1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/percpu.h> 36 #include <linux/notifier.h> 37 #include <linux/cpu.h> 38 #include <linux/mutex.h> 39 #include <linux/time.h> 40 #include <linux/kernel_stat.h> 41 #include <linux/wait.h> 42 #include <linux/kthread.h> 43 #include <uapi/linux/sched/types.h> 44 #include <linux/prefetch.h> 45 #include <linux/delay.h> 46 #include <linux/random.h> 47 #include <linux/trace_events.h> 48 #include <linux/suspend.h> 49 #include <linux/ftrace.h> 50 #include <linux/tick.h> 51 #include <linux/sysrq.h> 52 #include <linux/kprobes.h> 53 #include <linux/gfp.h> 54 #include <linux/oom.h> 55 #include <linux/smpboot.h> 56 #include <linux/jiffies.h> 57 #include <linux/slab.h> 58 #include <linux/sched/isolation.h> 59 #include <linux/sched/clock.h> 60 #include <linux/vmalloc.h> 61 #include <linux/mm.h> 62 #include <linux/kasan.h> 63 #include "../time/tick-internal.h" 64 65 #include "tree.h" 66 #include "rcu.h" 67 68 #ifdef MODULE_PARAM_PREFIX 69 #undef MODULE_PARAM_PREFIX 70 #endif 71 #define MODULE_PARAM_PREFIX "rcutree." 72 73 /* Data structures. */ 74 75 /* 76 * Steal a bit from the bottom of ->dynticks for idle entry/exit 77 * control. Initially this is for TLB flushing. 78 */ 79 #define RCU_DYNTICK_CTRL_MASK 0x1 80 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) 81 82 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 83 .dynticks_nesting = 1, 84 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, 85 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), 86 }; 87 static struct rcu_state rcu_state = { 88 .level = { &rcu_state.node[0] }, 89 .gp_state = RCU_GP_IDLE, 90 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 91 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 92 .name = RCU_NAME, 93 .abbr = RCU_ABBR, 94 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 95 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 96 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock), 97 }; 98 99 /* Dump rcu_node combining tree at boot to verify correct setup. */ 100 static bool dump_tree; 101 module_param(dump_tree, bool, 0444); 102 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 103 static bool use_softirq = true; 104 module_param(use_softirq, bool, 0444); 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 155 /* rcuc/rcub kthread realtime priority */ 156 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 157 module_param(kthread_prio, int, 0444); 158 159 /* Delay in jiffies for grace-period initialization delays, debug only. */ 160 161 static int gp_preinit_delay; 162 module_param(gp_preinit_delay, int, 0444); 163 static int gp_init_delay; 164 module_param(gp_init_delay, int, 0444); 165 static int gp_cleanup_delay; 166 module_param(gp_cleanup_delay, int, 0444); 167 168 // Add delay to rcu_read_unlock() for strict grace periods. 169 static int rcu_unlock_delay; 170 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 171 module_param(rcu_unlock_delay, int, 0444); 172 #endif 173 174 /* 175 * This rcu parameter is runtime-read-only. It reflects 176 * a minimum allowed number of objects which can be cached 177 * per-CPU. Object size is equal to one page. This value 178 * can be changed at boot time. 179 */ 180 static int rcu_min_cached_objs = 2; 181 module_param(rcu_min_cached_objs, int, 0444); 182 183 /* Retrieve RCU kthreads priority for rcutorture */ 184 int rcu_get_gp_kthreads_prio(void) 185 { 186 return kthread_prio; 187 } 188 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 189 190 /* 191 * Number of grace periods between delays, normalized by the duration of 192 * the delay. The longer the delay, the more the grace periods between 193 * each delay. The reason for this normalization is that it means that, 194 * for non-zero delays, the overall slowdown of grace periods is constant 195 * regardless of the duration of the delay. This arrangement balances 196 * the need for long delays to increase some race probabilities with the 197 * need for fast grace periods to increase other race probabilities. 198 */ 199 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ 200 201 /* 202 * Compute the mask of online CPUs for the specified rcu_node structure. 203 * This will not be stable unless the rcu_node structure's ->lock is 204 * held, but the bit corresponding to the current CPU will be stable 205 * in most contexts. 206 */ 207 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 208 { 209 return READ_ONCE(rnp->qsmaskinitnext); 210 } 211 212 /* 213 * Return true if an RCU grace period is in progress. The READ_ONCE()s 214 * permit this function to be invoked without holding the root rcu_node 215 * structure's ->lock, but of course results can be subject to change. 216 */ 217 static int rcu_gp_in_progress(void) 218 { 219 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 220 } 221 222 /* 223 * Return the number of callbacks queued on the specified CPU. 224 * Handles both the nocbs and normal cases. 225 */ 226 static long rcu_get_n_cbs_cpu(int cpu) 227 { 228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 229 230 if (rcu_segcblist_is_enabled(&rdp->cblist)) 231 return rcu_segcblist_n_cbs(&rdp->cblist); 232 return 0; 233 } 234 235 void rcu_softirq_qs(void) 236 { 237 rcu_qs(); 238 rcu_preempt_deferred_qs(current); 239 } 240 241 /* 242 * Record entry into an extended quiescent state. This is only to be 243 * called when not already in an extended quiescent state, that is, 244 * RCU is watching prior to the call to this function and is no longer 245 * watching upon return. 246 */ 247 static noinstr void rcu_dynticks_eqs_enter(void) 248 { 249 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 250 int seq; 251 252 /* 253 * CPUs seeing atomic_add_return() must see prior RCU read-side 254 * critical sections, and we also must force ordering with the 255 * next idle sojourn. 256 */ 257 rcu_dynticks_task_trace_enter(); // Before ->dynticks update! 258 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 259 // RCU is no longer watching. Better be in extended quiescent state! 260 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 261 (seq & RCU_DYNTICK_CTRL_CTR)); 262 /* Better not have special action (TLB flush) pending! */ 263 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 264 (seq & RCU_DYNTICK_CTRL_MASK)); 265 } 266 267 /* 268 * Record exit from an extended quiescent state. This is only to be 269 * called from an extended quiescent state, that is, RCU is not watching 270 * prior to the call to this function and is watching upon return. 271 */ 272 static noinstr void rcu_dynticks_eqs_exit(void) 273 { 274 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 275 int seq; 276 277 /* 278 * CPUs seeing atomic_add_return() must see prior idle sojourns, 279 * and we also must force ordering with the next RCU read-side 280 * critical section. 281 */ 282 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 283 // RCU is now watching. Better not be in an extended quiescent state! 284 rcu_dynticks_task_trace_exit(); // After ->dynticks update! 285 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 286 !(seq & RCU_DYNTICK_CTRL_CTR)); 287 if (seq & RCU_DYNTICK_CTRL_MASK) { 288 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks); 289 smp_mb__after_atomic(); /* _exit after clearing mask. */ 290 } 291 } 292 293 /* 294 * Reset the current CPU's ->dynticks counter to indicate that the 295 * newly onlined CPU is no longer in an extended quiescent state. 296 * This will either leave the counter unchanged, or increment it 297 * to the next non-quiescent value. 298 * 299 * The non-atomic test/increment sequence works because the upper bits 300 * of the ->dynticks counter are manipulated only by the corresponding CPU, 301 * or when the corresponding CPU is offline. 302 */ 303 static void rcu_dynticks_eqs_online(void) 304 { 305 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 306 307 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR) 308 return; 309 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks); 310 } 311 312 /* 313 * Is the current CPU in an extended quiescent state? 314 * 315 * No ordering, as we are sampling CPU-local information. 316 */ 317 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void) 318 { 319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 320 321 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR); 322 } 323 324 /* 325 * Snapshot the ->dynticks counter with full ordering so as to allow 326 * stable comparison of this counter with past and future snapshots. 327 */ 328 static int rcu_dynticks_snap(struct rcu_data *rdp) 329 { 330 int snap = atomic_add_return(0, &rdp->dynticks); 331 332 return snap & ~RCU_DYNTICK_CTRL_MASK; 333 } 334 335 /* 336 * Return true if the snapshot returned from rcu_dynticks_snap() 337 * indicates that RCU is in an extended quiescent state. 338 */ 339 static bool rcu_dynticks_in_eqs(int snap) 340 { 341 return !(snap & RCU_DYNTICK_CTRL_CTR); 342 } 343 344 /* 345 * Return true if the CPU corresponding to the specified rcu_data 346 * structure has spent some time in an extended quiescent state since 347 * rcu_dynticks_snap() returned the specified snapshot. 348 */ 349 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 350 { 351 return snap != rcu_dynticks_snap(rdp); 352 } 353 354 /* 355 * Return true if the referenced integer is zero while the specified 356 * CPU remains within a single extended quiescent state. 357 */ 358 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 359 { 360 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 361 int snap; 362 363 // If not quiescent, force back to earlier extended quiescent state. 364 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK | 365 RCU_DYNTICK_CTRL_CTR); 366 367 smp_rmb(); // Order ->dynticks and *vp reads. 368 if (READ_ONCE(*vp)) 369 return false; // Non-zero, so report failure; 370 smp_rmb(); // Order *vp read and ->dynticks re-read. 371 372 // If still in the same extended quiescent state, we are good! 373 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK); 374 } 375 376 /* 377 * Set the special (bottom) bit of the specified CPU so that it 378 * will take special action (such as flushing its TLB) on the 379 * next exit from an extended quiescent state. Returns true if 380 * the bit was successfully set, or false if the CPU was not in 381 * an extended quiescent state. 382 */ 383 bool rcu_eqs_special_set(int cpu) 384 { 385 int old; 386 int new; 387 int new_old; 388 struct rcu_data *rdp = &per_cpu(rcu_data, cpu); 389 390 new_old = atomic_read(&rdp->dynticks); 391 do { 392 old = new_old; 393 if (old & RCU_DYNTICK_CTRL_CTR) 394 return false; 395 new = old | RCU_DYNTICK_CTRL_MASK; 396 new_old = atomic_cmpxchg(&rdp->dynticks, old, new); 397 } while (new_old != old); 398 return true; 399 } 400 401 /* 402 * Let the RCU core know that this CPU has gone through the scheduler, 403 * which is a quiescent state. This is called when the need for a 404 * quiescent state is urgent, so we burn an atomic operation and full 405 * memory barriers to let the RCU core know about it, regardless of what 406 * this CPU might (or might not) do in the near future. 407 * 408 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 409 * 410 * The caller must have disabled interrupts and must not be idle. 411 */ 412 void rcu_momentary_dyntick_idle(void) 413 { 414 int special; 415 416 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 417 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, 418 &this_cpu_ptr(&rcu_data)->dynticks); 419 /* It is illegal to call this from idle state. */ 420 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); 421 rcu_preempt_deferred_qs(current); 422 } 423 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 424 425 /** 426 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 427 * 428 * If the current CPU is idle and running at a first-level (not nested) 429 * interrupt, or directly, from idle, return true. 430 * 431 * The caller must have at least disabled IRQs. 432 */ 433 static int rcu_is_cpu_rrupt_from_idle(void) 434 { 435 long nesting; 436 437 /* 438 * Usually called from the tick; but also used from smp_function_call() 439 * for expedited grace periods. This latter can result in running from 440 * the idle task, instead of an actual IPI. 441 */ 442 lockdep_assert_irqs_disabled(); 443 444 /* Check for counter underflows */ 445 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0, 446 "RCU dynticks_nesting counter underflow!"); 447 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0, 448 "RCU dynticks_nmi_nesting counter underflow/zero!"); 449 450 /* Are we at first interrupt nesting level? */ 451 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting); 452 if (nesting > 1) 453 return false; 454 455 /* 456 * If we're not in an interrupt, we must be in the idle task! 457 */ 458 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 459 460 /* Does CPU appear to be idle from an RCU standpoint? */ 461 return __this_cpu_read(rcu_data.dynticks_nesting) == 0; 462 } 463 464 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 465 // Maximum callbacks per rcu_do_batch ... 466 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 467 static long blimit = DEFAULT_RCU_BLIMIT; 468 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 469 static long qhimark = DEFAULT_RCU_QHIMARK; 470 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 471 static long qlowmark = DEFAULT_RCU_QLOMARK; 472 #define DEFAULT_RCU_QOVLD_MULT 2 473 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 474 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 475 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 476 477 module_param(blimit, long, 0444); 478 module_param(qhimark, long, 0444); 479 module_param(qlowmark, long, 0444); 480 module_param(qovld, long, 0444); 481 482 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 483 static ulong jiffies_till_next_fqs = ULONG_MAX; 484 static bool rcu_kick_kthreads; 485 static int rcu_divisor = 7; 486 module_param(rcu_divisor, int, 0644); 487 488 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 489 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 490 module_param(rcu_resched_ns, long, 0644); 491 492 /* 493 * How long the grace period must be before we start recruiting 494 * quiescent-state help from rcu_note_context_switch(). 495 */ 496 static ulong jiffies_till_sched_qs = ULONG_MAX; 497 module_param(jiffies_till_sched_qs, ulong, 0444); 498 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 499 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 500 501 /* 502 * Make sure that we give the grace-period kthread time to detect any 503 * idle CPUs before taking active measures to force quiescent states. 504 * However, don't go below 100 milliseconds, adjusted upwards for really 505 * large systems. 506 */ 507 static void adjust_jiffies_till_sched_qs(void) 508 { 509 unsigned long j; 510 511 /* If jiffies_till_sched_qs was specified, respect the request. */ 512 if (jiffies_till_sched_qs != ULONG_MAX) { 513 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 514 return; 515 } 516 /* Otherwise, set to third fqs scan, but bound below on large system. */ 517 j = READ_ONCE(jiffies_till_first_fqs) + 518 2 * READ_ONCE(jiffies_till_next_fqs); 519 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 520 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 521 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 522 WRITE_ONCE(jiffies_to_sched_qs, j); 523 } 524 525 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 526 { 527 ulong j; 528 int ret = kstrtoul(val, 0, &j); 529 530 if (!ret) { 531 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 532 adjust_jiffies_till_sched_qs(); 533 } 534 return ret; 535 } 536 537 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 538 { 539 ulong j; 540 int ret = kstrtoul(val, 0, &j); 541 542 if (!ret) { 543 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 544 adjust_jiffies_till_sched_qs(); 545 } 546 return ret; 547 } 548 549 static struct kernel_param_ops first_fqs_jiffies_ops = { 550 .set = param_set_first_fqs_jiffies, 551 .get = param_get_ulong, 552 }; 553 554 static struct kernel_param_ops next_fqs_jiffies_ops = { 555 .set = param_set_next_fqs_jiffies, 556 .get = param_get_ulong, 557 }; 558 559 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 560 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 561 module_param(rcu_kick_kthreads, bool, 0644); 562 563 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 564 static int rcu_pending(int user); 565 566 /* 567 * Return the number of RCU GPs completed thus far for debug & stats. 568 */ 569 unsigned long rcu_get_gp_seq(void) 570 { 571 return READ_ONCE(rcu_state.gp_seq); 572 } 573 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 574 575 /* 576 * Return the number of RCU expedited batches completed thus far for 577 * debug & stats. Odd numbers mean that a batch is in progress, even 578 * numbers mean idle. The value returned will thus be roughly double 579 * the cumulative batches since boot. 580 */ 581 unsigned long rcu_exp_batches_completed(void) 582 { 583 return rcu_state.expedited_sequence; 584 } 585 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 586 587 /* 588 * Return the root node of the rcu_state structure. 589 */ 590 static struct rcu_node *rcu_get_root(void) 591 { 592 return &rcu_state.node[0]; 593 } 594 595 /* 596 * Send along grace-period-related data for rcutorture diagnostics. 597 */ 598 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 599 unsigned long *gp_seq) 600 { 601 switch (test_type) { 602 case RCU_FLAVOR: 603 *flags = READ_ONCE(rcu_state.gp_flags); 604 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 605 break; 606 default: 607 break; 608 } 609 } 610 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 611 612 /* 613 * Enter an RCU extended quiescent state, which can be either the 614 * idle loop or adaptive-tickless usermode execution. 615 * 616 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for 617 * the possibility of usermode upcalls having messed up our count 618 * of interrupt nesting level during the prior busy period. 619 */ 620 static noinstr void rcu_eqs_enter(bool user) 621 { 622 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 623 624 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE); 625 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); 626 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && 627 rdp->dynticks_nesting == 0); 628 if (rdp->dynticks_nesting != 1) { 629 // RCU will still be watching, so just do accounting and leave. 630 rdp->dynticks_nesting--; 631 return; 632 } 633 634 lockdep_assert_irqs_disabled(); 635 instrumentation_begin(); 636 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks)); 637 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 638 rdp = this_cpu_ptr(&rcu_data); 639 do_nocb_deferred_wakeup(rdp); 640 rcu_prepare_for_idle(); 641 rcu_preempt_deferred_qs(current); 642 643 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 644 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 645 646 instrumentation_end(); 647 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ 648 // RCU is watching here ... 