1 /* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2008 19 * 20 * Authors: Dipankar Sarma <dipankar@in.ibm.com> 21 * Manfred Spraul <manfred@colorfullife.com> 22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version 23 * 24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 26 * 27 * For detailed explanation of Read-Copy Update mechanism see - 28 * Documentation/RCU 29 */ 30 #include <linux/types.h> 31 #include <linux/kernel.h> 32 #include <linux/init.h> 33 #include <linux/spinlock.h> 34 #include <linux/smp.h> 35 #include <linux/rcupdate.h> 36 #include <linux/interrupt.h> 37 #include <linux/sched.h> 38 #include <linux/nmi.h> 39 #include <linux/atomic.h> 40 #include <linux/bitops.h> 41 #include <linux/export.h> 42 #include <linux/completion.h> 43 #include <linux/moduleparam.h> 44 #include <linux/module.h> 45 #include <linux/percpu.h> 46 #include <linux/notifier.h> 47 #include <linux/cpu.h> 48 #include <linux/mutex.h> 49 #include <linux/time.h> 50 #include <linux/kernel_stat.h> 51 #include <linux/wait.h> 52 #include <linux/kthread.h> 53 #include <linux/prefetch.h> 54 #include <linux/delay.h> 55 #include <linux/stop_machine.h> 56 #include <linux/random.h> 57 #include <linux/ftrace_event.h> 58 #include <linux/suspend.h> 59 60 #include "tree.h" 61 #include "rcu.h" 62 63 MODULE_ALIAS("rcutree"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "rcutree." 68 69 /* Data structures. */ 70 71 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; 72 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; 73 74 /* 75 * In order to export the rcu_state name to the tracing tools, it 76 * needs to be added in the __tracepoint_string section. 77 * This requires defining a separate variable tp_<sname>_varname 78 * that points to the string being used, and this will allow 79 * the tracing userspace tools to be able to decipher the string 80 * address to the matching string. 81 */ 82 #ifdef CONFIG_TRACING 83 # define DEFINE_RCU_TPS(sname) \ 84 static char sname##_varname[] = #sname; \ 85 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; 86 # define RCU_STATE_NAME(sname) sname##_varname 87 #else 88 # define DEFINE_RCU_TPS(sname) 89 # define RCU_STATE_NAME(sname) __stringify(sname) 90 #endif 91 92 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ 93 DEFINE_RCU_TPS(sname) \ 94 struct rcu_state sname##_state = { \ 95 .level = { &sname##_state.node[0] }, \ 96 .call = cr, \ 97 .fqs_state = RCU_GP_IDLE, \ 98 .gpnum = 0UL - 300UL, \ 99 .completed = 0UL - 300UL, \ 100 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \ 101 .orphan_nxttail = &sname##_state.orphan_nxtlist, \ 102 .orphan_donetail = &sname##_state.orphan_donelist, \ 103 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ 104 .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \ 105 .name = RCU_STATE_NAME(sname), \ 106 .abbr = sabbr, \ 107 }; \ 108 DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data) 109 110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); 111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); 112 113 static struct rcu_state *rcu_state_p; 114 LIST_HEAD(rcu_struct_flavors); 115 116 /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */ 117 static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF; 118 module_param(rcu_fanout_leaf, int, 0444); 119 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; 120 static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */ 121 NUM_RCU_LVL_0, 122 NUM_RCU_LVL_1, 123 NUM_RCU_LVL_2, 124 NUM_RCU_LVL_3, 125 NUM_RCU_LVL_4, 126 }; 127 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ 128 129 /* 130 * The rcu_scheduler_active variable transitions from zero to one just 131 * before the first task is spawned. So when this variable is zero, RCU 132 * can assume that there is but one task, allowing RCU to (for example) 133 * optimize synchronize_sched() to a simple barrier(). When this variable 134 * is one, RCU must actually do all the hard work required to detect real 135 * grace periods. This variable is also used to suppress boot-time false 136 * positives from lockdep-RCU error checking. 137 */ 138 int rcu_scheduler_active __read_mostly; 139 EXPORT_SYMBOL_GPL(rcu_scheduler_active); 140 141 /* 142 * The rcu_scheduler_fully_active variable transitions from zero to one 143 * during the early_initcall() processing, which is after the scheduler 144 * is capable of creating new tasks. So RCU processing (for example, 145 * creating tasks for RCU priority boosting) must be delayed until after 146 * rcu_scheduler_fully_active transitions from zero to one. We also 147 * currently delay invocation of any RCU callbacks until after this point. 148 * 149 * It might later prove better for people registering RCU callbacks during 150 * early boot to take responsibility for these callbacks, but one step at 151 * a time. 152 */ 153 static int rcu_scheduler_fully_active __read_mostly; 154 155 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); 156 static void invoke_rcu_core(void); 157 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); 158 159 /* rcuc/rcub kthread realtime priority */ 160 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO; 161 module_param(kthread_prio, int, 0644); 162 163 /* 164 * Track the rcutorture test sequence number and the update version 165 * number within a given test. The rcutorture_testseq is incremented 166 * on every rcutorture module load and unload, so has an odd value 167 * when a test is running. The rcutorture_vernum is set to zero 168 * when rcutorture starts and is incremented on each rcutorture update. 