xref: /openbmc/linux/kernel/rcu/tree.c (revision 133f9794)
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
61 
62 #include "tree.h"
63 #include "rcu.h"
64 
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
67 #endif
68 #define MODULE_PARAM_PREFIX "rcutree."
69 
70 /* Data structures. */
71 
72 /*
73  * In order to export the rcu_state name to the tracing tools, it
74  * needs to be added in the __tracepoint_string section.
75  * This requires defining a separate variable tp_<sname>_varname
76  * that points to the string being used, and this will allow
77  * the tracing userspace tools to be able to decipher the string
78  * address to the matching string.
79  */
80 #ifdef CONFIG_TRACING
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
85 #else
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
88 #endif
89 
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 	.level = { &sname##_state.node[0] }, \
95 	.rda = &sname##_data, \
96 	.call = cr, \
97 	.gp_state = RCU_GP_IDLE, \
98 	.gpnum = 0UL - 300UL, \
99 	.completed = 0UL - 300UL, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
170 
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
172 
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
179 
180 /*
181  * Number of grace periods between delays, normalized by the duration of
182  * the delay.  The longer the delay, the more the grace periods between
183  * each delay.  The reason for this normalization is that it means that,
184  * for non-zero delays, the overall slowdown of grace periods is constant
185  * regardless of the duration of the delay.  This arrangement balances
186  * the need for long delays to increase some race probabilities with the
187  * need for fast grace periods to increase other race probabilities.
188  */
189 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
190 
191 /*
192  * Track the rcutorture test sequence number and the update version
193  * number within a given test.  The rcutorture_testseq is incremented
194  * on every rcutorture module load and unload, so has an odd value
195  * when a test is running.  The rcutorture_vernum is set to zero
196  * when rcutorture starts and is incremented on each rcutorture update.
197  * These variables enable correlating rcutorture output with the
198  * RCU tracing information.
199  */
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
202 
203 /*
204  * Compute the mask of online CPUs for the specified rcu_node structure.
205  * This will not be stable unless the rcu_node structure's ->lock is
206  * held, but the bit corresponding to the current CPU will be stable
207  * in most contexts.
208  */
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
210 {
211 	return READ_ONCE(rnp->qsmaskinitnext);
212 }
213 
214 /*
215  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
216  * permit this function to be invoked without holding the root rcu_node
217  * structure's ->lock, but of course results can be subject to change.
218  */
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
220 {
221 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
222 }
223 
224 /*
225  * Note a quiescent state.  Because we do not need to know
226  * how many quiescent states passed, just if there was at least
227  * one since the start of the grace period, this just sets a flag.
228  * The caller must have disabled preemption.
229  */
230 void rcu_sched_qs(void)
231 {
232 	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
234 		return;
235 	trace_rcu_grace_period(TPS("rcu_sched"),
236 			       __this_cpu_read(rcu_sched_data.gpnum),
237 			       TPS("cpuqs"));
238 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
240 		return;
241 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 	rcu_report_exp_rdp(&rcu_sched_state,
243 			   this_cpu_ptr(&rcu_sched_data), true);
244 }
245 
246 void rcu_bh_qs(void)
247 {
248 	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 		trace_rcu_grace_period(TPS("rcu_bh"),
251 				       __this_cpu_read(rcu_bh_data.gpnum),
252 				       TPS("cpuqs"));
253 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
254 	}
255 }
256 
257 /*
258  * Steal a bit from the bottom of ->dynticks for idle entry/exit
259  * control.  Initially this is for TLB flushing.
260  */
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
265 #endif
266 
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 	.dynticks_nesting = 1,
269 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
270 	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
271 };
272 
273 /*
274  * Record entry into an extended quiescent state.  This is only to be
275  * called when not already in an extended quiescent state.
276  */
277 static void rcu_dynticks_eqs_enter(void)
278 {
279 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
280 	int seq;
281 
282 	/*
283 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
284 	 * critical sections, and we also must force ordering with the
285 	 * next idle sojourn.
286 	 */
287 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 	/* Better be in an extended quiescent state! */
289 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 		     (seq & RCU_DYNTICK_CTRL_CTR));
291 	/* Better not have special action (TLB flush) pending! */
292 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 		     (seq & RCU_DYNTICK_CTRL_MASK));
294 }
295 
296 /*
297  * Record exit from an extended quiescent state.  This is only to be
298  * called from an extended quiescent state.
299  */
300 static void rcu_dynticks_eqs_exit(void)
301 {
302 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
303 	int seq;
304 
305 	/*
306 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
307 	 * and we also must force ordering with the next RCU read-side
308 	 * critical section.
309 	 */
310 	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 		     !(seq & RCU_DYNTICK_CTRL_CTR));
313 	if (seq & RCU_DYNTICK_CTRL_MASK) {
314 		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 		smp_mb__after_atomic(); /* _exit after clearing mask. */
316 		/* Prefer duplicate flushes to losing a flush. */
317 		rcu_eqs_special_exit();
318 	}
319 }
320 
321 /*
322  * Reset the current CPU's ->dynticks counter to indicate that the
323  * newly onlined CPU is no longer in an extended quiescent state.
324  * This will either leave the counter unchanged, or increment it
325  * to the next non-quiescent value.
326  *
327  * The non-atomic test/increment sequence works because the upper bits
328  * of the ->dynticks counter are manipulated only by the corresponding CPU,
329  * or when the corresponding CPU is offline.
330  */
331 static void rcu_dynticks_eqs_online(void)
332 {
333 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
334 
335 	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
336 		return;
337 	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
338 }
339 
340 /*
341  * Is the current CPU in an extended quiescent state?
342  *
343  * No ordering, as we are sampling CPU-local information.
344  */
345 bool rcu_dynticks_curr_cpu_in_eqs(void)
346 {
347 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
348 
349 	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
350 }
351 
352 /*
353  * Snapshot the ->dynticks counter with full ordering so as to allow
354  * stable comparison of this counter with past and future snapshots.
355  */
356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
357 {
358 	int snap = atomic_add_return(0, &rdtp->dynticks);
359 
360 	return snap & ~RCU_DYNTICK_CTRL_MASK;
361 }
362 
363 /*
364  * Return true if the snapshot returned from rcu_dynticks_snap()
365  * indicates that RCU is in an extended quiescent state.
366  */
367 static bool rcu_dynticks_in_eqs(int snap)
368 {
369 	return !(snap & RCU_DYNTICK_CTRL_CTR);
370 }
371 
372 /*
373  * Return true if the CPU corresponding to the specified rcu_dynticks
374  * structure has spent some time in an extended quiescent state since
375  * rcu_dynticks_snap() returned the specified snapshot.
376  */
377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
378 {
379 	return snap != rcu_dynticks_snap(rdtp);
380 }
381 
382 /*
383  * Do a double-increment of the ->dynticks counter to emulate a
384  * momentary idle-CPU quiescent state.
385  */
386 static void rcu_dynticks_momentary_idle(void)
387 {
388 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
389 	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
390 					&rdtp->dynticks);
391 
392 	/* It is illegal to call this from idle state. */
393 	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
394 }
395 
396 /*
397  * Set the special (bottom) bit of the specified CPU so that it
398  * will take special action (such as flushing its TLB) on the
399  * next exit from an extended quiescent state.  Returns true if
400  * the bit was successfully set, or false if the CPU was not in
401  * an extended quiescent state.
402  */
403 bool rcu_eqs_special_set(int cpu)
404 {
405 	int old;
406 	int new;
407 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
408 
409 	do {
410 		old = atomic_read(&rdtp->dynticks);
411 		if (old & RCU_DYNTICK_CTRL_CTR)
412 			return false;
413 		new = old | RCU_DYNTICK_CTRL_MASK;
414 	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
415 	return true;
416 }
417 
418 /*
419  * Let the RCU core know that this CPU has gone through the scheduler,
420  * which is a quiescent state.  This is called when the need for a
421  * quiescent state is urgent, so we burn an atomic operation and full
422  * memory barriers to let the RCU core know about it, regardless of what
423  * this CPU might (or might not) do in the near future.
424  *
425  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
426  *
427  * The caller must have disabled interrupts.
428  */
429 static void rcu_momentary_dyntick_idle(void)
430 {
431 	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 	rcu_dynticks_momentary_idle();
433 }
434 
435 /*
436  * Note a context switch.  This is a quiescent state for RCU-sched,
437  * and requires special handling for preemptible RCU.
438  * The caller must have disabled interrupts.
439  */
440 void rcu_note_context_switch(bool preempt)
441 {
442 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
443 	trace_rcu_utilization(TPS("Start context switch"));
444 	rcu_sched_qs();
445 	rcu_preempt_note_context_switch(preempt);
446 	/* Load rcu_urgent_qs before other flags. */
447 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
448 		goto out;
449 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
450 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
451 		rcu_momentary_dyntick_idle();
452 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
453 	if (!preempt)
454 		rcu_note_voluntary_context_switch_lite(current);
455 out:
456 	trace_rcu_utilization(TPS("End context switch"));
457 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
458 }
459 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
460 
461 /*
462  * Register a quiescent state for all RCU flavors.  If there is an
463  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464  * dyntick-idle quiescent state visible to other CPUs (but only for those
465  * RCU flavors in desperate need of a quiescent state, which will normally
466  * be none of them).  Either way, do a lightweight quiescent state for
467  * all RCU flavors.
468  *
469  * The barrier() calls are redundant in the common case when this is
470  * called externally, but just in case this is called from within this
471  * file.
472  *
473  */
474 void rcu_all_qs(void)
475 {
476 	unsigned long flags;
477 
478 	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
479 		return;
480 	preempt_disable();
481 	/* Load rcu_urgent_qs before other flags. */
482 	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
483 		preempt_enable();
484 		return;
485 	}
486 	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
487 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
488 	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
489 		local_irq_save(flags);
490 		rcu_momentary_dyntick_idle();
491 		local_irq_restore(flags);
492 	}
493 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
494 		rcu_sched_qs();
495 	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
496 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
497 	preempt_enable();
498 }
499 EXPORT_SYMBOL_GPL(rcu_all_qs);
500 
501 #define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
502 static long blimit = DEFAULT_RCU_BLIMIT;
503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504 static long qhimark = DEFAULT_RCU_QHIMARK;
505 #define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
506 static long qlowmark = DEFAULT_RCU_QLOMARK;
507 
508 module_param(blimit, long, 0444);
509 module_param(qhimark, long, 0444);
510 module_param(qlowmark, long, 0444);
511 
512 static ulong jiffies_till_first_fqs = ULONG_MAX;
513 static ulong jiffies_till_next_fqs = ULONG_MAX;
514 static bool rcu_kick_kthreads;
515 
516 module_param(jiffies_till_first_fqs, ulong, 0644);
517 module_param(jiffies_till_next_fqs, ulong, 0644);
518 module_param(rcu_kick_kthreads, bool, 0644);
519 
520 /*
521  * How long the grace period must be before we start recruiting
522  * quiescent-state help from rcu_note_context_switch().
523  */
524 static ulong jiffies_till_sched_qs = HZ / 10;
525 module_param(jiffies_till_sched_qs, ulong, 0444);
526 
527 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
528 				  struct rcu_data *rdp);
529 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
530 static void force_quiescent_state(struct rcu_state *rsp);
531 static int rcu_pending(void);
532 
533 /*
534  * Return the number of RCU batches started thus far for debug & stats.
535  */
536 unsigned long rcu_batches_started(void)
537 {
538 	return rcu_state_p->gpnum;
539 }
540 EXPORT_SYMBOL_GPL(rcu_batches_started);
541 
542 /*
543  * Return the number of RCU-sched batches started thus far for debug & stats.
544  */
545 unsigned long rcu_batches_started_sched(void)
546 {
547 	return rcu_sched_state.gpnum;
548 }
549 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
550 
551 /*
552  * Return the number of RCU BH batches started thus far for debug & stats.
553  */
554 unsigned long rcu_batches_started_bh(void)
555 {
556 	return rcu_bh_state.gpnum;
557 }
558 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
559 
560 /*
561  * Return the number of RCU batches completed thus far for debug & stats.
562  */
563 unsigned long rcu_batches_completed(void)
564 {
565 	return rcu_state_p->completed;
566 }
567 EXPORT_SYMBOL_GPL(rcu_batches_completed);
568 
569 /*
570  * Return the number of RCU-sched batches completed thus far for debug & stats.
571  */
572 unsigned long rcu_batches_completed_sched(void)
573 {
574 	return rcu_sched_state.completed;
575 }
576 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
577 
578 /*
579  * Return the number of RCU BH batches completed thus far for debug & stats.
580  */
581 unsigned long rcu_batches_completed_bh(void)
582 {
583 	return rcu_bh_state.completed;
584 }
585 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
586 
587 /*
588  * Return the number of RCU expedited batches completed thus far for
589  * debug & stats.  Odd numbers mean that a batch is in progress, even
590  * numbers mean idle.  The value returned will thus be roughly double
591  * the cumulative batches since boot.
592  */
593 unsigned long rcu_exp_batches_completed(void)
594 {
595 	return rcu_state_p->expedited_sequence;
596 }
597 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
598 
599 /*
600  * Return the number of RCU-sched expedited batches completed thus far
601  * for debug & stats.  Similar to rcu_exp_batches_completed().
602  */
603 unsigned long rcu_exp_batches_completed_sched(void)
604 {
605 	return rcu_sched_state.expedited_sequence;
606 }
607 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
608 
609 /*
610  * Force a quiescent state.
611  */
612 void rcu_force_quiescent_state(void)
613 {
614 	force_quiescent_state(rcu_state_p);
615 }
616 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
617 
618 /*
619  * Force a quiescent state for RCU BH.
620  */
621 void rcu_bh_force_quiescent_state(void)
622 {
623 	force_quiescent_state(&rcu_bh_state);
624 }
625 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
626 
627 /*
628  * Force a quiescent state for RCU-sched.
629  */
630 void rcu_sched_force_quiescent_state(void)
631 {
632 	force_quiescent_state(&rcu_sched_state);
633 }
634 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
635 
636 /*
637  * Show the state of the grace-period kthreads.
638  */
639 void show_rcu_gp_kthreads(void)
640 {
641 	struct rcu_state *rsp;
642 
643 	for_each_rcu_flavor(rsp) {
644 		pr_info("%s: wait state: %d ->state: %#lx\n",
645 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
646 		/* sched_show_task(rsp->gp_kthread); */
647 	}
648 }
649 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
650 
651 /*
652  * Record the number of times rcutorture tests have been initiated and
653  * terminated.  This information allows the debugfs tracing stats to be
654  * correlated to the rcutorture messages, even when the rcutorture module
655  * is being repeatedly loaded and unloaded.  In other words, we cannot
656  * store this state in rcutorture itself.
657  */
658 void rcutorture_record_test_transition(void)
659 {
660 	rcutorture_testseq++;
661 	rcutorture_vernum = 0;
662 }
663 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
664 
665 /*
666  * Send along grace-period-related data for rcutorture diagnostics.
667  */
668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 			    unsigned long *gpnum, unsigned long *completed)
670 {
671 	struct rcu_state *rsp = NULL;
672 
673 	switch (test_type) {
674 	case RCU_FLAVOR:
675 		rsp = rcu_state_p;
676 		break;
677 	case RCU_BH_FLAVOR:
678 		rsp = &rcu_bh_state;
679 		break;
680 	case RCU_SCHED_FLAVOR:
681 		rsp = &rcu_sched_state;
682 		break;
683 	default:
684 		break;
685 	}
686 	if (rsp == NULL)
687 		return;
688 	*flags = READ_ONCE(rsp->gp_flags);
689 	*gpnum = READ_ONCE(rsp->gpnum);
690 	*completed = READ_ONCE(rsp->completed);
691 }
692 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
693 
694 /*
695  * Record the number of writer passes through the current rcutorture test.
696  * This is also used to correlate debugfs tracing stats with the rcutorture
697  * messages.
698  */
699 void rcutorture_record_progress(unsigned long vernum)
700 {
701 	rcutorture_vernum++;
702 }
703 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
704 
705 /*
706  * Return the root node of the specified rcu_state structure.
707  */
708 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
709 {
710 	return &rsp->node[0];
711 }
712 
713 /*
714  * Is there any need for future grace periods?
715  * Interrupts must be disabled.  If the caller does not hold the root
716  * rnp_node structure's ->lock, the results are advisory only.
