1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version) 4 * 5 * Copyright IBM Corporation, 2008 6 * 7 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 8 * Manfred Spraul <manfred@colorfullife.com> 9 * Paul E. McKenney <paulmck@linux.ibm.com> 10 * 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com> 12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 13 * 14 * For detailed explanation of Read-Copy Update mechanism see - 15 * Documentation/RCU 16 */ 17 18 #define pr_fmt(fmt) "rcu: " fmt 19 20 #include <linux/types.h> 21 #include <linux/kernel.h> 22 #include <linux/init.h> 23 #include <linux/spinlock.h> 24 #include <linux/smp.h> 25 #include <linux/rcupdate_wait.h> 26 #include <linux/interrupt.h> 27 #include <linux/sched.h> 28 #include <linux/sched/debug.h> 29 #include <linux/nmi.h> 30 #include <linux/atomic.h> 31 #include <linux/bitops.h> 32 #include <linux/export.h> 33 #include <linux/completion.h> 34 #include <linux/moduleparam.h> 35 #include <linux/panic.h> 36 #include <linux/panic_notifier.h> 37 #include <linux/percpu.h> 38 #include <linux/notifier.h> 39 #include <linux/cpu.h> 40 #include <linux/mutex.h> 41 #include <linux/time.h> 42 #include <linux/kernel_stat.h> 43 #include <linux/wait.h> 44 #include <linux/kthread.h> 45 #include <uapi/linux/sched/types.h> 46 #include <linux/prefetch.h> 47 #include <linux/delay.h> 48 #include <linux/random.h> 49 #include <linux/trace_events.h> 50 #include <linux/suspend.h> 51 #include <linux/ftrace.h> 52 #include <linux/tick.h> 53 #include <linux/sysrq.h> 54 #include <linux/kprobes.h> 55 #include <linux/gfp.h> 56 #include <linux/oom.h> 57 #include <linux/smpboot.h> 58 #include <linux/jiffies.h> 59 #include <linux/slab.h> 60 #include <linux/sched/isolation.h> 61 #include <linux/sched/clock.h> 62 #include <linux/vmalloc.h> 63 #include <linux/mm.h> 64 #include <linux/kasan.h> 65 #include <linux/context_tracking.h> 66 #include "../time/tick-internal.h" 67 68 #include "tree.h" 69 #include "rcu.h" 70 71 #ifdef MODULE_PARAM_PREFIX 72 #undef MODULE_PARAM_PREFIX 73 #endif 74 #define MODULE_PARAM_PREFIX "rcutree." 75 76 /* Data structures. */ 77 78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = { 79 .gpwrap = true, 80 #ifdef CONFIG_RCU_NOCB_CPU 81 .cblist.flags = SEGCBLIST_RCU_CORE, 82 #endif 83 }; 84 static struct rcu_state rcu_state = { 85 .level = { &rcu_state.node[0] }, 86 .gp_state = RCU_GP_IDLE, 87 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, 88 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex), 89 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock), 90 .name = RCU_NAME, 91 .abbr = RCU_ABBR, 92 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex), 93 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex), 94 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED, 95 }; 96 97 /* Dump rcu_node combining tree at boot to verify correct setup. */ 98 static bool dump_tree; 99 module_param(dump_tree, bool, 0444); 100 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */ 101 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT); 102 #ifndef CONFIG_PREEMPT_RT 103 module_param(use_softirq, bool, 0444); 104 #endif 105 /* Control rcu_node-tree auto-balancing at boot time. */ 106 static bool rcu_fanout_exact; 107 module_param(rcu_fanout_exact, bool, 0444); 108 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ 109 static int rcu_fanout_leaf = RCU_FANOUT_LEAF; 110 module_param(rcu_fanout_leaf, int, 0444); 111 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 112 /* Number of rcu_nodes at specified level. */ 113 int num_rcu_lvl[] = NUM_RCU_LVL_INIT; 114 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 115 116 /* 117 * The rcu_scheduler_active variable is initialized to the value 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the 119 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, 120 * RCU can assume that there is but one task, allowing RCU to (for example) 121 * optimize synchronize_rcu() to a simple barrier(). When this variable 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required 123 * to detect real grace periods. This variable is also used to suppress 124 * boot-time false positives from lockdep-RCU error checking. Finally, it 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU 126 * is fully initialized, including all of its kthreads having been spawned. 127 */ 128 int rcu_scheduler_active __read_mostly; 129 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 130 131 /* 132 * The rcu_scheduler_fully_active variable transitions from zero to one 133 * during the early_initcall() processing, which is after the scheduler 134 * is capable of creating new tasks. So RCU processing (for example, 135 * creating tasks for RCU priority boosting) must be delayed until after 136 * rcu_scheduler_fully_active transitions from zero to one. We also 137 * currently delay invocation of any RCU callbacks until after this point. 138 * 139 * It might later prove better for people registering RCU callbacks during 140 * early boot to take responsibility for these callbacks, but one step at 141 * a time. 142 */ 143 static int rcu_scheduler_fully_active __read_mostly; 144 145 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 146 unsigned long gps, unsigned long flags); 147 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); 148 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); 149 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 150 static void invoke_rcu_core(void); 151 static void rcu_report_exp_rdp(struct rcu_data *rdp); 152 static void sync_sched_exp_online_cleanup(int cpu); 153 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp); 154 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp); 155 156 /* 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop" 158 * real-time priority(enabling/disabling) is controlled by 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration. 160 */ 161 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; 162 module_param(kthread_prio, int, 0444); 163 164 /* Delay in jiffies for grace-period initialization delays, debug only. */ 165 166 static int gp_preinit_delay; 167 module_param(gp_preinit_delay, int, 0444); 168 static int gp_init_delay; 169 module_param(gp_init_delay, int, 0444); 170 static int gp_cleanup_delay; 171 module_param(gp_cleanup_delay, int, 0444); 172 173 // Add delay to rcu_read_unlock() for strict grace periods. 174 static int rcu_unlock_delay; 175 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD 176 module_param(rcu_unlock_delay, int, 0444); 177 #endif 178 179 /* 180 * This rcu parameter is runtime-read-only. It reflects 181 * a minimum allowed number of objects which can be cached 182 * per-CPU. Object size is equal to one page. This value 183 * can be changed at boot time. 184 */ 185 static int rcu_min_cached_objs = 5; 186 module_param(rcu_min_cached_objs, int, 0444); 187 188 // A page shrinker can ask for pages to be freed to make them 189 // available for other parts of the system. This usually happens 190 // under low memory conditions, and in that case we should also 191 // defer page-cache filling for a short time period. 192 // 193 // The default value is 5 seconds, which is long enough to reduce 194 // interference with the shrinker while it asks other systems to 195 // drain their caches. 196 static int rcu_delay_page_cache_fill_msec = 5000; 197 module_param(rcu_delay_page_cache_fill_msec, int, 0444); 198 199 /* Retrieve RCU kthreads priority for rcutorture */ 200 int rcu_get_gp_kthreads_prio(void) 201 { 202 return kthread_prio; 203 } 204 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio); 205 206 /* 207 * Number of grace periods between delays, normalized by the duration of 208 * the delay. The longer the delay, the more the grace periods between 209 * each delay. The reason for this normalization is that it means that, 210 * for non-zero delays, the overall slowdown of grace periods is constant 211 * regardless of the duration of the delay. This arrangement balances 212 * the need for long delays to increase some race probabilities with the 213 * need for fast grace periods to increase other race probabilities. 214 */ 215 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */ 216 217 /* 218 * Compute the mask of online CPUs for the specified rcu_node structure. 219 * This will not be stable unless the rcu_node structure's ->lock is 220 * held, but the bit corresponding to the current CPU will be stable 221 * in most contexts. 222 */ 223 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) 224 { 225 return READ_ONCE(rnp->qsmaskinitnext); 226 } 227 228 /* 229 * Is the CPU corresponding to the specified rcu_data structure online 230 * from RCU's perspective? This perspective is given by that structure's 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask. 232 */ 233 static bool rcu_rdp_cpu_online(struct rcu_data *rdp) 234 { 235 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode)); 236 } 237 238 /* 239 * Return true if an RCU grace period is in progress. The READ_ONCE()s 240 * permit this function to be invoked without holding the root rcu_node 241 * structure's ->lock, but of course results can be subject to change. 242 */ 243 static int rcu_gp_in_progress(void) 244 { 245 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq)); 246 } 247 248 /* 249 * Return the number of callbacks queued on the specified CPU. 250 * Handles both the nocbs and normal cases. 251 */ 252 static long rcu_get_n_cbs_cpu(int cpu) 253 { 254 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 255 256 if (rcu_segcblist_is_enabled(&rdp->cblist)) 257 return rcu_segcblist_n_cbs(&rdp->cblist); 258 return 0; 259 } 260 261 void rcu_softirq_qs(void) 262 { 263 rcu_qs(); 264 rcu_preempt_deferred_qs(current); 265 rcu_tasks_qs(current, false); 266 } 267 268 /* 269 * Reset the current CPU's ->dynticks counter to indicate that the 270 * newly onlined CPU is no longer in an extended quiescent state. 271 * This will either leave the counter unchanged, or increment it 272 * to the next non-quiescent value. 273 * 274 * The non-atomic test/increment sequence works because the upper bits 275 * of the ->dynticks counter are manipulated only by the corresponding CPU, 276 * or when the corresponding CPU is offline. 277 */ 278 static void rcu_dynticks_eqs_online(void) 279 { 280 if (ct_dynticks() & RCU_DYNTICKS_IDX) 281 return; 282 ct_state_inc(RCU_DYNTICKS_IDX); 283 } 284 285 /* 286 * Snapshot the ->dynticks counter with full ordering so as to allow 287 * stable comparison of this counter with past and future snapshots. 288 */ 289 static int rcu_dynticks_snap(int cpu) 290 { 291 smp_mb(); // Fundamental RCU ordering guarantee. 292 return ct_dynticks_cpu_acquire(cpu); 293 } 294 295 /* 296 * Return true if the snapshot returned from rcu_dynticks_snap() 297 * indicates that RCU is in an extended quiescent state. 298 */ 299 static bool rcu_dynticks_in_eqs(int snap) 300 { 301 return !(snap & RCU_DYNTICKS_IDX); 302 } 303 304 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */ 305 bool rcu_is_idle_cpu(int cpu) 306 { 307 return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)); 308 } 309 310 /* 311 * Return true if the CPU corresponding to the specified rcu_data 312 * structure has spent some time in an extended quiescent state since 313 * rcu_dynticks_snap() returned the specified snapshot. 314 */ 315 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap) 316 { 317 return snap != rcu_dynticks_snap(rdp->cpu); 318 } 319 320 /* 321 * Return true if the referenced integer is zero while the specified 322 * CPU remains within a single extended quiescent state. 323 */ 324 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp) 325 { 326 int snap; 327 328 // If not quiescent, force back to earlier extended quiescent state. 329 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX; 330 smp_rmb(); // Order ->dynticks and *vp reads. 331 if (READ_ONCE(*vp)) 332 return false; // Non-zero, so report failure; 333 smp_rmb(); // Order *vp read and ->dynticks re-read. 334 335 // If still in the same extended quiescent state, we are good! 336 return snap == ct_dynticks_cpu(cpu); 337 } 338 339 /* 340 * Let the RCU core know that this CPU has gone through the scheduler, 341 * which is a quiescent state. This is called when the need for a 342 * quiescent state is urgent, so we burn an atomic operation and full 343 * memory barriers to let the RCU core know about it, regardless of what 344 * this CPU might (or might not) do in the near future. 345 * 346 * We inform the RCU core by emulating a zero-duration dyntick-idle period. 347 * 348 * The caller must have disabled interrupts and must not be idle. 349 */ 350 notrace void rcu_momentary_dyntick_idle(void) 351 { 352 int seq; 353 354 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false); 355 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX); 356 /* It is illegal to call this from idle state. */ 357 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX)); 358 rcu_preempt_deferred_qs(current); 359 } 360 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle); 361 362 /** 363 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle 364 * 365 * If the current CPU is idle and running at a first-level (not nested) 366 * interrupt, or directly, from idle, return true. 367 * 368 * The caller must have at least disabled IRQs. 369 */ 370 static int rcu_is_cpu_rrupt_from_idle(void) 371 { 372 long nesting; 373 374 /* 375 * Usually called from the tick; but also used from smp_function_call() 376 * for expedited grace periods. This latter can result in running from 377 * the idle task, instead of an actual IPI. 378 */ 379 lockdep_assert_irqs_disabled(); 380 381 /* Check for counter underflows */ 382 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0, 383 "RCU dynticks_nesting counter underflow!"); 384 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0, 385 "RCU dynticks_nmi_nesting counter underflow/zero!"); 386 387 /* Are we at first interrupt nesting level? */ 388 nesting = ct_dynticks_nmi_nesting(); 389 if (nesting > 1) 390 return false; 391 392 /* 393 * If we're not in an interrupt, we must be in the idle task! 394 */ 395 WARN_ON_ONCE(!nesting && !is_idle_task(current)); 396 397 /* Does CPU appear to be idle from an RCU standpoint? */ 398 return ct_dynticks_nesting() == 0; 399 } 400 401 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10) 402 // Maximum callbacks per rcu_do_batch ... 403 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood. 404 static long blimit = DEFAULT_RCU_BLIMIT; 405 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit. 406 static long qhimark = DEFAULT_RCU_QHIMARK; 407 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit. 408 static long qlowmark = DEFAULT_RCU_QLOMARK; 409 #define DEFAULT_RCU_QOVLD_MULT 2 410 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK) 411 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS. 412 static long qovld_calc = -1; // No pre-initialization lock acquisitions! 413 414 module_param(blimit, long, 0444); 415 module_param(qhimark, long, 0444); 416 module_param(qlowmark, long, 0444); 417 module_param(qovld, long, 0444); 418 419 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX; 420 static ulong jiffies_till_next_fqs = ULONG_MAX; 421 static bool rcu_kick_kthreads; 422 static int rcu_divisor = 7; 423 module_param(rcu_divisor, int, 0644); 424 425 /* Force an exit from rcu_do_batch() after 3 milliseconds. */ 426 static long rcu_resched_ns = 3 * NSEC_PER_MSEC; 427 module_param(rcu_resched_ns, long, 0644); 428 429 /* 430 * How long the grace period must be before we start recruiting 431 * quiescent-state help from rcu_note_context_switch(). 432 */ 433 static ulong jiffies_till_sched_qs = ULONG_MAX; 434 module_param(jiffies_till_sched_qs, ulong, 0444); 435 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */ 436 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */ 437 438 /* 439 * Make sure that we give the grace-period kthread time to detect any 440 * idle CPUs before taking active measures to force quiescent states. 441 * However, don't go below 100 milliseconds, adjusted upwards for really 442 * large systems. 443 */ 444 static void adjust_jiffies_till_sched_qs(void) 445 { 446 unsigned long j; 447 448 /* If jiffies_till_sched_qs was specified, respect the request. */ 449 if (jiffies_till_sched_qs != ULONG_MAX) { 450 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs); 451 return; 452 } 453 /* Otherwise, set to third fqs scan, but bound below on large system. */ 454 j = READ_ONCE(jiffies_till_first_fqs) + 455 2 * READ_ONCE(jiffies_till_next_fqs); 456 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV) 457 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 458 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j); 459 WRITE_ONCE(jiffies_to_sched_qs, j); 460 } 461 462 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp) 463 { 464 ulong j; 465 int ret = kstrtoul(val, 0, &j); 466 467 if (!ret) { 468 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j); 469 adjust_jiffies_till_sched_qs(); 470 } 471 return ret; 472 } 473 474 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp) 475 { 476 ulong j; 477 int ret = kstrtoul(val, 0, &j); 478 479 if (!ret) { 480 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1)); 481 adjust_jiffies_till_sched_qs(); 482 } 483 return ret; 484 } 485 486 static const struct kernel_param_ops first_fqs_jiffies_ops = { 487 .set = param_set_first_fqs_jiffies, 488 .get = param_get_ulong, 489 }; 490 491 static const struct kernel_param_ops next_fqs_jiffies_ops = { 492 .set = param_set_next_fqs_jiffies, 493 .get = param_get_ulong, 494 }; 495 496 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644); 497 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644); 498 module_param(rcu_kick_kthreads, bool, 0644); 499 500 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)); 501 static int rcu_pending(int user); 502 503 /* 504 * Return the number of RCU GPs completed thus far for debug & stats. 505 */ 506 unsigned long rcu_get_gp_seq(void) 507 { 508 return READ_ONCE(rcu_state.gp_seq); 509 } 510 EXPORT_SYMBOL_GPL(rcu_get_gp_seq); 511 512 /* 513 * Return the number of RCU expedited batches completed thus far for 514 * debug & stats. Odd numbers mean that a batch is in progress, even 515 * numbers mean idle. The value returned will thus be roughly double 516 * the cumulative batches since boot. 517 */ 518 unsigned long rcu_exp_batches_completed(void) 519 { 520 return rcu_state.expedited_sequence; 521 } 522 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); 523 524 /* 525 * Return the root node of the rcu_state structure. 526 */ 527 static struct rcu_node *rcu_get_root(void) 528 { 529 return &rcu_state.node[0]; 530 } 531 532 /* 533 * Send along grace-period-related data for rcutorture diagnostics. 534 */ 535 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 536 unsigned long *gp_seq) 537 { 538 switch (test_type) { 539 case RCU_FLAVOR: 540 *flags = READ_ONCE(rcu_state.gp_flags); 541 *gp_seq = rcu_seq_current(&rcu_state.gp_seq); 542 break; 543 default: 544 break; 545 } 546 } 547 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 548 549 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 550 /* 551 * An empty function that will trigger a reschedule on 552 * IRQ tail once IRQs get re-enabled on userspace/guest resume. 553 */ 554 static void late_wakeup_func(struct irq_work *work) 555 { 556 } 557 558 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) = 559 IRQ_WORK_INIT(late_wakeup_func); 560 561 /* 562 * If either: 563 * 564 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work 565 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry. 566 * 567 * In these cases the late RCU wake ups aren't supported in the resched loops and our 568 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs 569 * get re-enabled again. 570 */ 571 noinstr void rcu_irq_work_resched(void) 572 { 573 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 574 575 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU)) 576 return; 577 578 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU)) 579 return; 580 581 instrumentation_begin(); 582 if (do_nocb_deferred_wakeup(rdp) && need_resched()) { 583 irq_work_queue(this_cpu_ptr(&late_wakeup_work)); 584 } 585 instrumentation_end(); 586 } 587 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */ 588 589 #ifdef CONFIG_PROVE_RCU 590 /** 591 * rcu_irq_exit_check_preempt - Validate that scheduling is possible 592 */ 593 void rcu_irq_exit_check_preempt(void) 594 { 595 lockdep_assert_irqs_disabled(); 596 597 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0, 598 "RCU dynticks_nesting counter underflow/zero!"); 599 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() != 600 DYNTICK_IRQ_NONIDLE, 601 "Bad RCU dynticks_nmi_nesting counter\n"); 602 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 603 "RCU in extended quiescent state!"); 604 } 605 #endif /* #ifdef CONFIG_PROVE_RCU */ 606 607 #ifdef CONFIG_NO_HZ_FULL 608 /** 609 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it. 610 * 611 * The scheduler tick is not normally enabled when CPUs enter the kernel 612 * from nohz_full userspace execution. After all, nohz_full userspace 613 * execution is an RCU quiescent state and the time executing in the kernel 614 * is quite short. Except of course when it isn't. And it is not hard to 615 * cause a large system to spend tens of seconds or even minutes looping 616 * in the kernel, which can cause a number of problems, include RCU CPU 617 * stall warnings. 