1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include "../time/tick-internal.h" 66 67 #include "tree.h" 68 #include "rcu.h" 69 70 #ifdef MODULE_PARAM_PREFIX 71 #undef MODULE_PARAM_PREFIX 72 #endif 73 #define MODULE_PARAM_PREFIX "rcutree." 74 75 /* Data structures. */ 76 77 /* 78 * Steal a bit from the bottom of ->dynticks for idle entry/exit 79 * control. Initially this is for TLB flushing. 80 */ 81 #define RCU_DYNTICK_CTRL_MASK 0x1 82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 83 84 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 85 .dynticks_nesting = 1, 86 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 87 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 88 #ifdef CONFIG_RCU_NOCB_CPU 89 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY, 90 #endif 91 }; 92 static struct rcu_state rcu_state = { 93 .level = { &rcu_state.node[0] }, 94 .gp_state = RCU_GP_IDLE, 95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 97 .name = RCU_NAME, 98 .abbr = RCU_ABBR, 99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 102 }; 103 104 /* Dump rcu_node combining tree at boot to verify correct setup. */ 105 static bool dump_tree; 106 module_param(dump_tree, bool, 0444); 107 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 108 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 109 #ifndef CONFIG_PREEMPT_RT 110 module_param(use_softirq, bool, 0444); 111 #endif 112 /* Control rcu_node-tree auto-balancing at boot time. */ 113 static bool rcu_fanout_exact; 114 module_param(rcu_fanout_exact, bool, 0444); 115 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 116 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 117 module_param(rcu_fanout_leaf, int, 0444); 118 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 119 /* Number of rcu_nodes at specified level. */ 120 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 121 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 122 123 /* 124 * The rcu_scheduler_active variable is initialized to the value 125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 126 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 127 * RCU can assume that there is but one task, allowing RCU to (for example) 128 * optimize synchronize_rcu() to a simple barrier(). When this variable 129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 130 * to detect real grace periods. This variable is also used to suppress 131 * boot-time false positives from lockdep-RCU error checking. Finally, it 132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 133 * is fully initialized, including all of its kthreads having been spawned. 134 */ 135 int rcu_scheduler_active __read_mostly; 136 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 137 138 /* 139 * The rcu_scheduler_fully_active variable transitions from zero to one 140 * during the early_initcall() processing, which is after the scheduler 141 * is capable of creating new tasks. So RCU processing (for example, 142 * creating tasks for RCU priority boosting) must be delayed until after 143 * rcu_scheduler_fully_active transitions from zero to one. We also 144 * currently delay invocation of any RCU callbacks until after this point. 145 * 146 * It might later prove better for people registering RCU callbacks during 147 * early boot to take responsibility for these callbacks, but one step at 148 * a time. 149 */ 150 static int rcu_scheduler_fully_active __read_mostly; 151 152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 153 unsigned long gps, unsigned long flags); 154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 157 static void invoke_rcu_core(void); 158 static void rcu_report_exp_rdp(struct rcu_data *rdp); 159 static void sync_sched_exp_online_cleanup(int cpu); 160 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 161 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 162 163 /* rcuc/rcub kthread realtime priority */ 164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 165 module_param(kthread_prio, int, 0444); 166 167 /* Delay in jiffies for grace-period initialization delays, debug only. */ 168 169 static int gp_preinit_delay; 170 module_param(gp_preinit_delay, int, 0444); 171 static int gp_init_delay; 172 module_param(gp_init_delay, int, 0444); 173 static int gp_cleanup_delay; 174 module_param(gp_cleanup_delay, int, 0444); 175 176 // Add delay to rcu_read_unlock() for strict grace periods. 177 static int rcu_unlock_delay; 178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 179 module_param(rcu_unlock_delay, int, 0444); 180 #endif 181 182 /* 183 * This rcu parameter is runtime-read-only. It reflects 184 * a minimum allowed number of objects which can be cached 185 * per-CPU. Object size is equal to one page. This value 186 * can be changed at boot time. 187 */ 188 static int rcu_min_cached_objs = 5; 189 module_param(rcu_min_cached_objs, int, 0444); 190 191 /* Retrieve RCU kthreads priority for rcutorture */ 192 int rcu_get_gp_kthreads_prio(void) 193 { 194 return kthread_prio; 195 } 196 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 197 198 /* 199 * Number of grace periods between delays, normalized by the duration of 200 * the delay. The longer the delay, the more the grace periods between 201 * each delay. The reason for this normalization is that it means that, 202 * for non-zero delays, the overall slowdown of grace periods is constant 203 * regardless of the duration of the delay. This arrangement balances 204 * the need for long delays to increase some race probabilities with the 205 * need for fast grace periods to increase other race probabilities. 206 */ 207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 208 209 /* 210 * Compute the mask of online CPUs for the specified rcu_node structure. 211 * This will not be stable unless the rcu_node structure's ->lock is 212 * held, but the bit corresponding to the current CPU will be stable 213 * in most contexts. 214 */ 215 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 216 { 217 return READ_ONCE(rnp->qsmaskinitnext); 218 } 219 220 /* 221 * Return true if an RCU grace period is in progress. The READ_ONCE()s 222 * permit this function to be invoked without holding the root rcu_node 223 * structure's ->lock, but of course results can be subject to change. 224 */ 225 static int rcu_gp_in_progress(void) 226 { 227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 228 } 229 230 /* 231 * Return the number of callbacks queued on the specified CPU. 232 * Handles both the nocbs and normal cases. 233 */ 234 static long rcu_get_n_cbs_cpu(int cpu) 235 { 236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 237 238 if (rcu_segcblist_is_enabled(&rdp->cblist)) 239 return rcu_segcblist_n_cbs(&rdp->cblist); 240 return 0; 241 } 242 243 void rcu_softirq_qs(void) 244 { 245 rcu_qs(); 246 rcu_preempt_deferred_qs(current); 247 } 248 249 /* 250 * Record entry into an extended quiescent state. This is only to be 251 * called when not already in an extended quiescent state, that is, 252 * RCU is watching prior to the call to this function and is no longer 253 * watching upon return. 254 */ 255 static noinstr void rcu_dynticks_eqs_enter(void) 256 { 257 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 258 int seq; 259 260 /* 261 * CPUs seeing atomic_add_return() must see prior RCU read-side 262 * critical sections, and we also must force ordering with the 263 * next idle sojourn. 264 */ 265 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 266 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 267 // RCU is no longer watching. Better be in extended quiescent state! 268 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 269 (seq & RCU_DYNTICK_CTRL_CTR)); 270 /* Better not have special action (TLB flush) pending! */ 271 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 272 (seq & RCU_DYNTICK_CTRL_MASK)); 273 } 274 275 /* 276 * Record exit from an extended quiescent state. This is only to be 277 * called from an extended quiescent state, that is, RCU is not watching 278 * prior to the call to this function and is watching upon return. 279 */ 280 static noinstr void rcu_dynticks_eqs_exit(void) 281 { 282 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 283 int seq; 284 285 /* 286 * CPUs seeing atomic_add_return() must see prior idle sojourns, 287 * and we also must force ordering with the next RCU read-side 288 * critical section. 289 */ 290 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 291 // RCU is now watching. Better not be in an extended quiescent state! 292 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 294 !(seq & RCU_DYNTICK_CTRL_CTR)); 295 if (seq & RCU_DYNTICK_CTRL_MASK) { 296 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 297 smp_mb__after_atomic(); /* _exit after clearing mask. */ 298 } 299 } 300 301 /* 302 * Reset the current CPU's ->dynticks counter to indicate that the 303 * newly onlined CPU is no longer in an extended quiescent state. 304 * This will either leave the counter unchanged, or increment it 305 * to the next non-quiescent value. 306 * 307 * The non-atomic test/increment sequence works because the upper bits 308 * of the ->dynticks counter are manipulated only by the corresponding CPU, 309 * or when the corresponding CPU is offline. 310 */ 311 static void rcu_dynticks_eqs_online(void) 312 { 313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 314 315 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 316 return; 317 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 318 } 319 320 /* 321 * Is the current CPU in an extended quiescent state? 322 * 323 * No ordering, as we are sampling CPU-local information. 324 */ 325 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 326 { 327 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 328 329 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 330 } 331 332 /* 333 * Snapshot the ->dynticks counter with full ordering so as to allow 334 * stable comparison of this counter with past and future snapshots. 335 */ 336 static int rcu_dynticks_snap(struct rcu_data *rdp) 337 { 338 int snap = atomic_add_return(0, &rdp->dynticks); 339 340 return snap & ~RCU_DYNTICK_CTRL_MASK; 341 } 342 343 /* 344 * Return true if the snapshot returned from rcu_dynticks_snap() 345 * indicates that RCU is in an extended quiescent state. 346 */ 347 static bool rcu_dynticks_in_eqs(int snap) 348 { 349 return !(snap & RCU_DYNTICK_CTRL_CTR); 350 } 351 352 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 353 bool rcu_is_idle_cpu(int cpu) 354 { 355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 356 357 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)); 358 } 359 360 /* 361 * Return true if the CPU corresponding to the specified rcu_data 362 * structure has spent some time in an extended quiescent state since 363 * rcu_dynticks_snap() returned the specified snapshot. 364 */ 365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 366 { 367 return snap != rcu_dynticks_snap(rdp); 368 } 369 370 /* 371 * Return true if the referenced integer is zero while the specified 372 * CPU remains within a single extended quiescent state. 373 */ 374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 375 { 376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 377 int snap; 378 379 // If not quiescent, force back to earlier extended quiescent state. 380 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 381 RCU_DYNTICK_CTRL_CTR); 382 383 smp_rmb(); // Order ->dynticks and *vp reads. 384 if (READ_ONCE(*vp)) 385 return false; // Non-zero, so report failure; 386 smp_rmb(); // Order *vp read and ->dynticks re-read. 387 388 // If still in the same extended quiescent state, we are good! 389 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 390 } 391 392 /* 393 * Set the special (bottom) bit of the specified CPU so that it 394 * will take special action (such as flushing its TLB) on the 395 * next exit from an extended quiescent state. Returns true if 396 * the bit was successfully set, or false if the CPU was not in 397 * an extended quiescent state. 398 */ 399 bool rcu_eqs_special_set(int cpu) 400 { 401 int old; 402 int new; 403 int new_old; 404 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 405 406 new_old = atomic_read(&rdp->dynticks); 407 do { 408 old = new_old; 409 if (old & RCU_DYNTICK_CTRL_CTR) 410 return false; 411 new = old | RCU_DYNTICK_CTRL_MASK; 412 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 413 } while (new_old != old); 414 return true; 415 } 416 417 /* 418 * Let the RCU core know that this CPU has gone through the scheduler, 419 * which is a quiescent state. This is called when the need for a 420 * quiescent state is urgent, so we burn an atomic operation and full 421 * memory barriers to let the RCU core know about it, regardless of what 422 * this CPU might (or might not) do in the near future. 423 * 424 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 425 * 426 * The caller must have disabled interrupts and must not be idle. 427 */ 428 notrace void rcu_momentary_dyntick_idle(void) 429 { 430 int special; 431 432 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 433 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 434 &this_cpu_ptr(&rcu_data)->dynticks); 435 /* It is illegal to call this from idle state. */ 436 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 437 rcu_preempt_deferred_qs(current); 438 } 439 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 440 441 /** 442 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 443 * 444 * If the current CPU is idle and running at a first-level (not nested) 445 * interrupt, or directly, from idle, return true. 446 * 447 * The caller must have at least disabled IRQs. 448 */ 449 static int rcu_is_cpu_rrupt_from_idle(void) 450 { 451 long nesting; 452 453 /* 454 * Usually called from the tick; but also used from smp_function_call() 455 * for expedited grace periods. This latter can result in running from 456 * the idle task, instead of an actual IPI. 457 */ 458 lockdep_assert_irqs_disabled(); 459 460 /* Check for counter underflows */ 461 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 462 "RCU dynticks_nesting counter underflow!"); 463 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 464 "RCU dynticks_nmi_nesting counter underflow/zero!"); 465 466 /* Are we at first interrupt nesting level? */ 467 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 468 if (nesting > 1) 469 return false; 470 471 /* 472 * If we're not in an interrupt, we must be in the idle task! 473 */ 474 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 475 476 /* Does CPU appear to be idle from an RCU standpoint? */ 477 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 478 } 479 480 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 481 // Maximum callbacks per rcu_do_batch ... 482 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 483 static long blimit = DEFAULT_RCU_BLIMIT; 484 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 485 static long qhimark = DEFAULT_RCU_QHIMARK; 486 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 487 static long qlowmark = DEFAULT_RCU_QLOMARK; 488 #define DEFAULT_RCU_QOVLD_MULT 2 489 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 490 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 491 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 492 493 module_param(blimit, long, 0444); 494 module_param(qhimark, long, 0444); 495 module_param(qlowmark, long, 0444); 496 module_param(qovld, long, 0444); 497 498 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 499 static ulong jiffies_till_next_fqs = ULONG_MAX; 500 static bool rcu_kick_kthreads; 501 static int rcu_divisor = 7; 502 module_param(rcu_divisor, int, 0644); 503 504 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 505 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 506 module_param(rcu_resched_ns, long, 0644); 507 508 /* 509 * How long the grace period must be before we start recruiting 510 * quiescent-state help from rcu_note_context_switch(). 511 */ 512 static ulong jiffies_till_sched_qs = ULONG_MAX; 513 module_param(jiffies_till_sched_qs, ulong, 0444); 514 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 515 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 516 517 /* 518 * Make sure that we give the grace-period kthread time to detect any 519 * idle CPUs before taking active measures to force quiescent states. 520 * However, don't go below 100 milliseconds, adjusted upwards for really 521 * large systems. 522 */ 523 static void adjust_jiffies_till_sched_qs(void) 524 { 525 unsigned long j; 526 527 /* If jiffies_till_sched_qs was specified, respect the request. */ 528 if (jiffies_till_sched_qs != ULONG_MAX) { 529 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 530 return; 531 } 532 /* Otherwise, set to third fqs scan, but bound below on large system. */ 533 j = READ_ONCE(jiffies_till_first_fqs) + 534 2 * READ_ONCE(jiffies_till_next_fqs); 535 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 536 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 537 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 538 WRITE_ONCE(jiffies_to_sched_qs, j); 539 } 540 541 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 542 { 543 ulong j; 544 int ret = kstrtoul(val, 0, &j); 545 546 if (!ret) { 547 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 548 adjust_jiffies_till_sched_qs(); 549 } 550 return ret; 551 } 552 553 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 554 { 555 ulong j; 556 int ret = kstrtoul(val, 0, &j); 557 558 if (!ret) { 559 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 560 adjust_jiffies_till_sched_qs(); 561 } 562 return ret; 563 } 564 565 static const struct kernel_param_ops first_fqs_jiffies_ops = { 566 .set = param_set_first_fqs_jiffies, 567 .get = param_get_ulong, 568 }; 569 570 static const struct kernel_param_ops next_fqs_jiffies_ops = { 571 .set = param_set_next_fqs_jiffies, 572 .get = param_get_ulong, 573 }; 574 575 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 576 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 577 module_param(rcu_kick_kthreads, bool, 0644); 578 579 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 580 static int rcu_pending(int user); 581 582 /* 583 * Return the number of RCU GPs completed thus far for debug & stats. 584 */ 585 unsigned long rcu_get_gp_seq(void) 586 { 587 return READ_ONCE(rcu_state.gp_seq); 588 } 589 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 590 591 /* 592 * Return the number of RCU expedited batches completed thus far for 593 * debug & stats. Odd numbers mean that a batch is in progress, even 594 * numbers mean idle. The value returned will thus be roughly double 595 * the cumulative batches since boot. 596 */ 597 unsigned long rcu_exp_batches_completed(void) 598 { 599 return rcu_state.expedited_sequence; 600 } 601 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 602 603 /* 604 * Return the root node of the rcu_state structure. 605 */ 606 static struct rcu_node *rcu_get_root(void) 607 { 608 return &rcu_state.node[0]; 609 } 610 611 /* 612 * Send along grace-period-related data for rcutorture diagnostics. 613 */ 614 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 615 unsigned long *gp_seq) 616 { 617 switch (test_type) { 618 case RCU_FLAVOR: 619 *flags = READ_ONCE(rcu_state.gp_flags); 620 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 621 break; 622 default: 623 break; 624 } 625 } 626 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 627 628 /* 629 * Enter an RCU extended quiescent state, which can be either the 630 * idle loop or adaptive-tickless usermode execution. 631 * 632 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 633 * the possibility of usermode upcalls having messed up our count 634 * of interrupt nesting level during the prior busy period. 635 */ 636 static noinstr void rcu_eqs_enter(bool user) 637 { 638 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 639 640 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 641 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 642 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 643 rdp->dynticks_nesting == 0); 644 if (rdp->dynticks_nesting != 1) { 645 // RCU will still be watching, so just do accounting and leave. 