169 * These variables enable correlating rcutorture output with the 170 * RCU tracing information. 171 */ 172 unsigned long rcutorture_testseq; 173 unsigned long rcutorture_vernum; 174 175 /* 176 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s 177 * permit this function to be invoked without holding the root rcu_node 178 * structure's ->lock, but of course results can be subject to change. 179 */ 180 static int rcu_gp_in_progress(struct rcu_state *rsp) 181 { 182 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum); 183 } 184 185 /* 186 * Note a quiescent state. Because we do not need to know 187 * how many quiescent states passed, just if there was at least 188 * one since the start of the grace period, this just sets a flag. 189 * The caller must have disabled preemption. 190 */ 191 void rcu_sched_qs(void) 192 { 193 if (!__this_cpu_read(rcu_sched_data.passed_quiesce)) { 194 trace_rcu_grace_period(TPS("rcu_sched"), 195 __this_cpu_read(rcu_sched_data.gpnum), 196 TPS("cpuqs")); 197 __this_cpu_write(rcu_sched_data.passed_quiesce, 1); 198 } 199 } 200 201 void rcu_bh_qs(void) 202 { 203 if (!__this_cpu_read(rcu_bh_data.passed_quiesce)) { 204 trace_rcu_grace_period(TPS("rcu_bh"), 205 __this_cpu_read(rcu_bh_data.gpnum), 206 TPS("cpuqs")); 207 __this_cpu_write(rcu_bh_data.passed_quiesce, 1); 208 } 209 } 210 211 static DEFINE_PER_CPU(int, rcu_sched_qs_mask); 212 213 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { 214 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE, 215 .dynticks = ATOMIC_INIT(1), 216 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE 217 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE, 218 .dynticks_idle = ATOMIC_INIT(1), 219 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 220 }; 221 222 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr); 223 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr); 224 225 /* 226 * Let the RCU core know that this CPU has gone through the scheduler, 227 * which is a quiescent state. This is called when the need for a 228 * quiescent state is urgent, so we burn an atomic operation and full 229 * memory barriers to let the RCU core know about it, regardless of what 230 * this CPU might (or might not) do in the near future. 231 * 232 * We inform the RCU core by emulating a zero-duration dyntick-idle 233 * period, which we in turn do by incrementing the ->dynticks counter 234 * by two. 235 */ 236 static void rcu_momentary_dyntick_idle(void) 237 { 238 unsigned long flags; 239 struct rcu_data *rdp; 240 struct rcu_dynticks *rdtp; 241 int resched_mask; 242 struct rcu_state *rsp; 243 244 local_irq_save(flags); 245 246 /* 247 * Yes, we can lose flag-setting operations. This is OK, because 248 * the flag will be set again after some delay. 249 */ 250 resched_mask = raw_cpu_read(rcu_sched_qs_mask); 251 raw_cpu_write(rcu_sched_qs_mask, 0); 252 253 /* Find the flavor that needs a quiescent state. */ 254 for_each_rcu_flavor(rsp) { 255 rdp = raw_cpu_ptr(rsp->rda); 256 if (!(resched_mask & rsp->flavor_mask)) 257 continue; 258 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */ 259 if (ACCESS_ONCE(rdp->mynode->completed) != 260 ACCESS_ONCE(rdp->cond_resched_completed)) 261 continue; 262 263 /* 264 * Pretend to be momentarily idle for the quiescent state. 265 * This allows the grace-period kthread to record the 266 * quiescent state, with no need for this CPU to do anything 267 * further. 268 */ 269 rdtp = this_cpu_ptr(&rcu_dynticks); 270 smp_mb__before_atomic(); /* Earlier stuff before QS. */ 271 atomic_add(2, &rdtp->dynticks); /* QS. */ 272 smp_mb__after_atomic(); /* Later stuff after QS. */ 273 break; 274 } 275 local_irq_restore(flags); 276 } 277 278 /* 279 * Note a context switch. This is a quiescent state for RCU-sched, 280 * and requires special handling for preemptible RCU. 281 * The caller must have disabled preemption. 282 */ 283 void rcu_note_context_switch(void) 284 { 285 trace_rcu_utilization(TPS("Start context switch")); 286 rcu_sched_qs(); 287 rcu_preempt_note_context_switch(); 288 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 289 rcu_momentary_dyntick_idle(); 290 trace_rcu_utilization(TPS("End context switch")); 291 } 292 EXPORT_SYMBOL_GPL(rcu_note_context_switch); 293 294 /* 295 * Register a quiesecent state for all RCU flavors. If there is an 296 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight 297 * dyntick-idle quiescent state visible to other CPUs (but only for those 298 * RCU flavors in desparate need of a quiescent state, which will normally 299 * be none of them). Either way, do a lightweight quiescent state for 300 * all RCU flavors. 301 */ 302 void rcu_all_qs(void) 303 { 304 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) 305 rcu_momentary_dyntick_idle(); 306 this_cpu_inc(rcu_qs_ctr); 307 } 308 EXPORT_SYMBOL_GPL(rcu_all_qs); 309 310 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */ 311 static long qhimark = 10000; /* If this many pending, ignore blimit. */ 312 static long qlowmark = 100; /* Once only this many pending, use blimit. */ 313 314 module_param(blimit, long, 0444); 315 module_param(qhimark, long, 0444); 316 module_param(qlowmark, long, 0444); 317 318 static ulong jiffies_till_first_fqs = ULONG_MAX; 319 static ulong jiffies_till_next_fqs = ULONG_MAX; 320 321 module_param(jiffies_till_first_fqs, ulong, 0644); 322 module_param(jiffies_till_next_fqs, ulong, 0644); 323 324 /* 325 * How long the grace period must be before we start recruiting 326 * quiescent-state help from rcu_note_context_switch(). 