618 * 619 * Therefore, if a nohz_full CPU fails to report a quiescent state 620 * in a timely manner, the RCU grace-period kthread sets that CPU's 621 * ->rcu_urgent_qs flag with the expectation that the next interrupt or 622 * exception will invoke this function, which will turn on the scheduler 623 * tick, which will enable RCU to detect that CPU's quiescent states, 624 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels. 625 * The tick will be disabled once a quiescent state is reported for 626 * this CPU. 627 * 628 * Of course, in carefully tuned systems, there might never be an 629 * interrupt or exception. In that case, the RCU grace-period kthread 630 * will eventually cause one to happen. However, in less carefully 631 * controlled environments, this function allows RCU to get what it 632 * needs without creating otherwise useless interruptions. 633 */ 634 void __rcu_irq_enter_check_tick(void) 635 { 636 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 637 638 // If we're here from NMI there's nothing to do. 639 if (in_nmi()) 640 return; 641 642 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(), 643 "Illegal rcu_irq_enter_check_tick() from extended quiescent state"); 644 645 if (!tick_nohz_full_cpu(rdp->cpu) || 646 !READ_ONCE(rdp->rcu_urgent_qs) || 647 READ_ONCE(rdp->rcu_forced_tick)) { 648 // RCU doesn't need nohz_full help from this CPU, or it is 649 // already getting that help. 650 return; 651 } 652 653 // We get here only when not in an extended quiescent state and 654 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is 655 // already watching and (2) The fact that we are in an interrupt 656 // handler and that the rcu_node lock is an irq-disabled lock 657 // prevents self-deadlock. So we can safely recheck under the lock. 658 // Note that the nohz_full state currently cannot change. 659 raw_spin_lock_rcu_node(rdp->mynode); 660 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) { 661 // A nohz_full CPU is in the kernel and RCU needs a 662 // quiescent state. Turn on the tick! 663 WRITE_ONCE(rdp->rcu_forced_tick, true); 664 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 665 } 666 raw_spin_unlock_rcu_node(rdp->mynode); 667 } 668 #endif /* CONFIG_NO_HZ_FULL */ 669 670 /* 671 * Check to see if any future non-offloaded RCU-related work will need 672 * to be done by the current CPU, even if none need be done immediately, 673 * returning 1 if so. This function is part of the RCU implementation; 674 * it is -not- an exported member of the RCU API. This is used by 675 * the idle-entry code to figure out whether it is safe to disable the 676 * scheduler-clock interrupt. 677 * 678 * Just check whether or not this CPU has non-offloaded RCU callbacks 679 * queued. 680 */ 681 int rcu_needs_cpu(void) 682 { 683 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) && 684 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data)); 685 } 686 687 /* 688 * If any sort of urgency was applied to the current CPU (for example, 689 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order 690 * to get to a quiescent state, disable it. 691 */ 692 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp) 693 { 694 raw_lockdep_assert_held_rcu_node(rdp->mynode); 695 WRITE_ONCE(rdp->rcu_urgent_qs, false); 696 WRITE_ONCE(rdp->rcu_need_heavy_qs, false); 697 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) { 698 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU); 699 WRITE_ONCE(rdp->rcu_forced_tick, false); 700 } 701 } 702 703 /** 704 * rcu_is_watching - see if RCU thinks that the current CPU is not idle 705 * 706 * Return true if RCU is watching the running CPU, which means that this 707 * CPU can safely enter RCU read-side critical sections. In other words, 708 * if the current CPU is not in its idle loop or is in an interrupt or 709 * NMI handler, return true. 710 * 711 * Make notrace because it can be called by the internal functions of 712 * ftrace, and making this notrace removes unnecessary recursion calls. 713 */ 714 notrace bool rcu_is_watching(void) 715 { 716 bool ret; 717 718 preempt_disable_notrace(); 719 ret = !rcu_dynticks_curr_cpu_in_eqs(); 720 preempt_enable_notrace(); 721 return ret; 722 } 723 EXPORT_SYMBOL_GPL(rcu_is_watching); 724 725 /* 726 * If a holdout task is actually running, request an urgent quiescent 727 * state from its CPU. This is unsynchronized, so migrations can cause 728 * the request to go to the wrong CPU. Which is OK, all that will happen 729 * is that the CPU's next context switch will be a bit slower and next 730 * time around this task will generate another request. 731 */ 732 void rcu_request_urgent_qs_task(struct task_struct *t) 733 { 734 int cpu; 735 736 barrier(); 737 cpu = task_cpu(t); 738 if (!task_curr(t)) 739 return; /* This task is not running on that CPU. */ 740 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true); 741 } 742 743 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 744 745 /* 746 * Is the current CPU online as far as RCU is concerned? 747 * 748 * Disable preemption to avoid false positives that could otherwise 749 * happen due to the current CPU number being sampled, this task being 750 * preempted, its old CPU being taken offline, resuming on some other CPU, 751 * then determining that its old CPU is now offline. 752 * 753 * Disable checking if in an NMI handler because we cannot safely 754 * report errors from NMI handlers anyway. In addition, it is OK to use 755 * RCU on an offline processor during initial boot, hence the check for 756 * rcu_scheduler_fully_active. 757 */ 758 bool rcu_lockdep_current_cpu_online(void) 759 { 760 struct rcu_data *rdp; 761 bool ret = false; 762 763 if (in_nmi() || !rcu_scheduler_fully_active) 764 return true; 765 preempt_disable_notrace(); 766 rdp = this_cpu_ptr(&rcu_data); 767 /* 768 * Strictly, we care here about the case where the current CPU is 769 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask 770 * not being up to date. So arch_spin_is_locked() might have a 771 * false positive if it's held by some *other* CPU, but that's 772 * OK because that just means a false *negative* on the warning. 773 */ 774 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock)) 775 ret = true; 776 preempt_enable_notrace(); 777 return ret; 778 } 779 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 780 781 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 782 783 /* 784 * When trying to report a quiescent state on behalf of some other CPU, 785 * it is our responsibility to check for and handle potential overflow 786 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. 787 * After all, the CPU might be in deep idle state, and thus executing no 788 * code whatsoever. 789 */ 790 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) 791 { 792 raw_lockdep_assert_held_rcu_node(rnp); 793 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, 794 rnp->gp_seq)) 795 WRITE_ONCE(rdp->gpwrap, true); 796 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) 797 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; 798 } 799 800 /* 801 * Snapshot the specified CPU's dynticks counter so that we can later 802 * credit them with an implicit quiescent state. Return 1 if this CPU 803 * is in dynticks idle mode, which is an extended quiescent state. 804 */ 805 static int dyntick_save_progress_counter(struct rcu_data *rdp) 806 { 807 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu); 808 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { 809 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 810 rcu_gpnum_ovf(rdp->mynode, rdp); 811 return 1; 812 } 813 return 0; 814 } 815 816 /* 817 * Return true if the specified CPU has passed through a quiescent 818 * state by virtue of being in or having passed through an dynticks 819 * idle state since the last call to dyntick_save_progress_counter() 820 * for this same CPU, or by virtue of having been offline. 821 */ 822 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) 823 { 824 unsigned long jtsq; 825 struct rcu_node *rnp = rdp->mynode; 826 827 /* 828 * If the CPU passed through or entered a dynticks idle phase with 829 * no active irq/NMI handlers, then we can safely pretend that the CPU 830 * already acknowledged the request to pass through a quiescent 831 * state. Either way, that CPU cannot possibly be in an RCU 832 * read-side critical section that started before the beginning 833 * of the current RCU grace period. 834 */ 835 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) { 836 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti")); 837 rcu_gpnum_ovf(rnp, rdp); 838 return 1; 839 } 840 841 /* 842 * Complain if a CPU that is considered to be offline from RCU's 843 * perspective has not yet reported a quiescent state. After all, 844 * the offline CPU should have reported a quiescent state during 845 * the CPU-offline process, or, failing that, by rcu_gp_init() 846 * if it ran concurrently with either the CPU going offline or the 847 * last task on a leaf rcu_node structure exiting its RCU read-side 848 * critical section while all CPUs corresponding to that structure 849 * are offline. This added warning detects bugs in any of these 850 * code paths. 851 * 852 * The rcu_node structure's ->lock is held here, which excludes 853 * the relevant portions the CPU-hotplug code, the grace-period 854 * initialization code, and the rcu_read_unlock() code paths. 855 * 856 * For more detail, please refer to the "Hotplug CPU" section 857 * of RCU's Requirements documentation. 858 */ 859 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) { 860 struct rcu_node *rnp1; 861 862 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n", 863 __func__, rnp->grplo, rnp->grphi, rnp->level, 864 (long)rnp->gp_seq, (long)rnp->completedqs); 865 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent) 866 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n", 867 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask); 868 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n", 869 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)], 870 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags, 871 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags); 872 return 1; /* Break things loose after complaining. */ 873 } 874 875 /* 876 * A CPU running for an extended time within the kernel can 877 * delay RCU grace periods: (1) At age jiffies_to_sched_qs, 878 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set 879 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the 880 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs 881 * variable are safe because the assignments are repeated if this 882 * CPU failed to pass through a quiescent state. This code 883 * also checks .jiffies_resched in case jiffies_to_sched_qs 884 * is set way high. 885 */ 886 jtsq = READ_ONCE(jiffies_to_sched_qs); 887 if (!READ_ONCE(rdp->rcu_need_heavy_qs) && 888 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) || 889 time_after(jiffies, rcu_state.jiffies_resched) || 890 rcu_state.cbovld)) { 891 WRITE_ONCE(rdp->rcu_need_heavy_qs, true); 892 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ 893 smp_store_release(&rdp->rcu_urgent_qs, true); 894 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) { 895 WRITE_ONCE(rdp->rcu_urgent_qs, true); 896 } 897 898 /* 899 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq! 900 * The above code handles this, but only for straight cond_resched(). 901 * And some in-kernel loops check need_resched() before calling 902 * cond_resched(), which defeats the above code for CPUs that are 903 * running in-kernel with scheduling-clock interrupts disabled. 904 * So hit them over the head with the resched_cpu() hammer! 905 */ 906 if (tick_nohz_full_cpu(rdp->cpu) && 907 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) || 908 rcu_state.cbovld)) { 909 WRITE_ONCE(rdp->rcu_urgent_qs, true); 910 resched_cpu(rdp->cpu); 911 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 912 } 913 914 /* 915 * If more than halfway to RCU CPU stall-warning time, invoke 916 * resched_cpu() more frequently to try to loosen things up a bit. 917 * Also check to see if the CPU is getting hammered with interrupts, 918 * but only once per grace period, just to keep the IPIs down to 919 * a dull roar. 920 */ 921 if (time_after(jiffies, rcu_state.jiffies_resched)) { 922 if (time_after(jiffies, 923 READ_ONCE(rdp->last_fqs_resched) + jtsq)) { 924 resched_cpu(rdp->cpu); 925 WRITE_ONCE(rdp->last_fqs_resched, jiffies); 926 } 927 if (IS_ENABLED(CONFIG_IRQ_WORK) && 928 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && 929 (rnp->ffmask & rdp->grpmask)) { 930 rdp->rcu_iw_pending = true; 931 rdp->rcu_iw_gp_seq = rnp->gp_seq; 932 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); 933 } 934 } 935 936 return 0; 937 } 938 939 /* Trace-event wrapper function for trace_rcu_future_grace_period. */ 940 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, 941 unsigned long gp_seq_req, const char *s) 942 { 943 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 944 gp_seq_req, rnp->level, 945 rnp->grplo, rnp->grphi, s); 946 } 947 948 /* 949 * rcu_start_this_gp - Request the start of a particular grace period 950 * @rnp_start: The leaf node of the CPU from which to start. 951 * @rdp: The rcu_data corresponding to the CPU from which to start. 952 * @gp_seq_req: The gp_seq of the grace period to start. 953 * 954 * Start the specified grace period, as needed to handle newly arrived 955 * callbacks. The required future grace periods are recorded in each 956 * rcu_node structure's ->gp_seq_needed field. Returns true if there 957 * is reason to awaken the grace-period kthread. 958 * 959 * The caller must hold the specified rcu_node structure's ->lock, which 960 * is why the caller is responsible for waking the grace-period kthread. 961 * 962 * Returns true if the GP thread needs to be awakened else false. 963 */ 964 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp, 965 unsigned long gp_seq_req) 966 { 967 bool ret = false; 968 struct rcu_node *rnp; 969 970 /* 971 * Use funnel locking to either acquire the root rcu_node 972 * structure's lock or bail out if the need for this grace period 973 * has already been recorded -- or if that grace period has in 974 * fact already started. If there is already a grace period in 975 * progress in a non-leaf node, no recording is needed because the 976 * end of the grace period will scan the leaf rcu_node structures. 977 * Note that rnp_start->lock must not be released. 978 */ 979 raw_lockdep_assert_held_rcu_node(rnp_start); 980 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf")); 981 for (rnp = rnp_start; 1; rnp = rnp->parent) { 982 if (rnp != rnp_start) 983 raw_spin_lock_rcu_node(rnp); 984 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) || 985 rcu_seq_started(&rnp->gp_seq, gp_seq_req) || 986 (rnp != rnp_start && 987 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) { 988 trace_rcu_this_gp(rnp, rdp, gp_seq_req, 989 TPS("Prestarted")); 990 goto unlock_out; 991 } 992 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req); 993 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) { 994 /* 995 * We just marked the leaf or internal node, and a 996 * grace period is in progress, which means that 997 * rcu_gp_cleanup() will see the marking. Bail to 998 * reduce contention. 999 */ 1000 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, 1001 TPS("Startedleaf")); 1002 goto unlock_out; 1003 } 1004 if (rnp != rnp_start && rnp->parent != NULL) 1005 raw_spin_unlock_rcu_node(rnp); 1006 if (!rnp->parent) 1007 break; /* At root, and perhaps also leaf. */ 1008 } 1009 1010 /* If GP already in progress, just leave, otherwise start one. */ 1011 if (rcu_gp_in_progress()) { 1012 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot")); 1013 goto unlock_out; 1014 } 1015 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot")); 1016 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT); 1017 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1018 if (!READ_ONCE(rcu_state.gp_kthread)) { 1019 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread")); 1020 goto unlock_out; 1021 } 1022 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq")); 1023 ret = true; /* Caller must wake GP kthread. */ 1024 unlock_out: 1025 /* Push furthest requested GP to leaf node and rcu_data structure. */ 1026 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) { 1027 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed); 1028 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1029 } 1030 if (rnp != rnp_start) 1031 raw_spin_unlock_rcu_node(rnp); 1032 return ret; 1033 } 1034 1035 /* 1036 * Clean up any old requests for the just-ended grace period. Also return 1037 * whether any additional grace periods have been requested. 1038 */ 1039 static bool rcu_future_gp_cleanup(struct rcu_node *rnp) 1040 { 1041 bool needmore; 1042 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 1043 1044 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed); 1045 if (!needmore) 1046 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */ 1047 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq, 1048 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1049 return needmore; 1050 } 1051 1052 /* 1053 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an 1054 * interrupt or softirq handler, in which case we just might immediately 1055 * sleep upon return, resulting in a grace-period hang), and don't bother 1056 * awakening when there is nothing for the grace-period kthread to do 1057 * (as in several CPUs raced to awaken, we lost), and finally don't try 1058 * to awaken a kthread that has not yet been created. If all those checks 1059 * are passed, track some debug information and awaken. 1060 * 1061 * So why do the self-wakeup when in an interrupt or softirq handler 1062 * in the grace-period kthread's context? Because the kthread might have 1063 * been interrupted just as it was going to sleep, and just after the final 1064 * pre-sleep check of the awaken condition. In this case, a wakeup really 1065 * is required, and is therefore supplied. 1066 */ 1067 static void rcu_gp_kthread_wake(void) 1068 { 1069 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread); 1070 1071 if ((current == t && !in_hardirq() && !in_serving_softirq()) || 1072 !READ_ONCE(rcu_state.gp_flags) || !t) 1073 return; 1074 WRITE_ONCE(rcu_state.gp_wake_time, jiffies); 1075 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq)); 1076 swake_up_one(&rcu_state.gp_wq); 1077 } 1078 1079 /* 1080 * If there is room, assign a ->gp_seq number to any callbacks on this 1081 * CPU that have not already been assigned. Also accelerate any callbacks 1082 * that were previously assigned a ->gp_seq number that has since proven 1083 * to be too conservative, which can happen if callbacks get assigned a 1084 * ->gp_seq number while RCU is idle, but with reference to a non-root 1085 * rcu_node structure. This function is idempotent, so it does not hurt 1086 * to call it repeatedly. Returns an flag saying that we should awaken 1087 * the RCU grace-period kthread. 1088 * 1089 * The caller must hold rnp->lock with interrupts disabled. 1090 */ 1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1092 { 1093 unsigned long gp_seq_req; 1094 bool ret = false; 1095 1096 rcu_lockdep_assert_cblist_protected(rdp); 1097 raw_lockdep_assert_held_rcu_node(rnp); 1098 1099 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1100 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1101 return false; 1102 1103 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc")); 1104 1105 /* 1106 * Callbacks are often registered with incomplete grace-period 1107 * information. Something about the fact that getting exact 1108 * information requires acquiring a global lock... RCU therefore 1109 * makes a conservative estimate of the grace period number at which 1110 * a given callback will become ready to invoke. The following 1111 * code checks this estimate and improves it when possible, thus 1112 * accelerating callback invocation to an earlier grace-period 1113 * number. 1114 */ 1115 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq); 1116 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req)) 1117 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req); 1118 1119 /* Trace depending on how much we were able to accelerate. */ 1120 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) 1121 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB")); 1122 else 1123 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB")); 1124 1125 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc")); 1126 1127 return ret; 1128 } 1129 1130 /* 1131 * Similar to rcu_accelerate_cbs(), but does not require that the leaf 1132 * rcu_node structure's ->lock be held. It consults the cached value 1133 * of ->gp_seq_needed in the rcu_data structure, and if that indicates 1134 * that a new grace-period request be made, invokes rcu_accelerate_cbs() 1135 * while holding the leaf rcu_node structure's ->lock. 1136 */ 1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp, 1138 struct rcu_data *rdp) 1139 { 1140 unsigned long c; 1141 bool needwake; 1142 1143 rcu_lockdep_assert_cblist_protected(rdp); 1144 c = rcu_seq_snap(&rcu_state.gp_seq); 1145 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) { 1146 /* Old request still live, so mark recent callbacks. */ 1147 (void)rcu_segcblist_accelerate(&rdp->cblist, c); 1148 return; 1149 } 1150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 1151 needwake = rcu_accelerate_cbs(rnp, rdp); 1152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1153 if (needwake) 1154 rcu_gp_kthread_wake(); 1155 } 1156 1157 /* 1158 * Move any callbacks whose grace period has completed to the 1159 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1160 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL 1161 * sublist. This function is idempotent, so it does not hurt to 1162 * invoke it repeatedly. As long as it is not invoked -too- often... 