xref: /openbmc/linux/kernel/rcu/tree.c (revision 1cac4f26)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 
31 #define pr_fmt(fmt) "rcu: " fmt
32 
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64 #include <linux/tick.h>
65 
66 #include "tree.h"
67 #include "rcu.h"
68 
69 #ifdef MODULE_PARAM_PREFIX
70 #undef MODULE_PARAM_PREFIX
71 #endif
72 #define MODULE_PARAM_PREFIX "rcutree."
73 
74 /* Data structures. */
75 
76 /*
77  * Steal a bit from the bottom of ->dynticks for idle entry/exit
78  * control.  Initially this is for TLB flushing.
79  */
80 #define RCU_DYNTICK_CTRL_MASK 0x1
81 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
82 #ifndef rcu_eqs_special_exit
83 #define rcu_eqs_special_exit() do { } while (0)
84 #endif
85 
86 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
87 	.dynticks_nesting = 1,
88 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
89 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
90 };
91 struct rcu_state rcu_state = {
92 	.level = { &rcu_state.node[0] },
93 	.gp_state = RCU_GP_IDLE,
94 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
95 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
96 	.name = RCU_NAME,
97 	.abbr = RCU_ABBR,
98 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
99 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
100 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
101 };
102 
103 /* Dump rcu_node combining tree at boot to verify correct setup. */
104 static bool dump_tree;
105 module_param(dump_tree, bool, 0444);
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 /* panic() on RCU Stall sysctl. */
117 int sysctl_panic_on_rcu_stall __read_mostly;
118 
119 /*
120  * The rcu_scheduler_active variable is initialized to the value
121  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
122  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
123  * RCU can assume that there is but one task, allowing RCU to (for example)
124  * optimize synchronize_rcu() to a simple barrier().  When this variable
125  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
126  * to detect real grace periods.  This variable is also used to suppress
127  * boot-time false positives from lockdep-RCU error checking.  Finally, it
128  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
129  * is fully initialized, including all of its kthreads having been spawned.
130  */
131 int rcu_scheduler_active __read_mostly;
132 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
133 
134 /*
135  * The rcu_scheduler_fully_active variable transitions from zero to one
136  * during the early_initcall() processing, which is after the scheduler
137  * is capable of creating new tasks.  So RCU processing (for example,
138  * creating tasks for RCU priority boosting) must be delayed until after
139  * rcu_scheduler_fully_active transitions from zero to one.  We also
140  * currently delay invocation of any RCU callbacks until after this point.
141  *
142  * It might later prove better for people registering RCU callbacks during
143  * early boot to take responsibility for these callbacks, but one step at
144  * a time.
145  */
146 static int rcu_scheduler_fully_active __read_mostly;
147 
148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
149 			      unsigned long gps, unsigned long flags);
150 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
151 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
152 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
153 static void invoke_rcu_core(void);
154 static void invoke_rcu_callbacks(struct rcu_data *rdp);
155 static void rcu_report_exp_rdp(struct rcu_data *rdp);
156 static void sync_sched_exp_online_cleanup(int cpu);
157 
158 /* rcuc/rcub kthread realtime priority */
159 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
160 module_param(kthread_prio, int, 0644);
161 
162 /* Delay in jiffies for grace-period initialization delays, debug only. */
163 
164 static int gp_preinit_delay;
165 module_param(gp_preinit_delay, int, 0444);
166 static int gp_init_delay;
167 module_param(gp_init_delay, int, 0444);
168 static int gp_cleanup_delay;
169 module_param(gp_cleanup_delay, int, 0444);
170 
171 /* Retrieve RCU kthreads priority for rcutorture */
172 int rcu_get_gp_kthreads_prio(void)
173 {
174 	return kthread_prio;
175 }
176 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
177 
178 /*
179  * Number of grace periods between delays, normalized by the duration of
180  * the delay.  The longer the delay, the more the grace periods between
181  * each delay.  The reason for this normalization is that it means that,
182  * for non-zero delays, the overall slowdown of grace periods is constant
183  * regardless of the duration of the delay.  This arrangement balances
184  * the need for long delays to increase some race probabilities with the
185  * need for fast grace periods to increase other race probabilities.
186  */
187 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
188 
189 /*
190  * Compute the mask of online CPUs for the specified rcu_node structure.
191  * This will not be stable unless the rcu_node structure's ->lock is
192  * held, but the bit corresponding to the current CPU will be stable
193  * in most contexts.
194  */
195 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
196 {
197 	return READ_ONCE(rnp->qsmaskinitnext);
198 }
199 
200 /*
201  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
202  * permit this function to be invoked without holding the root rcu_node
203  * structure's ->lock, but of course results can be subject to change.
204  */
205 static int rcu_gp_in_progress(void)
206 {
207 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
208 }
209 
210 /*
211  * Return the number of callbacks queued on the specified CPU.
212  * Handles both the nocbs and normal cases.
213  */
214 static long rcu_get_n_cbs_cpu(int cpu)
215 {
216 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
217 
218 	if (rcu_segcblist_is_enabled(&rdp->cblist)) /* Online normal CPU? */
219 		return rcu_segcblist_n_cbs(&rdp->cblist);
220 	return rcu_get_n_cbs_nocb_cpu(rdp); /* Works for offline, too. */
221 }
222 
223 void rcu_softirq_qs(void)
224 {
225 	rcu_qs();
226 	rcu_preempt_deferred_qs(current);
227 }
228 
229 /*
230  * Record entry into an extended quiescent state.  This is only to be
231  * called when not already in an extended quiescent state.
232  */
233 static void rcu_dynticks_eqs_enter(void)
234 {
235 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
236 	int seq;
237 
238 	/*
239 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
240 	 * critical sections, and we also must force ordering with the
241 	 * next idle sojourn.
242 	 */
243 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
244 	/* Better be in an extended quiescent state! */
245 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
246 		     (seq & RCU_DYNTICK_CTRL_CTR));
247 	/* Better not have special action (TLB flush) pending! */
248 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
249 		     (seq & RCU_DYNTICK_CTRL_MASK));
250 }
251 
252 /*
253  * Record exit from an extended quiescent state.  This is only to be
254  * called from an extended quiescent state.
255  */
256 static void rcu_dynticks_eqs_exit(void)
257 {
258 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
259 	int seq;
260 
261 	/*
262 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
263 	 * and we also must force ordering with the next RCU read-side
264 	 * critical section.
265 	 */
266 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
267 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
268 		     !(seq & RCU_DYNTICK_CTRL_CTR));
269 	if (seq & RCU_DYNTICK_CTRL_MASK) {
270 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
271 		smp_mb__after_atomic(); /* _exit after clearing mask. */
272 		/* Prefer duplicate flushes to losing a flush. */
273 		rcu_eqs_special_exit();
274 	}
275 }
276 
277 /*
278  * Reset the current CPU's ->dynticks counter to indicate that the
279  * newly onlined CPU is no longer in an extended quiescent state.
280  * This will either leave the counter unchanged, or increment it
281  * to the next non-quiescent value.
282  *
283  * The non-atomic test/increment sequence works because the upper bits
284  * of the ->dynticks counter are manipulated only by the corresponding CPU,
285  * or when the corresponding CPU is offline.
286  */
287 static void rcu_dynticks_eqs_online(void)
288 {
289 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
290 
291 	if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
292 		return;
293 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
294 }
295 
296 /*
297  * Is the current CPU in an extended quiescent state?
298  *
299  * No ordering, as we are sampling CPU-local information.
300  */
301 bool rcu_dynticks_curr_cpu_in_eqs(void)
302 {
303 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
304 
305 	return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
306 }
307 
308 /*
309  * Snapshot the ->dynticks counter with full ordering so as to allow
310  * stable comparison of this counter with past and future snapshots.
311  */
312 int rcu_dynticks_snap(struct rcu_data *rdp)
313 {
314 	int snap = atomic_add_return(0, &rdp->dynticks);
315 
316 	return snap & ~RCU_DYNTICK_CTRL_MASK;
317 }
318 
319 /*
320  * Return true if the snapshot returned from rcu_dynticks_snap()
321  * indicates that RCU is in an extended quiescent state.
322  */
323 static bool rcu_dynticks_in_eqs(int snap)
324 {
325 	return !(snap & RCU_DYNTICK_CTRL_CTR);
326 }
327 
328 /*
329  * Return true if the CPU corresponding to the specified rcu_data
330  * structure has spent some time in an extended quiescent state since
331  * rcu_dynticks_snap() returned the specified snapshot.
332  */
333 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
334 {
335 	return snap != rcu_dynticks_snap(rdp);
336 }
337 
338 /*
339  * Set the special (bottom) bit of the specified CPU so that it
340  * will take special action (such as flushing its TLB) on the
341  * next exit from an extended quiescent state.  Returns true if
342  * the bit was successfully set, or false if the CPU was not in
343  * an extended quiescent state.
344  */
345 bool rcu_eqs_special_set(int cpu)
346 {
347 	int old;
348 	int new;
349 	struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
350 
351 	do {
352 		old = atomic_read(&rdp->dynticks);
353 		if (old & RCU_DYNTICK_CTRL_CTR)
354 			return false;
355 		new = old | RCU_DYNTICK_CTRL_MASK;
356 	} while (atomic_cmpxchg(&rdp->dynticks, old, new) != old);
357 	return true;
358 }
359 
360 /*
361  * Let the RCU core know that this CPU has gone through the scheduler,
362  * which is a quiescent state.  This is called when the need for a
363  * quiescent state is urgent, so we burn an atomic operation and full
364  * memory barriers to let the RCU core know about it, regardless of what
365  * this CPU might (or might not) do in the near future.
366  *
367  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
368  *
369  * The caller must have disabled interrupts and must not be idle.
370  */
371 static void __maybe_unused rcu_momentary_dyntick_idle(void)
372 {
373 	int special;
374 
375 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
376 	special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
377 				    &this_cpu_ptr(&rcu_data)->dynticks);
378 	/* It is illegal to call this from idle state. */
379 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
380 	rcu_preempt_deferred_qs(current);
381 }
382 
383 /**
384  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
385  *
386  * If the current CPU is idle or running at a first-level (not nested)
387  * interrupt from idle, return true.  The caller must have at least
388  * disabled preemption.
389  */
390 static int rcu_is_cpu_rrupt_from_idle(void)
391 {
392 	return __this_cpu_read(rcu_data.dynticks_nesting) <= 0 &&
393 	       __this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 1;
394 }
395 
396 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
397 static long blimit = DEFAULT_RCU_BLIMIT;
398 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
399 static long qhimark = DEFAULT_RCU_QHIMARK;
400 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
401 static long qlowmark = DEFAULT_RCU_QLOMARK;
402 
403 module_param(blimit, long, 0444);
404 module_param(qhimark, long, 0444);
405 module_param(qlowmark, long, 0444);
406 
407 static ulong jiffies_till_first_fqs = ULONG_MAX;
408 static ulong jiffies_till_next_fqs = ULONG_MAX;
409 static bool rcu_kick_kthreads;
410 
411 /*
412  * How long the grace period must be before we start recruiting
413  * quiescent-state help from rcu_note_context_switch().
414  */
415 static ulong jiffies_till_sched_qs = ULONG_MAX;
416 module_param(jiffies_till_sched_qs, ulong, 0444);
417 static ulong jiffies_to_sched_qs; /* Adjusted version of above if not default */
418 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
419 
420 /*
421  * Make sure that we give the grace-period kthread time to detect any
422  * idle CPUs before taking active measures to force quiescent states.
423  * However, don't go below 100 milliseconds, adjusted upwards for really
424  * large systems.
425  */
426 static void adjust_jiffies_till_sched_qs(void)
427 {
428 	unsigned long j;
429 
430 	/* If jiffies_till_sched_qs was specified, respect the request. */
431 	if (jiffies_till_sched_qs != ULONG_MAX) {
432 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
433 		return;
434 	}
435 	j = READ_ONCE(jiffies_till_first_fqs) +
436 		      2 * READ_ONCE(jiffies_till_next_fqs);
437 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
438 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
439 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
440 	WRITE_ONCE(jiffies_to_sched_qs, j);
441 }
442 
443 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
444 {
445 	ulong j;
446 	int ret = kstrtoul(val, 0, &j);
447 
448 	if (!ret) {
449 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
450 		adjust_jiffies_till_sched_qs();
451 	}
452 	return ret;
453 }
454 
455 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
456 {
457 	ulong j;
458 	int ret = kstrtoul(val, 0, &j);
459 
460 	if (!ret) {
461 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
462 		adjust_jiffies_till_sched_qs();
463 	}
464 	return ret;
465 }
466 
467 static struct kernel_param_ops first_fqs_jiffies_ops = {
468 	.set = param_set_first_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 static struct kernel_param_ops next_fqs_jiffies_ops = {
473 	.set = param_set_next_fqs_jiffies,
474 	.get = param_get_ulong,
475 };
476 
477 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
478 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
479 module_param(rcu_kick_kthreads, bool, 0644);
480 
481 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
482 static void force_quiescent_state(void);
483 static int rcu_pending(void);
484 
485 /*
486  * Return the number of RCU GPs completed thus far for debug & stats.
487  */
488 unsigned long rcu_get_gp_seq(void)
489 {
490 	return READ_ONCE(rcu_state.gp_seq);
491 }
492 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
493 
494 /*
495  * Return the number of RCU expedited batches completed thus far for
496  * debug & stats.  Odd numbers mean that a batch is in progress, even
497  * numbers mean idle.  The value returned will thus be roughly double
498  * the cumulative batches since boot.
499  */
500 unsigned long rcu_exp_batches_completed(void)
501 {
502 	return rcu_state.expedited_sequence;
503 }
504 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
505 
506 /*
507  * Force a quiescent state.
508  */
509 void rcu_force_quiescent_state(void)
510 {
511 	force_quiescent_state();
512 }
513 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
514 
515 /*
516  * Convert a ->gp_state value to a character string.
517  */
518 static const char *gp_state_getname(short gs)
519 {
520 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
521 		return "???";
522 	return gp_state_names[gs];
523 }
524 
525 /*
526  * Show the state of the grace-period kthreads.
527  */
528 void show_rcu_gp_kthreads(void)
529 {
530 	int cpu;
531 	unsigned long j;
532 	struct rcu_data *rdp;
533 	struct rcu_node *rnp;
534 
535 	j = jiffies - READ_ONCE(rcu_state.gp_activity);
536 	pr_info("%s: wait state: %s(%d) ->state: %#lx delta ->gp_activity %ld\n",
537 		rcu_state.name, gp_state_getname(rcu_state.gp_state),
538 		rcu_state.gp_state, rcu_state.gp_kthread->state, j);
539 	rcu_for_each_node_breadth_first(rnp) {
540 		if (ULONG_CMP_GE(rcu_state.gp_seq, rnp->gp_seq_needed))
541 			continue;
542 		pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
543 			rnp->grplo, rnp->grphi, rnp->gp_seq,
544 			rnp->gp_seq_needed);
545 		if (!rcu_is_leaf_node(rnp))
546 			continue;
547 		for_each_leaf_node_possible_cpu(rnp, cpu) {
548 			rdp = per_cpu_ptr(&rcu_data, cpu);
549 			if (rdp->gpwrap ||
550 			    ULONG_CMP_GE(rcu_state.gp_seq,
551 					 rdp->gp_seq_needed))
552 				continue;
553 			pr_info("\tcpu %d ->gp_seq_needed %lu\n",
554 				cpu, rdp->gp_seq_needed);
555 		}
556 	}
557 	/* sched_show_task(rcu_state.gp_kthread); */
558 }
559 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
560 
561 /*
562  * Send along grace-period-related data for rcutorture diagnostics.