649 rcu_dynticks_eqs_enter(); 650 // ... but is no longer watching here. 651 rcu_dynticks_task_enter(); 652 } 653 654 /** 655 * rcu_idle_enter - inform RCU that current CPU is entering idle 656 * 657 * Enter idle mode, in other words, -leave- the mode in which RCU 658 * read-side critical sections can occur. (Though RCU read-side 659 * critical sections can occur in irq handlers in idle, a possibility 660 * handled by irq_enter() and irq_exit().) 661 * 662 * If you add or remove a call to rcu_idle_enter(), be sure to test with 663 * CONFIG_RCU_EQS_DEBUG=y. 664 */ 665 void rcu_idle_enter(void) 666 { 667 lockdep_assert_irqs_disabled(); 668 rcu_eqs_enter(false); 669 } 670 EXPORT_SYMBOL_GPL(rcu_idle_enter); 671 672 #ifdef CONFIG_NO_HZ_FULL 673 /** 674 * rcu_user_enter - inform RCU that we are resuming userspace. 675 * 676 * Enter RCU idle mode right before resuming userspace. No use of RCU 677 * is permitted between this call and rcu_user_exit(). This way the 678 * CPU doesn't need to maintain the tick for RCU maintenance purposes 679 * when the CPU runs in userspace. 680 * 681 * If you add or remove a call to rcu_user_enter(), be sure to test with 682 * CONFIG_RCU_EQS_DEBUG=y. 683 */ 684 noinstr void rcu_user_enter(void) 685 { 686 lockdep_assert_irqs_disabled(); 687 rcu_eqs_enter(true); 688 } 689 #endif /* CONFIG_NO_HZ_FULL */ 690 691 /** 692 * rcu_nmi_exit - inform RCU of exit from NMI context 693 * 694 * If we are returning from the outermost NMI handler that interrupted an 695 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting 696 * to let the RCU grace-period handling know that the CPU is back to 697 * being RCU-idle. 698 * 699 * If you add or remove a call to rcu_nmi_exit(), be sure to test 700 * with CONFIG_RCU_EQS_DEBUG=y. 701 */ 702 noinstr void rcu_nmi_exit(void) 703 { 704 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 705 706 instrumentation_begin(); 707 /* 708 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 709 * (We are exiting an NMI handler, so RCU better be paying attention 710 * to us!) 711 */ 712 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0); 713 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); 714 715 /* 716 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 717 * leave it in non-RCU-idle state. 718 */ 719 if (rdp->dynticks_nmi_nesting != 1) { 720 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2, 721 atomic_read(&rdp->dynticks)); 722 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */ 723 rdp->dynticks_nmi_nesting - 2); 724 instrumentation_end(); 725 return; 726 } 727 728 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 729 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks)); 730 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ 731 732 if (!in_nmi()) 733 rcu_prepare_for_idle(); 734 735 // instrumentation for the noinstr rcu_dynticks_eqs_enter() 736 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 737 instrumentation_end(); 738 739 // RCU is watching here ... 740 rcu_dynticks_eqs_enter(); 741 // ... but is no longer watching here. 742 743 if (!in_nmi()) 744 rcu_dynticks_task_enter(); 745 } 746 747 /** 748 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 749 * 750 * Exit from an interrupt handler, which might possibly result in entering 751 * idle mode, in other words, leaving the mode in which read-side critical 752 * sections can occur. The caller must have disabled interrupts. 753 * 754 * This code assumes that the idle loop never does anything that might 755 * result in unbalanced calls to irq_enter() and irq_exit(). If your 756 * architecture's idle loop violates this assumption, RCU will give you what 757 * you deserve, good and hard. But very infrequently and irreproducibly. 758 * 759 * Use things like work queues to work around this limitation. 760 * 761 * You have been warned. 762 * 763 * If you add or remove a call to rcu_irq_exit(), be sure to test with 764 * CONFIG_RCU_EQS_DEBUG=y. 765 */ 766 void noinstr rcu_irq_exit(void) 767 { 768 lockdep_assert_irqs_disabled(); 769 rcu_nmi_exit(); 770 } 771 772 /** 773 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq 774 * towards in kernel preemption 775 * 776 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe 777 * from RCU point of view. Invoked from return from interrupt before kernel 778 * preemption. 779 */ 780 void rcu_irq_exit_preempt(void) 781 { 782 lockdep_assert_irqs_disabled(); 783 rcu_nmi_exit(); 784 785 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 786 "RCU dynticks_nesting counter underflow/zero!"); 787 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 788 DYNTICK_IRQ_NONIDLE, 789 "Bad RCU dynticks_nmi_nesting counter\n"); 790 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 791 "RCU in extended quiescent state!"); 792 } 793 794 #ifdef CONFIG_PROVE_RCU 795 /** 796 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 797 */ 798 void rcu_irq_exit_check_preempt(void) 799 { 800 lockdep_assert_irqs_disabled(); 801 802 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0, 803 "RCU dynticks_nesting counter underflow/zero!"); 804 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) != 805 DYNTICK_IRQ_NONIDLE, 806 "Bad RCU dynticks_nmi_nesting counter\n"); 807 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 808 "RCU in extended quiescent state!"); 809 } 810 #endif /* #ifdef CONFIG_PROVE_RCU */ 811 812 /* 813 * Wrapper for rcu_irq_exit() where interrupts are enabled. 814 * 815 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test 816 * with CONFIG_RCU_EQS_DEBUG=y. 817 */ 818 void rcu_irq_exit_irqson(void) 819 { 820 unsigned long flags; 821 822 local_irq_save(flags); 823 rcu_irq_exit(); 824 local_irq_restore(flags); 825 } 826 827 /* 828 * Exit an RCU extended quiescent state, which can be either the 829 * idle loop or adaptive-tickless usermode execution. 830 * 831 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to 832 * allow for the possibility of usermode upcalls messing up our count of 833 * interrupt nesting level during the busy period that is just now starting. 834 */ 835 static void noinstr rcu_eqs_exit(bool user) 836 { 837 struct rcu_data *rdp; 838 long oldval; 839 840 lockdep_assert_irqs_disabled(); 841 rdp = this_cpu_ptr(&rcu_data); 842 oldval = rdp->dynticks_nesting; 843 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); 844 if (oldval) { 845 // RCU was already watching, so just do accounting and leave. 846 rdp->dynticks_nesting++; 847 return; 848 } 849 rcu_dynticks_task_exit(); 850 // RCU is not watching here ... 851 rcu_dynticks_eqs_exit(); 852 // ... but is watching here. 853 instrumentation_begin(); 854 855 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 856 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 857 858 rcu_cleanup_after_idle(); 859 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks)); 860 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); 861 WRITE_ONCE(rdp->dynticks_nesting, 1); 862 WARN_ON_ONCE(rdp->dynticks_nmi_nesting); 863 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); 864 instrumentation_end(); 865 } 866 867 /** 868 * rcu_idle_exit - inform RCU that current CPU is leaving idle 869 * 870 * Exit idle mode, in other words, -enter- the mode in which RCU 871 * read-side critical sections can occur. 872 * 873 * If you add or remove a call to rcu_idle_exit(), be sure to test with 874 * CONFIG_RCU_EQS_DEBUG=y. 875 */ 876 void rcu_idle_exit(void) 877 { 878 unsigned long flags; 879 880 local_irq_save(flags); 881 rcu_eqs_exit(false); 882 local_irq_restore(flags); 883 } 884 EXPORT_SYMBOL_GPL(rcu_idle_exit); 885 886 #ifdef CONFIG_NO_HZ_FULL 887 /** 888 * rcu_user_exit - inform RCU that we are exiting userspace. 889 * 890 * Exit RCU idle mode while entering the kernel because it can 891 * run a RCU read side critical section anytime. 892 * 893 * If you add or remove a call to rcu_user_exit(), be sure to test with 894 * CONFIG_RCU_EQS_DEBUG=y. 895 */ 896 void noinstr rcu_user_exit(void) 897 { 898 rcu_eqs_exit(1); 899 } 900 901 /** 902 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 903 * 904 * The scheduler tick is not normally enabled when CPUs enter the kernel 905 * from nohz_full userspace execution. After all, nohz_full userspace 906 * execution is an RCU quiescent state and the time executing in the kernel 907 * is quite short. Except of course when it isn't. And it is not hard to 908 * cause a large system to spend tens of seconds or even minutes looping 909 * in the kernel, which can cause a number of problems, include RCU CPU 910 * stall warnings. 911 * 912 * Therefore, if a nohz_full CPU fails to report a quiescent state 913 * in a timely manner, the RCU grace-period kthread sets that CPU's 914 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 915 * exception will invoke this function, which will turn on the scheduler 916 * tick, which will enable RCU to detect that CPU's quiescent states, 917 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 918 * The tick will be disabled once a quiescent state is reported for 919 * this CPU. 920 * 921 * Of course, in carefully tuned systems, there might never be an 922 * interrupt or exception. In that case, the RCU grace-period kthread 923 * will eventually cause one to happen. However, in less carefully 924 * controlled environments, this function allows RCU to get what it 925 * needs without creating otherwise useless interruptions. 926 */ 927 void __rcu_irq_enter_check_tick(void) 928 { 929 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 930 931 // Enabling the tick is unsafe in NMI handlers. 932 if (WARN_ON_ONCE(in_nmi())) 933 return; 934 935 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 936 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 937 938 if (!tick_nohz_full_cpu(rdp->cpu) || 939 !READ_ONCE(rdp->rcu_urgent_qs) || 940 READ_ONCE(rdp->rcu_forced_tick)) { 941 // RCU doesn't need nohz_full help from this CPU, or it is 942 // already getting that help. 943 return; 944 } 945 946 // We get here only when not in an extended quiescent state and 947 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 948 // already watching and (2) The fact that we are in an interrupt 949 // handler and that the rcu_node lock is an irq-disabled lock 950 // prevents self-deadlock. So we can safely recheck under the lock. 951 // Note that the nohz_full state currently cannot change. 952 raw_spin_lock_rcu_node(rdp->mynode); 953 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 954 // A nohz_full CPU is in the kernel and RCU needs a 955 // quiescent state. Turn on the tick! 956 WRITE_ONCE(rdp->rcu_forced_tick, true); 957 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 958 } 959 raw_spin_unlock_rcu_node(rdp->mynode); 960 } 961 #endif /* CONFIG_NO_HZ_FULL */ 962 963 /** 964 * rcu_nmi_enter - inform RCU of entry to NMI context 965 * 966 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and 967 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know 968 * that the CPU is active. This implementation permits nested NMIs, as 969 * long as the nesting level does not overflow an int. (You will probably 970 * run out of stack space first.) 971 * 972 * If you add or remove a call to rcu_nmi_enter(), be sure to test 973 * with CONFIG_RCU_EQS_DEBUG=y. 974 */ 975 noinstr void rcu_nmi_enter(void) 976 { 977 long incby = 2; 978 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 979 980 /* Complain about underflow. */ 981 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0); 982 983 /* 984 * If idle from RCU viewpoint, atomically increment ->dynticks 985 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 986 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 987 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 988 * to be in the outermost NMI handler that interrupted an RCU-idle 989 * period (observation due to Andy Lutomirski). 990 */ 991 if (rcu_dynticks_curr_cpu_in_eqs()) { 992 993 if (!in_nmi()) 994 rcu_dynticks_task_exit(); 995 996 // RCU is not watching here ... 997 rcu_dynticks_eqs_exit(); 998 // ... but is watching here. 999 1000 if (!in_nmi()) { 1001 instrumentation_begin(); 1002 rcu_cleanup_after_idle(); 1003 instrumentation_end(); 1004 } 1005 1006 instrumentation_begin(); 1007 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs() 1008 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks)); 1009 // instrumentation for the noinstr rcu_dynticks_eqs_exit() 1010 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks)); 1011 1012 incby = 1; 1013 } else if (!in_nmi()) { 1014 instrumentation_begin(); 1015 rcu_irq_enter_check_tick(); 1016 instrumentation_end(); 1017 } else { 1018 instrumentation_begin(); 1019 } 1020 1021 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), 1022 rdp->dynticks_nmi_nesting, 1023 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks)); 1024 instrumentation_end(); 1025 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */ 1026 rdp->dynticks_nmi_nesting + incby); 1027 barrier(); 1028 } 1029 1030 /** 1031 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 1032 * 1033 * Enter an interrupt handler, which might possibly result in exiting 1034 * idle mode, in other words, entering the mode in which read-side critical 1035 * sections can occur. The caller must have disabled interrupts. 1036 * 1037 * Note that the Linux kernel is fully capable of entering an interrupt 1038 * handler that it never exits, for example when doing upcalls to user mode! 1039 * This code assumes that the idle loop never does upcalls to user mode. 1040 * If your architecture's idle loop does do upcalls to user mode (or does 1041 * anything else that results in unbalanced calls to the irq_enter() and 1042 * irq_exit() functions), RCU will give you what you deserve, good and hard. 1043 * But very infrequently and irreproducibly. 1044 * 1045 * Use things like work queues to work around this limitation. 1046 * 1047 * You have been warned. 1048 * 1049 * If you add or remove a call to rcu_irq_enter(), be sure to test with 1050 * CONFIG_RCU_EQS_DEBUG=y. 1051 */ 1052 noinstr void rcu_irq_enter(void) 1053 { 1054 lockdep_assert_irqs_disabled(); 1055 rcu_nmi_enter(); 1056 } 1057 1058 /* 1059 * Wrapper for rcu_irq_enter() where interrupts are enabled. 1060 * 1061 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test 1062 * with CONFIG_RCU_EQS_DEBUG=y. 1063 */ 1064 void rcu_irq_enter_irqson(void) 1065 { 1066 unsigned long flags; 1067 1068 local_irq_save(flags); 1069 rcu_irq_enter(); 1070 local_irq_restore(flags); 1071 } 1072 1073 /* 1074 * If any sort of urgency was applied to the current CPU (for example, 1075 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 1076 * to get to a quiescent state, disable it. 1077 */ 1078 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 1079 { 1080 raw_lockdep_assert_held_rcu_node(rdp->mynode); 1081 WRITE_ONCE(rdp->rcu_urgent_qs, false); 1082 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 1083 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 1084 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 1085 WRITE_ONCE(rdp->rcu_forced_tick, false); 1086 } 1087 } 1088 1089 /** 1090 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 1091 * 1092 * Return true if RCU is watching the running CPU, which means that this 1093 * CPU can safely enter RCU read-side critical sections. In other words, 1094 * if the current CPU is not in its idle loop or is in an interrupt or 1095 * NMI handler, return true. 1096 */ 1097 bool rcu_is_watching(void) 1098 { 1099 bool ret; 1100 1101 preempt_disable_notrace(); 1102 ret = !rcu_dynticks_curr_cpu_in_eqs(); 1103 preempt_enable_notrace(); 1104 return ret; 1105 } 1106 EXPORT_SYMBOL_GPL(rcu_is_watching); 1107 1108 /* 1109 * If a holdout task is actually running, request an urgent quiescent 1110 * state from its CPU. This is unsynchronized, so migrations can cause 1111 * the request to go to the wrong CPU. Which is OK, all that will happen 1112 * is that the CPU's next context switch will be a bit slower and next 1113 * time around this task will generate another request. 1114 */ 1115 void rcu_request_urgent_qs_task(struct task_struct *t) 1116 { 1117 int cpu; 1118 1119 barrier(); 1120 cpu = task_cpu(t); 1121 if (!task_curr(t)) 1122 return; /* This task is not running on that CPU. */ 1123 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 1124 } 1125 1126 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 1127 1128 /* 1129 * Is the current CPU online as far as RCU is concerned? 1130 * 1131 * Disable preemption to avoid false positives that could otherwise 1132 * happen due to the current CPU number being sampled, this task being 1133 * preempted, its old CPU being taken offline, resuming on some other CPU, 1134 * then determining that its old CPU is now offline. 1135 * 1136 * Disable checking if in an NMI handler because we cannot safely 1137 * report errors from NMI handlers anyway. In addition, it is OK to use 1138 * RCU on an offline processor during initial boot, hence the check for 1139 * rcu_scheduler_fully_active. 1140 */ 1141 bool rcu_lockdep_current_cpu_online(void) 1142 { 1143 struct rcu_data *rdp; 1144 struct rcu_node *rnp; 1145 bool ret = false; 1146 1147 if (in_nmi() || !rcu_scheduler_fully_active) 1148 return true; 1149 preempt_disable_notrace(); 1150 rdp = this_cpu_ptr(&rcu_data); 1151 rnp = rdp->mynode; 1152 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) 1153 ret = true; 1154 preempt_enable_notrace(); 1155 return ret; 1156 } 1157 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 1158 1159 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 1160 1161 /* 1162 * We are reporting a quiescent state on behalf of some other CPU, so 1163 * it is our responsibility to check for and handle potential overflow 1164 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 1165 * After all, the CPU might be in deep idle state, and thus executing no 1166 * code whatsoever. 1167 */ 1168 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 1169 { 1170 raw_lockdep_assert_held_rcu_node(rnp); 1171 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 1172 rnp->gp_seq)) 1173 WRITE_ONCE(rdp->gpwrap, true); 1174 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 1175 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 1176 } 1177 1178 /* 1179 * Snapshot the specified CPU's dynticks counter so that we can later 1180 * credit them with an implicit quiescent state. Return 1 if this CPU 1181 * is in dynticks idle mode, which is an extended quiescent state. 1182 */ 1183 static int dyntick_save_progress_counter(struct rcu_data *rdp) 1184 { 1185 rdp->dynticks_snap = rcu_dynticks_snap(rdp); 1186 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 1187 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1188 rcu_gpnum_ovf(rdp->mynode, rdp); 1189 return 1; 1190 } 1191 return 0; 1192 } 1193 1194 /* 1195 * Return true if the specified CPU has passed through a quiescent 1196 * state by virtue of being in or having passed through an dynticks 1197 * idle state since the last call to dyntick_save_progress_counter() 1198 * for this same CPU, or by virtue of having been offline. 1199 */ 1200 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 1201 { 1202 unsigned long jtsq; 1203 bool *rnhqp; 1204 bool *ruqp; 1205 struct rcu_node *rnp = rdp->mynode; 1206 1207 /* 1208 * If the CPU passed through or entered a dynticks idle phase with 1209 * no active irq/NMI handlers, then we can safely pretend that the CPU 1210 * already acknowledged the request to pass through a quiescent 1211 * state. Either way, that CPU cannot possibly be in an RCU 1212 * read-side critical section that started before the beginning 1213 * of the current RCU grace period. 