646 rdp->dynticks_nesting--; 647 return; 648 } 649 650 lockdep_assert_irqs_disabled(); 651 instrumentation_begin(); 652 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 653 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 654 rcu_prepare_for_idle(); 655 rcu_preempt_deferred_qs(current); 656 657 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 658 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 659 660 instrumentation_end(); 661 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 662 // RCU is watching here ... 663 rcu_dynticks_eqs_enter(); 664 // ... but is no longer watching here. 665 rcu_dynticks_task_enter(); 666 } 667 668 /** 669 * rcu_idle_enter - inform RCU that current CPU is entering idle 670 * 671 * Enter idle mode, in other words, -leave- the mode in which RCU 672 * read-side critical sections can occur. (Though RCU read-side 673 * critical sections can occur in irq handlers in idle, a possibility 674 * handled by irq_enter() and irq_exit().) 675 * 676 * If you add or remove a call to rcu_idle_enter(), be sure to test with 677 * CONFIG_RCU_EQS_DEBUG=y. 678 */ 679 void rcu_idle_enter(void) 680 { 681 lockdep_assert_irqs_disabled(); 682 rcu_eqs_enter(false); 683 } 684 EXPORT_SYMBOL_GPL(rcu_idle_enter); 685 686 #ifdef CONFIG_NO_HZ_FULL 687 688 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK) 689 /* 690 * An empty function that will trigger a reschedule on 691 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 692 */ 693 static void late_wakeup_func(struct irq_work *work) 694 { 695 } 696 697 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 698 IRQ_WORK_INIT(late_wakeup_func); 699 700 /* 701 * If either: 702 * 703 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 704 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 705 * 706 * In these cases the late RCU wake ups aren't supported in the resched loops and our 707 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 708 * get re-enabled again. 709 */ 710 noinstr static void rcu_irq_work_resched(void) 711 { 712 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 713 714 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 715 return; 716 717 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 718 return; 719 720 instrumentation_begin(); 721 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 722 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 723 } 724 instrumentation_end(); 725 } 726 727 #else 728 static inline void rcu_irq_work_resched(void) { } 729 #endif 730 731 /** 732 * rcu_user_enter - inform RCU that we are resuming userspace. 733 * 734 * Enter RCU idle mode right before resuming userspace. No use of RCU 735 * is permitted between this call and rcu_user_exit(). This way the 736 * CPU doesn't need to maintain the tick for RCU maintenance purposes 737 * when the CPU runs in userspace. 738 * 739 * If you add or remove a call to rcu_user_enter(), be sure to test with 740 * CONFIG_RCU_EQS_DEBUG=y. 741 */ 742 noinstr void rcu_user_enter(void) 743 { 744 lockdep_assert_irqs_disabled(); 745 746 /* 747 * Other than generic entry implementation, we may be past the last 748 * rescheduling opportunity in the entry code. Trigger a self IPI 749 * that will fire and reschedule once we resume in user/guest mode. 750 */ 751 rcu_irq_work_resched(); 752 rcu_eqs_enter(true); 753 } 754 755 #endif /* CONFIG_NO_HZ_FULL */ 756 757 /** 758 * rcu_nmi_exit - inform RCU of exit from NMI context 759 * 760 * If we are returning from the outermost NMI handler that interrupted an 761 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 762 * to let the RCU grace-period handling know that the CPU is back to 763 * being RCU-idle. 764 * 765 * If you add or remove a call to rcu_nmi_exit(), be sure to test 766 * with CONFIG_RCU_EQS_DEBUG=y. 767 */ 768 noinstr void rcu_nmi_exit(void) 769 { 770 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 771 772 instrumentation_begin(); 773 /* 774 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 775 * (We are exiting an NMI handler, so RCU better be paying attention 776 * to us!) 777 */ 778 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 779 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 780 781 /* 782 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 783 * leave it in non-RCU-idle state. 784 */ 785 if (rdp->dynticks_nmi_nesting != 1) { 786 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 787 atomic_read(&rdp->dynticks)); 788 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 789 rdp->dynticks_nmi_nesting - 2); 790 instrumentation_end(); 791 return; 792 } 793 794 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 795 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 796 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 797 798 if (!in_nmi()) 799 rcu_prepare_for_idle(); 800 801 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 802 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 803 instrumentation_end(); 804 805 // RCU is watching here ... 806 rcu_dynticks_eqs_enter(); 807 // ... but is no longer watching here. 808 809 if (!in_nmi()) 810 rcu_dynticks_task_enter(); 811 } 812 813 /** 814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 815 * 816 * Exit from an interrupt handler, which might possibly result in entering 817 * idle mode, in other words, leaving the mode in which read-side critical 818 * sections can occur. The caller must have disabled interrupts. 819 * 820 * This code assumes that the idle loop never does anything that might 821 * result in unbalanced calls to irq_enter() and irq_exit(). If your 822 * architecture's idle loop violates this assumption, RCU will give you what 823 * you deserve, good and hard. But very infrequently and irreproducibly. 824 * 825 * Use things like work queues to work around this limitation. 826 * 827 * You have been warned. 828 * 829 * If you add or remove a call to rcu_irq_exit(), be sure to test with 830 * CONFIG_RCU_EQS_DEBUG=y. 831 */ 832 void noinstr rcu_irq_exit(void) 833 { 834 lockdep_assert_irqs_disabled(); 835 rcu_nmi_exit(); 836 } 837 838 /** 839 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq 840 * towards in kernel preemption 841 * 842 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe 843 * from RCU point of view. Invoked from return from interrupt before kernel 844 * preemption. 845 */ 846 void rcu_irq_exit_preempt(void) 847 { 848 lockdep_assert_irqs_disabled(); 849 rcu_nmi_exit(); 850 851 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 852 "RCU dynticks_nesting counter underflow/zero!"); 853 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 854 DYNTICK_IRQ_NONIDLE, 855 "Bad RCU dynticks_nmi_nesting counter\n"); 856 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 857 "RCU in extended quiescent state!"); 858 } 859 860 #ifdef CONFIG_PROVE_RCU 861 /** 862 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 863 */ 864 void rcu_irq_exit_check_preempt(void) 865 { 866 lockdep_assert_irqs_disabled(); 867 868 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 869 "RCU dynticks_nesting counter underflow/zero!"); 870 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 871 DYNTICK_IRQ_NONIDLE, 872 "Bad RCU dynticks_nmi_nesting counter\n"); 873 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 874 "RCU in extended quiescent state!"); 875 } 876 #endif /* #ifdef CONFIG_PROVE_RCU */ 877 878 /* 879 * Wrapper for rcu_irq_exit() where interrupts are enabled. 880 * 881 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 882 * with CONFIG_RCU_EQS_DEBUG=y. 883 */ 884 void rcu_irq_exit_irqson(void) 885 { 886 unsigned long flags; 887 888 local_irq_save(flags); 889 rcu_irq_exit(); 890 local_irq_restore(flags); 891 } 892 893 /* 894 * Exit an RCU extended quiescent state, which can be either the 895 * idle loop or adaptive-tickless usermode execution. 896 * 897 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 898 * allow for the possibility of usermode upcalls messing up our count of 899 * interrupt nesting level during the busy period that is just now starting. 900 */ 901 static void noinstr rcu_eqs_exit(bool user) 902 { 903 struct rcu_data *rdp; 904 long oldval; 905 906 lockdep_assert_irqs_disabled(); 907 rdp = this_cpu_ptr(&rcu_data); 908 oldval = rdp->dynticks_nesting; 909 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 910 if (oldval) { 911 // RCU was already watching, so just do accounting and leave. 912 rdp->dynticks_nesting++; 913 return; 914 } 915 rcu_dynticks_task_exit(); 916 // RCU is not watching here ... 917 rcu_dynticks_eqs_exit(); 918 // ... but is watching here. 919 instrumentation_begin(); 920 921 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 922 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 923 924 rcu_cleanup_after_idle(); 925 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 926 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 927 WRITE_ONCE(rdp->dynticks_nesting, 1); 928 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 929 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 930 instrumentation_end(); 931 } 932 933 /** 934 * rcu_idle_exit - inform RCU that current CPU is leaving idle 935 * 936 * Exit idle mode, in other words, -enter- the mode in which RCU 937 * read-side critical sections can occur. 938 * 939 * If you add or remove a call to rcu_idle_exit(), be sure to test with 940 * CONFIG_RCU_EQS_DEBUG=y. 941 */ 942 void rcu_idle_exit(void) 943 { 944 unsigned long flags; 945 946 local_irq_save(flags); 947 rcu_eqs_exit(false); 948 local_irq_restore(flags); 949 } 950 EXPORT_SYMBOL_GPL(rcu_idle_exit); 951 952 #ifdef CONFIG_NO_HZ_FULL 953 /** 954 * rcu_user_exit - inform RCU that we are exiting userspace. 955 * 956 * Exit RCU idle mode while entering the kernel because it can 957 * run a RCU read side critical section anytime. 958 * 959 * If you add or remove a call to rcu_user_exit(), be sure to test with 960 * CONFIG_RCU_EQS_DEBUG=y. 961 */ 962 void noinstr rcu_user_exit(void) 963 { 964 rcu_eqs_exit(1); 965 } 966 967 /** 968 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 969 * 970 * The scheduler tick is not normally enabled when CPUs enter the kernel 971 * from nohz_full userspace execution. After all, nohz_full userspace 972 * execution is an RCU quiescent state and the time executing in the kernel 973 * is quite short. Except of course when it isn't. And it is not hard to 974 * cause a large system to spend tens of seconds or even minutes looping 975 * in the kernel, which can cause a number of problems, include RCU CPU 976 * stall warnings. 977 * 978 * Therefore, if a nohz_full CPU fails to report a quiescent state 979 * in a timely manner, the RCU grace-period kthread sets that CPU's 980 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 981 * exception will invoke this function, which will turn on the scheduler 982 * tick, which will enable RCU to detect that CPU's quiescent states, 983 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 984 * The tick will be disabled once a quiescent state is reported for 985 * this CPU. 986 * 987 * Of course, in carefully tuned systems, there might never be an 988 * interrupt or exception. In that case, the RCU grace-period kthread 989 * will eventually cause one to happen. However, in less carefully 990 * controlled environments, this function allows RCU to get what it 991 * needs without creating otherwise useless interruptions. 992 */ 993 void __rcu_irq_enter_check_tick(void) 994 { 995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 996 997 // If we're here from NMI there's nothing to do. 998 if (in_nmi()) 999 return; 1000 1001 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 1002 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 1003 1004 if (!tick_nohz_full_cpu(rdp->cpu) || 1005 !READ_ONCE(rdp->rcu_urgent_qs) || 1006 READ_ONCE(rdp->rcu_forced_tick)) { 1007 // RCU doesn't need nohz_full help from this CPU, or it is 1008 // already getting that help. 1009 return; 1010 } 1011 1012 // We get here only when not in an extended quiescent state and 1013 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 1014 // already watching and (2) The fact that we are in an interrupt 1015 // handler and that the rcu_node lock is an irq-disabled lock 1016 // prevents self-deadlock. So we can safely recheck under the lock. 1017 // Note that the nohz_full state currently cannot change. 1018 raw_spin_lock_rcu_node(rdp->mynode); 1019 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 1020 // A nohz_full CPU is in the kernel and RCU needs a 1021 // quiescent state. Turn on the tick! 1022 WRITE_ONCE(rdp->rcu_forced_tick, true); 1023 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1024 } 1025 raw_spin_unlock_rcu_node(rdp->mynode); 1026 } 1027 #endif /* CONFIG_NO_HZ_FULL */ 1028 1029 /** 1030 * rcu_nmi_enter - inform RCU of entry to NMI context 1031 * 1032 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 1033 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 1034 * that the CPU is active. This implementation permits nested NMIs, as 1035 * long as the nesting level does not overflow an int. (You will probably 1036 * run out of stack space first.) 1037 * 1038 * If you add or remove a call to rcu_nmi_enter(), be sure to test 1039 * with CONFIG_RCU_EQS_DEBUG=y. 1040 */ 1041 noinstr void rcu_nmi_enter(void) 1042 { 1043 long incby = 2; 1044 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1045 1046 /* Complain about underflow. */ 1047 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 1048 1049 /* 1050 * If idle from RCU viewpoint, atomically increment ->dynticks 1051 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 1052 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 1053 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 1054 * to be in the outermost NMI handler that interrupted an RCU-idle 1055 * period (observation due to Andy Lutomirski). 1056 */ 1057 if (rcu_dynticks_curr_cpu_in_eqs()) { 1058 1059 if (!in_nmi()) 1060 rcu_dynticks_task_exit(); 1061 1062 // RCU is not watching here ... 1063 rcu_dynticks_eqs_exit(); 1064 // ... but is watching here. 1065 1066 if (!in_nmi()) { 1067 instrumentation_begin(); 1068 rcu_cleanup_after_idle(); 1069 instrumentation_end(); 1070 } 1071 1072 instrumentation_begin(); 1073 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1074 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1075 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1076 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1077 1078 incby = 1; 1079 } else if (!in_nmi()) { 1080 instrumentation_begin(); 1081 rcu_irq_enter_check_tick(); 1082 } else { 1083 instrumentation_begin(); 1084 } 1085 1086 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1087 rdp->dynticks_nmi_nesting, 1088 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1089 instrumentation_end(); 1090 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1091 rdp->dynticks_nmi_nesting + incby); 1092 barrier(); 1093 } 1094 1095 /** 1096 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1097 * 1098 * Enter an interrupt handler, which might possibly result in exiting 1099 * idle mode, in other words, entering the mode in which read-side critical 1100 * sections can occur. The caller must have disabled interrupts. 1101 * 1102 * Note that the Linux kernel is fully capable of entering an interrupt 1103 * handler that it never exits, for example when doing upcalls to user mode! 1104 * This code assumes that the idle loop never does upcalls to user mode. 1105 * If your architecture's idle loop does do upcalls to user mode (or does 1106 * anything else that results in unbalanced calls to the irq_enter() and 1107 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1108 * But very infrequently and irreproducibly. 1109 * 1110 * Use things like work queues to work around this limitation. 1111 * 1112 * You have been warned. 1113 * 1114 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1115 * CONFIG_RCU_EQS_DEBUG=y. 1116 */ 1117 noinstr void rcu_irq_enter(void) 1118 { 1119 lockdep_assert_irqs_disabled(); 1120 rcu_nmi_enter(); 1121 } 1122 1123 /* 1124 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1125 * 1126 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1127 * with CONFIG_RCU_EQS_DEBUG=y. 1128 */ 1129 void rcu_irq_enter_irqson(void) 1130 { 1131 unsigned long flags; 1132 1133 local_irq_save(flags); 1134 rcu_irq_enter(); 1135 local_irq_restore(flags); 1136 } 1137 1138 /* 1139 * If any sort of urgency was applied to the current CPU (for example, 1140 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1141 * to get to a quiescent state, disable it. 1142 */ 1143 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1144 { 1145 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1146 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1147 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1148 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1149 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1150 WRITE_ONCE(rdp->rcu_forced_tick, false); 1151 } 1152 } 1153 1154 /** 1155 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1156 * 1157 * Return true if RCU is watching the running CPU, which means that this 1158 * CPU can safely enter RCU read-side critical sections. In other words, 1159 * if the current CPU is not in its idle loop or is in an interrupt or 1160 * NMI handler, return true. 1161 * 1162 * Make notrace because it can be called by the internal functions of 1163 * ftrace, and making this notrace removes unnecessary recursion calls. 1164 */ 1165 notrace bool rcu_is_watching(void) 1166 { 1167 bool ret; 1168 1169 preempt_disable_notrace(); 1170 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1171 preempt_enable_notrace(); 1172 return ret; 1173 } 1174 EXPORT_SYMBOL_GPL(rcu_is_watching); 1175 1176 /* 1177 * If a holdout task is actually running, request an urgent quiescent 1178 * state from its CPU. This is unsynchronized, so migrations can cause 1179 * the request to go to the wrong CPU. Which is OK, all that will happen 1180 * is that the CPU's next context switch will be a bit slower and next 1181 * time around this task will generate another request. 1182 */ 1183 void rcu_request_urgent_qs_task(struct task_struct *t) 1184 { 1185 int cpu; 1186 1187 barrier(); 1188 cpu = task_cpu(t); 1189 if (!task_curr(t)) 1190 return; /* This task is not running on that CPU. */ 1191 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1192 } 1193 1194 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1195 1196 /* 1197 * Is the current CPU online as far as RCU is concerned? 1198 * 1199 * Disable preemption to avoid false positives that could otherwise 1200 * happen due to the current CPU number being sampled, this task being 1201 * preempted, its old CPU being taken offline, resuming on some other CPU, 1202 * then determining that its old CPU is now offline. 1203 * 1204 * Disable checking if in an NMI handler because we cannot safely 1205 * report errors from NMI handlers anyway. In addition, it is OK to use 1206 * RCU on an offline processor during initial boot, hence the check for 1207 * rcu_scheduler_fully_active. 1208 */ 1209 bool rcu_lockdep_current_cpu_online(void) 1210 { 1211 struct rcu_data *rdp; 1212 struct rcu_node *rnp; 1213 bool ret = false; 1214 1215 if (in_nmi() || !rcu_scheduler_fully_active) 1216 return true; 1217 preempt_disable_notrace(); 1218 rdp = this_cpu_ptr(&rcu_data); 1219 rnp = rdp->mynode; 1220 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1) 1221 ret = true; 1222 preempt_enable_notrace(); 1223 return ret; 1224 } 1225 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1226 1227 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1228 1229 /* 1230 * We are reporting a quiescent state on behalf of some other CPU, so 1231 * it is our responsibility to check for and handle potential overflow 1232 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1233 * After all, the CPU might be in deep idle state, and thus executing no 1234 * code whatsoever. 1235 */ 1236 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1237 { 1238 raw_lockdep_assert_held_rcu_node(rnp); 1239 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1240 rnp->gp_seq)) 1241 WRITE_ONCE(rdp->gpwrap, true); 1242 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1243 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1244 } 1245 1246 /* 1247 * Snapshot the specified CPU's dynticks counter so that we can later 1248 * credit them with an implicit quiescent state. Return 1 if this CPU 1249 * is in dynticks idle mode, which is an extended quiescent state. 