1163 * Returns true if the RCU grace-period kthread needs to be awakened. 1164 * 1165 * The caller must hold rnp->lock with interrupts disabled. 1166 */ 1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp) 1168 { 1169 rcu_lockdep_assert_cblist_protected(rdp); 1170 raw_lockdep_assert_held_rcu_node(rnp); 1171 1172 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ 1173 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) 1174 return false; 1175 1176 /* 1177 * Find all callbacks whose ->gp_seq numbers indicate that they 1178 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1179 */ 1180 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); 1181 1182 /* Classify any remaining callbacks. */ 1183 return rcu_accelerate_cbs(rnp, rdp); 1184 } 1185 1186 /* 1187 * Move and classify callbacks, but only if doing so won't require 1188 * that the RCU grace-period kthread be awakened. 1189 */ 1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp, 1191 struct rcu_data *rdp) 1192 { 1193 rcu_lockdep_assert_cblist_protected(rdp); 1194 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp)) 1195 return; 1196 // The grace period cannot end while we hold the rcu_node lock. 1197 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) 1198 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp)); 1199 raw_spin_unlock_rcu_node(rnp); 1200 } 1201 1202 /* 1203 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a 1204 * quiescent state. This is intended to be invoked when the CPU notices 1205 * a new grace period. 1206 */ 1207 static void rcu_strict_gp_check_qs(void) 1208 { 1209 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) { 1210 rcu_read_lock(); 1211 rcu_read_unlock(); 1212 } 1213 } 1214 1215 /* 1216 * Update CPU-local rcu_data state to record the beginnings and ends of 1217 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1218 * structure corresponding to the current CPU, and must have irqs disabled. 1219 * Returns true if the grace-period kthread needs to be awakened. 1220 */ 1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp) 1222 { 1223 bool ret = false; 1224 bool need_qs; 1225 const bool offloaded = rcu_rdp_is_offloaded(rdp); 1226 1227 raw_lockdep_assert_held_rcu_node(rnp); 1228 1229 if (rdp->gp_seq == rnp->gp_seq) 1230 return false; /* Nothing to do. */ 1231 1232 /* Handle the ends of any preceding grace periods first. */ 1233 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || 1234 unlikely(READ_ONCE(rdp->gpwrap))) { 1235 if (!offloaded) 1236 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */ 1237 rdp->core_needs_qs = false; 1238 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend")); 1239 } else { 1240 if (!offloaded) 1241 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */ 1242 if (rdp->core_needs_qs) 1243 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask); 1244 } 1245 1246 /* Now handle the beginnings of any new-to-this-CPU grace periods. */ 1247 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || 1248 unlikely(READ_ONCE(rdp->gpwrap))) { 1249 /* 1250 * If the current grace period is waiting for this CPU, 1251 * set up to detect a quiescent state, otherwise don't 1252 * go looking for one. 1253 */ 1254 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart")); 1255 need_qs = !!(rnp->qsmask & rdp->grpmask); 1256 rdp->cpu_no_qs.b.norm = need_qs; 1257 rdp->core_needs_qs = need_qs; 1258 zero_cpu_stall_ticks(rdp); 1259 } 1260 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ 1261 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap) 1262 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed); 1263 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap)) 1264 WRITE_ONCE(rdp->last_sched_clock, jiffies); 1265 WRITE_ONCE(rdp->gpwrap, false); 1266 rcu_gpnum_ovf(rnp, rdp); 1267 return ret; 1268 } 1269 1270 static void note_gp_changes(struct rcu_data *rdp) 1271 { 1272 unsigned long flags; 1273 bool needwake; 1274 struct rcu_node *rnp; 1275 1276 local_irq_save(flags); 1277 rnp = rdp->mynode; 1278 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && 1279 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1280 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ 1281 local_irq_restore(flags); 1282 return; 1283 } 1284 needwake = __note_gp_changes(rnp, rdp); 1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1286 rcu_strict_gp_check_qs(); 1287 if (needwake) 1288 rcu_gp_kthread_wake(); 1289 } 1290 1291 static atomic_t *rcu_gp_slow_suppress; 1292 1293 /* Register a counter to suppress debugging grace-period delays. */ 1294 void rcu_gp_slow_register(atomic_t *rgssp) 1295 { 1296 WARN_ON_ONCE(rcu_gp_slow_suppress); 1297 1298 WRITE_ONCE(rcu_gp_slow_suppress, rgssp); 1299 } 1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register); 1301 1302 /* Unregister a counter, with NULL for not caring which. */ 1303 void rcu_gp_slow_unregister(atomic_t *rgssp) 1304 { 1305 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress); 1306 1307 WRITE_ONCE(rcu_gp_slow_suppress, NULL); 1308 } 1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister); 1310 1311 static bool rcu_gp_slow_is_suppressed(void) 1312 { 1313 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress); 1314 1315 return rgssp && atomic_read(rgssp); 1316 } 1317 1318 static void rcu_gp_slow(int delay) 1319 { 1320 if (!rcu_gp_slow_is_suppressed() && delay > 0 && 1321 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) 1322 schedule_timeout_idle(delay); 1323 } 1324 1325 static unsigned long sleep_duration; 1326 1327 /* Allow rcutorture to stall the grace-period kthread. */ 1328 void rcu_gp_set_torture_wait(int duration) 1329 { 1330 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0) 1331 WRITE_ONCE(sleep_duration, duration); 1332 } 1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait); 1334 1335 /* Actually implement the aforementioned wait. */ 1336 static void rcu_gp_torture_wait(void) 1337 { 1338 unsigned long duration; 1339 1340 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST)) 1341 return; 1342 duration = xchg(&sleep_duration, 0UL); 1343 if (duration > 0) { 1344 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration); 1345 schedule_timeout_idle(duration); 1346 pr_alert("%s: Wait complete\n", __func__); 1347 } 1348 } 1349 1350 /* 1351 * Handler for on_each_cpu() to invoke the target CPU's RCU core 1352 * processing. 1353 */ 1354 static void rcu_strict_gp_boundary(void *unused) 1355 { 1356 invoke_rcu_core(); 1357 } 1358 1359 // Has rcu_init() been invoked? This is used (for example) to determine 1360 // whether spinlocks may be acquired safely. 1361 static bool rcu_init_invoked(void) 1362 { 1363 return !!rcu_state.n_online_cpus; 1364 } 1365 1366 // Make the polled API aware of the beginning of a grace period. 1367 static void rcu_poll_gp_seq_start(unsigned long *snap) 1368 { 1369 struct rcu_node *rnp = rcu_get_root(); 1370 1371 if (rcu_init_invoked()) 1372 raw_lockdep_assert_held_rcu_node(rnp); 1373 1374 // If RCU was idle, note beginning of GP. 1375 if (!rcu_seq_state(rcu_state.gp_seq_polled)) 1376 rcu_seq_start(&rcu_state.gp_seq_polled); 1377 1378 // Either way, record current state. 1379 *snap = rcu_state.gp_seq_polled; 1380 } 1381 1382 // Make the polled API aware of the end of a grace period. 1383 static void rcu_poll_gp_seq_end(unsigned long *snap) 1384 { 1385 struct rcu_node *rnp = rcu_get_root(); 1386 1387 if (rcu_init_invoked()) 1388 raw_lockdep_assert_held_rcu_node(rnp); 1389 1390 // If the previously noted GP is still in effect, record the 1391 // end of that GP. Either way, zero counter to avoid counter-wrap 1392 // problems. 1393 if (*snap && *snap == rcu_state.gp_seq_polled) { 1394 rcu_seq_end(&rcu_state.gp_seq_polled); 1395 rcu_state.gp_seq_polled_snap = 0; 1396 rcu_state.gp_seq_polled_exp_snap = 0; 1397 } else { 1398 *snap = 0; 1399 } 1400 } 1401 1402 // Make the polled API aware of the beginning of a grace period, but 1403 // where caller does not hold the root rcu_node structure's lock. 1404 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap) 1405 { 1406 struct rcu_node *rnp = rcu_get_root(); 1407 1408 if (rcu_init_invoked()) { 1409 lockdep_assert_irqs_enabled(); 1410 raw_spin_lock_irq_rcu_node(rnp); 1411 } 1412 rcu_poll_gp_seq_start(snap); 1413 if (rcu_init_invoked()) 1414 raw_spin_unlock_irq_rcu_node(rnp); 1415 } 1416 1417 // Make the polled API aware of the end of a grace period, but where 1418 // caller does not hold the root rcu_node structure's lock. 1419 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap) 1420 { 1421 struct rcu_node *rnp = rcu_get_root(); 1422 1423 if (rcu_init_invoked()) { 1424 lockdep_assert_irqs_enabled(); 1425 raw_spin_lock_irq_rcu_node(rnp); 1426 } 1427 rcu_poll_gp_seq_end(snap); 1428 if (rcu_init_invoked()) 1429 raw_spin_unlock_irq_rcu_node(rnp); 1430 } 1431 1432 /* 1433 * Initialize a new grace period. Return false if no grace period required. 1434 */ 1435 static noinline_for_stack bool rcu_gp_init(void) 1436 { 1437 unsigned long flags; 1438 unsigned long oldmask; 1439 unsigned long mask; 1440 struct rcu_data *rdp; 1441 struct rcu_node *rnp = rcu_get_root(); 1442 1443 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1444 raw_spin_lock_irq_rcu_node(rnp); 1445 if (!READ_ONCE(rcu_state.gp_flags)) { 1446 /* Spurious wakeup, tell caller to go back to sleep. */ 1447 raw_spin_unlock_irq_rcu_node(rnp); 1448 return false; 1449 } 1450 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */ 1451 1452 if (WARN_ON_ONCE(rcu_gp_in_progress())) { 1453 /* 1454 * Grace period already in progress, don't start another. 1455 * Not supposed to be able to happen. 1456 */ 1457 raw_spin_unlock_irq_rcu_node(rnp); 1458 return false; 1459 } 1460 1461 /* Advance to a new grace period and initialize state. */ 1462 record_gp_stall_check_time(); 1463 /* Record GP times before starting GP, hence rcu_seq_start(). */ 1464 rcu_seq_start(&rcu_state.gp_seq); 1465 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1466 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start")); 1467 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap); 1468 raw_spin_unlock_irq_rcu_node(rnp); 1469 1470 /* 1471 * Apply per-leaf buffered online and offline operations to 1472 * the rcu_node tree. Note that this new grace period need not 1473 * wait for subsequent online CPUs, and that RCU hooks in the CPU 1474 * offlining path, when combined with checks in this function, 1475 * will handle CPUs that are currently going offline or that will 1476 * go offline later. Please also refer to "Hotplug CPU" section 1477 * of RCU's Requirements documentation. 1478 */ 1479 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF); 1480 /* Exclude CPU hotplug operations. */ 1481 rcu_for_each_leaf_node(rnp) { 1482 local_irq_save(flags); 1483 arch_spin_lock(&rcu_state.ofl_lock); 1484 raw_spin_lock_rcu_node(rnp); 1485 if (rnp->qsmaskinit == rnp->qsmaskinitnext && 1486 !rnp->wait_blkd_tasks) { 1487 /* Nothing to do on this leaf rcu_node structure. */ 1488 raw_spin_unlock_rcu_node(rnp); 1489 arch_spin_unlock(&rcu_state.ofl_lock); 1490 local_irq_restore(flags); 1491 continue; 1492 } 1493 1494 /* Record old state, apply changes to ->qsmaskinit field. */ 1495 oldmask = rnp->qsmaskinit; 1496 rnp->qsmaskinit = rnp->qsmaskinitnext; 1497 1498 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ 1499 if (!oldmask != !rnp->qsmaskinit) { 1500 if (!oldmask) { /* First online CPU for rcu_node. */ 1501 if (!rnp->wait_blkd_tasks) /* Ever offline? */ 1502 rcu_init_new_rnp(rnp); 1503 } else if (rcu_preempt_has_tasks(rnp)) { 1504 rnp->wait_blkd_tasks = true; /* blocked tasks */ 1505 } else { /* Last offline CPU and can propagate. */ 1506 rcu_cleanup_dead_rnp(rnp); 1507 } 1508 } 1509 1510 /* 1511 * If all waited-on tasks from prior grace period are 1512 * done, and if all this rcu_node structure's CPUs are 1513 * still offline, propagate up the rcu_node tree and 1514 * clear ->wait_blkd_tasks. Otherwise, if one of this 1515 * rcu_node structure's CPUs has since come back online, 1516 * simply clear ->wait_blkd_tasks. 1517 */ 1518 if (rnp->wait_blkd_tasks && 1519 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { 1520 rnp->wait_blkd_tasks = false; 1521 if (!rnp->qsmaskinit) 1522 rcu_cleanup_dead_rnp(rnp); 1523 } 1524 1525 raw_spin_unlock_rcu_node(rnp); 1526 arch_spin_unlock(&rcu_state.ofl_lock); 1527 local_irq_restore(flags); 1528 } 1529 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */ 1530 1531 /* 1532 * Set the quiescent-state-needed bits in all the rcu_node 1533 * structures for all currently online CPUs in breadth-first 1534 * order, starting from the root rcu_node structure, relying on the 1535 * layout of the tree within the rcu_state.node[] array. Note that 1536 * other CPUs will access only the leaves of the hierarchy, thus 1537 * seeing that no grace period is in progress, at least until the 1538 * corresponding leaf node has been initialized. 1539 * 1540 * The grace period cannot complete until the initialization 1541 * process finishes, because this kthread handles both. 1542 */ 1543 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT); 1544 rcu_for_each_node_breadth_first(rnp) { 1545 rcu_gp_slow(gp_init_delay); 1546 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1547 rdp = this_cpu_ptr(&rcu_data); 1548 rcu_preempt_check_blocked_tasks(rnp); 1549 rnp->qsmask = rnp->qsmaskinit; 1550 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq); 1551 if (rnp == rdp->mynode) 1552 (void)__note_gp_changes(rnp, rdp); 1553 rcu_preempt_boost_start_gp(rnp); 1554 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq, 1555 rnp->level, rnp->grplo, 1556 rnp->grphi, rnp->qsmask); 1557 /* Quiescent states for tasks on any now-offline CPUs. */ 1558 mask = rnp->qsmask & ~rnp->qsmaskinitnext; 1559 rnp->rcu_gp_init_mask = mask; 1560 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp)) 1561 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 1562 else 1563 raw_spin_unlock_irq_rcu_node(rnp); 1564 cond_resched_tasks_rcu_qs(); 1565 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1566 } 1567 1568 // If strict, make all CPUs aware of new grace period. 1569 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1570 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1571 1572 return true; 1573 } 1574 1575 /* 1576 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state 1577 * time. 1578 */ 1579 static bool rcu_gp_fqs_check_wake(int *gfp) 1580 { 1581 struct rcu_node *rnp = rcu_get_root(); 1582 1583 // If under overload conditions, force an immediate FQS scan. 1584 if (*gfp & RCU_GP_FLAG_OVLD) 1585 return true; 1586 1587 // Someone like call_rcu() requested a force-quiescent-state scan. 1588 *gfp = READ_ONCE(rcu_state.gp_flags); 1589 if (*gfp & RCU_GP_FLAG_FQS) 1590 return true; 1591 1592 // The current grace period has completed. 1593 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) 1594 return true; 1595 1596 return false; 1597 } 1598 1599 /* 1600 * Do one round of quiescent-state forcing. 1601 */ 1602 static void rcu_gp_fqs(bool first_time) 1603 { 1604 struct rcu_node *rnp = rcu_get_root(); 1605 1606 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1607 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1); 1608 if (first_time) { 1609 /* Collect dyntick-idle snapshots. */ 1610 force_qs_rnp(dyntick_save_progress_counter); 1611 } else { 1612 /* Handle dyntick-idle and offline CPUs. */ 1613 force_qs_rnp(rcu_implicit_dynticks_qs); 1614 } 1615 /* Clear flag to prevent immediate re-entry. */ 1616 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 1617 raw_spin_lock_irq_rcu_node(rnp); 1618 WRITE_ONCE(rcu_state.gp_flags, 1619 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS); 1620 raw_spin_unlock_irq_rcu_node(rnp); 1621 } 1622 } 1623 1624 /* 1625 * Loop doing repeated quiescent-state forcing until the grace period ends. 1626 */ 1627 static noinline_for_stack void rcu_gp_fqs_loop(void) 1628 { 1629 bool first_gp_fqs = true; 1630 int gf = 0; 1631 unsigned long j; 1632 int ret; 1633 struct rcu_node *rnp = rcu_get_root(); 1634 1635 j = READ_ONCE(jiffies_till_first_fqs); 1636 if (rcu_state.cbovld) 1637 gf = RCU_GP_FLAG_OVLD; 1638 ret = 0; 1639 for (;;) { 1640 if (rcu_state.cbovld) { 1641 j = (j + 2) / 3; 1642 if (j <= 0) 1643 j = 1; 1644 } 1645 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) { 1646 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j); 1647 /* 1648 * jiffies_force_qs before RCU_GP_WAIT_FQS state 1649 * update; required for stall checks. 1650 */ 1651 smp_wmb(); 1652 WRITE_ONCE(rcu_state.jiffies_kick_kthreads, 1653 jiffies + (j ? 3 * j : 2)); 1654 } 1655 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1656 TPS("fqswait")); 1657 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS); 1658 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq, 1659 rcu_gp_fqs_check_wake(&gf), j); 1660 rcu_gp_torture_wait(); 1661 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS); 1662 /* Locking provides needed memory barriers. */ 1663 /* 1664 * Exit the loop if the root rcu_node structure indicates that the grace period 1665 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check 1666 * is required only for single-node rcu_node trees because readers blocking 1667 * the current grace period are queued only on leaf rcu_node structures. 1668 * For multi-node trees, checking the root node's ->qsmask suffices, because a 1669 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from 1670 * the corresponding leaf nodes have passed through their quiescent state. 1671 */ 1672 if (!READ_ONCE(rnp->qsmask) && 1673 !rcu_preempt_blocked_readers_cgp(rnp)) 1674 break; 1675 /* If time for quiescent-state forcing, do it. */ 1676 if (!time_after(rcu_state.jiffies_force_qs, jiffies) || 1677 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) { 1678 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1679 TPS("fqsstart")); 1680 rcu_gp_fqs(first_gp_fqs); 1681 gf = 0; 1682 if (first_gp_fqs) { 1683 first_gp_fqs = false; 1684 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0; 1685 } 1686 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1687 TPS("fqsend")); 1688 cond_resched_tasks_rcu_qs(); 1689 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1690 ret = 0; /* Force full wait till next FQS. */ 1691 j = READ_ONCE(jiffies_till_next_fqs); 1692 } else { 1693 /* Deal with stray signal. */ 1694 cond_resched_tasks_rcu_qs(); 1695 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1696 WARN_ON(signal_pending(current)); 1697 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1698 TPS("fqswaitsig")); 1699 ret = 1; /* Keep old FQS timing. */ 1700 j = jiffies; 1701 if (time_after(jiffies, rcu_state.jiffies_force_qs)) 1702 j = 1; 1703 else 1704 j = rcu_state.jiffies_force_qs - j; 1705 gf = 0; 1706 } 1707 } 1708 } 1709 1710 /* 1711 * Clean up after the old grace period. 1712 */ 1713 static noinline void rcu_gp_cleanup(void) 1714 { 1715 int cpu; 1716 bool needgp = false; 1717 unsigned long gp_duration; 1718 unsigned long new_gp_seq; 1719 bool offloaded; 1720 struct rcu_data *rdp; 1721 struct rcu_node *rnp = rcu_get_root(); 1722 struct swait_queue_head *sq; 1723 1724 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1725 raw_spin_lock_irq_rcu_node(rnp); 1726 rcu_state.gp_end = jiffies; 1727 gp_duration = rcu_state.gp_end - rcu_state.gp_start; 1728 if (gp_duration > rcu_state.gp_max) 1729 rcu_state.gp_max = gp_duration; 1730 1731 /* 1732 * We know the grace period is complete, but to everyone else 1733 * it appears to still be ongoing. But it is also the case 1734 * that to everyone else it looks like there is nothing that 1735 * they can do to advance the grace period. It is therefore 1736 * safe for us to drop the lock in order to mark the grace 1737 * period as completed in all of the rcu_node structures. 1738 */ 1739 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap); 1740 raw_spin_unlock_irq_rcu_node(rnp); 1741 1742 /* 1743 * Propagate new ->gp_seq value to rcu_node structures so that 1744 * other CPUs don't have to wait until the start of the next grace 1745 * period to process their callbacks. This also avoids some nasty 1746 * RCU grace-period initialization races by forcing the end of 1747 * the current grace period to be completely recorded in all of 1748 * the rcu_node structures before the beginning of the next grace 1749 * period is recorded in any of the rcu_node structures. 1750 */ 1751 new_gp_seq = rcu_state.gp_seq; 1752 rcu_seq_end(&new_gp_seq); 1753 rcu_for_each_node_breadth_first(rnp) { 1754 raw_spin_lock_irq_rcu_node(rnp); 1755 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) 1756 dump_blkd_tasks(rnp, 10); 1757 WARN_ON_ONCE(rnp->qsmask); 1758 WRITE_ONCE(rnp->gp_seq, new_gp_seq); 1759 if (!rnp->parent) 1760 smp_mb(); // Order against failing poll_state_synchronize_rcu_full(). 