1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include "../time/tick-internal.h" 61 62 #include "tree.h" 63 #include "rcu.h" 64 65 #ifdef MODULE_PARAM_PREFIX 66 #undef MODULE_PARAM_PREFIX 67 #endif 68 #define MODULE_PARAM_PREFIX "rcutree." 69 70 #ifndef data_race 71 #define data_race(expr) \ 72 ({ \ 73 expr; \ 74 }) 75 #endif 76 #ifndef ASSERT_EXCLUSIVE_WRITER 77 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0) 78 #endif 79 #ifndef ASSERT_EXCLUSIVE_ACCESS 80 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0) 81 #endif 82 83 /* Data structures. */ 84 85 /* 86 * Steal a bit from the bottom of ->dynticks for idle entry/exit 87 * control. Initially this is for TLB flushing. 88 */ 89 #define RCU_DYNTICK_CTRL_MASK 0x1 90 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 91 92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 93 .dynticks_nesting = 1, 94 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 95 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 96 }; 97 static struct rcu_state rcu_state = { 98 .level = { &rcu_state.node[0] }, 99 .gp_state = RCU_GP_IDLE, 100 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 101 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 102 .name = RCU_NAME, 103 .abbr = RCU_ABBR, 104 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 105 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 106 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 107 }; 108 109 /* Dump rcu_node combining tree at boot to verify correct setup. */ 110 static bool dump_tree; 111 module_param(dump_tree, bool, 0444); 112 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 113 static bool use_softirq = true; 114 module_param(use_softirq, bool, 0444); 115 /* Control rcu_node-tree auto-balancing at boot time. */ 116 static bool rcu_fanout_exact; 117 module_param(rcu_fanout_exact, bool, 0444); 118 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 119 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 120 module_param(rcu_fanout_leaf, int, 0444); 121 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 122 /* Number of rcu_nodes at specified level. */ 123 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 124 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 125 126 /* 127 * The rcu_scheduler_active variable is initialized to the value 128 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 129 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 130 * RCU can assume that there is but one task, allowing RCU to (for example) 131 * optimize synchronize_rcu() to a simple barrier(). When this variable 132 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 133 * to detect real grace periods. This variable is also used to suppress 134 * boot-time false positives from lockdep-RCU error checking. Finally, it 135 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 136 * is fully initialized, including all of its kthreads having been spawned. 137 */ 138 int rcu_scheduler_active __read_mostly; 139 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 140 141 /* 142 * The rcu_scheduler_fully_active variable transitions from zero to one 143 * during the early_initcall() processing, which is after the scheduler 144 * is capable of creating new tasks. So RCU processing (for example, 145 * creating tasks for RCU priority boosting) must be delayed until after 146 * rcu_scheduler_fully_active transitions from zero to one. We also 147 * currently delay invocation of any RCU callbacks until after this point. 148 * 149 * It might later prove better for people registering RCU callbacks during 150 * early boot to take responsibility for these callbacks, but one step at 151 * a time. 152 */ 153 static int rcu_scheduler_fully_active __read_mostly; 154 155 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 156 unsigned long gps, unsigned long flags); 157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 158 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 159 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 160 static void invoke_rcu_core(void); 161 static void rcu_report_exp_rdp(struct rcu_data *rdp); 162 static void sync_sched_exp_online_cleanup(int cpu); 163 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 164 165 /* rcuc/rcub kthread realtime priority */ 166 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 167 module_param(kthread_prio, int, 0444); 168 169 /* Delay in jiffies for grace-period initialization delays, debug only. */ 170 171 static int gp_preinit_delay; 172 module_param(gp_preinit_delay, int, 0444); 173 static int gp_init_delay; 174 module_param(gp_init_delay, int, 0444); 175 static int gp_cleanup_delay; 176 module_param(gp_cleanup_delay, int, 0444); 177 178 /* Retrieve RCU kthreads priority for rcutorture */ 179 int rcu_get_gp_kthreads_prio(void) 180 { 181 return kthread_prio; 182 } 183 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 184 185 /* 186 * Number of grace periods between delays, normalized by the duration of 187 * the delay. The longer the delay, the more the grace periods between 188 * each delay. The reason for this normalization is that it means that, 189 * for non-zero delays, the overall slowdown of grace periods is constant 190 * regardless of the duration of the delay. This arrangement balances 191 * the need for long delays to increase some race probabilities with the 192 * need for fast grace periods to increase other race probabilities. 193 */ 194 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 195 196 /* 197 * Compute the mask of online CPUs for the specified rcu_node structure. 198 * This will not be stable unless the rcu_node structure's ->lock is 199 * held, but the bit corresponding to the current CPU will be stable 200 * in most contexts. 201 */ 202 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 203 { 204 return READ_ONCE(rnp->qsmaskinitnext); 205 } 206 207 /* 208 * Return true if an RCU grace period is in progress. The READ_ONCE()s 209 * permit this function to be invoked without holding the root rcu_node 210 * structure's ->lock, but of course results can be subject to change. 211 */ 212 static int rcu_gp_in_progress(void) 213 { 214 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 215 } 216 217 /* 218 * Return the number of callbacks queued on the specified CPU. 219 * Handles both the nocbs and normal cases. 220 */ 221 static long rcu_get_n_cbs_cpu(int cpu) 222 { 223 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 224 225 if (rcu_segcblist_is_enabled(&rdp->cblist)) 226 return rcu_segcblist_n_cbs(&rdp->cblist); 227 return 0; 228 } 229 230 void rcu_softirq_qs(void) 231 { 232 rcu_qs(); 233 rcu_preempt_deferred_qs(current); 234 } 235 236 /* 237 * Record entry into an extended quiescent state. This is only to be 238 * called when not already in an extended quiescent state, that is, 239 * RCU is watching prior to the call to this function and is no longer 240 * watching upon return. 241 */ 242 static noinstr void rcu_dynticks_eqs_enter(void) 243 { 244 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 245 int seq; 246 247 /* 248 * CPUs seeing atomic_add_return() must see prior RCU read-side 249 * critical sections, and we also must force ordering with the 250 * next idle sojourn. 251 */ 252 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 254 // RCU is no longer watching. Better be in extended quiescent state! 255 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 256 (seq & RCU_DYNTICK_CTRL_CTR)); 257 /* Better not have special action (TLB flush) pending! */ 258 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 259 (seq & RCU_DYNTICK_CTRL_MASK)); 260 } 261 262 /* 263 * Record exit from an extended quiescent state. This is only to be 264 * called from an extended quiescent state, that is, RCU is not watching 265 * prior to the call to this function and is watching upon return. 266 */ 267 static noinstr void rcu_dynticks_eqs_exit(void) 268 { 269 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 270 int seq; 271 272 /* 273 * CPUs seeing atomic_add_return() must see prior idle sojourns, 274 * and we also must force ordering with the next RCU read-side 275 * critical section. 276 */ 277 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 278 // RCU is now watching. Better not be in an extended quiescent state! 279 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 280 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 281 !(seq & RCU_DYNTICK_CTRL_CTR)); 282 if (seq & RCU_DYNTICK_CTRL_MASK) { 283 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 284 smp_mb__after_atomic(); /* _exit after clearing mask. */ 285 } 286 } 287 288 /* 289 * Reset the current CPU's ->dynticks counter to indicate that the 290 * newly onlined CPU is no longer in an extended quiescent state. 291 * This will either leave the counter unchanged, or increment it 292 * to the next non-quiescent value. 293 * 294 * The non-atomic test/increment sequence works because the upper bits 295 * of the ->dynticks counter are manipulated only by the corresponding CPU, 296 * or when the corresponding CPU is offline. 297 */ 298 static void rcu_dynticks_eqs_online(void) 299 { 300 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 301 302 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 303 return; 304 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 305 } 306 307 /* 308 * Is the current CPU in an extended quiescent state? 309 * 310 * No ordering, as we are sampling CPU-local information. 311 */ 312 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 313 { 314 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 315 316 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 317 } 318 319 /* 320 * Snapshot the ->dynticks counter with full ordering so as to allow 321 * stable comparison of this counter with past and future snapshots. 322 */ 323 static int rcu_dynticks_snap(struct rcu_data *rdp) 324 { 325 int snap = atomic_add_return(0, &rdp->dynticks); 326 327 return snap & ~RCU_DYNTICK_CTRL_MASK; 328 } 329 330 /* 331 * Return true if the snapshot returned from rcu_dynticks_snap() 332 * indicates that RCU is in an extended quiescent state. 333 */ 334 static bool rcu_dynticks_in_eqs(int snap) 335 { 336 return !(snap & RCU_DYNTICK_CTRL_CTR); 337 } 338 339 /* 340 * Return true if the CPU corresponding to the specified rcu_data 341 * structure has spent some time in an extended quiescent state since 342 * rcu_dynticks_snap() returned the specified snapshot. 343 */ 344 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 345 { 346 return snap != rcu_dynticks_snap(rdp); 347 } 348 349 /* 350 * Return true if the referenced integer is zero while the specified 351 * CPU remains within a single extended quiescent state. 352 */ 353 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 354 { 355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 356 int snap; 357 358 // If not quiescent, force back to earlier extended quiescent state. 359 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 360 RCU_DYNTICK_CTRL_CTR); 361 362 smp_rmb(); // Order ->dynticks and *vp reads. 363 if (READ_ONCE(*vp)) 364 return false; // Non-zero, so report failure; 365 smp_rmb(); // Order *vp read and ->dynticks re-read. 366 367 // If still in the same extended quiescent state, we are good! 368 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 369 } 370 371 /* 372 * Set the special (bottom) bit of the specified CPU so that it 373 * will take special action (such as flushing its TLB) on the 374 * next exit from an extended quiescent state. Returns true if 375 * the bit was successfully set, or false if the CPU was not in 376 * an extended quiescent state. 377 */ 378 bool rcu_eqs_special_set(int cpu) 379 { 380 int old; 381 int new; 382 int new_old; 383 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 384 385 new_old = atomic_read(&rdp->dynticks); 386 do { 387 old = new_old; 388 if (old & RCU_DYNTICK_CTRL_CTR) 389 return false; 390 new = old | RCU_DYNTICK_CTRL_MASK; 391 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 392 } while (new_old != old); 393 return true; 394 } 395 396 /* 397 * Let the RCU core know that this CPU has gone through the scheduler, 398 * which is a quiescent state. This is called when the need for a 399 * quiescent state is urgent, so we burn an atomic operation and full 400 * memory barriers to let the RCU core know about it, regardless of what 401 * this CPU might (or might not) do in the near future. 402 * 403 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 404 * 405 * The caller must have disabled interrupts and must not be idle. 406 */ 407 void rcu_momentary_dyntick_idle(void) 408 { 409 int special; 410 411 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 412 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 413 &this_cpu_ptr(&rcu_data)->dynticks); 414 /* It is illegal to call this from idle state. */ 415 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 416 rcu_preempt_deferred_qs(current); 417 } 418 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 419 420 /** 421 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 422 * 423 * If the current CPU is idle and running at a first-level (not nested) 424 * interrupt, or directly, from idle, return true. 425 * 426 * The caller must have at least disabled IRQs. 427 */ 428 static int rcu_is_cpu_rrupt_from_idle(void) 429 { 430 long nesting; 431 432 /* 433 * Usually called from the tick; but also used from smp_function_call() 434 * for expedited grace periods. This latter can result in running from 435 * the idle task, instead of an actual IPI. 436 */ 437 lockdep_assert_irqs_disabled(); 438 439 /* Check for counter underflows */ 440 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 441 "RCU dynticks_nesting counter underflow!"); 442 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 443 "RCU dynticks_nmi_nesting counter underflow/zero!"); 444 445 /* Are we at first interrupt nesting level? */ 446 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 447 if (nesting > 1) 448 return false; 449 450 /* 451 * If we're not in an interrupt, we must be in the idle task! 452 */ 453 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 454 455 /* Does CPU appear to be idle from an RCU standpoint? */ 456 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 457 } 458 459 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */ 460 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */ 461 static long blimit = DEFAULT_RCU_BLIMIT; 462 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ 463 static long qhimark = DEFAULT_RCU_QHIMARK; 464 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ 465 static long qlowmark = DEFAULT_RCU_QLOMARK; 466 #define DEFAULT_RCU_QOVLD_MULT 2 467 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 468 static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */ 469 static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */ 470 471 module_param(blimit, long, 0444); 472 module_param(qhimark, long, 0444); 473 module_param(qlowmark, long, 0444); 474 module_param(qovld, long, 0444); 475 476 static ulong jiffies_till_first_fqs = ULONG_MAX; 477 static ulong jiffies_till_next_fqs = ULONG_MAX; 478 static bool rcu_kick_kthreads; 479 static int rcu_divisor = 7; 480 module_param(rcu_divisor, int, 0644); 481 482 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 483 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 484 module_param(rcu_resched_ns, long, 0644); 485 486 /* 487 * How long the grace period must be before we start recruiting 488 * quiescent-state help from rcu_note_context_switch(). 489 */ 490 static ulong jiffies_till_sched_qs = ULONG_MAX; 491 module_param(jiffies_till_sched_qs, ulong, 0444); 492 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 493 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 494 495 /* 496 * Make sure that we give the grace-period kthread time to detect any 497 * idle CPUs before taking active measures to force quiescent states. 498 * However, don't go below 100 milliseconds, adjusted upwards for really 499 * large systems. 500 */ 501 static void adjust_jiffies_till_sched_qs(void) 502 { 503 unsigned long j; 504 505 /* If jiffies_till_sched_qs was specified, respect the request. */ 506 if (jiffies_till_sched_qs != ULONG_MAX) { 507 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 508 return; 509 } 510 /* Otherwise, set to third fqs scan, but bound below on large system. */ 511 j = READ_ONCE(jiffies_till_first_fqs) + 512 2 * READ_ONCE(jiffies_till_next_fqs); 513 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 514 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 515 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 516 WRITE_ONCE(jiffies_to_sched_qs, j); 517 } 518 519 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 520 { 521 ulong j; 522 int ret = kstrtoul(val, 0, &j); 523 524 if (!ret) { 525 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 526 adjust_jiffies_till_sched_qs(); 527 } 528 return ret; 529 } 530 531 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 532 { 533 ulong j; 534 int ret = kstrtoul(val, 0, &j); 535 536 if (!ret) { 537 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 538 adjust_jiffies_till_sched_qs(); 539 } 540 return ret; 541 } 542 543 static struct kernel_param_ops first_fqs_jiffies_ops = { 544 .set = param_set_first_fqs_jiffies, 545 .get = param_get_ulong, 546 }; 547 548 static struct kernel_param_ops next_fqs_jiffies_ops = { 549 .set = param_set_next_fqs_jiffies, 550 .get = param_get_ulong, 551 }; 552 553 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 554 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 555 module_param(rcu_kick_kthreads, bool, 0644); 556 557 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 558 static int rcu_pending(int user); 559 560 /* 561 * Return the number of RCU GPs completed thus far for debug & stats. 562 */ 563 unsigned long rcu_get_gp_seq(void) 564 { 565 return READ_ONCE(rcu_state.gp_seq); 566 } 567 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 568 569 /* 570 * Return the number of RCU expedited batches completed thus far for 571 * debug & stats. Odd numbers mean that a batch is in progress, even 572 * numbers mean idle. The value returned will thus be roughly double 573 * the cumulative batches since boot. 574 */ 575 unsigned long rcu_exp_batches_completed(void) 576 { 577 return rcu_state.expedited_sequence; 578 } 579 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 580 581 /* 582 * Return the root node of the rcu_state structure. 