1214 */ 1215 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 1216 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 1217 rcu_gpnum_ovf(rnp, rdp); 1218 return 1; 1219 } 1220 1221 /* 1222 * Complain if a CPU that is considered to be offline from RCU's 1223 * perspective has not yet reported a quiescent state. After all, 1224 * the offline CPU should have reported a quiescent state during 1225 * the CPU-offline process, or, failing that, by rcu_gp_init() 1226 * if it ran concurrently with either the CPU going offline or the 1227 * last task on a leaf rcu_node structure exiting its RCU read-side 1228 * critical section while all CPUs corresponding to that structure 1229 * are offline. This added warning detects bugs in any of these 1230 * code paths. 1231 * 1232 * The rcu_node structure's ->lock is held here, which excludes 1233 * the relevant portions the CPU-hotplug code, the grace-period 1234 * initialization code, and the rcu_read_unlock() code paths. 1235 * 1236 * For more detail, please refer to the "Hotplug CPU" section 1237 * of RCU's Requirements documentation. 1238 */ 1239 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) { 1240 bool onl; 1241 struct rcu_node *rnp1; 1242 1243 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 1244 __func__, rnp->grplo, rnp->grphi, rnp->level, 1245 (long)rnp->gp_seq, (long)rnp->completedqs); 1246 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 1247 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 1248 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 1249 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp)); 1250 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 1251 __func__, rdp->cpu, ".o"[onl], 1252 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 1253 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 1254 return 1; /* Break things loose after complaining. */ 1255 } 1256 1257 /* 1258 * A CPU running for an extended time within the kernel can 1259 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 1260 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 1261 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 1262 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 1263 * variable are safe because the assignments are repeated if this 1264 * CPU failed to pass through a quiescent state. This code 1265 * also checks .jiffies_resched in case jiffies_to_sched_qs 1266 * is set way high. 1267 */ 1268 jtsq = READ_ONCE(jiffies_to_sched_qs); 1269 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu); 1270 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu); 1271 if (!READ_ONCE(*rnhqp) && 1272 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 1273 time_after(jiffies, rcu_state.jiffies_resched) || 1274 rcu_state.cbovld)) { 1275 WRITE_ONCE(*rnhqp, true); 1276 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 1277 smp_store_release(ruqp, true); 1278 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 1279 WRITE_ONCE(*ruqp, true); 1280 } 1281 1282 /* 1283 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 1284 * The above code handles this, but only for straight cond_resched(). 1285 * And some in-kernel loops check need_resched() before calling 1286 * cond_resched(), which defeats the above code for CPUs that are 1287 * running in-kernel with scheduling-clock interrupts disabled. 1288 * So hit them over the head with the resched_cpu() hammer! 1289 */ 1290 if (tick_nohz_full_cpu(rdp->cpu) && 1291 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 1292 rcu_state.cbovld)) { 1293 WRITE_ONCE(*ruqp, true); 1294 resched_cpu(rdp->cpu); 1295 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1296 } 1297 1298 /* 1299 * If more than halfway to RCU CPU stall-warning time, invoke 1300 * resched_cpu() more frequently to try to loosen things up a bit. 1301 * Also check to see if the CPU is getting hammered with interrupts, 1302 * but only once per grace period, just to keep the IPIs down to 1303 * a dull roar. 1304 */ 1305 if (time_after(jiffies, rcu_state.jiffies_resched)) { 1306 if (time_after(jiffies, 1307 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 1308 resched_cpu(rdp->cpu); 1309 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 1310 } 1311 if (IS_ENABLED(CONFIG_IRQ_WORK) && 1312 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 1313 (rnp->ffmask & rdp->grpmask)) { 1314 init_irq_work(&rdp->rcu_iw, rcu_iw_handler); 1315 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ); 1316 rdp->rcu_iw_pending = true; 1317 rdp->rcu_iw_gp_seq = rnp->gp_seq; 1318 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 1319 } 1320 } 1321 1322 return 0; 1323 } 1324 1325 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 1326 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1327 unsigned long gp_seq_req, const char *s) 1328 { 1329 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 1330 gp_seq_req, rnp->level, 1331 rnp->grplo, rnp->grphi, s); 1332 } 1333 1334 /* 1335 * rcu_start_this_gp - Request the start of a particular grace period 1336 * @rnp_start: The leaf node of the CPU from which to start. 1337 * @rdp: The rcu_data corresponding to the CPU from which to start. 1338 * @gp_seq_req: The gp_seq of the grace period to start. 1339 * 1340 * Start the specified grace period, as needed to handle newly arrived 1341 * callbacks. The required future grace periods are recorded in each 1342 * rcu_node structure's ->gp_seq_needed field. Returns true if there 1343 * is reason to awaken the grace-period kthread. 1344 * 1345 * The caller must hold the specified rcu_node structure's ->lock, which 1346 * is why the caller is responsible for waking the grace-period kthread. 1347 * 1348 * Returns true if the GP thread needs to be awakened else false. 1349 */ 1350 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 1351 unsigned long gp_seq_req) 1352 { 1353 bool ret = false; 1354 struct rcu_node *rnp; 1355 1356 /* 1357 * Use funnel locking to either acquire the root rcu_node 1358 * structure's lock or bail out if the need for this grace period 1359 * has already been recorded -- or if that grace period has in 1360 * fact already started. If there is already a grace period in 1361 * progress in a non-leaf node, no recording is needed because the 1362 * end of the grace period will scan the leaf rcu_node structures. 1363 * Note that rnp_start->lock must not be released. 1364 */ 1365 raw_lockdep_assert_held_rcu_node(rnp_start); 1366 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 1367 for (rnp = rnp_start; 1; rnp = rnp->parent) { 1368 if (rnp != rnp_start) 1369 raw_spin_lock_rcu_node(rnp); 1370 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 1371 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 1372 (rnp != rnp_start && 1373 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 1374 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 1375 TPS("Prestarted")); 1376 goto unlock_out; 1377 } 1378 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 1379 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 1380 /* 1381 * We just marked the leaf or internal node, and a 1382 * grace period is in progress, which means that 1383 * rcu_gp_cleanup() will see the marking. Bail to 1384 * reduce contention. 1385 */ 1386 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1387 TPS("Startedleaf")); 1388 goto unlock_out; 1389 } 1390 if (rnp != rnp_start && rnp->parent != NULL) 1391 raw_spin_unlock_rcu_node(rnp); 1392 if (!rnp->parent) 1393 break; /* At root, and perhaps also leaf. */ 1394 } 1395 1396 /* If GP already in progress, just leave, otherwise start one. */ 1397 if (rcu_gp_in_progress()) { 1398 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1399 goto unlock_out; 1400 } 1401 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1402 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1403 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1404 if (!READ_ONCE(rcu_state.gp_kthread)) { 1405 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1406 goto unlock_out; 1407 } 1408 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1409 ret = true; /* Caller must wake GP kthread. */ 1410 unlock_out: 1411 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1412 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1413 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1414 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1415 } 1416 if (rnp != rnp_start) 1417 raw_spin_unlock_rcu_node(rnp); 1418 return ret; 1419 } 1420 1421 /* 1422 * Clean up any old requests for the just-ended grace period. Also return 1423 * whether any additional grace periods have been requested. 1424 */ 1425 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1426 { 1427 bool needmore; 1428 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1429 1430 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1431 if (!needmore) 1432 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1433 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1434 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1435 return needmore; 1436 } 1437 1438 /* 1439 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1440 * interrupt or softirq handler, in which case we just might immediately 1441 * sleep upon return, resulting in a grace-period hang), and don't bother 1442 * awakening when there is nothing for the grace-period kthread to do 1443 * (as in several CPUs raced to awaken, we lost), and finally don't try 1444 * to awaken a kthread that has not yet been created. If all those checks 1445 * are passed, track some debug information and awaken. 1446 * 1447 * So why do the self-wakeup when in an interrupt or softirq handler 1448 * in the grace-period kthread's context? Because the kthread might have 1449 * been interrupted just as it was going to sleep, and just after the final 1450 * pre-sleep check of the awaken condition. In this case, a wakeup really 1451 * is required, and is therefore supplied. 1452 */ 1453 static void rcu_gp_kthread_wake(void) 1454 { 1455 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1456 1457 if ((current == t && !in_irq() && !in_serving_softirq()) || 1458 !READ_ONCE(rcu_state.gp_flags) || !t) 1459 return; 1460 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1461 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1462 swake_up_one(&rcu_state.gp_wq); 1463 } 1464 1465 /* 1466 * If there is room, assign a ->gp_seq number to any callbacks on this 1467 * CPU that have not already been assigned. Also accelerate any callbacks 1468 * that were previously assigned a ->gp_seq number that has since proven 1469 * to be too conservative, which can happen if callbacks get assigned a 1470 * ->gp_seq number while RCU is idle, but with reference to a non-root 1471 * rcu_node structure. This function is idempotent, so it does not hurt 1472 * to call it repeatedly. Returns an flag saying that we should awaken 1473 * the RCU grace-period kthread. 1474 * 1475 * The caller must hold rnp->lock with interrupts disabled. 1476 */ 1477 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1478 { 1479 unsigned long gp_seq_req; 1480 bool ret = false; 1481 1482 rcu_lockdep_assert_cblist_protected(rdp); 1483 raw_lockdep_assert_held_rcu_node(rnp); 1484 1485 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1486 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1487 return false; 1488 1489 /* 1490 * Callbacks are often registered with incomplete grace-period 1491 * information. Something about the fact that getting exact 1492 * information requires acquiring a global lock... RCU therefore 1493 * makes a conservative estimate of the grace period number at which 1494 * a given callback will become ready to invoke. The following 1495 * code checks this estimate and improves it when possible, thus 1496 * accelerating callback invocation to an earlier grace-period 1497 * number. 1498 */ 1499 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1500 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1501 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1502 1503 /* Trace depending on how much we were able to accelerate. */ 1504 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1505 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1506 else 1507 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1508 1509 return ret; 1510 } 1511 1512 /* 1513 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1514 * rcu_node structure's ->lock be held. It consults the cached value 1515 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1516 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1517 * while holding the leaf rcu_node structure's ->lock. 1518 */ 1519 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1520 struct rcu_data *rdp) 1521 { 1522 unsigned long c; 1523 bool needwake; 1524 1525 rcu_lockdep_assert_cblist_protected(rdp); 1526 c = rcu_seq_snap(&rcu_state.gp_seq); 1527 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1528 /* Old request still live, so mark recent callbacks. */ 1529 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1530 return; 1531 } 1532 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1533 needwake = rcu_accelerate_cbs(rnp, rdp); 1534 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1535 if (needwake) 1536 rcu_gp_kthread_wake(); 1537 } 1538 1539 /* 1540 * Move any callbacks whose grace period has completed to the 1541 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1542 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1543 * sublist. This function is idempotent, so it does not hurt to 1544 * invoke it repeatedly. As long as it is not invoked -too- often... 1545 * Returns true if the RCU grace-period kthread needs to be awakened. 1546 * 1547 * The caller must hold rnp->lock with interrupts disabled. 1548 */ 1549 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1550 { 1551 rcu_lockdep_assert_cblist_protected(rdp); 1552 raw_lockdep_assert_held_rcu_node(rnp); 1553 1554 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1555 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1556 return false; 1557 1558 /* 1559 * Find all callbacks whose ->gp_seq numbers indicate that they 1560 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1561 */ 1562 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1563 1564 /* Classify any remaining callbacks. */ 1565 return rcu_accelerate_cbs(rnp, rdp); 1566 } 1567 1568 /* 1569 * Move and classify callbacks, but only if doing so won't require 1570 * that the RCU grace-period kthread be awakened. 1571 */ 1572 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1573 struct rcu_data *rdp) 1574 { 1575 rcu_lockdep_assert_cblist_protected(rdp); 1576 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || 1577 !raw_spin_trylock_rcu_node(rnp)) 1578 return; 1579 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1580 raw_spin_unlock_rcu_node(rnp); 1581 } 1582 1583 /* 1584 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1585 * quiescent state. This is intended to be invoked when the CPU notices 1586 * a new grace period. 1587 */ 1588 static void rcu_strict_gp_check_qs(void) 1589 { 1590 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1591 rcu_read_lock(); 1592 rcu_read_unlock(); 1593 } 1594 } 1595 1596 /* 1597 * Update CPU-local rcu_data state to record the beginnings and ends of 1598 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1599 * structure corresponding to the current CPU, and must have irqs disabled. 1600 * Returns true if the grace-period kthread needs to be awakened. 1601 */ 1602 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1603 { 1604 bool ret = false; 1605 bool need_qs; 1606 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 1607 rcu_segcblist_is_offloaded(&rdp->cblist); 1608 1609 raw_lockdep_assert_held_rcu_node(rnp); 1610 1611 if (rdp->gp_seq == rnp->gp_seq) 1612 return false; /* Nothing to do. */ 1613 1614 /* Handle the ends of any preceding grace periods first. */ 1615 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1616 unlikely(READ_ONCE(rdp->gpwrap))) { 1617 if (!offloaded) 1618 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1619 rdp->core_needs_qs = false; 1620 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1621 } else { 1622 if (!offloaded) 1623 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1624 if (rdp->core_needs_qs) 1625 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1626 } 1627 1628 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1629 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1630 unlikely(READ_ONCE(rdp->gpwrap))) { 1631 /* 1632 * If the current grace period is waiting for this CPU, 1633 * set up to detect a quiescent state, otherwise don't 1634 * go looking for one. 1635 */ 1636 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1637 need_qs = !!(rnp->qsmask & rdp->grpmask); 1638 rdp->cpu_no_qs.b.norm = need_qs; 1639 rdp->core_needs_qs = need_qs; 1640 zero_cpu_stall_ticks(rdp); 1641 } 1642 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1643 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1644 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1645 WRITE_ONCE(rdp->gpwrap, false); 1646 rcu_gpnum_ovf(rnp, rdp); 1647 return ret; 1648 } 1649 1650 static void note_gp_changes(struct rcu_data *rdp) 1651 { 1652 unsigned long flags; 1653 bool needwake; 1654 struct rcu_node *rnp; 1655 1656 local_irq_save(flags); 1657 rnp = rdp->mynode; 1658 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1659 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1660 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1661 local_irq_restore(flags); 1662 return; 1663 } 1664 needwake = __note_gp_changes(rnp, rdp); 1665 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1666 rcu_strict_gp_check_qs(); 1667 if (needwake) 1668 rcu_gp_kthread_wake(); 1669 } 1670 1671 static void rcu_gp_slow(int delay) 1672 { 1673 if (delay > 0 && 1674 !(rcu_seq_ctr(rcu_state.gp_seq) % 1675 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1676 schedule_timeout_idle(delay); 1677 } 1678 1679 static unsigned long sleep_duration; 1680 1681 /* Allow rcutorture to stall the grace-period kthread. */ 1682 void rcu_gp_set_torture_wait(int duration) 1683 { 1684 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1685 WRITE_ONCE(sleep_duration, duration); 1686 } 1687 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1688 1689 /* Actually implement the aforementioned wait. */ 1690 static void rcu_gp_torture_wait(void) 1691 { 1692 unsigned long duration; 1693 1694 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1695 return; 1696 duration = xchg(&sleep_duration, 0UL); 1697 if (duration > 0) { 1698 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1699 schedule_timeout_idle(duration); 1700 pr_alert("%s: Wait complete\n", __func__); 1701 } 1702 } 1703 1704 /* 1705 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1706 * processing. 1707 */ 1708 static void rcu_strict_gp_boundary(void *unused) 1709 { 1710 invoke_rcu_core(); 1711 } 1712 1713 /* 1714 * Initialize a new grace period. Return false if no grace period required. 