1761 rdp = this_cpu_ptr(&rcu_data); 1762 if (rnp == rdp->mynode) 1763 needgp = __note_gp_changes(rnp, rdp) || needgp; 1764 /* smp_mb() provided by prior unlock-lock pair. */ 1765 needgp = rcu_future_gp_cleanup(rnp) || needgp; 1766 // Reset overload indication for CPUs no longer overloaded 1767 if (rcu_is_leaf_node(rnp)) 1768 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) { 1769 rdp = per_cpu_ptr(&rcu_data, cpu); 1770 check_cb_ovld_locked(rdp, rnp); 1771 } 1772 sq = rcu_nocb_gp_get(rnp); 1773 raw_spin_unlock_irq_rcu_node(rnp); 1774 rcu_nocb_gp_cleanup(sq); 1775 cond_resched_tasks_rcu_qs(); 1776 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1777 rcu_gp_slow(gp_cleanup_delay); 1778 } 1779 rnp = rcu_get_root(); 1780 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */ 1781 1782 /* Declare grace period done, trace first to use old GP number. */ 1783 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end")); 1784 rcu_seq_end(&rcu_state.gp_seq); 1785 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq); 1786 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE); 1787 /* Check for GP requests since above loop. */ 1788 rdp = this_cpu_ptr(&rcu_data); 1789 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) { 1790 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed, 1791 TPS("CleanupMore")); 1792 needgp = true; 1793 } 1794 /* Advance CBs to reduce false positives below. */ 1795 offloaded = rcu_rdp_is_offloaded(rdp); 1796 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) { 1797 1798 // We get here if a grace period was needed (“needgp”) 1799 // and the above call to rcu_accelerate_cbs() did not set 1800 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records 1801 // the need for another grace period). The purpose 1802 // of the “offloaded” check is to avoid invoking 1803 // rcu_accelerate_cbs() on an offloaded CPU because we do not 1804 // hold the ->nocb_lock needed to safely access an offloaded 1805 // ->cblist. We do not want to acquire that lock because 1806 // it can be heavily contended during callback floods. 1807 1808 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT); 1809 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 1810 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq")); 1811 } else { 1812 1813 // We get here either if there is no need for an 1814 // additional grace period or if rcu_accelerate_cbs() has 1815 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 1816 // So all we need to do is to clear all of the other 1817 // ->gp_flags bits. 1818 1819 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT); 1820 } 1821 raw_spin_unlock_irq_rcu_node(rnp); 1822 1823 // If strict, make all CPUs aware of the end of the old grace period. 1824 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 1825 on_each_cpu(rcu_strict_gp_boundary, NULL, 0); 1826 } 1827 1828 /* 1829 * Body of kthread that handles grace periods. 1830 */ 1831 static int __noreturn rcu_gp_kthread(void *unused) 1832 { 1833 rcu_bind_gp_kthread(); 1834 for (;;) { 1835 1836 /* Handle grace-period start. */ 1837 for (;;) { 1838 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1839 TPS("reqwait")); 1840 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS); 1841 swait_event_idle_exclusive(rcu_state.gp_wq, 1842 READ_ONCE(rcu_state.gp_flags) & 1843 RCU_GP_FLAG_INIT); 1844 rcu_gp_torture_wait(); 1845 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS); 1846 /* Locking provides needed memory barrier. */ 1847 if (rcu_gp_init()) 1848 break; 1849 cond_resched_tasks_rcu_qs(); 1850 WRITE_ONCE(rcu_state.gp_activity, jiffies); 1851 WARN_ON(signal_pending(current)); 1852 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, 1853 TPS("reqwaitsig")); 1854 } 1855 1856 /* Handle quiescent-state forcing. */ 1857 rcu_gp_fqs_loop(); 1858 1859 /* Handle grace-period end. */ 1860 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP); 1861 rcu_gp_cleanup(); 1862 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED); 1863 } 1864 } 1865 1866 /* 1867 * Report a full set of quiescent states to the rcu_state data structure. 1868 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if 1869 * another grace period is required. Whether we wake the grace-period 1870 * kthread or it awakens itself for the next round of quiescent-state 1871 * forcing, that kthread will clean up after the just-completed grace 1872 * period. Note that the caller must hold rnp->lock, which is released 1873 * before return. 1874 */ 1875 static void rcu_report_qs_rsp(unsigned long flags) 1876 __releases(rcu_get_root()->lock) 1877 { 1878 raw_lockdep_assert_held_rcu_node(rcu_get_root()); 1879 WARN_ON_ONCE(!rcu_gp_in_progress()); 1880 WRITE_ONCE(rcu_state.gp_flags, 1881 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 1882 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags); 1883 rcu_gp_kthread_wake(); 1884 } 1885 1886 /* 1887 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 1888 * Allows quiescent states for a group of CPUs to be reported at one go 1889 * to the specified rcu_node structure, though all the CPUs in the group 1890 * must be represented by the same rcu_node structure (which need not be a 1891 * leaf rcu_node structure, though it often will be). The gps parameter 1892 * is the grace-period snapshot, which means that the quiescent states 1893 * are valid only if rnp->gp_seq is equal to gps. That structure's lock 1894 * must be held upon entry, and it is released before return. 1895 * 1896 * As a special case, if mask is zero, the bit-already-cleared check is 1897 * disabled. This allows propagating quiescent state due to resumed tasks 1898 * during grace-period initialization. 1899 */ 1900 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp, 1901 unsigned long gps, unsigned long flags) 1902 __releases(rnp->lock) 1903 { 1904 unsigned long oldmask = 0; 1905 struct rcu_node *rnp_c; 1906 1907 raw_lockdep_assert_held_rcu_node(rnp); 1908 1909 /* Walk up the rcu_node hierarchy. */ 1910 for (;;) { 1911 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) { 1912 1913 /* 1914 * Our bit has already been cleared, or the 1915 * relevant grace period is already over, so done. 1916 */ 1917 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1918 return; 1919 } 1920 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ 1921 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && 1922 rcu_preempt_blocked_readers_cgp(rnp)); 1923 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask); 1924 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq, 1925 mask, rnp->qsmask, rnp->level, 1926 rnp->grplo, rnp->grphi, 1927 !!rnp->gp_tasks); 1928 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 1929 1930 /* Other bits still set at this level, so done. */ 1931 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1932 return; 1933 } 1934 rnp->completedqs = rnp->gp_seq; 1935 mask = rnp->grpmask; 1936 if (rnp->parent == NULL) { 1937 1938 /* No more levels. Exit loop holding root lock. */ 1939 1940 break; 1941 } 1942 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1943 rnp_c = rnp; 1944 rnp = rnp->parent; 1945 raw_spin_lock_irqsave_rcu_node(rnp, flags); 1946 oldmask = READ_ONCE(rnp_c->qsmask); 1947 } 1948 1949 /* 1950 * Get here if we are the last CPU to pass through a quiescent 1951 * state for this grace period. Invoke rcu_report_qs_rsp() 1952 * to clean up and start the next grace period if one is needed. 1953 */ 1954 rcu_report_qs_rsp(flags); /* releases rnp->lock. */ 1955 } 1956 1957 /* 1958 * Record a quiescent state for all tasks that were previously queued 1959 * on the specified rcu_node structure and that were blocking the current 1960 * RCU grace period. The caller must hold the corresponding rnp->lock with 1961 * irqs disabled, and this lock is released upon return, but irqs remain 1962 * disabled. 1963 */ 1964 static void __maybe_unused 1965 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags) 1966 __releases(rnp->lock) 1967 { 1968 unsigned long gps; 1969 unsigned long mask; 1970 struct rcu_node *rnp_p; 1971 1972 raw_lockdep_assert_held_rcu_node(rnp); 1973 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) || 1974 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) || 1975 rnp->qsmask != 0) { 1976 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 1977 return; /* Still need more quiescent states! */ 1978 } 1979 1980 rnp->completedqs = rnp->gp_seq; 1981 rnp_p = rnp->parent; 1982 if (rnp_p == NULL) { 1983 /* 1984 * Only one rcu_node structure in the tree, so don't 1985 * try to report up to its nonexistent parent! 1986 */ 1987 rcu_report_qs_rsp(flags); 1988 return; 1989 } 1990 1991 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ 1992 gps = rnp->gp_seq; 1993 mask = rnp->grpmask; 1994 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 1995 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ 1996 rcu_report_qs_rnp(mask, rnp_p, gps, flags); 1997 } 1998 1999 /* 2000 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2001 * structure. This must be called from the specified CPU. 2002 */ 2003 static void 2004 rcu_report_qs_rdp(struct rcu_data *rdp) 2005 { 2006 unsigned long flags; 2007 unsigned long mask; 2008 bool needwake = false; 2009 bool needacc = false; 2010 struct rcu_node *rnp; 2011 2012 WARN_ON_ONCE(rdp->cpu != smp_processor_id()); 2013 rnp = rdp->mynode; 2014 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2015 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || 2016 rdp->gpwrap) { 2017 2018 /* 2019 * The grace period in which this quiescent state was 2020 * recorded has ended, so don't report it upwards. 2021 * We will instead need a new quiescent state that lies 2022 * within the current grace period. 2023 */ 2024 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ 2025 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2026 return; 2027 } 2028 mask = rdp->grpmask; 2029 rdp->core_needs_qs = false; 2030 if ((rnp->qsmask & mask) == 0) { 2031 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2032 } else { 2033 /* 2034 * This GP can't end until cpu checks in, so all of our 2035 * callbacks can be processed during the next GP. 2036 * 2037 * NOCB kthreads have their own way to deal with that... 2038 */ 2039 if (!rcu_rdp_is_offloaded(rdp)) { 2040 needwake = rcu_accelerate_cbs(rnp, rdp); 2041 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) { 2042 /* 2043 * ...but NOCB kthreads may miss or delay callbacks acceleration 2044 * if in the middle of a (de-)offloading process. 2045 */ 2046 needacc = true; 2047 } 2048 2049 rcu_disable_urgency_upon_qs(rdp); 2050 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2051 /* ^^^ Released rnp->lock */ 2052 if (needwake) 2053 rcu_gp_kthread_wake(); 2054 2055 if (needacc) { 2056 rcu_nocb_lock_irqsave(rdp, flags); 2057 rcu_accelerate_cbs_unlocked(rnp, rdp); 2058 rcu_nocb_unlock_irqrestore(rdp, flags); 2059 } 2060 } 2061 } 2062 2063 /* 2064 * Check to see if there is a new grace period of which this CPU 2065 * is not yet aware, and if so, set up local rcu_data state for it. 2066 * Otherwise, see if this CPU has just passed through its first 2067 * quiescent state for this grace period, and record that fact if so. 2068 */ 2069 static void 2070 rcu_check_quiescent_state(struct rcu_data *rdp) 2071 { 2072 /* Check for grace-period ends and beginnings. */ 2073 note_gp_changes(rdp); 2074 2075 /* 2076 * Does this CPU still need to do its part for current grace period? 2077 * If no, return and let the other CPUs do their part as well. 2078 */ 2079 if (!rdp->core_needs_qs) 2080 return; 2081 2082 /* 2083 * Was there a quiescent state since the beginning of the grace 2084 * period? If no, then exit and wait for the next call. 2085 */ 2086 if (rdp->cpu_no_qs.b.norm) 2087 return; 2088 2089 /* 2090 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2091 * judge of that). 2092 */ 2093 rcu_report_qs_rdp(rdp); 2094 } 2095 2096 /* 2097 * Near the end of the offline process. Trace the fact that this CPU 2098 * is going offline. 2099 */ 2100 int rcutree_dying_cpu(unsigned int cpu) 2101 { 2102 bool blkd; 2103 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2104 struct rcu_node *rnp = rdp->mynode; 2105 2106 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2107 return 0; 2108 2109 blkd = !!(rnp->qsmask & rdp->grpmask); 2110 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq), 2111 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl")); 2112 return 0; 2113 } 2114 2115 /* 2116 * All CPUs for the specified rcu_node structure have gone offline, 2117 * and all tasks that were preempted within an RCU read-side critical 2118 * section while running on one of those CPUs have since exited their RCU 2119 * read-side critical section. Some other CPU is reporting this fact with 2120 * the specified rcu_node structure's ->lock held and interrupts disabled. 2121 * This function therefore goes up the tree of rcu_node structures, 2122 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2123 * the leaf rcu_node structure's ->qsmaskinit field has already been 2124 * updated. 2125 * 2126 * This function does check that the specified rcu_node structure has 2127 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2128 * prematurely. That said, invoking it after the fact will cost you 2129 * a needless lock acquisition. So once it has done its work, don't 2130 * invoke it again. 2131 */ 2132 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2133 { 2134 long mask; 2135 struct rcu_node *rnp = rnp_leaf; 2136 2137 raw_lockdep_assert_held_rcu_node(rnp_leaf); 2138 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || 2139 WARN_ON_ONCE(rnp_leaf->qsmaskinit) || 2140 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf))) 2141 return; 2142 for (;;) { 2143 mask = rnp->grpmask; 2144 rnp = rnp->parent; 2145 if (!rnp) 2146 break; 2147 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 2148 rnp->qsmaskinit &= ~mask; 2149 /* Between grace periods, so better already be zero! */ 2150 WARN_ON_ONCE(rnp->qsmask); 2151 if (rnp->qsmaskinit) { 2152 raw_spin_unlock_rcu_node(rnp); 2153 /* irqs remain disabled. */ 2154 return; 2155 } 2156 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 2157 } 2158 } 2159 2160 /* 2161 * The CPU has been completely removed, and some other CPU is reporting 2162 * this fact from process context. Do the remainder of the cleanup. 2163 * There can only be one CPU hotplug operation at a time, so no need for 2164 * explicit locking. 2165 */ 2166 int rcutree_dead_cpu(unsigned int cpu) 2167 { 2168 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 2169 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2170 2171 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 2172 return 0; 2173 2174 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1); 2175 /* Adjust any no-longer-needed kthreads. */ 2176 rcu_boost_kthread_setaffinity(rnp, -1); 2177 // Stop-machine done, so allow nohz_full to disable tick. 2178 tick_dep_clear(TICK_DEP_BIT_RCU); 2179 return 0; 2180 } 2181 2182 /* 2183 * Invoke any RCU callbacks that have made it to the end of their grace 2184 * period. Throttle as specified by rdp->blimit. 2185 */ 2186 static void rcu_do_batch(struct rcu_data *rdp) 2187 { 2188 int div; 2189 bool __maybe_unused empty; 2190 unsigned long flags; 2191 struct rcu_head *rhp; 2192 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 2193 long bl, count = 0; 2194 long pending, tlimit = 0; 2195 2196 /* If no callbacks are ready, just return. */ 2197 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { 2198 trace_rcu_batch_start(rcu_state.name, 2199 rcu_segcblist_n_cbs(&rdp->cblist), 0); 2200 trace_rcu_batch_end(rcu_state.name, 0, 2201 !rcu_segcblist_empty(&rdp->cblist), 2202 need_resched(), is_idle_task(current), 2203 rcu_is_callbacks_kthread(rdp)); 2204 return; 2205 } 2206 2207 /* 2208 * Extract the list of ready callbacks, disabling IRQs to prevent 2209 * races with call_rcu() from interrupt handlers. Leave the 2210 * callback counts, as rcu_barrier() needs to be conservative. 2211 */ 2212 rcu_nocb_lock_irqsave(rdp, flags); 2213 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2214 pending = rcu_segcblist_n_cbs(&rdp->cblist); 2215 div = READ_ONCE(rcu_divisor); 2216 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div; 2217 bl = max(rdp->blimit, pending >> div); 2218 if (in_serving_softirq() && unlikely(bl > 100)) { 2219 long rrn = READ_ONCE(rcu_resched_ns); 2220 2221 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn; 2222 tlimit = local_clock() + rrn; 2223 } 2224 trace_rcu_batch_start(rcu_state.name, 2225 rcu_segcblist_n_cbs(&rdp->cblist), bl); 2226 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); 2227 if (rcu_rdp_is_offloaded(rdp)) 2228 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2229 2230 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued")); 2231 rcu_nocb_unlock_irqrestore(rdp, flags); 2232 2233 /* Invoke callbacks. */ 2234 tick_dep_set_task(current, TICK_DEP_BIT_RCU); 2235 rhp = rcu_cblist_dequeue(&rcl); 2236 2237 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { 2238 rcu_callback_t f; 2239 2240 count++; 2241 debug_rcu_head_unqueue(rhp); 2242 2243 rcu_lock_acquire(&rcu_callback_map); 2244 trace_rcu_invoke_callback(rcu_state.name, rhp); 2245 2246 f = rhp->func; 2247 WRITE_ONCE(rhp->func, (rcu_callback_t)0L); 2248 f(rhp); 2249 2250 rcu_lock_release(&rcu_callback_map); 2251 2252 /* 2253 * Stop only if limit reached and CPU has something to do. 2254 */ 2255 if (in_serving_softirq()) { 2256 if (count >= bl && (need_resched() || !is_idle_task(current))) 2257 break; 2258 /* 2259 * Make sure we don't spend too much time here and deprive other 2260 * softirq vectors of CPU cycles. 2261 */ 2262 if (unlikely(tlimit)) { 2263 /* only call local_clock() every 32 callbacks */ 2264 if (likely((count & 31) || local_clock() < tlimit)) 2265 continue; 2266 /* Exceeded the time limit, so leave. */ 2267 break; 2268 } 2269 } else { 2270 local_bh_enable(); 2271 lockdep_assert_irqs_enabled(); 2272 cond_resched_tasks_rcu_qs(); 2273 lockdep_assert_irqs_enabled(); 2274 local_bh_disable(); 2275 } 2276 } 2277 2278 rcu_nocb_lock_irqsave(rdp, flags); 2279 rdp->n_cbs_invoked += count; 2280 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(), 2281 is_idle_task(current), rcu_is_callbacks_kthread(rdp)); 2282 2283 /* Update counts and requeue any remaining callbacks. */ 2284 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); 2285 rcu_segcblist_add_len(&rdp->cblist, -count); 2286 2287 /* Reinstate batch limit if we have worked down the excess. */ 2288 count = rcu_segcblist_n_cbs(&rdp->cblist); 2289 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark) 2290 rdp->blimit = blimit; 2291 2292 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2293 if (count == 0 && rdp->qlen_last_fqs_check != 0) { 2294 rdp->qlen_last_fqs_check = 0; 2295 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2296 } else if (count < rdp->qlen_last_fqs_check - qhimark) 2297 rdp->qlen_last_fqs_check = count; 2298 2299 /* 2300 * The following usually indicates a double call_rcu(). To track 2301 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. 2302 */ 2303 empty = rcu_segcblist_empty(&rdp->cblist); 2304 WARN_ON_ONCE(count == 0 && !empty); 2305 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) && 2306 count != 0 && empty); 2307 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0); 2308 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0); 2309 2310 rcu_nocb_unlock_irqrestore(rdp, flags); 2311 2312 tick_dep_clear_task(current, TICK_DEP_BIT_RCU); 2313 } 2314 2315 /* 2316 * This function is invoked from each scheduling-clock interrupt, 2317 * and checks to see if this CPU is in a non-context-switch quiescent 2318 * state, for example, user mode or idle loop. It also schedules RCU 2319 * core processing. If the current grace period has gone on too long, 2320 * it will ask the scheduler to manufacture a context switch for the sole 2321 * purpose of providing the needed quiescent state. 2322 */ 2323 void rcu_sched_clock_irq(int user) 2324 { 2325 unsigned long j; 2326 2327 if (IS_ENABLED(CONFIG_PROVE_RCU)) { 2328 j = jiffies; 2329 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock))); 2330 __this_cpu_write(rcu_data.last_sched_clock, j); 2331 } 2332 trace_rcu_utilization(TPS("Start scheduler-tick")); 2333 lockdep_assert_irqs_disabled(); 2334 raw_cpu_inc(rcu_data.ticks_this_gp); 2335 /* The load-acquire pairs with the store-release setting to true. */ 2336 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) { 2337 /* Idle and userspace execution already are quiescent states. */ 2338 if (!rcu_is_cpu_rrupt_from_idle() && !user) { 2339 set_tsk_need_resched(current); 2340 set_preempt_need_resched(); 2341 } 2342 __this_cpu_write(rcu_data.rcu_urgent_qs, false); 2343 } 2344 rcu_flavor_sched_clock_irq(user); 2345 if (rcu_pending(user)) 2346 invoke_rcu_core(); 2347 if (user || rcu_is_cpu_rrupt_from_idle()) 2348 rcu_note_voluntary_context_switch(current); 2349 lockdep_assert_irqs_disabled(); 2350 2351 trace_rcu_utilization(TPS("End scheduler-tick")); 2352 } 2353 2354 /* 2355 * Scan the leaf rcu_node structures. For each structure on which all 2356 * CPUs have reported a quiescent state and on which there are tasks 2357 * blocking the current grace period, initiate RCU priority boosting. 2358 * Otherwise, invoke the specified function to check dyntick state for 2359 * each CPU that has not yet reported a quiescent state. 2360 */ 2361 static void force_qs_rnp(int (*f)(struct rcu_data *rdp)) 2362 { 2363 int cpu; 2364 unsigned long flags; 2365 unsigned long mask; 2366 struct rcu_data *rdp; 2367 struct rcu_node *rnp; 2368 2369 rcu_state.cbovld = rcu_state.cbovldnext; 2370 rcu_state.cbovldnext = false; 2371 rcu_for_each_leaf_node(rnp) { 2372 cond_resched_tasks_rcu_qs(); 2373 mask = 0; 2374 raw_spin_lock_irqsave_rcu_node(rnp, flags); 2375 rcu_state.cbovldnext |= !!rnp->cbovldmask; 2376 if (rnp->qsmask == 0) { 2377 if (rcu_preempt_blocked_readers_cgp(rnp)) { 2378 /* 2379 * No point in scanning bits because they 2380 * are all zero. But we might need to 2381 * priority-boost blocked readers. 