583 */ 584 static struct rcu_node *rcu_get_root(void) 585 { 586 return &rcu_state.node[0]; 587 } 588 589 /* 590 * Send along grace-period-related data for rcutorture diagnostics. 591 */ 592 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 593 unsigned long *gp_seq) 594 { 595 switch (test_type) { 596 case RCU_FLAVOR: 597 *flags = READ_ONCE(rcu_state.gp_flags); 598 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 599 break; 600 default: 601 break; 602 } 603 } 604 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 605 606 /* 607 * Enter an RCU extended quiescent state, which can be either the 608 * idle loop or adaptive-tickless usermode execution. 609 * 610 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 611 * the possibility of usermode upcalls having messed up our count 612 * of interrupt nesting level during the prior busy period. 613 */ 614 static noinstr void rcu_eqs_enter(bool user) 615 { 616 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 617 618 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 619 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 620 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 621 rdp->dynticks_nesting == 0); 622 if (rdp->dynticks_nesting != 1) { 623 // RCU will still be watching, so just do accounting and leave. 624 rdp->dynticks_nesting--; 625 return; 626 } 627 628 lockdep_assert_irqs_disabled(); 629 instrumentation_begin(); 630 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 631 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 632 rdp = this_cpu_ptr(&rcu_data); 633 do_nocb_deferred_wakeup(rdp); 634 rcu_prepare_for_idle(); 635 rcu_preempt_deferred_qs(current); 636 instrumentation_end(); 637 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 638 // RCU is watching here ... 639 rcu_dynticks_eqs_enter(); 640 // ... but is no longer watching here. 641 rcu_dynticks_task_enter(); 642 } 643 644 /** 645 * rcu_idle_enter - inform RCU that current CPU is entering idle 646 * 647 * Enter idle mode, in other words, -leave- the mode in which RCU 648 * read-side critical sections can occur. (Though RCU read-side 649 * critical sections can occur in irq handlers in idle, a possibility 650 * handled by irq_enter() and irq_exit().) 651 * 652 * If you add or remove a call to rcu_idle_enter(), be sure to test with 653 * CONFIG_RCU_EQS_DEBUG=y. 654 */ 655 void rcu_idle_enter(void) 656 { 657 lockdep_assert_irqs_disabled(); 658 rcu_eqs_enter(false); 659 } 660 661 #ifdef CONFIG_NO_HZ_FULL 662 /** 663 * rcu_user_enter - inform RCU that we are resuming userspace. 664 * 665 * Enter RCU idle mode right before resuming userspace. No use of RCU 666 * is permitted between this call and rcu_user_exit(). This way the 667 * CPU doesn't need to maintain the tick for RCU maintenance purposes 668 * when the CPU runs in userspace. 669 * 670 * If you add or remove a call to rcu_user_enter(), be sure to test with 671 * CONFIG_RCU_EQS_DEBUG=y. 672 */ 673 noinstr void rcu_user_enter(void) 674 { 675 lockdep_assert_irqs_disabled(); 676 rcu_eqs_enter(true); 677 } 678 #endif /* CONFIG_NO_HZ_FULL */ 679 680 /** 681 * rcu_nmi_exit - inform RCU of exit from NMI context 682 * 683 * If we are returning from the outermost NMI handler that interrupted an 684 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 685 * to let the RCU grace-period handling know that the CPU is back to 686 * being RCU-idle. 687 * 688 * If you add or remove a call to rcu_nmi_exit(), be sure to test 689 * with CONFIG_RCU_EQS_DEBUG=y. 690 */ 691 noinstr void rcu_nmi_exit(void) 692 { 693 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 694 695 /* 696 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 697 * (We are exiting an NMI handler, so RCU better be paying attention 698 * to us!) 699 */ 700 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 701 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 702 703 /* 704 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 705 * leave it in non-RCU-idle state. 706 */ 707 if (rdp->dynticks_nmi_nesting != 1) { 708 instrumentation_begin(); 709 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 710 atomic_read(&rdp->dynticks)); 711 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 712 rdp->dynticks_nmi_nesting - 2); 713 instrumentation_end(); 714 return; 715 } 716 717 instrumentation_begin(); 718 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 719 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 720 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 721 722 if (!in_nmi()) 723 rcu_prepare_for_idle(); 724 instrumentation_end(); 725 726 // RCU is watching here ... 727 rcu_dynticks_eqs_enter(); 728 // ... but is no longer watching here. 729 730 if (!in_nmi()) 731 rcu_dynticks_task_enter(); 732 } 733 734 /** 735 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 736 * 737 * Exit from an interrupt handler, which might possibly result in entering 738 * idle mode, in other words, leaving the mode in which read-side critical 739 * sections can occur. The caller must have disabled interrupts. 740 * 741 * This code assumes that the idle loop never does anything that might 742 * result in unbalanced calls to irq_enter() and irq_exit(). If your 743 * architecture's idle loop violates this assumption, RCU will give you what 744 * you deserve, good and hard. But very infrequently and irreproducibly. 745 * 746 * Use things like work queues to work around this limitation. 747 * 748 * You have been warned. 749 * 750 * If you add or remove a call to rcu_irq_exit(), be sure to test with 751 * CONFIG_RCU_EQS_DEBUG=y. 752 */ 753 void noinstr rcu_irq_exit(void) 754 { 755 lockdep_assert_irqs_disabled(); 756 rcu_nmi_exit(); 757 } 758 759 /** 760 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq 761 * towards in kernel preemption 762 * 763 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe 764 * from RCU point of view. Invoked from return from interrupt before kernel 765 * preemption. 766 */ 767 void rcu_irq_exit_preempt(void) 768 { 769 lockdep_assert_irqs_disabled(); 770 rcu_nmi_exit(); 771 772 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 773 "RCU dynticks_nesting counter underflow/zero!"); 774 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 775 DYNTICK_IRQ_NONIDLE, 776 "Bad RCU dynticks_nmi_nesting counter\n"); 777 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 778 "RCU in extended quiescent state!"); 779 } 780 781 #ifdef CONFIG_PROVE_RCU 782 /** 783 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 784 */ 785 void rcu_irq_exit_check_preempt(void) 786 { 787 lockdep_assert_irqs_disabled(); 788 789 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 790 "RCU dynticks_nesting counter underflow/zero!"); 791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 792 DYNTICK_IRQ_NONIDLE, 793 "Bad RCU dynticks_nmi_nesting counter\n"); 794 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 795 "RCU in extended quiescent state!"); 796 } 797 #endif /* #ifdef CONFIG_PROVE_RCU */ 798 799 /* 800 * Wrapper for rcu_irq_exit() where interrupts are enabled. 801 * 802 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 803 * with CONFIG_RCU_EQS_DEBUG=y. 804 */ 805 void rcu_irq_exit_irqson(void) 806 { 807 unsigned long flags; 808 809 local_irq_save(flags); 810 rcu_irq_exit(); 811 local_irq_restore(flags); 812 } 813 814 /* 815 * Exit an RCU extended quiescent state, which can be either the 816 * idle loop or adaptive-tickless usermode execution. 817 * 818 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 819 * allow for the possibility of usermode upcalls messing up our count of 820 * interrupt nesting level during the busy period that is just now starting. 821 */ 822 static void noinstr rcu_eqs_exit(bool user) 823 { 824 struct rcu_data *rdp; 825 long oldval; 826 827 lockdep_assert_irqs_disabled(); 828 rdp = this_cpu_ptr(&rcu_data); 829 oldval = rdp->dynticks_nesting; 830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 831 if (oldval) { 832 // RCU was already watching, so just do accounting and leave. 833 rdp->dynticks_nesting++; 834 return; 835 } 836 rcu_dynticks_task_exit(); 837 // RCU is not watching here ... 838 rcu_dynticks_eqs_exit(); 839 // ... but is watching here. 840 instrumentation_begin(); 841 rcu_cleanup_after_idle(); 842 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 843 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 844 WRITE_ONCE(rdp->dynticks_nesting, 1); 845 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 846 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 847 instrumentation_end(); 848 } 849 850 /** 851 * rcu_idle_exit - inform RCU that current CPU is leaving idle 852 * 853 * Exit idle mode, in other words, -enter- the mode in which RCU 854 * read-side critical sections can occur. 855 * 856 * If you add or remove a call to rcu_idle_exit(), be sure to test with 857 * CONFIG_RCU_EQS_DEBUG=y. 858 */ 859 void rcu_idle_exit(void) 860 { 861 unsigned long flags; 862 863 local_irq_save(flags); 864 rcu_eqs_exit(false); 865 local_irq_restore(flags); 866 } 867 868 #ifdef CONFIG_NO_HZ_FULL 869 /** 870 * rcu_user_exit - inform RCU that we are exiting userspace. 871 * 872 * Exit RCU idle mode while entering the kernel because it can 873 * run a RCU read side critical section anytime. 874 * 875 * If you add or remove a call to rcu_user_exit(), be sure to test with 876 * CONFIG_RCU_EQS_DEBUG=y. 877 */ 878 void noinstr rcu_user_exit(void) 879 { 880 rcu_eqs_exit(1); 881 } 882 883 /** 884 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 885 * 886 * The scheduler tick is not normally enabled when CPUs enter the kernel 887 * from nohz_full userspace execution. After all, nohz_full userspace 888 * execution is an RCU quiescent state and the time executing in the kernel 889 * is quite short. Except of course when it isn't. And it is not hard to 890 * cause a large system to spend tens of seconds or even minutes looping 891 * in the kernel, which can cause a number of problems, include RCU CPU 892 * stall warnings. 893 * 894 * Therefore, if a nohz_full CPU fails to report a quiescent state 895 * in a timely manner, the RCU grace-period kthread sets that CPU's 896 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 897 * exception will invoke this function, which will turn on the scheduler 898 * tick, which will enable RCU to detect that CPU's quiescent states, 899 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 900 * The tick will be disabled once a quiescent state is reported for 901 * this CPU. 902 * 903 * Of course, in carefully tuned systems, there might never be an 904 * interrupt or exception. In that case, the RCU grace-period kthread 905 * will eventually cause one to happen. However, in less carefully 906 * controlled environments, this function allows RCU to get what it 907 * needs without creating otherwise useless interruptions. 908 */ 909 void __rcu_irq_enter_check_tick(void) 910 { 911 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 912 913 // Enabling the tick is unsafe in NMI handlers. 914 if (WARN_ON_ONCE(in_nmi())) 915 return; 916 917 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 918 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 919 920 if (!tick_nohz_full_cpu(rdp->cpu) || 921 !READ_ONCE(rdp->rcu_urgent_qs) || 922 READ_ONCE(rdp->rcu_forced_tick)) { 923 // RCU doesn't need nohz_full help from this CPU, or it is 924 // already getting that help. 925 return; 926 } 927 928 // We get here only when not in an extended quiescent state and 929 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 930 // already watching and (2) The fact that we are in an interrupt 931 // handler and that the rcu_node lock is an irq-disabled lock 932 // prevents self-deadlock. So we can safely recheck under the lock. 933 // Note that the nohz_full state currently cannot change. 934 raw_spin_lock_rcu_node(rdp->mynode); 935 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 936 // A nohz_full CPU is in the kernel and RCU needs a 937 // quiescent state. Turn on the tick! 938 WRITE_ONCE(rdp->rcu_forced_tick, true); 939 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 940 } 941 raw_spin_unlock_rcu_node(rdp->mynode); 942 } 943 #endif /* CONFIG_NO_HZ_FULL */ 944 945 /** 946 * rcu_nmi_enter - inform RCU of entry to NMI context 947 * @irq: Is this call from rcu_irq_enter? 948 * 949 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 950 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 951 * that the CPU is active. This implementation permits nested NMIs, as 952 * long as the nesting level does not overflow an int. (You will probably 953 * run out of stack space first.) 954 * 955 * If you add or remove a call to rcu_nmi_enter(), be sure to test 956 * with CONFIG_RCU_EQS_DEBUG=y. 957 */ 958 noinstr void rcu_nmi_enter(void) 959 { 960 long incby = 2; 961 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 962 963 /* Complain about underflow. */ 964 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 965 966 /* 967 * If idle from RCU viewpoint, atomically increment ->dynticks 968 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 969 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 970 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 971 * to be in the outermost NMI handler that interrupted an RCU-idle 972 * period (observation due to Andy Lutomirski). 973 */ 974 if (rcu_dynticks_curr_cpu_in_eqs()) { 975 976 if (!in_nmi()) 977 rcu_dynticks_task_exit(); 978 979 // RCU is not watching here ... 980 rcu_dynticks_eqs_exit(); 981 // ... but is watching here. 982 983 if (!in_nmi()) 984 rcu_cleanup_after_idle(); 985 986 incby = 1; 987 } else if (!in_nmi()) { 988 instrumentation_begin(); 989 rcu_irq_enter_check_tick(); 990 instrumentation_end(); 991 } 992 instrumentation_begin(); 993 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 994 rdp->dynticks_nmi_nesting, 995 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 996 instrumentation_end(); 997 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 998 rdp->dynticks_nmi_nesting + incby); 999 barrier(); 1000 } 1001 1002 /** 1003 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1004 * 1005 * Enter an interrupt handler, which might possibly result in exiting 1006 * idle mode, in other words, entering the mode in which read-side critical 1007 * sections can occur. The caller must have disabled interrupts. 1008 * 1009 * Note that the Linux kernel is fully capable of entering an interrupt 1010 * handler that it never exits, for example when doing upcalls to user mode! 1011 * This code assumes that the idle loop never does upcalls to user mode. 1012 * If your architecture's idle loop does do upcalls to user mode (or does 1013 * anything else that results in unbalanced calls to the irq_enter() and 1014 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1015 * But very infrequently and irreproducibly. 1016 * 1017 * Use things like work queues to work around this limitation. 1018 * 1019 * You have been warned. 1020 * 1021 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1022 * CONFIG_RCU_EQS_DEBUG=y. 1023 */ 1024 noinstr void rcu_irq_enter(void) 1025 { 1026 lockdep_assert_irqs_disabled(); 1027 rcu_nmi_enter(); 1028 } 1029 1030 /* 1031 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1032 * 1033 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1034 * with CONFIG_RCU_EQS_DEBUG=y. 1035 */ 1036 void rcu_irq_enter_irqson(void) 1037 { 1038 unsigned long flags; 1039 1040 local_irq_save(flags); 1041 rcu_irq_enter(); 1042 local_irq_restore(flags); 1043 } 1044 1045 /* 1046 * If any sort of urgency was applied to the current CPU (for example, 1047 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1048 * to get to a quiescent state, disable it. 1049 */ 1050 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1051 { 1052 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1053 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1054 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1055 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1056 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1057 WRITE_ONCE(rdp->rcu_forced_tick, false); 1058 } 1059 } 1060 1061 noinstr bool __rcu_is_watching(void) 1062 { 1063 return !rcu_dynticks_curr_cpu_in_eqs(); 1064 } 1065 1066 /** 1067 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1068 * 1069 * Return true if RCU is watching the running CPU, which means that this 1070 * CPU can safely enter RCU read-side critical sections. In other words, 1071 * if the current CPU is not in its idle loop or is in an interrupt or 1072 * NMI handler, return true. 1073 */ 1074 bool rcu_is_watching(void) 1075 { 1076 bool ret; 1077 1078 preempt_disable_notrace(); 1079 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1080 preempt_enable_notrace(); 1081 return ret; 1082 } 1083 EXPORT_SYMBOL_GPL(rcu_is_watching); 1084 1085 /* 1086 * If a holdout task is actually running, request an urgent quiescent 1087 * state from its CPU. This is unsynchronized, so migrations can cause 1088 * the request to go to the wrong CPU. Which is OK, all that will happen 1089 * is that the CPU's next context switch will be a bit slower and next 1090 * time around this task will generate another request. 1091 */ 1092 void rcu_request_urgent_qs_task(struct task_struct *t) 1093 { 1094 int cpu; 1095 1096 barrier(); 1097 cpu = task_cpu(t); 1098 if (!task_curr(t)) 1099 return; /* This task is not running on that CPU. */ 1100 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1101 } 1102 1103 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1104 1105 /* 1106 * Is the current CPU online as far as RCU is concerned? 1107 * 1108 * Disable preemption to avoid false positives that could otherwise 1109 * happen due to the current CPU number being sampled, this task being 1110 * preempted, its old CPU being taken offline, resuming on some other CPU, 1111 * then determining that its old CPU is now offline. 1112 * 1113 * Disable checking if in an NMI handler because we cannot safely 1114 * report errors from NMI handlers anyway. In addition, it is OK to use 1115 * RCU on an offline processor during initial boot, hence the check for 1116 * rcu_scheduler_fully_active. 