327 */ 328 static ulong jiffies_till_sched_qs = HZ / 20; 329 module_param(jiffies_till_sched_qs, ulong, 0644); 330 331 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 332 struct rcu_data *rdp); 333 static void force_qs_rnp(struct rcu_state *rsp, 334 int (*f)(struct rcu_data *rsp, bool *isidle, 335 unsigned long *maxj), 336 bool *isidle, unsigned long *maxj); 337 static void force_quiescent_state(struct rcu_state *rsp); 338 static int rcu_pending(void); 339 340 /* 341 * Return the number of RCU batches started thus far for debug & stats. 342 */ 343 unsigned long rcu_batches_started(void) 344 { 345 return rcu_state_p->gpnum; 346 } 347 EXPORT_SYMBOL_GPL(rcu_batches_started); 348 349 /* 350 * Return the number of RCU-sched batches started thus far for debug & stats. 351 */ 352 unsigned long rcu_batches_started_sched(void) 353 { 354 return rcu_sched_state.gpnum; 355 } 356 EXPORT_SYMBOL_GPL(rcu_batches_started_sched); 357 358 /* 359 * Return the number of RCU BH batches started thus far for debug & stats. 360 */ 361 unsigned long rcu_batches_started_bh(void) 362 { 363 return rcu_bh_state.gpnum; 364 } 365 EXPORT_SYMBOL_GPL(rcu_batches_started_bh); 366 367 /* 368 * Return the number of RCU batches completed thus far for debug & stats. 369 */ 370 unsigned long rcu_batches_completed(void) 371 { 372 return rcu_state_p->completed; 373 } 374 EXPORT_SYMBOL_GPL(rcu_batches_completed); 375 376 /* 377 * Return the number of RCU-sched batches completed thus far for debug & stats. 378 */ 379 unsigned long rcu_batches_completed_sched(void) 380 { 381 return rcu_sched_state.completed; 382 } 383 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched); 384 385 /* 386 * Return the number of RCU BH batches completed thus far for debug & stats. 387 */ 388 unsigned long rcu_batches_completed_bh(void) 389 { 390 return rcu_bh_state.completed; 391 } 392 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh); 393 394 /* 395 * Force a quiescent state. 396 */ 397 void rcu_force_quiescent_state(void) 398 { 399 force_quiescent_state(rcu_state_p); 400 } 401 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); 402 403 /* 404 * Force a quiescent state for RCU BH. 405 */ 406 void rcu_bh_force_quiescent_state(void) 407 { 408 force_quiescent_state(&rcu_bh_state); 409 } 410 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); 411 412 /* 413 * Show the state of the grace-period kthreads. 414 */ 415 void show_rcu_gp_kthreads(void) 416 { 417 struct rcu_state *rsp; 418 419 for_each_rcu_flavor(rsp) { 420 pr_info("%s: wait state: %d ->state: %#lx\n", 421 rsp->name, rsp->gp_state, rsp->gp_kthread->state); 422 /* sched_show_task(rsp->gp_kthread); */ 423 } 424 } 425 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); 426 427 /* 428 * Record the number of times rcutorture tests have been initiated and 429 * terminated. This information allows the debugfs tracing stats to be 430 * correlated to the rcutorture messages, even when the rcutorture module 431 * is being repeatedly loaded and unloaded. In other words, we cannot 432 * store this state in rcutorture itself. 433 */ 434 void rcutorture_record_test_transition(void) 435 { 436 rcutorture_testseq++; 437 rcutorture_vernum = 0; 438 } 439 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); 440 441 /* 442 * Send along grace-period-related data for rcutorture diagnostics. 443 */ 444 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 445 unsigned long *gpnum, unsigned long *completed) 446 { 447 struct rcu_state *rsp = NULL; 448 449 switch (test_type) { 450 case RCU_FLAVOR: 451 rsp = rcu_state_p; 452 break; 453 case RCU_BH_FLAVOR: 454 rsp = &rcu_bh_state; 455 break; 456 case RCU_SCHED_FLAVOR: 457 rsp = &rcu_sched_state; 458 break; 459 default: 460 break; 461 } 462 if (rsp != NULL) { 463 *flags = ACCESS_ONCE(rsp->gp_flags); 464 *gpnum = ACCESS_ONCE(rsp->gpnum); 465 *completed = ACCESS_ONCE(rsp->completed); 466 return; 467 } 468 *flags = 0; 469 *gpnum = 0; 470 *completed = 0; 471 } 472 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); 473 474 /* 475 * Record the number of writer passes through the current rcutorture test. 476 * This is also used to correlate debugfs tracing stats with the rcutorture 477 * messages. 478 */ 479 void rcutorture_record_progress(unsigned long vernum) 480 { 481 rcutorture_vernum++; 482 } 483 EXPORT_SYMBOL_GPL(rcutorture_record_progress); 484 485 /* 486 * Force a quiescent state for RCU-sched. 487 */ 488 void rcu_sched_force_quiescent_state(void) 489 { 490 force_quiescent_state(&rcu_sched_state); 491 } 492 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); 493 494 /* 495 * Does the CPU have callbacks ready to be invoked? 496 */ 497 static int 498 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp) 499 { 500 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] && 501 rdp->nxttail[RCU_DONE_TAIL] != NULL; 502 } 503 504 /* 505 * Return the root node of the specified rcu_state structure. 506 */ 507 static struct rcu_node *rcu_get_root(struct rcu_state *rsp) 508 { 509 return &rsp->node[0]; 510 } 511 512 /* 513 * Is there any need for future grace periods? 514 * Interrupts must be disabled. If the caller does not hold the root 515 * rnp_node structure's ->lock, the results are advisory only. 516 */ 517 static int rcu_future_needs_gp(struct rcu_state *rsp) 518 { 519 struct rcu_node *rnp = rcu_get_root(rsp); 520 int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1; 521 int *fp = &rnp->need_future_gp[idx]; 522 523 return ACCESS_ONCE(*fp); 524 } 525 526 /* 527 * Does the current CPU require a not-yet-started grace period? 