1250 */ 1251 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1252 { 1253 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1254 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1255 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1256 rcu_gpnum_ovf(rdp->mynode, rdp); 1257 return 1; 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * Return true if the specified CPU has passed through a quiescent 1264 * state by virtue of being in or having passed through an dynticks 1265 * idle state since the last call to dyntick_save_progress_counter() 1266 * for this same CPU, or by virtue of having been offline. 1267 */ 1268 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1269 { 1270 unsigned long jtsq; 1271 bool *rnhqp; 1272 bool *ruqp; 1273 struct rcu_node *rnp = rdp->mynode; 1274 1275 /* 1276 * If the CPU passed through or entered a dynticks idle phase with 1277 * no active irq/NMI handlers, then we can safely pretend that the CPU 1278 * already acknowledged the request to pass through a quiescent 1279 * state. Either way, that CPU cannot possibly be in an RCU 1280 * read-side critical section that started before the beginning 1281 * of the current RCU grace period. 1282 */ 1283 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1284 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1285 rcu_gpnum_ovf(rnp, rdp); 1286 return 1; 1287 } 1288 1289 /* 1290 * Complain if a CPU that is considered to be offline from RCU's 1291 * perspective has not yet reported a quiescent state. After all, 1292 * the offline CPU should have reported a quiescent state during 1293 * the CPU-offline process, or, failing that, by rcu_gp_init() 1294 * if it ran concurrently with either the CPU going offline or the 1295 * last task on a leaf rcu_node structure exiting its RCU read-side 1296 * critical section while all CPUs corresponding to that structure 1297 * are offline. This added warning detects bugs in any of these 1298 * code paths. 1299 * 1300 * The rcu_node structure's ->lock is held here, which excludes 1301 * the relevant portions the CPU-hotplug code, the grace-period 1302 * initialization code, and the rcu_read_unlock() code paths. 1303 * 1304 * For more detail, please refer to the "Hotplug CPU" section 1305 * of RCU's Requirements documentation. 1306 */ 1307 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1308 bool onl; 1309 struct rcu_node *rnp1; 1310 1311 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1312 __func__, rnp->grplo, rnp->grphi, rnp->level, 1313 (long)rnp->gp_seq, (long)rnp->completedqs); 1314 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1315 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1316 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1317 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1318 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1319 __func__, rdp->cpu, ".o"[onl], 1320 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1321 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1322 return 1; /* Break things loose after complaining. */ 1323 } 1324 1325 /* 1326 * A CPU running for an extended time within the kernel can 1327 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1328 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1329 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1330 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1331 * variable are safe because the assignments are repeated if this 1332 * CPU failed to pass through a quiescent state. This code 1333 * also checks .jiffies_resched in case jiffies_to_sched_qs 1334 * is set way high. 1335 */ 1336 jtsq = READ_ONCE(jiffies_to_sched_qs); 1337 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1338 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1339 if (!READ_ONCE(*rnhqp) && 1340 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1341 time_after(jiffies, rcu_state.jiffies_resched) || 1342 rcu_state.cbovld)) { 1343 WRITE_ONCE(*rnhqp, true); 1344 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1345 smp_store_release(ruqp, true); 1346 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1347 WRITE_ONCE(*ruqp, true); 1348 } 1349 1350 /* 1351 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1352 * The above code handles this, but only for straight cond_resched(). 1353 * And some in-kernel loops check need_resched() before calling 1354 * cond_resched(), which defeats the above code for CPUs that are 1355 * running in-kernel with scheduling-clock interrupts disabled. 1356 * So hit them over the head with the resched_cpu() hammer! 1357 */ 1358 if (tick_nohz_full_cpu(rdp->cpu) && 1359 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1360 rcu_state.cbovld)) { 1361 WRITE_ONCE(*ruqp, true); 1362 resched_cpu(rdp->cpu); 1363 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1364 } 1365 1366 /* 1367 * If more than halfway to RCU CPU stall-warning time, invoke 1368 * resched_cpu() more frequently to try to loosen things up a bit. 1369 * Also check to see if the CPU is getting hammered with interrupts, 1370 * but only once per grace period, just to keep the IPIs down to 1371 * a dull roar. 1372 */ 1373 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1374 if (time_after(jiffies, 1375 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1376 resched_cpu(rdp->cpu); 1377 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1378 } 1379 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1380 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1381 (rnp->ffmask & rdp->grpmask)) { 1382 rdp->rcu_iw_pending = true; 1383 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1384 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1385 } 1386 } 1387 1388 return 0; 1389 } 1390 1391 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1392 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1393 unsigned long gp_seq_req, const char *s) 1394 { 1395 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1396 gp_seq_req, rnp->level, 1397 rnp->grplo, rnp->grphi, s); 1398 } 1399 1400 /* 1401 * rcu_start_this_gp - Request the start of a particular grace period 1402 * @rnp_start: The leaf node of the CPU from which to start. 1403 * @rdp: The rcu_data corresponding to the CPU from which to start. 1404 * @gp_seq_req: The gp_seq of the grace period to start. 1405 * 1406 * Start the specified grace period, as needed to handle newly arrived 1407 * callbacks. The required future grace periods are recorded in each 1408 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1409 * is reason to awaken the grace-period kthread. 1410 * 1411 * The caller must hold the specified rcu_node structure's ->lock, which 1412 * is why the caller is responsible for waking the grace-period kthread. 1413 * 1414 * Returns true if the GP thread needs to be awakened else false. 1415 */ 1416 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1417 unsigned long gp_seq_req) 1418 { 1419 bool ret = false; 1420 struct rcu_node *rnp; 1421 1422 /* 1423 * Use funnel locking to either acquire the root rcu_node 1424 * structure's lock or bail out if the need for this grace period 1425 * has already been recorded -- or if that grace period has in 1426 * fact already started. If there is already a grace period in 1427 * progress in a non-leaf node, no recording is needed because the 1428 * end of the grace period will scan the leaf rcu_node structures. 1429 * Note that rnp_start->lock must not be released. 1430 */ 1431 raw_lockdep_assert_held_rcu_node(rnp_start); 1432 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1433 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1434 if (rnp != rnp_start) 1435 raw_spin_lock_rcu_node(rnp); 1436 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1437 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1438 (rnp != rnp_start && 1439 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1440 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1441 TPS("Prestarted")); 1442 goto unlock_out; 1443 } 1444 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1445 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1446 /* 1447 * We just marked the leaf or internal node, and a 1448 * grace period is in progress, which means that 1449 * rcu_gp_cleanup() will see the marking. Bail to 1450 * reduce contention. 1451 */ 1452 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1453 TPS("Startedleaf")); 1454 goto unlock_out; 1455 } 1456 if (rnp != rnp_start && rnp->parent != NULL) 1457 raw_spin_unlock_rcu_node(rnp); 1458 if (!rnp->parent) 1459 break; /* At root, and perhaps also leaf. */ 1460 } 1461 1462 /* If GP already in progress, just leave, otherwise start one. */ 1463 if (rcu_gp_in_progress()) { 1464 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1465 goto unlock_out; 1466 } 1467 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1468 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1469 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1470 if (!READ_ONCE(rcu_state.gp_kthread)) { 1471 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1472 goto unlock_out; 1473 } 1474 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1475 ret = true; /* Caller must wake GP kthread. */ 1476 unlock_out: 1477 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1478 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1479 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1480 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1481 } 1482 if (rnp != rnp_start) 1483 raw_spin_unlock_rcu_node(rnp); 1484 return ret; 1485 } 1486 1487 /* 1488 * Clean up any old requests for the just-ended grace period. Also return 1489 * whether any additional grace periods have been requested. 1490 */ 1491 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1492 { 1493 bool needmore; 1494 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1495 1496 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1497 if (!needmore) 1498 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1499 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1500 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1501 return needmore; 1502 } 1503 1504 /* 1505 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1506 * interrupt or softirq handler, in which case we just might immediately 1507 * sleep upon return, resulting in a grace-period hang), and don't bother 1508 * awakening when there is nothing for the grace-period kthread to do 1509 * (as in several CPUs raced to awaken, we lost), and finally don't try 1510 * to awaken a kthread that has not yet been created. If all those checks 1511 * are passed, track some debug information and awaken. 1512 * 1513 * So why do the self-wakeup when in an interrupt or softirq handler 1514 * in the grace-period kthread's context? Because the kthread might have 1515 * been interrupted just as it was going to sleep, and just after the final 1516 * pre-sleep check of the awaken condition. In this case, a wakeup really 1517 * is required, and is therefore supplied. 1518 */ 1519 static void rcu_gp_kthread_wake(void) 1520 { 1521 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1522 1523 if ((current == t && !in_irq() && !in_serving_softirq()) || 1524 !READ_ONCE(rcu_state.gp_flags) || !t) 1525 return; 1526 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1527 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1528 swake_up_one(&rcu_state.gp_wq); 1529 } 1530 1531 /* 1532 * If there is room, assign a ->gp_seq number to any callbacks on this 1533 * CPU that have not already been assigned. Also accelerate any callbacks 1534 * that were previously assigned a ->gp_seq number that has since proven 1535 * to be too conservative, which can happen if callbacks get assigned a 1536 * ->gp_seq number while RCU is idle, but with reference to a non-root 1537 * rcu_node structure. This function is idempotent, so it does not hurt 1538 * to call it repeatedly. Returns an flag saying that we should awaken 1539 * the RCU grace-period kthread. 1540 * 1541 * The caller must hold rnp->lock with interrupts disabled. 1542 */ 1543 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1544 { 1545 unsigned long gp_seq_req; 1546 bool ret = false; 1547 1548 rcu_lockdep_assert_cblist_protected(rdp); 1549 raw_lockdep_assert_held_rcu_node(rnp); 1550 1551 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1552 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1553 return false; 1554 1555 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1556 1557 /* 1558 * Callbacks are often registered with incomplete grace-period 1559 * information. Something about the fact that getting exact 1560 * information requires acquiring a global lock... RCU therefore 1561 * makes a conservative estimate of the grace period number at which 1562 * a given callback will become ready to invoke. The following 1563 * code checks this estimate and improves it when possible, thus 1564 * accelerating callback invocation to an earlier grace-period 1565 * number. 1566 */ 1567 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1568 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1569 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1570 1571 /* Trace depending on how much we were able to accelerate. */ 1572 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1573 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1574 else 1575 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1576 1577 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1578 1579 return ret; 1580 } 1581 1582 /* 1583 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1584 * rcu_node structure's ->lock be held. It consults the cached value 1585 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1586 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1587 * while holding the leaf rcu_node structure's ->lock. 1588 */ 1589 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1590 struct rcu_data *rdp) 1591 { 1592 unsigned long c; 1593 bool needwake; 1594 1595 rcu_lockdep_assert_cblist_protected(rdp); 1596 c = rcu_seq_snap(&rcu_state.gp_seq); 1597 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1598 /* Old request still live, so mark recent callbacks. */ 1599 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1600 return; 1601 } 1602 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1603 needwake = rcu_accelerate_cbs(rnp, rdp); 1604 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1605 if (needwake) 1606 rcu_gp_kthread_wake(); 1607 } 1608 1609 /* 1610 * Move any callbacks whose grace period has completed to the 1611 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1612 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1613 * sublist. This function is idempotent, so it does not hurt to 1614 * invoke it repeatedly. As long as it is not invoked -too- often... 1615 * Returns true if the RCU grace-period kthread needs to be awakened. 1616 * 1617 * The caller must hold rnp->lock with interrupts disabled. 1618 */ 1619 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1620 { 1621 rcu_lockdep_assert_cblist_protected(rdp); 1622 raw_lockdep_assert_held_rcu_node(rnp); 1623 1624 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1625 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1626 return false; 1627 1628 /* 1629 * Find all callbacks whose ->gp_seq numbers indicate that they 1630 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1631 */ 1632 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1633 1634 /* Classify any remaining callbacks. */ 1635 return rcu_accelerate_cbs(rnp, rdp); 1636 } 1637 1638 /* 1639 * Move and classify callbacks, but only if doing so won't require 1640 * that the RCU grace-period kthread be awakened. 1641 */ 1642 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1643 struct rcu_data *rdp) 1644 { 1645 rcu_lockdep_assert_cblist_protected(rdp); 1646 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1647 !raw_spin_trylock_rcu_node(rnp)) 1648 return; 1649 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1650 raw_spin_unlock_rcu_node(rnp); 1651 } 1652 1653 /* 1654 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1655 * quiescent state. This is intended to be invoked when the CPU notices 1656 * a new grace period. 1657 */ 1658 static void rcu_strict_gp_check_qs(void) 1659 { 1660 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1661 rcu_read_lock(); 1662 rcu_read_unlock(); 1663 } 1664 } 1665 1666 /* 1667 * Update CPU-local rcu_data state to record the beginnings and ends of 1668 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1669 * structure corresponding to the current CPU, and must have irqs disabled. 1670 * Returns true if the grace-period kthread needs to be awakened. 1671 */ 1672 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1673 { 1674 bool ret = false; 1675 bool need_qs; 1676 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1677 1678 raw_lockdep_assert_held_rcu_node(rnp); 1679 1680 if (rdp->gp_seq == rnp->gp_seq) 1681 return false; /* Nothing to do. */ 1682 1683 /* Handle the ends of any preceding grace periods first. */ 1684 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1685 unlikely(READ_ONCE(rdp->gpwrap))) { 1686 if (!offloaded) 1687 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1688 rdp->core_needs_qs = false; 1689 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1690 } else { 1691 if (!offloaded) 1692 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1693 if (rdp->core_needs_qs) 1694 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1695 } 1696 1697 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1698 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1699 unlikely(READ_ONCE(rdp->gpwrap))) { 1700 /* 1701 * If the current grace period is waiting for this CPU, 1702 * set up to detect a quiescent state, otherwise don't 1703 * go looking for one. 1704 */ 1705 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1706 need_qs = !!(rnp->qsmask & rdp->grpmask); 1707 rdp->cpu_no_qs.b.norm = need_qs; 1708 rdp->core_needs_qs = need_qs; 1709 zero_cpu_stall_ticks(rdp); 1710 } 1711 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1712 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1713 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1714 WRITE_ONCE(rdp->gpwrap, false); 1715 rcu_gpnum_ovf(rnp, rdp); 1716 return ret; 1717 } 1718 1719 static void note_gp_changes(struct rcu_data *rdp) 1720 { 1721 unsigned long flags; 1722 bool needwake; 1723 struct rcu_node *rnp; 1724 1725 local_irq_save(flags); 1726 rnp = rdp->mynode; 1727 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1728 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1729 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1730 local_irq_restore(flags); 1731 return; 1732 } 1733 needwake = __note_gp_changes(rnp, rdp); 1734 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1735 rcu_strict_gp_check_qs(); 1736 if (needwake) 1737 rcu_gp_kthread_wake(); 1738 } 1739 1740 static void rcu_gp_slow(int delay) 1741 { 1742 if (delay > 0 && 1743 !(rcu_seq_ctr(rcu_state.gp_seq) % 1744 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1745 schedule_timeout_idle(delay); 1746 } 1747 1748 static unsigned long sleep_duration; 1749 1750 /* Allow rcutorture to stall the grace-period kthread. */ 1751 void rcu_gp_set_torture_wait(int duration) 1752 { 1753 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1754 WRITE_ONCE(sleep_duration, duration); 1755 } 1756 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1757 1758 /* Actually implement the aforementioned wait. */ 1759 static void rcu_gp_torture_wait(void) 1760 { 1761 unsigned long duration; 1762 1763 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1764 return; 1765 duration = xchg(&sleep_duration, 0UL); 1766 if (duration > 0) { 1767 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1768 schedule_timeout_idle(duration); 1769 pr_alert("%s: Wait complete\n", __func__); 1770 } 1771 } 1772 1773 /* 1774 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1775 * processing. 1776 */ 1777 static void rcu_strict_gp_boundary(void *unused) 1778 { 1779 invoke_rcu_core(); 1780 } 1781 1782 /* 1783 * Initialize a new grace period. Return false if no grace period required. 1784 */ 1785 static bool rcu_gp_init(void) 1786 { 1787 unsigned long firstseq; 1788 unsigned long flags; 1789 unsigned long oldmask; 1790 unsigned long mask; 1791 struct rcu_data *rdp; 1792 struct rcu_node *rnp = rcu_get_root(); 1793 1794 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1795 raw_spin_lock_irq_rcu_node(rnp); 1796 if (!READ_ONCE(rcu_state.gp_flags)) { 1797 /* Spurious wakeup, tell caller to go back to sleep. */ 1798 raw_spin_unlock_irq_rcu_node(rnp); 1799 return false; 1800 } 1801 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1802 1803 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1804 /* 1805 * Grace period already in progress, don't start another. 