1117 */ 1118 bool rcu_lockdep_current_cpu_online(void) 1119 { 1120 struct rcu_data *rdp; 1121 struct rcu_node *rnp; 1122 bool ret = false; 1123 1124 if (in_nmi() || !rcu_scheduler_fully_active) 1125 return true; 1126 preempt_disable_notrace(); 1127 rdp = this_cpu_ptr(&rcu_data); 1128 rnp = rdp->mynode; 1129 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 1130 ret = true; 1131 preempt_enable_notrace(); 1132 return ret; 1133 } 1134 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1135 1136 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1137 1138 /* 1139 * We are reporting a quiescent state on behalf of some other CPU, so 1140 * it is our responsibility to check for and handle potential overflow 1141 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1142 * After all, the CPU might be in deep idle state, and thus executing no 1143 * code whatsoever. 1144 */ 1145 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1146 { 1147 raw_lockdep_assert_held_rcu_node(rnp); 1148 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1149 rnp->gp_seq)) 1150 WRITE_ONCE(rdp->gpwrap, true); 1151 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1152 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1153 } 1154 1155 /* 1156 * Snapshot the specified CPU's dynticks counter so that we can later 1157 * credit them with an implicit quiescent state. Return 1 if this CPU 1158 * is in dynticks idle mode, which is an extended quiescent state. 1159 */ 1160 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1161 { 1162 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1163 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1164 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1165 rcu_gpnum_ovf(rdp->mynode, rdp); 1166 return 1; 1167 } 1168 return 0; 1169 } 1170 1171 /* 1172 * Return true if the specified CPU has passed through a quiescent 1173 * state by virtue of being in or having passed through an dynticks 1174 * idle state since the last call to dyntick_save_progress_counter() 1175 * for this same CPU, or by virtue of having been offline. 1176 */ 1177 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1178 { 1179 unsigned long jtsq; 1180 bool *rnhqp; 1181 bool *ruqp; 1182 struct rcu_node *rnp = rdp->mynode; 1183 1184 /* 1185 * If the CPU passed through or entered a dynticks idle phase with 1186 * no active irq/NMI handlers, then we can safely pretend that the CPU 1187 * already acknowledged the request to pass through a quiescent 1188 * state. Either way, that CPU cannot possibly be in an RCU 1189 * read-side critical section that started before the beginning 1190 * of the current RCU grace period. 1191 */ 1192 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1193 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1194 rcu_gpnum_ovf(rnp, rdp); 1195 return 1; 1196 } 1197 1198 /* If waiting too long on an offline CPU, complain. */ 1199 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) && 1200 time_after(jiffies, rcu_state.gp_start + HZ)) { 1201 bool onl; 1202 struct rcu_node *rnp1; 1203 1204 WARN_ON(1); /* Offline CPUs are supposed to report QS! */ 1205 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1206 __func__, rnp->grplo, rnp->grphi, rnp->level, 1207 (long)rnp->gp_seq, (long)rnp->completedqs); 1208 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1209 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1210 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1211 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1212 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1213 __func__, rdp->cpu, ".o"[onl], 1214 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1215 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1216 return 1; /* Break things loose after complaining. */ 1217 } 1218 1219 /* 1220 * A CPU running for an extended time within the kernel can 1221 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1222 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1223 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1224 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1225 * variable are safe because the assignments are repeated if this 1226 * CPU failed to pass through a quiescent state. This code 1227 * also checks .jiffies_resched in case jiffies_to_sched_qs 1228 * is set way high. 1229 */ 1230 jtsq = READ_ONCE(jiffies_to_sched_qs); 1231 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1232 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1233 if (!READ_ONCE(*rnhqp) && 1234 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1235 time_after(jiffies, rcu_state.jiffies_resched) || 1236 rcu_state.cbovld)) { 1237 WRITE_ONCE(*rnhqp, true); 1238 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1239 smp_store_release(ruqp, true); 1240 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1241 WRITE_ONCE(*ruqp, true); 1242 } 1243 1244 /* 1245 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1246 * The above code handles this, but only for straight cond_resched(). 1247 * And some in-kernel loops check need_resched() before calling 1248 * cond_resched(), which defeats the above code for CPUs that are 1249 * running in-kernel with scheduling-clock interrupts disabled. 1250 * So hit them over the head with the resched_cpu() hammer! 1251 */ 1252 if (tick_nohz_full_cpu(rdp->cpu) && 1253 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1254 rcu_state.cbovld)) { 1255 WRITE_ONCE(*ruqp, true); 1256 resched_cpu(rdp->cpu); 1257 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1258 } 1259 1260 /* 1261 * If more than halfway to RCU CPU stall-warning time, invoke 1262 * resched_cpu() more frequently to try to loosen things up a bit. 1263 * Also check to see if the CPU is getting hammered with interrupts, 1264 * but only once per grace period, just to keep the IPIs down to 1265 * a dull roar. 1266 */ 1267 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1268 if (time_after(jiffies, 1269 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1270 resched_cpu(rdp->cpu); 1271 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1272 } 1273 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1274 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1275 (rnp->ffmask & rdp->grpmask)) { 1276 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1277 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ); 1278 rdp->rcu_iw_pending = true; 1279 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1280 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1281 } 1282 } 1283 1284 return 0; 1285 } 1286 1287 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1288 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1289 unsigned long gp_seq_req, const char *s) 1290 { 1291 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1292 gp_seq_req, rnp->level, 1293 rnp->grplo, rnp->grphi, s); 1294 } 1295 1296 /* 1297 * rcu_start_this_gp - Request the start of a particular grace period 1298 * @rnp_start: The leaf node of the CPU from which to start. 1299 * @rdp: The rcu_data corresponding to the CPU from which to start. 1300 * @gp_seq_req: The gp_seq of the grace period to start. 1301 * 1302 * Start the specified grace period, as needed to handle newly arrived 1303 * callbacks. The required future grace periods are recorded in each 1304 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1305 * is reason to awaken the grace-period kthread. 1306 * 1307 * The caller must hold the specified rcu_node structure's ->lock, which 1308 * is why the caller is responsible for waking the grace-period kthread. 1309 * 1310 * Returns true if the GP thread needs to be awakened else false. 1311 */ 1312 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1313 unsigned long gp_seq_req) 1314 { 1315 bool ret = false; 1316 struct rcu_node *rnp; 1317 1318 /* 1319 * Use funnel locking to either acquire the root rcu_node 1320 * structure's lock or bail out if the need for this grace period 1321 * has already been recorded -- or if that grace period has in 1322 * fact already started. If there is already a grace period in 1323 * progress in a non-leaf node, no recording is needed because the 1324 * end of the grace period will scan the leaf rcu_node structures. 1325 * Note that rnp_start->lock must not be released. 1326 */ 1327 raw_lockdep_assert_held_rcu_node(rnp_start); 1328 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1329 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1330 if (rnp != rnp_start) 1331 raw_spin_lock_rcu_node(rnp); 1332 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1333 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1334 (rnp != rnp_start && 1335 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1336 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1337 TPS("Prestarted")); 1338 goto unlock_out; 1339 } 1340 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1341 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1342 /* 1343 * We just marked the leaf or internal node, and a 1344 * grace period is in progress, which means that 1345 * rcu_gp_cleanup() will see the marking. Bail to 1346 * reduce contention. 1347 */ 1348 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1349 TPS("Startedleaf")); 1350 goto unlock_out; 1351 } 1352 if (rnp != rnp_start && rnp->parent != NULL) 1353 raw_spin_unlock_rcu_node(rnp); 1354 if (!rnp->parent) 1355 break; /* At root, and perhaps also leaf. */ 1356 } 1357 1358 /* If GP already in progress, just leave, otherwise start one. */ 1359 if (rcu_gp_in_progress()) { 1360 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1361 goto unlock_out; 1362 } 1363 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1364 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1365 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1366 if (!READ_ONCE(rcu_state.gp_kthread)) { 1367 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1368 goto unlock_out; 1369 } 1370 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1371 ret = true; /* Caller must wake GP kthread. */ 1372 unlock_out: 1373 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1374 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1375 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1376 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1377 } 1378 if (rnp != rnp_start) 1379 raw_spin_unlock_rcu_node(rnp); 1380 return ret; 1381 } 1382 1383 /* 1384 * Clean up any old requests for the just-ended grace period. Also return 1385 * whether any additional grace periods have been requested. 1386 */ 1387 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1388 { 1389 bool needmore; 1390 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1391 1392 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1393 if (!needmore) 1394 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1395 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1396 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1397 return needmore; 1398 } 1399 1400 /* 1401 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1402 * interrupt or softirq handler, in which case we just might immediately 1403 * sleep upon return, resulting in a grace-period hang), and don't bother 1404 * awakening when there is nothing for the grace-period kthread to do 1405 * (as in several CPUs raced to awaken, we lost), and finally don't try 1406 * to awaken a kthread that has not yet been created. If all those checks 1407 * are passed, track some debug information and awaken. 1408 * 1409 * So why do the self-wakeup when in an interrupt or softirq handler 1410 * in the grace-period kthread's context? Because the kthread might have 1411 * been interrupted just as it was going to sleep, and just after the final 1412 * pre-sleep check of the awaken condition. In this case, a wakeup really 1413 * is required, and is therefore supplied. 1414 */ 1415 static void rcu_gp_kthread_wake(void) 1416 { 1417 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1418 1419 if ((current == t && !in_irq() && !in_serving_softirq()) || 1420 !READ_ONCE(rcu_state.gp_flags) || !t) 1421 return; 1422 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1423 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1424 swake_up_one(&rcu_state.gp_wq); 1425 } 1426 1427 /* 1428 * If there is room, assign a ->gp_seq number to any callbacks on this 1429 * CPU that have not already been assigned. Also accelerate any callbacks 1430 * that were previously assigned a ->gp_seq number that has since proven 1431 * to be too conservative, which can happen if callbacks get assigned a 1432 * ->gp_seq number while RCU is idle, but with reference to a non-root 1433 * rcu_node structure. This function is idempotent, so it does not hurt 1434 * to call it repeatedly. Returns an flag saying that we should awaken 1435 * the RCU grace-period kthread. 1436 * 1437 * The caller must hold rnp->lock with interrupts disabled. 1438 */ 1439 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1440 { 1441 unsigned long gp_seq_req; 1442 bool ret = false; 1443 1444 rcu_lockdep_assert_cblist_protected(rdp); 1445 raw_lockdep_assert_held_rcu_node(rnp); 1446 1447 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1448 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1449 return false; 1450 1451 /* 1452 * Callbacks are often registered with incomplete grace-period 1453 * information. Something about the fact that getting exact 1454 * information requires acquiring a global lock... RCU therefore 1455 * makes a conservative estimate of the grace period number at which 1456 * a given callback will become ready to invoke. The following 1457 * code checks this estimate and improves it when possible, thus 1458 * accelerating callback invocation to an earlier grace-period 1459 * number. 1460 */ 1461 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1462 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1463 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1464 1465 /* Trace depending on how much we were able to accelerate. */ 1466 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1467 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB")); 1468 else 1469 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB")); 1470 return ret; 1471 } 1472 1473 /* 1474 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1475 * rcu_node structure's ->lock be held. It consults the cached value 1476 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1477 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1478 * while holding the leaf rcu_node structure's ->lock. 1479 */ 1480 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1481 struct rcu_data *rdp) 1482 { 1483 unsigned long c; 1484 bool needwake; 1485 1486 rcu_lockdep_assert_cblist_protected(rdp); 1487 c = rcu_seq_snap(&rcu_state.gp_seq); 1488 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1489 /* Old request still live, so mark recent callbacks. */ 1490 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1491 return; 1492 } 1493 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1494 needwake = rcu_accelerate_cbs(rnp, rdp); 1495 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1496 if (needwake) 1497 rcu_gp_kthread_wake(); 1498 } 1499 1500 /* 1501 * Move any callbacks whose grace period has completed to the 1502 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1503 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1504 * sublist. This function is idempotent, so it does not hurt to 1505 * invoke it repeatedly. As long as it is not invoked -too- often... 1506 * Returns true if the RCU grace-period kthread needs to be awakened. 1507 * 1508 * The caller must hold rnp->lock with interrupts disabled. 1509 */ 1510 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1511 { 1512 rcu_lockdep_assert_cblist_protected(rdp); 1513 raw_lockdep_assert_held_rcu_node(rnp); 1514 1515 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1516 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1517 return false; 1518 1519 /* 1520 * Find all callbacks whose ->gp_seq numbers indicate that they 1521 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1522 */ 1523 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1524 1525 /* Classify any remaining callbacks. */ 1526 return rcu_accelerate_cbs(rnp, rdp); 1527 } 1528 1529 /* 1530 * Move and classify callbacks, but only if doing so won't require 1531 * that the RCU grace-period kthread be awakened. 1532 */ 1533 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1534 struct rcu_data *rdp) 1535 { 1536 rcu_lockdep_assert_cblist_protected(rdp); 1537 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1538 !raw_spin_trylock_rcu_node(rnp)) 1539 return; 1540 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1541 raw_spin_unlock_rcu_node(rnp); 1542 } 1543 1544 /* 1545 * Update CPU-local rcu_data state to record the beginnings and ends of 1546 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1547 * structure corresponding to the current CPU, and must have irqs disabled. 1548 * Returns true if the grace-period kthread needs to be awakened. 1549 */ 1550 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1551 { 1552 bool ret = false; 1553 bool need_qs; 1554 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1555 rcu_segcblist_is_offloaded(&rdp->cblist); 1556 1557 raw_lockdep_assert_held_rcu_node(rnp); 1558 1559 if (rdp->gp_seq == rnp->gp_seq) 1560 return false; /* Nothing to do. */ 1561 1562 /* Handle the ends of any preceding grace periods first. */ 1563 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1564 unlikely(READ_ONCE(rdp->gpwrap))) { 1565 if (!offloaded) 1566 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1567 rdp->core_needs_qs = false; 1568 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1569 } else { 1570 if (!offloaded) 1571 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1572 if (rdp->core_needs_qs) 1573 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1574 } 1575 1576 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1577 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1578 unlikely(READ_ONCE(rdp->gpwrap))) { 1579 /* 1580 * If the current grace period is waiting for this CPU, 1581 * set up to detect a quiescent state, otherwise don't 1582 * go looking for one. 1583 */ 1584 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1585 need_qs = !!(rnp->qsmask & rdp->grpmask); 1586 rdp->cpu_no_qs.b.norm = need_qs; 1587 rdp->core_needs_qs = need_qs; 1588 zero_cpu_stall_ticks(rdp); 1589 } 1590 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1591 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1592 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1593 WRITE_ONCE(rdp->gpwrap, false); 1594 rcu_gpnum_ovf(rnp, rdp); 1595 return ret; 1596 } 1597 1598 static void note_gp_changes(struct rcu_data *rdp) 1599 { 1600 unsigned long flags; 1601 bool needwake; 1602 struct rcu_node *rnp; 1603 1604 local_irq_save(flags); 1605 rnp = rdp->mynode; 1606 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1607 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1608 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1609 local_irq_restore(flags); 1610 return; 1611 } 1612 needwake = __note_gp_changes(rnp, rdp); 1613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1614 if (needwake) 1615 rcu_gp_kthread_wake(); 1616 } 1617 1618 static void rcu_gp_slow(int delay) 1619 { 1620 if (delay > 0 && 1621 !