1715 */ 1716 static bool rcu_gp_init(void) 1717 { 1718 unsigned long flags; 1719 unsigned long oldmask; 1720 unsigned long mask; 1721 struct rcu_data *rdp; 1722 struct rcu_node *rnp = rcu_get_root(); 1723 1724 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1725 raw_spin_lock_irq_rcu_node(rnp); 1726 if (!READ_ONCE(rcu_state.gp_flags)) { 1727 /* Spurious wakeup, tell caller to go back to sleep. */ 1728 raw_spin_unlock_irq_rcu_node(rnp); 1729 return false; 1730 } 1731 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1732 1733 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1734 /* 1735 * Grace period already in progress, don't start another. 1736 * Not supposed to be able to happen. 1737 */ 1738 raw_spin_unlock_irq_rcu_node(rnp); 1739 return false; 1740 } 1741 1742 /* Advance to a new grace period and initialize state. */ 1743 record_gp_stall_check_time(); 1744 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1745 rcu_seq_start(&rcu_state.gp_seq); 1746 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1747 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1748 raw_spin_unlock_irq_rcu_node(rnp); 1749 1750 /* 1751 * Apply per-leaf buffered online and offline operations to 1752 * the rcu_node tree. Note that this new grace period need not 1753 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1754 * offlining path, when combined with checks in this function, 1755 * will handle CPUs that are currently going offline or that will 1756 * go offline later. Please also refer to "Hotplug CPU" section 1757 * of RCU's Requirements documentation. 1758 */ 1759 rcu_state.gp_state = RCU_GP_ONOFF; 1760 rcu_for_each_leaf_node(rnp) { 1761 raw_spin_lock(&rcu_state.ofl_lock); 1762 raw_spin_lock_irq_rcu_node(rnp); 1763 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1764 !rnp->wait_blkd_tasks) { 1765 /* Nothing to do on this leaf rcu_node structure. */ 1766 raw_spin_unlock_irq_rcu_node(rnp); 1767 raw_spin_unlock(&rcu_state.ofl_lock); 1768 continue; 1769 } 1770 1771 /* Record old state, apply changes to ->qsmaskinit field. */ 1772 oldmask = rnp->qsmaskinit; 1773 rnp->qsmaskinit = rnp->qsmaskinitnext; 1774 1775 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1776 if (!oldmask != !rnp->qsmaskinit) { 1777 if (!oldmask) { /* First online CPU for rcu_node. */ 1778 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1779 rcu_init_new_rnp(rnp); 1780 } else if (rcu_preempt_has_tasks(rnp)) { 1781 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1782 } else { /* Last offline CPU and can propagate. */ 1783 rcu_cleanup_dead_rnp(rnp); 1784 } 1785 } 1786 1787 /* 1788 * If all waited-on tasks from prior grace period are 1789 * done, and if all this rcu_node structure's CPUs are 1790 * still offline, propagate up the rcu_node tree and 1791 * clear ->wait_blkd_tasks. Otherwise, if one of this 1792 * rcu_node structure's CPUs has since come back online, 1793 * simply clear ->wait_blkd_tasks. 1794 */ 1795 if (rnp->wait_blkd_tasks && 1796 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1797 rnp->wait_blkd_tasks = false; 1798 if (!rnp->qsmaskinit) 1799 rcu_cleanup_dead_rnp(rnp); 1800 } 1801 1802 raw_spin_unlock_irq_rcu_node(rnp); 1803 raw_spin_unlock(&rcu_state.ofl_lock); 1804 } 1805 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1806 1807 /* 1808 * Set the quiescent-state-needed bits in all the rcu_node 1809 * structures for all currently online CPUs in breadth-first 1810 * order, starting from the root rcu_node structure, relying on the 1811 * layout of the tree within the rcu_state.node[] array. Note that 1812 * other CPUs will access only the leaves of the hierarchy, thus 1813 * seeing that no grace period is in progress, at least until the 1814 * corresponding leaf node has been initialized. 1815 * 1816 * The grace period cannot complete until the initialization 1817 * process finishes, because this kthread handles both. 1818 */ 1819 rcu_state.gp_state = RCU_GP_INIT; 1820 rcu_for_each_node_breadth_first(rnp) { 1821 rcu_gp_slow(gp_init_delay); 1822 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1823 rdp = this_cpu_ptr(&rcu_data); 1824 rcu_preempt_check_blocked_tasks(rnp); 1825 rnp->qsmask = rnp->qsmaskinit; 1826 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1827 if (rnp == rdp->mynode) 1828 (void)__note_gp_changes(rnp, rdp); 1829 rcu_preempt_boost_start_gp(rnp); 1830 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1831 rnp->level, rnp->grplo, 1832 rnp->grphi, rnp->qsmask); 1833 /* Quiescent states for tasks on any now-offline CPUs. */ 1834 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1835 rnp->rcu_gp_init_mask = mask; 1836 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1837 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1838 else 1839 raw_spin_unlock_irq_rcu_node(rnp); 1840 cond_resched_tasks_rcu_qs(); 1841 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1842 } 1843 1844 // If strict, make all CPUs aware of new grace period. 1845 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1846 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1847 1848 return true; 1849 } 1850 1851 /* 1852 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1853 * time. 1854 */ 1855 static bool rcu_gp_fqs_check_wake(int *gfp) 1856 { 1857 struct rcu_node *rnp = rcu_get_root(); 1858 1859 // If under overload conditions, force an immediate FQS scan. 1860 if (*gfp & RCU_GP_FLAG_OVLD) 1861 return true; 1862 1863 // Someone like call_rcu() requested a force-quiescent-state scan. 1864 *gfp = READ_ONCE(rcu_state.gp_flags); 1865 if (*gfp & RCU_GP_FLAG_FQS) 1866 return true; 1867 1868 // The current grace period has completed. 1869 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1870 return true; 1871 1872 return false; 1873 } 1874 1875 /* 1876 * Do one round of quiescent-state forcing. 1877 */ 1878 static void rcu_gp_fqs(bool first_time) 1879 { 1880 struct rcu_node *rnp = rcu_get_root(); 1881 1882 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1883 rcu_state.n_force_qs++; 1884 if (first_time) { 1885 /* Collect dyntick-idle snapshots. */ 1886 force_qs_rnp(dyntick_save_progress_counter); 1887 } else { 1888 /* Handle dyntick-idle and offline CPUs. */ 1889 force_qs_rnp(rcu_implicit_dynticks_qs); 1890 } 1891 /* Clear flag to prevent immediate re-entry. */ 1892 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1893 raw_spin_lock_irq_rcu_node(rnp); 1894 WRITE_ONCE(rcu_state.gp_flags, 1895 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1896 raw_spin_unlock_irq_rcu_node(rnp); 1897 } 1898 } 1899 1900 /* 1901 * Loop doing repeated quiescent-state forcing until the grace period ends. 1902 */ 1903 static void rcu_gp_fqs_loop(void) 1904 { 1905 bool first_gp_fqs; 1906 int gf = 0; 1907 unsigned long j; 1908 int ret; 1909 struct rcu_node *rnp = rcu_get_root(); 1910 1911 first_gp_fqs = true; 1912 j = READ_ONCE(jiffies_till_first_fqs); 1913 if (rcu_state.cbovld) 1914 gf = RCU_GP_FLAG_OVLD; 1915 ret = 0; 1916 for (;;) { 1917 if (!ret) { 1918 rcu_state.jiffies_force_qs = jiffies + j; 1919 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1920 jiffies + (j ? 3 * j : 2)); 1921 } 1922 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1923 TPS("fqswait")); 1924 rcu_state.gp_state = RCU_GP_WAIT_FQS; 1925 ret = swait_event_idle_timeout_exclusive( 1926 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j); 1927 rcu_gp_torture_wait(); 1928 rcu_state.gp_state = RCU_GP_DOING_FQS; 1929 /* Locking provides needed memory barriers. */ 1930 /* If grace period done, leave loop. */ 1931 if (!READ_ONCE(rnp->qsmask) && 1932 !rcu_preempt_blocked_readers_cgp(rnp)) 1933 break; 1934 /* If time for quiescent-state forcing, do it. */ 1935 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1936 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1937 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1938 TPS("fqsstart")); 1939 rcu_gp_fqs(first_gp_fqs); 1940 gf = 0; 1941 if (first_gp_fqs) { 1942 first_gp_fqs = false; 1943 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1944 } 1945 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1946 TPS("fqsend")); 1947 cond_resched_tasks_rcu_qs(); 1948 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1949 ret = 0; /* Force full wait till next FQS. */ 1950 j = READ_ONCE(jiffies_till_next_fqs); 1951 } else { 1952 /* Deal with stray signal. */ 1953 cond_resched_tasks_rcu_qs(); 1954 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1955 WARN_ON(signal_pending(current)); 1956 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1957 TPS("fqswaitsig")); 1958 ret = 1; /* Keep old FQS timing. */ 1959 j = jiffies; 1960 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1961 j = 1; 1962 else 1963 j = rcu_state.jiffies_force_qs - j; 1964 gf = 0; 1965 } 1966 } 1967 } 1968 1969 /* 1970 * Clean up after the old grace period. 1971 */ 1972 static void rcu_gp_cleanup(void) 1973 { 1974 int cpu; 1975 bool needgp = false; 1976 unsigned long gp_duration; 1977 unsigned long new_gp_seq; 1978 bool offloaded; 1979 struct rcu_data *rdp; 1980 struct rcu_node *rnp = rcu_get_root(); 1981 struct swait_queue_head *sq; 1982 1983 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1984 raw_spin_lock_irq_rcu_node(rnp); 1985 rcu_state.gp_end = jiffies; 1986 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1987 if (gp_duration > rcu_state.gp_max) 1988 rcu_state.gp_max = gp_duration; 1989 1990 /* 1991 * We know the grace period is complete, but to everyone else 1992 * it appears to still be ongoing. But it is also the case 1993 * that to everyone else it looks like there is nothing that 1994 * they can do to advance the grace period. It is therefore 1995 * safe for us to drop the lock in order to mark the grace 1996 * period as completed in all of the rcu_node structures. 1997 */ 1998 raw_spin_unlock_irq_rcu_node(rnp); 1999 2000 /* 2001 * Propagate new ->gp_seq value to rcu_node structures so that 2002 * other CPUs don't have to wait until the start of the next grace 2003 * period to process their callbacks. This also avoids some nasty 2004 * RCU grace-period initialization races by forcing the end of 2005 * the current grace period to be completely recorded in all of 2006 * the rcu_node structures before the beginning of the next grace 2007 * period is recorded in any of the rcu_node structures. 2008 */ 2009 new_gp_seq = rcu_state.gp_seq; 2010 rcu_seq_end(&new_gp_seq); 2011 rcu_for_each_node_breadth_first(rnp) { 2012 raw_spin_lock_irq_rcu_node(rnp); 2013 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 2014 dump_blkd_tasks(rnp, 10); 2015 WARN_ON_ONCE(rnp->qsmask); 2016 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 2017 rdp = this_cpu_ptr(&rcu_data); 2018 if (rnp == rdp->mynode) 2019 needgp = __note_gp_changes(rnp, rdp) || needgp; 2020 /* smp_mb() provided by prior unlock-lock pair. */ 2021 needgp = rcu_future_gp_cleanup(rnp) || needgp; 2022 // Reset overload indication for CPUs no longer overloaded 2023 if (rcu_is_leaf_node(rnp)) 2024 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 2025 rdp = per_cpu_ptr(&rcu_data, cpu); 2026 check_cb_ovld_locked(rdp, rnp); 2027 } 2028 sq = rcu_nocb_gp_get(rnp); 2029 raw_spin_unlock_irq_rcu_node(rnp); 2030 rcu_nocb_gp_cleanup(sq); 2031 cond_resched_tasks_rcu_qs(); 2032 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2033 rcu_gp_slow(gp_cleanup_delay); 2034 } 2035 rnp = rcu_get_root(); 2036 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 2037 2038 /* Declare grace period done, trace first to use old GP number. */ 2039 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 2040 rcu_seq_end(&rcu_state.gp_seq); 2041 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 2042 rcu_state.gp_state = RCU_GP_IDLE; 2043 /* Check for GP requests since above loop. */ 2044 rdp = this_cpu_ptr(&rcu_data); 2045 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 2046 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 2047 TPS("CleanupMore")); 2048 needgp = true; 2049 } 2050 /* Advance CBs to reduce false positives below. */ 2051 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2052 rcu_segcblist_is_offloaded(&rdp->cblist); 2053 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 2054 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 2055 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 2056 trace_rcu_grace_period(rcu_state.name, 2057 rcu_state.gp_seq, 2058 TPS("newreq")); 2059 } else { 2060 WRITE_ONCE(rcu_state.gp_flags, 2061 rcu_state.gp_flags & RCU_GP_FLAG_INIT); 2062 } 2063 raw_spin_unlock_irq_rcu_node(rnp); 2064 2065 // If strict, make all CPUs aware of the end of the old grace period. 2066 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2067 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 2068 } 2069 2070 /* 2071 * Body of kthread that handles grace periods. 2072 */ 2073 static int __noreturn rcu_gp_kthread(void *unused) 2074 { 2075 rcu_bind_gp_kthread(); 2076 for (;;) { 2077 2078 /* Handle grace-period start. */ 2079 for (;;) { 2080 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2081 TPS("reqwait")); 2082 rcu_state.gp_state = RCU_GP_WAIT_GPS; 2083 swait_event_idle_exclusive(rcu_state.gp_wq, 2084 READ_ONCE(rcu_state.gp_flags) & 2085 RCU_GP_FLAG_INIT); 2086 rcu_gp_torture_wait(); 2087 rcu_state.gp_state = RCU_GP_DONE_GPS; 2088 /* Locking provides needed memory barrier. */ 2089 if (rcu_gp_init()) 2090 break; 2091 cond_resched_tasks_rcu_qs(); 2092 WRITE_ONCE(rcu_state.gp_activity, jiffies); 2093 WARN_ON(signal_pending(current)); 2094 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 2095 TPS("reqwaitsig")); 2096 } 2097 2098 /* Handle quiescent-state forcing. */ 2099 rcu_gp_fqs_loop(); 2100 2101 /* Handle grace-period end. */ 2102 rcu_state.gp_state = RCU_GP_CLEANUP; 2103 rcu_gp_cleanup(); 2104 rcu_state.gp_state = RCU_GP_CLEANED; 2105 } 2106 } 2107 2108 /* 2109 * Report a full set of quiescent states to the rcu_state data structure. 2110 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 2111 * another grace period is required. Whether we wake the grace-period 2112 * kthread or it awakens itself for the next round of quiescent-state 2113 * forcing, that kthread will clean up after the just-completed grace 2114 * period. Note that the caller must hold rnp->lock, which is released 2115 * before return. 2116 */ 2117 static void rcu_report_qs_rsp(unsigned long flags) 2118 __releases(rcu_get_root()->lock) 2119 { 2120 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 2121 WARN_ON_ONCE(!rcu_gp_in_progress()); 2122 WRITE_ONCE(rcu_state.gp_flags, 2123 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2124 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 2125 rcu_gp_kthread_wake(); 2126 } 2127 2128 /* 2129 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2130 * Allows quiescent states for a group of CPUs to be reported at one go 2131 * to the specified rcu_node structure, though all the CPUs in the group 2132 * must be represented by the same rcu_node structure (which need not be a 2133 * leaf rcu_node structure, though it often will be). The gps parameter 2134 * is the grace-period snapshot, which means that the quiescent states 2135 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 2136 * must be held upon entry, and it is released before return. 2137 * 2138 * As a special case, if mask is zero, the bit-already-cleared check is 2139 * disabled. This allows propagating quiescent state due to resumed tasks 2140 * during grace-period initialization. 2141 */ 2142 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 2143 unsigned long gps, unsigned long flags) 2144 __releases(rnp->lock) 2145 { 2146 unsigned long oldmask = 0; 2147 struct rcu_node *rnp_c; 2148 2149 raw_lockdep_assert_held_rcu_node(rnp); 2150 2151 /* Walk up the rcu_node hierarchy. */ 2152 for (;;) { 2153 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 2154 2155 /* 2156 * Our bit has already been cleared, or the 2157 * relevant grace period is already over, so done. 2158 */ 2159 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2160 return; 2161 } 2162 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 2163 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 2164 rcu_preempt_blocked_readers_cgp(rnp)); 2165 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 2166 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 2167 mask, rnp->qsmask, rnp->level, 2168 rnp->grplo, rnp->grphi, 2169 !!rnp->gp_tasks); 2170 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2171 2172 /* Other bits still set at this level, so done. */ 2173 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2174 return; 2175 } 2176 rnp->completedqs = rnp->gp_seq; 2177 mask = rnp->grpmask; 2178 if (rnp->parent == NULL) { 2179 2180 /* No more levels. Exit loop holding root lock. */ 2181 2182 break; 2183 } 2184 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2185 rnp_c = rnp; 2186 rnp = rnp->parent; 2187 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2188 oldmask = READ_ONCE(rnp_c->qsmask); 2189 } 2190 2191 /* 2192 * Get here if we are the last CPU to pass through a quiescent 2193 * state for this grace period. Invoke rcu_report_qs_rsp() 2194 * to clean up and start the next grace period if one is needed. 2195 */ 2196 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 2197 } 2198 2199 /* 2200 * Record a quiescent state for all tasks that were previously queued 2201 * on the specified rcu_node structure and that were blocking the current 2202 * RCU grace period. The caller must hold the corresponding rnp->lock with 2203 * irqs disabled, and this lock is released upon return, but irqs remain 2204 * disabled. 2205 */ 2206 static void __maybe_unused 2207 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 2208 __releases(rnp->lock) 2209 { 2210 unsigned long gps; 2211 unsigned long mask; 2212 struct rcu_node *rnp_p; 2213 2214 raw_lockdep_assert_held_rcu_node(rnp); 2215 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 2216 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 2217 rnp->qsmask != 0) { 2218 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2219 return; /* Still need more quiescent states! */ 2220 } 2221 2222 rnp->completedqs = rnp->gp_seq; 2223 rnp_p = rnp->parent; 2224 if (rnp_p == NULL) { 2225 /* 2226 * Only one rcu_node structure in the tree, so don't 2227 * try to report up to its nonexistent parent! 2228 */ 2229 rcu_report_qs_rsp(flags); 2230 return; 2231 } 2232 2233 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 2234 gps = rnp->gp_seq; 2235 mask = rnp->grpmask; 2236 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2237 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 2238 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 2239 } 2240 2241 /* 2242 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2243 * structure. This must be called from the specified CPU. 2244 */ 2245 static void 2246 rcu_report_qs_rdp(struct rcu_data *rdp) 2247 { 2248 unsigned long flags; 2249 unsigned long mask; 2250 bool needwake = false; 2251 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2252 rcu_segcblist_is_offloaded(&rdp->cblist); 2253 struct rcu_node *rnp; 2254 2255 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2256 rnp = rdp->mynode; 2257 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2258 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2259 rdp->gpwrap) { 2260 2261 /* 2262 * The grace period in which this quiescent state was 2263 * recorded has ended, so don't report it upwards. 