2382 */ 2383 rcu_initiate_boost(rnp, flags); 2384 /* rcu_initiate_boost() releases rnp->lock */ 2385 continue; 2386 } 2387 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2388 continue; 2389 } 2390 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) { 2391 rdp = per_cpu_ptr(&rcu_data, cpu); 2392 if (f(rdp)) { 2393 mask |= rdp->grpmask; 2394 rcu_disable_urgency_upon_qs(rdp); 2395 } 2396 } 2397 if (mask != 0) { 2398 /* Idle/offline CPUs, report (releases rnp->lock). */ 2399 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 2400 } else { 2401 /* Nothing to do here, so just drop the lock. */ 2402 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 2403 } 2404 } 2405 } 2406 2407 /* 2408 * Force quiescent states on reluctant CPUs, and also detect which 2409 * CPUs are in dyntick-idle mode. 2410 */ 2411 void rcu_force_quiescent_state(void) 2412 { 2413 unsigned long flags; 2414 bool ret; 2415 struct rcu_node *rnp; 2416 struct rcu_node *rnp_old = NULL; 2417 2418 /* Funnel through hierarchy to reduce memory contention. */ 2419 rnp = __this_cpu_read(rcu_data.mynode); 2420 for (; rnp != NULL; rnp = rnp->parent) { 2421 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) || 2422 !raw_spin_trylock(&rnp->fqslock); 2423 if (rnp_old != NULL) 2424 raw_spin_unlock(&rnp_old->fqslock); 2425 if (ret) 2426 return; 2427 rnp_old = rnp; 2428 } 2429 /* rnp_old == rcu_get_root(), rnp == NULL. */ 2430 2431 /* Reached the root of the rcu_node tree, acquire lock. */ 2432 raw_spin_lock_irqsave_rcu_node(rnp_old, flags); 2433 raw_spin_unlock(&rnp_old->fqslock); 2434 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) { 2435 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2436 return; /* Someone beat us to it. */ 2437 } 2438 WRITE_ONCE(rcu_state.gp_flags, 2439 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS); 2440 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); 2441 rcu_gp_kthread_wake(); 2442 } 2443 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 2444 2445 // Workqueue handler for an RCU reader for kernels enforcing struct RCU 2446 // grace periods. 2447 static void strict_work_handler(struct work_struct *work) 2448 { 2449 rcu_read_lock(); 2450 rcu_read_unlock(); 2451 } 2452 2453 /* Perform RCU core processing work for the current CPU. */ 2454 static __latent_entropy void rcu_core(void) 2455 { 2456 unsigned long flags; 2457 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data); 2458 struct rcu_node *rnp = rdp->mynode; 2459 /* 2460 * On RT rcu_core() can be preempted when IRQs aren't disabled. 2461 * Therefore this function can race with concurrent NOCB (de-)offloading 2462 * on this CPU and the below condition must be considered volatile. 2463 * However if we race with: 2464 * 2465 * _ Offloading: In the worst case we accelerate or process callbacks 2466 * concurrently with NOCB kthreads. We are guaranteed to 2467 * call rcu_nocb_lock() if that happens. 2468 * 2469 * _ Deoffloading: In the worst case we miss callbacks acceleration or 2470 * processing. This is fine because the early stage 2471 * of deoffloading invokes rcu_core() after setting 2472 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process 2473 * what could have been dismissed without the need to wait 2474 * for the next rcu_pending() check in the next jiffy. 2475 */ 2476 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist); 2477 2478 if (cpu_is_offline(smp_processor_id())) 2479 return; 2480 trace_rcu_utilization(TPS("Start RCU core")); 2481 WARN_ON_ONCE(!rdp->beenonline); 2482 2483 /* Report any deferred quiescent states if preemption enabled. */ 2484 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) { 2485 rcu_preempt_deferred_qs(current); 2486 } else if (rcu_preempt_need_deferred_qs(current)) { 2487 set_tsk_need_resched(current); 2488 set_preempt_need_resched(); 2489 } 2490 2491 /* Update RCU state based on any recent quiescent states. */ 2492 rcu_check_quiescent_state(rdp); 2493 2494 /* No grace period and unregistered callbacks? */ 2495 if (!rcu_gp_in_progress() && 2496 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) { 2497 rcu_nocb_lock_irqsave(rdp, flags); 2498 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 2499 rcu_accelerate_cbs_unlocked(rnp, rdp); 2500 rcu_nocb_unlock_irqrestore(rdp, flags); 2501 } 2502 2503 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check()); 2504 2505 /* If there are callbacks ready, invoke them. */ 2506 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) && 2507 likely(READ_ONCE(rcu_scheduler_fully_active))) { 2508 rcu_do_batch(rdp); 2509 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2510 if (rcu_segcblist_ready_cbs(&rdp->cblist)) 2511 invoke_rcu_core(); 2512 } 2513 2514 /* Do any needed deferred wakeups of rcuo kthreads. */ 2515 do_nocb_deferred_wakeup(rdp); 2516 trace_rcu_utilization(TPS("End RCU core")); 2517 2518 // If strict GPs, schedule an RCU reader in a clean environment. 2519 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 2520 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work); 2521 } 2522 2523 static void rcu_core_si(struct softirq_action *h) 2524 { 2525 rcu_core(); 2526 } 2527 2528 static void rcu_wake_cond(struct task_struct *t, int status) 2529 { 2530 /* 2531 * If the thread is yielding, only wake it when this 2532 * is invoked from idle 2533 */ 2534 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current))) 2535 wake_up_process(t); 2536 } 2537 2538 static void invoke_rcu_core_kthread(void) 2539 { 2540 struct task_struct *t; 2541 unsigned long flags; 2542 2543 local_irq_save(flags); 2544 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1); 2545 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task); 2546 if (t != NULL && t != current) 2547 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status)); 2548 local_irq_restore(flags); 2549 } 2550 2551 /* 2552 * Wake up this CPU's rcuc kthread to do RCU core processing. 2553 */ 2554 static void invoke_rcu_core(void) 2555 { 2556 if (!cpu_online(smp_processor_id())) 2557 return; 2558 if (use_softirq) 2559 raise_softirq(RCU_SOFTIRQ); 2560 else 2561 invoke_rcu_core_kthread(); 2562 } 2563 2564 static void rcu_cpu_kthread_park(unsigned int cpu) 2565 { 2566 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU; 2567 } 2568 2569 static int rcu_cpu_kthread_should_run(unsigned int cpu) 2570 { 2571 return __this_cpu_read(rcu_data.rcu_cpu_has_work); 2572 } 2573 2574 /* 2575 * Per-CPU kernel thread that invokes RCU callbacks. This replaces 2576 * the RCU softirq used in configurations of RCU that do not support RCU 2577 * priority boosting. 2578 */ 2579 static void rcu_cpu_kthread(unsigned int cpu) 2580 { 2581 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status); 2582 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work); 2583 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity); 2584 int spincnt; 2585 2586 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run")); 2587 for (spincnt = 0; spincnt < 10; spincnt++) { 2588 WRITE_ONCE(*j, jiffies); 2589 local_bh_disable(); 2590 *statusp = RCU_KTHREAD_RUNNING; 2591 local_irq_disable(); 2592 work = *workp; 2593 *workp = 0; 2594 local_irq_enable(); 2595 if (work) 2596 rcu_core(); 2597 local_bh_enable(); 2598 if (*workp == 0) { 2599 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait")); 2600 *statusp = RCU_KTHREAD_WAITING; 2601 return; 2602 } 2603 } 2604 *statusp = RCU_KTHREAD_YIELDING; 2605 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield")); 2606 schedule_timeout_idle(2); 2607 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield")); 2608 *statusp = RCU_KTHREAD_WAITING; 2609 WRITE_ONCE(*j, jiffies); 2610 } 2611 2612 static struct smp_hotplug_thread rcu_cpu_thread_spec = { 2613 .store = &rcu_data.rcu_cpu_kthread_task, 2614 .thread_should_run = rcu_cpu_kthread_should_run, 2615 .thread_fn = rcu_cpu_kthread, 2616 .thread_comm = "rcuc/%u", 2617 .setup = rcu_cpu_kthread_setup, 2618 .park = rcu_cpu_kthread_park, 2619 }; 2620 2621 /* 2622 * Spawn per-CPU RCU core processing kthreads. 2623 */ 2624 static int __init rcu_spawn_core_kthreads(void) 2625 { 2626 int cpu; 2627 2628 for_each_possible_cpu(cpu) 2629 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0; 2630 if (use_softirq) 2631 return 0; 2632 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec), 2633 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__); 2634 return 0; 2635 } 2636 2637 /* 2638 * Handle any core-RCU processing required by a call_rcu() invocation. 2639 */ 2640 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head, 2641 unsigned long flags) 2642 { 2643 /* 2644 * If called from an extended quiescent state, invoke the RCU 2645 * core in order to force a re-evaluation of RCU's idleness. 2646 */ 2647 if (!rcu_is_watching()) 2648 invoke_rcu_core(); 2649 2650 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2651 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2652 return; 2653 2654 /* 2655 * Force the grace period if too many callbacks or too long waiting. 2656 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state() 2657 * if some other CPU has recently done so. Also, don't bother 2658 * invoking rcu_force_quiescent_state() if the newly enqueued callback 2659 * is the only one waiting for a grace period to complete. 2660 */ 2661 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > 2662 rdp->qlen_last_fqs_check + qhimark)) { 2663 2664 /* Are we ignoring a completed grace period? */ 2665 note_gp_changes(rdp); 2666 2667 /* Start a new grace period if one not already started. */ 2668 if (!rcu_gp_in_progress()) { 2669 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp); 2670 } else { 2671 /* Give the grace period a kick. */ 2672 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT; 2673 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap && 2674 rcu_segcblist_first_pend_cb(&rdp->cblist) != head) 2675 rcu_force_quiescent_state(); 2676 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 2677 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); 2678 } 2679 } 2680 } 2681 2682 /* 2683 * RCU callback function to leak a callback. 2684 */ 2685 static void rcu_leak_callback(struct rcu_head *rhp) 2686 { 2687 } 2688 2689 /* 2690 * Check and if necessary update the leaf rcu_node structure's 2691 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2692 * number of queued RCU callbacks. The caller must hold the leaf rcu_node 2693 * structure's ->lock. 2694 */ 2695 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp) 2696 { 2697 raw_lockdep_assert_held_rcu_node(rnp); 2698 if (qovld_calc <= 0) 2699 return; // Early boot and wildcard value set. 2700 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) 2701 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask); 2702 else 2703 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask); 2704 } 2705 2706 /* 2707 * Check and if necessary update the leaf rcu_node structure's 2708 * ->cbovldmask bit corresponding to the current CPU based on that CPU's 2709 * number of queued RCU callbacks. No locks need be held, but the 2710 * caller must have disabled interrupts. 2711 * 2712 * Note that this function ignores the possibility that there are a lot 2713 * of callbacks all of which have already seen the end of their respective 2714 * grace periods. This omission is due to the need for no-CBs CPUs to 2715 * be holding ->nocb_lock to do this check, which is too heavy for a 2716 * common-case operation. 2717 */ 2718 static void check_cb_ovld(struct rcu_data *rdp) 2719 { 2720 struct rcu_node *const rnp = rdp->mynode; 2721 2722 if (qovld_calc <= 0 || 2723 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) == 2724 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask))) 2725 return; // Early boot wildcard value or already set correctly. 2726 raw_spin_lock_rcu_node(rnp); 2727 check_cb_ovld_locked(rdp, rnp); 2728 raw_spin_unlock_rcu_node(rnp); 2729 } 2730 2731 /** 2732 * call_rcu() - Queue an RCU callback for invocation after a grace period. 2733 * @head: structure to be used for queueing the RCU updates. 2734 * @func: actual callback function to be invoked after the grace period 2735 * 2736 * The callback function will be invoked some time after a full grace 2737 * period elapses, in other words after all pre-existing RCU read-side 2738 * critical sections have completed. However, the callback function 2739 * might well execute concurrently with RCU read-side critical sections 2740 * that started after call_rcu() was invoked. 2741 * 2742 * RCU read-side critical sections are delimited by rcu_read_lock() 2743 * and rcu_read_unlock(), and may be nested. In addition, but only in 2744 * v5.0 and later, regions of code across which interrupts, preemption, 2745 * or softirqs have been disabled also serve as RCU read-side critical 2746 * sections. This includes hardware interrupt handlers, softirq handlers, 2747 * and NMI handlers. 2748 * 2749 * Note that all CPUs must agree that the grace period extended beyond 2750 * all pre-existing RCU read-side critical section. On systems with more 2751 * than one CPU, this means that when "func()" is invoked, each CPU is 2752 * guaranteed to have executed a full memory barrier since the end of its 2753 * last RCU read-side critical section whose beginning preceded the call 2754 * to call_rcu(). It also means that each CPU executing an RCU read-side 2755 * critical section that continues beyond the start of "func()" must have 2756 * executed a memory barrier after the call_rcu() but before the beginning 2757 * of that RCU read-side critical section. Note that these guarantees 2758 * include CPUs that are offline, idle, or executing in user mode, as 2759 * well as CPUs that are executing in the kernel. 2760 * 2761 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 2762 * resulting RCU callback function "func()", then both CPU A and CPU B are 2763 * guaranteed to execute a full memory barrier during the time interval 2764 * between the call to call_rcu() and the invocation of "func()" -- even 2765 * if CPU A and CPU B are the same CPU (but again only if the system has 2766 * more than one CPU). 2767 * 2768 * Implementation of these memory-ordering guarantees is described here: 2769 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 2770 */ 2771 void call_rcu(struct rcu_head *head, rcu_callback_t func) 2772 { 2773 static atomic_t doublefrees; 2774 unsigned long flags; 2775 struct rcu_data *rdp; 2776 bool was_alldone; 2777 2778 /* Misaligned rcu_head! */ 2779 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); 2780 2781 if (debug_rcu_head_queue(head)) { 2782 /* 2783 * Probable double call_rcu(), so leak the callback. 2784 * Use rcu:rcu_callback trace event to find the previous 2785 * time callback was passed to call_rcu(). 2786 */ 2787 if (atomic_inc_return(&doublefrees) < 4) { 2788 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func); 2789 mem_dump_obj(head); 2790 } 2791 WRITE_ONCE(head->func, rcu_leak_callback); 2792 return; 2793 } 2794 head->func = func; 2795 head->next = NULL; 2796 kasan_record_aux_stack_noalloc(head); 2797 local_irq_save(flags); 2798 rdp = this_cpu_ptr(&rcu_data); 2799 2800 /* Add the callback to our list. */ 2801 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) { 2802 // This can trigger due to call_rcu() from offline CPU: 2803 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE); 2804 WARN_ON_ONCE(!rcu_is_watching()); 2805 // Very early boot, before rcu_init(). Initialize if needed 2806 // and then drop through to queue the callback. 2807 if (rcu_segcblist_empty(&rdp->cblist)) 2808 rcu_segcblist_init(&rdp->cblist); 2809 } 2810 2811 check_cb_ovld(rdp); 2812 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags)) 2813 return; // Enqueued onto ->nocb_bypass, so just leave. 2814 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock. 2815 rcu_segcblist_enqueue(&rdp->cblist, head); 2816 if (__is_kvfree_rcu_offset((unsigned long)func)) 2817 trace_rcu_kvfree_callback(rcu_state.name, head, 2818 (unsigned long)func, 2819 rcu_segcblist_n_cbs(&rdp->cblist)); 2820 else 2821 trace_rcu_callback(rcu_state.name, head, 2822 rcu_segcblist_n_cbs(&rdp->cblist)); 2823 2824 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued")); 2825 2826 /* Go handle any RCU core processing required. */ 2827 if (unlikely(rcu_rdp_is_offloaded(rdp))) { 2828 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */ 2829 } else { 2830 __call_rcu_core(rdp, head, flags); 2831 local_irq_restore(flags); 2832 } 2833 } 2834 EXPORT_SYMBOL_GPL(call_rcu); 2835 2836 2837 /* Maximum number of jiffies to wait before draining a batch. */ 2838 #define KFREE_DRAIN_JIFFIES (5 * HZ) 2839 #define KFREE_N_BATCHES 2 2840 #define FREE_N_CHANNELS 2 2841 2842 /** 2843 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers 2844 * @nr_records: Number of active pointers in the array 2845 * @next: Next bulk object in the block chain 2846 * @records: Array of the kvfree_rcu() pointers 2847 */ 2848 struct kvfree_rcu_bulk_data { 2849 unsigned long nr_records; 2850 struct kvfree_rcu_bulk_data *next; 2851 void *records[]; 2852 }; 2853 2854 /* 2855 * This macro defines how many entries the "records" array 2856 * will contain. It is based on the fact that the size of 2857 * kvfree_rcu_bulk_data structure becomes exactly one page. 2858 */ 2859 #define KVFREE_BULK_MAX_ENTR \ 2860 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *)) 2861 2862 /** 2863 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests 2864 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period 2865 * @head_free: List of kfree_rcu() objects waiting for a grace period 2866 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period 2867 * @krcp: Pointer to @kfree_rcu_cpu structure 2868 */ 2869 2870 struct kfree_rcu_cpu_work { 2871 struct rcu_work rcu_work; 2872 struct rcu_head *head_free; 2873 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS]; 2874 struct kfree_rcu_cpu *krcp; 2875 }; 2876 2877 /** 2878 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period 2879 * @head: List of kfree_rcu() objects not yet waiting for a grace period 2880 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period 2881 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period 2882 * @lock: Synchronize access to this structure 2883 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES 2884 * @initialized: The @rcu_work fields have been initialized 2885 * @count: Number of objects for which GP not started 2886 * @bkvcache: 2887 * A simple cache list that contains objects for reuse purpose. 2888 * In order to save some per-cpu space the list is singular. 2889 * Even though it is lockless an access has to be protected by the 2890 * per-cpu lock. 2891 * @page_cache_work: A work to refill the cache when it is empty 2892 * @backoff_page_cache_fill: Delay cache refills 2893 * @work_in_progress: Indicates that page_cache_work is running 2894 * @hrtimer: A hrtimer for scheduling a page_cache_work 2895 * @nr_bkv_objs: number of allocated objects at @bkvcache. 2896 * 2897 * This is a per-CPU structure. The reason that it is not included in 2898 * the rcu_data structure is to permit this code to be extracted from 2899 * the RCU files. Such extraction could allow further optimization of 2900 * the interactions with the slab allocators. 2901 */ 2902 struct kfree_rcu_cpu { 2903 struct rcu_head *head; 2904 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS]; 2905 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES]; 2906 raw_spinlock_t lock; 2907 struct delayed_work monitor_work; 2908 bool initialized; 2909 int count; 2910 2911 struct delayed_work page_cache_work; 2912 atomic_t backoff_page_cache_fill; 2913 atomic_t work_in_progress; 2914 struct hrtimer hrtimer; 2915 2916 struct llist_head bkvcache; 2917 int nr_bkv_objs; 2918 }; 2919 2920 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = { 2921 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock), 2922 }; 2923 2924 static __always_inline void 2925 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead) 2926 { 2927 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 2928 int i; 2929 2930 for (i = 0; i < bhead->nr_records; i++) 2931 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i])); 2932 #endif 2933 } 2934 2935 static inline struct kfree_rcu_cpu * 2936 krc_this_cpu_lock(unsigned long *flags) 2937 { 2938 struct kfree_rcu_cpu *krcp; 2939 2940 local_irq_save(*flags); // For safely calling this_cpu_ptr(). 2941 krcp = this_cpu_ptr(&krc); 2942 raw_spin_lock(&krcp->lock); 2943 2944 return krcp; 2945 } 2946 2947 static inline void 2948 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags) 2949 { 2950 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2951 } 2952 2953 static inline struct kvfree_rcu_bulk_data * 2954 get_cached_bnode(struct kfree_rcu_cpu *krcp) 2955 { 2956 if (!krcp->nr_bkv_objs) 2957 return NULL; 2958 2959 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1); 2960 return (struct kvfree_rcu_bulk_data *) 2961 llist_del_first(&krcp->bkvcache); 2962 } 2963 2964 static inline bool 2965 put_cached_bnode(struct kfree_rcu_cpu *krcp, 2966 struct kvfree_rcu_bulk_data *bnode) 2967 { 2968 // Check the limit. 2969 if (krcp->nr_bkv_objs >= rcu_min_cached_objs) 2970 return false; 2971 2972 llist_add((struct llist_node *) bnode, &krcp->bkvcache); 2973 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1); 2974 return true; 2975 } 2976 2977 static int 2978 drain_page_cache(struct kfree_rcu_cpu *krcp) 2979 { 2980 unsigned long flags; 2981 struct llist_node *page_list, *pos, *n; 2982 int freed = 0; 2983 2984 raw_spin_lock_irqsave(&krcp->lock, flags); 2985 page_list = llist_del_all(&krcp->bkvcache); 2986 WRITE_ONCE(krcp->nr_bkv_objs, 0); 2987 raw_spin_unlock_irqrestore(&krcp->lock, flags); 2988 2989 llist_for_each_safe(pos, n, page_list) { 2990 free_page((unsigned long)pos); 2991 freed++; 2992 } 2993 2994 return freed; 2995 } 2996 2997 /* 2998 * This function is invoked in workqueue context after a grace period. 