(rcu_seq_ctr(rcu_state.gp_seq) % 1622 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1623 schedule_timeout_uninterruptible(delay); 1624 } 1625 1626 static unsigned long sleep_duration; 1627 1628 /* Allow rcutorture to stall the grace-period kthread. */ 1629 void rcu_gp_set_torture_wait(int duration) 1630 { 1631 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1632 WRITE_ONCE(sleep_duration, duration); 1633 } 1634 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1635 1636 /* Actually implement the aforementioned wait. */ 1637 static void rcu_gp_torture_wait(void) 1638 { 1639 unsigned long duration; 1640 1641 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1642 return; 1643 duration = xchg(&sleep_duration, 0UL); 1644 if (duration > 0) { 1645 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1646 schedule_timeout_uninterruptible(duration); 1647 pr_alert("%s: Wait complete\n", __func__); 1648 } 1649 } 1650 1651 /* 1652 * Initialize a new grace period. Return false if no grace period required. 1653 */ 1654 static bool rcu_gp_init(void) 1655 { 1656 unsigned long flags; 1657 unsigned long oldmask; 1658 unsigned long mask; 1659 struct rcu_data *rdp; 1660 struct rcu_node *rnp = rcu_get_root(); 1661 1662 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1663 raw_spin_lock_irq_rcu_node(rnp); 1664 if (!READ_ONCE(rcu_state.gp_flags)) { 1665 /* Spurious wakeup, tell caller to go back to sleep. */ 1666 raw_spin_unlock_irq_rcu_node(rnp); 1667 return false; 1668 } 1669 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1670 1671 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1672 /* 1673 * Grace period already in progress, don't start another. 1674 * Not supposed to be able to happen. 1675 */ 1676 raw_spin_unlock_irq_rcu_node(rnp); 1677 return false; 1678 } 1679 1680 /* Advance to a new grace period and initialize state. */ 1681 record_gp_stall_check_time(); 1682 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1683 rcu_seq_start(&rcu_state.gp_seq); 1684 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1686 raw_spin_unlock_irq_rcu_node(rnp); 1687 1688 /* 1689 * Apply per-leaf buffered online and offline operations to the 1690 * rcu_node tree. Note that this new grace period need not wait 1691 * for subsequent online CPUs, and that quiescent-state forcing 1692 * will handle subsequent offline CPUs. 1693 */ 1694 rcu_state.gp_state = RCU_GP_ONOFF; 1695 rcu_for_each_leaf_node(rnp) { 1696 raw_spin_lock(&rcu_state.ofl_lock); 1697 raw_spin_lock_irq_rcu_node(rnp); 1698 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1699 !rnp->wait_blkd_tasks) { 1700 /* Nothing to do on this leaf rcu_node structure. */ 1701 raw_spin_unlock_irq_rcu_node(rnp); 1702 raw_spin_unlock(&rcu_state.ofl_lock); 1703 continue; 1704 } 1705 1706 /* Record old state, apply changes to ->qsmaskinit field. */ 1707 oldmask = rnp->qsmaskinit; 1708 rnp->qsmaskinit = rnp->qsmaskinitnext; 1709 1710 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1711 if (!oldmask != !rnp->qsmaskinit) { 1712 if (!oldmask) { /* First online CPU for rcu_node. */ 1713 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1714 rcu_init_new_rnp(rnp); 1715 } else if (rcu_preempt_has_tasks(rnp)) { 1716 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1717 } else { /* Last offline CPU and can propagate. */ 1718 rcu_cleanup_dead_rnp(rnp); 1719 } 1720 } 1721 1722 /* 1723 * If all waited-on tasks from prior grace period are 1724 * done, and if all this rcu_node structure's CPUs are 1725 * still offline, propagate up the rcu_node tree and 1726 * clear ->wait_blkd_tasks. Otherwise, if one of this 1727 * rcu_node structure's CPUs has since come back online, 1728 * simply clear ->wait_blkd_tasks. 1729 */ 1730 if (rnp->wait_blkd_tasks && 1731 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1732 rnp->wait_blkd_tasks = false; 1733 if (!rnp->qsmaskinit) 1734 rcu_cleanup_dead_rnp(rnp); 1735 } 1736 1737 raw_spin_unlock_irq_rcu_node(rnp); 1738 raw_spin_unlock(&rcu_state.ofl_lock); 1739 } 1740 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1741 1742 /* 1743 * Set the quiescent-state-needed bits in all the rcu_node 1744 * structures for all currently online CPUs in breadth-first 1745 * order, starting from the root rcu_node structure, relying on the 1746 * layout of the tree within the rcu_state.node[] array. Note that 1747 * other CPUs will access only the leaves of the hierarchy, thus 1748 * seeing that no grace period is in progress, at least until the 1749 * corresponding leaf node has been initialized. 1750 * 1751 * The grace period cannot complete until the initialization 1752 * process finishes, because this kthread handles both. 1753 */ 1754 rcu_state.gp_state = RCU_GP_INIT; 1755 rcu_for_each_node_breadth_first(rnp) { 1756 rcu_gp_slow(gp_init_delay); 1757 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1758 rdp = this_cpu_ptr(&rcu_data); 1759 rcu_preempt_check_blocked_tasks(rnp); 1760 rnp->qsmask = rnp->qsmaskinit; 1761 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1762 if (rnp == rdp->mynode) 1763 (void)__note_gp_changes(rnp, rdp); 1764 rcu_preempt_boost_start_gp(rnp); 1765 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1766 rnp->level, rnp->grplo, 1767 rnp->grphi, rnp->qsmask); 1768 /* Quiescent states for tasks on any now-offline CPUs. */ 1769 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1770 rnp->rcu_gp_init_mask = mask; 1771 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1772 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1773 else 1774 raw_spin_unlock_irq_rcu_node(rnp); 1775 cond_resched_tasks_rcu_qs(); 1776 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1777 } 1778 1779 return true; 1780 } 1781 1782 /* 1783 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1784 * time. 1785 */ 1786 static bool rcu_gp_fqs_check_wake(int *gfp) 1787 { 1788 struct rcu_node *rnp = rcu_get_root(); 1789 1790 // If under overload conditions, force an immediate FQS scan. 1791 if (*gfp & RCU_GP_FLAG_OVLD) 1792 return true; 1793 1794 // Someone like call_rcu() requested a force-quiescent-state scan. 1795 *gfp = READ_ONCE(rcu_state.gp_flags); 1796 if (*gfp & RCU_GP_FLAG_FQS) 1797 return true; 1798 1799 // The current grace period has completed. 1800 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1801 return true; 1802 1803 return false; 1804 } 1805 1806 /* 1807 * Do one round of quiescent-state forcing. 1808 */ 1809 static void rcu_gp_fqs(bool first_time) 1810 { 1811 struct rcu_node *rnp = rcu_get_root(); 1812 1813 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1814 rcu_state.n_force_qs++; 1815 if (first_time) { 1816 /* Collect dyntick-idle snapshots. */ 1817 force_qs_rnp(dyntick_save_progress_counter); 1818 } else { 1819 /* Handle dyntick-idle and offline CPUs. */ 1820 force_qs_rnp(rcu_implicit_dynticks_qs); 1821 } 1822 /* Clear flag to prevent immediate re-entry. */ 1823 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1824 raw_spin_lock_irq_rcu_node(rnp); 1825 WRITE_ONCE(rcu_state.gp_flags, 1826 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1827 raw_spin_unlock_irq_rcu_node(rnp); 1828 } 1829 } 1830 1831 /* 1832 * Loop doing repeated quiescent-state forcing until the grace period ends. 1833 */ 1834 static void rcu_gp_fqs_loop(void) 1835 { 1836 bool first_gp_fqs; 1837 int gf = 0; 1838 unsigned long j; 1839 int ret; 1840 struct rcu_node *rnp = rcu_get_root(); 1841 1842 first_gp_fqs = true; 1843 j = READ_ONCE(jiffies_till_first_fqs); 1844 if (rcu_state.cbovld) 1845 gf = RCU_GP_FLAG_OVLD; 1846 ret = 0; 1847 for (;;) { 1848 if (!ret) { 1849 rcu_state.jiffies_force_qs = jiffies + j; 1850 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1851 jiffies + (j ? 3 * j : 2)); 1852 } 1853 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1854 TPS("fqswait")); 1855 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1856 ret = swait_event_idle_timeout_exclusive( 1857 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1858 rcu_gp_torture_wait(); 1859 rcu_state.gp_state = RCU_GP_DOING_FQS; 1860 /* Locking provides needed memory barriers. */ 1861 /* If grace period done, leave loop. */ 1862 if (!READ_ONCE(rnp->qsmask) && 1863 !rcu_preempt_blocked_readers_cgp(rnp)) 1864 break; 1865 /* If time for quiescent-state forcing, do it. */ 1866 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1867 (gf & RCU_GP_FLAG_FQS)) { 1868 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1869 TPS("fqsstart")); 1870 rcu_gp_fqs(first_gp_fqs); 1871 gf = 0; 1872 if (first_gp_fqs) { 1873 first_gp_fqs = false; 1874 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1875 } 1876 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1877 TPS("fqsend")); 1878 cond_resched_tasks_rcu_qs(); 1879 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1880 ret = 0; /* Force full wait till next FQS. */ 1881 j = READ_ONCE(jiffies_till_next_fqs); 1882 } else { 1883 /* Deal with stray signal. */ 1884 cond_resched_tasks_rcu_qs(); 1885 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1886 WARN_ON(signal_pending(current)); 1887 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1888 TPS("fqswaitsig")); 1889 ret = 1; /* Keep old FQS timing. */ 1890 j = jiffies; 1891 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1892 j = 1; 1893 else 1894 j = rcu_state.jiffies_force_qs - j; 1895 gf = 0; 1896 } 1897 } 1898 } 1899 1900 /* 1901 * Clean up after the old grace period. 1902 */ 1903 static void rcu_gp_cleanup(void) 1904 { 1905 int cpu; 1906 bool needgp = false; 1907 unsigned long gp_duration; 1908 unsigned long new_gp_seq; 1909 bool offloaded; 1910 struct rcu_data *rdp; 1911 struct rcu_node *rnp = rcu_get_root(); 1912 struct swait_queue_head *sq; 1913 1914 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1915 raw_spin_lock_irq_rcu_node(rnp); 1916 rcu_state.gp_end = jiffies; 1917 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1918 if (gp_duration > rcu_state.gp_max) 1919 rcu_state.gp_max = gp_duration; 1920 1921 /* 1922 * We know the grace period is complete, but to everyone else 1923 * it appears to still be ongoing. But it is also the case 1924 * that to everyone else it looks like there is nothing that 1925 * they can do to advance the grace period. It is therefore 1926 * safe for us to drop the lock in order to mark the grace 1927 * period as completed in all of the rcu_node structures. 1928 */ 1929 raw_spin_unlock_irq_rcu_node(rnp); 1930 1931 /* 1932 * Propagate new ->gp_seq value to rcu_node structures so that 1933 * other CPUs don't have to wait until the start of the next grace 1934 * period to process their callbacks. This also avoids some nasty 1935 * RCU grace-period initialization races by forcing the end of 1936 * the current grace period to be completely recorded in all of 1937 * the rcu_node structures before the beginning of the next grace 1938 * period is recorded in any of the rcu_node structures. 1939 */ 1940 new_gp_seq = rcu_state.gp_seq; 1941 rcu_seq_end(&new_gp_seq); 1942 rcu_for_each_node_breadth_first(rnp) { 1943 raw_spin_lock_irq_rcu_node(rnp); 1944 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1945 dump_blkd_tasks(rnp, 10); 1946 WARN_ON_ONCE(rnp->qsmask); 1947 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1948 rdp = this_cpu_ptr(&rcu_data); 1949 if (rnp == rdp->mynode) 1950 needgp = __note_gp_changes(rnp, rdp) || needgp; 1951 /* smp_mb() provided by prior unlock-lock pair. */ 1952 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1953 // Reset overload indication for CPUs no longer overloaded 1954 if (rcu_is_leaf_node(rnp)) 1955 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1956 rdp = per_cpu_ptr(&rcu_data, cpu); 1957 check_cb_ovld_locked(rdp, rnp); 1958 } 1959 sq = rcu_nocb_gp_get(rnp); 1960 raw_spin_unlock_irq_rcu_node(rnp); 1961 rcu_nocb_gp_cleanup(sq); 1962 cond_resched_tasks_rcu_qs(); 1963 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1964 rcu_gp_slow(gp_cleanup_delay); 1965 } 1966 rnp = rcu_get_root(); 1967 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1968 1969 /* Declare grace period done, trace first to use old GP number. */ 1970 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1971 rcu_seq_end(&rcu_state.gp_seq); 1972 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1973 rcu_state.gp_state = RCU_GP_IDLE; 1974 /* Check for GP requests since above loop. */ 1975 rdp = this_cpu_ptr(&rcu_data); 1976 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1977 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1978 TPS("CleanupMore")); 1979 needgp = true; 1980 } 1981 /* Advance CBs to reduce false positives below. */ 1982 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1983 rcu_segcblist_is_offloaded(&rdp->cblist); 1984 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1985 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1986 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1987 trace_rcu_grace_period(rcu_state.name, 1988 rcu_state.gp_seq, 1989 TPS("newreq")); 1990 } else { 1991 WRITE_ONCE(rcu_state.gp_flags, 1992 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1993 } 1994 raw_spin_unlock_irq_rcu_node(rnp); 1995 } 1996 1997 /* 1998 * Body of kthread that handles grace periods. 1999 */ 2000 static int __noreturn rcu_gp_kthread(void *unused) 2001 { 2002 rcu_bind_gp_kthread(); 2003 for (;;) { 2004 2005 /* Handle grace-period start. */ 2006 for (;;) { 2007 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2008 TPS("reqwait")); 2009 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2010 swait_event_idle_exclusive(rcu_state.gp_wq, 2011 READ_ONCE(rcu_state.gp_flags) & 2012 RCU_GP_FLAG_INIT); 2013 rcu_gp_torture_wait(); 2014 rcu_state.gp_state = RCU_GP_DONE_GPS; 2015 /* Locking provides needed memory barrier. */ 2016 if (rcu_gp_init()) 2017 break; 2018 cond_resched_tasks_rcu_qs(); 2019 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2020 WARN_ON(signal_pending(current)); 2021 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2022 TPS("reqwaitsig")); 2023 } 2024 2025 /* Handle quiescent-state forcing. */ 2026 rcu_gp_fqs_loop(); 2027 2028 /* Handle grace-period end. */ 2029 rcu_state.gp_state = RCU_GP_CLEANUP; 2030 rcu_gp_cleanup(); 2031 rcu_state.gp_state = RCU_GP_CLEANED; 2032 } 2033 } 2034 2035 /* 2036 * Report a full set of quiescent states to the rcu_state data structure. 2037 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2038 * another grace period is required. Whether we wake the grace-period 2039 * kthread or it awakens itself for the next round of quiescent-state 2040 * forcing, that kthread will clean up after the just-completed grace 2041 * period. Note that the caller must hold rnp->lock, which is released 2042 * before return. 2043 */ 2044 static void rcu_report_qs_rsp(unsigned long flags) 2045 __releases(rcu_get_root()->lock) 2046 { 2047 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2048 WARN_ON_ONCE(!rcu_gp_in_progress()); 2049 WRITE_ONCE(rcu_state.gp_flags, 2050 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2051 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2052 rcu_gp_kthread_wake(); 2053 } 2054 2055 /* 2056 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2057 * Allows quiescent states for a group of CPUs to be reported at one go 2058 * to the specified rcu_node structure, though all the CPUs in the group 2059 * must be represented by the same rcu_node structure (which need not be a 2060 * leaf rcu_node structure, though it often will be). The gps parameter 2061 * is the grace-period snapshot, which means that the quiescent states 2062 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2063 * must be held upon entry, and it is released before return. 2064 * 2065 * As a special case, if mask is zero, the bit-already-cleared check is 2066 * disabled. This allows propagating quiescent state due to resumed tasks 2067 * during grace-period initialization. 2068 */ 2069 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2070 unsigned long gps, unsigned long flags) 2071 __releases(rnp->lock) 2072 { 2073 unsigned long oldmask = 0; 2074 struct rcu_node *rnp_c; 2075 2076 raw_lockdep_assert_held_rcu_node(rnp); 2077 2078 /* Walk up the rcu_node hierarchy. */ 2079 for (;;) { 2080 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2081 2082 /* 2083 * Our bit has already been cleared, or the 2084 * relevant grace period is already over, so done. 2085 */ 2086 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2087 return; 2088 } 2089 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2090 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2091 rcu_preempt_blocked_readers_cgp(rnp)); 2092 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2093 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2094 mask, rnp->qsmask, rnp->level, 2095 rnp->grplo, rnp->grphi, 2096 !!rnp->gp_tasks); 2097 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2098 2099 /* Other bits still set at this level, so done. */ 2100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2101 return; 2102 } 2103 rnp->completedqs = rnp->gp_seq; 2104 mask = rnp->grpmask; 2105 if (rnp->parent == NULL) { 2106 2107 /* No more levels. Exit loop holding root lock. */ 2108 2109 break; 2110 } 2111 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2112 rnp_c = rnp; 2113 rnp = rnp->parent; 2114 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2115 oldmask = READ_ONCE(rnp_c->qsmask); 2116 } 2117 2118 /* 2119 * Get here if we are the last CPU to pass through a quiescent 2120 * state for this grace period. Invoke rcu_report_qs_rsp() 2121 * to clean up and start the next grace period if one is needed. 2122 */ 2123 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2124 } 2125 2126 /* 2127 * Record a quiescent state for all tasks that were previously queued 2128 * on the specified rcu_node structure and that were blocking the current 2129 * RCU grace period. The caller must hold the corresponding rnp->lock with 2130 * irqs disabled, and this lock is released upon return, but irqs remain 2131 * disabled. 