2264 * We will instead need a new quiescent state that lies 2265 * within the current grace period. 2266 */ 2267 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2268 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2269 return; 2270 } 2271 mask = rdp->grpmask; 2272 rdp->core_needs_qs = false; 2273 if ((rnp->qsmask & mask) == 0) { 2274 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2275 } else { 2276 /* 2277 * This GP can't end until cpu checks in, so all of our 2278 * callbacks can be processed during the next GP. 2279 */ 2280 if (!offloaded) 2281 needwake = rcu_accelerate_cbs(rnp, rdp); 2282 2283 rcu_disable_urgency_upon_qs(rdp); 2284 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2285 /* ^^^ Released rnp->lock */ 2286 if (needwake) 2287 rcu_gp_kthread_wake(); 2288 } 2289 } 2290 2291 /* 2292 * Check to see if there is a new grace period of which this CPU 2293 * is not yet aware, and if so, set up local rcu_data state for it. 2294 * Otherwise, see if this CPU has just passed through its first 2295 * quiescent state for this grace period, and record that fact if so. 2296 */ 2297 static void 2298 rcu_check_quiescent_state(struct rcu_data *rdp) 2299 { 2300 /* Check for grace-period ends and beginnings. */ 2301 note_gp_changes(rdp); 2302 2303 /* 2304 * Does this CPU still need to do its part for current grace period? 2305 * If no, return and let the other CPUs do their part as well. 2306 */ 2307 if (!rdp->core_needs_qs) 2308 return; 2309 2310 /* 2311 * Was there a quiescent state since the beginning of the grace 2312 * period? If no, then exit and wait for the next call. 2313 */ 2314 if (rdp->cpu_no_qs.b.norm) 2315 return; 2316 2317 /* 2318 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2319 * judge of that). 2320 */ 2321 rcu_report_qs_rdp(rdp); 2322 } 2323 2324 /* 2325 * Near the end of the offline process. Trace the fact that this CPU 2326 * is going offline. 2327 */ 2328 int rcutree_dying_cpu(unsigned int cpu) 2329 { 2330 bool blkd; 2331 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 2332 struct rcu_node *rnp = rdp->mynode; 2333 2334 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2335 return 0; 2336 2337 blkd = !!(rnp->qsmask & rdp->grpmask); 2338 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2339 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp")); 2340 return 0; 2341 } 2342 2343 /* 2344 * All CPUs for the specified rcu_node structure have gone offline, 2345 * and all tasks that were preempted within an RCU read-side critical 2346 * section while running on one of those CPUs have since exited their RCU 2347 * read-side critical section. Some other CPU is reporting this fact with 2348 * the specified rcu_node structure's ->lock held and interrupts disabled. 2349 * This function therefore goes up the tree of rcu_node structures, 2350 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2351 * the leaf rcu_node structure's ->qsmaskinit field has already been 2352 * updated. 2353 * 2354 * This function does check that the specified rcu_node structure has 2355 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2356 * prematurely. That said, invoking it after the fact will cost you 2357 * a needless lock acquisition. So once it has done its work, don't 2358 * invoke it again. 2359 */ 2360 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2361 { 2362 long mask; 2363 struct rcu_node *rnp = rnp_leaf; 2364 2365 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2366 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2367 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2368 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2369 return; 2370 for (;;) { 2371 mask = rnp->grpmask; 2372 rnp = rnp->parent; 2373 if (!rnp) 2374 break; 2375 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2376 rnp->qsmaskinit &= ~mask; 2377 /* Between grace periods, so better already be zero! */ 2378 WARN_ON_ONCE(rnp->qsmask); 2379 if (rnp->qsmaskinit) { 2380 raw_spin_unlock_rcu_node(rnp); 2381 /* irqs remain disabled. */ 2382 return; 2383 } 2384 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2385 } 2386 } 2387 2388 /* 2389 * The CPU has been completely removed, and some other CPU is reporting 2390 * this fact from process context. Do the remainder of the cleanup. 2391 * There can only be one CPU hotplug operation at a time, so no need for 2392 * explicit locking. 2393 */ 2394 int rcutree_dead_cpu(unsigned int cpu) 2395 { 2396 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2397 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2398 2399 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2400 return 0; 2401 2402 /* Adjust any no-longer-needed kthreads. */ 2403 rcu_boost_kthread_setaffinity(rnp, -1); 2404 /* Do any needed no-CB deferred wakeups from this CPU. */ 2405 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu)); 2406 2407 // Stop-machine done, so allow nohz_full to disable tick. 2408 tick_dep_clear(TICK_DEP_BIT_RCU); 2409 return 0; 2410 } 2411 2412 /* 2413 * Invoke any RCU callbacks that have made it to the end of their grace 2414 * period. Thottle as specified by rdp->blimit. 2415 */ 2416 static void rcu_do_batch(struct rcu_data *rdp) 2417 { 2418 int div; 2419 unsigned long flags; 2420 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2421 rcu_segcblist_is_offloaded(&rdp->cblist); 2422 struct rcu_head *rhp; 2423 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2424 long bl, count; 2425 long pending, tlimit = 0; 2426 2427 /* If no callbacks are ready, just return. */ 2428 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2429 trace_rcu_batch_start(rcu_state.name, 2430 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2431 trace_rcu_batch_end(rcu_state.name, 0, 2432 !rcu_segcblist_empty(&rdp->cblist), 2433 need_resched(), is_idle_task(current), 2434 rcu_is_callbacks_kthread()); 2435 return; 2436 } 2437 2438 /* 2439 * Extract the list of ready callbacks, disabling to prevent 2440 * races with call_rcu() from interrupt handlers. Leave the 2441 * callback counts, as rcu_barrier() needs to be conservative. 2442 */ 2443 local_irq_save(flags); 2444 rcu_nocb_lock(rdp); 2445 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2446 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2447 div = READ_ONCE(rcu_divisor); 2448 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2449 bl = max(rdp->blimit, pending >> div); 2450 if (unlikely(bl > 100)) { 2451 long rrn = READ_ONCE(rcu_resched_ns); 2452 2453 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2454 tlimit = local_clock() + rrn; 2455 } 2456 trace_rcu_batch_start(rcu_state.name, 2457 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2458 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2459 if (offloaded) 2460 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2461 rcu_nocb_unlock_irqrestore(rdp, flags); 2462 2463 /* Invoke callbacks. */ 2464 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2465 rhp = rcu_cblist_dequeue(&rcl); 2466 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2467 rcu_callback_t f; 2468 2469 debug_rcu_head_unqueue(rhp); 2470 2471 rcu_lock_acquire(&rcu_callback_map); 2472 trace_rcu_invoke_callback(rcu_state.name, rhp); 2473 2474 f = rhp->func; 2475 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2476 f(rhp); 2477 2478 rcu_lock_release(&rcu_callback_map); 2479 2480 /* 2481 * Stop only if limit reached and CPU has something to do. 2482 * Note: The rcl structure counts down from zero. 2483 */ 2484 if (-rcl.len >= bl && !offloaded && 2485 (need_resched() || 2486 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2487 break; 2488 if (unlikely(tlimit)) { 2489 /* only call local_clock() every 32 callbacks */ 2490 if (likely((-rcl.len & 31) || local_clock() < tlimit)) 2491 continue; 2492 /* Exceeded the time limit, so leave. */ 2493 break; 2494 } 2495 if (offloaded) { 2496 WARN_ON_ONCE(in_serving_softirq()); 2497 local_bh_enable(); 2498 lockdep_assert_irqs_enabled(); 2499 cond_resched_tasks_rcu_qs(); 2500 lockdep_assert_irqs_enabled(); 2501 local_bh_disable(); 2502 } 2503 } 2504 2505 local_irq_save(flags); 2506 rcu_nocb_lock(rdp); 2507 count = -rcl.len; 2508 rdp->n_cbs_invoked += count; 2509 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2510 is_idle_task(current), rcu_is_callbacks_kthread()); 2511 2512 /* Update counts and requeue any remaining callbacks. */ 2513 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2514 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2515 rcu_segcblist_insert_count(&rdp->cblist, &rcl); 2516 2517 /* Reinstate batch limit if we have worked down the excess. */ 2518 count = rcu_segcblist_n_cbs(&rdp->cblist); 2519 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2520 rdp->blimit = blimit; 2521 2522 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2523 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2524 rdp->qlen_last_fqs_check = 0; 2525 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2526 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2527 rdp->qlen_last_fqs_check = count; 2528 2529 /* 2530 * The following usually indicates a double call_rcu(). To track 2531 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2532 */ 2533 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist)); 2534 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2535 count != 0 && rcu_segcblist_empty(&rdp->cblist)); 2536 2537 rcu_nocb_unlock_irqrestore(rdp, flags); 2538 2539 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2540 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist)) 2541 invoke_rcu_core(); 2542 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2543 } 2544 2545 /* 2546 * This function is invoked from each scheduling-clock interrupt, 2547 * and checks to see if this CPU is in a non-context-switch quiescent 2548 * state, for example, user mode or idle loop. It also schedules RCU 2549 * core processing. If the current grace period has gone on too long, 2550 * it will ask the scheduler to manufacture a context switch for the sole 2551 * purpose of providing a providing the needed quiescent state. 2552 */ 2553 void rcu_sched_clock_irq(int user) 2554 { 2555 trace_rcu_utilization(TPS("Start scheduler-tick")); 2556 raw_cpu_inc(rcu_data.ticks_this_gp); 2557 /* The load-acquire pairs with the store-release setting to true. */ 2558 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2559 /* Idle and userspace execution already are quiescent states. */ 2560 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2561 set_tsk_need_resched(current); 2562 set_preempt_need_resched(); 2563 } 2564 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2565 } 2566 rcu_flavor_sched_clock_irq(user); 2567 if (rcu_pending(user)) 2568 invoke_rcu_core(); 2569 2570 trace_rcu_utilization(TPS("End scheduler-tick")); 2571 } 2572 2573 /* 2574 * Scan the leaf rcu_node structures. For each structure on which all 2575 * CPUs have reported a quiescent state and on which there are tasks 2576 * blocking the current grace period, initiate RCU priority boosting. 2577 * Otherwise, invoke the specified function to check dyntick state for 2578 * each CPU that has not yet reported a quiescent state. 2579 */ 2580 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2581 { 2582 int cpu; 2583 unsigned long flags; 2584 unsigned long mask; 2585 struct rcu_data *rdp; 2586 struct rcu_node *rnp; 2587 2588 rcu_state.cbovld = rcu_state.cbovldnext; 2589 rcu_state.cbovldnext = false; 2590 rcu_for_each_leaf_node(rnp) { 2591 cond_resched_tasks_rcu_qs(); 2592 mask = 0; 2593 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2594 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2595 if (rnp->qsmask == 0) { 2596 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2597 /* 2598 * No point in scanning bits because they 2599 * are all zero. But we might need to 2600 * priority-boost blocked readers. 2601 */ 2602 rcu_initiate_boost(rnp, flags); 2603 /* rcu_initiate_boost() releases rnp->lock */ 2604 continue; 2605 } 2606 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2607 continue; 2608 } 2609 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2610 rdp = per_cpu_ptr(&rcu_data, cpu); 2611 if (f(rdp)) { 2612 mask |= rdp->grpmask; 2613 rcu_disable_urgency_upon_qs(rdp); 2614 } 2615 } 2616 if (mask != 0) { 2617 /* Idle/offline CPUs, report (releases rnp->lock). */ 2618 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2619 } else { 2620 /* Nothing to do here, so just drop the lock. */ 2621 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2622 } 2623 } 2624 } 2625 2626 /* 2627 * Force quiescent states on reluctant CPUs, and also detect which 2628 * CPUs are in dyntick-idle mode. 2629 */ 2630 void rcu_force_quiescent_state(void) 2631 { 2632 unsigned long flags; 2633 bool ret; 2634 struct rcu_node *rnp; 2635 struct rcu_node *rnp_old = NULL; 2636 2637 /* Funnel through hierarchy to reduce memory contention. */ 2638 rnp = __this_cpu_read(rcu_data.mynode); 2639 for (; rnp != NULL; rnp = rnp->parent) { 2640 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2641 !raw_spin_trylock(&rnp->fqslock); 2642 if (rnp_old != NULL) 2643 raw_spin_unlock(&rnp_old->fqslock); 2644 if (ret) 2645 return; 2646 rnp_old = rnp; 2647 } 2648 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2649 2650 /* Reached the root of the rcu_node tree, acquire lock. */ 2651 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2652 raw_spin_unlock(&rnp_old->fqslock); 2653 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2654 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2655 return; /* Someone beat us to it. */ 2656 } 2657 WRITE_ONCE(rcu_state.gp_flags, 2658 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2659 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2660 rcu_gp_kthread_wake(); 2661 } 2662 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2663 2664 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2665 // grace periods. 2666 static void strict_work_handler(struct work_struct *work) 2667 { 2668 rcu_read_lock(); 2669 rcu_read_unlock(); 2670 } 2671 2672 /* Perform RCU core processing work for the current CPU. */ 2673 static __latent_entropy void rcu_core(void) 2674 { 2675 unsigned long flags; 2676 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2677 struct rcu_node *rnp = rdp->mynode; 2678 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2679 rcu_segcblist_is_offloaded(&rdp->cblist); 2680 2681 if (cpu_is_offline(smp_processor_id())) 2682 return; 2683 trace_rcu_utilization(TPS("Start RCU core")); 2684 WARN_ON_ONCE(!rdp->beenonline); 2685 2686 /* Report any deferred quiescent states if preemption enabled. */ 2687 if (!(preempt_count() & PREEMPT_MASK)) { 2688 rcu_preempt_deferred_qs(current); 2689 } else if (rcu_preempt_need_deferred_qs(current)) { 2690 set_tsk_need_resched(current); 2691 set_preempt_need_resched(); 2692 } 2693 2694 /* Update RCU state based on any recent quiescent states. */ 2695 rcu_check_quiescent_state(rdp); 2696 2697 /* No grace period and unregistered callbacks? */ 2698 if (!rcu_gp_in_progress() && 2699 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) { 2700 local_irq_save(flags); 2701 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2702 rcu_accelerate_cbs_unlocked(rnp, rdp); 2703 local_irq_restore(flags); 2704 } 2705 2706 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2707 2708 /* If there are callbacks ready, invoke them. */ 2709 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) && 2710 likely(READ_ONCE(rcu_scheduler_fully_active))) 2711 rcu_do_batch(rdp); 2712 2713 /* Do any needed deferred wakeups of rcuo kthreads. */ 2714 do_nocb_deferred_wakeup(rdp); 2715 trace_rcu_utilization(TPS("End RCU core")); 2716 2717 // If strict GPs, schedule an RCU reader in a clean environment. 2718 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2719 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2720 } 2721 2722 static void rcu_core_si(struct softirq_action *h) 2723 { 2724 rcu_core(); 2725 } 2726 2727 static void rcu_wake_cond(struct task_struct *t, int status) 2728 { 2729 /* 2730 * If the thread is yielding, only wake it when this 2731 * is invoked from idle 2732 */ 2733 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2734 wake_up_process(t); 2735 } 2736 2737 static void invoke_rcu_core_kthread(void) 2738 { 2739 struct task_struct *t; 2740 unsigned long flags; 2741 2742 local_irq_save(flags); 2743 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2744 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2745 if (t != NULL && t != current) 2746 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2747 local_irq_restore(flags); 2748 } 2749 2750 /* 2751 * Wake up this CPU's rcuc kthread to do RCU core processing. 2752 */ 2753 static void invoke_rcu_core(void) 2754 { 2755 if (!cpu_online(smp_processor_id())) 2756 return; 2757 if (use_softirq) 2758 raise_softirq(RCU_SOFTIRQ); 2759 else 2760 invoke_rcu_core_kthread(); 2761 } 2762 2763 static void rcu_cpu_kthread_park(unsigned int cpu) 2764 { 2765 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2766 } 2767 2768 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2769 { 2770 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2771 } 2772 2773 /* 2774 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2775 * the RCU softirq used in configurations of RCU that do not support RCU 2776 * priority boosting. 2777 */ 2778 static void rcu_cpu_kthread(unsigned int cpu) 2779 { 2780 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2781 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2782 int spincnt; 2783 2784 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2785 for (spincnt = 0; spincnt < 10; spincnt++) { 2786 local_bh_disable(); 2787 *statusp = RCU_KTHREAD_RUNNING; 2788 local_irq_disable(); 2789 work = *workp; 2790 *workp = 0; 2791 local_irq_enable(); 2792 if (work) 2793 rcu_core(); 2794 local_bh_enable(); 2795 if (*workp == 0) { 2796 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2797 *statusp = RCU_KTHREAD_WAITING; 2798 return; 2799 } 2800 } 2801 *statusp = RCU_KTHREAD_YIELDING; 2802 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2803 schedule_timeout_idle(2); 2804 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2805 *statusp = RCU_KTHREAD_WAITING; 2806 } 2807 2808 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2809 .store = &rcu_data.rcu_cpu_kthread_task, 2810 .thread_should_run = rcu_cpu_kthread_should_run, 2811 .thread_fn = rcu_cpu_kthread, 2812 .thread_comm = "rcuc/%u", 2813 .setup = rcu_cpu_kthread_setup, 2814 .park = rcu_cpu_kthread_park, 2815 }; 2816 2817 /* 2818 * Spawn per-CPU RCU core processing kthreads. 2819 */ 2820 static int __init rcu_spawn_core_kthreads(void) 2821 { 2822 int cpu; 2823 2824 for_each_possible_cpu(cpu) 2825 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2826 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq) 2827 return 0; 2828 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2829 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2830 return 0; 2831 } 2832 early_initcall(rcu_spawn_core_kthreads); 2833 2834 /* 2835 * Handle any core-RCU processing required by a call_rcu() invocation. 