1806 * Not supposed to be able to happen. 1807 */ 1808 raw_spin_unlock_irq_rcu_node(rnp); 1809 return false; 1810 } 1811 1812 /* Advance to a new grace period and initialize state. */ 1813 record_gp_stall_check_time(); 1814 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1815 rcu_seq_start(&rcu_state.gp_seq); 1816 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1817 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1818 raw_spin_unlock_irq_rcu_node(rnp); 1819 1820 /* 1821 * Apply per-leaf buffered online and offline operations to 1822 * the rcu_node tree. Note that this new grace period need not 1823 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1824 * offlining path, when combined with checks in this function, 1825 * will handle CPUs that are currently going offline or that will 1826 * go offline later. Please also refer to "Hotplug CPU" section 1827 * of RCU's Requirements documentation. 1828 */ 1829 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1830 rcu_for_each_leaf_node(rnp) { 1831 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values. 1832 firstseq = READ_ONCE(rnp->ofl_seq); 1833 if (firstseq & 0x1) 1834 while (firstseq == READ_ONCE(rnp->ofl_seq)) 1835 schedule_timeout_idle(1); // Can't wake unless RCU is watching. 1836 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values. 1837 raw_spin_lock(&rcu_state.ofl_lock); 1838 raw_spin_lock_irq_rcu_node(rnp); 1839 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1840 !rnp->wait_blkd_tasks) { 1841 /* Nothing to do on this leaf rcu_node structure. */ 1842 raw_spin_unlock_irq_rcu_node(rnp); 1843 raw_spin_unlock(&rcu_state.ofl_lock); 1844 continue; 1845 } 1846 1847 /* Record old state, apply changes to ->qsmaskinit field. */ 1848 oldmask = rnp->qsmaskinit; 1849 rnp->qsmaskinit = rnp->qsmaskinitnext; 1850 1851 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1852 if (!oldmask != !rnp->qsmaskinit) { 1853 if (!oldmask) { /* First online CPU for rcu_node. */ 1854 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1855 rcu_init_new_rnp(rnp); 1856 } else if (rcu_preempt_has_tasks(rnp)) { 1857 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1858 } else { /* Last offline CPU and can propagate. */ 1859 rcu_cleanup_dead_rnp(rnp); 1860 } 1861 } 1862 1863 /* 1864 * If all waited-on tasks from prior grace period are 1865 * done, and if all this rcu_node structure's CPUs are 1866 * still offline, propagate up the rcu_node tree and 1867 * clear ->wait_blkd_tasks. Otherwise, if one of this 1868 * rcu_node structure's CPUs has since come back online, 1869 * simply clear ->wait_blkd_tasks. 1870 */ 1871 if (rnp->wait_blkd_tasks && 1872 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1873 rnp->wait_blkd_tasks = false; 1874 if (!rnp->qsmaskinit) 1875 rcu_cleanup_dead_rnp(rnp); 1876 } 1877 1878 raw_spin_unlock_irq_rcu_node(rnp); 1879 raw_spin_unlock(&rcu_state.ofl_lock); 1880 } 1881 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1882 1883 /* 1884 * Set the quiescent-state-needed bits in all the rcu_node 1885 * structures for all currently online CPUs in breadth-first 1886 * order, starting from the root rcu_node structure, relying on the 1887 * layout of the tree within the rcu_state.node[] array. Note that 1888 * other CPUs will access only the leaves of the hierarchy, thus 1889 * seeing that no grace period is in progress, at least until the 1890 * corresponding leaf node has been initialized. 1891 * 1892 * The grace period cannot complete until the initialization 1893 * process finishes, because this kthread handles both. 1894 */ 1895 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1896 rcu_for_each_node_breadth_first(rnp) { 1897 rcu_gp_slow(gp_init_delay); 1898 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1899 rdp = this_cpu_ptr(&rcu_data); 1900 rcu_preempt_check_blocked_tasks(rnp); 1901 rnp->qsmask = rnp->qsmaskinit; 1902 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1903 if (rnp == rdp->mynode) 1904 (void)__note_gp_changes(rnp, rdp); 1905 rcu_preempt_boost_start_gp(rnp); 1906 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1907 rnp->level, rnp->grplo, 1908 rnp->grphi, rnp->qsmask); 1909 /* Quiescent states for tasks on any now-offline CPUs. */ 1910 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1911 rnp->rcu_gp_init_mask = mask; 1912 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1913 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1914 else 1915 raw_spin_unlock_irq_rcu_node(rnp); 1916 cond_resched_tasks_rcu_qs(); 1917 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1918 } 1919 1920 // If strict, make all CPUs aware of new grace period. 1921 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1922 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1923 1924 return true; 1925 } 1926 1927 /* 1928 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1929 * time. 1930 */ 1931 static bool rcu_gp_fqs_check_wake(int *gfp) 1932 { 1933 struct rcu_node *rnp = rcu_get_root(); 1934 1935 // If under overload conditions, force an immediate FQS scan. 1936 if (*gfp & RCU_GP_FLAG_OVLD) 1937 return true; 1938 1939 // Someone like call_rcu() requested a force-quiescent-state scan. 1940 *gfp = READ_ONCE(rcu_state.gp_flags); 1941 if (*gfp & RCU_GP_FLAG_FQS) 1942 return true; 1943 1944 // The current grace period has completed. 1945 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1946 return true; 1947 1948 return false; 1949 } 1950 1951 /* 1952 * Do one round of quiescent-state forcing. 1953 */ 1954 static void rcu_gp_fqs(bool first_time) 1955 { 1956 struct rcu_node *rnp = rcu_get_root(); 1957 1958 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1959 rcu_state.n_force_qs++; 1960 if (first_time) { 1961 /* Collect dyntick-idle snapshots. */ 1962 force_qs_rnp(dyntick_save_progress_counter); 1963 } else { 1964 /* Handle dyntick-idle and offline CPUs. */ 1965 force_qs_rnp(rcu_implicit_dynticks_qs); 1966 } 1967 /* Clear flag to prevent immediate re-entry. */ 1968 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1969 raw_spin_lock_irq_rcu_node(rnp); 1970 WRITE_ONCE(rcu_state.gp_flags, 1971 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1972 raw_spin_unlock_irq_rcu_node(rnp); 1973 } 1974 } 1975 1976 /* 1977 * Loop doing repeated quiescent-state forcing until the grace period ends. 1978 */ 1979 static void rcu_gp_fqs_loop(void) 1980 { 1981 bool first_gp_fqs; 1982 int gf = 0; 1983 unsigned long j; 1984 int ret; 1985 struct rcu_node *rnp = rcu_get_root(); 1986 1987 first_gp_fqs = true; 1988 j = READ_ONCE(jiffies_till_first_fqs); 1989 if (rcu_state.cbovld) 1990 gf = RCU_GP_FLAG_OVLD; 1991 ret = 0; 1992 for (;;) { 1993 if (!ret) { 1994 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1995 /* 1996 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1997 * update; required for stall checks. 1998 */ 1999 smp_wmb(); 2000 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 2001 jiffies + (j ? 3 * j : 2)); 2002 } 2003 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2004 TPS("fqswait")); 2005 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 2006 ret = swait_event_idle_timeout_exclusive( 2007 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 2008 rcu_gp_torture_wait(); 2009 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 2010 /* Locking provides needed memory barriers. */ 2011 /* If grace period done, leave loop. */ 2012 if (!READ_ONCE(rnp->qsmask) && 2013 !rcu_preempt_blocked_readers_cgp(rnp)) 2014 break; 2015 /* If time for quiescent-state forcing, do it. */ 2016 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 2017 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 2018 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2019 TPS("fqsstart")); 2020 rcu_gp_fqs(first_gp_fqs); 2021 gf = 0; 2022 if (first_gp_fqs) { 2023 first_gp_fqs = false; 2024 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 2025 } 2026 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2027 TPS("fqsend")); 2028 cond_resched_tasks_rcu_qs(); 2029 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2030 ret = 0; /* Force full wait till next FQS. */ 2031 j = READ_ONCE(jiffies_till_next_fqs); 2032 } else { 2033 /* Deal with stray signal. */ 2034 cond_resched_tasks_rcu_qs(); 2035 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2036 WARN_ON(signal_pending(current)); 2037 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2038 TPS("fqswaitsig")); 2039 ret = 1; /* Keep old FQS timing. */ 2040 j = jiffies; 2041 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 2042 j = 1; 2043 else 2044 j = rcu_state.jiffies_force_qs - j; 2045 gf = 0; 2046 } 2047 } 2048 } 2049 2050 /* 2051 * Clean up after the old grace period. 2052 */ 2053 static void rcu_gp_cleanup(void) 2054 { 2055 int cpu; 2056 bool needgp = false; 2057 unsigned long gp_duration; 2058 unsigned long new_gp_seq; 2059 bool offloaded; 2060 struct rcu_data *rdp; 2061 struct rcu_node *rnp = rcu_get_root(); 2062 struct swait_queue_head *sq; 2063 2064 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2065 raw_spin_lock_irq_rcu_node(rnp); 2066 rcu_state.gp_end = jiffies; 2067 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 2068 if (gp_duration > rcu_state.gp_max) 2069 rcu_state.gp_max = gp_duration; 2070 2071 /* 2072 * We know the grace period is complete, but to everyone else 2073 * it appears to still be ongoing. But it is also the case 2074 * that to everyone else it looks like there is nothing that 2075 * they can do to advance the grace period. It is therefore 2076 * safe for us to drop the lock in order to mark the grace 2077 * period as completed in all of the rcu_node structures. 2078 */ 2079 raw_spin_unlock_irq_rcu_node(rnp); 2080 2081 /* 2082 * Propagate new ->gp_seq value to rcu_node structures so that 2083 * other CPUs don't have to wait until the start of the next grace 2084 * period to process their callbacks. This also avoids some nasty 2085 * RCU grace-period initialization races by forcing the end of 2086 * the current grace period to be completely recorded in all of 2087 * the rcu_node structures before the beginning of the next grace 2088 * period is recorded in any of the rcu_node structures. 2089 */ 2090 new_gp_seq = rcu_state.gp_seq; 2091 rcu_seq_end(&new_gp_seq); 2092 rcu_for_each_node_breadth_first(rnp) { 2093 raw_spin_lock_irq_rcu_node(rnp); 2094 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2095 dump_blkd_tasks(rnp, 10); 2096 WARN_ON_ONCE(rnp->qsmask); 2097 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2098 rdp = this_cpu_ptr(&rcu_data); 2099 if (rnp == rdp->mynode) 2100 needgp = __note_gp_changes(rnp, rdp) || needgp; 2101 /* smp_mb() provided by prior unlock-lock pair. */ 2102 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2103 // Reset overload indication for CPUs no longer overloaded 2104 if (rcu_is_leaf_node(rnp)) 2105 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2106 rdp = per_cpu_ptr(&rcu_data, cpu); 2107 check_cb_ovld_locked(rdp, rnp); 2108 } 2109 sq = rcu_nocb_gp_get(rnp); 2110 raw_spin_unlock_irq_rcu_node(rnp); 2111 rcu_nocb_gp_cleanup(sq); 2112 cond_resched_tasks_rcu_qs(); 2113 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2114 rcu_gp_slow(gp_cleanup_delay); 2115 } 2116 rnp = rcu_get_root(); 2117 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2118 2119 /* Declare grace period done, trace first to use old GP number. */ 2120 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2121 rcu_seq_end(&rcu_state.gp_seq); 2122 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2123 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 2124 /* Check for GP requests since above loop. */ 2125 rdp = this_cpu_ptr(&rcu_data); 2126 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2127 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2128 TPS("CleanupMore")); 2129 needgp = true; 2130 } 2131 /* Advance CBs to reduce false positives below. */ 2132 offloaded = rcu_rdp_is_offloaded(rdp); 2133 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2134 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2135 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2136 trace_rcu_grace_period(rcu_state.name, 2137 rcu_state.gp_seq, 2138 TPS("newreq")); 2139 } else { 2140 WRITE_ONCE(rcu_state.gp_flags, 2141 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2142 } 2143 raw_spin_unlock_irq_rcu_node(rnp); 2144 2145 // If strict, make all CPUs aware of the end of the old grace period. 2146 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2147 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2148 } 2149 2150 /* 2151 * Body of kthread that handles grace periods. 2152 */ 2153 static int __noreturn rcu_gp_kthread(void *unused) 2154 { 2155 rcu_bind_gp_kthread(); 2156 for (;;) { 2157 2158 /* Handle grace-period start. */ 2159 for (;;) { 2160 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2161 TPS("reqwait")); 2162 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 2163 swait_event_idle_exclusive(rcu_state.gp_wq, 2164 READ_ONCE(rcu_state.gp_flags) & 2165 RCU_GP_FLAG_INIT); 2166 rcu_gp_torture_wait(); 2167 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 2168 /* Locking provides needed memory barrier. */ 2169 if (rcu_gp_init()) 2170 break; 2171 cond_resched_tasks_rcu_qs(); 2172 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2173 WARN_ON(signal_pending(current)); 2174 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2175 TPS("reqwaitsig")); 2176 } 2177 2178 /* Handle quiescent-state forcing. */ 2179 rcu_gp_fqs_loop(); 2180 2181 /* Handle grace-period end. */ 2182 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 2183 rcu_gp_cleanup(); 2184 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 2185 } 2186 } 2187 2188 /* 2189 * Report a full set of quiescent states to the rcu_state data structure. 2190 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2191 * another grace period is required. Whether we wake the grace-period 2192 * kthread or it awakens itself for the next round of quiescent-state 2193 * forcing, that kthread will clean up after the just-completed grace 2194 * period. Note that the caller must hold rnp->lock, which is released 2195 * before return. 2196 */ 2197 static void rcu_report_qs_rsp(unsigned long flags) 2198 __releases(rcu_get_root()->lock) 2199 { 2200 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2201 WARN_ON_ONCE(!rcu_gp_in_progress()); 2202 WRITE_ONCE(rcu_state.gp_flags, 2203 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2204 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2205 rcu_gp_kthread_wake(); 2206 } 2207 2208 /* 2209 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2210 * Allows quiescent states for a group of CPUs to be reported at one go 2211 * to the specified rcu_node structure, though all the CPUs in the group 2212 * must be represented by the same rcu_node structure (which need not be a 2213 * leaf rcu_node structure, though it often will be). The gps parameter 2214 * is the grace-period snapshot, which means that the quiescent states 2215 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2216 * must be held upon entry, and it is released before return. 2217 * 2218 * As a special case, if mask is zero, the bit-already-cleared check is 2219 * disabled. This allows propagating quiescent state due to resumed tasks 2220 * during grace-period initialization. 2221 */ 2222 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2223 unsigned long gps, unsigned long flags) 2224 __releases(rnp->lock) 2225 { 2226 unsigned long oldmask = 0; 2227 struct rcu_node *rnp_c; 2228 2229 raw_lockdep_assert_held_rcu_node(rnp); 2230 2231 /* Walk up the rcu_node hierarchy. */ 2232 for (;;) { 2233 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2234 2235 /* 2236 * Our bit has already been cleared, or the 2237 * relevant grace period is already over, so done. 2238 */ 2239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2240 return; 2241 } 2242 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2243 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2244 rcu_preempt_blocked_readers_cgp(rnp)); 2245 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2246 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2247 mask, rnp->qsmask, rnp->level, 2248 rnp->grplo, rnp->grphi, 2249 !!rnp->gp_tasks); 2250 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2251 2252 /* Other bits still set at this level, so done. */ 2253 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2254 return; 2255 } 2256 rnp->completedqs = rnp->gp_seq; 2257 mask = rnp->grpmask; 2258 if (rnp->parent == NULL) { 2259 2260 /* No more levels. Exit loop holding root lock. */ 2261 2262 break; 2263 } 2264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2265 rnp_c = rnp; 2266 rnp = rnp->parent; 2267 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2268 oldmask = READ_ONCE(rnp_c->qsmask); 2269 } 2270 2271 /* 2272 * Get here if we are the last CPU to pass through a quiescent 2273 * state for this grace period. Invoke rcu_report_qs_rsp() 2274 * to clean up and start the next grace period if one is needed. 2275 */ 2276 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2277 } 2278 2279 /* 2280 * Record a quiescent state for all tasks that were previously queued 2281 * on the specified rcu_node structure and that were blocking the current 2282 * RCU grace period. The caller must hold the corresponding rnp->lock with 2283 * irqs disabled, and this lock is released upon return, but irqs remain 2284 * disabled. 2285 */ 2286 static void __maybe_unused 2287 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2288 __releases(rnp->lock) 2289 { 2290 unsigned long gps; 2291 unsigned long mask; 2292 struct rcu_node *rnp_p; 2293 2294 raw_lockdep_assert_held_rcu_node(rnp); 2295 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2296 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2297 rnp->qsmask != 0) { 2298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2299 return; /* Still need more quiescent states! */ 2300 } 2301 2302 rnp->completedqs = rnp->gp_seq; 2303 rnp_p = rnp->parent; 2304 if (rnp_p == NULL) { 2305 /* 2306 * Only one rcu_node structure in the tree, so don't 2307 * try to report up to its nonexistent parent! 2308 */ 2309 rcu_report_qs_rsp(flags); 2310 return; 2311 } 2312 2313 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2314 gps = rnp->gp_seq; 2315 mask = rnp->grpmask; 2316 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2317 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2318 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2319 } 2320 2321 /* 2322 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2323 * structure. This must be called from the specified CPU. 2324 */ 2325 static void 2326 rcu_report_qs_rdp(struct rcu_data *rdp) 2327 { 2328 unsigned long flags; 2329 unsigned long mask; 2330 bool needwake = false; 2331 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2332 struct rcu_node *rnp; 2333 2334 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2335 rnp = rdp->mynode; 2336 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2337 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2338 rdp->gpwrap) { 2339 2340 /* 2341 * The grace period in which this quiescent state was 2342 * recorded has ended, so don't report it upwards. 2343 * We will instead need a new quiescent state that lies 2344 * within the current grace period. 2345 */ 2346 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2347 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2348 return; 2349 } 2350 mask = rdp->grpmask; 2351 rdp->core_needs_qs = false; 2352 if ((rnp->qsmask & mask) == 0) { 2353 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2354 } else { 2355 /* 2356 * This GP can't end until cpu checks in, so all of our 2357 * callbacks can be processed during the next GP. 2358 */ 2359 if (!offloaded) 2360 needwake = rcu_accelerate_cbs(rnp, rdp); 2361 2362 rcu_disable_urgency_upon_qs(rdp); 2363 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2364 /* ^^^ Released rnp->lock */ 2365 if (needwake) 2366 rcu_gp_kthread_wake(); 2367 } 2368 } 2369 2370 /* 2371 * Check to see if there is a new grace period of which this CPU 2372 * is not yet aware, and if so, set up local rcu_data state for it. 2373 * Otherwise, see if this CPU has just passed through its first 2374 * quiescent state for this grace period, and record that fact if so. 2375 */ 2376 static void 2377 rcu_check_quiescent_state(struct rcu_data *rdp) 2378 { 2379 /* Check for grace-period ends and beginnings. */ 2380 note_gp_changes(rdp); 2381 2382 /* 2383 * Does this CPU still need to do its part for current grace period? 