2132 */ 2133 static void __maybe_unused 2134 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2135 __releases(rnp->lock) 2136 { 2137 unsigned long gps; 2138 unsigned long mask; 2139 struct rcu_node *rnp_p; 2140 2141 raw_lockdep_assert_held_rcu_node(rnp); 2142 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2144 rnp->qsmask != 0) { 2145 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2146 return; /* Still need more quiescent states! */ 2147 } 2148 2149 rnp->completedqs = rnp->gp_seq; 2150 rnp_p = rnp->parent; 2151 if (rnp_p == NULL) { 2152 /* 2153 * Only one rcu_node structure in the tree, so don't 2154 * try to report up to its nonexistent parent! 2155 */ 2156 rcu_report_qs_rsp(flags); 2157 return; 2158 } 2159 2160 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2161 gps = rnp->gp_seq; 2162 mask = rnp->grpmask; 2163 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2164 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2165 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2166 } 2167 2168 /* 2169 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2170 * structure. This must be called from the specified CPU. 2171 */ 2172 static void 2173 rcu_report_qs_rdp(int cpu, struct rcu_data *rdp) 2174 { 2175 unsigned long flags; 2176 unsigned long mask; 2177 bool needwake = false; 2178 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2179 rcu_segcblist_is_offloaded(&rdp->cblist); 2180 struct rcu_node *rnp; 2181 2182 rnp = rdp->mynode; 2183 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2184 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2185 rdp->gpwrap) { 2186 2187 /* 2188 * The grace period in which this quiescent state was 2189 * recorded has ended, so don't report it upwards. 2190 * We will instead need a new quiescent state that lies 2191 * within the current grace period. 2192 */ 2193 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2194 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2195 return; 2196 } 2197 mask = rdp->grpmask; 2198 if (rdp->cpu == smp_processor_id()) 2199 rdp->core_needs_qs = false; 2200 if ((rnp->qsmask & mask) == 0) { 2201 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2202 } else { 2203 /* 2204 * This GP can't end until cpu checks in, so all of our 2205 * callbacks can be processed during the next GP. 2206 */ 2207 if (!offloaded) 2208 needwake = rcu_accelerate_cbs(rnp, rdp); 2209 2210 rcu_disable_urgency_upon_qs(rdp); 2211 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2212 /* ^^^ Released rnp->lock */ 2213 if (needwake) 2214 rcu_gp_kthread_wake(); 2215 } 2216 } 2217 2218 /* 2219 * Check to see if there is a new grace period of which this CPU 2220 * is not yet aware, and if so, set up local rcu_data state for it. 2221 * Otherwise, see if this CPU has just passed through its first 2222 * quiescent state for this grace period, and record that fact if so. 2223 */ 2224 static void 2225 rcu_check_quiescent_state(struct rcu_data *rdp) 2226 { 2227 /* Check for grace-period ends and beginnings. */ 2228 note_gp_changes(rdp); 2229 2230 /* 2231 * Does this CPU still need to do its part for current grace period? 2232 * If no, return and let the other CPUs do their part as well. 2233 */ 2234 if (!rdp->core_needs_qs) 2235 return; 2236 2237 /* 2238 * Was there a quiescent state since the beginning of the grace 2239 * period? If no, then exit and wait for the next call. 2240 */ 2241 if (rdp->cpu_no_qs.b.norm) 2242 return; 2243 2244 /* 2245 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2246 * judge of that). 2247 */ 2248 rcu_report_qs_rdp(rdp->cpu, rdp); 2249 } 2250 2251 /* 2252 * Near the end of the offline process. Trace the fact that this CPU 2253 * is going offline. 2254 */ 2255 int rcutree_dying_cpu(unsigned int cpu) 2256 { 2257 bool blkd; 2258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2259 struct rcu_node *rnp = rdp->mynode; 2260 2261 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2262 return 0; 2263 2264 blkd = !!(rnp->qsmask & rdp->grpmask); 2265 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2266 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2267 return 0; 2268 } 2269 2270 /* 2271 * All CPUs for the specified rcu_node structure have gone offline, 2272 * and all tasks that were preempted within an RCU read-side critical 2273 * section while running on one of those CPUs have since exited their RCU 2274 * read-side critical section. Some other CPU is reporting this fact with 2275 * the specified rcu_node structure's ->lock held and interrupts disabled. 2276 * This function therefore goes up the tree of rcu_node structures, 2277 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2278 * the leaf rcu_node structure's ->qsmaskinit field has already been 2279 * updated. 2280 * 2281 * This function does check that the specified rcu_node structure has 2282 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2283 * prematurely. That said, invoking it after the fact will cost you 2284 * a needless lock acquisition. So once it has done its work, don't 2285 * invoke it again. 2286 */ 2287 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2288 { 2289 long mask; 2290 struct rcu_node *rnp = rnp_leaf; 2291 2292 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2293 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2294 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2295 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2296 return; 2297 for (;;) { 2298 mask = rnp->grpmask; 2299 rnp = rnp->parent; 2300 if (!rnp) 2301 break; 2302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2303 rnp->qsmaskinit &= ~mask; 2304 /* Between grace periods, so better already be zero! */ 2305 WARN_ON_ONCE(rnp->qsmask); 2306 if (rnp->qsmaskinit) { 2307 raw_spin_unlock_rcu_node(rnp); 2308 /* irqs remain disabled. */ 2309 return; 2310 } 2311 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2312 } 2313 } 2314 2315 /* 2316 * The CPU has been completely removed, and some other CPU is reporting 2317 * this fact from process context. Do the remainder of the cleanup. 2318 * There can only be one CPU hotplug operation at a time, so no need for 2319 * explicit locking. 2320 */ 2321 int rcutree_dead_cpu(unsigned int cpu) 2322 { 2323 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2324 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2325 2326 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2327 return 0; 2328 2329 /* Adjust any no-longer-needed kthreads. */ 2330 rcu_boost_kthread_setaffinity(rnp, -1); 2331 /* Do any needed no-CB deferred wakeups from this CPU. */ 2332 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2333 2334 // Stop-machine done, so allow nohz_full to disable tick. 2335 tick_dep_clear(TICK_DEP_BIT_RCU); 2336 return 0; 2337 } 2338 2339 /* 2340 * Invoke any RCU callbacks that have made it to the end of their grace 2341 * period. Thottle as specified by rdp->blimit. 2342 */ 2343 static void rcu_do_batch(struct rcu_data *rdp) 2344 { 2345 unsigned long flags; 2346 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2347 rcu_segcblist_is_offloaded(&rdp->cblist); 2348 struct rcu_head *rhp; 2349 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2350 long bl, count; 2351 long pending, tlimit = 0; 2352 2353 /* If no callbacks are ready, just return. */ 2354 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2355 trace_rcu_batch_start(rcu_state.name, 2356 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2357 trace_rcu_batch_end(rcu_state.name, 0, 2358 !rcu_segcblist_empty(&rdp->cblist), 2359 need_resched(), is_idle_task(current), 2360 rcu_is_callbacks_kthread()); 2361 return; 2362 } 2363 2364 /* 2365 * Extract the list of ready callbacks, disabling to prevent 2366 * races with call_rcu() from interrupt handlers. Leave the 2367 * callback counts, as rcu_barrier() needs to be conservative. 2368 */ 2369 local_irq_save(flags); 2370 rcu_nocb_lock(rdp); 2371 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2372 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2373 bl = max(rdp->blimit, pending >> rcu_divisor); 2374 if (unlikely(bl > 100)) 2375 tlimit = local_clock() + rcu_resched_ns; 2376 trace_rcu_batch_start(rcu_state.name, 2377 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2378 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2379 if (offloaded) 2380 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2381 rcu_nocb_unlock_irqrestore(rdp, flags); 2382 2383 /* Invoke callbacks. */ 2384 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2385 rhp = rcu_cblist_dequeue(&rcl); 2386 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2387 rcu_callback_t f; 2388 2389 debug_rcu_head_unqueue(rhp); 2390 2391 rcu_lock_acquire(&rcu_callback_map); 2392 trace_rcu_invoke_callback(rcu_state.name, rhp); 2393 2394 f = rhp->func; 2395 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2396 f(rhp); 2397 2398 rcu_lock_release(&rcu_callback_map); 2399 2400 /* 2401 * Stop only if limit reached and CPU has something to do. 2402 * Note: The rcl structure counts down from zero. 2403 */ 2404 if (-rcl.len >= bl && !offloaded && 2405 (need_resched() || 2406 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2407 break; 2408 if (unlikely(tlimit)) { 2409 /* only call local_clock() every 32 callbacks */ 2410 if (likely((-rcl.len & 31) || local_clock() < tlimit)) 2411 continue; 2412 /* Exceeded the time limit, so leave. */ 2413 break; 2414 } 2415 if (offloaded) { 2416 WARN_ON_ONCE(in_serving_softirq()); 2417 local_bh_enable(); 2418 lockdep_assert_irqs_enabled(); 2419 cond_resched_tasks_rcu_qs(); 2420 lockdep_assert_irqs_enabled(); 2421 local_bh_disable(); 2422 } 2423 } 2424 2425 local_irq_save(flags); 2426 rcu_nocb_lock(rdp); 2427 count = -rcl.len; 2428 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2429 is_idle_task(current), rcu_is_callbacks_kthread()); 2430 2431 /* Update counts and requeue any remaining callbacks. */ 2432 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2433 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2434 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2435 2436 /* Reinstate batch limit if we have worked down the excess. */ 2437 count = rcu_segcblist_n_cbs(&rdp->cblist); 2438 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2439 rdp->blimit = blimit; 2440 2441 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2442 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2443 rdp->qlen_last_fqs_check = 0; 2444 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2445 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2446 rdp->qlen_last_fqs_check = count; 2447 2448 /* 2449 * The following usually indicates a double call_rcu(). To track 2450 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2451 */ 2452 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist)); 2453 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2454 count != 0 && rcu_segcblist_empty(&rdp->cblist)); 2455 2456 rcu_nocb_unlock_irqrestore(rdp, flags); 2457 2458 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2459 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2460 invoke_rcu_core(); 2461 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2462 } 2463 2464 /* 2465 * This function is invoked from each scheduling-clock interrupt, 2466 * and checks to see if this CPU is in a non-context-switch quiescent 2467 * state, for example, user mode or idle loop. It also schedules RCU 2468 * core processing. If the current grace period has gone on too long, 2469 * it will ask the scheduler to manufacture a context switch for the sole 2470 * purpose of providing a providing the needed quiescent state. 2471 */ 2472 void rcu_sched_clock_irq(int user) 2473 { 2474 trace_rcu_utilization(TPS("Start scheduler-tick")); 2475 raw_cpu_inc(rcu_data.ticks_this_gp); 2476 /* The load-acquire pairs with the store-release setting to true. */ 2477 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2478 /* Idle and userspace execution already are quiescent states. */ 2479 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2480 set_tsk_need_resched(current); 2481 set_preempt_need_resched(); 2482 } 2483 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2484 } 2485 rcu_flavor_sched_clock_irq(user); 2486 if (rcu_pending(user)) 2487 invoke_rcu_core(); 2488 2489 trace_rcu_utilization(TPS("End scheduler-tick")); 2490 } 2491 2492 /* 2493 * Scan the leaf rcu_node structures. For each structure on which all 2494 * CPUs have reported a quiescent state and on which there are tasks 2495 * blocking the current grace period, initiate RCU priority boosting. 2496 * Otherwise, invoke the specified function to check dyntick state for 2497 * each CPU that has not yet reported a quiescent state. 2498 */ 2499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2500 { 2501 int cpu; 2502 unsigned long flags; 2503 unsigned long mask; 2504 struct rcu_data *rdp; 2505 struct rcu_node *rnp; 2506 2507 rcu_state.cbovld = rcu_state.cbovldnext; 2508 rcu_state.cbovldnext = false; 2509 rcu_for_each_leaf_node(rnp) { 2510 cond_resched_tasks_rcu_qs(); 2511 mask = 0; 2512 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2513 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2514 if (rnp->qsmask == 0) { 2515 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) || 2516 rcu_preempt_blocked_readers_cgp(rnp)) { 2517 /* 2518 * No point in scanning bits because they 2519 * are all zero. But we might need to 2520 * priority-boost blocked readers. 2521 */ 2522 rcu_initiate_boost(rnp, flags); 2523 /* rcu_initiate_boost() releases rnp->lock */ 2524 continue; 2525 } 2526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2527 continue; 2528 } 2529 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2530 rdp = per_cpu_ptr(&rcu_data, cpu); 2531 if (f(rdp)) { 2532 mask |= rdp->grpmask; 2533 rcu_disable_urgency_upon_qs(rdp); 2534 } 2535 } 2536 if (mask != 0) { 2537 /* Idle/offline CPUs, report (releases rnp->lock). */ 2538 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2539 } else { 2540 /* Nothing to do here, so just drop the lock. */ 2541 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2542 } 2543 } 2544 } 2545 2546 /* 2547 * Force quiescent states on reluctant CPUs, and also detect which 2548 * CPUs are in dyntick-idle mode. 2549 */ 2550 void rcu_force_quiescent_state(void) 2551 { 2552 unsigned long flags; 2553 bool ret; 2554 struct rcu_node *rnp; 2555 struct rcu_node *rnp_old = NULL; 2556 2557 /* Funnel through hierarchy to reduce memory contention. */ 2558 rnp = __this_cpu_read(rcu_data.mynode); 2559 for (; rnp != NULL; rnp = rnp->parent) { 2560 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2561 !raw_spin_trylock(&rnp->fqslock); 2562 if (rnp_old != NULL) 2563 raw_spin_unlock(&rnp_old->fqslock); 2564 if (ret) 2565 return; 2566 rnp_old = rnp; 2567 } 2568 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2569 2570 /* Reached the root of the rcu_node tree, acquire lock. */ 2571 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2572 raw_spin_unlock(&rnp_old->fqslock); 2573 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2574 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2575 return; /* Someone beat us to it. */ 2576 } 2577 WRITE_ONCE(rcu_state.gp_flags, 2578 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2579 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2580 rcu_gp_kthread_wake(); 2581 } 2582 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2583 2584 /* Perform RCU core processing work for the current CPU. */ 2585 static __latent_entropy void rcu_core(void) 2586 { 2587 unsigned long flags; 2588 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2589 struct rcu_node *rnp = rdp->mynode; 2590 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2591 rcu_segcblist_is_offloaded(&rdp->cblist); 2592 2593 if (cpu_is_offline(smp_processor_id())) 2594 return; 2595 trace_rcu_utilization(TPS("Start RCU core")); 2596 WARN_ON_ONCE(!rdp->beenonline); 2597 2598 /* Report any deferred quiescent states if preemption enabled. */ 2599 if (!(preempt_count() & PREEMPT_MASK)) { 2600 rcu_preempt_deferred_qs(current); 2601 } else if (rcu_preempt_need_deferred_qs(current)) { 2602 set_tsk_need_resched(current); 2603 set_preempt_need_resched(); 2604 } 2605 2606 /* Update RCU state based on any recent quiescent states. */ 2607 rcu_check_quiescent_state(rdp); 2608 2609 /* No grace period and unregistered callbacks? */ 2610 if (!rcu_gp_in_progress() && 2611 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) { 2612 local_irq_save(flags); 2613 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2614 rcu_accelerate_cbs_unlocked(rnp, rdp); 2615 local_irq_restore(flags); 2616 } 2617 2618 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2619 2620 /* If there are callbacks ready, invoke them. */ 2621 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) && 2622 likely(READ_ONCE(rcu_scheduler_fully_active))) 2623 rcu_do_batch(rdp); 2624 2625 /* Do any needed deferred wakeups of rcuo kthreads. */ 2626 do_nocb_deferred_wakeup(rdp); 2627 trace_rcu_utilization(TPS("End RCU core")); 2628 } 2629 2630 static void rcu_core_si(struct softirq_action *h) 2631 { 2632 rcu_core(); 2633 } 2634 2635 static void rcu_wake_cond(struct task_struct *t, int status) 2636 { 2637 /* 2638 * If the thread is yielding, only wake it when this 2639 * is invoked from idle 2640 */ 2641 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2642 wake_up_process(t); 2643 } 2644 2645 static void invoke_rcu_core_kthread(void) 2646 { 2647 struct task_struct *t; 2648 unsigned long flags; 2649 2650 local_irq_save(flags); 2651 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2652 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2653 if (t != NULL && t != current) 2654 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2655 local_irq_restore(flags); 2656 } 2657 2658 /* 2659 * Wake up this CPU's rcuc kthread to do RCU core processing. 2660 */ 2661 static void invoke_rcu_core(void) 2662 { 2663 if (!cpu_online(smp_processor_id())) 2664 return; 2665 if (use_softirq) 2666 raise_softirq(RCU_SOFTIRQ); 2667 else 2668 invoke_rcu_core_kthread(); 2669 } 2670 2671 static void rcu_cpu_kthread_park(unsigned int cpu) 2672 { 2673 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2674 } 2675 2676 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2677 { 2678 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2679 } 2680 2681 /* 2682 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2683 * the RCU softirq used in configurations of RCU that do not support RCU 2684 * priority boosting. 