563  */
564 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
565 			    unsigned long *gp_seq)
566 {
567 	switch (test_type) {
568 	case RCU_FLAVOR:
569 	case RCU_BH_FLAVOR:
570 	case RCU_SCHED_FLAVOR:
571 		*flags = READ_ONCE(rcu_state.gp_flags);
572 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
573 		break;
574 	default:
575 		break;
576 	}
577 }
578 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
579 
580 /*
581  * Return the root node of the rcu_state structure.
582  */
583 static struct rcu_node *rcu_get_root(void)
584 {
585 	return &rcu_state.node[0];
586 }
587 
588 /*
589  * Enter an RCU extended quiescent state, which can be either the
590  * idle loop or adaptive-tickless usermode execution.
591  *
592  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
593  * the possibility of usermode upcalls having messed up our count
594  * of interrupt nesting level during the prior busy period.
595  */
596 static void rcu_eqs_enter(bool user)
597 {
598 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
599 
600 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
601 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
602 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
603 		     rdp->dynticks_nesting == 0);
604 	if (rdp->dynticks_nesting != 1) {
605 		rdp->dynticks_nesting--;
606 		return;
607 	}
608 
609 	lockdep_assert_irqs_disabled();
610 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, rdp->dynticks);
611 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
612 	rdp = this_cpu_ptr(&rcu_data);
613 	do_nocb_deferred_wakeup(rdp);
614 	rcu_prepare_for_idle();
615 	rcu_preempt_deferred_qs(current);
616 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
617 	rcu_dynticks_eqs_enter();
618 	rcu_dynticks_task_enter();
619 }
620 
621 /**
622  * rcu_idle_enter - inform RCU that current CPU is entering idle
623  *
624  * Enter idle mode, in other words, -leave- the mode in which RCU
625  * read-side critical sections can occur.  (Though RCU read-side
626  * critical sections can occur in irq handlers in idle, a possibility
627  * handled by irq_enter() and irq_exit().)
628  *
629  * If you add or remove a call to rcu_idle_enter(), be sure to test with
630  * CONFIG_RCU_EQS_DEBUG=y.
631  */
632 void rcu_idle_enter(void)
633 {
634 	lockdep_assert_irqs_disabled();
635 	rcu_eqs_enter(false);
636 }
637 
638 #ifdef CONFIG_NO_HZ_FULL
639 /**
640  * rcu_user_enter - inform RCU that we are resuming userspace.
641  *
642  * Enter RCU idle mode right before resuming userspace.  No use of RCU
643  * is permitted between this call and rcu_user_exit(). This way the
644  * CPU doesn't need to maintain the tick for RCU maintenance purposes
645  * when the CPU runs in userspace.
646  *
647  * If you add or remove a call to rcu_user_enter(), be sure to test with
648  * CONFIG_RCU_EQS_DEBUG=y.
649  */
650 void rcu_user_enter(void)
651 {
652 	lockdep_assert_irqs_disabled();
653 	rcu_eqs_enter(true);
654 }
655 #endif /* CONFIG_NO_HZ_FULL */
656 
657 /*
658  * If we are returning from the outermost NMI handler that interrupted an
659  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
660  * to let the RCU grace-period handling know that the CPU is back to
661  * being RCU-idle.
662  *
663  * If you add or remove a call to rcu_nmi_exit_common(), be sure to test
664  * with CONFIG_RCU_EQS_DEBUG=y.
665  */
666 static __always_inline void rcu_nmi_exit_common(bool irq)
667 {
668 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
669 
670 	/*
671 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
672 	 * (We are exiting an NMI handler, so RCU better be paying attention
673 	 * to us!)
674 	 */
675 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
676 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
677 
678 	/*
679 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
680 	 * leave it in non-RCU-idle state.
681 	 */
682 	if (rdp->dynticks_nmi_nesting != 1) {
683 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, rdp->dynticks);
684 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
685 			   rdp->dynticks_nmi_nesting - 2);
686 		return;
687 	}
688 
689 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
690 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, rdp->dynticks);
691 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
692 
693 	if (irq)
694 		rcu_prepare_for_idle();
695 
696 	rcu_dynticks_eqs_enter();
697 
698 	if (irq)
699 		rcu_dynticks_task_enter();
700 }
701 
702 /**
703  * rcu_nmi_exit - inform RCU of exit from NMI context
704  * @irq: Is this call from rcu_irq_exit?
705  *
706  * If you add or remove a call to rcu_nmi_exit(), be sure to test
707  * with CONFIG_RCU_EQS_DEBUG=y.
708  */
709 void rcu_nmi_exit(void)
710 {
711 	rcu_nmi_exit_common(false);
712 }
713 
714 /**
715  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
716  *
717  * Exit from an interrupt handler, which might possibly result in entering
718  * idle mode, in other words, leaving the mode in which read-side critical
719  * sections can occur.  The caller must have disabled interrupts.
720  *
721  * This code assumes that the idle loop never does anything that might
722  * result in unbalanced calls to irq_enter() and irq_exit().  If your
723  * architecture's idle loop violates this assumption, RCU will give you what
724  * you deserve, good and hard.  But very infrequently and irreproducibly.
725  *
726  * Use things like work queues to work around this limitation.
727  *
728  * You have been warned.
729  *
730  * If you add or remove a call to rcu_irq_exit(), be sure to test with
731  * CONFIG_RCU_EQS_DEBUG=y.
732  */
733 void rcu_irq_exit(void)
734 {
735 	lockdep_assert_irqs_disabled();
736 	rcu_nmi_exit_common(true);
737 }
738 
739 /*
740  * Wrapper for rcu_irq_exit() where interrupts are enabled.
741  *
742  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
743  * with CONFIG_RCU_EQS_DEBUG=y.
744  */
745 void rcu_irq_exit_irqson(void)
746 {
747 	unsigned long flags;
748 
749 	local_irq_save(flags);
750 	rcu_irq_exit();
751 	local_irq_restore(flags);
752 }
753 
754 /*
755  * Exit an RCU extended quiescent state, which can be either the
756  * idle loop or adaptive-tickless usermode execution.
757  *
758  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
759  * allow for the possibility of usermode upcalls messing up our count of
760  * interrupt nesting level during the busy period that is just now starting.
761  */
762 static void rcu_eqs_exit(bool user)
763 {
764 	struct rcu_data *rdp;
765 	long oldval;
766 
767 	lockdep_assert_irqs_disabled();
768 	rdp = this_cpu_ptr(&rcu_data);
769 	oldval = rdp->dynticks_nesting;
770 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
771 	if (oldval) {
772 		rdp->dynticks_nesting++;
773 		return;
774 	}
775 	rcu_dynticks_task_exit();
776 	rcu_dynticks_eqs_exit();
777 	rcu_cleanup_after_idle();
778 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, rdp->dynticks);
779 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
780 	WRITE_ONCE(rdp->dynticks_nesting, 1);
781 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
782 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
783 }
784 
785 /**
786  * rcu_idle_exit - inform RCU that current CPU is leaving idle
787  *
788  * Exit idle mode, in other words, -enter- the mode in which RCU
789  * read-side critical sections can occur.
790  *
791  * If you add or remove a call to rcu_idle_exit(), be sure to test with
792  * CONFIG_RCU_EQS_DEBUG=y.
793  */
794 void rcu_idle_exit(void)
795 {
796 	unsigned long flags;
797 
798 	local_irq_save(flags);
799 	rcu_eqs_exit(false);
800 	local_irq_restore(flags);
801 }
802 
803 #ifdef CONFIG_NO_HZ_FULL
804 /**
805  * rcu_user_exit - inform RCU that we are exiting userspace.
806  *
807  * Exit RCU idle mode while entering the kernel because it can
808  * run a RCU read side critical section anytime.
809  *
810  * If you add or remove a call to rcu_user_exit(), be sure to test with
811  * CONFIG_RCU_EQS_DEBUG=y.
812  */
813 void rcu_user_exit(void)
814 {
815 	rcu_eqs_exit(1);
816 }
817 #endif /* CONFIG_NO_HZ_FULL */
818 
819 /**
820  * rcu_nmi_enter_common - inform RCU of entry to NMI context
821  * @irq: Is this call from rcu_irq_enter?
822  *
823  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
824  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
825  * that the CPU is active.  This implementation permits nested NMIs, as
826  * long as the nesting level does not overflow an int.  (You will probably
827  * run out of stack space first.)
828  *
829  * If you add or remove a call to rcu_nmi_enter_common(), be sure to test
830  * with CONFIG_RCU_EQS_DEBUG=y.
831  */
832 static __always_inline void rcu_nmi_enter_common(bool irq)
833 {
834 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
835 	long incby = 2;
836 
837 	/* Complain about underflow. */
838 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
839 
840 	/*
841 	 * If idle from RCU viewpoint, atomically increment ->dynticks
842 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
843 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
844 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
845 	 * to be in the outermost NMI handler that interrupted an RCU-idle
846 	 * period (observation due to Andy Lutomirski).
847 	 */
848 	if (rcu_dynticks_curr_cpu_in_eqs()) {
849 
850 		if (irq)
851 			rcu_dynticks_task_exit();
852 
853 		rcu_dynticks_eqs_exit();
854 
855 		if (irq)
856 			rcu_cleanup_after_idle();
857 
858 		incby = 1;
859 	}
860 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
861 			  rdp->dynticks_nmi_nesting,
862 			  rdp->dynticks_nmi_nesting + incby, rdp->dynticks);
863 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
864 		   rdp->dynticks_nmi_nesting + incby);
865 	barrier();
866 }
867 
868 /**
869  * rcu_nmi_enter - inform RCU of entry to NMI context
870  */
871 void rcu_nmi_enter(void)
872 {
873 	rcu_nmi_enter_common(false);
874 }
875 
876 /**
877  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
878  *
879  * Enter an interrupt handler, which might possibly result in exiting
880  * idle mode, in other words, entering the mode in which read-side critical
881  * sections can occur.  The caller must have disabled interrupts.
882  *
883  * Note that the Linux kernel is fully capable of entering an interrupt
884  * handler that it never exits, for example when doing upcalls to user mode!
885  * This code assumes that the idle loop never does upcalls to user mode.
886  * If your architecture's idle loop does do upcalls to user mode (or does
887  * anything else that results in unbalanced calls to the irq_enter() and
888  * irq_exit() functions), RCU will give you what you deserve, good and hard.
889  * But very infrequently and irreproducibly.
890  *
891  * Use things like work queues to work around this limitation.
892  *
893  * You have been warned.
894  *
895  * If you add or remove a call to rcu_irq_enter(), be sure to test with
896  * CONFIG_RCU_EQS_DEBUG=y.
897  */
898 void rcu_irq_enter(void)
899 {
900 	lockdep_assert_irqs_disabled();
901 	rcu_nmi_enter_common(true);
902 }
903 
904 /*
905  * Wrapper for rcu_irq_enter() where interrupts are enabled.
906  *
907  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
908  * with CONFIG_RCU_EQS_DEBUG=y.
909  */
910 void rcu_irq_enter_irqson(void)
911 {
912 	unsigned long flags;
913 
914 	local_irq_save(flags);
915 	rcu_irq_enter();
916 	local_irq_restore(flags);
917 }
918 
919 /**
920  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
921  *
922  * Return true if RCU is watching the running CPU, which means that this
923  * CPU can safely enter RCU read-side critical sections.  In other words,
924  * if the current CPU is not in its idle loop or is in an interrupt or
925  * NMI handler, return true.
926  */
927 bool notrace rcu_is_watching(void)
928 {
929 	bool ret;
930 
931 	preempt_disable_notrace();
932 	ret = !rcu_dynticks_curr_cpu_in_eqs();
933 	preempt_enable_notrace();
934 	return ret;
935 }
936 EXPORT_SYMBOL_GPL(rcu_is_watching);
937 
938 /*
939  * If a holdout task is actually running, request an urgent quiescent
940  * state from its CPU.  This is unsynchronized, so migrations can cause
941  * the request to go to the wrong CPU.  Which is OK, all that will happen
942  * is that the CPU's next context switch will be a bit slower and next
943  * time around this task will generate another request.
944  */
945 void rcu_request_urgent_qs_task(struct task_struct *t)
946 {
947 	int cpu;
948 
949 	barrier();
950 	cpu = task_cpu(t);
951 	if (!task_curr(t))
952 		return; /* This task is not running on that CPU. */
953 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
954 }
955 
956 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
957 
958 /*
959  * Is the current CPU online as far as RCU is concerned?
960  *
961  * Disable preemption to avoid false positives that could otherwise
962  * happen due to the current CPU number being sampled, this task being
963  * preempted, its old CPU being taken offline, resuming on some other CPU,
964  * then determining that its old CPU is now offline.
965  *
966  * Disable checking if in an NMI handler because we cannot safely
967  * report errors from NMI handlers anyway.  In addition, it is OK to use
968  * RCU on an offline processor during initial boot, hence the check for
969  * rcu_scheduler_fully_active.
970  */
971 bool rcu_lockdep_current_cpu_online(void)
972 {
973 	struct rcu_data *rdp;
974 	struct rcu_node *rnp;
975 	bool ret = false;
976 
977 	if (in_nmi() || !rcu_scheduler_fully_active)
978 		return true;
979 	preempt_disable();
980 	rdp = this_cpu_ptr(&rcu_data);
981 	rnp = rdp->mynode;
982 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
983 		ret = true;
984 	preempt_enable();
985 	return ret;
986 }
987 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
988 
989 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
990 
991 /*
992  * We are reporting a quiescent state on behalf of some other CPU, so
993  * it is our responsibility to check for and handle potential overflow
994  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
995  * After all, the CPU might be in deep idle state, and thus executing no
996  * code whatsoever.
997  */
998 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
999 {
1000 	raw_lockdep_assert_held_rcu_node(rnp);
1001 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1002 			 rnp->gp_seq))
1003 		WRITE_ONCE(rdp->gpwrap, true);
1004 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1005 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1006 }
1007 
1008 /*
1009  * Snapshot the specified CPU's dynticks counter so that we can later
1010  * credit them with an implicit quiescent state.  Return 1 if this CPU
1011  * is in dynticks idle mode, which is an extended quiescent state.
1012  */
1013 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1014 {
1015 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1016 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1017 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1018 		rcu_gpnum_ovf(rdp->mynode, rdp);
1019 		return 1;
1020 	}
1021 	return 0;
1022 }
1023 
1024 /*
1025  * Handler for the irq_work request posted when a grace period has
1026  * gone on for too long, but not yet long enough for an RCU CPU
1027  * stall warning.  Set state appropriately, but just complain if
1028  * there is unexpected state on entry.
1029  */
1030 static void rcu_iw_handler(struct irq_work *iwp)
1031 {
1032 	struct rcu_data *rdp;
1033 	struct rcu_node *rnp;
1034 
1035 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1036 	rnp = rdp->mynode;
1037 	raw_spin_lock_rcu_node(rnp);
1038 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1039 		rdp->rcu_iw_gp_seq = rnp->gp_seq;
1040 		rdp->rcu_iw_pending = false;
1041 	}
1042 	raw_spin_unlock_rcu_node(rnp);
1043 }
1044 
1045 /*
1046  * Return true if the specified CPU has passed through a quiescent
1047  * state by virtue of being in or having passed through an dynticks
1048  * idle state since the last call to dyntick_save_progress_counter()
1049  * for this same CPU, or by virtue of having been offline.
1050  */
1051 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1052 {
1053 	unsigned long jtsq;
1054 	bool *rnhqp;
1055 	bool *ruqp;
1056 	struct rcu_node *rnp = rdp->mynode;
1057 
1058 	/*
1059 	 * If the CPU passed through or entered a dynticks idle phase with
1060 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1061 	 * already acknowledged the request to pass through a quiescent
1062 	 * state.  Either way, that CPU cannot possibly be in an RCU
1063 	 * read-side critical section that started before the beginning
1064 	 * of the current RCU grace period.