528 * The caller must have disabled interrupts to prevent races with 529 * normal callback registry. 530 */ 531 static int 532 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp) 533 { 534 int i; 535 536 if (rcu_gp_in_progress(rsp)) 537 return 0; /* No, a grace period is already in progress. */ 538 if (rcu_future_needs_gp(rsp)) 539 return 1; /* Yes, a no-CBs CPU needs one. */ 540 if (!rdp->nxttail[RCU_NEXT_TAIL]) 541 return 0; /* No, this is a no-CBs (or offline) CPU. */ 542 if (*rdp->nxttail[RCU_NEXT_READY_TAIL]) 543 return 1; /* Yes, this CPU has newly registered callbacks. */ 544 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) 545 if (rdp->nxttail[i - 1] != rdp->nxttail[i] && 546 ULONG_CMP_LT(ACCESS_ONCE(rsp->completed), 547 rdp->nxtcompleted[i])) 548 return 1; /* Yes, CBs for future grace period. */ 549 return 0; /* No grace period needed. */ 550 } 551 552 /* 553 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state 554 * 555 * If the new value of the ->dynticks_nesting counter now is zero, 556 * we really have entered idle, and must do the appropriate accounting. 557 * The caller must have disabled interrupts. 558 */ 559 static void rcu_eqs_enter_common(long long oldval, bool user) 560 { 561 struct rcu_state *rsp; 562 struct rcu_data *rdp; 563 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 564 565 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting); 566 if (!user && !is_idle_task(current)) { 567 struct task_struct *idle __maybe_unused = 568 idle_task(smp_processor_id()); 569 570 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0); 571 ftrace_dump(DUMP_ORIG); 572 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 573 current->pid, current->comm, 574 idle->pid, idle->comm); /* must be idle task! */ 575 } 576 for_each_rcu_flavor(rsp) { 577 rdp = this_cpu_ptr(rsp->rda); 578 do_nocb_deferred_wakeup(rdp); 579 } 580 rcu_prepare_for_idle(); 581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 582 smp_mb__before_atomic(); /* See above. */ 583 atomic_inc(&rdtp->dynticks); 584 smp_mb__after_atomic(); /* Force ordering with next sojourn. */ 585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 586 rcu_dynticks_task_enter(); 587 588 /* 589 * It is illegal to enter an extended quiescent state while 590 * in an RCU read-side critical section. 591 */ 592 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 593 "Illegal idle entry in RCU read-side critical section."); 594 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), 595 "Illegal idle entry in RCU-bh read-side critical section."); 596 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), 597 "Illegal idle entry in RCU-sched read-side critical section."); 598 } 599 600 /* 601 * Enter an RCU extended quiescent state, which can be either the 602 * idle loop or adaptive-tickless usermode execution. 603 */ 604 static void rcu_eqs_enter(bool user) 605 { 606 long long oldval; 607 struct rcu_dynticks *rdtp; 608 609 rdtp = this_cpu_ptr(&rcu_dynticks); 610 oldval = rdtp->dynticks_nesting; 611 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0); 612 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) { 613 rdtp->dynticks_nesting = 0; 614 rcu_eqs_enter_common(oldval, user); 615 } else { 616 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE; 617 } 618 } 619 620 /** 621 * rcu_idle_enter - inform RCU that current CPU is entering idle 622 * 623 * Enter idle mode, in other words, -leave- the mode in which RCU 624 * read-side critical sections can occur. (Though RCU read-side 625 * critical sections can occur in irq handlers in idle, a possibility 626 * handled by irq_enter() and irq_exit().) 627 * 628 * We crowbar the ->dynticks_nesting field to zero to allow for 629 * the possibility of usermode upcalls having messed up our count 630 * of interrupt nesting level during the prior busy period. 631 */ 632 void rcu_idle_enter(void) 633 { 634 unsigned long flags; 635 636 local_irq_save(flags); 637 rcu_eqs_enter(false); 638 rcu_sysidle_enter(0); 639 local_irq_restore(flags); 640 } 641 EXPORT_SYMBOL_GPL(rcu_idle_enter); 642 643 #ifdef CONFIG_RCU_USER_QS 644 /** 645 * rcu_user_enter - inform RCU that we are resuming userspace. 646 * 647 * Enter RCU idle mode right before resuming userspace. No use of RCU 648 * is permitted between this call and rcu_user_exit(). This way the 649 * CPU doesn't need to maintain the tick for RCU maintenance purposes 650 * when the CPU runs in userspace. 651 */ 652 void rcu_user_enter(void) 653 { 654 rcu_eqs_enter(1); 655 } 656 #endif /* CONFIG_RCU_USER_QS */ 657 658 /** 659 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle 660 * 661 * Exit from an interrupt handler, which might possibly result in entering 662 * idle mode, in other words, leaving the mode in which read-side critical 663 * sections can occur. 664 * 665 * This code assumes that the idle loop never does anything that might 666 * result in unbalanced calls to irq_enter() and irq_exit(). If your 667 * architecture violates this assumption, RCU will give you what you 668 * deserve, good and hard. But very infrequently and irreproducibly. 669 * 670 * Use things like work queues to work around this limitation. 671 * 672 * You have been warned. 