2999 * It frees all the objects queued on ->bkvhead_free or ->head_free. 3000 */ 3001 static void kfree_rcu_work(struct work_struct *work) 3002 { 3003 unsigned long flags; 3004 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext; 3005 struct rcu_head *head, *next; 3006 struct kfree_rcu_cpu *krcp; 3007 struct kfree_rcu_cpu_work *krwp; 3008 int i, j; 3009 3010 krwp = container_of(to_rcu_work(work), 3011 struct kfree_rcu_cpu_work, rcu_work); 3012 krcp = krwp->krcp; 3013 3014 raw_spin_lock_irqsave(&krcp->lock, flags); 3015 // Channels 1 and 2. 3016 for (i = 0; i < FREE_N_CHANNELS; i++) { 3017 bkvhead[i] = krwp->bkvhead_free[i]; 3018 krwp->bkvhead_free[i] = NULL; 3019 } 3020 3021 // Channel 3. 3022 head = krwp->head_free; 3023 krwp->head_free = NULL; 3024 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3025 3026 // Handle the first two channels. 3027 for (i = 0; i < FREE_N_CHANNELS; i++) { 3028 for (; bkvhead[i]; bkvhead[i] = bnext) { 3029 bnext = bkvhead[i]->next; 3030 debug_rcu_bhead_unqueue(bkvhead[i]); 3031 3032 rcu_lock_acquire(&rcu_callback_map); 3033 if (i == 0) { // kmalloc() / kfree(). 3034 trace_rcu_invoke_kfree_bulk_callback( 3035 rcu_state.name, bkvhead[i]->nr_records, 3036 bkvhead[i]->records); 3037 3038 kfree_bulk(bkvhead[i]->nr_records, 3039 bkvhead[i]->records); 3040 } else { // vmalloc() / vfree(). 3041 for (j = 0; j < bkvhead[i]->nr_records; j++) { 3042 trace_rcu_invoke_kvfree_callback( 3043 rcu_state.name, 3044 bkvhead[i]->records[j], 0); 3045 3046 vfree(bkvhead[i]->records[j]); 3047 } 3048 } 3049 rcu_lock_release(&rcu_callback_map); 3050 3051 raw_spin_lock_irqsave(&krcp->lock, flags); 3052 if (put_cached_bnode(krcp, bkvhead[i])) 3053 bkvhead[i] = NULL; 3054 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3055 3056 if (bkvhead[i]) 3057 free_page((unsigned long) bkvhead[i]); 3058 3059 cond_resched_tasks_rcu_qs(); 3060 } 3061 } 3062 3063 /* 3064 * This is used when the "bulk" path can not be used for the 3065 * double-argument of kvfree_rcu(). This happens when the 3066 * page-cache is empty, which means that objects are instead 3067 * queued on a linked list through their rcu_head structures. 3068 * This list is named "Channel 3". 3069 */ 3070 for (; head; head = next) { 3071 unsigned long offset = (unsigned long)head->func; 3072 void *ptr = (void *)head - offset; 3073 3074 next = head->next; 3075 debug_rcu_head_unqueue((struct rcu_head *)ptr); 3076 rcu_lock_acquire(&rcu_callback_map); 3077 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset); 3078 3079 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset))) 3080 kvfree(ptr); 3081 3082 rcu_lock_release(&rcu_callback_map); 3083 cond_resched_tasks_rcu_qs(); 3084 } 3085 } 3086 3087 static bool 3088 need_offload_krc(struct kfree_rcu_cpu *krcp) 3089 { 3090 int i; 3091 3092 for (i = 0; i < FREE_N_CHANNELS; i++) 3093 if (krcp->bkvhead[i]) 3094 return true; 3095 3096 return !!krcp->head; 3097 } 3098 3099 static void 3100 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp) 3101 { 3102 long delay, delay_left; 3103 3104 delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES; 3105 if (delayed_work_pending(&krcp->monitor_work)) { 3106 delay_left = krcp->monitor_work.timer.expires - jiffies; 3107 if (delay < delay_left) 3108 mod_delayed_work(system_wq, &krcp->monitor_work, delay); 3109 return; 3110 } 3111 queue_delayed_work(system_wq, &krcp->monitor_work, delay); 3112 } 3113 3114 /* 3115 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout. 3116 */ 3117 static void kfree_rcu_monitor(struct work_struct *work) 3118 { 3119 struct kfree_rcu_cpu *krcp = container_of(work, 3120 struct kfree_rcu_cpu, monitor_work.work); 3121 unsigned long flags; 3122 int i, j; 3123 3124 raw_spin_lock_irqsave(&krcp->lock, flags); 3125 3126 // Attempt to start a new batch. 3127 for (i = 0; i < KFREE_N_BATCHES; i++) { 3128 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]); 3129 3130 // Try to detach bkvhead or head and attach it over any 3131 // available corresponding free channel. It can be that 3132 // a previous RCU batch is in progress, it means that 3133 // immediately to queue another one is not possible so 3134 // in that case the monitor work is rearmed. 3135 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) || 3136 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) || 3137 (krcp->head && !krwp->head_free)) { 3138 // Channel 1 corresponds to the SLAB-pointer bulk path. 3139 // Channel 2 corresponds to vmalloc-pointer bulk path. 3140 for (j = 0; j < FREE_N_CHANNELS; j++) { 3141 if (!krwp->bkvhead_free[j]) { 3142 krwp->bkvhead_free[j] = krcp->bkvhead[j]; 3143 krcp->bkvhead[j] = NULL; 3144 } 3145 } 3146 3147 // Channel 3 corresponds to both SLAB and vmalloc 3148 // objects queued on the linked list. 3149 if (!krwp->head_free) { 3150 krwp->head_free = krcp->head; 3151 krcp->head = NULL; 3152 } 3153 3154 WRITE_ONCE(krcp->count, 0); 3155 3156 // One work is per one batch, so there are three 3157 // "free channels", the batch can handle. It can 3158 // be that the work is in the pending state when 3159 // channels have been detached following by each 3160 // other. 3161 queue_rcu_work(system_wq, &krwp->rcu_work); 3162 } 3163 } 3164 3165 // If there is nothing to detach, it means that our job is 3166 // successfully done here. In case of having at least one 3167 // of the channels that is still busy we should rearm the 3168 // work to repeat an attempt. Because previous batches are 3169 // still in progress. 3170 if (need_offload_krc(krcp)) 3171 schedule_delayed_monitor_work(krcp); 3172 3173 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3174 } 3175 3176 static enum hrtimer_restart 3177 schedule_page_work_fn(struct hrtimer *t) 3178 { 3179 struct kfree_rcu_cpu *krcp = 3180 container_of(t, struct kfree_rcu_cpu, hrtimer); 3181 3182 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0); 3183 return HRTIMER_NORESTART; 3184 } 3185 3186 static void fill_page_cache_func(struct work_struct *work) 3187 { 3188 struct kvfree_rcu_bulk_data *bnode; 3189 struct kfree_rcu_cpu *krcp = 3190 container_of(work, struct kfree_rcu_cpu, 3191 page_cache_work.work); 3192 unsigned long flags; 3193 int nr_pages; 3194 bool pushed; 3195 int i; 3196 3197 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ? 3198 1 : rcu_min_cached_objs; 3199 3200 for (i = 0; i < nr_pages; i++) { 3201 bnode = (struct kvfree_rcu_bulk_data *) 3202 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3203 3204 if (!bnode) 3205 break; 3206 3207 raw_spin_lock_irqsave(&krcp->lock, flags); 3208 pushed = put_cached_bnode(krcp, bnode); 3209 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3210 3211 if (!pushed) { 3212 free_page((unsigned long) bnode); 3213 break; 3214 } 3215 } 3216 3217 atomic_set(&krcp->work_in_progress, 0); 3218 atomic_set(&krcp->backoff_page_cache_fill, 0); 3219 } 3220 3221 static void 3222 run_page_cache_worker(struct kfree_rcu_cpu *krcp) 3223 { 3224 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING && 3225 !atomic_xchg(&krcp->work_in_progress, 1)) { 3226 if (atomic_read(&krcp->backoff_page_cache_fill)) { 3227 queue_delayed_work(system_wq, 3228 &krcp->page_cache_work, 3229 msecs_to_jiffies(rcu_delay_page_cache_fill_msec)); 3230 } else { 3231 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3232 krcp->hrtimer.function = schedule_page_work_fn; 3233 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL); 3234 } 3235 } 3236 } 3237 3238 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock() 3239 // state specified by flags. If can_alloc is true, the caller must 3240 // be schedulable and not be holding any locks or mutexes that might be 3241 // acquired by the memory allocator or anything that it might invoke. 3242 // Returns true if ptr was successfully recorded, else the caller must 3243 // use a fallback. 3244 static inline bool 3245 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp, 3246 unsigned long *flags, void *ptr, bool can_alloc) 3247 { 3248 struct kvfree_rcu_bulk_data *bnode; 3249 int idx; 3250 3251 *krcp = krc_this_cpu_lock(flags); 3252 if (unlikely(!(*krcp)->initialized)) 3253 return false; 3254 3255 idx = !!is_vmalloc_addr(ptr); 3256 3257 /* Check if a new block is required. */ 3258 if (!(*krcp)->bkvhead[idx] || 3259 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) { 3260 bnode = get_cached_bnode(*krcp); 3261 if (!bnode && can_alloc) { 3262 krc_this_cpu_unlock(*krcp, *flags); 3263 3264 // __GFP_NORETRY - allows a light-weight direct reclaim 3265 // what is OK from minimizing of fallback hitting point of 3266 // view. Apart of that it forbids any OOM invoking what is 3267 // also beneficial since we are about to release memory soon. 3268 // 3269 // __GFP_NOMEMALLOC - prevents from consuming of all the 3270 // memory reserves. Please note we have a fallback path. 3271 // 3272 // __GFP_NOWARN - it is supposed that an allocation can 3273 // be failed under low memory or high memory pressure 3274 // scenarios. 3275 bnode = (struct kvfree_rcu_bulk_data *) 3276 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); 3277 *krcp = krc_this_cpu_lock(flags); 3278 } 3279 3280 if (!bnode) 3281 return false; 3282 3283 /* Initialize the new block. */ 3284 bnode->nr_records = 0; 3285 bnode->next = (*krcp)->bkvhead[idx]; 3286 3287 /* Attach it to the head. */ 3288 (*krcp)->bkvhead[idx] = bnode; 3289 } 3290 3291 /* Finally insert. */ 3292 (*krcp)->bkvhead[idx]->records 3293 [(*krcp)->bkvhead[idx]->nr_records++] = ptr; 3294 3295 return true; 3296 } 3297 3298 /* 3299 * Queue a request for lazy invocation of the appropriate free routine 3300 * after a grace period. Please note that three paths are maintained, 3301 * two for the common case using arrays of pointers and a third one that 3302 * is used only when the main paths cannot be used, for example, due to 3303 * memory pressure. 3304 * 3305 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained 3306 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will 3307 * be free'd in workqueue context. This allows us to: batch requests together to 3308 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load. 3309 */ 3310 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func) 3311 { 3312 unsigned long flags; 3313 struct kfree_rcu_cpu *krcp; 3314 bool success; 3315 void *ptr; 3316 3317 if (head) { 3318 ptr = (void *) head - (unsigned long) func; 3319 } else { 3320 /* 3321 * Please note there is a limitation for the head-less 3322 * variant, that is why there is a clear rule for such 3323 * objects: it can be used from might_sleep() context 3324 * only. For other places please embed an rcu_head to 3325 * your data. 3326 */ 3327 might_sleep(); 3328 ptr = (unsigned long *) func; 3329 } 3330 3331 // Queue the object but don't yet schedule the batch. 3332 if (debug_rcu_head_queue(ptr)) { 3333 // Probable double kfree_rcu(), just leak. 3334 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n", 3335 __func__, head); 3336 3337 // Mark as success and leave. 3338 return; 3339 } 3340 3341 kasan_record_aux_stack_noalloc(ptr); 3342 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head); 3343 if (!success) { 3344 run_page_cache_worker(krcp); 3345 3346 if (head == NULL) 3347 // Inline if kvfree_rcu(one_arg) call. 3348 goto unlock_return; 3349 3350 head->func = func; 3351 head->next = krcp->head; 3352 krcp->head = head; 3353 success = true; 3354 } 3355 3356 WRITE_ONCE(krcp->count, krcp->count + 1); 3357 3358 // Set timer to drain after KFREE_DRAIN_JIFFIES. 3359 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING) 3360 schedule_delayed_monitor_work(krcp); 3361 3362 unlock_return: 3363 krc_this_cpu_unlock(krcp, flags); 3364 3365 /* 3366 * Inline kvfree() after synchronize_rcu(). We can do 3367 * it from might_sleep() context only, so the current 3368 * CPU can pass the QS state. 3369 */ 3370 if (!success) { 3371 debug_rcu_head_unqueue((struct rcu_head *) ptr); 3372 synchronize_rcu(); 3373 kvfree(ptr); 3374 } 3375 } 3376 EXPORT_SYMBOL_GPL(kvfree_call_rcu); 3377 3378 static unsigned long 3379 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 3380 { 3381 int cpu; 3382 unsigned long count = 0; 3383 3384 /* Snapshot count of all CPUs */ 3385 for_each_possible_cpu(cpu) { 3386 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3387 3388 count += READ_ONCE(krcp->count); 3389 count += READ_ONCE(krcp->nr_bkv_objs); 3390 atomic_set(&krcp->backoff_page_cache_fill, 1); 3391 } 3392 3393 return count == 0 ? SHRINK_EMPTY : count; 3394 } 3395 3396 static unsigned long 3397 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 3398 { 3399 int cpu, freed = 0; 3400 3401 for_each_possible_cpu(cpu) { 3402 int count; 3403 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3404 3405 count = krcp->count; 3406 count += drain_page_cache(krcp); 3407 kfree_rcu_monitor(&krcp->monitor_work.work); 3408 3409 sc->nr_to_scan -= count; 3410 freed += count; 3411 3412 if (sc->nr_to_scan <= 0) 3413 break; 3414 } 3415 3416 return freed == 0 ? SHRINK_STOP : freed; 3417 } 3418 3419 static struct shrinker kfree_rcu_shrinker = { 3420 .count_objects = kfree_rcu_shrink_count, 3421 .scan_objects = kfree_rcu_shrink_scan, 3422 .batch = 0, 3423 .seeks = DEFAULT_SEEKS, 3424 }; 3425 3426 void __init kfree_rcu_scheduler_running(void) 3427 { 3428 int cpu; 3429 unsigned long flags; 3430 3431 for_each_possible_cpu(cpu) { 3432 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 3433 3434 raw_spin_lock_irqsave(&krcp->lock, flags); 3435 if (need_offload_krc(krcp)) 3436 schedule_delayed_monitor_work(krcp); 3437 raw_spin_unlock_irqrestore(&krcp->lock, flags); 3438 } 3439 } 3440 3441 /* 3442 * During early boot, any blocking grace-period wait automatically 3443 * implies a grace period. 3444 * 3445 * Later on, this could in theory be the case for kernels built with 3446 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this 3447 * is not a common case. Furthermore, this optimization would cause 3448 * the rcu_gp_oldstate structure to expand by 50%, so this potential 3449 * grace-period optimization is ignored once the scheduler is running. 3450 */ 3451 static int rcu_blocking_is_gp(void) 3452 { 3453 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) 3454 return false; 3455 might_sleep(); /* Check for RCU read-side critical section. */ 3456 return true; 3457 } 3458 3459 /** 3460 * synchronize_rcu - wait until a grace period has elapsed. 3461 * 3462 * Control will return to the caller some time after a full grace 3463 * period has elapsed, in other words after all currently executing RCU 3464 * read-side critical sections have completed. Note, however, that 3465 * upon return from synchronize_rcu(), the caller might well be executing 3466 * concurrently with new RCU read-side critical sections that began while 3467 * synchronize_rcu() was waiting. 3468 * 3469 * RCU read-side critical sections are delimited by rcu_read_lock() 3470 * and rcu_read_unlock(), and may be nested. In addition, but only in 3471 * v5.0 and later, regions of code across which interrupts, preemption, 3472 * or softirqs have been disabled also serve as RCU read-side critical 3473 * sections. This includes hardware interrupt handlers, softirq handlers, 3474 * and NMI handlers. 3475 * 3476 * Note that this guarantee implies further memory-ordering guarantees. 3477 * On systems with more than one CPU, when synchronize_rcu() returns, 3478 * each CPU is guaranteed to have executed a full memory barrier since 3479 * the end of its last RCU read-side critical section whose beginning 3480 * preceded the call to synchronize_rcu(). In addition, each CPU having 3481 * an RCU read-side critical section that extends beyond the return from 3482 * synchronize_rcu() is guaranteed to have executed a full memory barrier 3483 * after the beginning of synchronize_rcu() and before the beginning of 3484 * that RCU read-side critical section. Note that these guarantees include 3485 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 3486 * that are executing in the kernel. 3487 * 3488 * Furthermore, if CPU A invoked synchronize_rcu(), which returned 3489 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 3490 * to have executed a full memory barrier during the execution of 3491 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but 3492 * again only if the system has more than one CPU). 3493 * 3494 * Implementation of these memory-ordering guarantees is described here: 3495 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst. 3496 */ 3497 void synchronize_rcu(void) 3498 { 3499 unsigned long flags; 3500 struct rcu_node *rnp; 3501 3502 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || 3503 lock_is_held(&rcu_lock_map) || 3504 lock_is_held(&rcu_sched_lock_map), 3505 "Illegal synchronize_rcu() in RCU read-side critical section"); 3506 if (!rcu_blocking_is_gp()) { 3507 if (rcu_gp_is_expedited()) 3508 synchronize_rcu_expedited(); 3509 else 3510 wait_rcu_gp(call_rcu); 3511 return; 3512 } 3513 3514 // Context allows vacuous grace periods. 3515 // Note well that this code runs with !PREEMPT && !SMP. 3516 // In addition, all code that advances grace periods runs at 3517 // process level. Therefore, this normal GP overlaps with other 3518 // normal GPs only by being fully nested within them, which allows 3519 // reuse of ->gp_seq_polled_snap. 3520 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap); 3521 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap); 3522 3523 // Update the normal grace-period counters to record 3524 // this grace period, but only those used by the boot CPU. 3525 // The rcu_scheduler_starting() will take care of the rest of 3526 // these counters. 3527 local_irq_save(flags); 3528 WARN_ON_ONCE(num_online_cpus() > 1); 3529 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT); 3530 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent) 3531 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 3532 local_irq_restore(flags); 3533 } 3534 EXPORT_SYMBOL_GPL(synchronize_rcu); 3535 3536 /** 3537 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie 3538 * @rgosp: Place to put state cookie 3539 * 3540 * Stores into @rgosp a value that will always be treated by functions 3541 * like poll_state_synchronize_rcu_full() as a cookie whose grace period 3542 * has already completed. 3543 */ 3544 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3545 { 3546 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED; 3547 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED; 3548 } 3549 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full); 3550 3551 /** 3552 * get_state_synchronize_rcu - Snapshot current RCU state 3553 * 3554 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3555 * or poll_state_synchronize_rcu() to determine whether or not a full 3556 * grace period has elapsed in the meantime. 3557 */ 3558 unsigned long get_state_synchronize_rcu(void) 3559 { 3560 /* 3561 * Any prior manipulation of RCU-protected data must happen 3562 * before the load from ->gp_seq. 3563 */ 3564 smp_mb(); /* ^^^ */ 3565 return rcu_seq_snap(&rcu_state.gp_seq_polled); 3566 } 3567 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3568 3569 /** 3570 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited 3571 * @rgosp: location to place combined normal/expedited grace-period state 3572 * 3573 * Places the normal and expedited grace-period states in @rgosp. This 3574 * state value can be passed to a later call to cond_synchronize_rcu_full() 3575 * or poll_state_synchronize_rcu_full() to determine whether or not a 3576 * grace period (whether normal or expedited) has elapsed in the meantime. 3577 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned 3578 * long, but is guaranteed to see all grace periods. In contrast, the 3579 * combined state occupies less memory, but can sometimes fail to take 3580 * grace periods into account. 3581 * 3582 * This does not guarantee that the needed grace period will actually 3583 * start. 3584 */ 3585 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3586 { 3587 struct rcu_node *rnp = rcu_get_root(); 3588 3589 /* 3590 * Any prior manipulation of RCU-protected data must happen 3591 * before the loads from ->gp_seq and ->expedited_sequence. 3592 */ 3593 smp_mb(); /* ^^^ */ 3594 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq); 3595 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence); 3596 } 3597 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full); 3598 3599 /* 3600 * Helper function for start_poll_synchronize_rcu() and 3601 * start_poll_synchronize_rcu_full(). 3602 */ 3603 static void start_poll_synchronize_rcu_common(void) 3604 { 3605 unsigned long flags; 3606 bool needwake; 3607 struct rcu_data *rdp; 3608 struct rcu_node *rnp; 3609 3610 lockdep_assert_irqs_enabled(); 3611 local_irq_save(flags); 3612 rdp = this_cpu_ptr(&rcu_data); 3613 rnp = rdp->mynode; 3614 raw_spin_lock_rcu_node(rnp); // irqs already disabled. 3615 // Note it is possible for a grace period to have elapsed between 3616 // the above call to get_state_synchronize_rcu() and the below call 3617 // to rcu_seq_snap. This is OK, the worst that happens is that we 3618 // get a grace period that no one needed. These accesses are ordered 3619 // by smp_mb(), and we are accessing them in the opposite order 3620 // from which they are updated at grace-period start, as required. 3621 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq)); 3622 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 3623 if (needwake) 3624 rcu_gp_kthread_wake(); 3625 } 3626 3627 /** 3628 * start_poll_synchronize_rcu - Snapshot and start RCU grace period 3629 * 3630 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 3631 * or poll_state_synchronize_rcu() to determine whether or not a full 3632 * grace period has elapsed in the meantime. If the needed grace period 3633 * is not already slated to start, notifies RCU core of the need for that 3634 * grace period. 