2384 * If no, return and let the other CPUs do their part as well. 2385 */ 2386 if (!rdp->core_needs_qs) 2387 return; 2388 2389 /* 2390 * Was there a quiescent state since the beginning of the grace 2391 * period? If no, then exit and wait for the next call. 2392 */ 2393 if (rdp->cpu_no_qs.b.norm) 2394 return; 2395 2396 /* 2397 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2398 * judge of that). 2399 */ 2400 rcu_report_qs_rdp(rdp); 2401 } 2402 2403 /* 2404 * Near the end of the offline process. Trace the fact that this CPU 2405 * is going offline. 2406 */ 2407 int rcutree_dying_cpu(unsigned int cpu) 2408 { 2409 bool blkd; 2410 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2411 struct rcu_node *rnp = rdp->mynode; 2412 2413 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2414 return 0; 2415 2416 blkd = !!(rnp->qsmask & rdp->grpmask); 2417 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2418 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2419 return 0; 2420 } 2421 2422 /* 2423 * All CPUs for the specified rcu_node structure have gone offline, 2424 * and all tasks that were preempted within an RCU read-side critical 2425 * section while running on one of those CPUs have since exited their RCU 2426 * read-side critical section. Some other CPU is reporting this fact with 2427 * the specified rcu_node structure's ->lock held and interrupts disabled. 2428 * This function therefore goes up the tree of rcu_node structures, 2429 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2430 * the leaf rcu_node structure's ->qsmaskinit field has already been 2431 * updated. 2432 * 2433 * This function does check that the specified rcu_node structure has 2434 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2435 * prematurely. That said, invoking it after the fact will cost you 2436 * a needless lock acquisition. So once it has done its work, don't 2437 * invoke it again. 2438 */ 2439 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2440 { 2441 long mask; 2442 struct rcu_node *rnp = rnp_leaf; 2443 2444 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2445 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2446 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2447 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2448 return; 2449 for (;;) { 2450 mask = rnp->grpmask; 2451 rnp = rnp->parent; 2452 if (!rnp) 2453 break; 2454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2455 rnp->qsmaskinit &= ~mask; 2456 /* Between grace periods, so better already be zero! */ 2457 WARN_ON_ONCE(rnp->qsmask); 2458 if (rnp->qsmaskinit) { 2459 raw_spin_unlock_rcu_node(rnp); 2460 /* irqs remain disabled. */ 2461 return; 2462 } 2463 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2464 } 2465 } 2466 2467 /* 2468 * The CPU has been completely removed, and some other CPU is reporting 2469 * this fact from process context. Do the remainder of the cleanup. 2470 * There can only be one CPU hotplug operation at a time, so no need for 2471 * explicit locking. 2472 */ 2473 int rcutree_dead_cpu(unsigned int cpu) 2474 { 2475 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2476 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2477 2478 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2479 return 0; 2480 2481 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2482 /* Adjust any no-longer-needed kthreads. */ 2483 rcu_boost_kthread_setaffinity(rnp, -1); 2484 /* Do any needed no-CB deferred wakeups from this CPU. */ 2485 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2486 2487 // Stop-machine done, so allow nohz_full to disable tick. 2488 tick_dep_clear(TICK_DEP_BIT_RCU); 2489 return 0; 2490 } 2491 2492 /* 2493 * Invoke any RCU callbacks that have made it to the end of their grace 2494 * period. Thottle as specified by rdp->blimit. 2495 */ 2496 static void rcu_do_batch(struct rcu_data *rdp) 2497 { 2498 int div; 2499 bool __maybe_unused empty; 2500 unsigned long flags; 2501 const bool offloaded = rcu_rdp_is_offloaded(rdp); 2502 struct rcu_head *rhp; 2503 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2504 long bl, count = 0; 2505 long pending, tlimit = 0; 2506 2507 /* If no callbacks are ready, just return. */ 2508 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2509 trace_rcu_batch_start(rcu_state.name, 2510 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2511 trace_rcu_batch_end(rcu_state.name, 0, 2512 !rcu_segcblist_empty(&rdp->cblist), 2513 need_resched(), is_idle_task(current), 2514 rcu_is_callbacks_kthread()); 2515 return; 2516 } 2517 2518 /* 2519 * Extract the list of ready callbacks, disabling to prevent 2520 * races with call_rcu() from interrupt handlers. Leave the 2521 * callback counts, as rcu_barrier() needs to be conservative. 2522 */ 2523 local_irq_save(flags); 2524 rcu_nocb_lock(rdp); 2525 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2526 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2527 div = READ_ONCE(rcu_divisor); 2528 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2529 bl = max(rdp->blimit, pending >> div); 2530 if (unlikely(bl > 100)) { 2531 long rrn = READ_ONCE(rcu_resched_ns); 2532 2533 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2534 tlimit = local_clock() + rrn; 2535 } 2536 trace_rcu_batch_start(rcu_state.name, 2537 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2538 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2539 if (offloaded) 2540 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2541 2542 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2543 rcu_nocb_unlock_irqrestore(rdp, flags); 2544 2545 /* Invoke callbacks. */ 2546 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2547 rhp = rcu_cblist_dequeue(&rcl); 2548 2549 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2550 rcu_callback_t f; 2551 2552 count++; 2553 debug_rcu_head_unqueue(rhp); 2554 2555 rcu_lock_acquire(&rcu_callback_map); 2556 trace_rcu_invoke_callback(rcu_state.name, rhp); 2557 2558 f = rhp->func; 2559 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2560 f(rhp); 2561 2562 rcu_lock_release(&rcu_callback_map); 2563 2564 /* 2565 * Stop only if limit reached and CPU has something to do. 2566 */ 2567 if (count >= bl && !offloaded && 2568 (need_resched() || 2569 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2570 break; 2571 if (unlikely(tlimit)) { 2572 /* only call local_clock() every 32 callbacks */ 2573 if (likely((count & 31) || local_clock() < tlimit)) 2574 continue; 2575 /* Exceeded the time limit, so leave. */ 2576 break; 2577 } 2578 if (!in_serving_softirq()) { 2579 local_bh_enable(); 2580 lockdep_assert_irqs_enabled(); 2581 cond_resched_tasks_rcu_qs(); 2582 lockdep_assert_irqs_enabled(); 2583 local_bh_disable(); 2584 } 2585 } 2586 2587 local_irq_save(flags); 2588 rcu_nocb_lock(rdp); 2589 rdp->n_cbs_invoked += count; 2590 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2591 is_idle_task(current), rcu_is_callbacks_kthread()); 2592 2593 /* Update counts and requeue any remaining callbacks. */ 2594 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2595 rcu_segcblist_add_len(&rdp->cblist, -count); 2596 2597 /* Reinstate batch limit if we have worked down the excess. */ 2598 count = rcu_segcblist_n_cbs(&rdp->cblist); 2599 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2600 rdp->blimit = blimit; 2601 2602 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2603 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2604 rdp->qlen_last_fqs_check = 0; 2605 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2606 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2607 rdp->qlen_last_fqs_check = count; 2608 2609 /* 2610 * The following usually indicates a double call_rcu(). To track 2611 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2612 */ 2613 empty = rcu_segcblist_empty(&rdp->cblist); 2614 WARN_ON_ONCE(count == 0 && !empty); 2615 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2616 count != 0 && empty); 2617 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2618 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2619 2620 rcu_nocb_unlock_irqrestore(rdp, flags); 2621 2622 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2623 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2624 invoke_rcu_core(); 2625 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2626 } 2627 2628 /* 2629 * This function is invoked from each scheduling-clock interrupt, 2630 * and checks to see if this CPU is in a non-context-switch quiescent 2631 * state, for example, user mode or idle loop. It also schedules RCU 2632 * core processing. If the current grace period has gone on too long, 2633 * it will ask the scheduler to manufacture a context switch for the sole 2634 * purpose of providing a providing the needed quiescent state. 2635 */ 2636 void rcu_sched_clock_irq(int user) 2637 { 2638 trace_rcu_utilization(TPS("Start scheduler-tick")); 2639 lockdep_assert_irqs_disabled(); 2640 raw_cpu_inc(rcu_data.ticks_this_gp); 2641 /* The load-acquire pairs with the store-release setting to true. */ 2642 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2643 /* Idle and userspace execution already are quiescent states. */ 2644 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2645 set_tsk_need_resched(current); 2646 set_preempt_need_resched(); 2647 } 2648 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2649 } 2650 rcu_flavor_sched_clock_irq(user); 2651 if (rcu_pending(user)) 2652 invoke_rcu_core(); 2653 lockdep_assert_irqs_disabled(); 2654 2655 trace_rcu_utilization(TPS("End scheduler-tick")); 2656 } 2657 2658 /* 2659 * Scan the leaf rcu_node structures. For each structure on which all 2660 * CPUs have reported a quiescent state and on which there are tasks 2661 * blocking the current grace period, initiate RCU priority boosting. 2662 * Otherwise, invoke the specified function to check dyntick state for 2663 * each CPU that has not yet reported a quiescent state. 2664 */ 2665 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2666 { 2667 int cpu; 2668 unsigned long flags; 2669 unsigned long mask; 2670 struct rcu_data *rdp; 2671 struct rcu_node *rnp; 2672 2673 rcu_state.cbovld = rcu_state.cbovldnext; 2674 rcu_state.cbovldnext = false; 2675 rcu_for_each_leaf_node(rnp) { 2676 cond_resched_tasks_rcu_qs(); 2677 mask = 0; 2678 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2679 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2680 if (rnp->qsmask == 0) { 2681 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2682 /* 2683 * No point in scanning bits because they 2684 * are all zero. But we might need to 2685 * priority-boost blocked readers. 2686 */ 2687 rcu_initiate_boost(rnp, flags); 2688 /* rcu_initiate_boost() releases rnp->lock */ 2689 continue; 2690 } 2691 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2692 continue; 2693 } 2694 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2695 rdp = per_cpu_ptr(&rcu_data, cpu); 2696 if (f(rdp)) { 2697 mask |= rdp->grpmask; 2698 rcu_disable_urgency_upon_qs(rdp); 2699 } 2700 } 2701 if (mask != 0) { 2702 /* Idle/offline CPUs, report (releases rnp->lock). */ 2703 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2704 } else { 2705 /* Nothing to do here, so just drop the lock. */ 2706 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2707 } 2708 } 2709 } 2710 2711 /* 2712 * Force quiescent states on reluctant CPUs, and also detect which 2713 * CPUs are in dyntick-idle mode. 2714 */ 2715 void rcu_force_quiescent_state(void) 2716 { 2717 unsigned long flags; 2718 bool ret; 2719 struct rcu_node *rnp; 2720 struct rcu_node *rnp_old = NULL; 2721 2722 /* Funnel through hierarchy to reduce memory contention. */ 2723 rnp = __this_cpu_read(rcu_data.mynode); 2724 for (; rnp != NULL; rnp = rnp->parent) { 2725 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2726 !raw_spin_trylock(&rnp->fqslock); 2727 if (rnp_old != NULL) 2728 raw_spin_unlock(&rnp_old->fqslock); 2729 if (ret) 2730 return; 2731 rnp_old = rnp; 2732 } 2733 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2734 2735 /* Reached the root of the rcu_node tree, acquire lock. */ 2736 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2737 raw_spin_unlock(&rnp_old->fqslock); 2738 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2739 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2740 return; /* Someone beat us to it. */ 2741 } 2742 WRITE_ONCE(rcu_state.gp_flags, 2743 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2744 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2745 rcu_gp_kthread_wake(); 2746 } 2747 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2748 2749 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2750 // grace periods. 2751 static void strict_work_handler(struct work_struct *work) 2752 { 2753 rcu_read_lock(); 2754 rcu_read_unlock(); 2755 } 2756 2757 /* Perform RCU core processing work for the current CPU. */ 2758 static __latent_entropy void rcu_core(void) 2759 { 2760 unsigned long flags; 2761 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2762 struct rcu_node *rnp = rdp->mynode; 2763 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2764 2765 if (cpu_is_offline(smp_processor_id())) 2766 return; 2767 trace_rcu_utilization(TPS("Start RCU core")); 2768 WARN_ON_ONCE(!rdp->beenonline); 2769 2770 /* Report any deferred quiescent states if preemption enabled. */ 2771 if (!(preempt_count() & PREEMPT_MASK)) { 2772 rcu_preempt_deferred_qs(current); 2773 } else if (rcu_preempt_need_deferred_qs(current)) { 2774 set_tsk_need_resched(current); 2775 set_preempt_need_resched(); 2776 } 2777 2778 /* Update RCU state based on any recent quiescent states. */ 2779 rcu_check_quiescent_state(rdp); 2780 2781 /* No grace period and unregistered callbacks? */ 2782 if (!rcu_gp_in_progress() && 2783 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2784 rcu_nocb_lock_irqsave(rdp, flags); 2785 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2786 rcu_accelerate_cbs_unlocked(rnp, rdp); 2787 rcu_nocb_unlock_irqrestore(rdp, flags); 2788 } 2789 2790 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2791 2792 /* If there are callbacks ready, invoke them. */ 2793 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2794 likely(READ_ONCE(rcu_scheduler_fully_active))) 2795 rcu_do_batch(rdp); 2796 2797 /* Do any needed deferred wakeups of rcuo kthreads. */ 2798 do_nocb_deferred_wakeup(rdp); 2799 trace_rcu_utilization(TPS("End RCU core")); 2800 2801 // If strict GPs, schedule an RCU reader in a clean environment. 2802 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2803 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2804 } 2805 2806 static void rcu_core_si(struct softirq_action *h) 2807 { 2808 rcu_core(); 2809 } 2810 2811 static void rcu_wake_cond(struct task_struct *t, int status) 2812 { 2813 /* 2814 * If the thread is yielding, only wake it when this 2815 * is invoked from idle 2816 */ 2817 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2818 wake_up_process(t); 2819 } 2820 2821 static void invoke_rcu_core_kthread(void) 2822 { 2823 struct task_struct *t; 2824 unsigned long flags; 2825 2826 local_irq_save(flags); 2827 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2828 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2829 if (t != NULL && t != current) 2830 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2831 local_irq_restore(flags); 2832 } 2833 2834 /* 2835 * Wake up this CPU's rcuc kthread to do RCU core processing. 2836 */ 2837 static void invoke_rcu_core(void) 2838 { 2839 if (!cpu_online(smp_processor_id())) 2840 return; 2841 if (use_softirq) 2842 raise_softirq(RCU_SOFTIRQ); 2843 else 2844 invoke_rcu_core_kthread(); 2845 } 2846 2847 static void rcu_cpu_kthread_park(unsigned int cpu) 2848 { 2849 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2850 } 2851 2852 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2853 { 2854 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2855 } 2856 2857 /* 2858 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2859 * the RCU softirq used in configurations of RCU that do not support RCU 2860 * priority boosting. 2861 */ 2862 static void rcu_cpu_kthread(unsigned int cpu) 2863 { 2864 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2865 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2866 int spincnt; 2867 2868 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2869 for (spincnt = 0; spincnt < 10; spincnt++) { 2870 local_bh_disable(); 2871 *statusp = RCU_KTHREAD_RUNNING; 2872 local_irq_disable(); 2873 work = *workp; 2874 *workp = 0; 2875 local_irq_enable(); 2876 if (work) 2877 rcu_core(); 2878 local_bh_enable(); 2879 if (*workp == 0) { 2880 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2881 *statusp = RCU_KTHREAD_WAITING; 2882 return; 2883 } 2884 } 2885 *statusp = RCU_KTHREAD_YIELDING; 2886 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2887 schedule_timeout_idle(2); 2888 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2889 *statusp = RCU_KTHREAD_WAITING; 2890 } 2891 2892 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2893 .store = &rcu_data.rcu_cpu_kthread_task, 2894 .thread_should_run = rcu_cpu_kthread_should_run, 2895 .thread_fn = rcu_cpu_kthread, 2896 .thread_comm = "rcuc/%u", 2897 .setup = rcu_cpu_kthread_setup, 2898 .park = rcu_cpu_kthread_park, 2899 }; 2900 2901 /* 2902 * Spawn per-CPU RCU core processing kthreads. 2903 */ 2904 static int __init rcu_spawn_core_kthreads(void) 2905 { 2906 int cpu; 2907 2908 for_each_possible_cpu(cpu) 2909 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2910 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2911 return 0; 2912 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2913 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2914 return 0; 2915 } 2916 early_initcall(rcu_spawn_core_kthreads); 2917 2918 /* 2919 * Handle any core-RCU processing required by a call_rcu() invocation. 2920 */ 2921 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2922 unsigned long flags) 2923 { 2924 /* 2925 * If called from an extended quiescent state, invoke the RCU 2926 * core in order to force a re-evaluation of RCU's idleness. 2927 */ 2928 if (!rcu_is_watching()) 2929 invoke_rcu_core(); 2930 2931 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2932 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2933 return; 2934 2935 /* 2936 * Force the grace period if too many callbacks or too long waiting. 2937 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2938 * if some other CPU has recently done so. Also, don't bother 2939 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2940 * is the only one waiting for a grace period to complete. 2941 */ 2942 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2943 rdp->qlen_last_fqs_check + qhimark)) { 2944 2945 /* Are we ignoring a completed grace period? */ 2946 note_gp_changes(rdp); 2947 2948 /* Start a new grace period if one not already started. */ 2949 if (!rcu_gp_in_progress()) { 2950 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2951 } else { 2952 /* Give the grace period a kick. */ 2953 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2954 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2955 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2956 rcu_force_quiescent_state(); 2957 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2958 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2959 } 2960 } 2961 } 2962 2963 /* 2964 * RCU callback function to leak a callback. 2965 */ 2966 static void rcu_leak_callback(struct rcu_head *rhp) 2967 { 2968 } 2969 2970 /* 2971 * Check and if necessary update the leaf rcu_node structure's 2972 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2973 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2974 * structure's ->lock. 2975 */ 2976 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2977 { 2978 raw_lockdep_assert_held_rcu_node(rnp); 2979 if (qovld_calc <= 0) 2980 return; // Early boot and wildcard value set. 2981 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2982 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2983 else 2984 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2985 } 2986 2987 /* 2988 * Check and if necessary update the leaf rcu_node structure's 2989 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2990 * number of queued RCU callbacks. No locks need be held, but the 2991 * caller must have disabled interrupts. 