2836 */ 2837 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2838 unsigned long flags) 2839 { 2840 /* 2841 * If called from an extended quiescent state, invoke the RCU 2842 * core in order to force a re-evaluation of RCU's idleness. 2843 */ 2844 if (!rcu_is_watching()) 2845 invoke_rcu_core(); 2846 2847 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2848 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2849 return; 2850 2851 /* 2852 * Force the grace period if too many callbacks or too long waiting. 2853 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2854 * if some other CPU has recently done so. Also, don't bother 2855 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2856 * is the only one waiting for a grace period to complete. 2857 */ 2858 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2859 rdp->qlen_last_fqs_check + qhimark)) { 2860 2861 /* Are we ignoring a completed grace period? */ 2862 note_gp_changes(rdp); 2863 2864 /* Start a new grace period if one not already started. */ 2865 if (!rcu_gp_in_progress()) { 2866 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2867 } else { 2868 /* Give the grace period a kick. */ 2869 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2870 if (rcu_state.n_force_qs == rdp->n_force_qs_snap && 2871 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2872 rcu_force_quiescent_state(); 2873 rdp->n_force_qs_snap = rcu_state.n_force_qs; 2874 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2875 } 2876 } 2877 } 2878 2879 /* 2880 * RCU callback function to leak a callback. 2881 */ 2882 static void rcu_leak_callback(struct rcu_head *rhp) 2883 { 2884 } 2885 2886 /* 2887 * Check and if necessary update the leaf rcu_node structure's 2888 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2889 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2890 * structure's ->lock. 2891 */ 2892 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2893 { 2894 raw_lockdep_assert_held_rcu_node(rnp); 2895 if (qovld_calc <= 0) 2896 return; // Early boot and wildcard value set. 2897 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2898 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2899 else 2900 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2901 } 2902 2903 /* 2904 * Check and if necessary update the leaf rcu_node structure's 2905 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2906 * number of queued RCU callbacks. No locks need be held, but the 2907 * caller must have disabled interrupts. 2908 * 2909 * Note that this function ignores the possibility that there are a lot 2910 * of callbacks all of which have already seen the end of their respective 2911 * grace periods. This omission is due to the need for no-CBs CPUs to 2912 * be holding ->nocb_lock to do this check, which is too heavy for a 2913 * common-case operation. 2914 */ 2915 static void check_cb_ovld(struct rcu_data *rdp) 2916 { 2917 struct rcu_node *const rnp = rdp->mynode; 2918 2919 if (qovld_calc <= 0 || 2920 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2921 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2922 return; // Early boot wildcard value or already set correctly. 2923 raw_spin_lock_rcu_node(rnp); 2924 check_cb_ovld_locked(rdp, rnp); 2925 raw_spin_unlock_rcu_node(rnp); 2926 } 2927 2928 /* Helper function for call_rcu() and friends. */ 2929 static void 2930 __call_rcu(struct rcu_head *head, rcu_callback_t func) 2931 { 2932 unsigned long flags; 2933 struct rcu_data *rdp; 2934 bool was_alldone; 2935 2936 /* Misaligned rcu_head! */ 2937 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2938 2939 if (debug_rcu_head_queue(head)) { 2940 /* 2941 * Probable double call_rcu(), so leak the callback. 2942 * Use rcu:rcu_callback trace event to find the previous 2943 * time callback was passed to __call_rcu(). 2944 */ 2945 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n", 2946 head, head->func); 2947 WRITE_ONCE(head->func, rcu_leak_callback); 2948 return; 2949 } 2950 head->func = func; 2951 head->next = NULL; 2952 local_irq_save(flags); 2953 kasan_record_aux_stack(head); 2954 rdp = this_cpu_ptr(&rcu_data); 2955 2956 /* Add the callback to our list. */ 2957 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2958 // This can trigger due to call_rcu() from offline CPU: 2959 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2960 WARN_ON_ONCE(!rcu_is_watching()); 2961 // Very early boot, before rcu_init(). Initialize if needed 2962 // and then drop through to queue the callback. 2963 if (rcu_segcblist_empty(&rdp->cblist)) 2964 rcu_segcblist_init(&rdp->cblist); 2965 } 2966 2967 check_cb_ovld(rdp); 2968 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2969 return; // Enqueued onto ->nocb_bypass, so just leave. 2970 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2971 rcu_segcblist_enqueue(&rdp->cblist, head); 2972 if (__is_kvfree_rcu_offset((unsigned long)func)) 2973 trace_rcu_kvfree_callback(rcu_state.name, head, 2974 (unsigned long)func, 2975 rcu_segcblist_n_cbs(&rdp->cblist)); 2976 else 2977 trace_rcu_callback(rcu_state.name, head, 2978 rcu_segcblist_n_cbs(&rdp->cblist)); 2979 2980 /* Go handle any RCU core processing required. */ 2981 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2982 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) { 2983 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2984 } else { 2985 __call_rcu_core(rdp, head, flags); 2986 local_irq_restore(flags); 2987 } 2988 } 2989 2990 /** 2991 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2992 * @head: structure to be used for queueing the RCU updates. 2993 * @func: actual callback function to be invoked after the grace period 2994 * 2995 * The callback function will be invoked some time after a full grace 2996 * period elapses, in other words after all pre-existing RCU read-side 2997 * critical sections have completed. However, the callback function 2998 * might well execute concurrently with RCU read-side critical sections 2999 * that started after call_rcu() was invoked. RCU read-side critical 3000 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and 3001 * may be nested. In addition, regions of code across which interrupts, 3002 * preemption, or softirqs have been disabled also serve as RCU read-side 3003 * critical sections. This includes hardware interrupt handlers, softirq 3004 * handlers, and NMI handlers. 3005 * 3006 * Note that all CPUs must agree that the grace period extended beyond 3007 * all pre-existing RCU read-side critical section. On systems with more 3008 * than one CPU, this means that when "func()" is invoked, each CPU is 3009 * guaranteed to have executed a full memory barrier since the end of its 3010 * last RCU read-side critical section whose beginning preceded the call 3011 * to call_rcu(). It also means that each CPU executing an RCU read-side 3012 * critical section that continues beyond the start of "func()" must have 3013 * executed a memory barrier after the call_rcu() but before the beginning 3014 * of that RCU read-side critical section. Note that these guarantees 3015 * include CPUs that are offline, idle, or executing in user mode, as 3016 * well as CPUs that are executing in the kernel. 3017 * 3018 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 3019 * resulting RCU callback function "func()", then both CPU A and CPU B are 3020 * guaranteed to execute a full memory barrier during the time interval 3021 * between the call to call_rcu() and the invocation of "func()" -- even 3022 * if CPU A and CPU B are the same CPU (but again only if the system has 3023 * more than one CPU). 3024 */ 3025 void call_rcu(struct rcu_head *head, rcu_callback_t func) 3026 { 3027 __call_rcu(head, func); 3028 } 3029 EXPORT_SYMBOL_GPL(call_rcu); 3030 3031 3032 /* Maximum number of jiffies to wait before draining a batch. */ 3033 #define KFREE_DRAIN_JIFFIES (HZ / 50) 3034 #define KFREE_N_BATCHES 2 3035 #define FREE_N_CHANNELS 2 3036 3037 /** 3038 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 3039 * @nr_records: Number of active pointers in the array 3040 * @next: Next bulk object in the block chain 3041 * @records: Array of the kvfree_rcu() pointers 3042 */ 3043 struct kvfree_rcu_bulk_data { 3044 unsigned long nr_records; 3045 struct kvfree_rcu_bulk_data *next; 3046 void *records[]; 3047 }; 3048 3049 /* 3050 * This macro defines how many entries the "records" array 3051 * will contain. It is based on the fact that the size of 3052 * kvfree_rcu_bulk_data structure becomes exactly one page. 3053 */ 3054 #define KVFREE_BULK_MAX_ENTR \ 3055 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 3056 3057 /** 3058 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 3059 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 3060 * @head_free: List of kfree_rcu() objects waiting for a grace period 3061 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 3062 * @krcp: Pointer to @kfree_rcu_cpu structure 3063 */ 3064 3065 struct kfree_rcu_cpu_work { 3066 struct rcu_work rcu_work; 3067 struct rcu_head *head_free; 3068 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 3069 struct kfree_rcu_cpu *krcp; 3070 }; 3071 3072 /** 3073 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 3074 * @head: List of kfree_rcu() objects not yet waiting for a grace period 3075 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 3076 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 3077 * @lock: Synchronize access to this structure 3078 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 3079 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending 3080 * @initialized: The @rcu_work fields have been initialized 3081 * @count: Number of objects for which GP not started 3082 * @bkvcache: 3083 * A simple cache list that contains objects for reuse purpose. 3084 * In order to save some per-cpu space the list is singular. 3085 * Even though it is lockless an access has to be protected by the 3086 * per-cpu lock. 3087 * @nr_bkv_objs: number of allocated objects at @bkvcache. 3088 * 3089 * This is a per-CPU structure. The reason that it is not included in 3090 * the rcu_data structure is to permit this code to be extracted from 3091 * the RCU files. Such extraction could allow further optimization of 3092 * the interactions with the slab allocators. 3093 */ 3094 struct kfree_rcu_cpu { 3095 struct rcu_head *head; 3096 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 3097 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 3098 raw_spinlock_t lock; 3099 struct delayed_work monitor_work; 3100 bool monitor_todo; 3101 bool initialized; 3102 int count; 3103 struct llist_head bkvcache; 3104 int nr_bkv_objs; 3105 }; 3106 3107 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 3108 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 3109 }; 3110 3111 static __always_inline void 3112 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 3113 { 3114 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 3115 int i; 3116 3117 for (i = 0; i < bhead->nr_records; i++) 3118 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 3119 #endif 3120 } 3121 3122 static inline struct kfree_rcu_cpu * 3123 krc_this_cpu_lock(unsigned long *flags) 3124 { 3125 struct kfree_rcu_cpu *krcp; 3126 3127 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 3128 krcp = this_cpu_ptr(&krc); 3129 raw_spin_lock(&krcp->lock); 3130 3131 return krcp; 3132 } 3133 3134 static inline void 3135 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 3136 { 3137 raw_spin_unlock(&krcp->lock); 3138 local_irq_restore(flags); 3139 } 3140 3141 static inline struct kvfree_rcu_bulk_data * 3142 get_cached_bnode(struct kfree_rcu_cpu *krcp) 3143 { 3144 if (!krcp->nr_bkv_objs) 3145 return NULL; 3146 3147 krcp->nr_bkv_objs--; 3148 return (struct kvfree_rcu_bulk_data *) 3149 llist_del_first(&krcp->bkvcache); 3150 } 3151 3152 static inline bool 3153 put_cached_bnode(struct kfree_rcu_cpu *krcp, 3154 struct kvfree_rcu_bulk_data *bnode) 3155 { 3156 // Check the limit. 3157 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 3158 return false; 3159 3160 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 3161 krcp->nr_bkv_objs++; 3162 return true; 3163 3164 } 3165 3166 /* 3167 * This function is invoked in workqueue context after a grace period. 3168 * It frees all the objects queued on ->bhead_free or ->head_free. 3169 */ 3170 static void kfree_rcu_work(struct work_struct *work) 3171 { 3172 unsigned long flags; 3173 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3174 struct rcu_head *head, *next; 3175 struct kfree_rcu_cpu *krcp; 3176 struct kfree_rcu_cpu_work *krwp; 3177 int i, j; 3178 3179 krwp = container_of(to_rcu_work(work), 3180 struct kfree_rcu_cpu_work, rcu_work); 3181 krcp = krwp->krcp; 3182 3183 raw_spin_lock_irqsave(&krcp->lock, flags); 3184 // Channels 1 and 2. 3185 for (i = 0; i < FREE_N_CHANNELS; i++) { 3186 bkvhead[i] = krwp->bkvhead_free[i]; 3187 krwp->bkvhead_free[i] = NULL; 3188 } 3189 3190 // Channel 3. 3191 head = krwp->head_free; 3192 krwp->head_free = NULL; 3193 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3194 3195 // Handle two first channels. 3196 for (i = 0; i < FREE_N_CHANNELS; i++) { 3197 for (; bkvhead[i]; bkvhead[i] = bnext) { 3198 bnext = bkvhead[i]->next; 3199 debug_rcu_bhead_unqueue(bkvhead[i]); 3200 3201 rcu_lock_acquire(&rcu_callback_map); 3202 if (i == 0) { // kmalloc() / kfree(). 3203 trace_rcu_invoke_kfree_bulk_callback( 3204 rcu_state.name, bkvhead[i]->nr_records, 3205 bkvhead[i]->records); 3206 3207 kfree_bulk(bkvhead[i]->nr_records, 3208 bkvhead[i]->records); 3209 } else { // vmalloc() / vfree(). 3210 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3211 trace_rcu_invoke_kvfree_callback( 3212 rcu_state.name, 3213 bkvhead[i]->records[j], 0); 3214 3215 vfree(bkvhead[i]->records[j]); 3216 } 3217 } 3218 rcu_lock_release(&rcu_callback_map); 3219 3220 krcp = krc_this_cpu_lock(&flags); 3221 if (put_cached_bnode(krcp, bkvhead[i])) 3222 bkvhead[i] = NULL; 3223 krc_this_cpu_unlock(krcp, flags); 3224 3225 if (bkvhead[i]) 3226 free_page((unsigned long) bkvhead[i]); 3227 3228 cond_resched_tasks_rcu_qs(); 3229 } 3230 } 3231 3232 /* 3233 * Emergency case only. It can happen under low memory 3234 * condition when an allocation gets failed, so the "bulk" 3235 * path can not be temporary maintained. 3236 */ 3237 for (; head; head = next) { 3238 unsigned long offset = (unsigned long)head->func; 3239 void *ptr = (void *)head - offset; 3240 3241 next = head->next; 3242 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3243 rcu_lock_acquire(&rcu_callback_map); 3244 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3245 3246 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3247 kvfree(ptr); 3248 3249 rcu_lock_release(&rcu_callback_map); 3250 cond_resched_tasks_rcu_qs(); 3251 } 3252 } 3253 3254 /* 3255 * Schedule the kfree batch RCU work to run in workqueue context after a GP. 3256 * 3257 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES 3258 * timeout has been reached. 3259 */ 3260 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp) 3261 { 3262 struct kfree_rcu_cpu_work *krwp; 3263 bool repeat = false; 3264 int i, j; 3265 3266 lockdep_assert_held(&krcp->lock); 3267 3268 for (i = 0; i < KFREE_N_BATCHES; i++) { 3269 krwp = &(krcp->krw_arr[i]); 3270 3271 /* 3272 * Try to detach bkvhead or head and attach it over any 3273 * available corresponding free channel. It can be that 3274 * a previous RCU batch is in progress, it means that 3275 * immediately to queue another one is not possible so 3276 * return false to tell caller to retry. 3277 */ 3278 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3279 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3280 (krcp->head && !krwp->head_free)) { 3281 // Channel 1 corresponds to SLAB ptrs. 3282 // Channel 2 corresponds to vmalloc ptrs. 3283 for (j = 0; j < FREE_N_CHANNELS; j++) { 3284 if (!krwp->bkvhead_free[j]) { 3285 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3286 krcp->bkvhead[j] = NULL; 3287 } 3288 } 3289 3290 // Channel 3 corresponds to emergency path. 3291 if (!krwp->head_free) { 3292 krwp->head_free = krcp->head; 3293 krcp->head = NULL; 3294 } 3295 3296 WRITE_ONCE(krcp->count, 0); 3297 3298 /* 3299 * One work is per one batch, so there are three 3300 * "free channels", the batch can handle. It can 3301 * be that the work is in the pending state when 3302 * channels have been detached following by each 3303 * other. 3304 */ 3305 queue_rcu_work(system_wq, &krwp->rcu_work); 3306 } 3307 3308 // Repeat if any "free" corresponding channel is still busy. 3309 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head) 3310 repeat = true; 3311 } 3312 3313 return !repeat; 3314 } 3315 3316 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp, 3317 unsigned long flags) 3318 { 3319 // Attempt to start a new batch. 3320 krcp->monitor_todo = false; 3321 if (queue_kfree_rcu_work(krcp)) { 3322 // Success! Our job is done here. 3323 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3324 return; 3325 } 3326 3327 // Previous RCU batch still in progress, try again later. 3328 krcp->monitor_todo = true; 3329 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3330 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3331 } 3332 3333 /* 3334 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3335 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch. 3336 */ 3337 static void kfree_rcu_monitor(struct work_struct *work) 3338 { 3339 unsigned long flags; 3340 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu, 3341 monitor_work.work); 3342 3343 raw_spin_lock_irqsave(&krcp->lock, flags); 3344 if (krcp->monitor_todo) 3345 kfree_rcu_drain_unlock(krcp, flags); 3346 else 3347 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3348 } 3349 3350 static inline bool 3351 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp, void *ptr) 3352 { 3353 struct kvfree_rcu_bulk_data *bnode; 3354 int idx; 3355 3356 if (unlikely(!krcp->initialized)) 3357 return false; 3358 3359 lockdep_assert_held(&krcp->lock); 3360 idx = !!is_vmalloc_addr(ptr); 3361 3362 /* Check if a new block is required. */ 3363 if (!krcp->bkvhead[idx] || 3364 krcp->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3365 bnode = get_cached_bnode(krcp); 3366 if (!bnode) { 3367 /* 3368 * To keep this path working on raw non-preemptible 3369 * sections, prevent the optional entry into the 3370 * allocator as it uses sleeping locks. In fact, even 3371 * if the caller of kfree_rcu() is preemptible, this 3372 * path still is not, as krcp->lock is a raw spinlock. 3373 * With additional page pre-allocation in the works, 3374 * hitting this return is going to be much less likely. 3375 */ 3376 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 3377 return false; 3378 3379 /* 3380 * NOTE: For one argument of kvfree_rcu() we can 3381 * drop the lock and get the page in sleepable 3382 * context. That would allow to maintain an array 3383 * for the CONFIG_PREEMPT_RT as well if no cached 3384 * pages are available. 