673 */ 674 void rcu_irq_exit(void) 675 { 676 unsigned long flags; 677 long long oldval; 678 struct rcu_dynticks *rdtp; 679 680 local_irq_save(flags); 681 rdtp = this_cpu_ptr(&rcu_dynticks); 682 oldval = rdtp->dynticks_nesting; 683 rdtp->dynticks_nesting--; 684 WARN_ON_ONCE(rdtp->dynticks_nesting < 0); 685 if (rdtp->dynticks_nesting) 686 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting); 687 else 688 rcu_eqs_enter_common(oldval, true); 689 rcu_sysidle_enter(1); 690 local_irq_restore(flags); 691 } 692 693 /* 694 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state 695 * 696 * If the new value of the ->dynticks_nesting counter was previously zero, 697 * we really have exited idle, and must do the appropriate accounting. 698 * The caller must have disabled interrupts. 699 */ 700 static void rcu_eqs_exit_common(long long oldval, int user) 701 { 702 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 703 704 rcu_dynticks_task_exit(); 705 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */ 706 atomic_inc(&rdtp->dynticks); 707 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */ 708 smp_mb__after_atomic(); /* See above. */ 709 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 710 rcu_cleanup_after_idle(); 711 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting); 712 if (!user && !is_idle_task(current)) { 713 struct task_struct *idle __maybe_unused = 714 idle_task(smp_processor_id()); 715 716 trace_rcu_dyntick(TPS("Error on exit: not idle task"), 717 oldval, rdtp->dynticks_nesting); 718 ftrace_dump(DUMP_ORIG); 719 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s", 720 current->pid, current->comm, 721 idle->pid, idle->comm); /* must be idle task! */ 722 } 723 } 724 725 /* 726 * Exit an RCU extended quiescent state, which can be either the 727 * idle loop or adaptive-tickless usermode execution. 728 */ 729 static void rcu_eqs_exit(bool user) 730 { 731 struct rcu_dynticks *rdtp; 732 long long oldval; 733 734 rdtp = this_cpu_ptr(&rcu_dynticks); 735 oldval = rdtp->dynticks_nesting; 736 WARN_ON_ONCE(oldval < 0); 737 if (oldval & DYNTICK_TASK_NEST_MASK) { 738 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE; 739 } else { 740 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 741 rcu_eqs_exit_common(oldval, user); 742 } 743 } 744 745 /** 746 * rcu_idle_exit - inform RCU that current CPU is leaving idle 747 * 748 * Exit idle mode, in other words, -enter- the mode in which RCU 749 * read-side critical sections can occur. 750 * 751 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to 752 * allow for the possibility of usermode upcalls messing up our count 753 * of interrupt nesting level during the busy period that is just 754 * now starting. 755 */ 756 void rcu_idle_exit(void) 757 { 758 unsigned long flags; 759 760 local_irq_save(flags); 761 rcu_eqs_exit(false); 762 rcu_sysidle_exit(0); 763 local_irq_restore(flags); 764 } 765 EXPORT_SYMBOL_GPL(rcu_idle_exit); 766 767 #ifdef CONFIG_RCU_USER_QS 768 /** 769 * rcu_user_exit - inform RCU that we are exiting userspace. 770 * 771 * Exit RCU idle mode while entering the kernel because it can 772 * run a RCU read side critical section anytime. 773 */ 774 void rcu_user_exit(void) 775 { 776 rcu_eqs_exit(1); 777 } 778 #endif /* CONFIG_RCU_USER_QS */ 779 780 /** 781 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle 782 * 783 * Enter an interrupt handler, which might possibly result in exiting 784 * idle mode, in other words, entering the mode in which read-side critical 785 * sections can occur. 786 * 787 * Note that the Linux kernel is fully capable of entering an interrupt 788 * handler that it never exits, for example when doing upcalls to 789 * user mode! This code assumes that the idle loop never does upcalls to 790 * user mode. If your architecture does do upcalls from the idle loop (or 791 * does anything else that results in unbalanced calls to the irq_enter() 792 * and irq_exit() functions), RCU will give you what you deserve, good 793 * and hard. But very infrequently and irreproducibly. 794 * 795 * Use things like work queues to work around this limitation. 796 * 797 * You have been warned. 798 */ 799 void rcu_irq_enter(void) 800 { 801 unsigned long flags; 802 struct rcu_dynticks *rdtp; 803 long long oldval; 804 805 local_irq_save(flags); 806 rdtp = this_cpu_ptr(&rcu_dynticks); 807 oldval = rdtp->dynticks_nesting; 808 rdtp->dynticks_nesting++; 809 WARN_ON_ONCE(rdtp->dynticks_nesting == 0); 810 if (oldval) 811 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting); 812 else 813 rcu_eqs_exit_common(oldval, true); 814 rcu_sysidle_exit(1); 815 local_irq_restore(flags); 816 } 817 818 /** 819 * rcu_nmi_enter - inform RCU of entry to NMI context 820 * 821 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and 822 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know 823 * that the CPU is active. This implementation permits nested NMIs, as 824 * long as the nesting level does not overflow an int. (You will probably 825 * run out of stack space first.) 826 */ 827 void rcu_nmi_enter(void) 828 { 829 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 830 int incby = 2; 831 832 /* Complain about underflow. */ 833 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); 834 835 /* 836 * If idle from RCU viewpoint, atomically increment ->dynticks 837 * to mark non-idle and increment ->dynticks_nmi_nesting by one. 838 * Otherwise, increment ->dynticks_nmi_nesting by two. This means 839 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed 840 * to be in the outermost NMI handler that interrupted an RCU-idle 841 * period (observation due to Andy Lutomirski). 