3635 * 3636 * Interrupts must be enabled for the case where it is necessary to awaken 3637 * the grace-period kthread. 3638 */ 3639 unsigned long start_poll_synchronize_rcu(void) 3640 { 3641 unsigned long gp_seq = get_state_synchronize_rcu(); 3642 3643 start_poll_synchronize_rcu_common(); 3644 return gp_seq; 3645 } 3646 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu); 3647 3648 /** 3649 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period 3650 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3651 * 3652 * Places the normal and expedited grace-period states in *@rgos. This 3653 * state value can be passed to a later call to cond_synchronize_rcu_full() 3654 * or poll_state_synchronize_rcu_full() to determine whether or not a 3655 * grace period (whether normal or expedited) has elapsed in the meantime. 3656 * If the needed grace period is not already slated to start, notifies 3657 * RCU core of the need for that grace period. 3658 * 3659 * Interrupts must be enabled for the case where it is necessary to awaken 3660 * the grace-period kthread. 3661 */ 3662 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3663 { 3664 get_state_synchronize_rcu_full(rgosp); 3665 3666 start_poll_synchronize_rcu_common(); 3667 } 3668 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full); 3669 3670 /** 3671 * poll_state_synchronize_rcu - Has the specified RCU grace period completed? 3672 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu() 3673 * 3674 * If a full RCU grace period has elapsed since the earlier call from 3675 * which @oldstate was obtained, return @true, otherwise return @false. 3676 * If @false is returned, it is the caller's responsibility to invoke this 3677 * function later on until it does return @true. Alternatively, the caller 3678 * can explicitly wait for a grace period, for example, by passing @oldstate 3679 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3680 * 3681 * Yes, this function does not take counter wrap into account. 3682 * But counter wrap is harmless. If the counter wraps, we have waited for 3683 * more than a billion grace periods (and way more on a 64-bit system!). 3684 * Those needing to keep old state values for very long time periods 3685 * (many hours even on 32-bit systems) should check them occasionally and 3686 * either refresh them or set a flag indicating that the grace period has 3687 * completed. Alternatively, they can use get_completed_synchronize_rcu() 3688 * to get a guaranteed-completed grace-period state. 3689 * 3690 * This function provides the same memory-ordering guarantees that 3691 * would be provided by a synchronize_rcu() that was invoked at the call 3692 * to the function that provided @oldstate, and that returned at the end 3693 * of this function. 3694 */ 3695 bool poll_state_synchronize_rcu(unsigned long oldstate) 3696 { 3697 if (oldstate == RCU_GET_STATE_COMPLETED || 3698 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) { 3699 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3700 return true; 3701 } 3702 return false; 3703 } 3704 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu); 3705 3706 /** 3707 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed? 3708 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full() 3709 * 3710 * If a full RCU grace period has elapsed since the earlier call from 3711 * which *rgosp was obtained, return @true, otherwise return @false. 3712 * If @false is returned, it is the caller's responsibility to invoke this 3713 * function later on until it does return @true. Alternatively, the caller 3714 * can explicitly wait for a grace period, for example, by passing @rgosp 3715 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu(). 3716 * 3717 * Yes, this function does not take counter wrap into account. 3718 * But counter wrap is harmless. If the counter wraps, we have waited 3719 * for more than a billion grace periods (and way more on a 64-bit 3720 * system!). Those needing to keep rcu_gp_oldstate values for very 3721 * long time periods (many hours even on 32-bit systems) should check 3722 * them occasionally and either refresh them or set a flag indicating 3723 * that the grace period has completed. Alternatively, they can use 3724 * get_completed_synchronize_rcu_full() to get a guaranteed-completed 3725 * grace-period state. 3726 * 3727 * This function provides the same memory-ordering guarantees that would 3728 * be provided by a synchronize_rcu() that was invoked at the call to 3729 * the function that provided @rgosp, and that returned at the end of this 3730 * function. And this guarantee requires that the root rcu_node structure's 3731 * ->gp_seq field be checked instead of that of the rcu_state structure. 3732 * The problem is that the just-ending grace-period's callbacks can be 3733 * invoked between the time that the root rcu_node structure's ->gp_seq 3734 * field is updated and the time that the rcu_state structure's ->gp_seq 3735 * field is updated. Therefore, if a single synchronize_rcu() is to 3736 * cause a subsequent poll_state_synchronize_rcu_full() to return @true, 3737 * then the root rcu_node structure is the one that needs to be polled. 3738 */ 3739 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3740 { 3741 struct rcu_node *rnp = rcu_get_root(); 3742 3743 smp_mb(); // Order against root rcu_node structure grace-period cleanup. 3744 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED || 3745 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) || 3746 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED || 3747 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) { 3748 smp_mb(); /* Ensure GP ends before subsequent accesses. */ 3749 return true; 3750 } 3751 return false; 3752 } 3753 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full); 3754 3755 /** 3756 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3757 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited() 3758 * 3759 * If a full RCU grace period has elapsed since the earlier call to 3760 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return. 3761 * Otherwise, invoke synchronize_rcu() to wait for a full grace period. 3762 * 3763 * Yes, this function does not take counter wrap into account. 3764 * But counter wrap is harmless. If the counter wraps, we have waited for 3765 * more than 2 billion grace periods (and way more on a 64-bit system!), 3766 * so waiting for a couple of additional grace periods should be just fine. 3767 * 3768 * This function provides the same memory-ordering guarantees that 3769 * would be provided by a synchronize_rcu() that was invoked at the call 3770 * to the function that provided @oldstate and that returned at the end 3771 * of this function. 3772 */ 3773 void cond_synchronize_rcu(unsigned long oldstate) 3774 { 3775 if (!poll_state_synchronize_rcu(oldstate)) 3776 synchronize_rcu(); 3777 } 3778 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3779 3780 /** 3781 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period 3782 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full() 3783 * 3784 * If a full RCU grace period has elapsed since the call to 3785 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), 3786 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was 3787 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait 3788 * for a full grace period. 3789 * 3790 * Yes, this function does not take counter wrap into account. 3791 * But counter wrap is harmless. If the counter wraps, we have waited for 3792 * more than 2 billion grace periods (and way more on a 64-bit system!), 3793 * so waiting for a couple of additional grace periods should be just fine. 3794 * 3795 * This function provides the same memory-ordering guarantees that 3796 * would be provided by a synchronize_rcu() that was invoked at the call 3797 * to the function that provided @rgosp and that returned at the end of 3798 * this function. 3799 */ 3800 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp) 3801 { 3802 if (!poll_state_synchronize_rcu_full(rgosp)) 3803 synchronize_rcu(); 3804 } 3805 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full); 3806 3807 /* 3808 * Check to see if there is any immediate RCU-related work to be done by 3809 * the current CPU, returning 1 if so and zero otherwise. The checks are 3810 * in order of increasing expense: checks that can be carried out against 3811 * CPU-local state are performed first. However, we must check for CPU 3812 * stalls first, else we might not get a chance. 3813 */ 3814 static int rcu_pending(int user) 3815 { 3816 bool gp_in_progress; 3817 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 3818 struct rcu_node *rnp = rdp->mynode; 3819 3820 lockdep_assert_irqs_disabled(); 3821 3822 /* Check for CPU stalls, if enabled. */ 3823 check_cpu_stall(rdp); 3824 3825 /* Does this CPU need a deferred NOCB wakeup? */ 3826 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE)) 3827 return 1; 3828 3829 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */ 3830 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu()) 3831 return 0; 3832 3833 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3834 gp_in_progress = rcu_gp_in_progress(); 3835 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress) 3836 return 1; 3837 3838 /* Does this CPU have callbacks ready to invoke? */ 3839 if (!rcu_rdp_is_offloaded(rdp) && 3840 rcu_segcblist_ready_cbs(&rdp->cblist)) 3841 return 1; 3842 3843 /* Has RCU gone idle with this CPU needing another grace period? */ 3844 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) && 3845 !rcu_rdp_is_offloaded(rdp) && 3846 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) 3847 return 1; 3848 3849 /* Have RCU grace period completed or started? */ 3850 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || 3851 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ 3852 return 1; 3853 3854 /* nothing to do */ 3855 return 0; 3856 } 3857 3858 /* 3859 * Helper function for rcu_barrier() tracing. If tracing is disabled, 3860 * the compiler is expected to optimize this away. 3861 */ 3862 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done) 3863 { 3864 trace_rcu_barrier(rcu_state.name, s, cpu, 3865 atomic_read(&rcu_state.barrier_cpu_count), done); 3866 } 3867 3868 /* 3869 * RCU callback function for rcu_barrier(). If we are last, wake 3870 * up the task executing rcu_barrier(). 3871 * 3872 * Note that the value of rcu_state.barrier_sequence must be captured 3873 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last, 3874 * other CPUs might count the value down to zero before this CPU gets 3875 * around to invoking rcu_barrier_trace(), which might result in bogus 3876 * data from the next instance of rcu_barrier(). 3877 */ 3878 static void rcu_barrier_callback(struct rcu_head *rhp) 3879 { 3880 unsigned long __maybe_unused s = rcu_state.barrier_sequence; 3881 3882 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) { 3883 rcu_barrier_trace(TPS("LastCB"), -1, s); 3884 complete(&rcu_state.barrier_completion); 3885 } else { 3886 rcu_barrier_trace(TPS("CB"), -1, s); 3887 } 3888 } 3889 3890 /* 3891 * If needed, entrain an rcu_barrier() callback on rdp->cblist. 3892 */ 3893 static void rcu_barrier_entrain(struct rcu_data *rdp) 3894 { 3895 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence); 3896 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap); 3897 3898 lockdep_assert_held(&rcu_state.barrier_lock); 3899 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq)) 3900 return; 3901 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence); 3902 rdp->barrier_head.func = rcu_barrier_callback; 3903 debug_rcu_head_queue(&rdp->barrier_head); 3904 rcu_nocb_lock(rdp); 3905 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies)); 3906 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) { 3907 atomic_inc(&rcu_state.barrier_cpu_count); 3908 } else { 3909 debug_rcu_head_unqueue(&rdp->barrier_head); 3910 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence); 3911 } 3912 rcu_nocb_unlock(rdp); 3913 smp_store_release(&rdp->barrier_seq_snap, gseq); 3914 } 3915 3916 /* 3917 * Called with preemption disabled, and from cross-cpu IRQ context. 3918 */ 3919 static void rcu_barrier_handler(void *cpu_in) 3920 { 3921 uintptr_t cpu = (uintptr_t)cpu_in; 3922 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 3923 3924 lockdep_assert_irqs_disabled(); 3925 WARN_ON_ONCE(cpu != rdp->cpu); 3926 WARN_ON_ONCE(cpu != smp_processor_id()); 3927 raw_spin_lock(&rcu_state.barrier_lock); 3928 rcu_barrier_entrain(rdp); 3929 raw_spin_unlock(&rcu_state.barrier_lock); 3930 } 3931 3932 /** 3933 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete. 3934 * 3935 * Note that this primitive does not necessarily wait for an RCU grace period 3936 * to complete. For example, if there are no RCU callbacks queued anywhere 3937 * in the system, then rcu_barrier() is within its rights to return 3938 * immediately, without waiting for anything, much less an RCU grace period. 3939 */ 3940 void rcu_barrier(void) 3941 { 3942 uintptr_t cpu; 3943 unsigned long flags; 3944 unsigned long gseq; 3945 struct rcu_data *rdp; 3946 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence); 3947 3948 rcu_barrier_trace(TPS("Begin"), -1, s); 3949 3950 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3951 mutex_lock(&rcu_state.barrier_mutex); 3952 3953 /* Did someone else do our work for us? */ 3954 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) { 3955 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence); 3956 smp_mb(); /* caller's subsequent code after above check. */ 3957 mutex_unlock(&rcu_state.barrier_mutex); 3958 return; 3959 } 3960 3961 /* Mark the start of the barrier operation. */ 3962 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3963 rcu_seq_start(&rcu_state.barrier_sequence); 3964 gseq = rcu_state.barrier_sequence; 3965 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence); 3966 3967 /* 3968 * Initialize the count to two rather than to zero in order 3969 * to avoid a too-soon return to zero in case of an immediate 3970 * invocation of the just-enqueued callback (or preemption of 3971 * this task). Exclude CPU-hotplug operations to ensure that no 3972 * offline non-offloaded CPU has callbacks queued. 3973 */ 3974 init_completion(&rcu_state.barrier_completion); 3975 atomic_set(&rcu_state.barrier_cpu_count, 2); 3976 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3977 3978 /* 3979 * Force each CPU with callbacks to register a new callback. 3980 * When that callback is invoked, we will know that all of the 3981 * corresponding CPU's preceding callbacks have been invoked. 3982 */ 3983 for_each_possible_cpu(cpu) { 3984 rdp = per_cpu_ptr(&rcu_data, cpu); 3985 retry: 3986 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq) 3987 continue; 3988 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 3989 if (!rcu_segcblist_n_cbs(&rdp->cblist)) { 3990 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 3991 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3992 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence); 3993 continue; 3994 } 3995 if (!rcu_rdp_cpu_online(rdp)) { 3996 rcu_barrier_entrain(rdp); 3997 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 3998 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 3999 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence); 4000 continue; 4001 } 4002 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags); 4003 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) { 4004 schedule_timeout_uninterruptible(1); 4005 goto retry; 4006 } 4007 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq); 4008 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence); 4009 } 4010 4011 /* 4012 * Now that we have an rcu_barrier_callback() callback on each 4013 * CPU, and thus each counted, remove the initial count. 4014 */ 4015 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count)) 4016 complete(&rcu_state.barrier_completion); 4017 4018 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 4019 wait_for_completion(&rcu_state.barrier_completion); 4020 4021 /* Mark the end of the barrier operation. */ 4022 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence); 4023 rcu_seq_end(&rcu_state.barrier_sequence); 4024 gseq = rcu_state.barrier_sequence; 4025 for_each_possible_cpu(cpu) { 4026 rdp = per_cpu_ptr(&rcu_data, cpu); 4027 4028 WRITE_ONCE(rdp->barrier_seq_snap, gseq); 4029 } 4030 4031 /* Other rcu_barrier() invocations can now safely proceed. */ 4032 mutex_unlock(&rcu_state.barrier_mutex); 4033 } 4034 EXPORT_SYMBOL_GPL(rcu_barrier); 4035 4036 /* 4037 * Propagate ->qsinitmask bits up the rcu_node tree to account for the 4038 * first CPU in a given leaf rcu_node structure coming online. The caller 4039 * must hold the corresponding leaf rcu_node ->lock with interrupts 4040 * disabled. 4041 */ 4042 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) 4043 { 4044 long mask; 4045 long oldmask; 4046 struct rcu_node *rnp = rnp_leaf; 4047 4048 raw_lockdep_assert_held_rcu_node(rnp_leaf); 4049 WARN_ON_ONCE(rnp->wait_blkd_tasks); 4050 for (;;) { 4051 mask = rnp->grpmask; 4052 rnp = rnp->parent; 4053 if (rnp == NULL) 4054 return; 4055 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ 4056 oldmask = rnp->qsmaskinit; 4057 rnp->qsmaskinit |= mask; 4058 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ 4059 if (oldmask) 4060 return; 4061 } 4062 } 4063 4064 /* 4065 * Do boot-time initialization of a CPU's per-CPU RCU data. 4066 */ 4067 static void __init 4068 rcu_boot_init_percpu_data(int cpu) 4069 { 4070 struct context_tracking *ct = this_cpu_ptr(&context_tracking); 4071 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4072 4073 /* Set up local state, ensuring consistent view of global state. */ 4074 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); 4075 INIT_WORK(&rdp->strict_work, strict_work_handler); 4076 WARN_ON_ONCE(ct->dynticks_nesting != 1); 4077 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu))); 4078 rdp->barrier_seq_snap = rcu_state.barrier_sequence; 4079 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq; 4080 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED; 4081 rdp->rcu_onl_gp_seq = rcu_state.gp_seq; 4082 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED; 4083 rdp->last_sched_clock = jiffies; 4084 rdp->cpu = cpu; 4085 rcu_boot_init_nocb_percpu_data(rdp); 4086 } 4087 4088 /* 4089 * Invoked early in the CPU-online process, when pretty much all services 4090 * are available. The incoming CPU is not present. 4091 * 4092 * Initializes a CPU's per-CPU RCU data. Note that only one online or 4093 * offline event can be happening at a given time. Note also that we can 4094 * accept some slop in the rsp->gp_seq access due to the fact that this 4095 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet. 4096 * And any offloaded callbacks are being numbered elsewhere. 4097 */ 4098 int rcutree_prepare_cpu(unsigned int cpu) 4099 { 4100 unsigned long flags; 4101 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu); 4102 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4103 struct rcu_node *rnp = rcu_get_root(); 4104 4105 /* Set up local state, ensuring consistent view of global state. */ 4106 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4107 rdp->qlen_last_fqs_check = 0; 4108 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs); 4109 rdp->blimit = blimit; 4110 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */ 4111 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ 4112 4113 /* 4114 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be 4115 * (re-)initialized. 4116 */ 4117 if (!rcu_segcblist_is_enabled(&rdp->cblist)) 4118 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ 4119 4120 /* 4121 * Add CPU to leaf rcu_node pending-online bitmask. Any needed 4122 * propagation up the rcu_node tree will happen at the beginning 4123 * of the next grace period. 4124 */ 4125 rnp = rdp->mynode; 4126 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ 4127 rdp->beenonline = true; /* We have now been online. */ 4128 rdp->gp_seq = READ_ONCE(rnp->gp_seq); 4129 rdp->gp_seq_needed = rdp->gp_seq; 4130 rdp->cpu_no_qs.b.norm = true; 4131 rdp->core_needs_qs = false; 4132 rdp->rcu_iw_pending = false; 4133 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler); 4134 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1; 4135 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl")); 4136 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4137 rcu_spawn_one_boost_kthread(rnp); 4138 rcu_spawn_cpu_nocb_kthread(cpu); 4139 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1); 4140 4141 return 0; 4142 } 4143 4144 /* 4145 * Update RCU priority boot kthread affinity for CPU-hotplug changes. 4146 */ 4147 static void rcutree_affinity_setting(unsigned int cpu, int outgoing) 4148 { 4149 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4150 4151 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); 4152 } 4153 4154 /* 4155 * Near the end of the CPU-online process. Pretty much all services 4156 * enabled, and the CPU is now very much alive. 