314 3315 /* 3316 * This function is invoked towards the end of the scheduler's 3317 * initialization process. Before this is called, the idle task might 3318 * contain synchronous grace-period primitives (during which time, this idle 3319 * task is booting the system, and such primitives are no-ops). After this 3320 * function is called, any synchronous grace-period primitives are run as 3321 * expedited, with the requesting task driving the grace period forward. 3322 * A later core_initcall() rcu_set_runtime_mode() will switch to full 3323 * runtime RCU functionality. 3324 */ 3325 void rcu_scheduler_starting(void) 3326 { 3327 WARN_ON(num_online_cpus() != 1); 3328 WARN_ON(nr_context_switches() > 0); 3329 rcu_test_sync_prims(); 3330 rcu_scheduler_active = RCU_SCHEDULER_INIT; 3331 rcu_test_sync_prims(); 3332 } 3333 3334 /* 3335 * Helper function for rcu_init() that initializes the rcu_state structure. 3336 */ 3337 static void __init rcu_init_one(void) 3338 { 3339 static const char * const buf[] = RCU_NODE_NAME_INIT; 3340 static const char * const fqs[] = RCU_FQS_NAME_INIT; 3341 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 3342 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 3343 3344 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 3345 int cpustride = 1; 3346 int i; 3347 int j; 3348 struct rcu_node *rnp; 3349 3350 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3351 3352 /* Silence gcc 4.8 false positive about array index out of range. */ 3353 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 3354 panic("rcu_init_one: rcu_num_lvls out of range"); 3355 3356 /* Initialize the level-tracking arrays. */ 3357 3358 for (i = 1; i < rcu_num_lvls; i++) 3359 rcu_state.level[i] = 3360 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 3361 rcu_init_levelspread(levelspread, num_rcu_lvl); 3362 3363 /* Initialize the elements themselves, starting from the leaves. */ 3364 3365 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3366 cpustride *= levelspread[i]; 3367 rnp = rcu_state.level[i]; 3368 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 3369 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 3370 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 3371 &rcu_node_class[i], buf[i]); 3372 raw_spin_lock_init(&rnp->fqslock); 3373 lockdep_set_class_and_name(&rnp->fqslock, 3374 &rcu_fqs_class[i], fqs[i]); 3375 rnp->gp_seq = rcu_state.gp_seq; 3376 rnp->gp_seq_needed = rcu_state.gp_seq; 3377 rnp->completedqs = rcu_state.gp_seq; 3378 rnp->qsmask = 0; 3379 rnp->qsmaskinit = 0; 3380 rnp->grplo = j * cpustride; 3381 rnp->grphi = (j + 1) * cpustride - 1; 3382 if (rnp->grphi >= nr_cpu_ids) 3383 rnp->grphi = nr_cpu_ids - 1; 3384 if (i == 0) { 3385 rnp->grpnum = 0; 3386 rnp->grpmask = 0; 3387 rnp->parent = NULL; 3388 } else { 3389 rnp->grpnum = j % levelspread[i - 1]; 3390 rnp->grpmask = BIT(rnp->grpnum); 3391 rnp->parent = rcu_state.level[i - 1] + 3392 j / levelspread[i - 1]; 3393 } 3394 rnp->level = i; 3395 INIT_LIST_HEAD(&rnp->blkd_tasks); 3396 rcu_init_one_nocb(rnp); 3397 init_waitqueue_head(&rnp->exp_wq[0]); 3398 init_waitqueue_head(&rnp->exp_wq[1]); 3399 init_waitqueue_head(&rnp->exp_wq[2]); 3400 init_waitqueue_head(&rnp->exp_wq[3]); 3401 spin_lock_init(&rnp->exp_lock); 3402 } 3403 } 3404 3405 init_swait_queue_head(&rcu_state.gp_wq); 3406 init_swait_queue_head(&rcu_state.expedited_wq); 3407 rnp = rcu_first_leaf_node(); 3408 for_each_possible_cpu(i) { 3409 while (i > rnp->grphi) 3410 rnp++; 3411 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 3412 rcu_boot_init_percpu_data(i); 3413 } 3414 } 3415 3416 /* 3417 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3418 * replace the definitions in tree.h because those are needed to size 3419 * the ->node array in the rcu_state structure. 3420 */ 3421 static void __init rcu_init_geometry(void) 3422 { 3423 ulong d; 3424 int i; 3425 int rcu_capacity[RCU_NUM_LVLS]; 3426 3427 /* 3428 * Initialize any unspecified boot parameters. 