2992 * 2993 * Note that this function ignores the possibility that there are a lot 2994 * of callbacks all of which have already seen the end of their respective 2995 * grace periods. This omission is due to the need for no-CBs CPUs to 2996 * be holding ->nocb_lock to do this check, which is too heavy for a 2997 * common-case operation. 2998 */ 2999 static void check_cb_ovld(struct rcu_data *rdp) 3000 { 3001 struct rcu_node *const rnp = rdp->mynode; 3002 3003 if (qovld_calc <= 0 || 3004 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 3005 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 3006 return; // Early boot wildcard value or already set correctly. 3007 raw_spin_lock_rcu_node(rnp); 3008 check_cb_ovld_locked(rdp, rnp); 3009 raw_spin_unlock_rcu_node(rnp); 3010 } 3011 3012 /* Helper function for call_rcu() and friends. */ 3013 static void 3014 __call_rcu(struct rcu_head *head, rcu_callback_t func) 3015 { 3016 static atomic_t doublefrees; 3017 unsigned long flags; 3018 struct rcu_data *rdp; 3019 bool was_alldone; 3020 3021 /* Misaligned rcu_head! */ 3022 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 3023 3024 if (debug_rcu_head_queue(head)) { 3025 /* 3026 * Probable double call_rcu(), so leak the callback. 3027 * Use rcu:rcu_callback trace event to find the previous 3028 * time callback was passed to __call_rcu(). 3029 */ 3030 if (atomic_inc_return(&doublefrees) < 4) { 3031 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 3032 mem_dump_obj(head); 3033 } 3034 WRITE_ONCE(head->func, rcu_leak_callback); 3035 return; 3036 } 3037 head->func = func; 3038 head->next = NULL; 3039 local_irq_save(flags); 3040 kasan_record_aux_stack(head); 3041 rdp = this_cpu_ptr(&rcu_data); 3042 3043 /* Add the callback to our list. */ 3044 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 3045 // This can trigger due to call_rcu() from offline CPU: 3046 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 3047 WARN_ON_ONCE(!rcu_is_watching()); 3048 // Very early boot, before rcu_init(). Initialize if needed 3049 // and then drop through to queue the callback. 3050 if (rcu_segcblist_empty(&rdp->cblist)) 3051 rcu_segcblist_init(&rdp->cblist); 3052 } 3053 3054 check_cb_ovld(rdp); 3055 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 3056 return; // Enqueued onto ->nocb_bypass, so just leave. 3057 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 3058 rcu_segcblist_enqueue(&rdp->cblist, head); 3059 if (__is_kvfree_rcu_offset((unsigned long)func)) 3060 trace_rcu_kvfree_callback(rcu_state.name, head, 3061 (unsigned long)func, 3062 rcu_segcblist_n_cbs(&rdp->cblist)); 3063 else 3064 trace_rcu_callback(rcu_state.name, head, 3065 rcu_segcblist_n_cbs(&rdp->cblist)); 3066 3067 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 3068 3069 /* Go handle any RCU core processing required. */ 3070 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 3071 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 3072 } else { 3073 __call_rcu_core(rdp, head, flags); 3074 local_irq_restore(flags); 3075 } 3076 } 3077 3078 /** 3079 * call_rcu() - Queue an RCU callback for invocation after a grace period. 3080 * @head: structure to be used for queueing the RCU updates. 3081 * @func: actual callback function to be invoked after the grace period 3082 * 3083 * The callback function will be invoked some time after a full grace 3084 * period elapses, in other words after all pre-existing RCU read-side 3085 * critical sections have completed. However, the callback function 3086 * might well execute concurrently with RCU read-side critical sections 3087 * that started after call_rcu() was invoked. RCU read-side critical 3088 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 3089 * may be nested. In addition, regions of code across which interrupts, 3090 * preemption, or softirqs have been disabled also serve as RCU read-side 3091 * critical sections. This includes hardware interrupt handlers, softirq 3092 * handlers, and NMI handlers. 3093 * 3094 * Note that all CPUs must agree that the grace period extended beyond 3095 * all pre-existing RCU read-side critical section. On systems with more 3096 * than one CPU, this means that when "func()" is invoked, each CPU is 3097 * guaranteed to have executed a full memory barrier since the end of its 3098 * last RCU read-side critical section whose beginning preceded the call 3099 * to call_rcu(). It also means that each CPU executing an RCU read-side 3100 * critical section that continues beyond the start of "func()" must have 3101 * executed a memory barrier after the call_rcu() but before the beginning 3102 * of that RCU read-side critical section. Note that these guarantees 3103 * include CPUs that are offline, idle, or executing in user mode, as 3104 * well as CPUs that are executing in the kernel. 3105 * 3106 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3107 * resulting RCU callback function "func()", then both CPU A and CPU B are 3108 * guaranteed to execute a full memory barrier during the time interval 3109 * between the call to call_rcu() and the invocation of "func()" -- even 3110 * if CPU A and CPU B are the same CPU (but again only if the system has 3111 * more than one CPU). 3112 */ 3113 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3114 { 3115 __call_rcu(head, func); 3116 } 3117 EXPORT_SYMBOL_GPL(call_rcu); 3118 3119 3120 /* Maximum number of jiffies to wait before draining a batch. */ 3121 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3122 #define KFREE_N_BATCHES 2 3123 #define FREE_N_CHANNELS 2 3124 3125 /** 3126 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3127 * @nr_records: Number of active pointers in the array 3128 * @next: Next bulk object in the block chain 3129 * @records: Array of the kvfree_rcu() pointers 3130 */ 3131 struct kvfree_rcu_bulk_data { 3132 unsigned long nr_records; 3133 struct kvfree_rcu_bulk_data *next; 3134 void *records[]; 3135 }; 3136 3137 /* 3138 * This macro defines how many entries the "records" array 3139 * will contain. It is based on the fact that the size of 3140 * kvfree_rcu_bulk_data structure becomes exactly one page. 3141 */ 3142 #define KVFREE_BULK_MAX_ENTR \ 3143 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3144 3145 /** 3146 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3147 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3148 * @head_free: List of kfree_rcu() objects waiting for a grace period 3149 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3150 * @krcp: Pointer to @kfree_rcu_cpu structure 3151 */ 3152 3153 struct kfree_rcu_cpu_work { 3154 struct rcu_work rcu_work; 3155 struct rcu_head *head_free; 3156 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3157 struct kfree_rcu_cpu *krcp; 3158 }; 3159 3160 /** 3161 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3162 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3163 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3164 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3165 * @lock: Synchronize access to this structure 3166 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3167 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3168 * @initialized: The @rcu_work fields have been initialized 3169 * @count: Number of objects for which GP not started 3170 * @bkvcache: 3171 * A simple cache list that contains objects for reuse purpose. 3172 * In order to save some per-cpu space the list is singular. 3173 * Even though it is lockless an access has to be protected by the 3174 * per-cpu lock. 3175 * @page_cache_work: A work to refill the cache when it is empty 3176 * @work_in_progress: Indicates that page_cache_work is running 3177 * @hrtimer: A hrtimer for scheduling a page_cache_work 3178 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3179 * 3180 * This is a per-CPU structure. The reason that it is not included in 3181 * the rcu_data structure is to permit this code to be extracted from 3182 * the RCU files. Such extraction could allow further optimization of 3183 * the interactions with the slab allocators. 3184 */ 3185 struct kfree_rcu_cpu { 3186 struct rcu_head *head; 3187 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3188 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3189 raw_spinlock_t lock; 3190 struct delayed_work monitor_work; 3191 bool monitor_todo; 3192 bool initialized; 3193 int count; 3194 3195 struct work_struct page_cache_work; 3196 atomic_t work_in_progress; 3197 struct hrtimer hrtimer; 3198 3199 struct llist_head bkvcache; 3200 int nr_bkv_objs; 3201 }; 3202 3203 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3204 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3205 }; 3206 3207 static __always_inline void 3208 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3209 { 3210 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3211 int i; 3212 3213 for (i = 0; i < bhead->nr_records; i++) 3214 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3215 #endif 3216 } 3217 3218 static inline struct kfree_rcu_cpu * 3219 krc_this_cpu_lock(unsigned long *flags) 3220 { 3221 struct kfree_rcu_cpu *krcp; 3222 3223 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3224 krcp = this_cpu_ptr(&krc); 3225 raw_spin_lock(&krcp->lock); 3226 3227 return krcp; 3228 } 3229 3230 static inline void 3231 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3232 { 3233 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3234 } 3235 3236 static inline struct kvfree_rcu_bulk_data * 3237 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3238 { 3239 if (!krcp->nr_bkv_objs) 3240 return NULL; 3241 3242 krcp->nr_bkv_objs--; 3243 return (struct kvfree_rcu_bulk_data *) 3244 llist_del_first(&krcp->bkvcache); 3245 } 3246 3247 static inline bool 3248 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3249 struct kvfree_rcu_bulk_data *bnode) 3250 { 3251 // Check the limit. 3252 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3253 return false; 3254 3255 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3256 krcp->nr_bkv_objs++; 3257 return true; 3258 3259 } 3260 3261 /* 3262 * This function is invoked in workqueue context after a grace period. 3263 * It frees all the objects queued on ->bhead_free or ->head_free. 3264 */ 3265 static void kfree_rcu_work(struct work_struct *work) 3266 { 3267 unsigned long flags; 3268 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3269 struct rcu_head *head, *next; 3270 struct kfree_rcu_cpu *krcp; 3271 struct kfree_rcu_cpu_work *krwp; 3272 int i, j; 3273 3274 krwp = container_of(to_rcu_work(work), 3275 struct kfree_rcu_cpu_work, rcu_work); 3276 krcp = krwp->krcp; 3277 3278 raw_spin_lock_irqsave(&krcp->lock, flags); 3279 // Channels 1 and 2. 3280 for (i = 0; i < FREE_N_CHANNELS; i++) { 3281 bkvhead[i] = krwp->bkvhead_free[i]; 3282 krwp->bkvhead_free[i] = NULL; 3283 } 3284 3285 // Channel 3. 3286 head = krwp->head_free; 3287 krwp->head_free = NULL; 3288 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3289 3290 // Handle two first channels. 3291 for (i = 0; i < FREE_N_CHANNELS; i++) { 3292 for (; bkvhead[i]; bkvhead[i] = bnext) { 3293 bnext = bkvhead[i]->next; 3294 debug_rcu_bhead_unqueue(bkvhead[i]); 3295 3296 rcu_lock_acquire(&rcu_callback_map); 3297 if (i == 0) { // kmalloc() / kfree(). 3298 trace_rcu_invoke_kfree_bulk_callback( 3299 rcu_state.name, bkvhead[i]->nr_records, 3300 bkvhead[i]->records); 3301 3302 kfree_bulk(bkvhead[i]->nr_records, 3303 bkvhead[i]->records); 3304 } else { // vmalloc() / vfree(). 3305 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3306 trace_rcu_invoke_kvfree_callback( 3307 rcu_state.name, 3308 bkvhead[i]->records[j], 0); 3309 3310 vfree(bkvhead[i]->records[j]); 3311 } 3312 } 3313 rcu_lock_release(&rcu_callback_map); 3314 3315 raw_spin_lock_irqsave(&krcp->lock, flags); 3316 if (put_cached_bnode(krcp, bkvhead[i])) 3317 bkvhead[i] = NULL; 3318 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3319 3320 if (bkvhead[i]) 3321 free_page((unsigned long) bkvhead[i]); 3322 3323 cond_resched_tasks_rcu_qs(); 3324 } 3325 } 3326 3327 /* 3328 * Emergency case only. It can happen under low memory 3329 * condition when an allocation gets failed, so the "bulk" 3330 * path can not be temporary maintained. 3331 */ 3332 for (; head; head = next) { 3333 unsigned long offset = (unsigned long)head->func; 3334 void *ptr = (void *)head - offset; 3335 3336 next = head->next; 3337 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3338 rcu_lock_acquire(&rcu_callback_map); 3339 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3340 3341 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3342 kvfree(ptr); 3343 3344 rcu_lock_release(&rcu_callback_map); 3345 cond_resched_tasks_rcu_qs(); 3346 } 3347 } 3348 3349 /* 3350 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 3351 * 3352 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 3353 * timeout has been reached. 3354 */ 3355 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 3356 { 3357 struct kfree_rcu_cpu_work *krwp; 3358 bool repeat = false; 3359 int i, j; 3360 3361 lockdep_assert_held(&krcp->lock); 3362 3363 for (i = 0; i < KFREE_N_BATCHES; i++) { 3364 krwp = &(krcp->krw_arr[i]); 3365 3366 /* 3367 * Try to detach bkvhead or head and attach it over any 3368 * available corresponding free channel. It can be that 3369 * a previous RCU batch is in progress, it means that 3370 * immediately to queue another one is not possible so 3371 * return false to tell caller to retry. 3372 */ 3373 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3374 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3375 (krcp->head && !krwp->head_free)) { 3376 // Channel 1 corresponds to SLAB ptrs. 3377 // Channel 2 corresponds to vmalloc ptrs. 3378 for (j = 0; j < FREE_N_CHANNELS; j++) { 3379 if (!krwp->bkvhead_free[j]) { 3380 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3381 krcp->bkvhead[j] = NULL; 3382 } 3383 } 3384 3385 // Channel 3 corresponds to emergency path. 3386 if (!krwp->head_free) { 3387 krwp->head_free = krcp->head; 3388 krcp->head = NULL; 3389 } 3390 3391 WRITE_ONCE(krcp->count, 0); 3392 3393 /* 3394 * One work is per one batch, so there are three 3395 * "free channels", the batch can handle. It can 3396 * be that the work is in the pending state when 3397 * channels have been detached following by each 3398 * other. 3399 */ 3400 queue_rcu_work(system_wq, &krwp->rcu_work); 3401 } 3402 3403 // Repeat if any "free" corresponding channel is still busy. 3404 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head) 3405 repeat = true; 3406 } 3407 3408 return !repeat; 3409 } 3410 3411 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 3412 unsigned long flags) 3413 { 3414 // Attempt to start a new batch. 3415 krcp->monitor_todo = false; 3416 if (queue_kfree_rcu_work(krcp)) { 3417 // Success! Our job is done here. 3418 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3419 return; 3420 } 3421 3422 // Previous RCU batch still in progress, try again later. 3423 krcp->monitor_todo = true; 3424 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3425 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3426 } 3427 3428 /* 3429 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3430 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 3431 */ 3432 static void kfree_rcu_monitor(struct work_struct *work) 3433 { 3434 unsigned long flags; 3435 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 3436 monitor_work.work); 3437 3438 raw_spin_lock_irqsave(&krcp->lock, flags); 3439 if (krcp->monitor_todo) 3440 kfree_rcu_drain_unlock(krcp, flags); 3441 else 3442 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3443 } 3444 3445 static enum hrtimer_restart 3446 schedule_page_work_fn(struct hrtimer *t) 3447 { 3448 struct kfree_rcu_cpu *krcp = 3449 container_of(t, struct kfree_rcu_cpu, hrtimer); 3450 3451 queue_work(system_highpri_wq, &krcp->page_cache_work); 3452 return HRTIMER_NORESTART; 3453 } 3454 3455 static void fill_page_cache_func(struct work_struct *work) 3456 { 3457 struct kvfree_rcu_bulk_data *bnode; 3458 struct kfree_rcu_cpu *krcp = 3459 container_of(work, struct kfree_rcu_cpu, 3460 page_cache_work); 3461 unsigned long flags; 3462 bool pushed; 3463 int i; 3464 3465 for (i = 0; i < rcu_min_cached_objs; i++) { 3466 bnode = (struct kvfree_rcu_bulk_data *) 3467 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3468 3469 if (bnode) { 3470 raw_spin_lock_irqsave(&krcp->lock, flags); 3471 pushed = put_cached_bnode(krcp, bnode); 3472 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3473 3474 if (!pushed) { 3475 free_page((unsigned long) bnode); 3476 break; 3477 } 3478 } 3479 } 3480 3481 atomic_set(&krcp->work_in_progress, 0); 3482 } 3483 3484 static void 3485 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3486 { 3487 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3488 !atomic_xchg(&krcp->work_in_progress, 1)) { 3489 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, 3490 HRTIMER_MODE_REL); 3491 krcp->hrtimer.function = schedule_page_work_fn; 3492 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3493 } 3494 } 3495 3496 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3497 // state specified by flags. If can_alloc is true, the caller must 3498 // be schedulable and not be holding any locks or mutexes that might be 3499 // acquired by the memory allocator or anything that it might invoke. 3500 // Returns true if ptr was successfully recorded, else the caller must 3501 // use a fallback. 3502 static inline bool 3503 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3504 unsigned long *flags, void *ptr, bool can_alloc) 3505 { 3506 struct kvfree_rcu_bulk_data *bnode; 3507 int idx; 3508 3509 *krcp = krc_this_cpu_lock(flags); 3510 if (unlikely(!(*krcp)->initialized)) 3511 return false; 3512 3513 idx = !!is_vmalloc_addr(ptr); 3514 3515 /* Check if a new block is required. */ 3516 if (!(*krcp)->bkvhead[idx] || 3517 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3518 bnode = get_cached_bnode(*krcp); 3519 if (!bnode && can_alloc) { 3520 krc_this_cpu_unlock(*krcp, *flags); 3521 3522 // __GFP_NORETRY - allows a light-weight direct reclaim 3523 // what is OK from minimizing of fallback hitting point of 3524 // view. Apart of that it forbids any OOM invoking what is 3525 // also beneficial since we are about to release memory soon. 3526 // 3527 // __GFP_NOMEMALLOC - prevents from consuming of all the 3528 // memory reserves. Please note we have a fallback path. 3529 // 3530 // __GFP_NOWARN - it is supposed that an allocation can 3531 // be failed under low memory or high memory pressure 3532 // scenarios. 3533 bnode = (struct kvfree_rcu_bulk_data *) 3534 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3535 *krcp = krc_this_cpu_lock(flags); 3536 } 3537 3538 if (!bnode) 3539 return false; 3540 3541 /* Initialize the new block. */ 3542 bnode->nr_records = 0; 3543 bnode->next = (*krcp)->bkvhead[idx]; 3544 3545 /* Attach it to the head. */ 3546 (*krcp)->bkvhead[idx] = bnode; 3547 } 3548 3549 /* Finally insert. */ 3550 (*krcp)->bkvhead[idx]->records 3551 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3552 3553 return true; 3554 } 3555 3556 /* 3557 * Queue a request for lazy invocation of appropriate free routine after a 3558 * grace period. Please note there are three paths are maintained, two are the 3559 * main ones that use array of pointers interface and third one is emergency 3560 * one, that is used only when the main path can not be maintained temporary, 3561 * due to memory pressure. 3562 * 3563 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3564 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3565 * be free'd in workqueue context. This allows us to: batch requests together to 3566 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3567 */ 3568 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3569 { 3570 unsigned long flags; 3571 struct kfree_rcu_cpu *krcp; 3572 bool success; 3573 void *ptr; 3574 3575 if (head) { 3576 ptr = (void *) head - (unsigned long) func; 3577 } else { 3578 /* 3579 * Please note there is a limitation for the head-less 3580 * variant, that is why there is a clear rule for such 3581 * objects: it can be used from might_sleep() context 3582 * only. For other places please embed an rcu_head to 3583 * your data. 3584 */ 3585 might_sleep(); 3586 ptr = (unsigned long *) func; 3587 } 3588 3589 // Queue the object but don't yet schedule the batch. 