717  */
718 static int rcu_future_needs_gp(struct rcu_state *rsp)
719 {
720 	struct rcu_node *rnp = rcu_get_root(rsp);
721 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
722 	int *fp = &rnp->need_future_gp[idx];
723 
724 	lockdep_assert_irqs_disabled();
725 	return READ_ONCE(*fp);
726 }
727 
728 /*
729  * Does the current CPU require a not-yet-started grace period?
730  * The caller must have disabled interrupts to prevent races with
731  * normal callback registry.
732  */
733 static bool
734 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
735 {
736 	lockdep_assert_irqs_disabled();
737 	if (rcu_gp_in_progress(rsp))
738 		return false;  /* No, a grace period is already in progress. */
739 	if (rcu_future_needs_gp(rsp))
740 		return true;  /* Yes, a no-CBs CPU needs one. */
741 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
742 		return false;  /* No, this is a no-CBs (or offline) CPU. */
743 	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
744 		return true;  /* Yes, CPU has newly registered callbacks. */
745 	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
746 					   READ_ONCE(rsp->completed)))
747 		return true;  /* Yes, CBs for future grace period. */
748 	return false; /* No grace period needed. */
749 }
750 
751 /*
752  * Enter an RCU extended quiescent state, which can be either the
753  * idle loop or adaptive-tickless usermode execution.
754  *
755  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
756  * the possibility of usermode upcalls having messed up our count
757  * of interrupt nesting level during the prior busy period.
758  */
759 static void rcu_eqs_enter(bool user)
760 {
761 	struct rcu_state *rsp;
762 	struct rcu_data *rdp;
763 	struct rcu_dynticks *rdtp;
764 
765 	rdtp = this_cpu_ptr(&rcu_dynticks);
766 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
767 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
768 		     rdtp->dynticks_nesting == 0);
769 	if (rdtp->dynticks_nesting != 1) {
770 		rdtp->dynticks_nesting--;
771 		return;
772 	}
773 
774 	lockdep_assert_irqs_disabled();
775 	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
776 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
777 	for_each_rcu_flavor(rsp) {
778 		rdp = this_cpu_ptr(rsp->rda);
779 		do_nocb_deferred_wakeup(rdp);
780 	}
781 	rcu_prepare_for_idle();
782 	WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
783 	rcu_dynticks_eqs_enter();
784 	rcu_dynticks_task_enter();
785 }
786 
787 /**
788  * rcu_idle_enter - inform RCU that current CPU is entering idle
789  *
790  * Enter idle mode, in other words, -leave- the mode in which RCU
791  * read-side critical sections can occur.  (Though RCU read-side
792  * critical sections can occur in irq handlers in idle, a possibility
793  * handled by irq_enter() and irq_exit().)
794  *
795  * If you add or remove a call to rcu_idle_enter(), be sure to test with
796  * CONFIG_RCU_EQS_DEBUG=y.
797  */
798 void rcu_idle_enter(void)
799 {
800 	lockdep_assert_irqs_disabled();
801 	rcu_eqs_enter(false);
802 }
803 
804 #ifdef CONFIG_NO_HZ_FULL
805 /**
806  * rcu_user_enter - inform RCU that we are resuming userspace.
807  *
808  * Enter RCU idle mode right before resuming userspace.  No use of RCU
809  * is permitted between this call and rcu_user_exit(). This way the
810  * CPU doesn't need to maintain the tick for RCU maintenance purposes
811  * when the CPU runs in userspace.
812  *
813  * If you add or remove a call to rcu_user_enter(), be sure to test with
814  * CONFIG_RCU_EQS_DEBUG=y.
815  */
816 void rcu_user_enter(void)
817 {
818 	lockdep_assert_irqs_disabled();
819 	rcu_eqs_enter(true);
820 }
821 #endif /* CONFIG_NO_HZ_FULL */
822 
823 /**
824  * rcu_nmi_exit - inform RCU of exit from NMI context
825  *
826  * If we are returning from the outermost NMI handler that interrupted an
827  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
828  * to let the RCU grace-period handling know that the CPU is back to
829  * being RCU-idle.
830  *
831  * If you add or remove a call to rcu_nmi_exit(), be sure to test
832  * with CONFIG_RCU_EQS_DEBUG=y.
833  */
834 void rcu_nmi_exit(void)
835 {
836 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
837 
838 	/*
839 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
840 	 * (We are exiting an NMI handler, so RCU better be paying attention
841 	 * to us!)
842 	 */
843 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
844 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
845 
846 	/*
847 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
848 	 * leave it in non-RCU-idle state.
849 	 */
850 	if (rdtp->dynticks_nmi_nesting != 1) {
851 		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
852 		WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
853 			   rdtp->dynticks_nmi_nesting - 2);
854 		return;
855 	}
856 
857 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
858 	trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
859 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
860 	rcu_dynticks_eqs_enter();
861 }
862 
863 /**
864  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
865  *
866  * Exit from an interrupt handler, which might possibly result in entering
867  * idle mode, in other words, leaving the mode in which read-side critical
868  * sections can occur.  The caller must have disabled interrupts.
869  *
870  * This code assumes that the idle loop never does anything that might
871  * result in unbalanced calls to irq_enter() and irq_exit().  If your
872  * architecture's idle loop violates this assumption, RCU will give you what
873  * you deserve, good and hard.  But very infrequently and irreproducibly.
874  *
875  * Use things like work queues to work around this limitation.
876  *
877  * You have been warned.
878  *
879  * If you add or remove a call to rcu_irq_exit(), be sure to test with
880  * CONFIG_RCU_EQS_DEBUG=y.
881  */
882 void rcu_irq_exit(void)
883 {
884 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
885 
886 	lockdep_assert_irqs_disabled();
887 	if (rdtp->dynticks_nmi_nesting == 1)
888 		rcu_prepare_for_idle();
889 	rcu_nmi_exit();
890 	if (rdtp->dynticks_nmi_nesting == 0)
891 		rcu_dynticks_task_enter();
892 }
893 
894 /*
895  * Wrapper for rcu_irq_exit() where interrupts are enabled.
896  *
897  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
898  * with CONFIG_RCU_EQS_DEBUG=y.
899  */
900 void rcu_irq_exit_irqson(void)
901 {
902 	unsigned long flags;
903 
904 	local_irq_save(flags);
905 	rcu_irq_exit();
906 	local_irq_restore(flags);
907 }
908 
909 /*
910  * Exit an RCU extended quiescent state, which can be either the
911  * idle loop or adaptive-tickless usermode execution.
912  *
913  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
914  * allow for the possibility of usermode upcalls messing up our count of
915  * interrupt nesting level during the busy period that is just now starting.
916  */
917 static void rcu_eqs_exit(bool user)
918 {
919 	struct rcu_dynticks *rdtp;
920 	long oldval;
921 
922 	lockdep_assert_irqs_disabled();
923 	rdtp = this_cpu_ptr(&rcu_dynticks);
924 	oldval = rdtp->dynticks_nesting;
925 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
926 	if (oldval) {
927 		rdtp->dynticks_nesting++;
928 		return;
929 	}
930 	rcu_dynticks_task_exit();
931 	rcu_dynticks_eqs_exit();
932 	rcu_cleanup_after_idle();
933 	trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
934 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
935 	WRITE_ONCE(rdtp->dynticks_nesting, 1);
936 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
937 }
938 
939 /**
940  * rcu_idle_exit - inform RCU that current CPU is leaving idle
941  *
942  * Exit idle mode, in other words, -enter- the mode in which RCU
943  * read-side critical sections can occur.
944  *
945  * If you add or remove a call to rcu_idle_exit(), be sure to test with
946  * CONFIG_RCU_EQS_DEBUG=y.
947  */
948 void rcu_idle_exit(void)
949 {
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	rcu_eqs_exit(false);
954 	local_irq_restore(flags);
955 }
956 
957 #ifdef CONFIG_NO_HZ_FULL
958 /**
959  * rcu_user_exit - inform RCU that we are exiting userspace.
960  *
961  * Exit RCU idle mode while entering the kernel because it can
962  * run a RCU read side critical section anytime.
963  *
964  * If you add or remove a call to rcu_user_exit(), be sure to test with
965  * CONFIG_RCU_EQS_DEBUG=y.
966  */
967 void rcu_user_exit(void)
968 {
969 	rcu_eqs_exit(1);
970 }
971 #endif /* CONFIG_NO_HZ_FULL */
972 
973 /**
974  * rcu_nmi_enter - inform RCU of entry to NMI context
975  *
976  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
977  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
978  * that the CPU is active.  This implementation permits nested NMIs, as
979  * long as the nesting level does not overflow an int.  (You will probably
980  * run out of stack space first.)
981  *
982  * If you add or remove a call to rcu_nmi_enter(), be sure to test
983  * with CONFIG_RCU_EQS_DEBUG=y.
984  */
985 void rcu_nmi_enter(void)
986 {
987 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
988 	long incby = 2;
989 
990 	/* Complain about underflow. */
991 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
992 
993 	/*
994 	 * If idle from RCU viewpoint, atomically increment ->dynticks
995 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
996 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
997 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
998 	 * to be in the outermost NMI handler that interrupted an RCU-idle
999 	 * period (observation due to Andy Lutomirski).
1000 	 */
1001 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1002 		rcu_dynticks_eqs_exit();
1003 		incby = 1;
1004 	}
1005 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006 			  rdtp->dynticks_nmi_nesting,
1007 			  rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008 	WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009 		   rdtp->dynticks_nmi_nesting + incby);
1010 	barrier();
1011 }
1012 
1013 /**
1014  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1015  *
1016  * Enter an interrupt handler, which might possibly result in exiting
1017  * idle mode, in other words, entering the mode in which read-side critical
1018  * sections can occur.  The caller must have disabled interrupts.
1019  *
1020  * Note that the Linux kernel is fully capable of entering an interrupt
1021  * handler that it never exits, for example when doing upcalls to user mode!
1022  * This code assumes that the idle loop never does upcalls to user mode.
1023  * If your architecture's idle loop does do upcalls to user mode (or does
1024  * anything else that results in unbalanced calls to the irq_enter() and
1025  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026  * But very infrequently and irreproducibly.
1027  *
1028  * Use things like work queues to work around this limitation.
1029  *
1030  * You have been warned.
1031  *
1032  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033  * CONFIG_RCU_EQS_DEBUG=y.
1034  */
1035 void rcu_irq_enter(void)
1036 {
1037 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1038 
1039 	lockdep_assert_irqs_disabled();
1040 	if (rdtp->dynticks_nmi_nesting == 0)
1041 		rcu_dynticks_task_exit();
1042 	rcu_nmi_enter();
1043 	if (rdtp->dynticks_nmi_nesting == 1)
1044 		rcu_cleanup_after_idle();
1045 }
1046 
1047 /*
1048  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1049  *
1050  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051  * with CONFIG_RCU_EQS_DEBUG=y.
1052  */
1053 void rcu_irq_enter_irqson(void)
1054 {
1055 	unsigned long flags;
1056 
1057 	local_irq_save(flags);
1058 	rcu_irq_enter();
1059 	local_irq_restore(flags);
1060 }
1061 
1062 /**
1063  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1064  *
1065  * Return true if RCU is watching the running CPU, which means that this
1066  * CPU can safely enter RCU read-side critical sections.  In other words,
1067  * if the current CPU is in its idle loop and is neither in an interrupt
1068  * or NMI handler, return true.
1069  */
1070 bool notrace rcu_is_watching(void)
1071 {
1072 	bool ret;
1073 
1074 	preempt_disable_notrace();
1075 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1076 	preempt_enable_notrace();
1077 	return ret;
1078 }
1079 EXPORT_SYMBOL_GPL(rcu_is_watching);
1080 
1081 /*
1082  * If a holdout task is actually running, request an urgent quiescent
1083  * state from its CPU.  This is unsynchronized, so migrations can cause
1084  * the request to go to the wrong CPU.  Which is OK, all that will happen
1085  * is that the CPU's next context switch will be a bit slower and next
1086  * time around this task will generate another request.
1087  */
1088 void rcu_request_urgent_qs_task(struct task_struct *t)
1089 {
1090 	int cpu;
1091 
1092 	barrier();
1093 	cpu = task_cpu(t);
1094 	if (!task_curr(t))
1095 		return; /* This task is not running on that CPU. */
1096 	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097 }
1098 
1099 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1100 
1101 /*
1102  * Is the current CPU online?  Disable preemption to avoid false positives
1103  * that could otherwise happen due to the current CPU number being sampled,
1104  * this task being preempted, its old CPU being taken offline, resuming
1105  * on some other CPU, then determining that its old CPU is now offline.
1106  * It is OK to use RCU on an offline processor during initial boot, hence
1107  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1108  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1110  * offline to continue to use RCU for one jiffy after marking itself
1111  * offline in the cpu_online_mask.  This leniency is necessary given the
1112  * non-atomic nature of the online and offline processing, for example,
1113  * the fact that a CPU enters the scheduler after completing the teardown
1114  * of the CPU.
1115  *
1116  * This is also why RCU internally marks CPUs online during in the
1117  * preparation phase and offline after the CPU has been taken down.
1118  *
1119  * Disable checking if in an NMI handler because we cannot safely report
1120  * errors from NMI handlers anyway.
1121  */
1122 bool rcu_lockdep_current_cpu_online(void)
1123 {
1124 	struct rcu_data *rdp;
1125 	struct rcu_node *rnp;
1126 	bool ret;
1127 
1128 	if (in_nmi())
1129 		return true;
1130 	preempt_disable();
1131 	rdp = this_cpu_ptr(&rcu_sched_data);
1132 	rnp = rdp->mynode;
1133 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134 	      !rcu_scheduler_fully_active;
1135 	preempt_enable();
1136 	return ret;
1137 }
1138 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139 
1140 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1141 
1142 /**
1143  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1144  *
1145  * If the current CPU is idle or running at a first-level (not nested)
1146  * interrupt from idle, return true.  The caller must have at least
1147  * disabled preemption.
1148  */
1149 static int rcu_is_cpu_rrupt_from_idle(void)
1150 {
1151 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152 	       __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1153 }
1154 
1155 /*
1156  * We are reporting a quiescent state on behalf of some other CPU, so
1157  * it is our responsibility to check for and handle potential overflow
1158  * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159  * After all, the CPU might be in deep idle state, and thus executing no
1160  * code whatsoever.
1161  */
1162 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163 {
1164 	lockdep_assert_held(&rnp->lock);
1165 	if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1166 		WRITE_ONCE(rdp->gpwrap, true);
1167 	if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168 		rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169 }
1170 
1171 /*
1172  * Snapshot the specified CPU's dynticks counter so that we can later
1173  * credit them with an implicit quiescent state.  Return 1 if this CPU
1174  * is in dynticks idle mode, which is an extended quiescent state.
1175  */
1176 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1177 {
1178 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181 		rcu_gpnum_ovf(rdp->mynode, rdp);
1182 		return 1;
1183 	}
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Handler for the irq_work request posted when a grace period has
1189  * gone on for too long, but not yet long enough for an RCU CPU
1190  * stall warning.  Set state appropriately, but just complain if
1191  * there is unexpected state on entry.
1192  */
1193 static void rcu_iw_handler(struct irq_work *iwp)
1194 {
1195 	struct rcu_data *rdp;
1196 	struct rcu_node *rnp;
1197 
1198 	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199 	rnp = rdp->mynode;
1200 	raw_spin_lock_rcu_node(rnp);
1201 	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202 		rdp->rcu_iw_gpnum = rnp->gpnum;
1203 		rdp->rcu_iw_pending = false;
1204 	}
1205 	raw_spin_unlock_rcu_node(rnp);
1206 }
1207 
1208 /*
1209  * Return true if the specified CPU has passed through a quiescent
1210  * state by virtue of being in or having passed through an dynticks
1211  * idle state since the last call to dyntick_save_progress_counter()
1212  * for this same CPU, or by virtue of having been offline.
1213  */
1214 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1215 {
1216 	unsigned long jtsq;
1217 	bool *rnhqp;
1218 	bool *ruqp;
1219 	struct rcu_node *rnp = rdp->mynode;
1220 
1221 	/*
1222 	 * If the CPU passed through or entered a dynticks idle phase with
1223 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224 	 * already acknowledged the request to pass through a quiescent
1225 	 * state.  Either way, that CPU cannot possibly be in an RCU
1226 	 * read-side critical section that started before the beginning
1227 	 * of the current RCU grace period.