1065 	 */
1066 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1067 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1068 		rcu_gpnum_ovf(rnp, rdp);
1069 		return 1;
1070 	}
1071 
1072 	/* If waiting too long on an offline CPU, complain. */
1073 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1074 	    time_after(jiffies, rcu_state.gp_start + HZ)) {
1075 		bool onl;
1076 		struct rcu_node *rnp1;
1077 
1078 		WARN_ON(1);  /* Offline CPUs are supposed to report QS! */
1079 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1080 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1081 			(long)rnp->gp_seq, (long)rnp->completedqs);
1082 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1083 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1084 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1085 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1086 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1087 			__func__, rdp->cpu, ".o"[onl],
1088 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1089 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1090 		return 1; /* Break things loose after complaining. */
1091 	}
1092 
1093 	/*
1094 	 * A CPU running for an extended time within the kernel can
1095 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1096 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1097 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1098 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1099 	 * variable are safe because the assignments are repeated if this
1100 	 * CPU failed to pass through a quiescent state.  This code
1101 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1102 	 * is set way high.
1103 	 */
1104 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1105 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1106 	rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1107 	if (!READ_ONCE(*rnhqp) &&
1108 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1109 	     time_after(jiffies, rcu_state.jiffies_resched))) {
1110 		WRITE_ONCE(*rnhqp, true);
1111 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1112 		smp_store_release(ruqp, true);
1113 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1114 		WRITE_ONCE(*ruqp, true);
1115 	}
1116 
1117 	/*
1118 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_check_callbacks!
1119 	 * The above code handles this, but only for straight cond_resched().
1120 	 * And some in-kernel loops check need_resched() before calling
1121 	 * cond_resched(), which defeats the above code for CPUs that are
1122 	 * running in-kernel with scheduling-clock interrupts disabled.
1123 	 * So hit them over the head with the resched_cpu() hammer!
1124 	 */
1125 	if (tick_nohz_full_cpu(rdp->cpu) &&
1126 		   time_after(jiffies,
1127 			      READ_ONCE(rdp->last_fqs_resched) + jtsq * 3)) {
1128 		resched_cpu(rdp->cpu);
1129 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1130 	}
1131 
1132 	/*
1133 	 * If more than halfway to RCU CPU stall-warning time, invoke
1134 	 * resched_cpu() more frequently to try to loosen things up a bit.
1135 	 * Also check to see if the CPU is getting hammered with interrupts,
1136 	 * but only once per grace period, just to keep the IPIs down to
1137 	 * a dull roar.
1138 	 */
1139 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1140 		if (time_after(jiffies,
1141 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1142 			resched_cpu(rdp->cpu);
1143 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1144 		}
1145 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1146 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1147 		    (rnp->ffmask & rdp->grpmask)) {
1148 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1149 			rdp->rcu_iw_pending = true;
1150 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1151 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1152 		}
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static void record_gp_stall_check_time(void)
1159 {
1160 	unsigned long j = jiffies;
1161 	unsigned long j1;
1162 
1163 	rcu_state.gp_start = j;
1164 	j1 = rcu_jiffies_till_stall_check();
1165 	/* Record ->gp_start before ->jiffies_stall. */
1166 	smp_store_release(&rcu_state.jiffies_stall, j + j1); /* ^^^ */
1167 	rcu_state.jiffies_resched = j + j1 / 2;
1168 	rcu_state.n_force_qs_gpstart = READ_ONCE(rcu_state.n_force_qs);
1169 }
1170 
1171 /*
1172  * Complain about starvation of grace-period kthread.
1173  */
1174 static void rcu_check_gp_kthread_starvation(void)
1175 {
1176 	struct task_struct *gpk = rcu_state.gp_kthread;
1177 	unsigned long j;
1178 
1179 	j = jiffies - READ_ONCE(rcu_state.gp_activity);
1180 	if (j > 2 * HZ) {
1181 		pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1182 		       rcu_state.name, j,
1183 		       (long)rcu_seq_current(&rcu_state.gp_seq),
1184 		       rcu_state.gp_flags,
1185 		       gp_state_getname(rcu_state.gp_state), rcu_state.gp_state,
1186 		       gpk ? gpk->state : ~0, gpk ? task_cpu(gpk) : -1);
1187 		if (gpk) {
1188 			pr_err("RCU grace-period kthread stack dump:\n");
1189 			sched_show_task(gpk);
1190 			wake_up_process(gpk);
1191 		}
1192 	}
1193 }
1194 
1195 /*
1196  * Dump stacks of all tasks running on stalled CPUs.  First try using
1197  * NMIs, but fall back to manual remote stack tracing on architectures
1198  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1199  * traces are more accurate because they are printed by the target CPU.
1200  */
1201 static void rcu_dump_cpu_stacks(void)
1202 {
1203 	int cpu;
1204 	unsigned long flags;
1205 	struct rcu_node *rnp;
1206 
1207 	rcu_for_each_leaf_node(rnp) {
1208 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1209 		for_each_leaf_node_possible_cpu(rnp, cpu)
1210 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1211 				if (!trigger_single_cpu_backtrace(cpu))
1212 					dump_cpu_task(cpu);
1213 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1214 	}
1215 }
1216 
1217 /*
1218  * If too much time has passed in the current grace period, and if
1219  * so configured, go kick the relevant kthreads.
1220  */
1221 static void rcu_stall_kick_kthreads(void)
1222 {
1223 	unsigned long j;
1224 
1225 	if (!rcu_kick_kthreads)
1226 		return;
1227 	j = READ_ONCE(rcu_state.jiffies_kick_kthreads);
1228 	if (time_after(jiffies, j) && rcu_state.gp_kthread &&
1229 	    (rcu_gp_in_progress() || READ_ONCE(rcu_state.gp_flags))) {
1230 		WARN_ONCE(1, "Kicking %s grace-period kthread\n",
1231 			  rcu_state.name);
1232 		rcu_ftrace_dump(DUMP_ALL);
1233 		wake_up_process(rcu_state.gp_kthread);
1234 		WRITE_ONCE(rcu_state.jiffies_kick_kthreads, j + HZ);
1235 	}
1236 }
1237 
1238 static void panic_on_rcu_stall(void)
1239 {
1240 	if (sysctl_panic_on_rcu_stall)
1241 		panic("RCU Stall\n");
1242 }
1243 
1244 static void print_other_cpu_stall(unsigned long gp_seq)
1245 {
1246 	int cpu;
1247 	unsigned long flags;
1248 	unsigned long gpa;
1249 	unsigned long j;
1250 	int ndetected = 0;
1251 	struct rcu_node *rnp = rcu_get_root();
1252 	long totqlen = 0;
1253 
1254 	/* Kick and suppress, if so configured. */
1255 	rcu_stall_kick_kthreads();
1256 	if (rcu_cpu_stall_suppress)
1257 		return;
1258 
1259 	/*
1260 	 * OK, time to rat on our buddy...
1261 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1262 	 * RCU CPU stall warnings.
1263 	 */
1264 	pr_err("INFO: %s detected stalls on CPUs/tasks:", rcu_state.name);
1265 	print_cpu_stall_info_begin();
1266 	rcu_for_each_leaf_node(rnp) {
1267 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1268 		ndetected += rcu_print_task_stall(rnp);
1269 		if (rnp->qsmask != 0) {
1270 			for_each_leaf_node_possible_cpu(rnp, cpu)
1271 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1272 					print_cpu_stall_info(cpu);
1273 					ndetected++;
1274 				}
1275 		}
1276 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1277 	}
1278 
1279 	print_cpu_stall_info_end();
1280 	for_each_possible_cpu(cpu)
1281 		totqlen += rcu_get_n_cbs_cpu(cpu);
1282 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1283 	       smp_processor_id(), (long)(jiffies - rcu_state.gp_start),
1284 	       (long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1285 	if (ndetected) {
1286 		rcu_dump_cpu_stacks();
1287 
1288 		/* Complain about tasks blocking the grace period. */
1289 		rcu_print_detail_task_stall();
1290 	} else {
1291 		if (rcu_seq_current(&rcu_state.gp_seq) != gp_seq) {
1292 			pr_err("INFO: Stall ended before state dump start\n");
1293 		} else {
1294 			j = jiffies;
1295 			gpa = READ_ONCE(rcu_state.gp_activity);
1296 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1297 			       rcu_state.name, j - gpa, j, gpa,
1298 			       READ_ONCE(jiffies_till_next_fqs),
1299 			       rcu_get_root()->qsmask);
1300 			/* In this case, the current CPU might be at fault. */
1301 			sched_show_task(current);
1302 		}
1303 	}
1304 	/* Rewrite if needed in case of slow consoles. */
1305 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1306 		WRITE_ONCE(rcu_state.jiffies_stall,
1307 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1308 
1309 	rcu_check_gp_kthread_starvation();
1310 
1311 	panic_on_rcu_stall();
1312 
1313 	force_quiescent_state();  /* Kick them all. */
1314 }
1315 
1316 static void print_cpu_stall(void)
1317 {
1318 	int cpu;
1319 	unsigned long flags;
1320 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1321 	struct rcu_node *rnp = rcu_get_root();
1322 	long totqlen = 0;
1323 
1324 	/* Kick and suppress, if so configured. */
1325 	rcu_stall_kick_kthreads();
1326 	if (rcu_cpu_stall_suppress)
1327 		return;
1328 
1329 	/*
1330 	 * OK, time to rat on ourselves...
1331 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1332 	 * RCU CPU stall warnings.
1333 	 */
1334 	pr_err("INFO: %s self-detected stall on CPU", rcu_state.name);
1335 	print_cpu_stall_info_begin();
1336 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1337 	print_cpu_stall_info(smp_processor_id());
1338 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1339 	print_cpu_stall_info_end();
1340 	for_each_possible_cpu(cpu)
1341 		totqlen += rcu_get_n_cbs_cpu(cpu);
1342 	pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1343 		jiffies - rcu_state.gp_start,
1344 		(long)rcu_seq_current(&rcu_state.gp_seq), totqlen);
1345 
1346 	rcu_check_gp_kthread_starvation();
1347 
1348 	rcu_dump_cpu_stacks();
1349 
1350 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1351 	/* Rewrite if needed in case of slow consoles. */
1352 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rcu_state.jiffies_stall)))
1353 		WRITE_ONCE(rcu_state.jiffies_stall,
1354 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1355 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1356 
1357 	panic_on_rcu_stall();
1358 
1359 	/*
1360 	 * Attempt to revive the RCU machinery by forcing a context switch.
1361 	 *
1362 	 * A context switch would normally allow the RCU state machine to make
1363 	 * progress and it could be we're stuck in kernel space without context
1364 	 * switches for an entirely unreasonable amount of time.
1365 	 */
1366 	set_tsk_need_resched(current);
1367 	set_preempt_need_resched();
1368 }
1369 
1370 static void check_cpu_stall(struct rcu_data *rdp)
1371 {
1372 	unsigned long gs1;
1373 	unsigned long gs2;
1374 	unsigned long gps;
1375 	unsigned long j;
1376 	unsigned long jn;
1377 	unsigned long js;
1378 	struct rcu_node *rnp;
1379 
1380 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1381 	    !rcu_gp_in_progress())
1382 		return;
1383 	rcu_stall_kick_kthreads();
1384 	j = jiffies;
1385 
1386 	/*
1387 	 * Lots of memory barriers to reject false positives.
1388 	 *
1389 	 * The idea is to pick up rcu_state.gp_seq, then
1390 	 * rcu_state.jiffies_stall, then rcu_state.gp_start, and finally
1391 	 * another copy of rcu_state.gp_seq.  These values are updated in
1392 	 * the opposite order with memory barriers (or equivalent) during
1393 	 * grace-period initialization and cleanup.  Now, a false positive
1394 	 * can occur if we get an new value of rcu_state.gp_start and a old
1395 	 * value of rcu_state.jiffies_stall.  But given the memory barriers,
1396 	 * the only way that this can happen is if one grace period ends
1397 	 * and another starts between these two fetches.  This is detected
1398 	 * by comparing the second fetch of rcu_state.gp_seq with the
1399 	 * previous fetch from rcu_state.gp_seq.
1400 	 *
1401 	 * Given this check, comparisons of jiffies, rcu_state.jiffies_stall,
1402 	 * and rcu_state.gp_start suffice to forestall false positives.
1403 	 */
1404 	gs1 = READ_ONCE(rcu_state.gp_seq);
1405 	smp_rmb(); /* Pick up ->gp_seq first... */
1406 	js = READ_ONCE(rcu_state.jiffies_stall);
1407 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1408 	gps = READ_ONCE(rcu_state.gp_start);
1409 	smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1410 	gs2 = READ_ONCE(rcu_state.gp_seq);
1411 	if (gs1 != gs2 ||
1412 	    ULONG_CMP_LT(j, js) ||
1413 	    ULONG_CMP_GE(gps, js))
1414 		return; /* No stall or GP completed since entering function. */
1415 	rnp = rdp->mynode;
1416 	jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1417 	if (rcu_gp_in_progress() &&
1418 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1419 	    cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1420 
1421 		/* We haven't checked in, so go dump stack. */
1422 		print_cpu_stall();
1423 
1424 	} else if (rcu_gp_in_progress() &&
1425 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1426 		   cmpxchg(&rcu_state.jiffies_stall, js, jn) == js) {
1427 
1428 		/* They had a few time units to dump stack, so complain. */
1429 		print_other_cpu_stall(gs2);
1430 	}
1431 }
1432 
1433 /**
1434  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1435  *
1436  * Set the stall-warning timeout way off into the future, thus preventing
1437  * any RCU CPU stall-warning messages from appearing in the current set of
1438  * RCU grace periods.
1439  *
1440  * The caller must disable hard irqs.
1441  */
1442 void rcu_cpu_stall_reset(void)
1443 {
1444 	WRITE_ONCE(rcu_state.jiffies_stall, jiffies + ULONG_MAX / 2);
1445 }
1446 
1447 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
1448 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1449 			      unsigned long gp_seq_req, const char *s)
1450 {
1451 	trace_rcu_future_grace_period(rcu_state.name, rnp->gp_seq, gp_seq_req,
1452 				      rnp->level, rnp->grplo, rnp->grphi, s);
1453 }
1454 
1455 /*
1456  * rcu_start_this_gp - Request the start of a particular grace period
1457  * @rnp_start: The leaf node of the CPU from which to start.
1458  * @rdp: The rcu_data corresponding to the CPU from which to start.
1459  * @gp_seq_req: The gp_seq of the grace period to start.
1460  *
1461  * Start the specified grace period, as needed to handle newly arrived
1462  * callbacks.  The required future grace periods are recorded in each
1463  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1464  * is reason to awaken the grace-period kthread.
1465  *
1466  * The caller must hold the specified rcu_node structure's ->lock, which
1467  * is why the caller is responsible for waking the grace-period kthread.
1468  *
1469  * Returns true if the GP thread needs to be awakened else false.
1470  */
1471 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1472 			      unsigned long gp_seq_req)
1473 {
1474 	bool ret = false;
1475 	struct rcu_node *rnp;
1476 
1477 	/*
1478 	 * Use funnel locking to either acquire the root rcu_node
1479 	 * structure's lock or bail out if the need for this grace period
1480 	 * has already been recorded -- or if that grace period has in
1481 	 * fact already started.  If there is already a grace period in
1482 	 * progress in a non-leaf node, no recording is needed because the
1483 	 * end of the grace period will scan the leaf rcu_node structures.
1484 	 * Note that rnp_start->lock must not be released.