842 */ 843 if (!(atomic_read(&rdtp->dynticks) & 0x1)) { 844 smp_mb__before_atomic(); /* Force delay from prior write. */ 845 atomic_inc(&rdtp->dynticks); 846 /* atomic_inc() before later RCU read-side crit sects */ 847 smp_mb__after_atomic(); /* See above. */ 848 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 849 incby = 1; 850 } 851 rdtp->dynticks_nmi_nesting += incby; 852 barrier(); 853 } 854 855 /** 856 * rcu_nmi_exit - inform RCU of exit from NMI context 857 * 858 * If we are returning from the outermost NMI handler that interrupted an 859 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting 860 * to let the RCU grace-period handling know that the CPU is back to 861 * being RCU-idle. 862 */ 863 void rcu_nmi_exit(void) 864 { 865 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); 866 867 /* 868 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. 869 * (We are exiting an NMI handler, so RCU better be paying attention 870 * to us!) 871 */ 872 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); 873 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1)); 874 875 /* 876 * If the nesting level is not 1, the CPU wasn't RCU-idle, so 877 * leave it in non-RCU-idle state. 878 */ 879 if (rdtp->dynticks_nmi_nesting != 1) { 880 rdtp->dynticks_nmi_nesting -= 2; 881 return; 882 } 883 884 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ 885 rdtp->dynticks_nmi_nesting = 0; 886 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */ 887 smp_mb__before_atomic(); /* See above. */ 888 atomic_inc(&rdtp->dynticks); 889 smp_mb__after_atomic(); /* Force delay to next write. */ 890 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1); 891 } 892 893 /** 894 * __rcu_is_watching - are RCU read-side critical sections safe? 895 * 896 * Return true if RCU is watching the running CPU, which means that 897 * this CPU can safely enter RCU read-side critical sections. Unlike 898 * rcu_is_watching(), the caller of __rcu_is_watching() must have at 899 * least disabled preemption. 900 */ 901 bool notrace __rcu_is_watching(void) 902 { 903 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1; 904 } 905 906 /** 907 * rcu_is_watching - see if RCU thinks that the current CPU is idle 908 * 909 * If the current CPU is in its idle loop and is neither in an interrupt 910 * or NMI handler, return true. 911 */ 912 bool notrace rcu_is_watching(void) 913 { 914 bool ret; 915 916 preempt_disable(); 917 ret = __rcu_is_watching(); 918 preempt_enable(); 919 return ret; 920 } 921 EXPORT_SYMBOL_GPL(rcu_is_watching); 922 923 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) 924 925 /* 926 * Is the current CPU online? Disable preemption to avoid false positives 927 * that could otherwise happen due to the current CPU number being sampled, 928 * this task being preempted, its old CPU being taken offline, resuming 929 * on some other CPU, then determining that its old CPU is now offline. 930 * It is OK to use RCU on an offline processor during initial boot, hence 931 * the check for rcu_scheduler_fully_active. Note also that it is OK 932 * for a CPU coming online to use RCU for one jiffy prior to marking itself 933 * online in the cpu_online_mask. Similarly, it is OK for a CPU going 934 * offline to continue to use RCU for one jiffy after marking itself 935 * offline in the cpu_online_mask. This leniency is necessary given the 936 * non-atomic nature of the online and offline processing, for example, 937 * the fact that a CPU enters the scheduler after completing the CPU_DYING 938 * notifiers. 939 * 940 * This is also why RCU internally marks CPUs online during the 941 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase. 942 * 943 * Disable checking if in an NMI handler because we cannot safely report 944 * errors from NMI handlers anyway. 945 */ 946 bool rcu_lockdep_current_cpu_online(void) 947 { 948 struct rcu_data *rdp; 949 struct rcu_node *rnp; 950 bool ret; 951 952 if (in_nmi()) 953 return true; 954 preempt_disable(); 955 rdp = this_cpu_ptr(&rcu_sched_data); 956 rnp = rdp->mynode; 957 ret = (rdp->grpmask & rnp->qsmaskinit) || 958 !rcu_scheduler_fully_active; 959 preempt_enable(); 960 return ret; 961 } 962 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); 963 964 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ 965 966 /** 967 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle 968 * 969 * If the current CPU is idle or running at a first-level (not nested) 970 * interrupt from idle, return true. The caller must have at least 971 * disabled preemption. 972 */ 973 static int rcu_is_cpu_rrupt_from_idle(void) 974 { 975 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1; 976 } 977 978 /* 979 * Snapshot the specified CPU's dynticks counter so that we can later 980 * credit them with an implicit quiescent state. Return 1 if this CPU 981 * is in dynticks idle mode, which is an extended quiescent state. 982 */ 983 static int dyntick_save_progress_counter(struct rcu_data *rdp, 984 bool *isidle, unsigned long *maxj) 985 { 986 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks); 987 rcu_sysidle_check_cpu(rdp, isidle, maxj); 988 if ((rdp->dynticks_snap & 0x1) == 0) { 989 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 990 return 1; 991 } else { 992 if (ULONG_CMP_LT(ACCESS_ONCE(rdp->gpnum) + ULONG_MAX / 4, 993 rdp->mynode->gpnum)) 994 ACCESS_ONCE(rdp->gpwrap) = true; 995 return 0; 996 } 997 } 998 999 /* 1000 * Return true if the specified CPU has passed through a quiescent 1001 * state by virtue of being in or having passed through an dynticks 1002 * idle state since the last call to dyntick_save_progress_counter() 1003 * for this same CPU, or by virtue of having been offline. 