1228 	 */
1229 	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231 		rdp->dynticks_fqs++;
1232 		rcu_gpnum_ovf(rnp, rdp);
1233 		return 1;
1234 	}
1235 
1236 	/*
1237 	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238 	 * beginning of the grace period?  For this to be the case,
1239 	 * the CPU has to have noticed the current grace period.  This
1240 	 * might not be the case for nohz_full CPUs looping in the kernel.
1241 	 */
1242 	jtsq = jiffies_till_sched_qs;
1243 	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244 	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245 	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246 	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248 		rcu_gpnum_ovf(rnp, rdp);
1249 		return 1;
1250 	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251 		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252 		smp_store_release(ruqp, true);
1253 	}
1254 
1255 	/* Check for the CPU being offline. */
1256 	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258 		rdp->offline_fqs++;
1259 		rcu_gpnum_ovf(rnp, rdp);
1260 		return 1;
1261 	}
1262 
1263 	/*
1264 	 * A CPU running for an extended time within the kernel can
1265 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1266 	 * even context-switching back and forth between a pair of
1267 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1268 	 * So if the grace period is old enough, make the CPU pay attention.
1269 	 * Note that the unsynchronized assignments to the per-CPU
1270 	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1271 	 * bits can be lost, but they will be set again on the next
1272 	 * force-quiescent-state pass.  So lost bit sets do not result
1273 	 * in incorrect behavior, merely in a grace period lasting
1274 	 * a few jiffies longer than it might otherwise.  Because
1275 	 * there are at most four threads involved, and because the
1276 	 * updates are only once every few jiffies, the probability of
1277 	 * lossage (and thus of slight grace-period extension) is
1278 	 * quite low.
1279 	 */
1280 	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281 	if (!READ_ONCE(*rnhqp) &&
1282 	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283 	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284 		WRITE_ONCE(*rnhqp, true);
1285 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286 		smp_store_release(ruqp, true);
1287 		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1288 	}
1289 
1290 	/*
1291 	 * If more than halfway to RCU CPU stall-warning time, do a
1292 	 * resched_cpu() to try to loosen things up a bit.  Also check to
1293 	 * see if the CPU is getting hammered with interrupts, but only
1294 	 * once per grace period, just to keep the IPIs down to a dull roar.
1295 	 */
1296 	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297 		resched_cpu(rdp->cpu);
1298 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300 		    (rnp->ffmask & rdp->grpmask)) {
1301 			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302 			rdp->rcu_iw_pending = true;
1303 			rdp->rcu_iw_gpnum = rnp->gpnum;
1304 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305 		}
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static void record_gp_stall_check_time(struct rcu_state *rsp)
1312 {
1313 	unsigned long j = jiffies;
1314 	unsigned long j1;
1315 
1316 	rsp->gp_start = j;
1317 	smp_wmb(); /* Record start time before stall time. */
1318 	j1 = rcu_jiffies_till_stall_check();
1319 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320 	rsp->jiffies_resched = j + j1 / 2;
1321 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1322 }
1323 
1324 /*
1325  * Convert a ->gp_state value to a character string.
1326  */
1327 static const char *gp_state_getname(short gs)
1328 {
1329 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330 		return "???";
1331 	return gp_state_names[gs];
1332 }
1333 
1334 /*
1335  * Complain about starvation of grace-period kthread.
1336  */
1337 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338 {
1339 	unsigned long gpa;
1340 	unsigned long j;
1341 
1342 	j = jiffies;
1343 	gpa = READ_ONCE(rsp->gp_activity);
1344 	if (j - gpa > 2 * HZ) {
1345 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346 		       rsp->name, j - gpa,
1347 		       rsp->gpnum, rsp->completed,
1348 		       rsp->gp_flags,
1349 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1350 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351 		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352 		if (rsp->gp_kthread) {
1353 			sched_show_task(rsp->gp_kthread);
1354 			wake_up_process(rsp->gp_kthread);
1355 		}
1356 	}
1357 }
1358 
1359 /*
1360  * Dump stacks of all tasks running on stalled CPUs.  First try using
1361  * NMIs, but fall back to manual remote stack tracing on architectures
1362  * that don't support NMI-based stack dumps.  The NMI-triggered stack
1363  * traces are more accurate because they are printed by the target CPU.
1364  */
1365 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1366 {
1367 	int cpu;
1368 	unsigned long flags;
1369 	struct rcu_node *rnp;
1370 
1371 	rcu_for_each_leaf_node(rsp, rnp) {
1372 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1373 		for_each_leaf_node_possible_cpu(rnp, cpu)
1374 			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1375 				if (!trigger_single_cpu_backtrace(cpu))
1376 					dump_cpu_task(cpu);
1377 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1378 	}
1379 }
1380 
1381 /*
1382  * If too much time has passed in the current grace period, and if
1383  * so configured, go kick the relevant kthreads.
1384  */
1385 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1386 {
1387 	unsigned long j;
1388 
1389 	if (!rcu_kick_kthreads)
1390 		return;
1391 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1392 	if (time_after(jiffies, j) && rsp->gp_kthread &&
1393 	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1394 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1395 		rcu_ftrace_dump(DUMP_ALL);
1396 		wake_up_process(rsp->gp_kthread);
1397 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1398 	}
1399 }
1400 
1401 static inline void panic_on_rcu_stall(void)
1402 {
1403 	if (sysctl_panic_on_rcu_stall)
1404 		panic("RCU Stall\n");
1405 }
1406 
1407 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1408 {
1409 	int cpu;
1410 	long delta;
1411 	unsigned long flags;
1412 	unsigned long gpa;
1413 	unsigned long j;
1414 	int ndetected = 0;
1415 	struct rcu_node *rnp = rcu_get_root(rsp);
1416 	long totqlen = 0;
1417 
1418 	/* Kick and suppress, if so configured. */
1419 	rcu_stall_kick_kthreads(rsp);
1420 	if (rcu_cpu_stall_suppress)
1421 		return;
1422 
1423 	/* Only let one CPU complain about others per time interval. */
1424 
1425 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1426 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1427 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1428 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1429 		return;
1430 	}
1431 	WRITE_ONCE(rsp->jiffies_stall,
1432 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1433 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1434 
1435 	/*
1436 	 * OK, time to rat on our buddy...
1437 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1438 	 * RCU CPU stall warnings.
1439 	 */
1440 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1441 	       rsp->name);
1442 	print_cpu_stall_info_begin();
1443 	rcu_for_each_leaf_node(rsp, rnp) {
1444 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1445 		ndetected += rcu_print_task_stall(rnp);
1446 		if (rnp->qsmask != 0) {
1447 			for_each_leaf_node_possible_cpu(rnp, cpu)
1448 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1449 					print_cpu_stall_info(rsp, cpu);
1450 					ndetected++;
1451 				}
1452 		}
1453 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454 	}
1455 
1456 	print_cpu_stall_info_end();
1457 	for_each_possible_cpu(cpu)
1458 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1459 							    cpu)->cblist);
1460 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1461 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1462 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1463 	if (ndetected) {
1464 		rcu_dump_cpu_stacks(rsp);
1465 
1466 		/* Complain about tasks blocking the grace period. */
1467 		rcu_print_detail_task_stall(rsp);
1468 	} else {
1469 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1470 		    READ_ONCE(rsp->completed) == gpnum) {
1471 			pr_err("INFO: Stall ended before state dump start\n");
1472 		} else {
1473 			j = jiffies;
1474 			gpa = READ_ONCE(rsp->gp_activity);
1475 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1476 			       rsp->name, j - gpa, j, gpa,
1477 			       jiffies_till_next_fqs,
1478 			       rcu_get_root(rsp)->qsmask);
1479 			/* In this case, the current CPU might be at fault. */
1480 			sched_show_task(current);
1481 		}
1482 	}
1483 
1484 	rcu_check_gp_kthread_starvation(rsp);
1485 
1486 	panic_on_rcu_stall();
1487 
1488 	force_quiescent_state(rsp);  /* Kick them all. */
1489 }
1490 
1491 static void print_cpu_stall(struct rcu_state *rsp)
1492 {
1493 	int cpu;
1494 	unsigned long flags;
1495 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1496 	struct rcu_node *rnp = rcu_get_root(rsp);
1497 	long totqlen = 0;
1498 
1499 	/* Kick and suppress, if so configured. */
1500 	rcu_stall_kick_kthreads(rsp);
1501 	if (rcu_cpu_stall_suppress)
1502 		return;
1503 
1504 	/*
1505 	 * OK, time to rat on ourselves...
1506 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1507 	 * RCU CPU stall warnings.
1508 	 */
1509 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1510 	print_cpu_stall_info_begin();
1511 	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1512 	print_cpu_stall_info(rsp, smp_processor_id());
1513 	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1514 	print_cpu_stall_info_end();
1515 	for_each_possible_cpu(cpu)
1516 		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1517 							    cpu)->cblist);
1518 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1519 		jiffies - rsp->gp_start,
1520 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1521 
1522 	rcu_check_gp_kthread_starvation(rsp);
1523 
1524 	rcu_dump_cpu_stacks(rsp);
1525 
1526 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1527 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1528 		WRITE_ONCE(rsp->jiffies_stall,
1529 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1530 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1531 
1532 	panic_on_rcu_stall();
1533 
1534 	/*
1535 	 * Attempt to revive the RCU machinery by forcing a context switch.
1536 	 *
1537 	 * A context switch would normally allow the RCU state machine to make
1538 	 * progress and it could be we're stuck in kernel space without context
1539 	 * switches for an entirely unreasonable amount of time.
1540 	 */
1541 	resched_cpu(smp_processor_id());
1542 }
1543 
1544 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1545 {
1546 	unsigned long completed;
1547 	unsigned long gpnum;
1548 	unsigned long gps;
1549 	unsigned long j;
1550 	unsigned long js;
1551 	struct rcu_node *rnp;
1552 
1553 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1554 	    !rcu_gp_in_progress(rsp))
1555 		return;
1556 	rcu_stall_kick_kthreads(rsp);
1557 	j = jiffies;
1558 
1559 	/*
1560 	 * Lots of memory barriers to reject false positives.
1561 	 *
1562 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1563 	 * then rsp->gp_start, and finally rsp->completed.  These values
1564 	 * are updated in the opposite order with memory barriers (or
1565 	 * equivalent) during grace-period initialization and cleanup.
1566 	 * Now, a false positive can occur if we get an new value of
1567 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1568 	 * the memory barriers, the only way that this can happen is if one
1569 	 * grace period ends and another starts between these two fetches.
1570 	 * Detect this by comparing rsp->completed with the previous fetch
1571 	 * from rsp->gpnum.
1572 	 *
1573 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1574 	 * and rsp->gp_start suffice to forestall false positives.
1575 	 */
1576 	gpnum = READ_ONCE(rsp->gpnum);
1577 	smp_rmb(); /* Pick up ->gpnum first... */
1578 	js = READ_ONCE(rsp->jiffies_stall);
1579 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1580 	gps = READ_ONCE(rsp->gp_start);
1581 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1582 	completed = READ_ONCE(rsp->completed);
1583 	if (ULONG_CMP_GE(completed, gpnum) ||
1584 	    ULONG_CMP_LT(j, js) ||
1585 	    ULONG_CMP_GE(gps, js))
1586 		return; /* No stall or GP completed since entering function. */
1587 	rnp = rdp->mynode;
1588 	if (rcu_gp_in_progress(rsp) &&
1589 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1590 
1591 		/* We haven't checked in, so go dump stack. */
1592 		print_cpu_stall(rsp);
1593 
1594 	} else if (rcu_gp_in_progress(rsp) &&
1595 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1596 
1597 		/* They had a few time units to dump stack, so complain. */
1598 		print_other_cpu_stall(rsp, gpnum);
1599 	}
1600 }
1601 
1602 /**
1603  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1604  *
1605  * Set the stall-warning timeout way off into the future, thus preventing
1606  * any RCU CPU stall-warning messages from appearing in the current set of
1607  * RCU grace periods.
1608  *
1609  * The caller must disable hard irqs.
1610  */
1611 void rcu_cpu_stall_reset(void)
1612 {
1613 	struct rcu_state *rsp;
1614 
1615 	for_each_rcu_flavor(rsp)
1616 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1617 }
1618 
1619 /*
1620  * Determine the value that ->completed will have at the end of the
1621  * next subsequent grace period.  This is used to tag callbacks so that
1622  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1623  * been dyntick-idle for an extended period with callbacks under the
1624  * influence of RCU_FAST_NO_HZ.
1625  *
1626  * The caller must hold rnp->lock with interrupts disabled.
1627  */
1628 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1629 				       struct rcu_node *rnp)
1630 {
1631 	lockdep_assert_held(&rnp->lock);
1632 
1633 	/*
1634 	 * If RCU is idle, we just wait for the next grace period.
1635 	 * But we can only be sure that RCU is idle if we are looking
1636 	 * at the root rcu_node structure -- otherwise, a new grace
1637 	 * period might have started, but just not yet gotten around
1638 	 * to initializing the current non-root rcu_node structure.
1639 	 */
1640 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1641 		return rnp->completed + 1;
1642 
1643 	/*
1644 	 * Otherwise, wait for a possible partial grace period and
1645 	 * then the subsequent full grace period.
1646 	 */
1647 	return rnp->completed + 2;
1648 }
1649 
1650 /*
1651  * Trace-event helper function for rcu_start_future_gp() and
1652  * rcu_nocb_wait_gp().
1653  */
1654 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1655 				unsigned long c, const char *s)
1656 {
1657 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1658 				      rnp->completed, c, rnp->level,
1659 				      rnp->grplo, rnp->grphi, s);
1660 }
1661 
1662 /*
1663  * Start some future grace period, as needed to handle newly arrived
1664  * callbacks.  The required future grace periods are recorded in each
1665  * rcu_node structure's ->need_future_gp field.  Returns true if there
1666  * is reason to awaken the grace-period kthread.
1667  *
1668  * The caller must hold the specified rcu_node structure's ->lock.
1669  */
1670 static bool __maybe_unused
1671 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1672 		    unsigned long *c_out)
1673 {
1674 	unsigned long c;
1675 	bool ret = false;
1676 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1677 
1678 	lockdep_assert_held(&rnp->lock);
1679 
1680 	/*
1681 	 * Pick up grace-period number for new callbacks.  If this
1682 	 * grace period is already marked as needed, return to the caller.
1683 	 */
1684 	c = rcu_cbs_completed(rdp->rsp, rnp);
1685 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1686 	if (rnp->need_future_gp[c & 0x1]) {
1687 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1688 		goto out;
1689 	}
1690 
1691 	/*
1692 	 * If either this rcu_node structure or the root rcu_node structure
1693 	 * believe that a grace period is in progress, then we must wait
1694 	 * for the one following, which is in "c".  Because our request
1695 	 * will be noticed at the end of the current grace period, we don't
1696 	 * need to explicitly start one.  We only do the lockless check
1697 	 * of rnp_root's fields if the current rcu_node structure thinks
1698 	 * there is no grace period in flight, and because we hold rnp->lock,
1699 	 * the only possible change is when rnp_root's two fields are
1700 	 * equal, in which case rnp_root->gpnum might be concurrently
1701 	 * incremented.  But that is OK, as it will just result in our
1702 	 * doing some extra useless work.
1703 	 */
1704 	if (rnp->gpnum != rnp->completed ||
1705 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1706 		rnp->need_future_gp[c & 0x1]++;
1707 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1708 		goto out;
1709 	}
1710 
1711 	/*
1712 	 * There might be no grace period in progress.  If we don't already
1713 	 * hold it, acquire the root rcu_node structure's lock in order to
1714 	 * start one (if needed).
1715 	 */
1716 	if (rnp != rnp_root)
1717 		raw_spin_lock_rcu_node(rnp_root);
1718 
1719 	/*
1720 	 * Get a new grace-period number.  If there really is no grace
1721 	 * period in progress, it will be smaller than the one we obtained
1722 	 * earlier.  Adjust callbacks as needed.
1723 	 */
1724 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1725 	if (!rcu_is_nocb_cpu(rdp->cpu))
1726 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1727 
1728 	/*
1729 	 * If the needed for the required grace period is already
1730 	 * recorded, trace and leave.