1485 	 */
1486 	raw_lockdep_assert_held_rcu_node(rnp_start);
1487 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1488 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1489 		if (rnp != rnp_start)
1490 			raw_spin_lock_rcu_node(rnp);
1491 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1492 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1493 		    (rnp != rnp_start &&
1494 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1495 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1496 					  TPS("Prestarted"));
1497 			goto unlock_out;
1498 		}
1499 		rnp->gp_seq_needed = gp_seq_req;
1500 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1501 			/*
1502 			 * We just marked the leaf or internal node, and a
1503 			 * grace period is in progress, which means that
1504 			 * rcu_gp_cleanup() will see the marking.  Bail to
1505 			 * reduce contention.
1506 			 */
1507 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1508 					  TPS("Startedleaf"));
1509 			goto unlock_out;
1510 		}
1511 		if (rnp != rnp_start && rnp->parent != NULL)
1512 			raw_spin_unlock_rcu_node(rnp);
1513 		if (!rnp->parent)
1514 			break;  /* At root, and perhaps also leaf. */
1515 	}
1516 
1517 	/* If GP already in progress, just leave, otherwise start one. */
1518 	if (rcu_gp_in_progress()) {
1519 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1520 		goto unlock_out;
1521 	}
1522 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1523 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1524 	rcu_state.gp_req_activity = jiffies;
1525 	if (!rcu_state.gp_kthread) {
1526 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1527 		goto unlock_out;
1528 	}
1529 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rcu_state.gp_seq), TPS("newreq"));
1530 	ret = true;  /* Caller must wake GP kthread. */
1531 unlock_out:
1532 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1533 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1534 		rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1535 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1536 	}
1537 	if (rnp != rnp_start)
1538 		raw_spin_unlock_rcu_node(rnp);
1539 	return ret;
1540 }
1541 
1542 /*
1543  * Clean up any old requests for the just-ended grace period.  Also return
1544  * whether any additional grace periods have been requested.
1545  */
1546 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1547 {
1548 	bool needmore;
1549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1550 
1551 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1552 	if (!needmore)
1553 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1554 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1555 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1556 	return needmore;
1557 }
1558 
1559 /*
1560  * Awaken the grace-period kthread.  Don't do a self-awaken, and don't
1561  * bother awakening when there is nothing for the grace-period kthread
1562  * to do (as in several CPUs raced to awaken, and we lost), and finally
1563  * don't try to awaken a kthread that has not yet been created.
1564  */
1565 static void rcu_gp_kthread_wake(void)
1566 {
1567 	if (current == rcu_state.gp_kthread ||
1568 	    !READ_ONCE(rcu_state.gp_flags) ||
1569 	    !rcu_state.gp_kthread)
1570 		return;
1571 	swake_up_one(&rcu_state.gp_wq);
1572 }
1573 
1574 /*
1575  * If there is room, assign a ->gp_seq number to any callbacks on this
1576  * CPU that have not already been assigned.  Also accelerate any callbacks
1577  * that were previously assigned a ->gp_seq number that has since proven
1578  * to be too conservative, which can happen if callbacks get assigned a
1579  * ->gp_seq number while RCU is idle, but with reference to a non-root
1580  * rcu_node structure.  This function is idempotent, so it does not hurt
1581  * to call it repeatedly.  Returns an flag saying that we should awaken
1582  * the RCU grace-period kthread.
1583  *
1584  * The caller must hold rnp->lock with interrupts disabled.
1585  */
1586 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1587 {
1588 	unsigned long gp_seq_req;
1589 	bool ret = false;
1590 
1591 	raw_lockdep_assert_held_rcu_node(rnp);
1592 
1593 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1594 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1595 		return false;
1596 
1597 	/*
1598 	 * Callbacks are often registered with incomplete grace-period
1599 	 * information.  Something about the fact that getting exact
1600 	 * information requires acquiring a global lock...  RCU therefore
1601 	 * makes a conservative estimate of the grace period number at which
1602 	 * a given callback will become ready to invoke.	The following
1603 	 * code checks this estimate and improves it when possible, thus
1604 	 * accelerating callback invocation to an earlier grace-period
1605 	 * number.
1606 	 */
1607 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1608 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1609 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1610 
1611 	/* Trace depending on how much we were able to accelerate. */
1612 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1613 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
1614 	else
1615 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
1616 	return ret;
1617 }
1618 
1619 /*
1620  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1621  * rcu_node structure's ->lock be held.  It consults the cached value
1622  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1623  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1624  * while holding the leaf rcu_node structure's ->lock.
1625  */
1626 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1627 					struct rcu_data *rdp)
1628 {
1629 	unsigned long c;
1630 	bool needwake;
1631 
1632 	lockdep_assert_irqs_disabled();
1633 	c = rcu_seq_snap(&rcu_state.gp_seq);
1634 	if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1635 		/* Old request still live, so mark recent callbacks. */
1636 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1637 		return;
1638 	}
1639 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1640 	needwake = rcu_accelerate_cbs(rnp, rdp);
1641 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1642 	if (needwake)
1643 		rcu_gp_kthread_wake();
1644 }
1645 
1646 /*
1647  * Move any callbacks whose grace period has completed to the
1648  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1649  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1650  * sublist.  This function is idempotent, so it does not hurt to
1651  * invoke it repeatedly.  As long as it is not invoked -too- often...
1652  * Returns true if the RCU grace-period kthread needs to be awakened.
1653  *
1654  * The caller must hold rnp->lock with interrupts disabled.
1655  */
1656 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1657 {
1658 	raw_lockdep_assert_held_rcu_node(rnp);
1659 
1660 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1661 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1662 		return false;
1663 
1664 	/*
1665 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1666 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1667 	 */
1668 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1669 
1670 	/* Classify any remaining callbacks. */
1671 	return rcu_accelerate_cbs(rnp, rdp);
1672 }
1673 
1674 /*
1675  * Update CPU-local rcu_data state to record the beginnings and ends of
1676  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1677  * structure corresponding to the current CPU, and must have irqs disabled.
1678  * Returns true if the grace-period kthread needs to be awakened.
1679  */
1680 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1681 {
1682 	bool ret;
1683 	bool need_gp;
1684 
1685 	raw_lockdep_assert_held_rcu_node(rnp);
1686 
1687 	if (rdp->gp_seq == rnp->gp_seq)
1688 		return false; /* Nothing to do. */
1689 
1690 	/* Handle the ends of any preceding grace periods first. */
1691 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1692 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1693 		ret = rcu_advance_cbs(rnp, rdp); /* Advance callbacks. */
1694 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1695 	} else {
1696 		ret = rcu_accelerate_cbs(rnp, rdp); /* Recent callbacks. */
1697 	}
1698 
1699 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1700 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1701 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1702 		/*
1703 		 * If the current grace period is waiting for this CPU,
1704 		 * set up to detect a quiescent state, otherwise don't
1705 		 * go looking for one.
1706 		 */
1707 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1708 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1709 		rdp->cpu_no_qs.b.norm = need_gp;
1710 		rdp->core_needs_qs = need_gp;
1711 		zero_cpu_stall_ticks(rdp);
1712 	}
1713 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1714 	if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1715 		rdp->gp_seq_needed = rnp->gp_seq_needed;
1716 	WRITE_ONCE(rdp->gpwrap, false);
1717 	rcu_gpnum_ovf(rnp, rdp);
1718 	return ret;
1719 }
1720 
1721 static void note_gp_changes(struct rcu_data *rdp)
1722 {
1723 	unsigned long flags;
1724 	bool needwake;
1725 	struct rcu_node *rnp;
1726 
1727 	local_irq_save(flags);
1728 	rnp = rdp->mynode;
1729 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1730 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1731 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1732 		local_irq_restore(flags);
1733 		return;
1734 	}
1735 	needwake = __note_gp_changes(rnp, rdp);
1736 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1737 	if (needwake)
1738 		rcu_gp_kthread_wake();
1739 }
1740 
1741 static void rcu_gp_slow(int delay)
1742 {
1743 	if (delay > 0 &&
1744 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1745 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1746 		schedule_timeout_uninterruptible(delay);
1747 }
1748 
1749 /*
1750  * Initialize a new grace period.  Return false if no grace period required.
1751  */
1752 static bool rcu_gp_init(void)
1753 {
1754 	unsigned long flags;
1755 	unsigned long oldmask;
1756 	unsigned long mask;
1757 	struct rcu_data *rdp;
1758 	struct rcu_node *rnp = rcu_get_root();
1759 
1760 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1761 	raw_spin_lock_irq_rcu_node(rnp);
1762 	if (!READ_ONCE(rcu_state.gp_flags)) {
1763 		/* Spurious wakeup, tell caller to go back to sleep.  */
1764 		raw_spin_unlock_irq_rcu_node(rnp);
1765 		return false;
1766 	}
1767 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1768 
1769 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1770 		/*
1771 		 * Grace period already in progress, don't start another.
1772 		 * Not supposed to be able to happen.
1773 		 */
1774 		raw_spin_unlock_irq_rcu_node(rnp);
1775 		return false;
1776 	}
1777 
1778 	/* Advance to a new grace period and initialize state. */
1779 	record_gp_stall_check_time();
1780 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1781 	rcu_seq_start(&rcu_state.gp_seq);
1782 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1783 	raw_spin_unlock_irq_rcu_node(rnp);
1784 
1785 	/*
1786 	 * Apply per-leaf buffered online and offline operations to the
1787 	 * rcu_node tree.  Note that this new grace period need not wait
1788 	 * for subsequent online CPUs, and that quiescent-state forcing
1789 	 * will handle subsequent offline CPUs.
1790 	 */
1791 	rcu_state.gp_state = RCU_GP_ONOFF;
1792 	rcu_for_each_leaf_node(rnp) {
1793 		raw_spin_lock(&rcu_state.ofl_lock);
1794 		raw_spin_lock_irq_rcu_node(rnp);
1795 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1796 		    !rnp->wait_blkd_tasks) {
1797 			/* Nothing to do on this leaf rcu_node structure. */
1798 			raw_spin_unlock_irq_rcu_node(rnp);
1799 			raw_spin_unlock(&rcu_state.ofl_lock);
1800 			continue;
1801 		}
1802 
1803 		/* Record old state, apply changes to ->qsmaskinit field. */
1804 		oldmask = rnp->qsmaskinit;
1805 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1806 
1807 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1808 		if (!oldmask != !rnp->qsmaskinit) {
1809 			if (!oldmask) { /* First online CPU for rcu_node. */
1810 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1811 					rcu_init_new_rnp(rnp);
1812 			} else if (rcu_preempt_has_tasks(rnp)) {
1813 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1814 			} else { /* Last offline CPU and can propagate. */
1815 				rcu_cleanup_dead_rnp(rnp);
1816 			}
1817 		}
1818 
1819 		/*
1820 		 * If all waited-on tasks from prior grace period are
1821 		 * done, and if all this rcu_node structure's CPUs are
1822 		 * still offline, propagate up the rcu_node tree and
1823 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1824 		 * rcu_node structure's CPUs has since come back online,
1825 		 * simply clear ->wait_blkd_tasks.
1826 		 */
1827 		if (rnp->wait_blkd_tasks &&
1828 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1829 			rnp->wait_blkd_tasks = false;
1830 			if (!rnp->qsmaskinit)
1831 				rcu_cleanup_dead_rnp(rnp);
1832 		}
1833 
1834 		raw_spin_unlock_irq_rcu_node(rnp);
1835 		raw_spin_unlock(&rcu_state.ofl_lock);
1836 	}
1837 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1838 
1839 	/*
1840 	 * Set the quiescent-state-needed bits in all the rcu_node
1841 	 * structures for all currently online CPUs in breadth-first
1842 	 * order, starting from the root rcu_node structure, relying on the
1843 	 * layout of the tree within the rcu_state.node[] array.  Note that
1844 	 * other CPUs will access only the leaves of the hierarchy, thus
1845 	 * seeing that no grace period is in progress, at least until the
1846 	 * corresponding leaf node has been initialized.
1847 	 *
1848 	 * The grace period cannot complete until the initialization
1849 	 * process finishes, because this kthread handles both.
1850 	 */
1851 	rcu_state.gp_state = RCU_GP_INIT;
1852 	rcu_for_each_node_breadth_first(rnp) {
1853 		rcu_gp_slow(gp_init_delay);
1854 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1855 		rdp = this_cpu_ptr(&rcu_data);
1856 		rcu_preempt_check_blocked_tasks(rnp);
1857 		rnp->qsmask = rnp->qsmaskinit;
1858 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1859 		if (rnp == rdp->mynode)
1860 			(void)__note_gp_changes(rnp, rdp);
1861 		rcu_preempt_boost_start_gp(rnp);
1862 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1863 					    rnp->level, rnp->grplo,
1864 					    rnp->grphi, rnp->qsmask);
1865 		/* Quiescent states for tasks on any now-offline CPUs. */
1866 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1867 		rnp->rcu_gp_init_mask = mask;
1868 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1869 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1870 		else
1871 			raw_spin_unlock_irq_rcu_node(rnp);
1872 		cond_resched_tasks_rcu_qs();
1873 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1874 	}
1875 
1876 	return true;
1877 }
1878 
1879 /*
1880  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1881  * time.
1882  */
1883 static bool rcu_gp_fqs_check_wake(int *gfp)
1884 {
1885 	struct rcu_node *rnp = rcu_get_root();
1886 
1887 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
1888 	*gfp = READ_ONCE(rcu_state.gp_flags);
1889 	if (*gfp & RCU_GP_FLAG_FQS)
1890 		return true;
1891 
1892 	/* The current grace period has completed. */
1893 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1894 		return true;
1895 
1896 	return false;
1897 }
1898 
1899 /*
1900  * Do one round of quiescent-state forcing.
1901  */
1902 static void rcu_gp_fqs(bool first_time)
1903 {
1904 	struct rcu_node *rnp = rcu_get_root();
1905 
1906 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1907 	rcu_state.n_force_qs++;
1908 	if (first_time) {
1909 		/* Collect dyntick-idle snapshots. */
1910 		force_qs_rnp(dyntick_save_progress_counter);
1911 	} else {
1912 		/* Handle dyntick-idle and offline CPUs. */
1913 		force_qs_rnp(rcu_implicit_dynticks_qs);
1914 	}
1915 	/* Clear flag to prevent immediate re-entry. */
1916 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1917 		raw_spin_lock_irq_rcu_node(rnp);
1918 		WRITE_ONCE(rcu_state.gp_flags,
1919 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1920 		raw_spin_unlock_irq_rcu_node(rnp);
1921 	}
1922 }
1923 
1924 /*
1925  * Loop doing repeated quiescent-state forcing until the grace period ends.
1926  */
1927 static void rcu_gp_fqs_loop(void)
1928 {
1929 	bool first_gp_fqs;
1930 	int gf;
1931 	unsigned long j;
1932 	int ret;
1933 	struct rcu_node *rnp = rcu_get_root();
1934 
1935 	first_gp_fqs = true;
1936 	j = READ_ONCE(jiffies_till_first_fqs);
1937 	ret = 0;
1938 	for (;;) {
1939 		if (!ret) {
1940 			rcu_state.jiffies_force_qs = jiffies + j;
1941 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1942 				   jiffies + 3 * j);
1943 		}
1944 		trace_rcu_grace_period(rcu_state.name,
1945 				       READ_ONCE(rcu_state.gp_seq),
1946 				       TPS("fqswait"));
1947 		rcu_state.gp_state = RCU_GP_WAIT_FQS;
1948 		ret = swait_event_idle_timeout_exclusive(
1949 				rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
1950 		rcu_state.gp_state = RCU_GP_DOING_FQS;
1951 		/* Locking provides needed memory barriers. */
1952 		/* If grace period done, leave loop. */
1953 		if (!READ_ONCE(rnp->qsmask) &&
1954 		    !rcu_preempt_blocked_readers_cgp(rnp))
1955 			break;
1956 		/* If time for quiescent-state forcing, do it. */
1957 		if (ULONG_CMP_GE(jiffies, rcu_state.jiffies_force_qs) ||
1958 		    (gf & RCU_GP_FLAG_FQS)) {
1959 			trace_rcu_grace_period(rcu_state.name,
1960 					       READ_ONCE(rcu_state.gp_seq),
1961 					       TPS("fqsstart"));
1962 			rcu_gp_fqs(first_gp_fqs);
1963 			first_gp_fqs = false;
1964 			trace_rcu_grace_period(rcu_state.name,
1965 					       READ_ONCE(rcu_state.gp_seq),
1966 					       TPS("fqsend"));
1967 			cond_resched_tasks_rcu_qs();
1968 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1969 			ret = 0; /* Force full wait till next FQS. */
1970 			j = READ_ONCE(jiffies_till_next_fqs);
1971 		} else {
1972 			/* Deal with stray signal. */
1973 			cond_resched_tasks_rcu_qs();
1974 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1975 			WARN_ON(signal_pending(current));
1976 			trace_rcu_grace_period(rcu_state.name,
1977 					       READ_ONCE(rcu_state.gp_seq),
1978 					       TPS("fqswaitsig"));
1979 			ret = 1; /* Keep old FQS timing. */
1980 			j = jiffies;
1981 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1982 				j = 1;
1983 			else
1984 				j = rcu_state.jiffies_force_qs - j;
1985 		}
1986 	}
1987 }
1988 
1989 /*
1990  * Clean up after the old grace period.