4157 */ 4158 int rcutree_online_cpu(unsigned int cpu) 4159 { 4160 unsigned long flags; 4161 struct rcu_data *rdp; 4162 struct rcu_node *rnp; 4163 4164 rdp = per_cpu_ptr(&rcu_data, cpu); 4165 rnp = rdp->mynode; 4166 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4167 rnp->ffmask |= rdp->grpmask; 4168 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4169 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 4170 return 0; /* Too early in boot for scheduler work. */ 4171 sync_sched_exp_online_cleanup(cpu); 4172 rcutree_affinity_setting(cpu, -1); 4173 4174 // Stop-machine done, so allow nohz_full to disable tick. 4175 tick_dep_clear(TICK_DEP_BIT_RCU); 4176 return 0; 4177 } 4178 4179 /* 4180 * Near the beginning of the process. The CPU is still very much alive 4181 * with pretty much all services enabled. 4182 */ 4183 int rcutree_offline_cpu(unsigned int cpu) 4184 { 4185 unsigned long flags; 4186 struct rcu_data *rdp; 4187 struct rcu_node *rnp; 4188 4189 rdp = per_cpu_ptr(&rcu_data, cpu); 4190 rnp = rdp->mynode; 4191 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4192 rnp->ffmask &= ~rdp->grpmask; 4193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4194 4195 rcutree_affinity_setting(cpu, cpu); 4196 4197 // nohz_full CPUs need the tick for stop-machine to work quickly 4198 tick_dep_set(TICK_DEP_BIT_RCU); 4199 return 0; 4200 } 4201 4202 /* 4203 * Mark the specified CPU as being online so that subsequent grace periods 4204 * (both expedited and normal) will wait on it. Note that this means that 4205 * incoming CPUs are not allowed to use RCU read-side critical sections 4206 * until this function is called. Failing to observe this restriction 4207 * will result in lockdep splats. 4208 * 4209 * Note that this function is special in that it is invoked directly 4210 * from the incoming CPU rather than from the cpuhp_step mechanism. 4211 * This is because this function must be invoked at a precise location. 4212 */ 4213 void rcu_cpu_starting(unsigned int cpu) 4214 { 4215 unsigned long flags; 4216 unsigned long mask; 4217 struct rcu_data *rdp; 4218 struct rcu_node *rnp; 4219 bool newcpu; 4220 4221 rdp = per_cpu_ptr(&rcu_data, cpu); 4222 if (rdp->cpu_started) 4223 return; 4224 rdp->cpu_started = true; 4225 4226 rnp = rdp->mynode; 4227 mask = rdp->grpmask; 4228 local_irq_save(flags); 4229 arch_spin_lock(&rcu_state.ofl_lock); 4230 rcu_dynticks_eqs_online(); 4231 raw_spin_lock(&rcu_state.barrier_lock); 4232 raw_spin_lock_rcu_node(rnp); 4233 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask); 4234 raw_spin_unlock(&rcu_state.barrier_lock); 4235 newcpu = !(rnp->expmaskinitnext & mask); 4236 rnp->expmaskinitnext |= mask; 4237 /* Allow lockless access for expedited grace periods. */ 4238 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */ 4239 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus); 4240 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */ 4241 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4242 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4243 4244 /* An incoming CPU should never be blocking a grace period. */ 4245 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */ 4246 /* rcu_report_qs_rnp() *really* wants some flags to restore */ 4247 unsigned long flags2; 4248 4249 local_irq_save(flags2); 4250 rcu_disable_urgency_upon_qs(rdp); 4251 /* Report QS -after- changing ->qsmaskinitnext! */ 4252 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2); 4253 } else { 4254 raw_spin_unlock_rcu_node(rnp); 4255 } 4256 arch_spin_unlock(&rcu_state.ofl_lock); 4257 local_irq_restore(flags); 4258 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ 4259 } 4260 4261 /* 4262 * The outgoing function has no further need of RCU, so remove it from 4263 * the rcu_node tree's ->qsmaskinitnext bit masks. 4264 * 4265 * Note that this function is special in that it is invoked directly 4266 * from the outgoing CPU rather than from the cpuhp_step mechanism. 4267 * This is because this function must be invoked at a precise location. 4268 */ 4269 void rcu_report_dead(unsigned int cpu) 4270 { 4271 unsigned long flags, seq_flags; 4272 unsigned long mask; 4273 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4274 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 4275 4276 // Do any dangling deferred wakeups. 4277 do_nocb_deferred_wakeup(rdp); 4278 4279 /* QS for any half-done expedited grace period. */ 4280 rcu_report_exp_rdp(rdp); 4281 rcu_preempt_deferred_qs(current); 4282 4283 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 4284 mask = rdp->grpmask; 4285 local_irq_save(seq_flags); 4286 arch_spin_lock(&rcu_state.ofl_lock); 4287 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ 4288 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq); 4289 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags); 4290 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */ 4291 /* Report quiescent state -before- changing ->qsmaskinitnext! */ 4292 rcu_disable_urgency_upon_qs(rdp); 4293 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags); 4294 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4295 } 4296 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask); 4297 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4298 arch_spin_unlock(&rcu_state.ofl_lock); 4299 local_irq_restore(seq_flags); 4300 4301 rdp->cpu_started = false; 4302 } 4303 4304 #ifdef CONFIG_HOTPLUG_CPU 4305 /* 4306 * The outgoing CPU has just passed through the dying-idle state, and we 4307 * are being invoked from the CPU that was IPIed to continue the offline 4308 * operation. Migrate the outgoing CPU's callbacks to the current CPU. 4309 */ 4310 void rcutree_migrate_callbacks(int cpu) 4311 { 4312 unsigned long flags; 4313 struct rcu_data *my_rdp; 4314 struct rcu_node *my_rnp; 4315 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu); 4316 bool needwake; 4317 4318 if (rcu_rdp_is_offloaded(rdp) || 4319 rcu_segcblist_empty(&rdp->cblist)) 4320 return; /* No callbacks to migrate. */ 4321 4322 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags); 4323 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp)); 4324 rcu_barrier_entrain(rdp); 4325 my_rdp = this_cpu_ptr(&rcu_data); 4326 my_rnp = my_rdp->mynode; 4327 rcu_nocb_lock(my_rdp); /* irqs already disabled. */ 4328 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies)); 4329 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */ 4330 /* Leverage recent GPs and set GP for new callbacks. */ 4331 needwake = rcu_advance_cbs(my_rnp, rdp) || 4332 rcu_advance_cbs(my_rnp, my_rdp); 4333 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); 4334 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */ 4335 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp); 4336 rcu_segcblist_disable(&rdp->cblist); 4337 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); 4338 check_cb_ovld_locked(my_rdp, my_rnp); 4339 if (rcu_rdp_is_offloaded(my_rdp)) { 4340 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */ 4341 __call_rcu_nocb_wake(my_rdp, true, flags); 4342 } else { 4343 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */ 4344 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags); 4345 } 4346 if (needwake) 4347 rcu_gp_kthread_wake(); 4348 lockdep_assert_irqs_enabled(); 4349 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || 4350 !rcu_segcblist_empty(&rdp->cblist), 4351 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", 4352 cpu, rcu_segcblist_n_cbs(&rdp->cblist), 4353 rcu_segcblist_first_cb(&rdp->cblist)); 4354 } 4355 #endif 4356 4357 /* 4358 * On non-huge systems, use expedited RCU grace periods to make suspend 4359 * and hibernation run faster. 4360 */ 4361 static int rcu_pm_notify(struct notifier_block *self, 4362 unsigned long action, void *hcpu) 4363 { 4364 switch (action) { 4365 case PM_HIBERNATION_PREPARE: 4366 case PM_SUSPEND_PREPARE: 4367 rcu_expedite_gp(); 4368 break; 4369 case PM_POST_HIBERNATION: 4370 case PM_POST_SUSPEND: 4371 rcu_unexpedite_gp(); 4372 break; 4373 default: 4374 break; 4375 } 4376 return NOTIFY_OK; 4377 } 4378 4379 #ifdef CONFIG_RCU_EXP_KTHREAD 4380 struct kthread_worker *rcu_exp_gp_kworker; 4381 struct kthread_worker *rcu_exp_par_gp_kworker; 4382 4383 static void __init rcu_start_exp_gp_kworkers(void) 4384 { 4385 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker"; 4386 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker"; 4387 struct sched_param param = { .sched_priority = kthread_prio }; 4388 4389 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name); 4390 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) { 4391 pr_err("Failed to create %s!\n", gp_kworker_name); 4392 return; 4393 } 4394 4395 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name); 4396 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) { 4397 pr_err("Failed to create %s!\n", par_gp_kworker_name); 4398 kthread_destroy_worker(rcu_exp_gp_kworker); 4399 return; 4400 } 4401 4402 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m); 4403 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO, 4404 ¶m); 4405 } 4406 4407 static inline void rcu_alloc_par_gp_wq(void) 4408 { 4409 } 4410 #else /* !CONFIG_RCU_EXP_KTHREAD */ 4411 struct workqueue_struct *rcu_par_gp_wq; 4412 4413 static void __init rcu_start_exp_gp_kworkers(void) 4414 { 4415 } 4416 4417 static inline void rcu_alloc_par_gp_wq(void) 4418 { 4419 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); 4420 WARN_ON(!rcu_par_gp_wq); 4421 } 4422 #endif /* CONFIG_RCU_EXP_KTHREAD */ 4423 4424 /* 4425 * Spawn the kthreads that handle RCU's grace periods. 4426 */ 4427 static int __init rcu_spawn_gp_kthread(void) 4428 { 4429 unsigned long flags; 4430 struct rcu_node *rnp; 4431 struct sched_param sp; 4432 struct task_struct *t; 4433 struct rcu_data *rdp = this_cpu_ptr(&rcu_data); 4434 4435 rcu_scheduler_fully_active = 1; 4436 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name); 4437 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__)) 4438 return 0; 4439 if (kthread_prio) { 4440 sp.sched_priority = kthread_prio; 4441 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 4442 } 4443 rnp = rcu_get_root(); 4444 raw_spin_lock_irqsave_rcu_node(rnp, flags); 4445 WRITE_ONCE(rcu_state.gp_activity, jiffies); 4446 WRITE_ONCE(rcu_state.gp_req_activity, jiffies); 4447 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread. 4448 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */ 4449 raw_spin_unlock_irqrestore_rcu_node(rnp, flags); 4450 wake_up_process(t); 4451 /* This is a pre-SMP initcall, we expect a single CPU */ 4452 WARN_ON(num_online_cpus() > 1); 4453 /* 4454 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu() 4455 * due to rcu_scheduler_fully_active. 4456 */ 4457 rcu_spawn_cpu_nocb_kthread(smp_processor_id()); 4458 rcu_spawn_one_boost_kthread(rdp->mynode); 4459 rcu_spawn_core_kthreads(); 4460 /* Create kthread worker for expedited GPs */ 4461 rcu_start_exp_gp_kworkers(); 4462 return 0; 4463 } 4464 early_initcall(rcu_spawn_gp_kthread); 4465 4466 /* 4467 * This function is invoked towards the end of the scheduler's 4468 * initialization process. Before this is called, the idle task might 4469 * contain synchronous grace-period primitives (during which time, this idle 4470 * task is booting the system, and such primitives are no-ops). After this 4471 * function is called, any synchronous grace-period primitives are run as 4472 * expedited, with the requesting task driving the grace period forward. 4473 * A later core_initcall() rcu_set_runtime_mode() will switch to full 4474 * runtime RCU functionality. 4475 */ 4476 void rcu_scheduler_starting(void) 4477 { 4478 unsigned long flags; 4479 struct rcu_node *rnp; 4480 4481 WARN_ON(num_online_cpus() != 1); 4482 WARN_ON(nr_context_switches() > 0); 4483 rcu_test_sync_prims(); 4484 4485 // Fix up the ->gp_seq counters. 4486 local_irq_save(flags); 4487 rcu_for_each_node_breadth_first(rnp) 4488 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq; 4489 local_irq_restore(flags); 4490 4491 // Switch out of early boot mode. 4492 rcu_scheduler_active = RCU_SCHEDULER_INIT; 4493 rcu_test_sync_prims(); 4494 } 4495 4496 /* 4497 * Helper function for rcu_init() that initializes the rcu_state structure. 4498 */ 4499 static void __init rcu_init_one(void) 4500 { 4501 static const char * const buf[] = RCU_NODE_NAME_INIT; 4502 static const char * const fqs[] = RCU_FQS_NAME_INIT; 4503 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 4504 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 4505 4506 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ 4507 int cpustride = 1; 4508 int i; 4509 int j; 4510 struct rcu_node *rnp; 4511 4512 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 4513 4514 /* Silence gcc 4.8 false positive about array index out of range. */ 4515 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) 4516 panic("rcu_init_one: rcu_num_lvls out of range"); 4517 4518 /* Initialize the level-tracking arrays. */ 4519 4520 for (i = 1; i < rcu_num_lvls; i++) 4521 rcu_state.level[i] = 4522 rcu_state.level[i - 1] + num_rcu_lvl[i - 1]; 4523 rcu_init_levelspread(levelspread, num_rcu_lvl); 4524 4525 /* Initialize the elements themselves, starting from the leaves. */ 4526 4527 for (i = rcu_num_lvls - 1; i >= 0; i--) { 4528 cpustride *= levelspread[i]; 4529 rnp = rcu_state.level[i]; 4530 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { 4531 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); 4532 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), 4533 &rcu_node_class[i], buf[i]); 4534 raw_spin_lock_init(&rnp->fqslock); 4535 lockdep_set_class_and_name(&rnp->fqslock, 4536 &rcu_fqs_class[i], fqs[i]); 4537 rnp->gp_seq = rcu_state.gp_seq; 4538 rnp->gp_seq_needed = rcu_state.gp_seq; 4539 rnp->completedqs = rcu_state.gp_seq; 4540 rnp->qsmask = 0; 4541 rnp->qsmaskinit = 0; 4542 rnp->grplo = j * cpustride; 4543 rnp->grphi = (j + 1) * cpustride - 1; 4544 if (rnp->grphi >= nr_cpu_ids) 4545 rnp->grphi = nr_cpu_ids - 1; 4546 if (i == 0) { 4547 rnp->grpnum = 0; 4548 rnp->grpmask = 0; 4549 rnp->parent = NULL; 4550 } else { 4551 rnp->grpnum = j % levelspread[i - 1]; 4552 rnp->grpmask = BIT(rnp->grpnum); 4553 rnp->parent = rcu_state.level[i - 1] + 4554 j / levelspread[i - 1]; 4555 } 4556 rnp->level = i; 4557 INIT_LIST_HEAD(&rnp->blkd_tasks); 4558 rcu_init_one_nocb(rnp); 4559 init_waitqueue_head(&rnp->exp_wq[0]); 4560 init_waitqueue_head(&rnp->exp_wq[1]); 4561 init_waitqueue_head(&rnp->exp_wq[2]); 4562 init_waitqueue_head(&rnp->exp_wq[3]); 4563 spin_lock_init(&rnp->exp_lock); 4564 mutex_init(&rnp->boost_kthread_mutex); 4565 raw_spin_lock_init(&rnp->exp_poll_lock); 4566 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED; 4567 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp); 4568 } 4569 } 4570 4571 init_swait_queue_head(&rcu_state.gp_wq); 4572 init_swait_queue_head(&rcu_state.expedited_wq); 4573 rnp = rcu_first_leaf_node(); 4574 for_each_possible_cpu(i) { 4575 while (i > rnp->grphi) 4576 rnp++; 4577 per_cpu_ptr(&rcu_data, i)->mynode = rnp; 4578 rcu_boot_init_percpu_data(i); 4579 } 4580 } 4581 4582 /* 4583 * Force priority from the kernel command-line into range. 4584 */ 4585 static void __init sanitize_kthread_prio(void) 4586 { 4587 int kthread_prio_in = kthread_prio; 4588 4589 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2 4590 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST)) 4591 kthread_prio = 2; 4592 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 4593 kthread_prio = 1; 4594 else if (kthread_prio < 0) 4595 kthread_prio = 0; 4596 else if (kthread_prio > 99) 4597 kthread_prio = 99; 4598 4599 if (kthread_prio != kthread_prio_in) 4600 pr_alert("%s: Limited prio to %d from %d\n", 4601 __func__, kthread_prio, kthread_prio_in); 4602 } 4603 4604 /* 4605 * Compute the rcu_node tree geometry from kernel parameters. This cannot 4606 * replace the definitions in tree.h because those are needed to size 4607 * the ->node array in the rcu_state structure. 4608 */ 4609 void rcu_init_geometry(void) 4610 { 4611 ulong d; 4612 int i; 4613 static unsigned long old_nr_cpu_ids; 4614 int rcu_capacity[RCU_NUM_LVLS]; 4615 static bool initialized; 4616 4617 if (initialized) { 4618 /* 4619 * Warn if setup_nr_cpu_ids() had not yet been invoked, 4620 * unless nr_cpus_ids == NR_CPUS, in which case who cares? 4621 */ 4622 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids); 4623 return; 4624 } 4625 4626 old_nr_cpu_ids = nr_cpu_ids; 4627 initialized = true; 4628 4629 /* 4630 * Initialize any unspecified boot parameters. 4631 * The default values of jiffies_till_first_fqs and 4632 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 4633 * value, which is a function of HZ, then adding one for each 4634 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 4635 */ 4636 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 4637 if (jiffies_till_first_fqs == ULONG_MAX) 4638 jiffies_till_first_fqs = d; 4639 if (jiffies_till_next_fqs == ULONG_MAX) 4640 jiffies_till_next_fqs = d; 4641 adjust_jiffies_till_sched_qs(); 4642 4643 /* If the compile-time values are accurate, just leave. */ 4644 if (rcu_fanout_leaf == RCU_FANOUT_LEAF && 4645 nr_cpu_ids == NR_CPUS) 4646 return; 4647 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", 4648 rcu_fanout_leaf, nr_cpu_ids); 4649 4650 /* 4651 * The boot-time rcu_fanout_leaf parameter must be at least two 4652 * and cannot exceed the number of bits in the rcu_node masks. 4653 * Complain and fall back to the compile-time values if this 4654 * limit is exceeded. 4655 */ 4656 if (rcu_fanout_leaf < 2 || 4657 rcu_fanout_leaf > sizeof(unsigned long) * 8) { 4658 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4659 WARN_ON(1); 4660 return; 4661 } 4662 4663 /* 4664 * Compute number of nodes that can be handled an rcu_node tree 4665 * with the given number of levels. 4666 */ 4667 rcu_capacity[0] = rcu_fanout_leaf; 4668 for (i = 1; i < RCU_NUM_LVLS; i++) 4669 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; 4670 4671 /* 4672 * The tree must be able to accommodate the configured number of CPUs. 4673 * If this limit is exceeded, fall back to the compile-time values. 4674 */ 4675 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { 4676 rcu_fanout_leaf = RCU_FANOUT_LEAF; 4677 WARN_ON(1); 4678 return; 4679 } 4680 4681 /* Calculate the number of levels in the tree. */ 4682 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { 4683 } 4684 rcu_num_lvls = i + 1; 4685 4686 /* Calculate the number of rcu_nodes at each level of the tree. */ 4687 for (i = 0; i < rcu_num_lvls; i++) { 4688 int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; 4689 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); 4690 } 4691 4692 /* Calculate the total number of rcu_node structures. */ 4693 rcu_num_nodes = 0; 4694 for (i = 0; i < rcu_num_lvls; i++) 4695 rcu_num_nodes += num_rcu_lvl[i]; 4696 } 4697 4698 /* 4699 * Dump out the structure of the rcu_node combining tree associated 4700 * with the rcu_state structure. 4701 */ 4702 static void __init rcu_dump_rcu_node_tree(void) 4703 { 4704 int level = 0; 4705 struct rcu_node *rnp; 4706 4707 pr_info("rcu_node tree layout dump\n"); 4708 pr_info(" "); 4709 rcu_for_each_node_breadth_first(rnp) { 4710 if (rnp->level != level) { 4711 pr_cont("\n"); 4712 pr_info(" "); 4713 level = rnp->level; 4714 } 4715 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); 4716 } 4717 pr_cont("\n"); 4718 } 4719 4720 struct workqueue_struct *rcu_gp_wq; 4721 4722 static void __init kfree_rcu_batch_init(void) 4723 { 4724 int cpu; 4725 int i; 4726 4727 /* Clamp it to [0:100] seconds interval. */ 4728 if (rcu_delay_page_cache_fill_msec < 0 || 4729 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) { 4730 4731 rcu_delay_page_cache_fill_msec = 4732 clamp(rcu_delay_page_cache_fill_msec, 0, 4733 (int) (100 * MSEC_PER_SEC)); 4734 4735 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n", 4736 rcu_delay_page_cache_fill_msec); 4737 } 4738 4739 for_each_possible_cpu(cpu) { 4740 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu); 4741 4742 for (i = 0; i < KFREE_N_BATCHES; i++) { 4743 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work); 4744 krcp->krw_arr[i].krcp = krcp; 4745 } 4746 4747 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor); 4748 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func); 4749 krcp->initialized = true; 4750 } 4751 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree")) 4752 pr_err("Failed to register kfree_rcu() shrinker!\n"); 4753 } 4754 4755 void __init rcu_init(void) 4756 { 4757 int cpu = smp_processor_id(); 4758 4759 rcu_early_boot_tests(); 4760 4761 kfree_rcu_batch_init(); 4762 rcu_bootup_announce(); 4763 sanitize_kthread_prio(); 4764 rcu_init_geometry(); 4765 rcu_init_one(); 4766 if (dump_tree) 4767 rcu_dump_rcu_node_tree(); 4768 if (use_softirq) 4769 open_softirq(RCU_SOFTIRQ, rcu_core_si); 4770 4771 /* 4772 * We don't need protection against CPU-hotplug here because 4773 * this is called early in boot, before either interrupts 4774 * or the scheduler are operational. 4775 */ 4776 pm_notifier(rcu_pm_notify, 0); 4777 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot. 4778 rcutree_prepare_cpu(cpu); 4779 rcu_cpu_starting(cpu); 4780 rcutree_online_cpu(cpu); 4781 4782 /* Create workqueue for Tree SRCU and for expedited GPs. */ 4783 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); 4784 WARN_ON(!rcu_gp_wq); 4785 rcu_alloc_par_gp_wq(); 4786 4787 /* Fill in default value for rcutree.qovld boot parameter. */ 4788 /* -After- the rcu_node ->lock fields are initialized! */ 4789 if (qovld < 0) 4790 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark; 4791 else 4792 qovld_calc = qovld; 4793 4794 // Kick-start any polled grace periods that started early. 4795 if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1)) 4796 (void)start_poll_synchronize_rcu_expedited(); 4797 } 4798 4799 #include "tree_stall.h" 4800 #include "tree_exp.h" 4801 #include "tree_nocb.h" 4802 #include "tree_plugin.h" 4803