3590 if (debug_rcu_head_queue(ptr)) { 3591 // Probable double kfree_rcu(), just leak. 3592 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3593 __func__, head); 3594 3595 // Mark as success and leave. 3596 return; 3597 } 3598 3599 kasan_record_aux_stack(ptr); 3600 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3601 if (!success) { 3602 run_page_cache_worker(krcp); 3603 3604 if (head == NULL) 3605 // Inline if kvfree_rcu(one_arg) call. 3606 goto unlock_return; 3607 3608 head->func = func; 3609 head->next = krcp->head; 3610 krcp->head = head; 3611 success = true; 3612 } 3613 3614 WRITE_ONCE(krcp->count, krcp->count + 1); 3615 3616 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3617 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3618 !krcp->monitor_todo) { 3619 krcp->monitor_todo = true; 3620 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3621 } 3622 3623 unlock_return: 3624 krc_this_cpu_unlock(krcp, flags); 3625 3626 /* 3627 * Inline kvfree() after synchronize_rcu(). We can do 3628 * it from might_sleep() context only, so the current 3629 * CPU can pass the QS state. 3630 */ 3631 if (!success) { 3632 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3633 synchronize_rcu(); 3634 kvfree(ptr); 3635 } 3636 } 3637 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3638 3639 static unsigned long 3640 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3641 { 3642 int cpu; 3643 unsigned long count = 0; 3644 3645 /* Snapshot count of all CPUs */ 3646 for_each_possible_cpu(cpu) { 3647 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3648 3649 count += READ_ONCE(krcp->count); 3650 } 3651 3652 return count; 3653 } 3654 3655 static unsigned long 3656 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3657 { 3658 int cpu, freed = 0; 3659 unsigned long flags; 3660 3661 for_each_possible_cpu(cpu) { 3662 int count; 3663 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3664 3665 count = krcp->count; 3666 raw_spin_lock_irqsave(&krcp->lock, flags); 3667 if (krcp->monitor_todo) 3668 kfree_rcu_drain_unlock(krcp, flags); 3669 else 3670 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3671 3672 sc->nr_to_scan -= count; 3673 freed += count; 3674 3675 if (sc->nr_to_scan <= 0) 3676 break; 3677 } 3678 3679 return freed == 0 ? SHRINK_STOP : freed; 3680 } 3681 3682 static struct shrinker kfree_rcu_shrinker = { 3683 .count_objects = kfree_rcu_shrink_count, 3684 .scan_objects = kfree_rcu_shrink_scan, 3685 .batch = 0, 3686 .seeks = DEFAULT_SEEKS, 3687 }; 3688 3689 void __init kfree_rcu_scheduler_running(void) 3690 { 3691 int cpu; 3692 unsigned long flags; 3693 3694 for_each_possible_cpu(cpu) { 3695 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3696 3697 raw_spin_lock_irqsave(&krcp->lock, flags); 3698 if (!krcp->head || krcp->monitor_todo) { 3699 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3700 continue; 3701 } 3702 krcp->monitor_todo = true; 3703 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3704 KFREE_DRAIN_JIFFIES); 3705 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3706 } 3707 } 3708 3709 /* 3710 * During early boot, any blocking grace-period wait automatically 3711 * implies a grace period. Later on, this is never the case for PREEMPTION. 3712 * 3713 * However, because a context switch is a grace period for !PREEMPTION, any 3714 * blocking grace-period wait automatically implies a grace period if 3715 * there is only one CPU online at any point time during execution of 3716 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3717 * occasionally incorrectly indicate that there are multiple CPUs online 3718 * when there was in fact only one the whole time, as this just adds some 3719 * overhead: RCU still operates correctly. 3720 */ 3721 static int rcu_blocking_is_gp(void) 3722 { 3723 int ret; 3724 3725 if (IS_ENABLED(CONFIG_PREEMPTION)) 3726 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3727 might_sleep(); /* Check for RCU read-side critical section. */ 3728 preempt_disable(); 3729 /* 3730 * If the rcu_state.n_online_cpus counter is equal to one, 3731 * there is only one CPU, and that CPU sees all prior accesses 3732 * made by any CPU that was online at the time of its access. 3733 * Furthermore, if this counter is equal to one, its value cannot 3734 * change until after the preempt_enable() below. 3735 * 3736 * Furthermore, if rcu_state.n_online_cpus is equal to one here, 3737 * all later CPUs (both this one and any that come online later 3738 * on) are guaranteed to see all accesses prior to this point 3739 * in the code, without the need for additional memory barriers. 3740 * Those memory barriers are provided by CPU-hotplug code. 3741 */ 3742 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1; 3743 preempt_enable(); 3744 return ret; 3745 } 3746 3747 /** 3748 * synchronize_rcu - wait until a grace period has elapsed. 3749 * 3750 * Control will return to the caller some time after a full grace 3751 * period has elapsed, in other words after all currently executing RCU 3752 * read-side critical sections have completed. Note, however, that 3753 * upon return from synchronize_rcu(), the caller might well be executing 3754 * concurrently with new RCU read-side critical sections that began while 3755 * synchronize_rcu() was waiting. RCU read-side critical sections are 3756 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3757 * In addition, regions of code across which interrupts, preemption, or 3758 * softirqs have been disabled also serve as RCU read-side critical 3759 * sections. This includes hardware interrupt handlers, softirq handlers, 3760 * and NMI handlers. 3761 * 3762 * Note that this guarantee implies further memory-ordering guarantees. 3763 * On systems with more than one CPU, when synchronize_rcu() returns, 3764 * each CPU is guaranteed to have executed a full memory barrier since 3765 * the end of its last RCU read-side critical section whose beginning 3766 * preceded the call to synchronize_rcu(). In addition, each CPU having 3767 * an RCU read-side critical section that extends beyond the return from 3768 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3769 * after the beginning of synchronize_rcu() and before the beginning of 3770 * that RCU read-side critical section. Note that these guarantees include 3771 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3772 * that are executing in the kernel. 3773 * 3774 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3775 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3776 * to have executed a full memory barrier during the execution of 3777 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3778 * again only if the system has more than one CPU). 3779 */ 3780 void synchronize_rcu(void) 3781 { 3782 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3783 lock_is_held(&rcu_lock_map) || 3784 lock_is_held(&rcu_sched_lock_map), 3785 "Illegal synchronize_rcu() in RCU read-side critical section"); 3786 if (rcu_blocking_is_gp()) 3787 return; // Context allows vacuous grace periods. 3788 if (rcu_gp_is_expedited()) 3789 synchronize_rcu_expedited(); 3790 else 3791 wait_rcu_gp(call_rcu); 3792 } 3793 EXPORT_SYMBOL_GPL(synchronize_rcu); 3794 3795 /** 3796 * get_state_synchronize_rcu - Snapshot current RCU state 3797 * 3798 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3799 * or poll_state_synchronize_rcu() to determine whether or not a full 3800 * grace period has elapsed in the meantime. 3801 */ 3802 unsigned long get_state_synchronize_rcu(void) 3803 { 3804 /* 3805 * Any prior manipulation of RCU-protected data must happen 3806 * before the load from ->gp_seq. 3807 */ 3808 smp_mb(); /* ^^^ */ 3809 return rcu_seq_snap(&rcu_state.gp_seq); 3810 } 3811 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3812 3813 /** 3814 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3815 * 3816 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3817 * or poll_state_synchronize_rcu() to determine whether or not a full 3818 * grace period has elapsed in the meantime. If the needed grace period 3819 * is not already slated to start, notifies RCU core of the need for that 3820 * grace period. 3821 * 3822 * Interrupts must be enabled for the case where it is necessary to awaken 3823 * the grace-period kthread. 3824 */ 3825 unsigned long start_poll_synchronize_rcu(void) 3826 { 3827 unsigned long flags; 3828 unsigned long gp_seq = get_state_synchronize_rcu(); 3829 bool needwake; 3830 struct rcu_data *rdp; 3831 struct rcu_node *rnp; 3832 3833 lockdep_assert_irqs_enabled(); 3834 local_irq_save(flags); 3835 rdp = this_cpu_ptr(&rcu_data); 3836 rnp = rdp->mynode; 3837 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3838 needwake = rcu_start_this_gp(rnp, rdp, gp_seq); 3839 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3840 if (needwake) 3841 rcu_gp_kthread_wake(); 3842 return gp_seq; 3843 } 3844 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3845 3846 /** 3847 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period 3848 * 3849 * @oldstate: return from call to get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3850 * 3851 * If a full RCU grace period has elapsed since the earlier call from 3852 * which oldstate was obtained, return @true, otherwise return @false. 3853 * If @false is returned, it is the caller's responsibilty to invoke this 3854 * function later on until it does return @true. Alternatively, the caller 3855 * can explicitly wait for a grace period, for example, by passing @oldstate 3856 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3857 * 3858 * Yes, this function does not take counter wrap into account. 3859 * But counter wrap is harmless. If the counter wraps, we have waited for 3860 * more than 2 billion grace periods (and way more on a 64-bit system!). 3861 * Those needing to keep oldstate values for very long time periods 3862 * (many hours even on 32-bit systems) should check them occasionally 3863 * and either refresh them or set a flag indicating that the grace period 3864 * has completed. 3865 */ 3866 bool poll_state_synchronize_rcu(unsigned long oldstate) 3867 { 3868 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) { 3869 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3870 return true; 3871 } 3872 return false; 3873 } 3874 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3875 3876 /** 3877 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3878 * 3879 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3880 * 3881 * If a full RCU grace period has elapsed since the earlier call to 3882 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3883 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3884 * 3885 * Yes, this function does not take counter wrap into account. But 3886 * counter wrap is harmless. If the counter wraps, we have waited for 3887 * more than 2 billion grace periods (and way more on a 64-bit system!), 3888 * so waiting for one additional grace period should be just fine. 3889 */ 3890 void cond_synchronize_rcu(unsigned long oldstate) 3891 { 3892 if (!poll_state_synchronize_rcu(oldstate)) 3893 synchronize_rcu(); 3894 } 3895 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3896 3897 /* 3898 * Check to see if there is any immediate RCU-related work to be done by 3899 * the current CPU, returning 1 if so and zero otherwise. The checks are 3900 * in order of increasing expense: checks that can be carried out against 3901 * CPU-local state are performed first. However, we must check for CPU 3902 * stalls first, else we might not get a chance. 3903 */ 3904 static int rcu_pending(int user) 3905 { 3906 bool gp_in_progress; 3907 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3908 struct rcu_node *rnp = rdp->mynode; 3909 3910 lockdep_assert_irqs_disabled(); 3911 3912 /* Check for CPU stalls, if enabled. */ 3913 check_cpu_stall(rdp); 3914 3915 /* Does this CPU need a deferred NOCB wakeup? */ 3916 if (rcu_nocb_need_deferred_wakeup(rdp)) 3917 return 1; 3918 3919 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3920 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3921 return 0; 3922 3923 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3924 gp_in_progress = rcu_gp_in_progress(); 3925 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3926 return 1; 3927 3928 /* Does this CPU have callbacks ready to invoke? */ 3929 if (!rcu_rdp_is_offloaded(rdp) && 3930 rcu_segcblist_ready_cbs(&rdp->cblist)) 3931 return 1; 3932 3933 /* Has RCU gone idle with this CPU needing another grace period? */ 3934 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3935 !rcu_rdp_is_offloaded(rdp) && 3936 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3937 return 1; 3938 3939 /* Have RCU grace period completed or started? */ 3940 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3941 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3942 return 1; 3943 3944 /* nothing to do */ 3945 return 0; 3946 } 3947 3948 /* 3949 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3950 * the compiler is expected to optimize this away. 3951 */ 3952 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3953 { 3954 trace_rcu_barrier(rcu_state.name, s, cpu, 3955 atomic_read(&rcu_state.barrier_cpu_count), done); 3956 } 3957 3958 /* 3959 * RCU callback function for rcu_barrier(). If we are last, wake 3960 * up the task executing rcu_barrier(). 3961 * 3962 * Note that the value of rcu_state.barrier_sequence must be captured 3963 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3964 * other CPUs might count the value down to zero before this CPU gets 3965 * around to invoking rcu_barrier_trace(), which might result in bogus 3966 * data from the next instance of rcu_barrier(). 3967 */ 3968 static void rcu_barrier_callback(struct rcu_head *rhp) 3969 { 3970 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3971 3972 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3973 rcu_barrier_trace(TPS("LastCB"), -1, s); 3974 complete(&rcu_state.barrier_completion); 3975 } else { 3976 rcu_barrier_trace(TPS("CB"), -1, s); 3977 } 3978 } 3979 3980 /* 3981 * Called with preemption disabled, and from cross-cpu IRQ context. 3982 */ 3983 static void rcu_barrier_func(void *cpu_in) 3984 { 3985 uintptr_t cpu = (uintptr_t)cpu_in; 3986 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3987 3988 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3989 rdp->barrier_head.func = rcu_barrier_callback; 3990 debug_rcu_head_queue(&rdp->barrier_head); 3991 rcu_nocb_lock(rdp); 3992 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3993 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3994 atomic_inc(&rcu_state.barrier_cpu_count); 3995 } else { 3996 debug_rcu_head_unqueue(&rdp->barrier_head); 3997 rcu_barrier_trace(TPS("IRQNQ"), -1, 3998 rcu_state.barrier_sequence); 3999 } 4000 rcu_nocb_unlock(rdp); 4001 } 4002 4003 /** 4004 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 4005 * 4006 * Note that this primitive does not necessarily wait for an RCU grace period 4007 * to complete. For example, if there are no RCU callbacks queued anywhere 4008 * in the system, then rcu_barrier() is within its rights to return 4009 * immediately, without waiting for anything, much less an RCU grace period. 4010 */ 4011 void rcu_barrier(void) 4012 { 4013 uintptr_t cpu; 4014 struct rcu_data *rdp; 4015 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 4016 4017 rcu_barrier_trace(TPS("Begin"), -1, s); 4018 4019 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 4020 mutex_lock(&rcu_state.barrier_mutex); 4021 4022 /* Did someone else do our work for us? */ 4023 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 4024 rcu_barrier_trace(TPS("EarlyExit"), -1, 4025 rcu_state.barrier_sequence); 4026 smp_mb(); /* caller's subsequent code after above check. */ 4027 mutex_unlock(&rcu_state.barrier_mutex); 4028 return; 4029 } 4030 4031 /* Mark the start of the barrier operation. */ 4032 rcu_seq_start(&rcu_state.barrier_sequence); 4033 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 4034 4035 /* 4036 * Initialize the count to two rather than to zero in order 4037 * to avoid a too-soon return to zero in case of an immediate 4038 * invocation of the just-enqueued callback (or preemption of 4039 * this task). Exclude CPU-hotplug operations to ensure that no 4040 * offline non-offloaded CPU has callbacks queued. 4041 */ 4042 init_completion(&rcu_state.barrier_completion); 4043 atomic_set(&rcu_state.barrier_cpu_count, 2); 4044 get_online_cpus(); 4045 4046 /* 4047 * Force each CPU with callbacks to register a new callback. 4048 * When that callback is invoked, we will know that all of the 4049 * corresponding CPU's preceding callbacks have been invoked. 4050 */ 4051 for_each_possible_cpu(cpu) { 4052 rdp = per_cpu_ptr(&rcu_data, cpu); 4053 if (cpu_is_offline(cpu) && 4054 !rcu_rdp_is_offloaded(rdp)) 4055 continue; 4056 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 4057 rcu_barrier_trace(TPS("OnlineQ"), cpu, 4058 rcu_state.barrier_sequence); 4059 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 4060 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 4061 cpu_is_offline(cpu)) { 4062 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 4063 rcu_state.barrier_sequence); 4064 local_irq_disable(); 4065 rcu_barrier_func((void *)cpu); 4066 local_irq_enable(); 4067 } else if (cpu_is_offline(cpu)) { 4068 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 4069 rcu_state.barrier_sequence); 4070 } else { 4071 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 4072 rcu_state.barrier_sequence); 4073 } 4074 } 4075 put_online_cpus(); 4076 4077 /* 4078 * Now that we have an rcu_barrier_callback() callback on each 4079 * CPU, and thus each counted, remove the initial count. 4080 */ 4081 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4082 complete(&rcu_state.barrier_completion); 4083 4084 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4085 wait_for_completion(&rcu_state.barrier_completion); 4086 4087 /* Mark the end of the barrier operation. */ 4088 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4089 rcu_seq_end(&rcu_state.barrier_sequence); 4090 4091 /* Other rcu_barrier() invocations can now safely proceed. */ 4092 mutex_unlock(&rcu_state.barrier_mutex); 4093 } 4094 EXPORT_SYMBOL_GPL(rcu_barrier); 4095 4096 /* 4097 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4098 * first CPU in a given leaf rcu_node structure coming online. The caller 4099 * must hold the corresponding leaf rcu_node ->lock with interrrupts 4100 * disabled. 4101 */ 4102 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4103 { 4104 long mask; 4105 long oldmask; 4106 struct rcu_node *rnp = rnp_leaf; 4107 4108 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4109 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4110 for (;;) { 4111 mask = rnp->grpmask; 4112 rnp = rnp->parent; 4113 if (rnp == NULL) 4114 return; 4115 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4116 oldmask = rnp->qsmaskinit; 4117 rnp->qsmaskinit |= mask; 4118 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4119 if (oldmask) 4120 return; 4121 } 4122 } 4123 4124 /* 4125 * Do boot-time initialization of a CPU's per-CPU RCU data. 4126 */ 4127 static void __init 4128 rcu_boot_init_percpu_data(int cpu) 4129 { 4130 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4131 4132 /* Set up local state, ensuring consistent view of global state. */ 4133 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4134 INIT_WORK(&rdp->strict_work, strict_work_handler); 4135 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 4136 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 4137 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4138 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4139 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4140 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4141 rdp->cpu = cpu; 4142 rcu_boot_init_nocb_percpu_data(rdp); 4143 } 4144 4145 /* 4146 * Invoked early in the CPU-online process, when pretty much all services 4147 * are available. The incoming CPU is not present. 4148 * 4149 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4150 * offline event can be happening at a given time. Note also that we can 4151 * accept some slop in the rsp->gp_seq access due to the fact that this 4152 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4153 * And any offloaded callbacks are being numbered elsewhere. 