1991  */
1992 static void rcu_gp_cleanup(void)
1993 {
1994 	unsigned long gp_duration;
1995 	bool needgp = false;
1996 	unsigned long new_gp_seq;
1997 	struct rcu_data *rdp;
1998 	struct rcu_node *rnp = rcu_get_root();
1999 	struct swait_queue_head *sq;
2000 
2001 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2002 	raw_spin_lock_irq_rcu_node(rnp);
2003 	rcu_state.gp_end = jiffies;
2004 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2005 	if (gp_duration > rcu_state.gp_max)
2006 		rcu_state.gp_max = gp_duration;
2007 
2008 	/*
2009 	 * We know the grace period is complete, but to everyone else
2010 	 * it appears to still be ongoing.  But it is also the case
2011 	 * that to everyone else it looks like there is nothing that
2012 	 * they can do to advance the grace period.  It is therefore
2013 	 * safe for us to drop the lock in order to mark the grace
2014 	 * period as completed in all of the rcu_node structures.
2015 	 */
2016 	raw_spin_unlock_irq_rcu_node(rnp);
2017 
2018 	/*
2019 	 * Propagate new ->gp_seq value to rcu_node structures so that
2020 	 * other CPUs don't have to wait until the start of the next grace
2021 	 * period to process their callbacks.  This also avoids some nasty
2022 	 * RCU grace-period initialization races by forcing the end of
2023 	 * the current grace period to be completely recorded in all of
2024 	 * the rcu_node structures before the beginning of the next grace
2025 	 * period is recorded in any of the rcu_node structures.
2026 	 */
2027 	new_gp_seq = rcu_state.gp_seq;
2028 	rcu_seq_end(&new_gp_seq);
2029 	rcu_for_each_node_breadth_first(rnp) {
2030 		raw_spin_lock_irq_rcu_node(rnp);
2031 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2032 			dump_blkd_tasks(rnp, 10);
2033 		WARN_ON_ONCE(rnp->qsmask);
2034 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2035 		rdp = this_cpu_ptr(&rcu_data);
2036 		if (rnp == rdp->mynode)
2037 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2038 		/* smp_mb() provided by prior unlock-lock pair. */
2039 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2040 		sq = rcu_nocb_gp_get(rnp);
2041 		raw_spin_unlock_irq_rcu_node(rnp);
2042 		rcu_nocb_gp_cleanup(sq);
2043 		cond_resched_tasks_rcu_qs();
2044 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2045 		rcu_gp_slow(gp_cleanup_delay);
2046 	}
2047 	rnp = rcu_get_root();
2048 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2049 
2050 	/* Declare grace period done, trace first to use old GP number. */
2051 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2052 	rcu_seq_end(&rcu_state.gp_seq);
2053 	rcu_state.gp_state = RCU_GP_IDLE;
2054 	/* Check for GP requests since above loop. */
2055 	rdp = this_cpu_ptr(&rcu_data);
2056 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2057 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2058 				  TPS("CleanupMore"));
2059 		needgp = true;
2060 	}
2061 	/* Advance CBs to reduce false positives below. */
2062 	if (!rcu_accelerate_cbs(rnp, rdp) && needgp) {
2063 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2064 		rcu_state.gp_req_activity = jiffies;
2065 		trace_rcu_grace_period(rcu_state.name,
2066 				       READ_ONCE(rcu_state.gp_seq),
2067 				       TPS("newreq"));
2068 	} else {
2069 		WRITE_ONCE(rcu_state.gp_flags,
2070 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2071 	}
2072 	raw_spin_unlock_irq_rcu_node(rnp);
2073 }
2074 
2075 /*
2076  * Body of kthread that handles grace periods.
2077  */
2078 static int __noreturn rcu_gp_kthread(void *unused)
2079 {
2080 	rcu_bind_gp_kthread();
2081 	for (;;) {
2082 
2083 		/* Handle grace-period start. */
2084 		for (;;) {
2085 			trace_rcu_grace_period(rcu_state.name,
2086 					       READ_ONCE(rcu_state.gp_seq),
2087 					       TPS("reqwait"));
2088 			rcu_state.gp_state = RCU_GP_WAIT_GPS;
2089 			swait_event_idle_exclusive(rcu_state.gp_wq,
2090 					 READ_ONCE(rcu_state.gp_flags) &
2091 					 RCU_GP_FLAG_INIT);
2092 			rcu_state.gp_state = RCU_GP_DONE_GPS;
2093 			/* Locking provides needed memory barrier. */
2094 			if (rcu_gp_init())
2095 				break;
2096 			cond_resched_tasks_rcu_qs();
2097 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2098 			WARN_ON(signal_pending(current));
2099 			trace_rcu_grace_period(rcu_state.name,
2100 					       READ_ONCE(rcu_state.gp_seq),
2101 					       TPS("reqwaitsig"));
2102 		}
2103 
2104 		/* Handle quiescent-state forcing. */
2105 		rcu_gp_fqs_loop();
2106 
2107 		/* Handle grace-period end. */
2108 		rcu_state.gp_state = RCU_GP_CLEANUP;
2109 		rcu_gp_cleanup();
2110 		rcu_state.gp_state = RCU_GP_CLEANED;
2111 	}
2112 }
2113 
2114 /*
2115  * Report a full set of quiescent states to the rcu_state data structure.
2116  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2117  * another grace period is required.  Whether we wake the grace-period
2118  * kthread or it awakens itself for the next round of quiescent-state
2119  * forcing, that kthread will clean up after the just-completed grace
2120  * period.  Note that the caller must hold rnp->lock, which is released
2121  * before return.
2122  */
2123 static void rcu_report_qs_rsp(unsigned long flags)
2124 	__releases(rcu_get_root()->lock)
2125 {
2126 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2127 	WARN_ON_ONCE(!rcu_gp_in_progress());
2128 	WRITE_ONCE(rcu_state.gp_flags,
2129 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2130 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2131 	rcu_gp_kthread_wake();
2132 }
2133 
2134 /*
2135  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2136  * Allows quiescent states for a group of CPUs to be reported at one go
2137  * to the specified rcu_node structure, though all the CPUs in the group
2138  * must be represented by the same rcu_node structure (which need not be a
2139  * leaf rcu_node structure, though it often will be).  The gps parameter
2140  * is the grace-period snapshot, which means that the quiescent states
2141  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2142  * must be held upon entry, and it is released before return.
2143  *
2144  * As a special case, if mask is zero, the bit-already-cleared check is
2145  * disabled.  This allows propagating quiescent state due to resumed tasks
2146  * during grace-period initialization.
2147  */
2148 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2149 			      unsigned long gps, unsigned long flags)
2150 	__releases(rnp->lock)
2151 {
2152 	unsigned long oldmask = 0;
2153 	struct rcu_node *rnp_c;
2154 
2155 	raw_lockdep_assert_held_rcu_node(rnp);
2156 
2157 	/* Walk up the rcu_node hierarchy. */
2158 	for (;;) {
2159 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2160 
2161 			/*
2162 			 * Our bit has already been cleared, or the
2163 			 * relevant grace period is already over, so done.
2164 			 */
2165 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2166 			return;
2167 		}
2168 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2169 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2170 			     rcu_preempt_blocked_readers_cgp(rnp));
2171 		rnp->qsmask &= ~mask;
2172 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2173 						 mask, rnp->qsmask, rnp->level,
2174 						 rnp->grplo, rnp->grphi,
2175 						 !!rnp->gp_tasks);
2176 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2177 
2178 			/* Other bits still set at this level, so done. */
2179 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2180 			return;
2181 		}
2182 		rnp->completedqs = rnp->gp_seq;
2183 		mask = rnp->grpmask;
2184 		if (rnp->parent == NULL) {
2185 
2186 			/* No more levels.  Exit loop holding root lock. */
2187 
2188 			break;
2189 		}
2190 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2191 		rnp_c = rnp;
2192 		rnp = rnp->parent;
2193 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2194 		oldmask = rnp_c->qsmask;
2195 	}
2196 
2197 	/*
2198 	 * Get here if we are the last CPU to pass through a quiescent
2199 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2200 	 * to clean up and start the next grace period if one is needed.
2201 	 */
2202 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2203 }
2204 
2205 /*
2206  * Record a quiescent state for all tasks that were previously queued
2207  * on the specified rcu_node structure and that were blocking the current
2208  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2209  * irqs disabled, and this lock is released upon return, but irqs remain
2210  * disabled.
2211  */
2212 static void __maybe_unused
2213 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2214 	__releases(rnp->lock)
2215 {
2216 	unsigned long gps;
2217 	unsigned long mask;
2218 	struct rcu_node *rnp_p;
2219 
2220 	raw_lockdep_assert_held_rcu_node(rnp);
2221 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)) ||
2222 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2223 	    rnp->qsmask != 0) {
2224 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2225 		return;  /* Still need more quiescent states! */
2226 	}
2227 
2228 	rnp->completedqs = rnp->gp_seq;
2229 	rnp_p = rnp->parent;
2230 	if (rnp_p == NULL) {
2231 		/*
2232 		 * Only one rcu_node structure in the tree, so don't
2233 		 * try to report up to its nonexistent parent!
2234 		 */
2235 		rcu_report_qs_rsp(flags);
2236 		return;
2237 	}
2238 
2239 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2240 	gps = rnp->gp_seq;
2241 	mask = rnp->grpmask;
2242 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2243 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2244 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2245 }
2246 
2247 /*
2248  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2249  * structure.  This must be called from the specified CPU.
2250  */
2251 static void
2252 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
2253 {
2254 	unsigned long flags;
2255 	unsigned long mask;
2256 	bool needwake;
2257 	struct rcu_node *rnp;
2258 
2259 	rnp = rdp->mynode;
2260 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2261 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2262 	    rdp->gpwrap) {
2263 
2264 		/*
2265 		 * The grace period in which this quiescent state was
2266 		 * recorded has ended, so don't report it upwards.
2267 		 * We will instead need a new quiescent state that lies
2268 		 * within the current grace period.
2269 		 */
2270 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2271 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2272 		return;
2273 	}
2274 	mask = rdp->grpmask;
2275 	if ((rnp->qsmask & mask) == 0) {
2276 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2277 	} else {
2278 		rdp->core_needs_qs = false;
2279 
2280 		/*
2281 		 * This GP can't end until cpu checks in, so all of our
2282 		 * callbacks can be processed during the next GP.
2283 		 */
2284 		needwake = rcu_accelerate_cbs(rnp, rdp);
2285 
2286 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2287 		/* ^^^ Released rnp->lock */
2288 		if (needwake)
2289 			rcu_gp_kthread_wake();
2290 	}
2291 }
2292 
2293 /*
2294  * Check to see if there is a new grace period of which this CPU
2295  * is not yet aware, and if so, set up local rcu_data state for it.
2296  * Otherwise, see if this CPU has just passed through its first
2297  * quiescent state for this grace period, and record that fact if so.
2298  */
2299 static void
2300 rcu_check_quiescent_state(struct rcu_data *rdp)
2301 {
2302 	/* Check for grace-period ends and beginnings. */
2303 	note_gp_changes(rdp);
2304 
2305 	/*
2306 	 * Does this CPU still need to do its part for current grace period?
2307 	 * If no, return and let the other CPUs do their part as well.
2308 	 */
2309 	if (!rdp->core_needs_qs)
2310 		return;
2311 
2312 	/*
2313 	 * Was there a quiescent state since the beginning of the grace
2314 	 * period? If no, then exit and wait for the next call.
2315 	 */
2316 	if (rdp->cpu_no_qs.b.norm)
2317 		return;
2318 
2319 	/*
2320 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2321 	 * judge of that).
2322 	 */
2323 	rcu_report_qs_rdp(rdp->cpu, rdp);
2324 }
2325 
2326 /*
2327  * Near the end of the offline process.  Trace the fact that this CPU
2328  * is going offline.
2329  */
2330 int rcutree_dying_cpu(unsigned int cpu)
2331 {
2332 	RCU_TRACE(bool blkd;)
2333 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(&rcu_data);)
2334 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2335 
2336 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2337 		return 0;
2338 
2339 	RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2340 	trace_rcu_grace_period(rcu_state.name, rnp->gp_seq,
2341 			       blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2342 	return 0;
2343 }
2344 
2345 /*
2346  * All CPUs for the specified rcu_node structure have gone offline,
2347  * and all tasks that were preempted within an RCU read-side critical
2348  * section while running on one of those CPUs have since exited their RCU
2349  * read-side critical section.  Some other CPU is reporting this fact with
2350  * the specified rcu_node structure's ->lock held and interrupts disabled.
2351  * This function therefore goes up the tree of rcu_node structures,
2352  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2353  * the leaf rcu_node structure's ->qsmaskinit field has already been
2354  * updated.
2355  *
2356  * This function does check that the specified rcu_node structure has
2357  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2358  * prematurely.  That said, invoking it after the fact will cost you
2359  * a needless lock acquisition.  So once it has done its work, don't
2360  * invoke it again.
2361  */
2362 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2363 {
2364 	long mask;
2365 	struct rcu_node *rnp = rnp_leaf;
2366 
2367 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2368 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2369 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2370 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2371 		return;
2372 	for (;;) {
2373 		mask = rnp->grpmask;
2374 		rnp = rnp->parent;
2375 		if (!rnp)
2376 			break;
2377 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2378 		rnp->qsmaskinit &= ~mask;
2379 		/* Between grace periods, so better already be zero! */
2380 		WARN_ON_ONCE(rnp->qsmask);
2381 		if (rnp->qsmaskinit) {
2382 			raw_spin_unlock_rcu_node(rnp);
2383 			/* irqs remain disabled. */
2384 			return;
2385 		}
2386 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2387 	}
2388 }
2389 
2390 /*
2391  * The CPU has been completely removed, and some other CPU is reporting
2392  * this fact from process context.  Do the remainder of the cleanup.
2393  * There can only be one CPU hotplug operation at a time, so no need for
2394  * explicit locking.
2395  */
2396 int rcutree_dead_cpu(unsigned int cpu)
2397 {
2398 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2399 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2400 
2401 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2402 		return 0;
2403 
2404 	/* Adjust any no-longer-needed kthreads. */
2405 	rcu_boost_kthread_setaffinity(rnp, -1);
2406 	/* Do any needed no-CB deferred wakeups from this CPU. */
2407 	do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2408 	return 0;
2409 }
2410 
2411 /*
2412  * Invoke any RCU callbacks that have made it to the end of their grace
2413  * period.  Thottle as specified by rdp->blimit.