1731 	 */
1732 	if (rnp_root->need_future_gp[c & 0x1]) {
1733 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1734 		goto unlock_out;
1735 	}
1736 
1737 	/* Record the need for the future grace period. */
1738 	rnp_root->need_future_gp[c & 0x1]++;
1739 
1740 	/* If a grace period is not already in progress, start one. */
1741 	if (rnp_root->gpnum != rnp_root->completed) {
1742 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1743 	} else {
1744 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1745 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1746 	}
1747 unlock_out:
1748 	if (rnp != rnp_root)
1749 		raw_spin_unlock_rcu_node(rnp_root);
1750 out:
1751 	if (c_out != NULL)
1752 		*c_out = c;
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Clean up any old requests for the just-ended grace period.  Also return
1758  * whether any additional grace periods have been requested.
1759  */
1760 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1761 {
1762 	int c = rnp->completed;
1763 	int needmore;
1764 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1765 
1766 	rnp->need_future_gp[c & 0x1] = 0;
1767 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1768 	trace_rcu_future_gp(rnp, rdp, c,
1769 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1770 	return needmore;
1771 }
1772 
1773 /*
1774  * Awaken the grace-period kthread for the specified flavor of RCU.
1775  * Don't do a self-awaken, and don't bother awakening when there is
1776  * nothing for the grace-period kthread to do (as in several CPUs
1777  * raced to awaken, and we lost), and finally don't try to awaken
1778  * a kthread that has not yet been created.
1779  */
1780 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1781 {
1782 	if (current == rsp->gp_kthread ||
1783 	    !READ_ONCE(rsp->gp_flags) ||
1784 	    !rsp->gp_kthread)
1785 		return;
1786 	swake_up(&rsp->gp_wq);
1787 }
1788 
1789 /*
1790  * If there is room, assign a ->completed number to any callbacks on
1791  * this CPU that have not already been assigned.  Also accelerate any
1792  * callbacks that were previously assigned a ->completed number that has
1793  * since proven to be too conservative, which can happen if callbacks get
1794  * assigned a ->completed number while RCU is idle, but with reference to
1795  * a non-root rcu_node structure.  This function is idempotent, so it does
1796  * not hurt to call it repeatedly.  Returns an flag saying that we should
1797  * awaken the RCU grace-period kthread.
1798  *
1799  * The caller must hold rnp->lock with interrupts disabled.
1800  */
1801 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1802 			       struct rcu_data *rdp)
1803 {
1804 	bool ret = false;
1805 
1806 	lockdep_assert_held(&rnp->lock);
1807 
1808 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1809 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1810 		return false;
1811 
1812 	/*
1813 	 * Callbacks are often registered with incomplete grace-period
1814 	 * information.  Something about the fact that getting exact
1815 	 * information requires acquiring a global lock...  RCU therefore
1816 	 * makes a conservative estimate of the grace period number at which
1817 	 * a given callback will become ready to invoke.	The following
1818 	 * code checks this estimate and improves it when possible, thus
1819 	 * accelerating callback invocation to an earlier grace-period
1820 	 * number.
1821 	 */
1822 	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1823 		ret = rcu_start_future_gp(rnp, rdp, NULL);
1824 
1825 	/* Trace depending on how much we were able to accelerate. */
1826 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1827 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1828 	else
1829 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1830 	return ret;
1831 }
1832 
1833 /*
1834  * Move any callbacks whose grace period has completed to the
1835  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1836  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1837  * sublist.  This function is idempotent, so it does not hurt to
1838  * invoke it repeatedly.  As long as it is not invoked -too- often...
1839  * Returns true if the RCU grace-period kthread needs to be awakened.
1840  *
1841  * The caller must hold rnp->lock with interrupts disabled.
1842  */
1843 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1844 			    struct rcu_data *rdp)
1845 {
1846 	lockdep_assert_held(&rnp->lock);
1847 
1848 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1849 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1850 		return false;
1851 
1852 	/*
1853 	 * Find all callbacks whose ->completed numbers indicate that they
1854 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1855 	 */
1856 	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1857 
1858 	/* Classify any remaining callbacks. */
1859 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1860 }
1861 
1862 /*
1863  * Update CPU-local rcu_data state to record the beginnings and ends of
1864  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1865  * structure corresponding to the current CPU, and must have irqs disabled.
1866  * Returns true if the grace-period kthread needs to be awakened.
1867  */
1868 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1869 			      struct rcu_data *rdp)
1870 {
1871 	bool ret;
1872 	bool need_gp;
1873 
1874 	lockdep_assert_held(&rnp->lock);
1875 
1876 	/* Handle the ends of any preceding grace periods first. */
1877 	if (rdp->completed == rnp->completed &&
1878 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1879 
1880 		/* No grace period end, so just accelerate recent callbacks. */
1881 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1882 
1883 	} else {
1884 
1885 		/* Advance callbacks. */
1886 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1887 
1888 		/* Remember that we saw this grace-period completion. */
1889 		rdp->completed = rnp->completed;
1890 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1891 	}
1892 
1893 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1894 		/*
1895 		 * If the current grace period is waiting for this CPU,
1896 		 * set up to detect a quiescent state, otherwise don't
1897 		 * go looking for one.
1898 		 */
1899 		rdp->gpnum = rnp->gpnum;
1900 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1901 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1902 		rdp->cpu_no_qs.b.norm = need_gp;
1903 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1904 		rdp->core_needs_qs = need_gp;
1905 		zero_cpu_stall_ticks(rdp);
1906 		WRITE_ONCE(rdp->gpwrap, false);
1907 		rcu_gpnum_ovf(rnp, rdp);
1908 	}
1909 	return ret;
1910 }
1911 
1912 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1913 {
1914 	unsigned long flags;
1915 	bool needwake;
1916 	struct rcu_node *rnp;
1917 
1918 	local_irq_save(flags);
1919 	rnp = rdp->mynode;
1920 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1921 	     rdp->completed == READ_ONCE(rnp->completed) &&
1922 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1923 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1924 		local_irq_restore(flags);
1925 		return;
1926 	}
1927 	needwake = __note_gp_changes(rsp, rnp, rdp);
1928 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1929 	if (needwake)
1930 		rcu_gp_kthread_wake(rsp);
1931 }
1932 
1933 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1934 {
1935 	if (delay > 0 &&
1936 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1937 		schedule_timeout_uninterruptible(delay);
1938 }
1939 
1940 /*
1941  * Initialize a new grace period.  Return false if no grace period required.
1942  */
1943 static bool rcu_gp_init(struct rcu_state *rsp)
1944 {
1945 	unsigned long oldmask;
1946 	struct rcu_data *rdp;
1947 	struct rcu_node *rnp = rcu_get_root(rsp);
1948 
1949 	WRITE_ONCE(rsp->gp_activity, jiffies);
1950 	raw_spin_lock_irq_rcu_node(rnp);
1951 	if (!READ_ONCE(rsp->gp_flags)) {
1952 		/* Spurious wakeup, tell caller to go back to sleep.  */
1953 		raw_spin_unlock_irq_rcu_node(rnp);
1954 		return false;
1955 	}
1956 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1957 
1958 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1959 		/*
1960 		 * Grace period already in progress, don't start another.
1961 		 * Not supposed to be able to happen.
1962 		 */
1963 		raw_spin_unlock_irq_rcu_node(rnp);
1964 		return false;
1965 	}
1966 
1967 	/* Advance to a new grace period and initialize state. */
1968 	record_gp_stall_check_time(rsp);
1969 	/* Record GP times before starting GP, hence smp_store_release(). */
1970 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1971 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1972 	raw_spin_unlock_irq_rcu_node(rnp);
1973 
1974 	/*
1975 	 * Apply per-leaf buffered online and offline operations to the
1976 	 * rcu_node tree.  Note that this new grace period need not wait
1977 	 * for subsequent online CPUs, and that quiescent-state forcing
1978 	 * will handle subsequent offline CPUs.
1979 	 */
1980 	rcu_for_each_leaf_node(rsp, rnp) {
1981 		rcu_gp_slow(rsp, gp_preinit_delay);
1982 		raw_spin_lock_irq_rcu_node(rnp);
1983 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1984 		    !rnp->wait_blkd_tasks) {
1985 			/* Nothing to do on this leaf rcu_node structure. */
1986 			raw_spin_unlock_irq_rcu_node(rnp);
1987 			continue;
1988 		}
1989 
1990 		/* Record old state, apply changes to ->qsmaskinit field. */
1991 		oldmask = rnp->qsmaskinit;
1992 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1993 
1994 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1995 		if (!oldmask != !rnp->qsmaskinit) {
1996 			if (!oldmask) /* First online CPU for this rcu_node. */
1997 				rcu_init_new_rnp(rnp);
1998 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1999 				rnp->wait_blkd_tasks = true;
2000 			else /* Last offline CPU and can propagate. */
2001 				rcu_cleanup_dead_rnp(rnp);
2002 		}
2003 
2004 		/*
2005 		 * If all waited-on tasks from prior grace period are
2006 		 * done, and if all this rcu_node structure's CPUs are
2007 		 * still offline, propagate up the rcu_node tree and
2008 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2009 		 * rcu_node structure's CPUs has since come back online,
2010 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2011 		 * checks for this, so just call it unconditionally).
2012 		 */
2013 		if (rnp->wait_blkd_tasks &&
2014 		    (!rcu_preempt_has_tasks(rnp) ||
2015 		     rnp->qsmaskinit)) {
2016 			rnp->wait_blkd_tasks = false;
2017 			rcu_cleanup_dead_rnp(rnp);
2018 		}
2019 
2020 		raw_spin_unlock_irq_rcu_node(rnp);
2021 	}
2022 
2023 	/*
2024 	 * Set the quiescent-state-needed bits in all the rcu_node
2025 	 * structures for all currently online CPUs in breadth-first order,
2026 	 * starting from the root rcu_node structure, relying on the layout
2027 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2028 	 * will access only the leaves of the hierarchy, thus seeing that no
2029 	 * grace period is in progress, at least until the corresponding
2030 	 * leaf node has been initialized.
2031 	 *
2032 	 * The grace period cannot complete until the initialization
2033 	 * process finishes, because this kthread handles both.
2034 	 */
2035 	rcu_for_each_node_breadth_first(rsp, rnp) {
2036 		rcu_gp_slow(rsp, gp_init_delay);
2037 		raw_spin_lock_irq_rcu_node(rnp);
2038 		rdp = this_cpu_ptr(rsp->rda);
2039 		rcu_preempt_check_blocked_tasks(rnp);
2040 		rnp->qsmask = rnp->qsmaskinit;
2041 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2042 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2043 			WRITE_ONCE(rnp->completed, rsp->completed);
2044 		if (rnp == rdp->mynode)
2045 			(void)__note_gp_changes(rsp, rnp, rdp);
2046 		rcu_preempt_boost_start_gp(rnp);
2047 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2048 					    rnp->level, rnp->grplo,
2049 					    rnp->grphi, rnp->qsmask);
2050 		raw_spin_unlock_irq_rcu_node(rnp);
2051 		cond_resched_rcu_qs();
2052 		WRITE_ONCE(rsp->gp_activity, jiffies);
2053 	}
2054 
2055 	return true;
2056 }
2057 
2058 /*
2059  * Helper function for swait_event_idle() wakeup at force-quiescent-state
2060  * time.
2061  */
2062 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2063 {
2064 	struct rcu_node *rnp = rcu_get_root(rsp);
2065 
2066 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2067 	*gfp = READ_ONCE(rsp->gp_flags);
2068 	if (*gfp & RCU_GP_FLAG_FQS)
2069 		return true;
2070 
2071 	/* The current grace period has completed. */
2072 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2073 		return true;
2074 
2075 	return false;
2076 }
2077 
2078 /*
2079  * Do one round of quiescent-state forcing.
2080  */
2081 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2082 {
2083 	struct rcu_node *rnp = rcu_get_root(rsp);
2084 
2085 	WRITE_ONCE(rsp->gp_activity, jiffies);
2086 	rsp->n_force_qs++;
2087 	if (first_time) {
2088 		/* Collect dyntick-idle snapshots. */
2089 		force_qs_rnp(rsp, dyntick_save_progress_counter);
2090 	} else {
2091 		/* Handle dyntick-idle and offline CPUs. */
2092 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2093 	}
2094 	/* Clear flag to prevent immediate re-entry. */
2095 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2096 		raw_spin_lock_irq_rcu_node(rnp);
2097 		WRITE_ONCE(rsp->gp_flags,
2098 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2099 		raw_spin_unlock_irq_rcu_node(rnp);
2100 	}
2101 }
2102 
2103 /*
2104  * Clean up after the old grace period.
2105  */
2106 static void rcu_gp_cleanup(struct rcu_state *rsp)
2107 {
2108 	unsigned long gp_duration;
2109 	bool needgp = false;
2110 	int nocb = 0;
2111 	struct rcu_data *rdp;
2112 	struct rcu_node *rnp = rcu_get_root(rsp);
2113 	struct swait_queue_head *sq;
2114 
2115 	WRITE_ONCE(rsp->gp_activity, jiffies);
2116 	raw_spin_lock_irq_rcu_node(rnp);
2117 	gp_duration = jiffies - rsp->gp_start;
2118 	if (gp_duration > rsp->gp_max)
2119 		rsp->gp_max = gp_duration;
2120 
2121 	/*
2122 	 * We know the grace period is complete, but to everyone else
2123 	 * it appears to still be ongoing.  But it is also the case
2124 	 * that to everyone else it looks like there is nothing that
2125 	 * they can do to advance the grace period.  It is therefore
2126 	 * safe for us to drop the lock in order to mark the grace
2127 	 * period as completed in all of the rcu_node structures.
2128 	 */
2129 	raw_spin_unlock_irq_rcu_node(rnp);
2130 
2131 	/*
2132 	 * Propagate new ->completed value to rcu_node structures so
2133 	 * that other CPUs don't have to wait until the start of the next
2134 	 * grace period to process their callbacks.  This also avoids
2135 	 * some nasty RCU grace-period initialization races by forcing
2136 	 * the end of the current grace period to be completely recorded in
2137 	 * all of the rcu_node structures before the beginning of the next
2138 	 * grace period is recorded in any of the rcu_node structures.
2139 	 */
2140 	rcu_for_each_node_breadth_first(rsp, rnp) {
2141 		raw_spin_lock_irq_rcu_node(rnp);
2142 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2143 		WARN_ON_ONCE(rnp->qsmask);
2144 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2145 		rdp = this_cpu_ptr(rsp->rda);
2146 		if (rnp == rdp->mynode)
2147 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2148 		/* smp_mb() provided by prior unlock-lock pair. */
2149 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2150 		sq = rcu_nocb_gp_get(rnp);
2151 		raw_spin_unlock_irq_rcu_node(rnp);
2152 		rcu_nocb_gp_cleanup(sq);
2153 		cond_resched_rcu_qs();
2154 		WRITE_ONCE(rsp->gp_activity, jiffies);
2155 		rcu_gp_slow(rsp, gp_cleanup_delay);
2156 	}
2157 	rnp = rcu_get_root(rsp);
2158 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2159 	rcu_nocb_gp_set(rnp, nocb);
2160 
2161 	/* Declare grace period done. */
2162 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2163 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2164 	rsp->gp_state = RCU_GP_IDLE;
2165 	rdp = this_cpu_ptr(rsp->rda);
2166 	/* Advance CBs to reduce false positives below. */
2167 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2168 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2169 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2170 		trace_rcu_grace_period(rsp->name,
2171 				       READ_ONCE(rsp->gpnum),
2172 				       TPS("newreq"));
2173 	}
2174 	raw_spin_unlock_irq_rcu_node(rnp);
2175 }
2176 
2177 /*
2178  * Body of kthread that handles grace periods.