2685 */ 2686 static void rcu_cpu_kthread(unsigned int cpu) 2687 { 2688 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2689 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2690 int spincnt; 2691 2692 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2693 for (spincnt = 0; spincnt < 10; spincnt++) { 2694 local_bh_disable(); 2695 *statusp = RCU_KTHREAD_RUNNING; 2696 local_irq_disable(); 2697 work = *workp; 2698 *workp = 0; 2699 local_irq_enable(); 2700 if (work) 2701 rcu_core(); 2702 local_bh_enable(); 2703 if (*workp == 0) { 2704 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2705 *statusp = RCU_KTHREAD_WAITING; 2706 return; 2707 } 2708 } 2709 *statusp = RCU_KTHREAD_YIELDING; 2710 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2711 schedule_timeout_interruptible(2); 2712 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2713 *statusp = RCU_KTHREAD_WAITING; 2714 } 2715 2716 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2717 .store = &rcu_data.rcu_cpu_kthread_task, 2718 .thread_should_run = rcu_cpu_kthread_should_run, 2719 .thread_fn = rcu_cpu_kthread, 2720 .thread_comm = "rcuc/%u", 2721 .setup = rcu_cpu_kthread_setup, 2722 .park = rcu_cpu_kthread_park, 2723 }; 2724 2725 /* 2726 * Spawn per-CPU RCU core processing kthreads. 2727 */ 2728 static int __init rcu_spawn_core_kthreads(void) 2729 { 2730 int cpu; 2731 2732 for_each_possible_cpu(cpu) 2733 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2734 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2735 return 0; 2736 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2737 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2738 return 0; 2739 } 2740 early_initcall(rcu_spawn_core_kthreads); 2741 2742 /* 2743 * Handle any core-RCU processing required by a call_rcu() invocation. 2744 */ 2745 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2746 unsigned long flags) 2747 { 2748 /* 2749 * If called from an extended quiescent state, invoke the RCU 2750 * core in order to force a re-evaluation of RCU's idleness. 2751 */ 2752 if (!rcu_is_watching()) 2753 invoke_rcu_core(); 2754 2755 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2756 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2757 return; 2758 2759 /* 2760 * Force the grace period if too many callbacks or too long waiting. 2761 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2762 * if some other CPU has recently done so. Also, don't bother 2763 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2764 * is the only one waiting for a grace period to complete. 2765 */ 2766 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2767 rdp->qlen_last_fqs_check + qhimark)) { 2768 2769 /* Are we ignoring a completed grace period? */ 2770 note_gp_changes(rdp); 2771 2772 /* Start a new grace period if one not already started. */ 2773 if (!rcu_gp_in_progress()) { 2774 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2775 } else { 2776 /* Give the grace period a kick. */ 2777 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2778 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2779 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2780 rcu_force_quiescent_state(); 2781 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2782 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2783 } 2784 } 2785 } 2786 2787 /* 2788 * RCU callback function to leak a callback. 2789 */ 2790 static void rcu_leak_callback(struct rcu_head *rhp) 2791 { 2792 } 2793 2794 /* 2795 * Check and if necessary update the leaf rcu_node structure's 2796 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2797 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2798 * structure's ->lock. 2799 */ 2800 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2801 { 2802 raw_lockdep_assert_held_rcu_node(rnp); 2803 if (qovld_calc <= 0) 2804 return; // Early boot and wildcard value set. 2805 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2806 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2807 else 2808 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2809 } 2810 2811 /* 2812 * Check and if necessary update the leaf rcu_node structure's 2813 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2814 * number of queued RCU callbacks. No locks need be held, but the 2815 * caller must have disabled interrupts. 2816 * 2817 * Note that this function ignores the possibility that there are a lot 2818 * of callbacks all of which have already seen the end of their respective 2819 * grace periods. This omission is due to the need for no-CBs CPUs to 2820 * be holding ->nocb_lock to do this check, which is too heavy for a 2821 * common-case operation. 2822 */ 2823 static void check_cb_ovld(struct rcu_data *rdp) 2824 { 2825 struct rcu_node *const rnp = rdp->mynode; 2826 2827 if (qovld_calc <= 0 || 2828 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2829 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2830 return; // Early boot wildcard value or already set correctly. 2831 raw_spin_lock_rcu_node(rnp); 2832 check_cb_ovld_locked(rdp, rnp); 2833 raw_spin_unlock_rcu_node(rnp); 2834 } 2835 2836 /* Helper function for call_rcu() and friends. */ 2837 static void 2838 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2839 { 2840 unsigned long flags; 2841 struct rcu_data *rdp; 2842 bool was_alldone; 2843 2844 /* Misaligned rcu_head! */ 2845 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2846 2847 if (debug_rcu_head_queue(head)) { 2848 /* 2849 * Probable double call_rcu(), so leak the callback. 2850 * Use rcu:rcu_callback trace event to find the previous 2851 * time callback was passed to __call_rcu(). 2852 */ 2853 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2854 head, head->func); 2855 WRITE_ONCE(head->func, rcu_leak_callback); 2856 return; 2857 } 2858 head->func = func; 2859 head->next = NULL; 2860 local_irq_save(flags); 2861 rdp = this_cpu_ptr(&rcu_data); 2862 2863 /* Add the callback to our list. */ 2864 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2865 // This can trigger due to call_rcu() from offline CPU: 2866 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2867 WARN_ON_ONCE(!rcu_is_watching()); 2868 // Very early boot, before rcu_init(). Initialize if needed 2869 // and then drop through to queue the callback. 2870 if (rcu_segcblist_empty(&rdp->cblist)) 2871 rcu_segcblist_init(&rdp->cblist); 2872 } 2873 2874 check_cb_ovld(rdp); 2875 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2876 return; // Enqueued onto ->nocb_bypass, so just leave. 2877 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2878 rcu_segcblist_enqueue(&rdp->cblist, head); 2879 if (__is_kfree_rcu_offset((unsigned long)func)) 2880 trace_rcu_kfree_callback(rcu_state.name, head, 2881 (unsigned long)func, 2882 rcu_segcblist_n_cbs(&rdp->cblist)); 2883 else 2884 trace_rcu_callback(rcu_state.name, head, 2885 rcu_segcblist_n_cbs(&rdp->cblist)); 2886 2887 /* Go handle any RCU core processing required. */ 2888 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2889 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 2890 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2891 } else { 2892 __call_rcu_core(rdp, head, flags); 2893 local_irq_restore(flags); 2894 } 2895 } 2896 2897 /** 2898 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2899 * @head: structure to be used for queueing the RCU updates. 2900 * @func: actual callback function to be invoked after the grace period 2901 * 2902 * The callback function will be invoked some time after a full grace 2903 * period elapses, in other words after all pre-existing RCU read-side 2904 * critical sections have completed. However, the callback function 2905 * might well execute concurrently with RCU read-side critical sections 2906 * that started after call_rcu() was invoked. RCU read-side critical 2907 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 2908 * may be nested. In addition, regions of code across which interrupts, 2909 * preemption, or softirqs have been disabled also serve as RCU read-side 2910 * critical sections. This includes hardware interrupt handlers, softirq 2911 * handlers, and NMI handlers. 2912 * 2913 * Note that all CPUs must agree that the grace period extended beyond 2914 * all pre-existing RCU read-side critical section. On systems with more 2915 * than one CPU, this means that when "func()" is invoked, each CPU is 2916 * guaranteed to have executed a full memory barrier since the end of its 2917 * last RCU read-side critical section whose beginning preceded the call 2918 * to call_rcu(). It also means that each CPU executing an RCU read-side 2919 * critical section that continues beyond the start of "func()" must have 2920 * executed a memory barrier after the call_rcu() but before the beginning 2921 * of that RCU read-side critical section. Note that these guarantees 2922 * include CPUs that are offline, idle, or executing in user mode, as 2923 * well as CPUs that are executing in the kernel. 2924 * 2925 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2926 * resulting RCU callback function "func()", then both CPU A and CPU B are 2927 * guaranteed to execute a full memory barrier during the time interval 2928 * between the call to call_rcu() and the invocation of "func()" -- even 2929 * if CPU A and CPU B are the same CPU (but again only if the system has 2930 * more than one CPU). 2931 */ 2932 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2933 { 2934 __call_rcu(head, func); 2935 } 2936 EXPORT_SYMBOL_GPL(call_rcu); 2937 2938 2939 /* Maximum number of jiffies to wait before draining a batch. */ 2940 #define KFREE_DRAIN_JIFFIES (HZ / 50) 2941 #define KFREE_N_BATCHES 2 2942 2943 /* 2944 * This macro defines how many entries the "records" array 2945 * will contain. It is based on the fact that the size of 2946 * kfree_rcu_bulk_data structure becomes exactly one page. 2947 */ 2948 #define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3) 2949 2950 /** 2951 * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers 2952 * @nr_records: Number of active pointers in the array 2953 * @records: Array of the kfree_rcu() pointers 2954 * @next: Next bulk object in the block chain 2955 * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set 2956 */ 2957 struct kfree_rcu_bulk_data { 2958 unsigned long nr_records; 2959 void *records[KFREE_BULK_MAX_ENTR]; 2960 struct kfree_rcu_bulk_data *next; 2961 struct rcu_head *head_free_debug; 2962 }; 2963 2964 /** 2965 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2966 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2967 * @head_free: List of kfree_rcu() objects waiting for a grace period 2968 * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period 2969 * @krcp: Pointer to @kfree_rcu_cpu structure 2970 */ 2971 2972 struct kfree_rcu_cpu_work { 2973 struct rcu_work rcu_work; 2974 struct rcu_head *head_free; 2975 struct kfree_rcu_bulk_data *bhead_free; 2976 struct kfree_rcu_cpu *krcp; 2977 }; 2978 2979 /** 2980 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2981 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2982 * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period 2983 * @bcached: Keeps at most one object for later reuse when build chain blocks 2984 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2985 * @lock: Synchronize access to this structure 2986 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2987 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 2988 * @initialized: The @lock and @rcu_work fields have been initialized 2989 * 2990 * This is a per-CPU structure. The reason that it is not included in 2991 * the rcu_data structure is to permit this code to be extracted from 2992 * the RCU files. Such extraction could allow further optimization of 2993 * the interactions with the slab allocators. 2994 */ 2995 struct kfree_rcu_cpu { 2996 struct rcu_head *head; 2997 struct kfree_rcu_bulk_data *bhead; 2998 struct kfree_rcu_bulk_data *bcached; 2999 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3000 spinlock_t lock; 3001 struct delayed_work monitor_work; 3002 bool monitor_todo; 3003 bool initialized; 3004 // Number of objects for which GP not started 3005 int count; 3006 }; 3007 3008 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc); 3009 3010 static __always_inline void 3011 debug_rcu_head_unqueue_bulk(struct rcu_head *head) 3012 { 3013 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3014 for (; head; head = head->next) 3015 debug_rcu_head_unqueue(head); 3016 #endif 3017 } 3018 3019 /* 3020 * This function is invoked in workqueue context after a grace period. 3021 * It frees all the objects queued on ->bhead_free or ->head_free. 3022 */ 3023 static void kfree_rcu_work(struct work_struct *work) 3024 { 3025 unsigned long flags; 3026 struct rcu_head *head, *next; 3027 struct kfree_rcu_bulk_data *bhead, *bnext; 3028 struct kfree_rcu_cpu *krcp; 3029 struct kfree_rcu_cpu_work *krwp; 3030 3031 krwp = container_of(to_rcu_work(work), 3032 struct kfree_rcu_cpu_work, rcu_work); 3033 krcp = krwp->krcp; 3034 spin_lock_irqsave(&krcp->lock, flags); 3035 head = krwp->head_free; 3036 krwp->head_free = NULL; 3037 bhead = krwp->bhead_free; 3038 krwp->bhead_free = NULL; 3039 spin_unlock_irqrestore(&krcp->lock, flags); 3040 3041 /* "bhead" is now private, so traverse locklessly. */ 3042 for (; bhead; bhead = bnext) { 3043 bnext = bhead->next; 3044 3045 debug_rcu_head_unqueue_bulk(bhead->head_free_debug); 3046 3047 rcu_lock_acquire(&rcu_callback_map); 3048 trace_rcu_invoke_kfree_bulk_callback(rcu_state.name, 3049 bhead->nr_records, bhead->records); 3050 3051 kfree_bulk(bhead->nr_records, bhead->records); 3052 rcu_lock_release(&rcu_callback_map); 3053 3054 if (cmpxchg(&krcp->bcached, NULL, bhead)) 3055 free_page((unsigned long) bhead); 3056 3057 cond_resched_tasks_rcu_qs(); 3058 } 3059 3060 /* 3061 * Emergency case only. It can happen under low memory 3062 * condition when an allocation gets failed, so the "bulk" 3063 * path can not be temporary maintained. 3064 */ 3065 for (; head; head = next) { 3066 unsigned long offset = (unsigned long)head->func; 3067 3068 next = head->next; 3069 debug_rcu_head_unqueue(head); 3070 rcu_lock_acquire(&rcu_callback_map); 3071 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset); 3072 3073 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset))) 3074 kfree((void *)head - offset); 3075 3076 rcu_lock_release(&rcu_callback_map); 3077 cond_resched_tasks_rcu_qs(); 3078 } 3079 } 3080 3081 /* 3082 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 3083 * 3084 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 3085 * timeout has been reached. 3086 */ 3087 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 3088 { 3089 struct kfree_rcu_cpu_work *krwp; 3090 bool queued = false; 3091 int i; 3092 3093 lockdep_assert_held(&krcp->lock); 3094 3095 for (i = 0; i < KFREE_N_BATCHES; i++) { 3096 krwp = &(krcp->krw_arr[i]); 3097 3098 /* 3099 * Try to detach bhead or head and attach it over any 3100 * available corresponding free channel. It can be that 3101 * a previous RCU batch is in progress, it means that 3102 * immediately to queue another one is not possible so 3103 * return false to tell caller to retry. 3104 */ 3105 if ((krcp->bhead && !krwp->bhead_free) || 3106 (krcp->head && !krwp->head_free)) { 3107 /* Channel 1. */ 3108 if (!krwp->bhead_free) { 3109 krwp->bhead_free = krcp->bhead; 3110 krcp->bhead = NULL; 3111 } 3112 3113 /* Channel 2. */ 3114 if (!krwp->head_free) { 3115 krwp->head_free = krcp->head; 3116 krcp->head = NULL; 3117 } 3118 3119 WRITE_ONCE(krcp->count, 0); 3120 3121 /* 3122 * One work is per one batch, so there are two "free channels", 3123 * "bhead_free" and "head_free" the batch can handle. It can be 3124 * that the work is in the pending state when two channels have 3125 * been detached following each other, one by one. 3126 */ 3127 queue_rcu_work(system_wq, &krwp->rcu_work); 3128 queued = true; 3129 } 3130 } 3131 3132 return queued; 3133 } 3134 3135 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 3136 unsigned long flags) 3137 { 3138 // Attempt to start a new batch. 3139 krcp->monitor_todo = false; 3140 if (queue_kfree_rcu_work(krcp)) { 3141 // Success! Our job is done here. 3142 spin_unlock_irqrestore(&krcp->lock, flags); 3143 return; 3144 } 3145 3146 // Previous RCU batch still in progress, try again later. 3147 krcp->monitor_todo = true; 3148 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3149 spin_unlock_irqrestore(&krcp->lock, flags); 3150 } 3151 3152 /* 3153 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3154 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 3155 */ 3156 static void kfree_rcu_monitor(struct work_struct *work) 3157 { 3158 unsigned long flags; 3159 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 3160 monitor_work.work); 3161 3162 spin_lock_irqsave(&krcp->lock, flags); 3163 if (krcp->monitor_todo) 3164 kfree_rcu_drain_unlock(krcp, flags); 3165 else 3166 spin_unlock_irqrestore(&krcp->lock, flags); 3167 } 3168 3169 static inline bool 3170 kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, 3171 struct rcu_head *head, rcu_callback_t func) 3172 { 3173 struct kfree_rcu_bulk_data *bnode; 3174 3175 if (unlikely(!krcp->initialized)) 3176 return false; 3177 3178 lockdep_assert_held(&krcp->lock); 3179 3180 /* Check if a new block is required. */ 3181 if (!krcp->bhead || 3182 krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) { 3183 bnode = xchg(&krcp->bcached, NULL); 3184 if (!bnode) { 3185 WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE); 3186 3187 bnode = (struct kfree_rcu_bulk_data *) 3188 __get_free_page(GFP_NOWAIT | __GFP_NOWARN); 3189 } 3190 3191 /* Switch to emergency path. */ 3192 if (unlikely(!bnode)) 3193 return false; 3194 3195 /* Initialize the new block. */ 3196 bnode->nr_records = 0; 3197 bnode->next = krcp->bhead; 3198 bnode->head_free_debug = NULL; 3199 3200 /* Attach it to the head. */ 3201 krcp->bhead = bnode; 3202 } 3203 3204 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3205 head->func = func; 3206 head->next = krcp->bhead->head_free_debug; 3207 krcp->bhead->head_free_debug = head; 3208 #endif 3209 3210 /* Finally insert. */ 3211 krcp->bhead->records[krcp->bhead->nr_records++] = 3212 (void *) head - (unsigned long) func; 3213 3214 return true; 3215 } 3216 3217 /* 3218 * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace 3219 * period. Please note there are two paths are maintained, one is the main one 3220 * that uses kfree_bulk() interface and second one is emergency one, that is 3221 * used only when the main path can not be maintained temporary, due to memory 3222 * pressure. 