2414  */
2415 static void rcu_do_batch(struct rcu_data *rdp)
2416 {
2417 	unsigned long flags;
2418 	struct rcu_head *rhp;
2419 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2420 	long bl, count;
2421 
2422 	/* If no callbacks are ready, just return. */
2423 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2424 		trace_rcu_batch_start(rcu_state.name,
2425 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2426 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2427 		trace_rcu_batch_end(rcu_state.name, 0,
2428 				    !rcu_segcblist_empty(&rdp->cblist),
2429 				    need_resched(), is_idle_task(current),
2430 				    rcu_is_callbacks_kthread());
2431 		return;
2432 	}
2433 
2434 	/*
2435 	 * Extract the list of ready callbacks, disabling to prevent
2436 	 * races with call_rcu() from interrupt handlers.  Leave the
2437 	 * callback counts, as rcu_barrier() needs to be conservative.
2438 	 */
2439 	local_irq_save(flags);
2440 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2441 	bl = rdp->blimit;
2442 	trace_rcu_batch_start(rcu_state.name,
2443 			      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2444 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2445 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2446 	local_irq_restore(flags);
2447 
2448 	/* Invoke callbacks. */
2449 	rhp = rcu_cblist_dequeue(&rcl);
2450 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2451 		debug_rcu_head_unqueue(rhp);
2452 		if (__rcu_reclaim(rcu_state.name, rhp))
2453 			rcu_cblist_dequeued_lazy(&rcl);
2454 		/*
2455 		 * Stop only if limit reached and CPU has something to do.
2456 		 * Note: The rcl structure counts down from zero.
2457 		 */
2458 		if (-rcl.len >= bl &&
2459 		    (need_resched() ||
2460 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2461 			break;
2462 	}
2463 
2464 	local_irq_save(flags);
2465 	count = -rcl.len;
2466 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2467 			    is_idle_task(current), rcu_is_callbacks_kthread());
2468 
2469 	/* Update counts and requeue any remaining callbacks. */
2470 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2471 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2472 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2473 
2474 	/* Reinstate batch limit if we have worked down the excess. */
2475 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2476 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2477 		rdp->blimit = blimit;
2478 
2479 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2480 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2481 		rdp->qlen_last_fqs_check = 0;
2482 		rdp->n_force_qs_snap = rcu_state.n_force_qs;
2483 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2484 		rdp->qlen_last_fqs_check = count;
2485 
2486 	/*
2487 	 * The following usually indicates a double call_rcu().  To track
2488 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2489 	 */
2490 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2491 
2492 	local_irq_restore(flags);
2493 
2494 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2495 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2496 		invoke_rcu_core();
2497 }
2498 
2499 /*
2500  * Check to see if this CPU is in a non-context-switch quiescent state
2501  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2502  * Also schedule RCU core processing.
2503  *
2504  * This function must be called from hardirq context.  It is normally
2505  * invoked from the scheduling-clock interrupt.
2506  */
2507 void rcu_check_callbacks(int user)
2508 {
2509 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2510 	raw_cpu_inc(rcu_data.ticks_this_gp);
2511 	/* The load-acquire pairs with the store-release setting to true. */
2512 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2513 		/* Idle and userspace execution already are quiescent states. */
2514 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2515 			set_tsk_need_resched(current);
2516 			set_preempt_need_resched();
2517 		}
2518 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2519 	}
2520 	rcu_flavor_check_callbacks(user);
2521 	if (rcu_pending())
2522 		invoke_rcu_core();
2523 
2524 	trace_rcu_utilization(TPS("End scheduler-tick"));
2525 }
2526 
2527 /*
2528  * Scan the leaf rcu_node structures, processing dyntick state for any that
2529  * have not yet encountered a quiescent state, using the function specified.
2530  * Also initiate boosting for any threads blocked on the root rcu_node.
2531  *
2532  * The caller must have suppressed start of new grace periods.
2533  */
2534 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2535 {
2536 	int cpu;
2537 	unsigned long flags;
2538 	unsigned long mask;
2539 	struct rcu_node *rnp;
2540 
2541 	rcu_for_each_leaf_node(rnp) {
2542 		cond_resched_tasks_rcu_qs();
2543 		mask = 0;
2544 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2545 		if (rnp->qsmask == 0) {
2546 			if (!IS_ENABLED(CONFIG_PREEMPT) ||
2547 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2548 				/*
2549 				 * No point in scanning bits because they
2550 				 * are all zero.  But we might need to
2551 				 * priority-boost blocked readers.
2552 				 */
2553 				rcu_initiate_boost(rnp, flags);
2554 				/* rcu_initiate_boost() releases rnp->lock */
2555 				continue;
2556 			}
2557 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2558 			continue;
2559 		}
2560 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2561 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2562 			if ((rnp->qsmask & bit) != 0) {
2563 				if (f(per_cpu_ptr(&rcu_data, cpu)))
2564 					mask |= bit;
2565 			}
2566 		}
2567 		if (mask != 0) {
2568 			/* Idle/offline CPUs, report (releases rnp->lock). */
2569 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2570 		} else {
2571 			/* Nothing to do here, so just drop the lock. */
2572 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2573 		}
2574 	}
2575 }
2576 
2577 /*
2578  * Force quiescent states on reluctant CPUs, and also detect which
2579  * CPUs are in dyntick-idle mode.
2580  */
2581 static void force_quiescent_state(void)
2582 {
2583 	unsigned long flags;
2584 	bool ret;
2585 	struct rcu_node *rnp;
2586 	struct rcu_node *rnp_old = NULL;
2587 
2588 	/* Funnel through hierarchy to reduce memory contention. */
2589 	rnp = __this_cpu_read(rcu_data.mynode);
2590 	for (; rnp != NULL; rnp = rnp->parent) {
2591 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2592 		      !raw_spin_trylock(&rnp->fqslock);
2593 		if (rnp_old != NULL)
2594 			raw_spin_unlock(&rnp_old->fqslock);
2595 		if (ret)
2596 			return;
2597 		rnp_old = rnp;
2598 	}
2599 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2600 
2601 	/* Reached the root of the rcu_node tree, acquire lock. */
2602 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2603 	raw_spin_unlock(&rnp_old->fqslock);
2604 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2605 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2606 		return;  /* Someone beat us to it. */
2607 	}
2608 	WRITE_ONCE(rcu_state.gp_flags,
2609 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2610 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2611 	rcu_gp_kthread_wake();
2612 }
2613 
2614 /*
2615  * This function checks for grace-period requests that fail to motivate
2616  * RCU to come out of its idle mode.
2617  */
2618 void
2619 rcu_check_gp_start_stall(struct rcu_node *rnp, struct rcu_data *rdp,
2620 			 const unsigned long gpssdelay)
2621 {
2622 	unsigned long flags;
2623 	unsigned long j;
2624 	struct rcu_node *rnp_root = rcu_get_root();
2625 	static atomic_t warned = ATOMIC_INIT(0);
2626 
2627 	if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress() ||
2628 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2629 		return;
2630 	j = jiffies; /* Expensive access, and in common case don't get here. */
2631 	if (time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2632 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2633 	    atomic_read(&warned))
2634 		return;
2635 
2636 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2637 	j = jiffies;
2638 	if (rcu_gp_in_progress() ||
2639 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2640 	    time_before(j, READ_ONCE(rcu_state.gp_req_activity) + gpssdelay) ||
2641 	    time_before(j, READ_ONCE(rcu_state.gp_activity) + gpssdelay) ||
2642 	    atomic_read(&warned)) {
2643 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2644 		return;
2645 	}
2646 	/* Hold onto the leaf lock to make others see warned==1. */
2647 
2648 	if (rnp_root != rnp)
2649 		raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2650 	j = jiffies;
2651 	if (rcu_gp_in_progress() ||
2652 	    ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2653 	    time_before(j, rcu_state.gp_req_activity + gpssdelay) ||
2654 	    time_before(j, rcu_state.gp_activity + gpssdelay) ||
2655 	    atomic_xchg(&warned, 1)) {
2656 		raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2657 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2658 		return;
2659 	}
2660 	pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2661 		 __func__, (long)READ_ONCE(rcu_state.gp_seq),
2662 		 (long)READ_ONCE(rnp_root->gp_seq_needed),
2663 		 j - rcu_state.gp_req_activity, j - rcu_state.gp_activity,
2664 		 rcu_state.gp_flags, rcu_state.gp_state, rcu_state.name,
2665 		 rcu_state.gp_kthread ? rcu_state.gp_kthread->state : 0x1ffffL);
2666 	WARN_ON(1);
2667 	if (rnp_root != rnp)
2668 		raw_spin_unlock_rcu_node(rnp_root);
2669 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2670 }
2671 
2672 /*
2673  * Do a forward-progress check for rcutorture.  This is normally invoked
2674  * due to an OOM event.  The argument "j" gives the time period during
2675  * which rcutorture would like progress to have been made.
2676  */
2677 void rcu_fwd_progress_check(unsigned long j)
2678 {
2679 	unsigned long cbs;
2680 	int cpu;
2681 	unsigned long max_cbs = 0;
2682 	int max_cpu = -1;
2683 	struct rcu_data *rdp;
2684 
2685 	if (rcu_gp_in_progress()) {
2686 		pr_info("%s: GP age %lu jiffies\n",
2687 			__func__, jiffies - rcu_state.gp_start);
2688 		show_rcu_gp_kthreads();
2689 	} else {
2690 		pr_info("%s: Last GP end %lu jiffies ago\n",
2691 			__func__, jiffies - rcu_state.gp_end);
2692 		preempt_disable();
2693 		rdp = this_cpu_ptr(&rcu_data);
2694 		rcu_check_gp_start_stall(rdp->mynode, rdp, j);
2695 		preempt_enable();
2696 	}
2697 	for_each_possible_cpu(cpu) {
2698 		cbs = rcu_get_n_cbs_cpu(cpu);
2699 		if (!cbs)
2700 			continue;
2701 		if (max_cpu < 0)
2702 			pr_info("%s: callbacks", __func__);
2703 		pr_cont(" %d: %lu", cpu, cbs);
2704 		if (cbs <= max_cbs)
2705 			continue;
2706 		max_cbs = cbs;
2707 		max_cpu = cpu;
2708 	}
2709 	if (max_cpu >= 0)
2710 		pr_cont("\n");
2711 }
2712 EXPORT_SYMBOL_GPL(rcu_fwd_progress_check);
2713 
2714 /*
2715  * This does the RCU core processing work for the specified rcu_data
2716  * structures.  This may be called only from the CPU to whom the rdp
2717  * belongs.
2718  */
2719 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2720 {
2721 	unsigned long flags;
2722 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2723 	struct rcu_node *rnp = rdp->mynode;
2724 
2725 	if (cpu_is_offline(smp_processor_id()))
2726 		return;
2727 	trace_rcu_utilization(TPS("Start RCU core"));
2728 	WARN_ON_ONCE(!rdp->beenonline);
2729 
2730 	/* Report any deferred quiescent states if preemption enabled. */
2731 	if (!(preempt_count() & PREEMPT_MASK)) {
2732 		rcu_preempt_deferred_qs(current);
2733 	} else if (rcu_preempt_need_deferred_qs(current)) {
2734 		set_tsk_need_resched(current);
2735 		set_preempt_need_resched();
2736 	}
2737 
2738 	/* Update RCU state based on any recent quiescent states. */
2739 	rcu_check_quiescent_state(rdp);
2740 
2741 	/* No grace period and unregistered callbacks? */
2742 	if (!rcu_gp_in_progress() &&
2743 	    rcu_segcblist_is_enabled(&rdp->cblist)) {
2744 		local_irq_save(flags);
2745 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2746 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2747 		local_irq_restore(flags);
2748 	}
2749 
2750 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2751 
2752 	/* If there are callbacks ready, invoke them. */
2753 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2754 		invoke_rcu_callbacks(rdp);
2755 
2756 	/* Do any needed deferred wakeups of rcuo kthreads. */
2757 	do_nocb_deferred_wakeup(rdp);
2758 	trace_rcu_utilization(TPS("End RCU core"));
2759 }
2760 
2761 /*
2762  * Schedule RCU callback invocation.  If the running implementation of RCU
2763  * does not support RCU priority boosting, just do a direct call, otherwise
2764  * wake up the per-CPU kernel kthread.  Note that because we are running
2765  * on the current CPU with softirqs disabled, the rcu_cpu_kthread_task
2766  * cannot disappear out from under us.
2767  */
2768 static void invoke_rcu_callbacks(struct rcu_data *rdp)
2769 {
2770 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2771 		return;
2772 	if (likely(!rcu_state.boost)) {
2773 		rcu_do_batch(rdp);
2774 		return;
2775 	}
2776 	invoke_rcu_callbacks_kthread();
2777 }
2778 
2779 static void invoke_rcu_core(void)
2780 {
2781 	if (cpu_online(smp_processor_id()))
2782 		raise_softirq(RCU_SOFTIRQ);
2783 }
2784 
2785 /*
2786  * Handle any core-RCU processing required by a call_rcu() invocation.
2787  */
2788 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2789 			    unsigned long flags)
2790 {
2791 	/*
2792 	 * If called from an extended quiescent state, invoke the RCU
2793 	 * core in order to force a re-evaluation of RCU's idleness.
2794 	 */
2795 	if (!rcu_is_watching())
2796 		invoke_rcu_core();
2797 
2798 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2799 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2800 		return;
2801 
2802 	/*
2803 	 * Force the grace period if too many callbacks or too long waiting.
2804 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2805 	 * if some other CPU has recently done so.  Also, don't bother
2806 	 * invoking force_quiescent_state() if the newly enqueued callback
2807 	 * is the only one waiting for a grace period to complete.
2808 	 */
2809 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2810 		     rdp->qlen_last_fqs_check + qhimark)) {
2811 
2812 		/* Are we ignoring a completed grace period? */
2813 		note_gp_changes(rdp);
2814 
2815 		/* Start a new grace period if one not already started. */
2816 		if (!rcu_gp_in_progress()) {
2817 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2818 		} else {
2819 			/* Give the grace period a kick. */
2820 			rdp->blimit = LONG_MAX;
2821 			if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2822 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2823 				force_quiescent_state();
2824 			rdp->n_force_qs_snap = rcu_state.n_force_qs;
2825 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2826 		}
2827 	}
2828 }
2829 
2830 /*
2831  * RCU callback function to leak a callback.
2832  */
2833 static void rcu_leak_callback(struct rcu_head *rhp)
2834 {
2835 }
2836 
2837 /*
2838  * Helper function for call_rcu() and friends.  The cpu argument will
2839  * normally be -1, indicating "currently running CPU".  It may specify
2840  * a CPU only if that CPU is a no-CBs CPU.  Currently, only rcu_barrier()
2841  * is expected to specify a CPU.
2842  */
2843 static void
2844 __call_rcu(struct rcu_head *head, rcu_callback_t func, int cpu, bool lazy)
2845 {
2846 	unsigned long flags;
2847 	struct rcu_data *rdp;
2848 
2849 	/* Misaligned rcu_head! */
2850 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2851 
2852 	if (debug_rcu_head_queue(head)) {
2853 		/*
2854 		 * Probable double call_rcu(), so leak the callback.
2855 		 * Use rcu:rcu_callback trace event to find the previous
2856 		 * time callback was passed to __call_rcu().
2857 		 */
2858 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2859 			  head, head->func);
2860 		WRITE_ONCE(head->func, rcu_leak_callback);
2861 		return;
2862 	}
2863 	head->func = func;
2864 	head->next = NULL;
2865 	local_irq_save(flags);
2866 	rdp = this_cpu_ptr(&rcu_data);
2867 
2868 	/* Add the callback to our list. */
2869 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2870 		int offline;
2871 
2872 		if (cpu != -1)
2873 			rdp = per_cpu_ptr(&rcu_data, cpu);
2874 		if (likely(rdp->mynode)) {
2875 			/* Post-boot, so this should be for a no-CBs CPU. */
2876 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2877 			WARN_ON_ONCE(offline);
2878 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
2879 			local_irq_restore(flags);
2880 			return;
2881 		}
2882 		/*
2883 		 * Very early boot, before rcu_init().  Initialize if needed
2884 		 * and then drop through to queue the callback.