1004 */ 1005 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp, 1006 bool *isidle, unsigned long *maxj) 1007 { 1008 unsigned int curr; 1009 int *rcrmp; 1010 unsigned int snap; 1011 1012 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks); 1013 snap = (unsigned int)rdp->dynticks_snap; 1014 1015 /* 1016 * If the CPU passed through or entered a dynticks idle phase with 1017 * no active irq/NMI handlers, then we can safely pretend that the CPU 1018 * already acknowledged the request to pass through a quiescent 1019 * state. Either way, that CPU cannot possibly be in an RCU 1020 * read-side critical section that started before the beginning 1021 * of the current RCU grace period. 1022 */ 1023 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) { 1024 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); 1025 rdp->dynticks_fqs++; 1026 return 1; 1027 } 1028 1029 /* 1030 * Check for the CPU being offline, but only if the grace period 1031 * is old enough. We don't need to worry about the CPU changing 1032 * state: If we see it offline even once, it has been through a 1033 * quiescent state. 1034 * 1035 * The reason for insisting that the grace period be at least 1036 * one jiffy old is that CPUs that are not quite online and that 1037 * have just gone offline can still execute RCU read-side critical 1038 * sections. 1039 */ 1040 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies)) 1041 return 0; /* Grace period is not old enough. */ 1042 barrier(); 1043 if (cpu_is_offline(rdp->cpu)) { 1044 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); 1045 rdp->offline_fqs++; 1046 return 1; 1047 } 1048 1049 /* 1050 * A CPU running for an extended time within the kernel can 1051 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, 1052 * even context-switching back and forth between a pair of 1053 * in-kernel CPU-bound tasks cannot advance grace periods. 1054 * So if the grace period is old enough, make the CPU pay attention. 1055 * Note that the unsynchronized assignments to the per-CPU 1056 * rcu_sched_qs_mask variable are safe. Yes, setting of 1057 * bits can be lost, but they will be set again on the next 1058 * force-quiescent-state pass. So lost bit sets do not result 1059 * in incorrect behavior, merely in a grace period lasting 1060 * a few jiffies longer than it might otherwise. Because 1061 * there are at most four threads involved, and because the 1062 * updates are only once every few jiffies, the probability of 1063 * lossage (and thus of slight grace-period extension) is 1064 * quite low. 1065 * 1066 * Note that if the jiffies_till_sched_qs boot/sysfs parameter 1067 * is set too high, we override with half of the RCU CPU stall 1068 * warning delay. 1069 */ 1070 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu); 1071 if (ULONG_CMP_GE(jiffies, 1072 rdp->rsp->gp_start + jiffies_till_sched_qs) || 1073 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1074 if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) { 1075 ACCESS_ONCE(rdp->cond_resched_completed) = 1076 ACCESS_ONCE(rdp->mynode->completed); 1077 smp_mb(); /* ->cond_resched_completed before *rcrmp. */ 1078 ACCESS_ONCE(*rcrmp) = 1079 ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask; 1080 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1081 rdp->rsp->jiffies_resched += 5; /* Enable beating. */ 1082 } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) { 1083 /* Time to beat on that CPU again! */ 1084 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */ 1085 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */ 1086 } 1087 } 1088 1089 return 0; 1090 } 1091 1092 static void record_gp_stall_check_time(struct rcu_state *rsp) 1093 { 1094 unsigned long j = jiffies; 1095 unsigned long j1; 1096 1097 rsp->gp_start = j; 1098 smp_wmb(); /* Record start time before stall time. */ 1099 j1 = rcu_jiffies_till_stall_check(); 1100 ACCESS_ONCE(rsp->jiffies_stall) = j + j1; 1101 rsp->jiffies_resched = j + j1 / 2; 1102 rsp->n_force_qs_gpstart = ACCESS_ONCE(rsp->n_force_qs); 1103 } 1104 1105 /* 1106 * Complain about starvation of grace-period kthread. 1107 */ 1108 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) 1109 { 1110 unsigned long gpa; 1111 unsigned long j; 1112 1113 j = jiffies; 1114 gpa = ACCESS_ONCE(rsp->gp_activity); 1115 if (j - gpa > 2 * HZ) 1116 pr_err("%s kthread starved for %ld jiffies!\n", 1117 rsp->name, j - gpa); 1118 } 1119 1120 /* 1121 * Dump stacks of all tasks running on stalled CPUs. 1122 */ 1123 static void rcu_dump_cpu_stacks(struct rcu_state *rsp) 1124 { 1125 int cpu; 1126 unsigned long flags; 1127 struct rcu_node *rnp; 1128 1129 rcu_for_each_leaf_node(rsp, rnp) { 1130 raw_spin_lock_irqsave(&rnp->lock, flags); 1131 if (rnp->qsmask != 0) { 1132 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1133 if (rnp->qsmask & (1UL << cpu)) 1134 dump_cpu_task(rnp->grplo + cpu); 1135 } 1136 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1137 } 1138 } 1139 1140 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum) 1141 { 1142 int cpu; 1143 long delta; 1144 unsigned long flags; 1145 unsigned long gpa; 1146 unsigned long j; 1147 int ndetected = 0; 1148 struct rcu_node *rnp = rcu_get_root(rsp); 1149 long totqlen = 0; 1150 1151 /* Only let one CPU complain about others per time interval. */ 1152 1153 raw_spin_lock_irqsave(&rnp->lock, flags); 1154 delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall); 1155 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) { 1156 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1157 return; 1158 } 1159 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; 1160 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1161 1162 /* 1163 * OK, time to rat on our buddy... 