2179  */
2180 static int __noreturn rcu_gp_kthread(void *arg)
2181 {
2182 	bool first_gp_fqs;
2183 	int gf;
2184 	unsigned long j;
2185 	int ret;
2186 	struct rcu_state *rsp = arg;
2187 	struct rcu_node *rnp = rcu_get_root(rsp);
2188 
2189 	rcu_bind_gp_kthread();
2190 	for (;;) {
2191 
2192 		/* Handle grace-period start. */
2193 		for (;;) {
2194 			trace_rcu_grace_period(rsp->name,
2195 					       READ_ONCE(rsp->gpnum),
2196 					       TPS("reqwait"));
2197 			rsp->gp_state = RCU_GP_WAIT_GPS;
2198 			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2199 						     RCU_GP_FLAG_INIT);
2200 			rsp->gp_state = RCU_GP_DONE_GPS;
2201 			/* Locking provides needed memory barrier. */
2202 			if (rcu_gp_init(rsp))
2203 				break;
2204 			cond_resched_rcu_qs();
2205 			WRITE_ONCE(rsp->gp_activity, jiffies);
2206 			WARN_ON(signal_pending(current));
2207 			trace_rcu_grace_period(rsp->name,
2208 					       READ_ONCE(rsp->gpnum),
2209 					       TPS("reqwaitsig"));
2210 		}
2211 
2212 		/* Handle quiescent-state forcing. */
2213 		first_gp_fqs = true;
2214 		j = jiffies_till_first_fqs;
2215 		if (j > HZ) {
2216 			j = HZ;
2217 			jiffies_till_first_fqs = HZ;
2218 		}
2219 		ret = 0;
2220 		for (;;) {
2221 			if (!ret) {
2222 				rsp->jiffies_force_qs = jiffies + j;
2223 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2224 					   jiffies + 3 * j);
2225 			}
2226 			trace_rcu_grace_period(rsp->name,
2227 					       READ_ONCE(rsp->gpnum),
2228 					       TPS("fqswait"));
2229 			rsp->gp_state = RCU_GP_WAIT_FQS;
2230 			ret = swait_event_idle_timeout(rsp->gp_wq,
2231 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2232 			rsp->gp_state = RCU_GP_DOING_FQS;
2233 			/* Locking provides needed memory barriers. */
2234 			/* If grace period done, leave loop. */
2235 			if (!READ_ONCE(rnp->qsmask) &&
2236 			    !rcu_preempt_blocked_readers_cgp(rnp))
2237 				break;
2238 			/* If time for quiescent-state forcing, do it. */
2239 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2240 			    (gf & RCU_GP_FLAG_FQS)) {
2241 				trace_rcu_grace_period(rsp->name,
2242 						       READ_ONCE(rsp->gpnum),
2243 						       TPS("fqsstart"));
2244 				rcu_gp_fqs(rsp, first_gp_fqs);
2245 				first_gp_fqs = false;
2246 				trace_rcu_grace_period(rsp->name,
2247 						       READ_ONCE(rsp->gpnum),
2248 						       TPS("fqsend"));
2249 				cond_resched_rcu_qs();
2250 				WRITE_ONCE(rsp->gp_activity, jiffies);
2251 				ret = 0; /* Force full wait till next FQS. */
2252 				j = jiffies_till_next_fqs;
2253 				if (j > HZ) {
2254 					j = HZ;
2255 					jiffies_till_next_fqs = HZ;
2256 				} else if (j < 1) {
2257 					j = 1;
2258 					jiffies_till_next_fqs = 1;
2259 				}
2260 			} else {
2261 				/* Deal with stray signal. */
2262 				cond_resched_rcu_qs();
2263 				WRITE_ONCE(rsp->gp_activity, jiffies);
2264 				WARN_ON(signal_pending(current));
2265 				trace_rcu_grace_period(rsp->name,
2266 						       READ_ONCE(rsp->gpnum),
2267 						       TPS("fqswaitsig"));
2268 				ret = 1; /* Keep old FQS timing. */
2269 				j = jiffies;
2270 				if (time_after(jiffies, rsp->jiffies_force_qs))
2271 					j = 1;
2272 				else
2273 					j = rsp->jiffies_force_qs - j;
2274 			}
2275 		}
2276 
2277 		/* Handle grace-period end. */
2278 		rsp->gp_state = RCU_GP_CLEANUP;
2279 		rcu_gp_cleanup(rsp);
2280 		rsp->gp_state = RCU_GP_CLEANED;
2281 	}
2282 }
2283 
2284 /*
2285  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2286  * in preparation for detecting the next grace period.  The caller must hold
2287  * the root node's ->lock and hard irqs must be disabled.
2288  *
2289  * Note that it is legal for a dying CPU (which is marked as offline) to
2290  * invoke this function.  This can happen when the dying CPU reports its
2291  * quiescent state.
2292  *
2293  * Returns true if the grace-period kthread must be awakened.
2294  */
2295 static bool
2296 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2297 		      struct rcu_data *rdp)
2298 {
2299 	lockdep_assert_held(&rnp->lock);
2300 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2301 		/*
2302 		 * Either we have not yet spawned the grace-period
2303 		 * task, this CPU does not need another grace period,
2304 		 * or a grace period is already in progress.
2305 		 * Either way, don't start a new grace period.
2306 		 */
2307 		return false;
2308 	}
2309 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2310 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2311 			       TPS("newreq"));
2312 
2313 	/*
2314 	 * We can't do wakeups while holding the rnp->lock, as that
2315 	 * could cause possible deadlocks with the rq->lock. Defer
2316 	 * the wakeup to our caller.
2317 	 */
2318 	return true;
2319 }
2320 
2321 /*
2322  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2323  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2324  * is invoked indirectly from rcu_advance_cbs(), which would result in
2325  * endless recursion -- or would do so if it wasn't for the self-deadlock
2326  * that is encountered beforehand.
2327  *
2328  * Returns true if the grace-period kthread needs to be awakened.
2329  */
2330 static bool rcu_start_gp(struct rcu_state *rsp)
2331 {
2332 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2333 	struct rcu_node *rnp = rcu_get_root(rsp);
2334 	bool ret = false;
2335 
2336 	/*
2337 	 * If there is no grace period in progress right now, any
2338 	 * callbacks we have up to this point will be satisfied by the
2339 	 * next grace period.  Also, advancing the callbacks reduces the
2340 	 * probability of false positives from cpu_needs_another_gp()
2341 	 * resulting in pointless grace periods.  So, advance callbacks
2342 	 * then start the grace period!
2343 	 */
2344 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2345 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2346 	return ret;
2347 }
2348 
2349 /*
2350  * Report a full set of quiescent states to the specified rcu_state data
2351  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2352  * kthread if another grace period is required.  Whether we wake
2353  * the grace-period kthread or it awakens itself for the next round
2354  * of quiescent-state forcing, that kthread will clean up after the
2355  * just-completed grace period.  Note that the caller must hold rnp->lock,
2356  * which is released before return.
2357  */
2358 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2359 	__releases(rcu_get_root(rsp)->lock)
2360 {
2361 	lockdep_assert_held(&rcu_get_root(rsp)->lock);
2362 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2363 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2364 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2365 	rcu_gp_kthread_wake(rsp);
2366 }
2367 
2368 /*
2369  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2370  * Allows quiescent states for a group of CPUs to be reported at one go
2371  * to the specified rcu_node structure, though all the CPUs in the group
2372  * must be represented by the same rcu_node structure (which need not be a
2373  * leaf rcu_node structure, though it often will be).  The gps parameter
2374  * is the grace-period snapshot, which means that the quiescent states
2375  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2376  * must be held upon entry, and it is released before return.
2377  */
2378 static void
2379 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2380 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2381 	__releases(rnp->lock)
2382 {
2383 	unsigned long oldmask = 0;
2384 	struct rcu_node *rnp_c;
2385 
2386 	lockdep_assert_held(&rnp->lock);
2387 
2388 	/* Walk up the rcu_node hierarchy. */
2389 	for (;;) {
2390 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2391 
2392 			/*
2393 			 * Our bit has already been cleared, or the
2394 			 * relevant grace period is already over, so done.
2395 			 */
2396 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2397 			return;
2398 		}
2399 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2400 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2401 			     rcu_preempt_blocked_readers_cgp(rnp));
2402 		rnp->qsmask &= ~mask;
2403 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2404 						 mask, rnp->qsmask, rnp->level,
2405 						 rnp->grplo, rnp->grphi,
2406 						 !!rnp->gp_tasks);
2407 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2408 
2409 			/* Other bits still set at this level, so done. */
2410 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2411 			return;
2412 		}
2413 		mask = rnp->grpmask;
2414 		if (rnp->parent == NULL) {
2415 
2416 			/* No more levels.  Exit loop holding root lock. */
2417 
2418 			break;
2419 		}
2420 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2421 		rnp_c = rnp;
2422 		rnp = rnp->parent;
2423 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2424 		oldmask = rnp_c->qsmask;
2425 	}
2426 
2427 	/*
2428 	 * Get here if we are the last CPU to pass through a quiescent
2429 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2430 	 * to clean up and start the next grace period if one is needed.
2431 	 */
2432 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2433 }
2434 
2435 /*
2436  * Record a quiescent state for all tasks that were previously queued
2437  * on the specified rcu_node structure and that were blocking the current
2438  * RCU grace period.  The caller must hold the specified rnp->lock with
2439  * irqs disabled, and this lock is released upon return, but irqs remain
2440  * disabled.
2441  */
2442 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2443 				      struct rcu_node *rnp, unsigned long flags)
2444 	__releases(rnp->lock)
2445 {
2446 	unsigned long gps;
2447 	unsigned long mask;
2448 	struct rcu_node *rnp_p;
2449 
2450 	lockdep_assert_held(&rnp->lock);
2451 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2452 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2453 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2454 		return;  /* Still need more quiescent states! */
2455 	}
2456 
2457 	rnp_p = rnp->parent;
2458 	if (rnp_p == NULL) {
2459 		/*
2460 		 * Only one rcu_node structure in the tree, so don't
2461 		 * try to report up to its nonexistent parent!
2462 		 */
2463 		rcu_report_qs_rsp(rsp, flags);
2464 		return;
2465 	}
2466 
2467 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2468 	gps = rnp->gpnum;
2469 	mask = rnp->grpmask;
2470 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2471 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2472 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2473 }
2474 
2475 /*
2476  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2477  * structure.  This must be called from the specified CPU.
2478  */
2479 static void
2480 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2481 {
2482 	unsigned long flags;
2483 	unsigned long mask;
2484 	bool needwake;
2485 	struct rcu_node *rnp;
2486 
2487 	rnp = rdp->mynode;
2488 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2489 	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2490 	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2491 
2492 		/*
2493 		 * The grace period in which this quiescent state was
2494 		 * recorded has ended, so don't report it upwards.
2495 		 * We will instead need a new quiescent state that lies
2496 		 * within the current grace period.
2497 		 */
2498 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2499 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2500 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2501 		return;
2502 	}
2503 	mask = rdp->grpmask;
2504 	if ((rnp->qsmask & mask) == 0) {
2505 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2506 	} else {
2507 		rdp->core_needs_qs = false;
2508 
2509 		/*
2510 		 * This GP can't end until cpu checks in, so all of our
2511 		 * callbacks can be processed during the next GP.
2512 		 */
2513 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2514 
2515 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2516 		/* ^^^ Released rnp->lock */
2517 		if (needwake)
2518 			rcu_gp_kthread_wake(rsp);
2519 	}
2520 }
2521 
2522 /*
2523  * Check to see if there is a new grace period of which this CPU
2524  * is not yet aware, and if so, set up local rcu_data state for it.
2525  * Otherwise, see if this CPU has just passed through its first
2526  * quiescent state for this grace period, and record that fact if so.
2527  */
2528 static void
2529 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2530 {
2531 	/* Check for grace-period ends and beginnings. */
2532 	note_gp_changes(rsp, rdp);
2533 
2534 	/*
2535 	 * Does this CPU still need to do its part for current grace period?
2536 	 * If no, return and let the other CPUs do their part as well.
2537 	 */
2538 	if (!rdp->core_needs_qs)
2539 		return;
2540 
2541 	/*
2542 	 * Was there a quiescent state since the beginning of the grace
2543 	 * period? If no, then exit and wait for the next call.
2544 	 */
2545 	if (rdp->cpu_no_qs.b.norm)
2546 		return;
2547 
2548 	/*
2549 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2550 	 * judge of that).
2551 	 */
2552 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2553 }
2554 
2555 /*
2556  * Trace the fact that this CPU is going offline.
2557  */
2558 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2559 {
2560 	RCU_TRACE(unsigned long mask;)
2561 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2562 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2563 
2564 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2565 		return;
2566 
2567 	RCU_TRACE(mask = rdp->grpmask;)
2568 	trace_rcu_grace_period(rsp->name,
2569 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2570 			       TPS("cpuofl"));
2571 }
2572 
2573 /*
2574  * All CPUs for the specified rcu_node structure have gone offline,
2575  * and all tasks that were preempted within an RCU read-side critical
2576  * section while running on one of those CPUs have since exited their RCU
2577  * read-side critical section.  Some other CPU is reporting this fact with
2578  * the specified rcu_node structure's ->lock held and interrupts disabled.
2579  * This function therefore goes up the tree of rcu_node structures,
2580  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2581  * the leaf rcu_node structure's ->qsmaskinit field has already been
2582  * updated
2583  *
2584  * This function does check that the specified rcu_node structure has
2585  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2586  * prematurely.  That said, invoking it after the fact will cost you
2587  * a needless lock acquisition.  So once it has done its work, don't
2588  * invoke it again.
2589  */
2590 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2591 {
2592 	long mask;
2593 	struct rcu_node *rnp = rnp_leaf;
2594 
2595 	lockdep_assert_held(&rnp->lock);
2596 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2597 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2598 		return;
2599 	for (;;) {
2600 		mask = rnp->grpmask;
2601 		rnp = rnp->parent;
2602 		if (!rnp)
2603 			break;
2604 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2605 		rnp->qsmaskinit &= ~mask;
2606 		rnp->qsmask &= ~mask;
2607 		if (rnp->qsmaskinit) {
2608 			raw_spin_unlock_rcu_node(rnp);
2609 			/* irqs remain disabled. */
2610 			return;
2611 		}
2612 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2613 	}
2614 }
2615 
2616 /*
2617  * The CPU has been completely removed, and some other CPU is reporting
2618  * this fact from process context.  Do the remainder of the cleanup.
2619  * There can only be one CPU hotplug operation at a time, so no need for
2620  * explicit locking.
2621  */
2622 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2623 {
2624 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2625 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2626 
2627 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2628 		return;
2629 
2630 	/* Adjust any no-longer-needed kthreads. */
2631 	rcu_boost_kthread_setaffinity(rnp, -1);
2632 }
2633 
2634 /*
2635  * Invoke any RCU callbacks that have made it to the end of their grace
2636  * period.  Thottle as specified by rdp->blimit.
2637  */
2638 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2639 {
2640 	unsigned long flags;
2641 	struct rcu_head *rhp;
2642 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2643 	long bl, count;
2644 
2645 	/* If no callbacks are ready, just return. */
2646 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2647 		trace_rcu_batch_start(rsp->name,
2648 				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2649 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2650 		trace_rcu_batch_end(rsp->name, 0,
2651 				    !rcu_segcblist_empty(&rdp->cblist),
2652 				    need_resched(), is_idle_task(current),
2653 				    rcu_is_callbacks_kthread());
2654 		return;
2655 	}
2656 
2657 	/*
2658 	 * Extract the list of ready callbacks, disabling to prevent
2659 	 * races with call_rcu() from interrupt handlers.  Leave the
2660 	 * callback counts, as rcu_barrier() needs to be conservative.
2661 	 */
2662 	local_irq_save(flags);
2663 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2664 	bl = rdp->blimit;
2665 	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2666 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2667 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2668 	local_irq_restore(flags);
2669 
2670 	/* Invoke callbacks. */
2671 	rhp = rcu_cblist_dequeue(&rcl);
2672 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2673 		debug_rcu_head_unqueue(rhp);
2674 		if (__rcu_reclaim(rsp->name, rhp))
2675 			rcu_cblist_dequeued_lazy(&rcl);
2676 		/*
2677 		 * Stop only if limit reached and CPU has something to do.
2678 		 * Note: The rcl structure counts down from zero.
2679 		 */
2680 		if (-rcl.len >= bl &&
2681 		    (need_resched() ||
2682 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2683 			break;
2684 	}
2685 
2686 	local_irq_save(flags);
2687 	count = -rcl.len;
2688 	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2689 			    is_idle_task(current), rcu_is_callbacks_kthread());
2690 
2691 	/* Update counts and requeue any remaining callbacks. */
2692 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2693 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2694 	rdp->n_cbs_invoked += count;
2695 	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2696 
2697 	/* Reinstate batch limit if we have worked down the excess. */
2698 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2699 	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700 		rdp->blimit = blimit;
2701 
2702 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704 		rdp->qlen_last_fqs_check = 0;
2705 		rdp->n_force_qs_snap = rsp->n_force_qs;
2706 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2707 		rdp->qlen_last_fqs_check = count;
2708 
2709 	/*
2710 	 * The following usually indicates a double call_rcu().  To track
2711 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712 	 */
2713 	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2714 
2715 	local_irq_restore(flags);
2716 
2717 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2718 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719 		invoke_rcu_core();
2720 }
2721 
2722 /*
2723  * Check to see if this CPU is in a non-context-switch quiescent state
2724  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725  * Also schedule RCU core processing.