2885 		 */
2886 		WARN_ON_ONCE(cpu != -1);
2887 		WARN_ON_ONCE(!rcu_is_watching());
2888 		if (rcu_segcblist_empty(&rdp->cblist))
2889 			rcu_segcblist_init(&rdp->cblist);
2890 	}
2891 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2892 	if (!lazy)
2893 		rcu_idle_count_callbacks_posted();
2894 
2895 	if (__is_kfree_rcu_offset((unsigned long)func))
2896 		trace_rcu_kfree_callback(rcu_state.name, head,
2897 					 (unsigned long)func,
2898 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2899 					 rcu_segcblist_n_cbs(&rdp->cblist));
2900 	else
2901 		trace_rcu_callback(rcu_state.name, head,
2902 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2903 				   rcu_segcblist_n_cbs(&rdp->cblist));
2904 
2905 	/* Go handle any RCU core processing required. */
2906 	__call_rcu_core(rdp, head, flags);
2907 	local_irq_restore(flags);
2908 }
2909 
2910 /**
2911  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2912  * @head: structure to be used for queueing the RCU updates.
2913  * @func: actual callback function to be invoked after the grace period
2914  *
2915  * The callback function will be invoked some time after a full grace
2916  * period elapses, in other words after all pre-existing RCU read-side
2917  * critical sections have completed.  However, the callback function
2918  * might well execute concurrently with RCU read-side critical sections
2919  * that started after call_rcu() was invoked.  RCU read-side critical
2920  * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2921  * may be nested.  In addition, regions of code across which interrupts,
2922  * preemption, or softirqs have been disabled also serve as RCU read-side
2923  * critical sections.  This includes hardware interrupt handlers, softirq
2924  * handlers, and NMI handlers.
2925  *
2926  * Note that all CPUs must agree that the grace period extended beyond
2927  * all pre-existing RCU read-side critical section.  On systems with more
2928  * than one CPU, this means that when "func()" is invoked, each CPU is
2929  * guaranteed to have executed a full memory barrier since the end of its
2930  * last RCU read-side critical section whose beginning preceded the call
2931  * to call_rcu().  It also means that each CPU executing an RCU read-side
2932  * critical section that continues beyond the start of "func()" must have
2933  * executed a memory barrier after the call_rcu() but before the beginning
2934  * of that RCU read-side critical section.  Note that these guarantees
2935  * include CPUs that are offline, idle, or executing in user mode, as
2936  * well as CPUs that are executing in the kernel.
2937  *
2938  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2939  * resulting RCU callback function "func()", then both CPU A and CPU B are
2940  * guaranteed to execute a full memory barrier during the time interval
2941  * between the call to call_rcu() and the invocation of "func()" -- even
2942  * if CPU A and CPU B are the same CPU (but again only if the system has
2943  * more than one CPU).
2944  */
2945 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2946 {
2947 	__call_rcu(head, func, -1, 0);
2948 }
2949 EXPORT_SYMBOL_GPL(call_rcu);
2950 
2951 /*
2952  * Queue an RCU callback for lazy invocation after a grace period.
2953  * This will likely be later named something like "call_rcu_lazy()",
2954  * but this change will require some way of tagging the lazy RCU
2955  * callbacks in the list of pending callbacks. Until then, this
2956  * function may only be called from __kfree_rcu().
2957  */
2958 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
2959 {
2960 	__call_rcu(head, func, -1, 1);
2961 }
2962 EXPORT_SYMBOL_GPL(kfree_call_rcu);
2963 
2964 /**
2965  * get_state_synchronize_rcu - Snapshot current RCU state
2966  *
2967  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2968  * to determine whether or not a full grace period has elapsed in the
2969  * meantime.
2970  */
2971 unsigned long get_state_synchronize_rcu(void)
2972 {
2973 	/*
2974 	 * Any prior manipulation of RCU-protected data must happen
2975 	 * before the load from ->gp_seq.
2976 	 */
2977 	smp_mb();  /* ^^^ */
2978 	return rcu_seq_snap(&rcu_state.gp_seq);
2979 }
2980 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2981 
2982 /**
2983  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
2984  *
2985  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
2986  *
2987  * If a full RCU grace period has elapsed since the earlier call to
2988  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2989  * synchronize_rcu() to wait for a full grace period.
2990  *
2991  * Yes, this function does not take counter wrap into account.  But
2992  * counter wrap is harmless.  If the counter wraps, we have waited for
2993  * more than 2 billion grace periods (and way more on a 64-bit system!),
2994  * so waiting for one additional grace period should be just fine.
2995  */
2996 void cond_synchronize_rcu(unsigned long oldstate)
2997 {
2998 	if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
2999 		synchronize_rcu();
3000 	else
3001 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3002 }
3003 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3004 
3005 /*
3006  * Check to see if there is any immediate RCU-related work to be done by
3007  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3008  * in order of increasing expense: checks that can be carried out against
3009  * CPU-local state are performed first.  However, we must check for CPU
3010  * stalls first, else we might not get a chance.
3011  */
3012 static int rcu_pending(void)
3013 {
3014 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3015 	struct rcu_node *rnp = rdp->mynode;
3016 
3017 	/* Check for CPU stalls, if enabled. */
3018 	check_cpu_stall(rdp);
3019 
3020 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3021 	if (rcu_nohz_full_cpu())
3022 		return 0;
3023 
3024 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3025 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3026 		return 1;
3027 
3028 	/* Does this CPU have callbacks ready to invoke? */
3029 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
3030 		return 1;
3031 
3032 	/* Has RCU gone idle with this CPU needing another grace period? */
3033 	if (!rcu_gp_in_progress() &&
3034 	    rcu_segcblist_is_enabled(&rdp->cblist) &&
3035 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3036 		return 1;
3037 
3038 	/* Have RCU grace period completed or started?  */
3039 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3040 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3041 		return 1;
3042 
3043 	/* Does this CPU need a deferred NOCB wakeup? */
3044 	if (rcu_nocb_need_deferred_wakeup(rdp))
3045 		return 1;
3046 
3047 	/* nothing to do */
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Return true if the specified CPU has any callback.  If all_lazy is
3053  * non-NULL, store an indication of whether all callbacks are lazy.
3054  * (If there are no callbacks, all of them are deemed to be lazy.)
3055  */
3056 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3057 {
3058 	bool al = true;
3059 	bool hc = false;
3060 	struct rcu_data *rdp;
3061 
3062 	rdp = this_cpu_ptr(&rcu_data);
3063 	if (!rcu_segcblist_empty(&rdp->cblist)) {
3064 		hc = true;
3065 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist))
3066 			al = false;
3067 	}
3068 	if (all_lazy)
3069 		*all_lazy = al;
3070 	return hc;
3071 }
3072 
3073 /*
3074  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3075  * the compiler is expected to optimize this away.
3076  */
3077 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3078 {
3079 	trace_rcu_barrier(rcu_state.name, s, cpu,
3080 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3081 }
3082 
3083 /*
3084  * RCU callback function for rcu_barrier().  If we are last, wake
3085  * up the task executing rcu_barrier().
3086  */
3087 static void rcu_barrier_callback(struct rcu_head *rhp)
3088 {
3089 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3090 		rcu_barrier_trace(TPS("LastCB"), -1,
3091 				   rcu_state.barrier_sequence);
3092 		complete(&rcu_state.barrier_completion);
3093 	} else {
3094 		rcu_barrier_trace(TPS("CB"), -1, rcu_state.barrier_sequence);
3095 	}
3096 }
3097 
3098 /*
3099  * Called with preemption disabled, and from cross-cpu IRQ context.
3100  */
3101 static void rcu_barrier_func(void *unused)
3102 {
3103 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
3104 
3105 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3106 	rdp->barrier_head.func = rcu_barrier_callback;
3107 	debug_rcu_head_queue(&rdp->barrier_head);
3108 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3109 		atomic_inc(&rcu_state.barrier_cpu_count);
3110 	} else {
3111 		debug_rcu_head_unqueue(&rdp->barrier_head);
3112 		rcu_barrier_trace(TPS("IRQNQ"), -1,
3113 				   rcu_state.barrier_sequence);
3114 	}
3115 }
3116 
3117 /**
3118  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3119  *
3120  * Note that this primitive does not necessarily wait for an RCU grace period
3121  * to complete.  For example, if there are no RCU callbacks queued anywhere
3122  * in the system, then rcu_barrier() is within its rights to return
3123  * immediately, without waiting for anything, much less an RCU grace period.
3124  */
3125 void rcu_barrier(void)
3126 {
3127 	int cpu;
3128 	struct rcu_data *rdp;
3129 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3130 
3131 	rcu_barrier_trace(TPS("Begin"), -1, s);
3132 
3133 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3134 	mutex_lock(&rcu_state.barrier_mutex);
3135 
3136 	/* Did someone else do our work for us? */
3137 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3138 		rcu_barrier_trace(TPS("EarlyExit"), -1,
3139 				   rcu_state.barrier_sequence);
3140 		smp_mb(); /* caller's subsequent code after above check. */
3141 		mutex_unlock(&rcu_state.barrier_mutex);
3142 		return;
3143 	}
3144 
3145 	/* Mark the start of the barrier operation. */
3146 	rcu_seq_start(&rcu_state.barrier_sequence);
3147 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3148 
3149 	/*
3150 	 * Initialize the count to one rather than to zero in order to
3151 	 * avoid a too-soon return to zero in case of a short grace period
3152 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3153 	 * to ensure that no offline CPU has callbacks queued.
3154 	 */
3155 	init_completion(&rcu_state.barrier_completion);
3156 	atomic_set(&rcu_state.barrier_cpu_count, 1);
3157 	get_online_cpus();
3158 
3159 	/*
3160 	 * Force each CPU with callbacks to register a new callback.
3161 	 * When that callback is invoked, we will know that all of the
3162 	 * corresponding CPU's preceding callbacks have been invoked.
3163 	 */
3164 	for_each_possible_cpu(cpu) {
3165 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3166 			continue;
3167 		rdp = per_cpu_ptr(&rcu_data, cpu);
3168 		if (rcu_is_nocb_cpu(cpu)) {
3169 			if (!rcu_nocb_cpu_needs_barrier(cpu)) {
3170 				rcu_barrier_trace(TPS("OfflineNoCB"), cpu,
3171 						   rcu_state.barrier_sequence);
3172 			} else {
3173 				rcu_barrier_trace(TPS("OnlineNoCB"), cpu,
3174 						   rcu_state.barrier_sequence);
3175 				smp_mb__before_atomic();
3176 				atomic_inc(&rcu_state.barrier_cpu_count);
3177 				__call_rcu(&rdp->barrier_head,
3178 					   rcu_barrier_callback, cpu, 0);
3179 			}
3180 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3181 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
3182 					   rcu_state.barrier_sequence);
3183 			smp_call_function_single(cpu, rcu_barrier_func, NULL, 1);
3184 		} else {
3185 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
3186 					   rcu_state.barrier_sequence);
3187 		}
3188 	}
3189 	put_online_cpus();
3190 
3191 	/*
3192 	 * Now that we have an rcu_barrier_callback() callback on each
3193 	 * CPU, and thus each counted, remove the initial count.
3194 	 */
3195 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count))
3196 		complete(&rcu_state.barrier_completion);
3197 
3198 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3199 	wait_for_completion(&rcu_state.barrier_completion);
3200 
3201 	/* Mark the end of the barrier operation. */
3202 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3203 	rcu_seq_end(&rcu_state.barrier_sequence);
3204 
3205 	/* Other rcu_barrier() invocations can now safely proceed. */
3206 	mutex_unlock(&rcu_state.barrier_mutex);
3207 }
3208 EXPORT_SYMBOL_GPL(rcu_barrier);
3209 
3210 /*
3211  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3212  * first CPU in a given leaf rcu_node structure coming online.  The caller
3213  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3214  * disabled.
3215  */
3216 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3217 {
3218 	long mask;
3219 	long oldmask;
3220 	struct rcu_node *rnp = rnp_leaf;
3221 
3222 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
3223 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
3224 	for (;;) {
3225 		mask = rnp->grpmask;
3226 		rnp = rnp->parent;
3227 		if (rnp == NULL)
3228 			return;
3229 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3230 		oldmask = rnp->qsmaskinit;
3231 		rnp->qsmaskinit |= mask;
3232 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3233 		if (oldmask)
3234 			return;
3235 	}
3236 }
3237 
3238 /*
3239  * Do boot-time initialization of a CPU's per-CPU RCU data.
3240  */
3241 static void __init
3242 rcu_boot_init_percpu_data(int cpu)
3243 {
3244 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3245 
3246 	/* Set up local state, ensuring consistent view of global state. */
3247 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3248 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
3249 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
3250 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
3251 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3252 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
3253 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3254 	rdp->cpu = cpu;
3255 	rcu_boot_init_nocb_percpu_data(rdp);
3256 }
3257 
3258 /*
3259  * Invoked early in the CPU-online process, when pretty much all services
3260  * are available.  The incoming CPU is not present.
3261  *
3262  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
3263  * offline event can be happening at a given time.  Note also that we can
3264  * accept some slop in the rsp->gp_seq access due to the fact that this
3265  * CPU cannot possibly have any RCU callbacks in flight yet.
3266  */
3267 int rcutree_prepare_cpu(unsigned int cpu)
3268 {
3269 	unsigned long flags;
3270 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3271 	struct rcu_node *rnp = rcu_get_root();
3272 
3273 	/* Set up local state, ensuring consistent view of global state. */
3274 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3275 	rdp->qlen_last_fqs_check = 0;
3276 	rdp->n_force_qs_snap = rcu_state.n_force_qs;
3277 	rdp->blimit = blimit;
3278 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3279 	    !init_nocb_callback_list(rdp))
3280 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3281 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3282 	rcu_dynticks_eqs_online();
3283 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3284 
3285 	/*
3286 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3287 	 * propagation up the rcu_node tree will happen at the beginning
3288 	 * of the next grace period.
3289 	 */
3290 	rnp = rdp->mynode;
3291 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3292 	rdp->beenonline = true;	 /* We have now been online. */
3293 	rdp->gp_seq = rnp->gp_seq;
3294 	rdp->gp_seq_needed = rnp->gp_seq;
3295 	rdp->cpu_no_qs.b.norm = true;
3296 	rdp->core_needs_qs = false;
3297 	rdp->rcu_iw_pending = false;
3298 	rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3299 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
3300 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3301 	rcu_prepare_kthreads(cpu);
3302 	rcu_spawn_all_nocb_kthreads(cpu);
3303 
3304 	return 0;
3305 }
3306 
3307 /*
3308  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3309  */
3310 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3311 {
3312 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3313 
3314 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3315 }
3316 
3317 /*
3318  * Near the end of the CPU-online process.  Pretty much all services
3319  * enabled, and the CPU is now very much alive.
3320  */
3321 int rcutree_online_cpu(unsigned int cpu)
3322 {
3323 	unsigned long flags;
3324 	struct rcu_data *rdp;
3325 	struct rcu_node *rnp;
3326 
3327 	rdp = per_cpu_ptr(&rcu_data, cpu);
3328 	rnp = rdp->mynode;
3329 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3330 	rnp->ffmask |= rdp->grpmask;
3331 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3332 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3333 		srcu_online_cpu(cpu);
3334 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3335 		return 0; /* Too early in boot for scheduler work. */
3336 	sync_sched_exp_online_cleanup(cpu);
3337 	rcutree_affinity_setting(cpu, -1);
3338 	return 0;
3339 }
3340 
3341 /*
3342  * Near the beginning of the process.  The CPU is still very much alive
3343  * with pretty much all services enabled.