3429 * The default values of jiffies_till_first_fqs and 3430 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3431 * value, which is a function of HZ, then adding one for each 3432 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3433 */ 3434 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3435 if (jiffies_till_first_fqs == ULONG_MAX) 3436 jiffies_till_first_fqs = d; 3437 if (jiffies_till_next_fqs == ULONG_MAX) 3438 jiffies_till_next_fqs = d; 3439 adjust_jiffies_till_sched_qs(); 3440 3441 /* If the compile-time values are accurate, just leave. */ 3442 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 3443 nr_cpu_ids == NR_CPUS) 3444 return; 3445 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 3446 rcu_fanout_leaf, nr_cpu_ids); 3447 3448 /* 3449 * The boot-time rcu_fanout_leaf parameter must be at least two 3450 * and cannot exceed the number of bits in the rcu_node masks. 3451 * Complain and fall back to the compile-time values if this 3452 * limit is exceeded. 3453 */ 3454 if (rcu_fanout_leaf < 2 || 3455 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 3456 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3457 WARN_ON(1); 3458 return; 3459 } 3460 3461 /* 3462 * Compute number of nodes that can be handled an rcu_node tree 3463 * with the given number of levels. 3464 */ 3465 rcu_capacity[0] = rcu_fanout_leaf; 3466 for (i = 1; i < RCU_NUM_LVLS; i++) 3467 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 3468 3469 /* 3470 * The tree must be able to accommodate the configured number of CPUs. 3471 * If this limit is exceeded, fall back to the compile-time values. 3472 */ 3473 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 3474 rcu_fanout_leaf = RCU_FANOUT_LEAF; 3475 WARN_ON(1); 3476 return; 3477 } 3478 3479 /* Calculate the number of levels in the tree. */ 3480 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 3481 } 3482 rcu_num_lvls = i + 1; 3483 3484 /* Calculate the number of rcu_nodes at each level of the tree. */ 3485 for (i = 0; i < rcu_num_lvls; i++) { 3486 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 3487 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 3488 } 3489 3490 /* Calculate the total number of rcu_node structures. */ 3491 rcu_num_nodes = 0; 3492 for (i = 0; i < rcu_num_lvls; i++) 3493 rcu_num_nodes += num_rcu_lvl[i]; 3494 } 3495 3496 /* 3497 * Dump out the structure of the rcu_node combining tree associated 3498 * with the rcu_state structure. 3499 */ 3500 static void __init rcu_dump_rcu_node_tree(void) 3501 { 3502 int level = 0; 3503 struct rcu_node *rnp; 3504 3505 pr_info("rcu_node tree layout dump\n"); 3506 pr_info(" "); 3507 rcu_for_each_node_breadth_first(rnp) { 3508 if (rnp->level != level) { 3509 pr_cont("\n"); 3510 pr_info(" "); 3511 level = rnp->level; 3512 } 3513 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 3514 } 3515 pr_cont("\n"); 3516 } 3517 3518 struct workqueue_struct *rcu_gp_wq; 3519 struct workqueue_struct *rcu_par_gp_wq; 3520 3521 void __init rcu_init(void) 3522 { 3523 int cpu; 3524 3525 rcu_early_boot_tests(); 3526 3527 rcu_bootup_announce(); 3528 rcu_init_geometry(); 3529 rcu_init_one(); 3530 if (dump_tree) 3531 rcu_dump_rcu_node_tree(); 3532 if (use_softirq) 3533 open_softirq(RCU_SOFTIRQ, rcu_core_si); 3534 3535 /* 3536 * We don't need protection against CPU-hotplug here because 3537 * this is called early in boot, before either interrupts 3538 * or the scheduler are operational. 3539 */ 3540 pm_notifier(rcu_pm_notify, 0); 3541 for_each_online_cpu(cpu) { 3542 rcutree_prepare_cpu(cpu); 3543 rcu_cpu_starting(cpu); 3544 rcutree_online_cpu(cpu); 3545 } 3546 3547 /* Create workqueue for expedited GPs and for Tree SRCU. */ 3548 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 3549 WARN_ON(!rcu_gp_wq); 3550 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 3551 WARN_ON(!rcu_par_gp_wq); 3552 srcu_init(); 3553 } 3554 3555 #include "tree_stall.h" 3556 #include "tree_exp.h" 3557 #include "tree_plugin.h" 3558