2726  *
2727  * This function must be called from hardirq context.  It is normally
2728  * invoked from the scheduling-clock interrupt.
2729  */
2730 void rcu_check_callbacks(int user)
2731 {
2732 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2733 	increment_cpu_stall_ticks();
2734 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2735 
2736 		/*
2737 		 * Get here if this CPU took its interrupt from user
2738 		 * mode or from the idle loop, and if this is not a
2739 		 * nested interrupt.  In this case, the CPU is in
2740 		 * a quiescent state, so note it.
2741 		 *
2742 		 * No memory barrier is required here because both
2743 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744 		 * variables that other CPUs neither access nor modify,
2745 		 * at least not while the corresponding CPU is online.
2746 		 */
2747 
2748 		rcu_sched_qs();
2749 		rcu_bh_qs();
2750 
2751 	} else if (!in_softirq()) {
2752 
2753 		/*
2754 		 * Get here if this CPU did not take its interrupt from
2755 		 * softirq, in other words, if it is not interrupting
2756 		 * a rcu_bh read-side critical section.  This is an _bh
2757 		 * critical section, so note it.
2758 		 */
2759 
2760 		rcu_bh_qs();
2761 	}
2762 	rcu_preempt_check_callbacks();
2763 	if (rcu_pending())
2764 		invoke_rcu_core();
2765 	if (user)
2766 		rcu_note_voluntary_context_switch(current);
2767 	trace_rcu_utilization(TPS("End scheduler-tick"));
2768 }
2769 
2770 /*
2771  * Scan the leaf rcu_node structures, processing dyntick state for any that
2772  * have not yet encountered a quiescent state, using the function specified.
2773  * Also initiate boosting for any threads blocked on the root rcu_node.
2774  *
2775  * The caller must have suppressed start of new grace periods.
2776  */
2777 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2778 {
2779 	int cpu;
2780 	unsigned long flags;
2781 	unsigned long mask;
2782 	struct rcu_node *rnp;
2783 
2784 	rcu_for_each_leaf_node(rsp, rnp) {
2785 		cond_resched_rcu_qs();
2786 		mask = 0;
2787 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2788 		if (rnp->qsmask == 0) {
2789 			if (rcu_state_p == &rcu_sched_state ||
2790 			    rsp != rcu_state_p ||
2791 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2792 				/*
2793 				 * No point in scanning bits because they
2794 				 * are all zero.  But we might need to
2795 				 * priority-boost blocked readers.
2796 				 */
2797 				rcu_initiate_boost(rnp, flags);
2798 				/* rcu_initiate_boost() releases rnp->lock */
2799 				continue;
2800 			}
2801 			if (rnp->parent &&
2802 			    (rnp->parent->qsmask & rnp->grpmask)) {
2803 				/*
2804 				 * Race between grace-period
2805 				 * initialization and task exiting RCU
2806 				 * read-side critical section: Report.
2807 				 */
2808 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2810 				continue;
2811 			}
2812 		}
2813 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2814 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815 			if ((rnp->qsmask & bit) != 0) {
2816 				if (f(per_cpu_ptr(rsp->rda, cpu)))
2817 					mask |= bit;
2818 			}
2819 		}
2820 		if (mask != 0) {
2821 			/* Idle/offline CPUs, report (releases rnp->lock. */
2822 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823 		} else {
2824 			/* Nothing to do here, so just drop the lock. */
2825 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2826 		}
2827 	}
2828 }
2829 
2830 /*
2831  * Force quiescent states on reluctant CPUs, and also detect which
2832  * CPUs are in dyntick-idle mode.
2833  */
2834 static void force_quiescent_state(struct rcu_state *rsp)
2835 {
2836 	unsigned long flags;
2837 	bool ret;
2838 	struct rcu_node *rnp;
2839 	struct rcu_node *rnp_old = NULL;
2840 
2841 	/* Funnel through hierarchy to reduce memory contention. */
2842 	rnp = __this_cpu_read(rsp->rda->mynode);
2843 	for (; rnp != NULL; rnp = rnp->parent) {
2844 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845 		      !raw_spin_trylock(&rnp->fqslock);
2846 		if (rnp_old != NULL)
2847 			raw_spin_unlock(&rnp_old->fqslock);
2848 		if (ret) {
2849 			rsp->n_force_qs_lh++;
2850 			return;
2851 		}
2852 		rnp_old = rnp;
2853 	}
2854 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2855 
2856 	/* Reached the root of the rcu_node tree, acquire lock. */
2857 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2858 	raw_spin_unlock(&rnp_old->fqslock);
2859 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2860 		rsp->n_force_qs_lh++;
2861 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2862 		return;  /* Someone beat us to it. */
2863 	}
2864 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2865 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2866 	rcu_gp_kthread_wake(rsp);
2867 }
2868 
2869 /*
2870  * This does the RCU core processing work for the specified rcu_state
2871  * and rcu_data structures.  This may be called only from the CPU to
2872  * whom the rdp belongs.
2873  */
2874 static void
2875 __rcu_process_callbacks(struct rcu_state *rsp)
2876 {
2877 	unsigned long flags;
2878 	bool needwake;
2879 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2880 
2881 	WARN_ON_ONCE(!rdp->beenonline);
2882 
2883 	/* Update RCU state based on any recent quiescent states. */
2884 	rcu_check_quiescent_state(rsp, rdp);
2885 
2886 	/* Does this CPU require a not-yet-started grace period? */
2887 	local_irq_save(flags);
2888 	if (cpu_needs_another_gp(rsp, rdp)) {
2889 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2890 		needwake = rcu_start_gp(rsp);
2891 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2892 		if (needwake)
2893 			rcu_gp_kthread_wake(rsp);
2894 	} else {
2895 		local_irq_restore(flags);
2896 	}
2897 
2898 	/* If there are callbacks ready, invoke them. */
2899 	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2900 		invoke_rcu_callbacks(rsp, rdp);
2901 
2902 	/* Do any needed deferred wakeups of rcuo kthreads. */
2903 	do_nocb_deferred_wakeup(rdp);
2904 }
2905 
2906 /*
2907  * Do RCU core processing for the current CPU.
2908  */
2909 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2910 {
2911 	struct rcu_state *rsp;
2912 
2913 	if (cpu_is_offline(smp_processor_id()))
2914 		return;
2915 	trace_rcu_utilization(TPS("Start RCU core"));
2916 	for_each_rcu_flavor(rsp)
2917 		__rcu_process_callbacks(rsp);
2918 	trace_rcu_utilization(TPS("End RCU core"));
2919 }
2920 
2921 /*
2922  * Schedule RCU callback invocation.  If the specified type of RCU
2923  * does not support RCU priority boosting, just do a direct call,
2924  * otherwise wake up the per-CPU kernel kthread.  Note that because we
2925  * are running on the current CPU with softirqs disabled, the
2926  * rcu_cpu_kthread_task cannot disappear out from under us.
2927  */
2928 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2929 {
2930 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2931 		return;
2932 	if (likely(!rsp->boost)) {
2933 		rcu_do_batch(rsp, rdp);
2934 		return;
2935 	}
2936 	invoke_rcu_callbacks_kthread();
2937 }
2938 
2939 static void invoke_rcu_core(void)
2940 {
2941 	if (cpu_online(smp_processor_id()))
2942 		raise_softirq(RCU_SOFTIRQ);
2943 }
2944 
2945 /*
2946  * Handle any core-RCU processing required by a call_rcu() invocation.
2947  */
2948 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2949 			    struct rcu_head *head, unsigned long flags)
2950 {
2951 	bool needwake;
2952 
2953 	/*
2954 	 * If called from an extended quiescent state, invoke the RCU
2955 	 * core in order to force a re-evaluation of RCU's idleness.
2956 	 */
2957 	if (!rcu_is_watching())
2958 		invoke_rcu_core();
2959 
2960 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2961 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2962 		return;
2963 
2964 	/*
2965 	 * Force the grace period if too many callbacks or too long waiting.
2966 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2967 	 * if some other CPU has recently done so.  Also, don't bother
2968 	 * invoking force_quiescent_state() if the newly enqueued callback
2969 	 * is the only one waiting for a grace period to complete.
2970 	 */
2971 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2972 		     rdp->qlen_last_fqs_check + qhimark)) {
2973 
2974 		/* Are we ignoring a completed grace period? */
2975 		note_gp_changes(rsp, rdp);
2976 
2977 		/* Start a new grace period if one not already started. */
2978 		if (!rcu_gp_in_progress(rsp)) {
2979 			struct rcu_node *rnp_root = rcu_get_root(rsp);
2980 
2981 			raw_spin_lock_rcu_node(rnp_root);
2982 			needwake = rcu_start_gp(rsp);
2983 			raw_spin_unlock_rcu_node(rnp_root);
2984 			if (needwake)
2985 				rcu_gp_kthread_wake(rsp);
2986 		} else {
2987 			/* Give the grace period a kick. */
2988 			rdp->blimit = LONG_MAX;
2989 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2990 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2991 				force_quiescent_state(rsp);
2992 			rdp->n_force_qs_snap = rsp->n_force_qs;
2993 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2994 		}
2995 	}
2996 }
2997 
2998 /*
2999  * RCU callback function to leak a callback.
3000  */
3001 static void rcu_leak_callback(struct rcu_head *rhp)
3002 {
3003 }
3004 
3005 /*
3006  * Helper function for call_rcu() and friends.  The cpu argument will
3007  * normally be -1, indicating "currently running CPU".  It may specify
3008  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3009  * is expected to specify a CPU.
3010  */
3011 static void
3012 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3013 	   struct rcu_state *rsp, int cpu, bool lazy)
3014 {
3015 	unsigned long flags;
3016 	struct rcu_data *rdp;
3017 
3018 	/* Misaligned rcu_head! */
3019 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3020 
3021 	if (debug_rcu_head_queue(head)) {
3022 		/*
3023 		 * Probable double call_rcu(), so leak the callback.
3024 		 * Use rcu:rcu_callback trace event to find the previous
3025 		 * time callback was passed to __call_rcu().
3026 		 */
3027 		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3028 			  head, head->func);
3029 		WRITE_ONCE(head->func, rcu_leak_callback);
3030 		return;
3031 	}
3032 	head->func = func;
3033 	head->next = NULL;
3034 	local_irq_save(flags);
3035 	rdp = this_cpu_ptr(rsp->rda);
3036 
3037 	/* Add the callback to our list. */
3038 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3039 		int offline;
3040 
3041 		if (cpu != -1)
3042 			rdp = per_cpu_ptr(rsp->rda, cpu);
3043 		if (likely(rdp->mynode)) {
3044 			/* Post-boot, so this should be for a no-CBs CPU. */
3045 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3046 			WARN_ON_ONCE(offline);
3047 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3048 			local_irq_restore(flags);
3049 			return;
3050 		}
3051 		/*
3052 		 * Very early boot, before rcu_init().  Initialize if needed
3053 		 * and then drop through to queue the callback.
3054 		 */
3055 		BUG_ON(cpu != -1);
3056 		WARN_ON_ONCE(!rcu_is_watching());
3057 		if (rcu_segcblist_empty(&rdp->cblist))
3058 			rcu_segcblist_init(&rdp->cblist);
3059 	}
3060 	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3061 	if (!lazy)
3062 		rcu_idle_count_callbacks_posted();
3063 
3064 	if (__is_kfree_rcu_offset((unsigned long)func))
3065 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3066 					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3067 					 rcu_segcblist_n_cbs(&rdp->cblist));
3068 	else
3069 		trace_rcu_callback(rsp->name, head,
3070 				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3071 				   rcu_segcblist_n_cbs(&rdp->cblist));
3072 
3073 	/* Go handle any RCU core processing required. */
3074 	__call_rcu_core(rsp, rdp, head, flags);
3075 	local_irq_restore(flags);
3076 }
3077 
3078 /**
3079  * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3080  * @head: structure to be used for queueing the RCU updates.
3081  * @func: actual callback function to be invoked after the grace period
3082  *
3083  * The callback function will be invoked some time after a full grace
3084  * period elapses, in other words after all currently executing RCU
3085  * read-side critical sections have completed. call_rcu_sched() assumes
3086  * that the read-side critical sections end on enabling of preemption
3087  * or on voluntary preemption.
3088  * RCU read-side critical sections are delimited by:
3089  *
3090  * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3091  * - anything that disables preemption.
3092  *
3093  *  These may be nested.
3094  *
3095  * See the description of call_rcu() for more detailed information on
3096  * memory ordering guarantees.
3097  */
3098 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3099 {
3100 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3101 }
3102 EXPORT_SYMBOL_GPL(call_rcu_sched);
3103 
3104 /**
3105  * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3106  * @head: structure to be used for queueing the RCU updates.
3107  * @func: actual callback function to be invoked after the grace period
3108  *
3109  * The callback function will be invoked some time after a full grace
3110  * period elapses, in other words after all currently executing RCU
3111  * read-side critical sections have completed. call_rcu_bh() assumes
3112  * that the read-side critical sections end on completion of a softirq
3113  * handler. This means that read-side critical sections in process
3114  * context must not be interrupted by softirqs. This interface is to be
3115  * used when most of the read-side critical sections are in softirq context.
3116  * RCU read-side critical sections are delimited by:
3117  *
3118  * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3119  * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3120  *
3121  * These may be nested.
3122  *
3123  * See the description of call_rcu() for more detailed information on
3124  * memory ordering guarantees.
3125  */
3126 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3127 {
3128 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3129 }
3130 EXPORT_SYMBOL_GPL(call_rcu_bh);
3131 
3132 /*
3133  * Queue an RCU callback for lazy invocation after a grace period.
3134  * This will likely be later named something like "call_rcu_lazy()",
3135  * but this change will require some way of tagging the lazy RCU
3136  * callbacks in the list of pending callbacks. Until then, this
3137  * function may only be called from __kfree_rcu().
3138  */
3139 void kfree_call_rcu(struct rcu_head *head,
3140 		    rcu_callback_t func)
3141 {
3142 	__call_rcu(head, func, rcu_state_p, -1, 1);
3143 }
3144 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3145 
3146 /*
3147  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3148  * any blocking grace-period wait automatically implies a grace period
3149  * if there is only one CPU online at any point time during execution
3150  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3151  * occasionally incorrectly indicate that there are multiple CPUs online
3152  * when there was in fact only one the whole time, as this just adds
3153  * some overhead: RCU still operates correctly.
3154  */
3155 static inline int rcu_blocking_is_gp(void)
3156 {
3157 	int ret;
3158 
3159 	might_sleep();  /* Check for RCU read-side critical section. */
3160 	preempt_disable();
3161 	ret = num_online_cpus() <= 1;
3162 	preempt_enable();
3163 	return ret;
3164 }
3165 
3166 /**
3167  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3168  *
3169  * Control will return to the caller some time after a full rcu-sched
3170  * grace period has elapsed, in other words after all currently executing
3171  * rcu-sched read-side critical sections have completed.   These read-side
3172  * critical sections are delimited by rcu_read_lock_sched() and
3173  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3174  * local_irq_disable(), and so on may be used in place of
3175  * rcu_read_lock_sched().
3176  *
3177  * This means that all preempt_disable code sequences, including NMI and
3178  * non-threaded hardware-interrupt handlers, in progress on entry will
3179  * have completed before this primitive returns.  However, this does not
3180  * guarantee that softirq handlers will have completed, since in some
3181  * kernels, these handlers can run in process context, and can block.
3182  *
3183  * Note that this guarantee implies further memory-ordering guarantees.
3184  * On systems with more than one CPU, when synchronize_sched() returns,
3185  * each CPU is guaranteed to have executed a full memory barrier since the
3186  * end of its last RCU-sched read-side critical section whose beginning
3187  * preceded the call to synchronize_sched().  In addition, each CPU having
3188  * an RCU read-side critical section that extends beyond the return from
3189  * synchronize_sched() is guaranteed to have executed a full memory barrier
3190  * after the beginning of synchronize_sched() and before the beginning of
3191  * that RCU read-side critical section.  Note that these guarantees include
3192  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3193  * that are executing in the kernel.