3344  */
3345 int rcutree_offline_cpu(unsigned int cpu)
3346 {
3347 	unsigned long flags;
3348 	struct rcu_data *rdp;
3349 	struct rcu_node *rnp;
3350 
3351 	rdp = per_cpu_ptr(&rcu_data, cpu);
3352 	rnp = rdp->mynode;
3353 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3354 	rnp->ffmask &= ~rdp->grpmask;
3355 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3356 
3357 	rcutree_affinity_setting(cpu, cpu);
3358 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3359 		srcu_offline_cpu(cpu);
3360 	return 0;
3361 }
3362 
3363 static DEFINE_PER_CPU(int, rcu_cpu_started);
3364 
3365 /*
3366  * Mark the specified CPU as being online so that subsequent grace periods
3367  * (both expedited and normal) will wait on it.  Note that this means that
3368  * incoming CPUs are not allowed to use RCU read-side critical sections
3369  * until this function is called.  Failing to observe this restriction
3370  * will result in lockdep splats.
3371  *
3372  * Note that this function is special in that it is invoked directly
3373  * from the incoming CPU rather than from the cpuhp_step mechanism.
3374  * This is because this function must be invoked at a precise location.
3375  */
3376 void rcu_cpu_starting(unsigned int cpu)
3377 {
3378 	unsigned long flags;
3379 	unsigned long mask;
3380 	int nbits;
3381 	unsigned long oldmask;
3382 	struct rcu_data *rdp;
3383 	struct rcu_node *rnp;
3384 
3385 	if (per_cpu(rcu_cpu_started, cpu))
3386 		return;
3387 
3388 	per_cpu(rcu_cpu_started, cpu) = 1;
3389 
3390 	rdp = per_cpu_ptr(&rcu_data, cpu);
3391 	rnp = rdp->mynode;
3392 	mask = rdp->grpmask;
3393 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3394 	rnp->qsmaskinitnext |= mask;
3395 	oldmask = rnp->expmaskinitnext;
3396 	rnp->expmaskinitnext |= mask;
3397 	oldmask ^= rnp->expmaskinitnext;
3398 	nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3399 	/* Allow lockless access for expedited grace periods. */
3400 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
3401 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3402 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3403 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3404 	if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3405 		/* Report QS -after- changing ->qsmaskinitnext! */
3406 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3407 	} else {
3408 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3409 	}
3410 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3411 }
3412 
3413 #ifdef CONFIG_HOTPLUG_CPU
3414 /*
3415  * The outgoing function has no further need of RCU, so remove it from
3416  * the rcu_node tree's ->qsmaskinitnext bit masks.
3417  *
3418  * Note that this function is special in that it is invoked directly
3419  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3420  * This is because this function must be invoked at a precise location.
3421  */
3422 void rcu_report_dead(unsigned int cpu)
3423 {
3424 	unsigned long flags;
3425 	unsigned long mask;
3426 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3427 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3428 
3429 	/* QS for any half-done expedited grace period. */
3430 	preempt_disable();
3431 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
3432 	preempt_enable();
3433 	rcu_preempt_deferred_qs(current);
3434 
3435 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3436 	mask = rdp->grpmask;
3437 	raw_spin_lock(&rcu_state.ofl_lock);
3438 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3439 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3440 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
3441 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3442 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
3443 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3444 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3445 	}
3446 	rnp->qsmaskinitnext &= ~mask;
3447 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3448 	raw_spin_unlock(&rcu_state.ofl_lock);
3449 
3450 	per_cpu(rcu_cpu_started, cpu) = 0;
3451 }
3452 
3453 /*
3454  * The outgoing CPU has just passed through the dying-idle state, and we
3455  * are being invoked from the CPU that was IPIed to continue the offline
3456  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
3457  */
3458 void rcutree_migrate_callbacks(int cpu)
3459 {
3460 	unsigned long flags;
3461 	struct rcu_data *my_rdp;
3462 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3463 	struct rcu_node *rnp_root = rcu_get_root();
3464 	bool needwake;
3465 
3466 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3467 		return;  /* No callbacks to migrate. */
3468 
3469 	local_irq_save(flags);
3470 	my_rdp = this_cpu_ptr(&rcu_data);
3471 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3472 		local_irq_restore(flags);
3473 		return;
3474 	}
3475 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3476 	/* Leverage recent GPs and set GP for new callbacks. */
3477 	needwake = rcu_advance_cbs(rnp_root, rdp) ||
3478 		   rcu_advance_cbs(rnp_root, my_rdp);
3479 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3480 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3481 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3482 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3483 	if (needwake)
3484 		rcu_gp_kthread_wake();
3485 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3486 		  !rcu_segcblist_empty(&rdp->cblist),
3487 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3488 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3489 		  rcu_segcblist_first_cb(&rdp->cblist));
3490 }
3491 #endif
3492 
3493 /*
3494  * On non-huge systems, use expedited RCU grace periods to make suspend
3495  * and hibernation run faster.
3496  */
3497 static int rcu_pm_notify(struct notifier_block *self,
3498 			 unsigned long action, void *hcpu)
3499 {
3500 	switch (action) {
3501 	case PM_HIBERNATION_PREPARE:
3502 	case PM_SUSPEND_PREPARE:
3503 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3504 			rcu_expedite_gp();
3505 		break;
3506 	case PM_POST_HIBERNATION:
3507 	case PM_POST_SUSPEND:
3508 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3509 			rcu_unexpedite_gp();
3510 		break;
3511 	default:
3512 		break;
3513 	}
3514 	return NOTIFY_OK;
3515 }
3516 
3517 /*
3518  * Spawn the kthreads that handle RCU's grace periods.
3519  */
3520 static int __init rcu_spawn_gp_kthread(void)
3521 {
3522 	unsigned long flags;
3523 	int kthread_prio_in = kthread_prio;
3524 	struct rcu_node *rnp;
3525 	struct sched_param sp;
3526 	struct task_struct *t;
3527 
3528 	/* Force priority into range. */
3529 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3530 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3531 		kthread_prio = 2;
3532 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3533 		kthread_prio = 1;
3534 	else if (kthread_prio < 0)
3535 		kthread_prio = 0;
3536 	else if (kthread_prio > 99)
3537 		kthread_prio = 99;
3538 
3539 	if (kthread_prio != kthread_prio_in)
3540 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3541 			 kthread_prio, kthread_prio_in);
3542 
3543 	rcu_scheduler_fully_active = 1;
3544 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
3545 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
3546 		return 0;
3547 	rnp = rcu_get_root();
3548 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3549 	rcu_state.gp_kthread = t;
3550 	if (kthread_prio) {
3551 		sp.sched_priority = kthread_prio;
3552 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3553 	}
3554 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3555 	wake_up_process(t);
3556 	rcu_spawn_nocb_kthreads();
3557 	rcu_spawn_boost_kthreads();
3558 	return 0;
3559 }
3560 early_initcall(rcu_spawn_gp_kthread);
3561 
3562 /*
3563  * This function is invoked towards the end of the scheduler's
3564  * initialization process.  Before this is called, the idle task might
3565  * contain synchronous grace-period primitives (during which time, this idle
3566  * task is booting the system, and such primitives are no-ops).  After this
3567  * function is called, any synchronous grace-period primitives are run as
3568  * expedited, with the requesting task driving the grace period forward.
3569  * A later core_initcall() rcu_set_runtime_mode() will switch to full
3570  * runtime RCU functionality.
3571  */
3572 void rcu_scheduler_starting(void)
3573 {
3574 	WARN_ON(num_online_cpus() != 1);
3575 	WARN_ON(nr_context_switches() > 0);
3576 	rcu_test_sync_prims();
3577 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3578 	rcu_test_sync_prims();
3579 }
3580 
3581 /*
3582  * Helper function for rcu_init() that initializes the rcu_state structure.
3583  */
3584 static void __init rcu_init_one(void)
3585 {
3586 	static const char * const buf[] = RCU_NODE_NAME_INIT;
3587 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3588 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3589 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3590 
3591 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3592 	int cpustride = 1;
3593 	int i;
3594 	int j;
3595 	struct rcu_node *rnp;
3596 
3597 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3598 
3599 	/* Silence gcc 4.8 false positive about array index out of range. */
3600 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3601 		panic("rcu_init_one: rcu_num_lvls out of range");
3602 
3603 	/* Initialize the level-tracking arrays. */
3604 
3605 	for (i = 1; i < rcu_num_lvls; i++)
3606 		rcu_state.level[i] =
3607 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
3608 	rcu_init_levelspread(levelspread, num_rcu_lvl);
3609 
3610 	/* Initialize the elements themselves, starting from the leaves. */
3611 
3612 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3613 		cpustride *= levelspread[i];
3614 		rnp = rcu_state.level[i];
3615 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3616 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3617 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3618 						   &rcu_node_class[i], buf[i]);
3619 			raw_spin_lock_init(&rnp->fqslock);
3620 			lockdep_set_class_and_name(&rnp->fqslock,
3621 						   &rcu_fqs_class[i], fqs[i]);
3622 			rnp->gp_seq = rcu_state.gp_seq;
3623 			rnp->gp_seq_needed = rcu_state.gp_seq;
3624 			rnp->completedqs = rcu_state.gp_seq;
3625 			rnp->qsmask = 0;
3626 			rnp->qsmaskinit = 0;
3627 			rnp->grplo = j * cpustride;
3628 			rnp->grphi = (j + 1) * cpustride - 1;
3629 			if (rnp->grphi >= nr_cpu_ids)
3630 				rnp->grphi = nr_cpu_ids - 1;
3631 			if (i == 0) {
3632 				rnp->grpnum = 0;
3633 				rnp->grpmask = 0;
3634 				rnp->parent = NULL;
3635 			} else {
3636 				rnp->grpnum = j % levelspread[i - 1];
3637 				rnp->grpmask = BIT(rnp->grpnum);
3638 				rnp->parent = rcu_state.level[i - 1] +
3639 					      j / levelspread[i - 1];
3640 			}
3641 			rnp->level = i;
3642 			INIT_LIST_HEAD(&rnp->blkd_tasks);
3643 			rcu_init_one_nocb(rnp);
3644 			init_waitqueue_head(&rnp->exp_wq[0]);
3645 			init_waitqueue_head(&rnp->exp_wq[1]);
3646 			init_waitqueue_head(&rnp->exp_wq[2]);
3647 			init_waitqueue_head(&rnp->exp_wq[3]);
3648 			spin_lock_init(&rnp->exp_lock);
3649 		}
3650 	}
3651 
3652 	init_swait_queue_head(&rcu_state.gp_wq);
3653 	init_swait_queue_head(&rcu_state.expedited_wq);
3654 	rnp = rcu_first_leaf_node();
3655 	for_each_possible_cpu(i) {
3656 		while (i > rnp->grphi)
3657 			rnp++;
3658 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
3659 		rcu_boot_init_percpu_data(i);
3660 	}
3661 }
3662 
3663 /*
3664  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3665  * replace the definitions in tree.h because those are needed to size
3666  * the ->node array in the rcu_state structure.
3667  */
3668 static void __init rcu_init_geometry(void)
3669 {
3670 	ulong d;
3671 	int i;
3672 	int rcu_capacity[RCU_NUM_LVLS];
3673 
3674 	/*
3675 	 * Initialize any unspecified boot parameters.
3676 	 * The default values of jiffies_till_first_fqs and
3677 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3678 	 * value, which is a function of HZ, then adding one for each
3679 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3680 	 */
3681 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3682 	if (jiffies_till_first_fqs == ULONG_MAX)
3683 		jiffies_till_first_fqs = d;
3684 	if (jiffies_till_next_fqs == ULONG_MAX)
3685 		jiffies_till_next_fqs = d;
3686 	if (jiffies_till_sched_qs == ULONG_MAX)
3687 		adjust_jiffies_till_sched_qs();
3688 
3689 	/* If the compile-time values are accurate, just leave. */
3690 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3691 	    nr_cpu_ids == NR_CPUS)
3692 		return;
3693 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
3694 		rcu_fanout_leaf, nr_cpu_ids);
3695 
3696 	/*
3697 	 * The boot-time rcu_fanout_leaf parameter must be at least two
3698 	 * and cannot exceed the number of bits in the rcu_node masks.
3699 	 * Complain and fall back to the compile-time values if this
3700 	 * limit is exceeded.
3701 	 */
3702 	if (rcu_fanout_leaf < 2 ||
3703 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
3704 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3705 		WARN_ON(1);
3706 		return;
3707 	}
3708 
3709 	/*
3710 	 * Compute number of nodes that can be handled an rcu_node tree
3711 	 * with the given number of levels.
3712 	 */
3713 	rcu_capacity[0] = rcu_fanout_leaf;
3714 	for (i = 1; i < RCU_NUM_LVLS; i++)
3715 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
3716 
3717 	/*
3718 	 * The tree must be able to accommodate the configured number of CPUs.
3719 	 * If this limit is exceeded, fall back to the compile-time values.
3720 	 */
3721 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
3722 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
3723 		WARN_ON(1);
3724 		return;
3725 	}
3726 
3727 	/* Calculate the number of levels in the tree. */
3728 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
3729 	}
3730 	rcu_num_lvls = i + 1;
3731 
3732 	/* Calculate the number of rcu_nodes at each level of the tree. */
3733 	for (i = 0; i < rcu_num_lvls; i++) {
3734 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
3735 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
3736 	}
3737 
3738 	/* Calculate the total number of rcu_node structures. */
3739 	rcu_num_nodes = 0;
3740 	for (i = 0; i < rcu_num_lvls; i++)
3741 		rcu_num_nodes += num_rcu_lvl[i];
3742 }
3743 
3744 /*
3745  * Dump out the structure of the rcu_node combining tree associated
3746  * with the rcu_state structure.
3747  */
3748 static void __init rcu_dump_rcu_node_tree(void)
3749 {
3750 	int level = 0;
3751 	struct rcu_node *rnp;
3752 
3753 	pr_info("rcu_node tree layout dump\n");
3754 	pr_info(" ");
3755 	rcu_for_each_node_breadth_first(rnp) {
3756 		if (rnp->level != level) {
3757 			pr_cont("\n");
3758 			pr_info(" ");
3759 			level = rnp->level;
3760 		}
3761 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
3762 	}
3763 	pr_cont("\n");
3764 }
3765 
3766 struct workqueue_struct *rcu_gp_wq;
3767 struct workqueue_struct *rcu_par_gp_wq;
3768 
3769 void __init rcu_init(void)
3770 {
3771 	int cpu;
3772 
3773 	rcu_early_boot_tests();
3774 
3775 	rcu_bootup_announce();
3776 	rcu_init_geometry();
3777 	rcu_init_one();
3778 	if (dump_tree)
3779 		rcu_dump_rcu_node_tree();
3780 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
3781 
3782 	/*
3783 	 * We don't need protection against CPU-hotplug here because
3784 	 * this is called early in boot, before either interrupts
3785 	 * or the scheduler are operational.
3786 	 */
3787 	pm_notifier(rcu_pm_notify, 0);
3788 	for_each_online_cpu(cpu) {
3789 		rcutree_prepare_cpu(cpu);
3790 		rcu_cpu_starting(cpu);
3791 		rcutree_online_cpu(cpu);
3792 	}
3793 
3794 	/* Create workqueue for expedited GPs and for Tree SRCU. */
3795 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
3796 	WARN_ON(!rcu_gp_wq);
3797 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
3798 	WARN_ON(!rcu_par_gp_wq);
3799 	srcu_init();
3800 }
3801 
3802 #include "tree_exp.h"
3803 #include "tree_plugin.h"
3804