3223 * 3224 * Each kfree_call_rcu() request is added to a batch. The batch will be drained 3225 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3226 * be free'd in workqueue context. This allows us to: batch requests together to 3227 * reduce the number of grace periods during heavy kfree_rcu() load. 3228 */ 3229 void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3230 { 3231 unsigned long flags; 3232 struct kfree_rcu_cpu *krcp; 3233 3234 local_irq_save(flags); // For safely calling this_cpu_ptr(). 3235 krcp = this_cpu_ptr(&krc); 3236 if (krcp->initialized) 3237 spin_lock(&krcp->lock); 3238 3239 // Queue the object but don't yet schedule the batch. 3240 if (debug_rcu_head_queue(head)) { 3241 // Probable double kfree_rcu(), just leak. 3242 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3243 __func__, head); 3244 goto unlock_return; 3245 } 3246 3247 /* 3248 * Under high memory pressure GFP_NOWAIT can fail, 3249 * in that case the emergency path is maintained. 3250 */ 3251 if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) { 3252 head->func = func; 3253 head->next = krcp->head; 3254 krcp->head = head; 3255 } 3256 3257 WRITE_ONCE(krcp->count, krcp->count + 1); 3258 3259 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3260 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3261 !krcp->monitor_todo) { 3262 krcp->monitor_todo = true; 3263 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3264 } 3265 3266 unlock_return: 3267 if (krcp->initialized) 3268 spin_unlock(&krcp->lock); 3269 local_irq_restore(flags); 3270 } 3271 EXPORT_SYMBOL_GPL(kfree_call_rcu); 3272 3273 static unsigned long 3274 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3275 { 3276 int cpu; 3277 unsigned long count = 0; 3278 3279 /* Snapshot count of all CPUs */ 3280 for_each_online_cpu(cpu) { 3281 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3282 3283 count += READ_ONCE(krcp->count); 3284 } 3285 3286 return count; 3287 } 3288 3289 static unsigned long 3290 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3291 { 3292 int cpu, freed = 0; 3293 unsigned long flags; 3294 3295 for_each_online_cpu(cpu) { 3296 int count; 3297 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3298 3299 count = krcp->count; 3300 spin_lock_irqsave(&krcp->lock, flags); 3301 if (krcp->monitor_todo) 3302 kfree_rcu_drain_unlock(krcp, flags); 3303 else 3304 spin_unlock_irqrestore(&krcp->lock, flags); 3305 3306 sc->nr_to_scan -= count; 3307 freed += count; 3308 3309 if (sc->nr_to_scan <= 0) 3310 break; 3311 } 3312 3313 return freed; 3314 } 3315 3316 static struct shrinker kfree_rcu_shrinker = { 3317 .count_objects = kfree_rcu_shrink_count, 3318 .scan_objects = kfree_rcu_shrink_scan, 3319 .batch = 0, 3320 .seeks = DEFAULT_SEEKS, 3321 }; 3322 3323 void __init kfree_rcu_scheduler_running(void) 3324 { 3325 int cpu; 3326 unsigned long flags; 3327 3328 for_each_online_cpu(cpu) { 3329 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3330 3331 spin_lock_irqsave(&krcp->lock, flags); 3332 if (!krcp->head || krcp->monitor_todo) { 3333 spin_unlock_irqrestore(&krcp->lock, flags); 3334 continue; 3335 } 3336 krcp->monitor_todo = true; 3337 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3338 KFREE_DRAIN_JIFFIES); 3339 spin_unlock_irqrestore(&krcp->lock, flags); 3340 } 3341 } 3342 3343 /* 3344 * During early boot, any blocking grace-period wait automatically 3345 * implies a grace period. Later on, this is never the case for PREEMPTION. 3346 * 3347 * Howevr, because a context switch is a grace period for !PREEMPTION, any 3348 * blocking grace-period wait automatically implies a grace period if 3349 * there is only one CPU online at any point time during execution of 3350 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3351 * occasionally incorrectly indicate that there are multiple CPUs online 3352 * when there was in fact only one the whole time, as this just adds some 3353 * overhead: RCU still operates correctly. 3354 */ 3355 static int rcu_blocking_is_gp(void) 3356 { 3357 int ret; 3358 3359 if (IS_ENABLED(CONFIG_PREEMPTION)) 3360 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3361 might_sleep(); /* Check for RCU read-side critical section. */ 3362 preempt_disable(); 3363 ret = num_online_cpus() <= 1; 3364 preempt_enable(); 3365 return ret; 3366 } 3367 3368 /** 3369 * synchronize_rcu - wait until a grace period has elapsed. 3370 * 3371 * Control will return to the caller some time after a full grace 3372 * period has elapsed, in other words after all currently executing RCU 3373 * read-side critical sections have completed. Note, however, that 3374 * upon return from synchronize_rcu(), the caller might well be executing 3375 * concurrently with new RCU read-side critical sections that began while 3376 * synchronize_rcu() was waiting. RCU read-side critical sections are 3377 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3378 * In addition, regions of code across which interrupts, preemption, or 3379 * softirqs have been disabled also serve as RCU read-side critical 3380 * sections. This includes hardware interrupt handlers, softirq handlers, 3381 * and NMI handlers. 3382 * 3383 * Note that this guarantee implies further memory-ordering guarantees. 3384 * On systems with more than one CPU, when synchronize_rcu() returns, 3385 * each CPU is guaranteed to have executed a full memory barrier since 3386 * the end of its last RCU read-side critical section whose beginning 3387 * preceded the call to synchronize_rcu(). In addition, each CPU having 3388 * an RCU read-side critical section that extends beyond the return from 3389 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3390 * after the beginning of synchronize_rcu() and before the beginning of 3391 * that RCU read-side critical section. Note that these guarantees include 3392 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3393 * that are executing in the kernel. 3394 * 3395 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3396 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3397 * to have executed a full memory barrier during the execution of 3398 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3399 * again only if the system has more than one CPU). 3400 */ 3401 void synchronize_rcu(void) 3402 { 3403 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3404 lock_is_held(&rcu_lock_map) || 3405 lock_is_held(&rcu_sched_lock_map), 3406 "Illegal synchronize_rcu() in RCU read-side critical section"); 3407 if (rcu_blocking_is_gp()) 3408 return; 3409 if (rcu_gp_is_expedited()) 3410 synchronize_rcu_expedited(); 3411 else 3412 wait_rcu_gp(call_rcu); 3413 } 3414 EXPORT_SYMBOL_GPL(synchronize_rcu); 3415 3416 /** 3417 * get_state_synchronize_rcu - Snapshot current RCU state 3418 * 3419 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3420 * to determine whether or not a full grace period has elapsed in the 3421 * meantime. 3422 */ 3423 unsigned long get_state_synchronize_rcu(void) 3424 { 3425 /* 3426 * Any prior manipulation of RCU-protected data must happen 3427 * before the load from ->gp_seq. 3428 */ 3429 smp_mb(); /* ^^^ */ 3430 return rcu_seq_snap(&rcu_state.gp_seq); 3431 } 3432 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3433 3434 /** 3435 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3436 * 3437 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3438 * 3439 * If a full RCU grace period has elapsed since the earlier call to 3440 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3441 * synchronize_rcu() to wait for a full grace period. 3442 * 3443 * Yes, this function does not take counter wrap into account. But 3444 * counter wrap is harmless. If the counter wraps, we have waited for 3445 * more than 2 billion grace periods (and way more on a 64-bit system!), 3446 * so waiting for one additional grace period should be just fine. 3447 */ 3448 void cond_synchronize_rcu(unsigned long oldstate) 3449 { 3450 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3451 synchronize_rcu(); 3452 else 3453 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3454 } 3455 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3456 3457 /* 3458 * Check to see if there is any immediate RCU-related work to be done by 3459 * the current CPU, returning 1 if so and zero otherwise. The checks are 3460 * in order of increasing expense: checks that can be carried out against 3461 * CPU-local state are performed first. However, we must check for CPU 3462 * stalls first, else we might not get a chance. 3463 */ 3464 static int rcu_pending(int user) 3465 { 3466 bool gp_in_progress; 3467 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3468 struct rcu_node *rnp = rdp->mynode; 3469 3470 /* Check for CPU stalls, if enabled. */ 3471 check_cpu_stall(rdp); 3472 3473 /* Does this CPU need a deferred NOCB wakeup? */ 3474 if (rcu_nocb_need_deferred_wakeup(rdp)) 3475 return 1; 3476 3477 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3478 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3479 return 0; 3480 3481 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3482 gp_in_progress = rcu_gp_in_progress(); 3483 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3484 return 1; 3485 3486 /* Does this CPU have callbacks ready to invoke? */ 3487 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3488 return 1; 3489 3490 /* Has RCU gone idle with this CPU needing another grace period? */ 3491 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3492 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) || 3493 !rcu_segcblist_is_offloaded(&rdp->cblist)) && 3494 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3495 return 1; 3496 3497 /* Have RCU grace period completed or started? */ 3498 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3499 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3500 return 1; 3501 3502 /* nothing to do */ 3503 return 0; 3504 } 3505 3506 /* 3507 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3508 * the compiler is expected to optimize this away. 3509 */ 3510 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3511 { 3512 trace_rcu_barrier(rcu_state.name, s, cpu, 3513 atomic_read(&rcu_state.barrier_cpu_count), done); 3514 } 3515 3516 /* 3517 * RCU callback function for rcu_barrier(). If we are last, wake 3518 * up the task executing rcu_barrier(). 3519 * 3520 * Note that the value of rcu_state.barrier_sequence must be captured 3521 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3522 * other CPUs might count the value down to zero before this CPU gets 3523 * around to invoking rcu_barrier_trace(), which might result in bogus 3524 * data from the next instance of rcu_barrier(). 3525 */ 3526 static void rcu_barrier_callback(struct rcu_head *rhp) 3527 { 3528 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3529 3530 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3531 rcu_barrier_trace(TPS("LastCB"), -1, s); 3532 complete(&rcu_state.barrier_completion); 3533 } else { 3534 rcu_barrier_trace(TPS("CB"), -1, s); 3535 } 3536 } 3537 3538 /* 3539 * Called with preemption disabled, and from cross-cpu IRQ context. 3540 */ 3541 static void rcu_barrier_func(void *cpu_in) 3542 { 3543 uintptr_t cpu = (uintptr_t)cpu_in; 3544 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3545 3546 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3547 rdp->barrier_head.func = rcu_barrier_callback; 3548 debug_rcu_head_queue(&rdp->barrier_head); 3549 rcu_nocb_lock(rdp); 3550 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3551 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3552 atomic_inc(&rcu_state.barrier_cpu_count); 3553 } else { 3554 debug_rcu_head_unqueue(&rdp->barrier_head); 3555 rcu_barrier_trace(TPS("IRQNQ"), -1, 3556 rcu_state.barrier_sequence); 3557 } 3558 rcu_nocb_unlock(rdp); 3559 } 3560 3561 /** 3562 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3563 * 3564 * Note that this primitive does not necessarily wait for an RCU grace period 3565 * to complete. For example, if there are no RCU callbacks queued anywhere 3566 * in the system, then rcu_barrier() is within its rights to return 3567 * immediately, without waiting for anything, much less an RCU grace period. 3568 */ 3569 void rcu_barrier(void) 3570 { 3571 uintptr_t cpu; 3572 struct rcu_data *rdp; 3573 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3574 3575 rcu_barrier_trace(TPS("Begin"), -1, s); 3576 3577 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3578 mutex_lock(&rcu_state.barrier_mutex); 3579 3580 /* Did someone else do our work for us? */ 3581 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3582 rcu_barrier_trace(TPS("EarlyExit"), -1, 3583 rcu_state.barrier_sequence); 3584 smp_mb(); /* caller's subsequent code after above check. */ 3585 mutex_unlock(&rcu_state.barrier_mutex); 3586 return; 3587 } 3588 3589 /* Mark the start of the barrier operation. */ 3590 rcu_seq_start(&rcu_state.barrier_sequence); 3591 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3592 3593 /* 3594 * Initialize the count to two rather than to zero in order 3595 * to avoid a too-soon return to zero in case of an immediate 3596 * invocation of the just-enqueued callback (or preemption of 3597 * this task). Exclude CPU-hotplug operations to ensure that no 3598 * offline non-offloaded CPU has callbacks queued. 3599 */ 3600 init_completion(&rcu_state.barrier_completion); 3601 atomic_set(&rcu_state.barrier_cpu_count, 2); 3602 get_online_cpus(); 3603 3604 /* 3605 * Force each CPU with callbacks to register a new callback. 3606 * When that callback is invoked, we will know that all of the 3607 * corresponding CPU's preceding callbacks have been invoked. 3608 */ 3609 for_each_possible_cpu(cpu) { 3610 rdp = per_cpu_ptr(&rcu_data, cpu); 3611 if (cpu_is_offline(cpu) && 3612 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3613 continue; 3614 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 3615 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3616 rcu_state.barrier_sequence); 3617 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 3618 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 3619 cpu_is_offline(cpu)) { 3620 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 3621 rcu_state.barrier_sequence); 3622 local_irq_disable(); 3623 rcu_barrier_func((void *)cpu); 3624 local_irq_enable(); 3625 } else if (cpu_is_offline(cpu)) { 3626 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 3627 rcu_state.barrier_sequence); 3628 } else { 3629 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3630 rcu_state.barrier_sequence); 3631 } 3632 } 3633 put_online_cpus(); 3634 3635 /* 3636 * Now that we have an rcu_barrier_callback() callback on each 3637 * CPU, and thus each counted, remove the initial count. 3638 */ 3639 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3640 complete(&rcu_state.barrier_completion); 3641 3642 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3643 wait_for_completion(&rcu_state.barrier_completion); 3644 3645 /* Mark the end of the barrier operation. */ 3646 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3647 rcu_seq_end(&rcu_state.barrier_sequence); 3648 3649 /* Other rcu_barrier() invocations can now safely proceed. */ 3650 mutex_unlock(&rcu_state.barrier_mutex); 3651 } 3652 EXPORT_SYMBOL_GPL(rcu_barrier); 3653 3654 /* 3655 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3656 * first CPU in a given leaf rcu_node structure coming online. The caller 3657 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3658 * disabled. 3659 */ 3660 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3661 { 3662 long mask; 3663 long oldmask; 3664 struct rcu_node *rnp = rnp_leaf; 3665 3666 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3667 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3668 for (;;) { 3669 mask = rnp->grpmask; 3670 rnp = rnp->parent; 3671 if (rnp == NULL) 3672 return; 3673 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3674 oldmask = rnp->qsmaskinit; 3675 rnp->qsmaskinit |= mask; 3676 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3677 if (oldmask) 3678 return; 3679 } 3680 } 3681 3682 /* 3683 * Do boot-time initialization of a CPU's per-CPU RCU data. 3684 */ 3685 static void __init 3686 rcu_boot_init_percpu_data(int cpu) 3687 { 3688 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3689 3690 /* Set up local state, ensuring consistent view of global state. */ 3691 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3692 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3693 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3694 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3695 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3696 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3697 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3698 rdp->cpu = cpu; 3699 rcu_boot_init_nocb_percpu_data(rdp); 3700 } 3701 3702 /* 3703 * Invoked early in the CPU-online process, when pretty much all services 3704 * are available. The incoming CPU is not present. 3705 * 3706 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3707 * offline event can be happening at a given time. Note also that we can 3708 * accept some slop in the rsp->gp_seq access due to the fact that this 3709 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3710 * And any offloaded callbacks are being numbered elsewhere. 3711 */ 3712 int rcutree_prepare_cpu(unsigned int cpu) 3713 { 3714 unsigned long flags; 3715 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3716 struct rcu_node *rnp = rcu_get_root(); 3717 3718 /* Set up local state, ensuring consistent view of global state. */ 3719 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3720 rdp->qlen_last_fqs_check = 0; 3721 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3722 rdp->blimit = blimit; 3723 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3724 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3725 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3726 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3727 rcu_dynticks_eqs_online(); 3728 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3729 3730 /* 3731 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3732 * propagation up the rcu_node tree will happen at the beginning 3733 * of the next grace period. 