3194  *
3195  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3196  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3197  * to have executed a full memory barrier during the execution of
3198  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3199  * again only if the system has more than one CPU).
3200  */
3201 void synchronize_sched(void)
3202 {
3203 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3204 			 lock_is_held(&rcu_lock_map) ||
3205 			 lock_is_held(&rcu_sched_lock_map),
3206 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3207 	if (rcu_blocking_is_gp())
3208 		return;
3209 	if (rcu_gp_is_expedited())
3210 		synchronize_sched_expedited();
3211 	else
3212 		wait_rcu_gp(call_rcu_sched);
3213 }
3214 EXPORT_SYMBOL_GPL(synchronize_sched);
3215 
3216 /**
3217  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3218  *
3219  * Control will return to the caller some time after a full rcu_bh grace
3220  * period has elapsed, in other words after all currently executing rcu_bh
3221  * read-side critical sections have completed.  RCU read-side critical
3222  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3223  * and may be nested.
3224  *
3225  * See the description of synchronize_sched() for more detailed information
3226  * on memory ordering guarantees.
3227  */
3228 void synchronize_rcu_bh(void)
3229 {
3230 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3231 			 lock_is_held(&rcu_lock_map) ||
3232 			 lock_is_held(&rcu_sched_lock_map),
3233 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3234 	if (rcu_blocking_is_gp())
3235 		return;
3236 	if (rcu_gp_is_expedited())
3237 		synchronize_rcu_bh_expedited();
3238 	else
3239 		wait_rcu_gp(call_rcu_bh);
3240 }
3241 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3242 
3243 /**
3244  * get_state_synchronize_rcu - Snapshot current RCU state
3245  *
3246  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3247  * to determine whether or not a full grace period has elapsed in the
3248  * meantime.
3249  */
3250 unsigned long get_state_synchronize_rcu(void)
3251 {
3252 	/*
3253 	 * Any prior manipulation of RCU-protected data must happen
3254 	 * before the load from ->gpnum.
3255 	 */
3256 	smp_mb();  /* ^^^ */
3257 
3258 	/*
3259 	 * Make sure this load happens before the purportedly
3260 	 * time-consuming work between get_state_synchronize_rcu()
3261 	 * and cond_synchronize_rcu().
3262 	 */
3263 	return smp_load_acquire(&rcu_state_p->gpnum);
3264 }
3265 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3266 
3267 /**
3268  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3269  *
3270  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3271  *
3272  * If a full RCU grace period has elapsed since the earlier call to
3273  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3274  * synchronize_rcu() to wait for a full grace period.
3275  *
3276  * Yes, this function does not take counter wrap into account.  But
3277  * counter wrap is harmless.  If the counter wraps, we have waited for
3278  * more than 2 billion grace periods (and way more on a 64-bit system!),
3279  * so waiting for one additional grace period should be just fine.
3280  */
3281 void cond_synchronize_rcu(unsigned long oldstate)
3282 {
3283 	unsigned long newstate;
3284 
3285 	/*
3286 	 * Ensure that this load happens before any RCU-destructive
3287 	 * actions the caller might carry out after we return.
3288 	 */
3289 	newstate = smp_load_acquire(&rcu_state_p->completed);
3290 	if (ULONG_CMP_GE(oldstate, newstate))
3291 		synchronize_rcu();
3292 }
3293 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3294 
3295 /**
3296  * get_state_synchronize_sched - Snapshot current RCU-sched state
3297  *
3298  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3299  * to determine whether or not a full grace period has elapsed in the
3300  * meantime.
3301  */
3302 unsigned long get_state_synchronize_sched(void)
3303 {
3304 	/*
3305 	 * Any prior manipulation of RCU-protected data must happen
3306 	 * before the load from ->gpnum.
3307 	 */
3308 	smp_mb();  /* ^^^ */
3309 
3310 	/*
3311 	 * Make sure this load happens before the purportedly
3312 	 * time-consuming work between get_state_synchronize_sched()
3313 	 * and cond_synchronize_sched().
3314 	 */
3315 	return smp_load_acquire(&rcu_sched_state.gpnum);
3316 }
3317 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3318 
3319 /**
3320  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3321  *
3322  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3323  *
3324  * If a full RCU-sched grace period has elapsed since the earlier call to
3325  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3326  * synchronize_sched() to wait for a full grace period.
3327  *
3328  * Yes, this function does not take counter wrap into account.  But
3329  * counter wrap is harmless.  If the counter wraps, we have waited for
3330  * more than 2 billion grace periods (and way more on a 64-bit system!),
3331  * so waiting for one additional grace period should be just fine.
3332  */
3333 void cond_synchronize_sched(unsigned long oldstate)
3334 {
3335 	unsigned long newstate;
3336 
3337 	/*
3338 	 * Ensure that this load happens before any RCU-destructive
3339 	 * actions the caller might carry out after we return.
3340 	 */
3341 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3342 	if (ULONG_CMP_GE(oldstate, newstate))
3343 		synchronize_sched();
3344 }
3345 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3346 
3347 /*
3348  * Check to see if there is any immediate RCU-related work to be done
3349  * by the current CPU, for the specified type of RCU, returning 1 if so.
3350  * The checks are in order of increasing expense: checks that can be
3351  * carried out against CPU-local state are performed first.  However,
3352  * we must check for CPU stalls first, else we might not get a chance.
3353  */
3354 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3355 {
3356 	struct rcu_node *rnp = rdp->mynode;
3357 
3358 	rdp->n_rcu_pending++;
3359 
3360 	/* Check for CPU stalls, if enabled. */
3361 	check_cpu_stall(rsp, rdp);
3362 
3363 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3364 	if (rcu_nohz_full_cpu(rsp))
3365 		return 0;
3366 
3367 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3368 	if (rcu_scheduler_fully_active &&
3369 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3370 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
3371 		rdp->n_rp_core_needs_qs++;
3372 	} else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
3373 		rdp->n_rp_report_qs++;
3374 		return 1;
3375 	}
3376 
3377 	/* Does this CPU have callbacks ready to invoke? */
3378 	if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
3379 		rdp->n_rp_cb_ready++;
3380 		return 1;
3381 	}
3382 
3383 	/* Has RCU gone idle with this CPU needing another grace period? */
3384 	if (cpu_needs_another_gp(rsp, rdp)) {
3385 		rdp->n_rp_cpu_needs_gp++;
3386 		return 1;
3387 	}
3388 
3389 	/* Has another RCU grace period completed?  */
3390 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3391 		rdp->n_rp_gp_completed++;
3392 		return 1;
3393 	}
3394 
3395 	/* Has a new RCU grace period started? */
3396 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3397 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3398 		rdp->n_rp_gp_started++;
3399 		return 1;
3400 	}
3401 
3402 	/* Does this CPU need a deferred NOCB wakeup? */
3403 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3404 		rdp->n_rp_nocb_defer_wakeup++;
3405 		return 1;
3406 	}
3407 
3408 	/* nothing to do */
3409 	rdp->n_rp_need_nothing++;
3410 	return 0;
3411 }
3412 
3413 /*
3414  * Check to see if there is any immediate RCU-related work to be done
3415  * by the current CPU, returning 1 if so.  This function is part of the
3416  * RCU implementation; it is -not- an exported member of the RCU API.
3417  */
3418 static int rcu_pending(void)
3419 {
3420 	struct rcu_state *rsp;
3421 
3422 	for_each_rcu_flavor(rsp)
3423 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3424 			return 1;
3425 	return 0;
3426 }
3427 
3428 /*
3429  * Return true if the specified CPU has any callback.  If all_lazy is
3430  * non-NULL, store an indication of whether all callbacks are lazy.
3431  * (If there are no callbacks, all of them are deemed to be lazy.)
3432  */
3433 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3434 {
3435 	bool al = true;
3436 	bool hc = false;
3437 	struct rcu_data *rdp;
3438 	struct rcu_state *rsp;
3439 
3440 	for_each_rcu_flavor(rsp) {
3441 		rdp = this_cpu_ptr(rsp->rda);
3442 		if (rcu_segcblist_empty(&rdp->cblist))
3443 			continue;
3444 		hc = true;
3445 		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3446 			al = false;
3447 			break;
3448 		}
3449 	}
3450 	if (all_lazy)
3451 		*all_lazy = al;
3452 	return hc;
3453 }
3454 
3455 /*
3456  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3457  * the compiler is expected to optimize this away.
3458  */
3459 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3460 			       int cpu, unsigned long done)
3461 {
3462 	trace_rcu_barrier(rsp->name, s, cpu,
3463 			  atomic_read(&rsp->barrier_cpu_count), done);
3464 }
3465 
3466 /*
3467  * RCU callback function for _rcu_barrier().  If we are last, wake
3468  * up the task executing _rcu_barrier().
3469  */
3470 static void rcu_barrier_callback(struct rcu_head *rhp)
3471 {
3472 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3473 	struct rcu_state *rsp = rdp->rsp;
3474 
3475 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3476 		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3477 				   rsp->barrier_sequence);
3478 		complete(&rsp->barrier_completion);
3479 	} else {
3480 		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3481 	}
3482 }
3483 
3484 /*
3485  * Called with preemption disabled, and from cross-cpu IRQ context.
3486  */
3487 static void rcu_barrier_func(void *type)
3488 {
3489 	struct rcu_state *rsp = type;
3490 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3491 
3492 	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3493 	rdp->barrier_head.func = rcu_barrier_callback;
3494 	debug_rcu_head_queue(&rdp->barrier_head);
3495 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3496 		atomic_inc(&rsp->barrier_cpu_count);
3497 	} else {
3498 		debug_rcu_head_unqueue(&rdp->barrier_head);
3499 		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3500 				   rsp->barrier_sequence);
3501 	}
3502 }
3503 
3504 /*
3505  * Orchestrate the specified type of RCU barrier, waiting for all
3506  * RCU callbacks of the specified type to complete.
3507  */
3508 static void _rcu_barrier(struct rcu_state *rsp)
3509 {
3510 	int cpu;
3511 	struct rcu_data *rdp;
3512 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3513 
3514 	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3515 
3516 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3517 	mutex_lock(&rsp->barrier_mutex);
3518 
3519 	/* Did someone else do our work for us? */
3520 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3521 		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3522 				   rsp->barrier_sequence);
3523 		smp_mb(); /* caller's subsequent code after above check. */
3524 		mutex_unlock(&rsp->barrier_mutex);
3525 		return;
3526 	}
3527 
3528 	/* Mark the start of the barrier operation. */
3529 	rcu_seq_start(&rsp->barrier_sequence);
3530 	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3531 
3532 	/*
3533 	 * Initialize the count to one rather than to zero in order to
3534 	 * avoid a too-soon return to zero in case of a short grace period
3535 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3536 	 * to ensure that no offline CPU has callbacks queued.
3537 	 */
3538 	init_completion(&rsp->barrier_completion);
3539 	atomic_set(&rsp->barrier_cpu_count, 1);
3540 	get_online_cpus();
3541 
3542 	/*
3543 	 * Force each CPU with callbacks to register a new callback.
3544 	 * When that callback is invoked, we will know that all of the
3545 	 * corresponding CPU's preceding callbacks have been invoked.
3546 	 */
3547 	for_each_possible_cpu(cpu) {
3548 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3549 			continue;
3550 		rdp = per_cpu_ptr(rsp->rda, cpu);
3551 		if (rcu_is_nocb_cpu(cpu)) {
3552 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3553 				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3554 						   rsp->barrier_sequence);
3555 			} else {
3556 				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3557 						   rsp->barrier_sequence);
3558 				smp_mb__before_atomic();
3559 				atomic_inc(&rsp->barrier_cpu_count);
3560 				__call_rcu(&rdp->barrier_head,
3561 					   rcu_barrier_callback, rsp, cpu, 0);
3562 			}
3563 		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3564 			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3565 					   rsp->barrier_sequence);
3566 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3567 		} else {
3568 			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3569 					   rsp->barrier_sequence);
3570 		}
3571 	}
3572 	put_online_cpus();
3573 
3574 	/*
3575 	 * Now that we have an rcu_barrier_callback() callback on each
3576 	 * CPU, and thus each counted, remove the initial count.
3577 	 */
3578 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3579 		complete(&rsp->barrier_completion);
3580 
3581 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3582 	wait_for_completion(&rsp->barrier_completion);
3583 
3584 	/* Mark the end of the barrier operation. */
3585 	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3586 	rcu_seq_end(&rsp->barrier_sequence);
3587 
3588 	/* Other rcu_barrier() invocations can now safely proceed. */
3589 	mutex_unlock(&rsp->barrier_mutex);
3590 }
3591 
3592 /**
3593  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3594  */
3595 void rcu_barrier_bh(void)
3596 {
3597 	_rcu_barrier(&rcu_bh_state);
3598 }
3599 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3600 
3601 /**
3602  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3603  */
3604 void rcu_barrier_sched(void)
3605 {
3606 	_rcu_barrier(&rcu_sched_state);
3607 }
3608 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3609 
3610 /*
3611  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3612  * first CPU in a given leaf rcu_node structure coming online.  The caller
3613  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3614  * disabled.
3615  */
3616 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3617 {
3618 	long mask;
3619 	struct rcu_node *rnp = rnp_leaf;
3620 
3621 	lockdep_assert_held(&rnp->lock);
3622 	for (;;) {
3623 		mask = rnp->grpmask;
3624 		rnp = rnp->parent;
3625 		if (rnp == NULL)
3626 			return;
3627 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3628 		rnp->qsmaskinit |= mask;
3629 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3630 	}
3631 }
3632 
3633 /*
3634  * Do boot-time initialization of a CPU's per-CPU RCU data.
3635  */
3636 static void __init
3637 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3638 {
3639 	unsigned long flags;
3640 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3641 	struct rcu_node *rnp = rcu_get_root(rsp);
3642 
3643 	/* Set up local state, ensuring consistent view of global state. */
3644 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3645 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3646 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3647 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3648 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3649 	rdp->cpu = cpu;
3650 	rdp->rsp = rsp;
3651 	rcu_boot_init_nocb_percpu_data(rdp);
3652 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3653 }
3654 
3655 /*
3656  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3657  * offline event can be happening at a given time.  Note also that we
3658  * can accept some slop in the rsp->completed access due to the fact
3659  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3660  */
3661 static void
3662 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3663 {
3664 	unsigned long flags;
3665 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3666 	struct rcu_node *rnp = rcu_get_root(rsp);
3667 
3668 	/* Set up local state, ensuring consistent view of global state. */
3669 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3670 	rdp->qlen_last_fqs_check = 0;
3671 	rdp->n_force_qs_snap = rsp->n_force_qs;
3672 	rdp->blimit = blimit;
3673 	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3674 	    !init_nocb_callback_list(rdp))
3675 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3676 	rdp->dynticks->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3677 	rcu_dynticks_eqs_online();
3678 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3679 
3680 	/*
3681 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3682 	 * propagation up the rcu_node tree will happen at the beginning
3683 	 * of the next grace period.
3684 	 */
3685 	rnp = rdp->mynode;
3686 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3687 	rdp->beenonline = true;	 /* We have now been online. */
3688 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3689 	rdp->completed = rnp->completed;
3690 	rdp->cpu_no_qs.b.norm = true;
3691 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3692 	rdp->core_needs_qs = false;
3693 	rdp->rcu_iw_pending = false;
3694 	rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3695 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3696 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3697 }
3698 
3699 /*
3700  * Invoked early in the CPU-online process, when pretty much all
3701  * services are available.  The incoming CPU is not present.
3702  */
3703 int rcutree_prepare_cpu(unsigned int cpu)
3704 {
3705 	struct rcu_state *rsp;
3706 
3707 	for_each_rcu_flavor(rsp)
3708 		rcu_init_percpu_data(cpu, rsp);
3709 
3710 	rcu_prepare_kthreads(cpu);
3711 	rcu_spawn_all_nocb_kthreads(cpu);
3712 
3713 	return 0;
3714 }
3715 
3716 /*
3717  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3718  */
3719 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3720 {
3721 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3722 
3723 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3724 }
3725 
3726 /*
3727  * Near the end of the CPU-online process.  Pretty much all services
3728  * enabled, and the CPU is now very much alive.