4154 */ 4155 int rcutree_prepare_cpu(unsigned int cpu) 4156 { 4157 unsigned long flags; 4158 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4159 struct rcu_node *rnp = rcu_get_root(); 4160 4161 /* Set up local state, ensuring consistent view of global state. */ 4162 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4163 rdp->qlen_last_fqs_check = 0; 4164 rdp->n_force_qs_snap = rcu_state.n_force_qs; 4165 rdp->blimit = blimit; 4166 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4167 rcu_dynticks_eqs_online(); 4168 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4169 4170 /* 4171 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4172 * (re-)initialized. 4173 */ 4174 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4175 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4176 4177 /* 4178 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4179 * propagation up the rcu_node tree will happen at the beginning 4180 * of the next grace period. 4181 */ 4182 rnp = rdp->mynode; 4183 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4184 rdp->beenonline = true; /* We have now been online. */ 4185 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4186 rdp->gp_seq_needed = rdp->gp_seq; 4187 rdp->cpu_no_qs.b.norm = true; 4188 rdp->core_needs_qs = false; 4189 rdp->rcu_iw_pending = false; 4190 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4191 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4192 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4194 rcu_prepare_kthreads(cpu); 4195 rcu_spawn_cpu_nocb_kthread(cpu); 4196 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4197 4198 return 0; 4199 } 4200 4201 /* 4202 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4203 */ 4204 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4205 { 4206 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4207 4208 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4209 } 4210 4211 /* 4212 * Near the end of the CPU-online process. Pretty much all services 4213 * enabled, and the CPU is now very much alive. 4214 */ 4215 int rcutree_online_cpu(unsigned int cpu) 4216 { 4217 unsigned long flags; 4218 struct rcu_data *rdp; 4219 struct rcu_node *rnp; 4220 4221 rdp = per_cpu_ptr(&rcu_data, cpu); 4222 rnp = rdp->mynode; 4223 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4224 rnp->ffmask |= rdp->grpmask; 4225 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4226 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4227 return 0; /* Too early in boot for scheduler work. */ 4228 sync_sched_exp_online_cleanup(cpu); 4229 rcutree_affinity_setting(cpu, -1); 4230 4231 // Stop-machine done, so allow nohz_full to disable tick. 4232 tick_dep_clear(TICK_DEP_BIT_RCU); 4233 return 0; 4234 } 4235 4236 /* 4237 * Near the beginning of the process. The CPU is still very much alive 4238 * with pretty much all services enabled. 4239 */ 4240 int rcutree_offline_cpu(unsigned int cpu) 4241 { 4242 unsigned long flags; 4243 struct rcu_data *rdp; 4244 struct rcu_node *rnp; 4245 4246 rdp = per_cpu_ptr(&rcu_data, cpu); 4247 rnp = rdp->mynode; 4248 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4249 rnp->ffmask &= ~rdp->grpmask; 4250 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4251 4252 rcutree_affinity_setting(cpu, cpu); 4253 4254 // nohz_full CPUs need the tick for stop-machine to work quickly 4255 tick_dep_set(TICK_DEP_BIT_RCU); 4256 return 0; 4257 } 4258 4259 /* 4260 * Mark the specified CPU as being online so that subsequent grace periods 4261 * (both expedited and normal) will wait on it. Note that this means that 4262 * incoming CPUs are not allowed to use RCU read-side critical sections 4263 * until this function is called. Failing to observe this restriction 4264 * will result in lockdep splats. 4265 * 4266 * Note that this function is special in that it is invoked directly 4267 * from the incoming CPU rather than from the cpuhp_step mechanism. 4268 * This is because this function must be invoked at a precise location. 4269 */ 4270 void rcu_cpu_starting(unsigned int cpu) 4271 { 4272 unsigned long flags; 4273 unsigned long mask; 4274 struct rcu_data *rdp; 4275 struct rcu_node *rnp; 4276 bool newcpu; 4277 4278 rdp = per_cpu_ptr(&rcu_data, cpu); 4279 if (rdp->cpu_started) 4280 return; 4281 rdp->cpu_started = true; 4282 4283 rnp = rdp->mynode; 4284 mask = rdp->grpmask; 4285 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4286 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4287 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4288 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4289 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4290 newcpu = !(rnp->expmaskinitnext & mask); 4291 rnp->expmaskinitnext |= mask; 4292 /* Allow lockless access for expedited grace periods. */ 4293 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4294 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4295 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4296 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4297 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4298 4299 /* An incoming CPU should never be blocking a grace period. */ 4300 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4301 rcu_disable_urgency_upon_qs(rdp); 4302 /* Report QS -after- changing ->qsmaskinitnext! */ 4303 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4304 } else { 4305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4306 } 4307 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4308 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4309 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4310 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4311 } 4312 4313 /* 4314 * The outgoing function has no further need of RCU, so remove it from 4315 * the rcu_node tree's ->qsmaskinitnext bit masks. 4316 * 4317 * Note that this function is special in that it is invoked directly 4318 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4319 * This is because this function must be invoked at a precise location. 4320 */ 4321 void rcu_report_dead(unsigned int cpu) 4322 { 4323 unsigned long flags; 4324 unsigned long mask; 4325 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4326 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4327 4328 // Do any dangling deferred wakeups. 4329 do_nocb_deferred_wakeup(rdp); 4330 4331 /* QS for any half-done expedited grace period. */ 4332 preempt_disable(); 4333 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4334 preempt_enable(); 4335 rcu_preempt_deferred_qs(current); 4336 4337 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4338 mask = rdp->grpmask; 4339 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4340 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1)); 4341 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4342 raw_spin_lock(&rcu_state.ofl_lock); 4343 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4344 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4345 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4346 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4347 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4348 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4349 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4350 } 4351 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4352 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4353 raw_spin_unlock(&rcu_state.ofl_lock); 4354 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier(). 4355 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1); 4356 WARN_ON_ONCE(rnp->ofl_seq & 0x1); 4357 4358 rdp->cpu_started = false; 4359 } 4360 4361 #ifdef CONFIG_HOTPLUG_CPU 4362 /* 4363 * The outgoing CPU has just passed through the dying-idle state, and we 4364 * are being invoked from the CPU that was IPIed to continue the offline 4365 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4366 */ 4367 void rcutree_migrate_callbacks(int cpu) 4368 { 4369 unsigned long flags; 4370 struct rcu_data *my_rdp; 4371 struct rcu_node *my_rnp; 4372 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4373 bool needwake; 4374 4375 if (rcu_rdp_is_offloaded(rdp) || 4376 rcu_segcblist_empty(&rdp->cblist)) 4377 return; /* No callbacks to migrate. */ 4378 4379 local_irq_save(flags); 4380 my_rdp = this_cpu_ptr(&rcu_data); 4381 my_rnp = my_rdp->mynode; 4382 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4383 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4384 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4385 /* Leverage recent GPs and set GP for new callbacks. */ 4386 needwake = rcu_advance_cbs(my_rnp, rdp) || 4387 rcu_advance_cbs(my_rnp, my_rdp); 4388 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4389 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4390 rcu_segcblist_disable(&rdp->cblist); 4391 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4392 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4393 if (rcu_rdp_is_offloaded(my_rdp)) { 4394 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4395 __call_rcu_nocb_wake(my_rdp, true, flags); 4396 } else { 4397 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4398 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4399 } 4400 if (needwake) 4401 rcu_gp_kthread_wake(); 4402 lockdep_assert_irqs_enabled(); 4403 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4404 !rcu_segcblist_empty(&rdp->cblist), 4405 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4406 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4407 rcu_segcblist_first_cb(&rdp->cblist)); 4408 } 4409 #endif 4410 4411 /* 4412 * On non-huge systems, use expedited RCU grace periods to make suspend 4413 * and hibernation run faster. 4414 */ 4415 static int rcu_pm_notify(struct notifier_block *self, 4416 unsigned long action, void *hcpu) 4417 { 4418 switch (action) { 4419 case PM_HIBERNATION_PREPARE: 4420 case PM_SUSPEND_PREPARE: 4421 rcu_expedite_gp(); 4422 break; 4423 case PM_POST_HIBERNATION: 4424 case PM_POST_SUSPEND: 4425 rcu_unexpedite_gp(); 4426 break; 4427 default: 4428 break; 4429 } 4430 return NOTIFY_OK; 4431 } 4432 4433 /* 4434 * Spawn the kthreads that handle RCU's grace periods. 4435 */ 4436 static int __init rcu_spawn_gp_kthread(void) 4437 { 4438 unsigned long flags; 4439 int kthread_prio_in = kthread_prio; 4440 struct rcu_node *rnp; 4441 struct sched_param sp; 4442 struct task_struct *t; 4443 4444 /* Force priority into range. */ 4445 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4446 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4447 kthread_prio = 2; 4448 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4449 kthread_prio = 1; 4450 else if (kthread_prio < 0) 4451 kthread_prio = 0; 4452 else if (kthread_prio > 99) 4453 kthread_prio = 99; 4454 4455 if (kthread_prio != kthread_prio_in) 4456 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4457 kthread_prio, kthread_prio_in); 4458 4459 rcu_scheduler_fully_active = 1; 4460 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4461 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4462 return 0; 4463 if (kthread_prio) { 4464 sp.sched_priority = kthread_prio; 4465 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4466 } 4467 rnp = rcu_get_root(); 4468 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4469 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4470 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4471 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4472 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4474 wake_up_process(t); 4475 rcu_spawn_nocb_kthreads(); 4476 rcu_spawn_boost_kthreads(); 4477 return 0; 4478 } 4479 early_initcall(rcu_spawn_gp_kthread); 4480 4481 /* 4482 * This function is invoked towards the end of the scheduler's 4483 * initialization process. Before this is called, the idle task might 4484 * contain synchronous grace-period primitives (during which time, this idle 4485 * task is booting the system, and such primitives are no-ops). After this 4486 * function is called, any synchronous grace-period primitives are run as 4487 * expedited, with the requesting task driving the grace period forward. 4488 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4489 * runtime RCU functionality. 4490 */ 4491 void rcu_scheduler_starting(void) 4492 { 4493 WARN_ON(num_online_cpus() != 1); 4494 WARN_ON(nr_context_switches() > 0); 4495 rcu_test_sync_prims(); 4496 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4497 rcu_test_sync_prims(); 4498 } 4499 4500 /* 4501 * Helper function for rcu_init() that initializes the rcu_state structure. 4502 */ 4503 static void __init rcu_init_one(void) 4504 { 4505 static const char * const buf[] = RCU_NODE_NAME_INIT; 4506 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4507 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4508 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4509 4510 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4511 int cpustride = 1; 4512 int i; 4513 int j; 4514 struct rcu_node *rnp; 4515 4516 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4517 4518 /* Silence gcc 4.8 false positive about array index out of range. */ 4519 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4520 panic("rcu_init_one: rcu_num_lvls out of range"); 4521 4522 /* Initialize the level-tracking arrays. */ 4523 4524 for (i = 1; i < rcu_num_lvls; i++) 4525 rcu_state.level[i] = 4526 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4527 rcu_init_levelspread(levelspread, num_rcu_lvl); 4528 4529 /* Initialize the elements themselves, starting from the leaves. */ 4530 4531 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4532 cpustride *= levelspread[i]; 4533 rnp = rcu_state.level[i]; 4534 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4535 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4536 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4537 &rcu_node_class[i], buf[i]); 4538 raw_spin_lock_init(&rnp->fqslock); 4539 lockdep_set_class_and_name(&rnp->fqslock, 4540 &rcu_fqs_class[i], fqs[i]); 4541 rnp->gp_seq = rcu_state.gp_seq; 4542 rnp->gp_seq_needed = rcu_state.gp_seq; 4543 rnp->completedqs = rcu_state.gp_seq; 4544 rnp->qsmask = 0; 4545 rnp->qsmaskinit = 0; 4546 rnp->grplo = j * cpustride; 4547 rnp->grphi = (j + 1) * cpustride - 1; 4548 if (rnp->grphi >= nr_cpu_ids) 4549 rnp->grphi = nr_cpu_ids - 1; 4550 if (i == 0) { 4551 rnp->grpnum = 0; 4552 rnp->grpmask = 0; 4553 rnp->parent = NULL; 4554 } else { 4555 rnp->grpnum = j % levelspread[i - 1]; 4556 rnp->grpmask = BIT(rnp->grpnum); 4557 rnp->parent = rcu_state.level[i - 1] + 4558 j / levelspread[i - 1]; 4559 } 4560 rnp->level = i; 4561 INIT_LIST_HEAD(&rnp->blkd_tasks); 4562 rcu_init_one_nocb(rnp); 4563 init_waitqueue_head(&rnp->exp_wq[0]); 4564 init_waitqueue_head(&rnp->exp_wq[1]); 4565 init_waitqueue_head(&rnp->exp_wq[2]); 4566 init_waitqueue_head(&rnp->exp_wq[3]); 4567 spin_lock_init(&rnp->exp_lock); 4568 } 4569 } 4570 4571 init_swait_queue_head(&rcu_state.gp_wq); 4572 init_swait_queue_head(&rcu_state.expedited_wq); 4573 rnp = rcu_first_leaf_node(); 4574 for_each_possible_cpu(i) { 4575 while (i > rnp->grphi) 4576 rnp++; 4577 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4578 rcu_boot_init_percpu_data(i); 4579 } 4580 } 4581 4582 /* 4583 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4584 * replace the definitions in tree.h because those are needed to size 4585 * the ->node array in the rcu_state structure. 4586 */ 4587 static void __init rcu_init_geometry(void) 4588 { 4589 ulong d; 4590 int i; 4591 int rcu_capacity[RCU_NUM_LVLS]; 4592 4593 /* 4594 * Initialize any unspecified boot parameters. 4595 * The default values of jiffies_till_first_fqs and 4596 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4597 * value, which is a function of HZ, then adding one for each 4598 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4599 */ 4600 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4601 if (jiffies_till_first_fqs == ULONG_MAX) 4602 jiffies_till_first_fqs = d; 4603 if (jiffies_till_next_fqs == ULONG_MAX) 4604 jiffies_till_next_fqs = d; 4605 adjust_jiffies_till_sched_qs(); 4606 4607 /* If the compile-time values are accurate, just leave. */ 4608 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4609 nr_cpu_ids == NR_CPUS) 4610 return; 4611 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4612 rcu_fanout_leaf, nr_cpu_ids); 4613 4614 /* 4615 * The boot-time rcu_fanout_leaf parameter must be at least two 4616 * and cannot exceed the number of bits in the rcu_node masks. 4617 * Complain and fall back to the compile-time values if this 4618 * limit is exceeded. 4619 */ 4620 if (rcu_fanout_leaf < 2 || 4621 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4622 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4623 WARN_ON(1); 4624 return; 4625 } 4626 4627 /* 4628 * Compute number of nodes that can be handled an rcu_node tree 4629 * with the given number of levels. 4630 */ 4631 rcu_capacity[0] = rcu_fanout_leaf; 4632 for (i = 1; i < RCU_NUM_LVLS; i++) 4633 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4634 4635 /* 4636 * The tree must be able to accommodate the configured number of CPUs. 4637 * If this limit is exceeded, fall back to the compile-time values. 4638 */ 4639 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4640 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4641 WARN_ON(1); 4642 return; 4643 } 4644 4645 /* Calculate the number of levels in the tree. */ 4646 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4647 } 4648 rcu_num_lvls = i + 1; 4649 4650 /* Calculate the number of rcu_nodes at each level of the tree. */ 4651 for (i = 0; i < rcu_num_lvls; i++) { 4652 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4653 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4654 } 4655 4656 /* Calculate the total number of rcu_node structures. */ 4657 rcu_num_nodes = 0; 4658 for (i = 0; i < rcu_num_lvls; i++) 4659 rcu_num_nodes += num_rcu_lvl[i]; 4660 } 4661 4662 /* 4663 * Dump out the structure of the rcu_node combining tree associated 4664 * with the rcu_state structure. 4665 */ 4666 static void __init rcu_dump_rcu_node_tree(void) 4667 { 4668 int level = 0; 4669 struct rcu_node *rnp; 4670 4671 pr_info("rcu_node tree layout dump\n"); 4672 pr_info(" "); 4673 rcu_for_each_node_breadth_first(rnp) { 4674 if (rnp->level != level) { 4675 pr_cont("\n"); 4676 pr_info(" "); 4677 level = rnp->level; 4678 } 4679 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4680 } 4681 pr_cont("\n"); 4682 } 4683 4684 struct workqueue_struct *rcu_gp_wq; 4685 struct workqueue_struct *rcu_par_gp_wq; 4686 4687 static void __init kfree_rcu_batch_init(void) 4688 { 4689 int cpu; 4690 int i; 4691 4692 for_each_possible_cpu(cpu) { 4693 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4694 4695 for (i = 0; i < KFREE_N_BATCHES; i++) { 4696 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4697 krcp->krw_arr[i].krcp = krcp; 4698 } 4699 4700 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4701 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func); 4702 krcp->initialized = true; 4703 } 4704 if (register_shrinker(&kfree_rcu_shrinker)) 4705 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4706 } 4707 4708 void __init rcu_init(void) 4709 { 4710 int cpu; 4711 4712 rcu_early_boot_tests(); 4713 4714 kfree_rcu_batch_init(); 4715 rcu_bootup_announce(); 4716 rcu_init_geometry(); 4717 rcu_init_one(); 4718 if (dump_tree) 4719 rcu_dump_rcu_node_tree(); 4720 if (use_softirq) 4721 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4722 4723 /* 4724 * We don't need protection against CPU-hotplug here because 4725 * this is called early in boot, before either interrupts 4726 * or the scheduler are operational. 4727 */ 4728 pm_notifier(rcu_pm_notify, 0); 4729 for_each_online_cpu(cpu) { 4730 rcutree_prepare_cpu(cpu); 4731 rcu_cpu_starting(cpu); 4732 rcutree_online_cpu(cpu); 4733 } 4734 4735 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4736 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4737 WARN_ON(!rcu_gp_wq); 4738 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4739 WARN_ON(!rcu_par_gp_wq); 4740 srcu_init(); 4741 4742 /* Fill in default value for rcutree.qovld boot parameter. */ 4743 /* -After- the rcu_node ->lock fields are initialized! */ 4744 if (qovld < 0) 4745 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4746 else 4747 qovld_calc = qovld; 4748 } 4749 4750 #include "tree_stall.h" 4751 #include "tree_exp.h" 4752 #include "tree_plugin.h" 4753