3385 */ 3386 bnode = (struct kvfree_rcu_bulk_data *) 3387 __get_free_page(GFP_NOWAIT | __GFP_NOWARN); 3388 } 3389 3390 /* Switch to emergency path. */ 3391 if (unlikely(!bnode)) 3392 return false; 3393 3394 /* Initialize the new block. */ 3395 bnode->nr_records = 0; 3396 bnode->next = krcp->bkvhead[idx]; 3397 3398 /* Attach it to the head. */ 3399 krcp->bkvhead[idx] = bnode; 3400 } 3401 3402 /* Finally insert. */ 3403 krcp->bkvhead[idx]->records 3404 [krcp->bkvhead[idx]->nr_records++] = ptr; 3405 3406 return true; 3407 } 3408 3409 /* 3410 * Queue a request for lazy invocation of appropriate free routine after a 3411 * grace period. Please note there are three paths are maintained, two are the 3412 * main ones that use array of pointers interface and third one is emergency 3413 * one, that is used only when the main path can not be maintained temporary, 3414 * due to memory pressure. 3415 * 3416 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3417 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3418 * be free'd in workqueue context. This allows us to: batch requests together to 3419 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3420 */ 3421 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3422 { 3423 unsigned long flags; 3424 struct kfree_rcu_cpu *krcp; 3425 bool success; 3426 void *ptr; 3427 3428 if (head) { 3429 ptr = (void *) head - (unsigned long) func; 3430 } else { 3431 /* 3432 * Please note there is a limitation for the head-less 3433 * variant, that is why there is a clear rule for such 3434 * objects: it can be used from might_sleep() context 3435 * only. For other places please embed an rcu_head to 3436 * your data. 3437 */ 3438 might_sleep(); 3439 ptr = (unsigned long *) func; 3440 } 3441 3442 krcp = krc_this_cpu_lock(&flags); 3443 3444 // Queue the object but don't yet schedule the batch. 3445 if (debug_rcu_head_queue(ptr)) { 3446 // Probable double kfree_rcu(), just leak. 3447 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3448 __func__, head); 3449 3450 // Mark as success and leave. 3451 success = true; 3452 goto unlock_return; 3453 } 3454 3455 /* 3456 * Under high memory pressure GFP_NOWAIT can fail, 3457 * in that case the emergency path is maintained. 3458 */ 3459 success = kvfree_call_rcu_add_ptr_to_bulk(krcp, ptr); 3460 if (!success) { 3461 if (head == NULL) 3462 // Inline if kvfree_rcu(one_arg) call. 3463 goto unlock_return; 3464 3465 head->func = func; 3466 head->next = krcp->head; 3467 krcp->head = head; 3468 success = true; 3469 } 3470 3471 WRITE_ONCE(krcp->count, krcp->count + 1); 3472 3473 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3474 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3475 !krcp->monitor_todo) { 3476 krcp->monitor_todo = true; 3477 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES); 3478 } 3479 3480 unlock_return: 3481 krc_this_cpu_unlock(krcp, flags); 3482 3483 /* 3484 * Inline kvfree() after synchronize_rcu(). We can do 3485 * it from might_sleep() context only, so the current 3486 * CPU can pass the QS state. 3487 */ 3488 if (!success) { 3489 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3490 synchronize_rcu(); 3491 kvfree(ptr); 3492 } 3493 } 3494 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3495 3496 static unsigned long 3497 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3498 { 3499 int cpu; 3500 unsigned long count = 0; 3501 3502 /* Snapshot count of all CPUs */ 3503 for_each_possible_cpu(cpu) { 3504 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3505 3506 count += READ_ONCE(krcp->count); 3507 } 3508 3509 return count; 3510 } 3511 3512 static unsigned long 3513 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3514 { 3515 int cpu, freed = 0; 3516 unsigned long flags; 3517 3518 for_each_possible_cpu(cpu) { 3519 int count; 3520 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3521 3522 count = krcp->count; 3523 raw_spin_lock_irqsave(&krcp->lock, flags); 3524 if (krcp->monitor_todo) 3525 kfree_rcu_drain_unlock(krcp, flags); 3526 else 3527 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3528 3529 sc->nr_to_scan -= count; 3530 freed += count; 3531 3532 if (sc->nr_to_scan <= 0) 3533 break; 3534 } 3535 3536 return freed == 0 ? SHRINK_STOP : freed; 3537 } 3538 3539 static struct shrinker kfree_rcu_shrinker = { 3540 .count_objects = kfree_rcu_shrink_count, 3541 .scan_objects = kfree_rcu_shrink_scan, 3542 .batch = 0, 3543 .seeks = DEFAULT_SEEKS, 3544 }; 3545 3546 void __init kfree_rcu_scheduler_running(void) 3547 { 3548 int cpu; 3549 unsigned long flags; 3550 3551 for_each_possible_cpu(cpu) { 3552 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3553 3554 raw_spin_lock_irqsave(&krcp->lock, flags); 3555 if (!krcp->head || krcp->monitor_todo) { 3556 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3557 continue; 3558 } 3559 krcp->monitor_todo = true; 3560 schedule_delayed_work_on(cpu, &krcp->monitor_work, 3561 KFREE_DRAIN_JIFFIES); 3562 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3563 } 3564 } 3565 3566 /* 3567 * During early boot, any blocking grace-period wait automatically 3568 * implies a grace period. Later on, this is never the case for PREEMPTION. 3569 * 3570 * Howevr, because a context switch is a grace period for !PREEMPTION, any 3571 * blocking grace-period wait automatically implies a grace period if 3572 * there is only one CPU online at any point time during execution of 3573 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to 3574 * occasionally incorrectly indicate that there are multiple CPUs online 3575 * when there was in fact only one the whole time, as this just adds some 3576 * overhead: RCU still operates correctly. 3577 */ 3578 static int rcu_blocking_is_gp(void) 3579 { 3580 int ret; 3581 3582 if (IS_ENABLED(CONFIG_PREEMPTION)) 3583 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE; 3584 might_sleep(); /* Check for RCU read-side critical section. */ 3585 preempt_disable(); 3586 ret = num_online_cpus() <= 1; 3587 preempt_enable(); 3588 return ret; 3589 } 3590 3591 /** 3592 * synchronize_rcu - wait until a grace period has elapsed. 3593 * 3594 * Control will return to the caller some time after a full grace 3595 * period has elapsed, in other words after all currently executing RCU 3596 * read-side critical sections have completed. Note, however, that 3597 * upon return from synchronize_rcu(), the caller might well be executing 3598 * concurrently with new RCU read-side critical sections that began while 3599 * synchronize_rcu() was waiting. RCU read-side critical sections are 3600 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested. 3601 * In addition, regions of code across which interrupts, preemption, or 3602 * softirqs have been disabled also serve as RCU read-side critical 3603 * sections. This includes hardware interrupt handlers, softirq handlers, 3604 * and NMI handlers. 3605 * 3606 * Note that this guarantee implies further memory-ordering guarantees. 3607 * On systems with more than one CPU, when synchronize_rcu() returns, 3608 * each CPU is guaranteed to have executed a full memory barrier since 3609 * the end of its last RCU read-side critical section whose beginning 3610 * preceded the call to synchronize_rcu(). In addition, each CPU having 3611 * an RCU read-side critical section that extends beyond the return from 3612 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3613 * after the beginning of synchronize_rcu() and before the beginning of 3614 * that RCU read-side critical section. Note that these guarantees include 3615 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3616 * that are executing in the kernel. 3617 * 3618 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3619 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3620 * to have executed a full memory barrier during the execution of 3621 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3622 * again only if the system has more than one CPU). 3623 */ 3624 void synchronize_rcu(void) 3625 { 3626 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3627 lock_is_held(&rcu_lock_map) || 3628 lock_is_held(&rcu_sched_lock_map), 3629 "Illegal synchronize_rcu() in RCU read-side critical section"); 3630 if (rcu_blocking_is_gp()) 3631 return; 3632 if (rcu_gp_is_expedited()) 3633 synchronize_rcu_expedited(); 3634 else 3635 wait_rcu_gp(call_rcu); 3636 } 3637 EXPORT_SYMBOL_GPL(synchronize_rcu); 3638 3639 /** 3640 * get_state_synchronize_rcu - Snapshot current RCU state 3641 * 3642 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3643 * to determine whether or not a full grace period has elapsed in the 3644 * meantime. 3645 */ 3646 unsigned long get_state_synchronize_rcu(void) 3647 { 3648 /* 3649 * Any prior manipulation of RCU-protected data must happen 3650 * before the load from ->gp_seq. 3651 */ 3652 smp_mb(); /* ^^^ */ 3653 return rcu_seq_snap(&rcu_state.gp_seq); 3654 } 3655 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3656 3657 /** 3658 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3659 * 3660 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3661 * 3662 * If a full RCU grace period has elapsed since the earlier call to 3663 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3664 * synchronize_rcu() to wait for a full grace period. 3665 * 3666 * Yes, this function does not take counter wrap into account. But 3667 * counter wrap is harmless. If the counter wraps, we have waited for 3668 * more than 2 billion grace periods (and way more on a 64-bit system!), 3669 * so waiting for one additional grace period should be just fine. 3670 */ 3671 void cond_synchronize_rcu(unsigned long oldstate) 3672 { 3673 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate)) 3674 synchronize_rcu(); 3675 else 3676 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3677 } 3678 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3679 3680 /* 3681 * Check to see if there is any immediate RCU-related work to be done by 3682 * the current CPU, returning 1 if so and zero otherwise. The checks are 3683 * in order of increasing expense: checks that can be carried out against 3684 * CPU-local state are performed first. However, we must check for CPU 3685 * stalls first, else we might not get a chance. 3686 */ 3687 static int rcu_pending(int user) 3688 { 3689 bool gp_in_progress; 3690 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3691 struct rcu_node *rnp = rdp->mynode; 3692 3693 /* Check for CPU stalls, if enabled. */ 3694 check_cpu_stall(rdp); 3695 3696 /* Does this CPU need a deferred NOCB wakeup? */ 3697 if (rcu_nocb_need_deferred_wakeup(rdp)) 3698 return 1; 3699 3700 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3701 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3702 return 0; 3703 3704 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3705 gp_in_progress = rcu_gp_in_progress(); 3706 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3707 return 1; 3708 3709 /* Does this CPU have callbacks ready to invoke? */ 3710 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 3711 return 1; 3712 3713 /* Has RCU gone idle with this CPU needing another grace period? */ 3714 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3715 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) || 3716 !rcu_segcblist_is_offloaded(&rdp->cblist)) && 3717 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3718 return 1; 3719 3720 /* Have RCU grace period completed or started? */ 3721 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3722 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3723 return 1; 3724 3725 /* nothing to do */ 3726 return 0; 3727 } 3728 3729 /* 3730 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3731 * the compiler is expected to optimize this away. 3732 */ 3733 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3734 { 3735 trace_rcu_barrier(rcu_state.name, s, cpu, 3736 atomic_read(&rcu_state.barrier_cpu_count), done); 3737 } 3738 3739 /* 3740 * RCU callback function for rcu_barrier(). If we are last, wake 3741 * up the task executing rcu_barrier(). 3742 * 3743 * Note that the value of rcu_state.barrier_sequence must be captured 3744 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3745 * other CPUs might count the value down to zero before this CPU gets 3746 * around to invoking rcu_barrier_trace(), which might result in bogus 3747 * data from the next instance of rcu_barrier(). 3748 */ 3749 static void rcu_barrier_callback(struct rcu_head *rhp) 3750 { 3751 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3752 3753 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3754 rcu_barrier_trace(TPS("LastCB"), -1, s); 3755 complete(&rcu_state.barrier_completion); 3756 } else { 3757 rcu_barrier_trace(TPS("CB"), -1, s); 3758 } 3759 } 3760 3761 /* 3762 * Called with preemption disabled, and from cross-cpu IRQ context. 3763 */ 3764 static void rcu_barrier_func(void *cpu_in) 3765 { 3766 uintptr_t cpu = (uintptr_t)cpu_in; 3767 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3768 3769 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3770 rdp->barrier_head.func = rcu_barrier_callback; 3771 debug_rcu_head_queue(&rdp->barrier_head); 3772 rcu_nocb_lock(rdp); 3773 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3774 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3775 atomic_inc(&rcu_state.barrier_cpu_count); 3776 } else { 3777 debug_rcu_head_unqueue(&rdp->barrier_head); 3778 rcu_barrier_trace(TPS("IRQNQ"), -1, 3779 rcu_state.barrier_sequence); 3780 } 3781 rcu_nocb_unlock(rdp); 3782 } 3783 3784 /** 3785 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3786 * 3787 * Note that this primitive does not necessarily wait for an RCU grace period 3788 * to complete. For example, if there are no RCU callbacks queued anywhere 3789 * in the system, then rcu_barrier() is within its rights to return 3790 * immediately, without waiting for anything, much less an RCU grace period. 3791 */ 3792 void rcu_barrier(void) 3793 { 3794 uintptr_t cpu; 3795 struct rcu_data *rdp; 3796 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3797 3798 rcu_barrier_trace(TPS("Begin"), -1, s); 3799 3800 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3801 mutex_lock(&rcu_state.barrier_mutex); 3802 3803 /* Did someone else do our work for us? */ 3804 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3805 rcu_barrier_trace(TPS("EarlyExit"), -1, 3806 rcu_state.barrier_sequence); 3807 smp_mb(); /* caller's subsequent code after above check. */ 3808 mutex_unlock(&rcu_state.barrier_mutex); 3809 return; 3810 } 3811 3812 /* Mark the start of the barrier operation. */ 3813 rcu_seq_start(&rcu_state.barrier_sequence); 3814 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3815 3816 /* 3817 * Initialize the count to two rather than to zero in order 3818 * to avoid a too-soon return to zero in case of an immediate 3819 * invocation of the just-enqueued callback (or preemption of 3820 * this task). Exclude CPU-hotplug operations to ensure that no 3821 * offline non-offloaded CPU has callbacks queued. 3822 */ 3823 init_completion(&rcu_state.barrier_completion); 3824 atomic_set(&rcu_state.barrier_cpu_count, 2); 3825 get_online_cpus(); 3826 3827 /* 3828 * Force each CPU with callbacks to register a new callback. 3829 * When that callback is invoked, we will know that all of the 3830 * corresponding CPU's preceding callbacks have been invoked. 3831 */ 3832 for_each_possible_cpu(cpu) { 3833 rdp = per_cpu_ptr(&rcu_data, cpu); 3834 if (cpu_is_offline(cpu) && 3835 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3836 continue; 3837 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) { 3838 rcu_barrier_trace(TPS("OnlineQ"), cpu, 3839 rcu_state.barrier_sequence); 3840 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1); 3841 } else if (rcu_segcblist_n_cbs(&rdp->cblist) && 3842 cpu_is_offline(cpu)) { 3843 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, 3844 rcu_state.barrier_sequence); 3845 local_irq_disable(); 3846 rcu_barrier_func((void *)cpu); 3847 local_irq_enable(); 3848 } else if (cpu_is_offline(cpu)) { 3849 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu, 3850 rcu_state.barrier_sequence); 3851 } else { 3852 rcu_barrier_trace(TPS("OnlineNQ"), cpu, 3853 rcu_state.barrier_sequence); 3854 } 3855 } 3856 put_online_cpus(); 3857 3858 /* 3859 * Now that we have an rcu_barrier_callback() callback on each 3860 * CPU, and thus each counted, remove the initial count. 3861 */ 3862 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 3863 complete(&rcu_state.barrier_completion); 3864 3865 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3866 wait_for_completion(&rcu_state.barrier_completion); 3867 3868 /* Mark the end of the barrier operation. */ 3869 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 3870 rcu_seq_end(&rcu_state.barrier_sequence); 3871 3872 /* Other rcu_barrier() invocations can now safely proceed. */ 3873 mutex_unlock(&rcu_state.barrier_mutex); 3874 } 3875 EXPORT_SYMBOL_GPL(rcu_barrier); 3876 3877 /* 3878 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 3879 * first CPU in a given leaf rcu_node structure coming online. The caller 3880 * must hold the corresponding leaf rcu_node ->lock with interrrupts 3881 * disabled. 3882 */ 3883 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 3884 { 3885 long mask; 3886 long oldmask; 3887 struct rcu_node *rnp = rnp_leaf; 3888 3889 raw_lockdep_assert_held_rcu_node(rnp_leaf); 3890 WARN_ON_ONCE(rnp->wait_blkd_tasks); 3891 for (;;) { 3892 mask = rnp->grpmask; 3893 rnp = rnp->parent; 3894 if (rnp == NULL) 3895 return; 3896 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 3897 oldmask = rnp->qsmaskinit; 3898 rnp->qsmaskinit |= mask; 3899 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 3900 if (oldmask) 3901 return; 3902 } 3903 } 3904 3905 /* 3906 * Do boot-time initialization of a CPU's per-CPU RCU data. 3907 */ 3908 static void __init 3909 rcu_boot_init_percpu_data(int cpu) 3910 { 3911 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3912 3913 /* Set up local state, ensuring consistent view of global state. */ 3914 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 3915 INIT_WORK(&rdp->strict_work, strict_work_handler); 3916 WARN_ON_ONCE(rdp->dynticks_nesting != 1); 3917 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp))); 3918 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 3919 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 3920 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 3921 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 3922 rdp->cpu = cpu; 3923 rcu_boot_init_nocb_percpu_data(rdp); 3924 } 3925 3926 /* 3927 * Invoked early in the CPU-online process, when pretty much all services 3928 * are available. The incoming CPU is not present. 3929 * 3930 * Initializes a CPU's per-CPU RCU data. Note that only one online or 3931 * offline event can be happening at a given time. Note also that we can 3932 * accept some slop in the rsp->gp_seq access due to the fact that this 3933 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 3934 * And any offloaded callbacks are being numbered elsewhere. 3935 */ 3936 int rcutree_prepare_cpu(unsigned int cpu) 3937 { 3938 unsigned long flags; 3939 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3940 struct rcu_node *rnp = rcu_get_root(); 3941 3942 /* Set up local state, ensuring consistent view of global state. */ 3943 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3944 rdp->qlen_last_fqs_check = 0; 3945 rdp->n_force_qs_snap = rcu_state.n_force_qs; 3946 rdp->blimit = blimit; 3947 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ 3948 !rcu_segcblist_is_offloaded(&rdp->cblist)) 3949 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 3950 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */ 3951 rcu_dynticks_eqs_online(); 3952 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 3953 3954 /* 3955 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 3956 * propagation up the rcu_node tree will happen at the beginning 3957 * of the next grace period. 