3729  */
3730 int rcutree_online_cpu(unsigned int cpu)
3731 {
3732 	unsigned long flags;
3733 	struct rcu_data *rdp;
3734 	struct rcu_node *rnp;
3735 	struct rcu_state *rsp;
3736 
3737 	for_each_rcu_flavor(rsp) {
3738 		rdp = per_cpu_ptr(rsp->rda, cpu);
3739 		rnp = rdp->mynode;
3740 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3741 		rnp->ffmask |= rdp->grpmask;
3742 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3743 	}
3744 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3745 		srcu_online_cpu(cpu);
3746 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3747 		return 0; /* Too early in boot for scheduler work. */
3748 	sync_sched_exp_online_cleanup(cpu);
3749 	rcutree_affinity_setting(cpu, -1);
3750 	return 0;
3751 }
3752 
3753 /*
3754  * Near the beginning of the process.  The CPU is still very much alive
3755  * with pretty much all services enabled.
3756  */
3757 int rcutree_offline_cpu(unsigned int cpu)
3758 {
3759 	unsigned long flags;
3760 	struct rcu_data *rdp;
3761 	struct rcu_node *rnp;
3762 	struct rcu_state *rsp;
3763 
3764 	for_each_rcu_flavor(rsp) {
3765 		rdp = per_cpu_ptr(rsp->rda, cpu);
3766 		rnp = rdp->mynode;
3767 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3768 		rnp->ffmask &= ~rdp->grpmask;
3769 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3770 	}
3771 
3772 	rcutree_affinity_setting(cpu, cpu);
3773 	if (IS_ENABLED(CONFIG_TREE_SRCU))
3774 		srcu_offline_cpu(cpu);
3775 	return 0;
3776 }
3777 
3778 /*
3779  * Near the end of the offline process.  We do only tracing here.
3780  */
3781 int rcutree_dying_cpu(unsigned int cpu)
3782 {
3783 	struct rcu_state *rsp;
3784 
3785 	for_each_rcu_flavor(rsp)
3786 		rcu_cleanup_dying_cpu(rsp);
3787 	return 0;
3788 }
3789 
3790 /*
3791  * The outgoing CPU is gone and we are running elsewhere.
3792  */
3793 int rcutree_dead_cpu(unsigned int cpu)
3794 {
3795 	struct rcu_state *rsp;
3796 
3797 	for_each_rcu_flavor(rsp) {
3798 		rcu_cleanup_dead_cpu(cpu, rsp);
3799 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3800 	}
3801 	return 0;
3802 }
3803 
3804 /*
3805  * Mark the specified CPU as being online so that subsequent grace periods
3806  * (both expedited and normal) will wait on it.  Note that this means that
3807  * incoming CPUs are not allowed to use RCU read-side critical sections
3808  * until this function is called.  Failing to observe this restriction
3809  * will result in lockdep splats.
3810  *
3811  * Note that this function is special in that it is invoked directly
3812  * from the incoming CPU rather than from the cpuhp_step mechanism.
3813  * This is because this function must be invoked at a precise location.
3814  */
3815 void rcu_cpu_starting(unsigned int cpu)
3816 {
3817 	unsigned long flags;
3818 	unsigned long mask;
3819 	int nbits;
3820 	unsigned long oldmask;
3821 	struct rcu_data *rdp;
3822 	struct rcu_node *rnp;
3823 	struct rcu_state *rsp;
3824 
3825 	for_each_rcu_flavor(rsp) {
3826 		rdp = per_cpu_ptr(rsp->rda, cpu);
3827 		rnp = rdp->mynode;
3828 		mask = rdp->grpmask;
3829 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3830 		rnp->qsmaskinitnext |= mask;
3831 		oldmask = rnp->expmaskinitnext;
3832 		rnp->expmaskinitnext |= mask;
3833 		oldmask ^= rnp->expmaskinitnext;
3834 		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3835 		/* Allow lockless access for expedited grace periods. */
3836 		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3837 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3838 	}
3839 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3840 }
3841 
3842 #ifdef CONFIG_HOTPLUG_CPU
3843 /*
3844  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3845  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3846  * bit masks.
3847  */
3848 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3849 {
3850 	unsigned long flags;
3851 	unsigned long mask;
3852 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3853 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3854 
3855 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3856 	mask = rdp->grpmask;
3857 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3858 	rnp->qsmaskinitnext &= ~mask;
3859 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3860 }
3861 
3862 /*
3863  * The outgoing function has no further need of RCU, so remove it from
3864  * the list of CPUs that RCU must track.
3865  *
3866  * Note that this function is special in that it is invoked directly
3867  * from the outgoing CPU rather than from the cpuhp_step mechanism.
3868  * This is because this function must be invoked at a precise location.
3869  */
3870 void rcu_report_dead(unsigned int cpu)
3871 {
3872 	struct rcu_state *rsp;
3873 
3874 	/* QS for any half-done expedited RCU-sched GP. */
3875 	preempt_disable();
3876 	rcu_report_exp_rdp(&rcu_sched_state,
3877 			   this_cpu_ptr(rcu_sched_state.rda), true);
3878 	preempt_enable();
3879 	for_each_rcu_flavor(rsp)
3880 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3881 }
3882 
3883 /* Migrate the dead CPU's callbacks to the current CPU. */
3884 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3885 {
3886 	unsigned long flags;
3887 	struct rcu_data *my_rdp;
3888 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3889 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3890 
3891 	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3892 		return;  /* No callbacks to migrate. */
3893 
3894 	local_irq_save(flags);
3895 	my_rdp = this_cpu_ptr(rsp->rda);
3896 	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3897 		local_irq_restore(flags);
3898 		return;
3899 	}
3900 	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3901 	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3902 	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3903 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3904 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3905 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3906 	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3907 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3908 		  !rcu_segcblist_empty(&rdp->cblist),
3909 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3910 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3911 		  rcu_segcblist_first_cb(&rdp->cblist));
3912 }
3913 
3914 /*
3915  * The outgoing CPU has just passed through the dying-idle state,
3916  * and we are being invoked from the CPU that was IPIed to continue the
3917  * offline operation.  We need to migrate the outgoing CPU's callbacks.
3918  */
3919 void rcutree_migrate_callbacks(int cpu)
3920 {
3921 	struct rcu_state *rsp;
3922 
3923 	for_each_rcu_flavor(rsp)
3924 		rcu_migrate_callbacks(cpu, rsp);
3925 }
3926 #endif
3927 
3928 /*
3929  * On non-huge systems, use expedited RCU grace periods to make suspend
3930  * and hibernation run faster.
3931  */
3932 static int rcu_pm_notify(struct notifier_block *self,
3933 			 unsigned long action, void *hcpu)
3934 {
3935 	switch (action) {
3936 	case PM_HIBERNATION_PREPARE:
3937 	case PM_SUSPEND_PREPARE:
3938 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3939 			rcu_expedite_gp();
3940 		break;
3941 	case PM_POST_HIBERNATION:
3942 	case PM_POST_SUSPEND:
3943 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3944 			rcu_unexpedite_gp();
3945 		break;
3946 	default:
3947 		break;
3948 	}
3949 	return NOTIFY_OK;
3950 }
3951 
3952 /*
3953  * Spawn the kthreads that handle each RCU flavor's grace periods.
3954  */
3955 static int __init rcu_spawn_gp_kthread(void)
3956 {
3957 	unsigned long flags;
3958 	int kthread_prio_in = kthread_prio;
3959 	struct rcu_node *rnp;
3960 	struct rcu_state *rsp;
3961 	struct sched_param sp;
3962 	struct task_struct *t;
3963 
3964 	/* Force priority into range. */
3965 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3966 		kthread_prio = 1;
3967 	else if (kthread_prio < 0)
3968 		kthread_prio = 0;
3969 	else if (kthread_prio > 99)
3970 		kthread_prio = 99;
3971 	if (kthread_prio != kthread_prio_in)
3972 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3973 			 kthread_prio, kthread_prio_in);
3974 
3975 	rcu_scheduler_fully_active = 1;
3976 	for_each_rcu_flavor(rsp) {
3977 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3978 		BUG_ON(IS_ERR(t));
3979 		rnp = rcu_get_root(rsp);
3980 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3981 		rsp->gp_kthread = t;
3982 		if (kthread_prio) {
3983 			sp.sched_priority = kthread_prio;
3984 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3985 		}
3986 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3987 		wake_up_process(t);
3988 	}
3989 	rcu_spawn_nocb_kthreads();
3990 	rcu_spawn_boost_kthreads();
3991 	return 0;
3992 }
3993 early_initcall(rcu_spawn_gp_kthread);
3994 
3995 /*
3996  * This function is invoked towards the end of the scheduler's
3997  * initialization process.  Before this is called, the idle task might
3998  * contain synchronous grace-period primitives (during which time, this idle
3999  * task is booting the system, and such primitives are no-ops).  After this
4000  * function is called, any synchronous grace-period primitives are run as
4001  * expedited, with the requesting task driving the grace period forward.
4002  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4003  * runtime RCU functionality.
4004  */
4005 void rcu_scheduler_starting(void)
4006 {
4007 	WARN_ON(num_online_cpus() != 1);
4008 	WARN_ON(nr_context_switches() > 0);
4009 	rcu_test_sync_prims();
4010 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4011 	rcu_test_sync_prims();
4012 }
4013 
4014 /*
4015  * Helper function for rcu_init() that initializes one rcu_state structure.
4016  */
4017 static void __init rcu_init_one(struct rcu_state *rsp)
4018 {
4019 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4020 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4021 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4022 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4023 
4024 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4025 	int cpustride = 1;
4026 	int i;
4027 	int j;
4028 	struct rcu_node *rnp;
4029 
4030 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4031 
4032 	/* Silence gcc 4.8 false positive about array index out of range. */
4033 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4034 		panic("rcu_init_one: rcu_num_lvls out of range");
4035 
4036 	/* Initialize the level-tracking arrays. */
4037 
4038 	for (i = 1; i < rcu_num_lvls; i++)
4039 		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
4040 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4041 
4042 	/* Initialize the elements themselves, starting from the leaves. */
4043 
4044 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4045 		cpustride *= levelspread[i];
4046 		rnp = rsp->level[i];
4047 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4048 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4049 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4050 						   &rcu_node_class[i], buf[i]);
4051 			raw_spin_lock_init(&rnp->fqslock);
4052 			lockdep_set_class_and_name(&rnp->fqslock,
4053 						   &rcu_fqs_class[i], fqs[i]);
4054 			rnp->gpnum = rsp->gpnum;
4055 			rnp->completed = rsp->completed;
4056 			rnp->qsmask = 0;
4057 			rnp->qsmaskinit = 0;
4058 			rnp->grplo = j * cpustride;
4059 			rnp->grphi = (j + 1) * cpustride - 1;
4060 			if (rnp->grphi >= nr_cpu_ids)
4061 				rnp->grphi = nr_cpu_ids - 1;
4062 			if (i == 0) {
4063 				rnp->grpnum = 0;
4064 				rnp->grpmask = 0;
4065 				rnp->parent = NULL;
4066 			} else {
4067 				rnp->grpnum = j % levelspread[i - 1];
4068 				rnp->grpmask = 1UL << rnp->grpnum;
4069 				rnp->parent = rsp->level[i - 1] +
4070 					      j / levelspread[i - 1];
4071 			}
4072 			rnp->level = i;
4073 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4074 			rcu_init_one_nocb(rnp);
4075 			init_waitqueue_head(&rnp->exp_wq[0]);
4076 			init_waitqueue_head(&rnp->exp_wq[1]);
4077 			init_waitqueue_head(&rnp->exp_wq[2]);
4078 			init_waitqueue_head(&rnp->exp_wq[3]);
4079 			spin_lock_init(&rnp->exp_lock);
4080 		}
4081 	}
4082 
4083 	init_swait_queue_head(&rsp->gp_wq);
4084 	init_swait_queue_head(&rsp->expedited_wq);
4085 	rnp = rsp->level[rcu_num_lvls - 1];
4086 	for_each_possible_cpu(i) {
4087 		while (i > rnp->grphi)
4088 			rnp++;
4089 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4090 		rcu_boot_init_percpu_data(i, rsp);
4091 	}
4092 	list_add(&rsp->flavors, &rcu_struct_flavors);
4093 }
4094 
4095 /*
4096  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4097  * replace the definitions in tree.h because those are needed to size
4098  * the ->node array in the rcu_state structure.
4099  */
4100 static void __init rcu_init_geometry(void)
4101 {
4102 	ulong d;
4103 	int i;
4104 	int rcu_capacity[RCU_NUM_LVLS];
4105 
4106 	/*
4107 	 * Initialize any unspecified boot parameters.
4108 	 * The default values of jiffies_till_first_fqs and
4109 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4110 	 * value, which is a function of HZ, then adding one for each
4111 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4112 	 */
4113 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4114 	if (jiffies_till_first_fqs == ULONG_MAX)
4115 		jiffies_till_first_fqs = d;
4116 	if (jiffies_till_next_fqs == ULONG_MAX)
4117 		jiffies_till_next_fqs = d;
4118 
4119 	/* If the compile-time values are accurate, just leave. */
4120 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4121 	    nr_cpu_ids == NR_CPUS)
4122 		return;
4123 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4124 		rcu_fanout_leaf, nr_cpu_ids);
4125 
4126 	/*
4127 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4128 	 * and cannot exceed the number of bits in the rcu_node masks.
4129 	 * Complain and fall back to the compile-time values if this
4130 	 * limit is exceeded.
4131 	 */
4132 	if (rcu_fanout_leaf < 2 ||
4133 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4134 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4135 		WARN_ON(1);
4136 		return;
4137 	}
4138 
4139 	/*
4140 	 * Compute number of nodes that can be handled an rcu_node tree
4141 	 * with the given number of levels.
4142 	 */
4143 	rcu_capacity[0] = rcu_fanout_leaf;
4144 	for (i = 1; i < RCU_NUM_LVLS; i++)
4145 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4146 
4147 	/*
4148 	 * The tree must be able to accommodate the configured number of CPUs.
4149 	 * If this limit is exceeded, fall back to the compile-time values.
4150 	 */
4151 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4152 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4153 		WARN_ON(1);
4154 		return;
4155 	}
4156 
4157 	/* Calculate the number of levels in the tree. */
4158 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4159 	}
4160 	rcu_num_lvls = i + 1;
4161 
4162 	/* Calculate the number of rcu_nodes at each level of the tree. */
4163 	for (i = 0; i < rcu_num_lvls; i++) {
4164 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4165 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4166 	}
4167 
4168 	/* Calculate the total number of rcu_node structures. */
4169 	rcu_num_nodes = 0;
4170 	for (i = 0; i < rcu_num_lvls; i++)
4171 		rcu_num_nodes += num_rcu_lvl[i];
4172 }
4173 
4174 /*
4175  * Dump out the structure of the rcu_node combining tree associated
4176  * with the rcu_state structure referenced by rsp.
4177  */
4178 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4179 {
4180 	int level = 0;
4181 	struct rcu_node *rnp;
4182 
4183 	pr_info("rcu_node tree layout dump\n");
4184 	pr_info(" ");
4185 	rcu_for_each_node_breadth_first(rsp, rnp) {
4186 		if (rnp->level != level) {
4187 			pr_cont("\n");
4188 			pr_info(" ");
4189 			level = rnp->level;
4190 		}
4191 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4192 	}
4193 	pr_cont("\n");
4194 }
4195 
4196 void __init rcu_init(void)
4197 {
4198 	int cpu;
4199 
4200 	rcu_early_boot_tests();
4201 
4202 	rcu_bootup_announce();
4203 	rcu_init_geometry();
4204 	rcu_init_one(&rcu_bh_state);
4205 	rcu_init_one(&rcu_sched_state);
4206 	if (dump_tree)
4207 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4208 	__rcu_init_preempt();
4209 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4210 
4211 	/*
4212 	 * We don't need protection against CPU-hotplug here because
4213 	 * this is called early in boot, before either interrupts
4214 	 * or the scheduler are operational.
4215 	 */
4216 	pm_notifier(rcu_pm_notify, 0);
4217 	for_each_online_cpu(cpu) {
4218 		rcutree_prepare_cpu(cpu);
4219 		rcu_cpu_starting(cpu);
4220 		rcutree_online_cpu(cpu);
4221 	}
4222 }
4223 
4224 #include "tree_exp.h"
4225 #include "tree_plugin.h"
4226