3734 */ 3735 rnp = rdp->mynode; 3736 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3737 rdp->beenonline = true; /* We have now been online. */ 3738 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 3739 rdp->gp_seq_needed = rdp->gp_seq; 3740 rdp->cpu_no_qs.b.norm = true; 3741 rdp->core_needs_qs = false; 3742 rdp->rcu_iw_pending = false; 3743 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 3744 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3745 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3746 rcu_prepare_kthreads(cpu); 3747 rcu_spawn_cpu_nocb_kthread(cpu); 3748 3749 return 0; 3750 } 3751 3752 /* 3753 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3754 */ 3755 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3756 { 3757 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3758 3759 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3760 } 3761 3762 /* 3763 * Near the end of the CPU-online process. Pretty much all services 3764 * enabled, and the CPU is now very much alive. 3765 */ 3766 int rcutree_online_cpu(unsigned int cpu) 3767 { 3768 unsigned long flags; 3769 struct rcu_data *rdp; 3770 struct rcu_node *rnp; 3771 3772 rdp = per_cpu_ptr(&rcu_data, cpu); 3773 rnp = rdp->mynode; 3774 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3775 rnp->ffmask |= rdp->grpmask; 3776 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3777 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 3778 return 0; /* Too early in boot for scheduler work. */ 3779 sync_sched_exp_online_cleanup(cpu); 3780 rcutree_affinity_setting(cpu, -1); 3781 3782 // Stop-machine done, so allow nohz_full to disable tick. 3783 tick_dep_clear(TICK_DEP_BIT_RCU); 3784 return 0; 3785 } 3786 3787 /* 3788 * Near the beginning of the process. The CPU is still very much alive 3789 * with pretty much all services enabled. 3790 */ 3791 int rcutree_offline_cpu(unsigned int cpu) 3792 { 3793 unsigned long flags; 3794 struct rcu_data *rdp; 3795 struct rcu_node *rnp; 3796 3797 rdp = per_cpu_ptr(&rcu_data, cpu); 3798 rnp = rdp->mynode; 3799 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3800 rnp->ffmask &= ~rdp->grpmask; 3801 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3802 3803 rcutree_affinity_setting(cpu, cpu); 3804 3805 // nohz_full CPUs need the tick for stop-machine to work quickly 3806 tick_dep_set(TICK_DEP_BIT_RCU); 3807 return 0; 3808 } 3809 3810 static DEFINE_PER_CPU(int, rcu_cpu_started); 3811 3812 /* 3813 * Mark the specified CPU as being online so that subsequent grace periods 3814 * (both expedited and normal) will wait on it. Note that this means that 3815 * incoming CPUs are not allowed to use RCU read-side critical sections 3816 * until this function is called. Failing to observe this restriction 3817 * will result in lockdep splats. 3818 * 3819 * Note that this function is special in that it is invoked directly 3820 * from the incoming CPU rather than from the cpuhp_step mechanism. 3821 * This is because this function must be invoked at a precise location. 3822 */ 3823 void rcu_cpu_starting(unsigned int cpu) 3824 { 3825 unsigned long flags; 3826 unsigned long mask; 3827 int nbits; 3828 unsigned long oldmask; 3829 struct rcu_data *rdp; 3830 struct rcu_node *rnp; 3831 3832 if (per_cpu(rcu_cpu_started, cpu)) 3833 return; 3834 3835 per_cpu(rcu_cpu_started, cpu) = 1; 3836 3837 rdp = per_cpu_ptr(&rcu_data, cpu); 3838 rnp = rdp->mynode; 3839 mask = rdp->grpmask; 3840 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3841 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 3842 oldmask = rnp->expmaskinitnext; 3843 rnp->expmaskinitnext |= mask; 3844 oldmask ^= rnp->expmaskinitnext; 3845 nbits = bitmap_weight(&oldmask, BITS_PER_LONG); 3846 /* Allow lockless access for expedited grace periods. */ 3847 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */ 3848 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 3849 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 3850 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3851 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3852 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 3853 rcu_disable_urgency_upon_qs(rdp); 3854 /* Report QS -after- changing ->qsmaskinitnext! */ 3855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3856 } else { 3857 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3858 } 3859 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 3860 } 3861 3862 #ifdef CONFIG_HOTPLUG_CPU 3863 /* 3864 * The outgoing function has no further need of RCU, so remove it from 3865 * the rcu_node tree's ->qsmaskinitnext bit masks. 3866 * 3867 * Note that this function is special in that it is invoked directly 3868 * from the outgoing CPU rather than from the cpuhp_step mechanism. 3869 * This is because this function must be invoked at a precise location. 3870 */ 3871 void rcu_report_dead(unsigned int cpu) 3872 { 3873 unsigned long flags; 3874 unsigned long mask; 3875 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3876 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 3877 3878 /* QS for any half-done expedited grace period. */ 3879 preempt_disable(); 3880 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 3881 preempt_enable(); 3882 rcu_preempt_deferred_qs(current); 3883 3884 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 3885 mask = rdp->grpmask; 3886 raw_spin_lock(&rcu_state.ofl_lock); 3887 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 3888 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 3889 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 3890 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 3891 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 3892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 3893 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3894 } 3895 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3897 raw_spin_unlock(&rcu_state.ofl_lock); 3898 3899 per_cpu(rcu_cpu_started, cpu) = 0; 3900 } 3901 3902 /* 3903 * The outgoing CPU has just passed through the dying-idle state, and we 3904 * are being invoked from the CPU that was IPIed to continue the offline 3905 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 3906 */ 3907 void rcutree_migrate_callbacks(int cpu) 3908 { 3909 unsigned long flags; 3910 struct rcu_data *my_rdp; 3911 struct rcu_node *my_rnp; 3912 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3913 bool needwake; 3914 3915 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 3916 rcu_segcblist_empty(&rdp->cblist)) 3917 return; /* No callbacks to migrate. */ 3918 3919 local_irq_save(flags); 3920 my_rdp = this_cpu_ptr(&rcu_data); 3921 my_rnp = my_rdp->mynode; 3922 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 3923 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 3924 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 3925 /* Leverage recent GPs and set GP for new callbacks. */ 3926 needwake = rcu_advance_cbs(my_rnp, rdp) || 3927 rcu_advance_cbs(my_rnp, my_rdp); 3928 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 3929 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 3930 rcu_segcblist_disable(&rdp->cblist); 3931 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 3932 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 3933 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 3934 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 3935 __call_rcu_nocb_wake(my_rdp, true, flags); 3936 } else { 3937 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 3938 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 3939 } 3940 if (needwake) 3941 rcu_gp_kthread_wake(); 3942 lockdep_assert_irqs_enabled(); 3943 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 3944 !rcu_segcblist_empty(&rdp->cblist), 3945 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 3946 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 3947 rcu_segcblist_first_cb(&rdp->cblist)); 3948 } 3949 #endif 3950 3951 /* 3952 * On non-huge systems, use expedited RCU grace periods to make suspend 3953 * and hibernation run faster. 3954 */ 3955 static int rcu_pm_notify(struct notifier_block *self, 3956 unsigned long action, void *hcpu) 3957 { 3958 switch (action) { 3959 case PM_HIBERNATION_PREPARE: 3960 case PM_SUSPEND_PREPARE: 3961 rcu_expedite_gp(); 3962 break; 3963 case PM_POST_HIBERNATION: 3964 case PM_POST_SUSPEND: 3965 rcu_unexpedite_gp(); 3966 break; 3967 default: 3968 break; 3969 } 3970 return NOTIFY_OK; 3971 } 3972 3973 /* 3974 * Spawn the kthreads that handle RCU's grace periods. 3975 */ 3976 static int __init rcu_spawn_gp_kthread(void) 3977 { 3978 unsigned long flags; 3979 int kthread_prio_in = kthread_prio; 3980 struct rcu_node *rnp; 3981 struct sched_param sp; 3982 struct task_struct *t; 3983 3984 /* Force priority into range. */ 3985 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 3986 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 3987 kthread_prio = 2; 3988 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3989 kthread_prio = 1; 3990 else if (kthread_prio < 0) 3991 kthread_prio = 0; 3992 else if (kthread_prio > 99) 3993 kthread_prio = 99; 3994 3995 if (kthread_prio != kthread_prio_in) 3996 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3997 kthread_prio, kthread_prio_in); 3998 3999 rcu_scheduler_fully_active = 1; 4000 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4001 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4002 return 0; 4003 if (kthread_prio) { 4004 sp.sched_priority = kthread_prio; 4005 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4006 } 4007 rnp = rcu_get_root(); 4008 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4009 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4010 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4011 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4012 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4014 wake_up_process(t); 4015 rcu_spawn_nocb_kthreads(); 4016 rcu_spawn_boost_kthreads(); 4017 return 0; 4018 } 4019 early_initcall(rcu_spawn_gp_kthread); 4020 4021 /* 4022 * This function is invoked towards the end of the scheduler's 4023 * initialization process. Before this is called, the idle task might 4024 * contain synchronous grace-period primitives (during which time, this idle 4025 * task is booting the system, and such primitives are no-ops). After this 4026 * function is called, any synchronous grace-period primitives are run as 4027 * expedited, with the requesting task driving the grace period forward. 4028 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4029 * runtime RCU functionality. 4030 */ 4031 void rcu_scheduler_starting(void) 4032 { 4033 WARN_ON(num_online_cpus() != 1); 4034 WARN_ON(nr_context_switches() > 0); 4035 rcu_test_sync_prims(); 4036 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4037 rcu_test_sync_prims(); 4038 } 4039 4040 /* 4041 * Helper function for rcu_init() that initializes the rcu_state structure. 4042 */ 4043 static void __init rcu_init_one(void) 4044 { 4045 static const char * const buf[] = RCU_NODE_NAME_INIT; 4046 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4047 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4048 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4049 4050 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4051 int cpustride = 1; 4052 int i; 4053 int j; 4054 struct rcu_node *rnp; 4055 4056 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4057 4058 /* Silence gcc 4.8 false positive about array index out of range. */ 4059 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4060 panic("rcu_init_one: rcu_num_lvls out of range"); 4061 4062 /* Initialize the level-tracking arrays. */ 4063 4064 for (i = 1; i < rcu_num_lvls; i++) 4065 rcu_state.level[i] = 4066 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4067 rcu_init_levelspread(levelspread, num_rcu_lvl); 4068 4069 /* Initialize the elements themselves, starting from the leaves. */ 4070 4071 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4072 cpustride *= levelspread[i]; 4073 rnp = rcu_state.level[i]; 4074 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4075 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4076 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4077 &rcu_node_class[i], buf[i]); 4078 raw_spin_lock_init(&rnp->fqslock); 4079 lockdep_set_class_and_name(&rnp->fqslock, 4080 &rcu_fqs_class[i], fqs[i]); 4081 rnp->gp_seq = rcu_state.gp_seq; 4082 rnp->gp_seq_needed = rcu_state.gp_seq; 4083 rnp->completedqs = rcu_state.gp_seq; 4084 rnp->qsmask = 0; 4085 rnp->qsmaskinit = 0; 4086 rnp->grplo = j * cpustride; 4087 rnp->grphi = (j + 1) * cpustride - 1; 4088 if (rnp->grphi >= nr_cpu_ids) 4089 rnp->grphi = nr_cpu_ids - 1; 4090 if (i == 0) { 4091 rnp->grpnum = 0; 4092 rnp->grpmask = 0; 4093 rnp->parent = NULL; 4094 } else { 4095 rnp->grpnum = j % levelspread[i - 1]; 4096 rnp->grpmask = BIT(rnp->grpnum); 4097 rnp->parent = rcu_state.level[i - 1] + 4098 j / levelspread[i - 1]; 4099 } 4100 rnp->level = i; 4101 INIT_LIST_HEAD(&rnp->blkd_tasks); 4102 rcu_init_one_nocb(rnp); 4103 init_waitqueue_head(&rnp->exp_wq[0]); 4104 init_waitqueue_head(&rnp->exp_wq[1]); 4105 init_waitqueue_head(&rnp->exp_wq[2]); 4106 init_waitqueue_head(&rnp->exp_wq[3]); 4107 spin_lock_init(&rnp->exp_lock); 4108 } 4109 } 4110 4111 init_swait_queue_head(&rcu_state.gp_wq); 4112 init_swait_queue_head(&rcu_state.expedited_wq); 4113 rnp = rcu_first_leaf_node(); 4114 for_each_possible_cpu(i) { 4115 while (i > rnp->grphi) 4116 rnp++; 4117 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4118 rcu_boot_init_percpu_data(i); 4119 } 4120 } 4121 4122 /* 4123 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4124 * replace the definitions in tree.h because those are needed to size 4125 * the ->node array in the rcu_state structure. 4126 */ 4127 static void __init rcu_init_geometry(void) 4128 { 4129 ulong d; 4130 int i; 4131 int rcu_capacity[RCU_NUM_LVLS]; 4132 4133 /* 4134 * Initialize any unspecified boot parameters. 4135 * The default values of jiffies_till_first_fqs and 4136 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4137 * value, which is a function of HZ, then adding one for each 4138 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4139 */ 4140 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4141 if (jiffies_till_first_fqs == ULONG_MAX) 4142 jiffies_till_first_fqs = d; 4143 if (jiffies_till_next_fqs == ULONG_MAX) 4144 jiffies_till_next_fqs = d; 4145 adjust_jiffies_till_sched_qs(); 4146 4147 /* If the compile-time values are accurate, just leave. */ 4148 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4149 nr_cpu_ids == NR_CPUS) 4150 return; 4151 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4152 rcu_fanout_leaf, nr_cpu_ids); 4153 4154 /* 4155 * The boot-time rcu_fanout_leaf parameter must be at least two 4156 * and cannot exceed the number of bits in the rcu_node masks. 4157 * Complain and fall back to the compile-time values if this 4158 * limit is exceeded. 4159 */ 4160 if (rcu_fanout_leaf < 2 || 4161 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4162 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4163 WARN_ON(1); 4164 return; 4165 } 4166 4167 /* 4168 * Compute number of nodes that can be handled an rcu_node tree 4169 * with the given number of levels. 4170 */ 4171 rcu_capacity[0] = rcu_fanout_leaf; 4172 for (i = 1; i < RCU_NUM_LVLS; i++) 4173 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4174 4175 /* 4176 * The tree must be able to accommodate the configured number of CPUs. 4177 * If this limit is exceeded, fall back to the compile-time values. 4178 */ 4179 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4180 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4181 WARN_ON(1); 4182 return; 4183 } 4184 4185 /* Calculate the number of levels in the tree. */ 4186 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4187 } 4188 rcu_num_lvls = i + 1; 4189 4190 /* Calculate the number of rcu_nodes at each level of the tree. */ 4191 for (i = 0; i < rcu_num_lvls; i++) { 4192 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4193 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4194 } 4195 4196 /* Calculate the total number of rcu_node structures. */ 4197 rcu_num_nodes = 0; 4198 for (i = 0; i < rcu_num_lvls; i++) 4199 rcu_num_nodes += num_rcu_lvl[i]; 4200 } 4201 4202 /* 4203 * Dump out the structure of the rcu_node combining tree associated 4204 * with the rcu_state structure. 4205 */ 4206 static void __init rcu_dump_rcu_node_tree(void) 4207 { 4208 int level = 0; 4209 struct rcu_node *rnp; 4210 4211 pr_info("rcu_node tree layout dump\n"); 4212 pr_info(" "); 4213 rcu_for_each_node_breadth_first(rnp) { 4214 if (rnp->level != level) { 4215 pr_cont("\n"); 4216 pr_info(" "); 4217 level = rnp->level; 4218 } 4219 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4220 } 4221 pr_cont("\n"); 4222 } 4223 4224 struct workqueue_struct *rcu_gp_wq; 4225 struct workqueue_struct *rcu_par_gp_wq; 4226 4227 static void __init kfree_rcu_batch_init(void) 4228 { 4229 int cpu; 4230 int i; 4231 4232 for_each_possible_cpu(cpu) { 4233 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4234 4235 spin_lock_init(&krcp->lock); 4236 for (i = 0; i < KFREE_N_BATCHES; i++) { 4237 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4238 krcp->krw_arr[i].krcp = krcp; 4239 } 4240 4241 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4242 krcp->initialized = true; 4243 } 4244 if (register_shrinker(&kfree_rcu_shrinker)) 4245 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4246 } 4247 4248 void __init rcu_init(void) 4249 { 4250 int cpu; 4251 4252 rcu_early_boot_tests(); 4253 4254 kfree_rcu_batch_init(); 4255 rcu_bootup_announce(); 4256 rcu_init_geometry(); 4257 rcu_init_one(); 4258 if (dump_tree) 4259 rcu_dump_rcu_node_tree(); 4260 if (use_softirq) 4261 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4262 4263 /* 4264 * We don't need protection against CPU-hotplug here because 4265 * this is called early in boot, before either interrupts 4266 * or the scheduler are operational. 4267 */ 4268 pm_notifier(rcu_pm_notify, 0); 4269 for_each_online_cpu(cpu) { 4270 rcutree_prepare_cpu(cpu); 4271 rcu_cpu_starting(cpu); 4272 rcutree_online_cpu(cpu); 4273 } 4274 4275 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4276 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4277 WARN_ON(!rcu_gp_wq); 4278 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4279 WARN_ON(!rcu_par_gp_wq); 4280 srcu_init(); 4281 4282 /* Fill in default value for rcutree.qovld boot parameter. */ 4283 /* -After- the rcu_node ->lock fields are initialized! */ 4284 if (qovld < 0) 4285 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4286 else 4287 qovld_calc = qovld; 4288 } 4289 4290 #include "tree_stall.h" 4291 #include "tree_exp.h" 4292 #include "tree_plugin.h" 4293