3958 */ 3959 rnp = rdp->mynode; 3960 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 3961 rdp->beenonline = true; /* We have now been online. */ 3962 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 3963 rdp->gp_seq_needed = rdp->gp_seq; 3964 rdp->cpu_no_qs.b.norm = true; 3965 rdp->core_needs_qs = false; 3966 rdp->rcu_iw_pending = false; 3967 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 3968 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 3969 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3970 rcu_prepare_kthreads(cpu); 3971 rcu_spawn_cpu_nocb_kthread(cpu); 3972 3973 return 0; 3974 } 3975 3976 /* 3977 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 3978 */ 3979 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 3980 { 3981 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3982 3983 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 3984 } 3985 3986 /* 3987 * Near the end of the CPU-online process. Pretty much all services 3988 * enabled, and the CPU is now very much alive. 3989 */ 3990 int rcutree_online_cpu(unsigned int cpu) 3991 { 3992 unsigned long flags; 3993 struct rcu_data *rdp; 3994 struct rcu_node *rnp; 3995 3996 rdp = per_cpu_ptr(&rcu_data, cpu); 3997 rnp = rdp->mynode; 3998 raw_spin_lock_irqsave_rcu_node(rnp, flags); 3999 rnp->ffmask |= rdp->grpmask; 4000 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4001 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4002 return 0; /* Too early in boot for scheduler work. */ 4003 sync_sched_exp_online_cleanup(cpu); 4004 rcutree_affinity_setting(cpu, -1); 4005 4006 // Stop-machine done, so allow nohz_full to disable tick. 4007 tick_dep_clear(TICK_DEP_BIT_RCU); 4008 return 0; 4009 } 4010 4011 /* 4012 * Near the beginning of the process. The CPU is still very much alive 4013 * with pretty much all services enabled. 4014 */ 4015 int rcutree_offline_cpu(unsigned int cpu) 4016 { 4017 unsigned long flags; 4018 struct rcu_data *rdp; 4019 struct rcu_node *rnp; 4020 4021 rdp = per_cpu_ptr(&rcu_data, cpu); 4022 rnp = rdp->mynode; 4023 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4024 rnp->ffmask &= ~rdp->grpmask; 4025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4026 4027 rcutree_affinity_setting(cpu, cpu); 4028 4029 // nohz_full CPUs need the tick for stop-machine to work quickly 4030 tick_dep_set(TICK_DEP_BIT_RCU); 4031 return 0; 4032 } 4033 4034 /* 4035 * Mark the specified CPU as being online so that subsequent grace periods 4036 * (both expedited and normal) will wait on it. Note that this means that 4037 * incoming CPUs are not allowed to use RCU read-side critical sections 4038 * until this function is called. Failing to observe this restriction 4039 * will result in lockdep splats. 4040 * 4041 * Note that this function is special in that it is invoked directly 4042 * from the incoming CPU rather than from the cpuhp_step mechanism. 4043 * This is because this function must be invoked at a precise location. 4044 */ 4045 void rcu_cpu_starting(unsigned int cpu) 4046 { 4047 unsigned long flags; 4048 unsigned long mask; 4049 struct rcu_data *rdp; 4050 struct rcu_node *rnp; 4051 bool newcpu; 4052 4053 rdp = per_cpu_ptr(&rcu_data, cpu); 4054 if (rdp->cpu_started) 4055 return; 4056 rdp->cpu_started = true; 4057 4058 rnp = rdp->mynode; 4059 mask = rdp->grpmask; 4060 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4061 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4062 newcpu = !(rnp->expmaskinitnext & mask); 4063 rnp->expmaskinitnext |= mask; 4064 /* Allow lockless access for expedited grace periods. */ 4065 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4066 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4067 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4068 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4069 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4070 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */ 4071 rcu_disable_urgency_upon_qs(rdp); 4072 /* Report QS -after- changing ->qsmaskinitnext! */ 4073 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4074 } else { 4075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4076 } 4077 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4078 } 4079 4080 #ifdef CONFIG_HOTPLUG_CPU 4081 /* 4082 * The outgoing function has no further need of RCU, so remove it from 4083 * the rcu_node tree's ->qsmaskinitnext bit masks. 4084 * 4085 * Note that this function is special in that it is invoked directly 4086 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4087 * This is because this function must be invoked at a precise location. 4088 */ 4089 void rcu_report_dead(unsigned int cpu) 4090 { 4091 unsigned long flags; 4092 unsigned long mask; 4093 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4094 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4095 4096 /* QS for any half-done expedited grace period. */ 4097 preempt_disable(); 4098 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data)); 4099 preempt_enable(); 4100 rcu_preempt_deferred_qs(current); 4101 4102 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4103 mask = rdp->grpmask; 4104 raw_spin_lock(&rcu_state.ofl_lock); 4105 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4106 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4107 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4108 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4109 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4110 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4111 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4112 } 4113 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4114 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4115 raw_spin_unlock(&rcu_state.ofl_lock); 4116 4117 rdp->cpu_started = false; 4118 } 4119 4120 /* 4121 * The outgoing CPU has just passed through the dying-idle state, and we 4122 * are being invoked from the CPU that was IPIed to continue the offline 4123 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4124 */ 4125 void rcutree_migrate_callbacks(int cpu) 4126 { 4127 unsigned long flags; 4128 struct rcu_data *my_rdp; 4129 struct rcu_node *my_rnp; 4130 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4131 bool needwake; 4132 4133 if (rcu_segcblist_is_offloaded(&rdp->cblist) || 4134 rcu_segcblist_empty(&rdp->cblist)) 4135 return; /* No callbacks to migrate. */ 4136 4137 local_irq_save(flags); 4138 my_rdp = this_cpu_ptr(&rcu_data); 4139 my_rnp = my_rdp->mynode; 4140 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4141 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4142 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4143 /* Leverage recent GPs and set GP for new callbacks. */ 4144 needwake = rcu_advance_cbs(my_rnp, rdp) || 4145 rcu_advance_cbs(my_rnp, my_rdp); 4146 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4147 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4148 rcu_segcblist_disable(&rdp->cblist); 4149 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != 4150 !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4151 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) { 4152 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4153 __call_rcu_nocb_wake(my_rdp, true, flags); 4154 } else { 4155 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4156 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4157 } 4158 if (needwake) 4159 rcu_gp_kthread_wake(); 4160 lockdep_assert_irqs_enabled(); 4161 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4162 !rcu_segcblist_empty(&rdp->cblist), 4163 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4164 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4165 rcu_segcblist_first_cb(&rdp->cblist)); 4166 } 4167 #endif 4168 4169 /* 4170 * On non-huge systems, use expedited RCU grace periods to make suspend 4171 * and hibernation run faster. 4172 */ 4173 static int rcu_pm_notify(struct notifier_block *self, 4174 unsigned long action, void *hcpu) 4175 { 4176 switch (action) { 4177 case PM_HIBERNATION_PREPARE: 4178 case PM_SUSPEND_PREPARE: 4179 rcu_expedite_gp(); 4180 break; 4181 case PM_POST_HIBERNATION: 4182 case PM_POST_SUSPEND: 4183 rcu_unexpedite_gp(); 4184 break; 4185 default: 4186 break; 4187 } 4188 return NOTIFY_OK; 4189 } 4190 4191 /* 4192 * Spawn the kthreads that handle RCU's grace periods. 4193 */ 4194 static int __init rcu_spawn_gp_kthread(void) 4195 { 4196 unsigned long flags; 4197 int kthread_prio_in = kthread_prio; 4198 struct rcu_node *rnp; 4199 struct sched_param sp; 4200 struct task_struct *t; 4201 4202 /* Force priority into range. */ 4203 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4204 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4205 kthread_prio = 2; 4206 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4207 kthread_prio = 1; 4208 else if (kthread_prio < 0) 4209 kthread_prio = 0; 4210 else if (kthread_prio > 99) 4211 kthread_prio = 99; 4212 4213 if (kthread_prio != kthread_prio_in) 4214 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 4215 kthread_prio, kthread_prio_in); 4216 4217 rcu_scheduler_fully_active = 1; 4218 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4219 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4220 return 0; 4221 if (kthread_prio) { 4222 sp.sched_priority = kthread_prio; 4223 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4224 } 4225 rnp = rcu_get_root(); 4226 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4227 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4228 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4229 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4230 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4231 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4232 wake_up_process(t); 4233 rcu_spawn_nocb_kthreads(); 4234 rcu_spawn_boost_kthreads(); 4235 return 0; 4236 } 4237 early_initcall(rcu_spawn_gp_kthread); 4238 4239 /* 4240 * This function is invoked towards the end of the scheduler's 4241 * initialization process. Before this is called, the idle task might 4242 * contain synchronous grace-period primitives (during which time, this idle 4243 * task is booting the system, and such primitives are no-ops). After this 4244 * function is called, any synchronous grace-period primitives are run as 4245 * expedited, with the requesting task driving the grace period forward. 4246 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4247 * runtime RCU functionality. 4248 */ 4249 void rcu_scheduler_starting(void) 4250 { 4251 WARN_ON(num_online_cpus() != 1); 4252 WARN_ON(nr_context_switches() > 0); 4253 rcu_test_sync_prims(); 4254 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4255 rcu_test_sync_prims(); 4256 } 4257 4258 /* 4259 * Helper function for rcu_init() that initializes the rcu_state structure. 4260 */ 4261 static void __init rcu_init_one(void) 4262 { 4263 static const char * const buf[] = RCU_NODE_NAME_INIT; 4264 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4265 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4266 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4267 4268 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4269 int cpustride = 1; 4270 int i; 4271 int j; 4272 struct rcu_node *rnp; 4273 4274 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4275 4276 /* Silence gcc 4.8 false positive about array index out of range. */ 4277 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4278 panic("rcu_init_one: rcu_num_lvls out of range"); 4279 4280 /* Initialize the level-tracking arrays. */ 4281 4282 for (i = 1; i < rcu_num_lvls; i++) 4283 rcu_state.level[i] = 4284 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4285 rcu_init_levelspread(levelspread, num_rcu_lvl); 4286 4287 /* Initialize the elements themselves, starting from the leaves. */ 4288 4289 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4290 cpustride *= levelspread[i]; 4291 rnp = rcu_state.level[i]; 4292 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4293 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4294 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4295 &rcu_node_class[i], buf[i]); 4296 raw_spin_lock_init(&rnp->fqslock); 4297 lockdep_set_class_and_name(&rnp->fqslock, 4298 &rcu_fqs_class[i], fqs[i]); 4299 rnp->gp_seq = rcu_state.gp_seq; 4300 rnp->gp_seq_needed = rcu_state.gp_seq; 4301 rnp->completedqs = rcu_state.gp_seq; 4302 rnp->qsmask = 0; 4303 rnp->qsmaskinit = 0; 4304 rnp->grplo = j * cpustride; 4305 rnp->grphi = (j + 1) * cpustride - 1; 4306 if (rnp->grphi >= nr_cpu_ids) 4307 rnp->grphi = nr_cpu_ids - 1; 4308 if (i == 0) { 4309 rnp->grpnum = 0; 4310 rnp->grpmask = 0; 4311 rnp->parent = NULL; 4312 } else { 4313 rnp->grpnum = j % levelspread[i - 1]; 4314 rnp->grpmask = BIT(rnp->grpnum); 4315 rnp->parent = rcu_state.level[i - 1] + 4316 j / levelspread[i - 1]; 4317 } 4318 rnp->level = i; 4319 INIT_LIST_HEAD(&rnp->blkd_tasks); 4320 rcu_init_one_nocb(rnp); 4321 init_waitqueue_head(&rnp->exp_wq[0]); 4322 init_waitqueue_head(&rnp->exp_wq[1]); 4323 init_waitqueue_head(&rnp->exp_wq[2]); 4324 init_waitqueue_head(&rnp->exp_wq[3]); 4325 spin_lock_init(&rnp->exp_lock); 4326 } 4327 } 4328 4329 init_swait_queue_head(&rcu_state.gp_wq); 4330 init_swait_queue_head(&rcu_state.expedited_wq); 4331 rnp = rcu_first_leaf_node(); 4332 for_each_possible_cpu(i) { 4333 while (i > rnp->grphi) 4334 rnp++; 4335 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4336 rcu_boot_init_percpu_data(i); 4337 } 4338 } 4339 4340 /* 4341 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4342 * replace the definitions in tree.h because those are needed to size 4343 * the ->node array in the rcu_state structure. 4344 */ 4345 static void __init rcu_init_geometry(void) 4346 { 4347 ulong d; 4348 int i; 4349 int rcu_capacity[RCU_NUM_LVLS]; 4350 4351 /* 4352 * Initialize any unspecified boot parameters. 4353 * The default values of jiffies_till_first_fqs and 4354 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4355 * value, which is a function of HZ, then adding one for each 4356 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4357 */ 4358 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4359 if (jiffies_till_first_fqs == ULONG_MAX) 4360 jiffies_till_first_fqs = d; 4361 if (jiffies_till_next_fqs == ULONG_MAX) 4362 jiffies_till_next_fqs = d; 4363 adjust_jiffies_till_sched_qs(); 4364 4365 /* If the compile-time values are accurate, just leave. */ 4366 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4367 nr_cpu_ids == NR_CPUS) 4368 return; 4369 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4370 rcu_fanout_leaf, nr_cpu_ids); 4371 4372 /* 4373 * The boot-time rcu_fanout_leaf parameter must be at least two 4374 * and cannot exceed the number of bits in the rcu_node masks. 4375 * Complain and fall back to the compile-time values if this 4376 * limit is exceeded. 4377 */ 4378 if (rcu_fanout_leaf < 2 || 4379 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4380 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4381 WARN_ON(1); 4382 return; 4383 } 4384 4385 /* 4386 * Compute number of nodes that can be handled an rcu_node tree 4387 * with the given number of levels. 4388 */ 4389 rcu_capacity[0] = rcu_fanout_leaf; 4390 for (i = 1; i < RCU_NUM_LVLS; i++) 4391 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4392 4393 /* 4394 * The tree must be able to accommodate the configured number of CPUs. 4395 * If this limit is exceeded, fall back to the compile-time values. 4396 */ 4397 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4398 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4399 WARN_ON(1); 4400 return; 4401 } 4402 4403 /* Calculate the number of levels in the tree. */ 4404 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4405 } 4406 rcu_num_lvls = i + 1; 4407 4408 /* Calculate the number of rcu_nodes at each level of the tree. */ 4409 for (i = 0; i < rcu_num_lvls; i++) { 4410 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4411 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4412 } 4413 4414 /* Calculate the total number of rcu_node structures. */ 4415 rcu_num_nodes = 0; 4416 for (i = 0; i < rcu_num_lvls; i++) 4417 rcu_num_nodes += num_rcu_lvl[i]; 4418 } 4419 4420 /* 4421 * Dump out the structure of the rcu_node combining tree associated 4422 * with the rcu_state structure. 4423 */ 4424 static void __init rcu_dump_rcu_node_tree(void) 4425 { 4426 int level = 0; 4427 struct rcu_node *rnp; 4428 4429 pr_info("rcu_node tree layout dump\n"); 4430 pr_info(" "); 4431 rcu_for_each_node_breadth_first(rnp) { 4432 if (rnp->level != level) { 4433 pr_cont("\n"); 4434 pr_info(" "); 4435 level = rnp->level; 4436 } 4437 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4438 } 4439 pr_cont("\n"); 4440 } 4441 4442 struct workqueue_struct *rcu_gp_wq; 4443 struct workqueue_struct *rcu_par_gp_wq; 4444 4445 static void __init kfree_rcu_batch_init(void) 4446 { 4447 int cpu; 4448 int i; 4449 4450 for_each_possible_cpu(cpu) { 4451 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4452 struct kvfree_rcu_bulk_data *bnode; 4453 4454 for (i = 0; i < KFREE_N_BATCHES; i++) { 4455 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4456 krcp->krw_arr[i].krcp = krcp; 4457 } 4458 4459 for (i = 0; i < rcu_min_cached_objs; i++) { 4460 bnode = (struct kvfree_rcu_bulk_data *) 4461 __get_free_page(GFP_NOWAIT | __GFP_NOWARN); 4462 4463 if (bnode) 4464 put_cached_bnode(krcp, bnode); 4465 else 4466 pr_err("Failed to preallocate for %d CPU!\n", cpu); 4467 } 4468 4469 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4470 krcp->initialized = true; 4471 } 4472 if (register_shrinker(&kfree_rcu_shrinker)) 4473 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4474 } 4475 4476 void __init rcu_init(void) 4477 { 4478 int cpu; 4479 4480 rcu_early_boot_tests(); 4481 4482 kfree_rcu_batch_init(); 4483 rcu_bootup_announce(); 4484 rcu_init_geometry(); 4485 rcu_init_one(); 4486 if (dump_tree) 4487 rcu_dump_rcu_node_tree(); 4488 if (use_softirq) 4489 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4490 4491 /* 4492 * We don't need protection against CPU-hotplug here because 4493 * this is called early in boot, before either interrupts 4494 * or the scheduler are operational. 4495 */ 4496 pm_notifier(rcu_pm_notify, 0); 4497 for_each_online_cpu(cpu) { 4498 rcutree_prepare_cpu(cpu); 4499 rcu_cpu_starting(cpu); 4500 rcutree_online_cpu(cpu); 4501 } 4502 4503 /* Create workqueue for expedited GPs and for Tree SRCU. */ 4504 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4505 WARN_ON(!rcu_gp_wq); 4506 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4507 WARN_ON(!rcu_par_gp_wq); 4508 srcu_init(); 4509 4510 /* Fill in default value for rcutree.qovld boot parameter. */ 4511 /* -After- the rcu_node ->lock fields are initialized! */ 4512 if (qovld < 0) 4513 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4514 else 4515 qovld_calc = qovld; 4516 } 4517 4518 #include "tree_stall.h" 4519 #include "tree_exp.h" 4520 #include "tree_plugin.h" 4521