1164 * See Documentation/RCU/stallwarn.txt for info on how to debug 1165 * RCU CPU stall warnings. 1166 */ 1167 pr_err("INFO: %s detected stalls on CPUs/tasks:", 1168 rsp->name); 1169 print_cpu_stall_info_begin(); 1170 rcu_for_each_leaf_node(rsp, rnp) { 1171 raw_spin_lock_irqsave(&rnp->lock, flags); 1172 ndetected += rcu_print_task_stall(rnp); 1173 if (rnp->qsmask != 0) { 1174 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++) 1175 if (rnp->qsmask & (1UL << cpu)) { 1176 print_cpu_stall_info(rsp, 1177 rnp->grplo + cpu); 1178 ndetected++; 1179 } 1180 } 1181 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1182 } 1183 1184 print_cpu_stall_info_end(); 1185 for_each_possible_cpu(cpu) 1186 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1187 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n", 1188 smp_processor_id(), (long)(jiffies - rsp->gp_start), 1189 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1190 if (ndetected) { 1191 rcu_dump_cpu_stacks(rsp); 1192 } else { 1193 if (ACCESS_ONCE(rsp->gpnum) != gpnum || 1194 ACCESS_ONCE(rsp->completed) == gpnum) { 1195 pr_err("INFO: Stall ended before state dump start\n"); 1196 } else { 1197 j = jiffies; 1198 gpa = ACCESS_ONCE(rsp->gp_activity); 1199 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld\n", 1200 rsp->name, j - gpa, j, gpa, 1201 jiffies_till_next_fqs); 1202 /* In this case, the current CPU might be at fault. */ 1203 sched_show_task(current); 1204 } 1205 } 1206 1207 /* Complain about tasks blocking the grace period. */ 1208 rcu_print_detail_task_stall(rsp); 1209 1210 rcu_check_gp_kthread_starvation(rsp); 1211 1212 force_quiescent_state(rsp); /* Kick them all. */ 1213 } 1214 1215 static void print_cpu_stall(struct rcu_state *rsp) 1216 { 1217 int cpu; 1218 unsigned long flags; 1219 struct rcu_node *rnp = rcu_get_root(rsp); 1220 long totqlen = 0; 1221 1222 /* 1223 * OK, time to rat on ourselves... 1224 * See Documentation/RCU/stallwarn.txt for info on how to debug 1225 * RCU CPU stall warnings. 1226 */ 1227 pr_err("INFO: %s self-detected stall on CPU", rsp->name); 1228 print_cpu_stall_info_begin(); 1229 print_cpu_stall_info(rsp, smp_processor_id()); 1230 print_cpu_stall_info_end(); 1231 for_each_possible_cpu(cpu) 1232 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen; 1233 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n", 1234 jiffies - rsp->gp_start, 1235 (long)rsp->gpnum, (long)rsp->completed, totqlen); 1236 1237 rcu_check_gp_kthread_starvation(rsp); 1238 1239 rcu_dump_cpu_stacks(rsp); 1240 1241 raw_spin_lock_irqsave(&rnp->lock, flags); 1242 if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall))) 1243 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 1244 3 * rcu_jiffies_till_stall_check() + 3; 1245 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1246 1247 /* 1248 * Attempt to revive the RCU machinery by forcing a context switch. 1249 * 1250 * A context switch would normally allow the RCU state machine to make 1251 * progress and it could be we're stuck in kernel space without context 1252 * switches for an entirely unreasonable amount of time. 1253 */ 1254 resched_cpu(smp_processor_id()); 1255 } 1256 1257 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) 1258 { 1259 unsigned long completed; 1260 unsigned long gpnum; 1261 unsigned long gps; 1262 unsigned long j; 1263 unsigned long js; 1264 struct rcu_node *rnp; 1265 1266 if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp)) 1267 return; 1268 j = jiffies; 1269 1270 /* 1271 * Lots of memory barriers to reject false positives. 1272 * 1273 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall, 1274 * then rsp->gp_start, and finally rsp->completed. These values 1275 * are updated in the opposite order with memory barriers (or 1276 * equivalent) during grace-period initialization and cleanup. 1277 * Now, a false positive can occur if we get an new value of 1278 * rsp->gp_start and a old value of rsp->jiffies_stall. But given 1279 * the memory barriers, the only way that this can happen is if one 1280 * grace period ends and another starts between these two fetches. 1281 * Detect this by comparing rsp->completed with the previous fetch 1282 * from rsp->gpnum. 1283 * 1284 * Given this check, comparisons of jiffies, rsp->jiffies_stall, 1285 * and rsp->gp_start suffice to forestall false positives. 1286 */ 1287 gpnum = ACCESS_ONCE(rsp->gpnum); 1288 smp_rmb(); /* Pick up ->gpnum first... */ 1289 js = ACCESS_ONCE(rsp->jiffies_stall); 1290 smp_rmb(); /* ...then ->jiffies_stall before the rest... */ 1291 gps = ACCESS_ONCE(rsp->gp_start); 1292 smp_rmb(); /* ...and finally ->gp_start before ->completed. */ 1293 completed = ACCESS_ONCE(rsp->completed); 1294 if (ULONG_CMP_GE(completed, gpnum) || 1295 ULONG_CMP_LT(j, js) || 1296 ULONG_CMP_GE(gps, js)) 1297 return; /* No stall or GP completed since entering function. */ 1298 rnp = rdp->mynode; 1299 if (rcu_gp_in_progress(rsp) && 1300 (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) { 1301 1302 /* We haven't checked in, so go dump stack. */ 1303 print_cpu_stall(rsp); 1304 1305 } else if (rcu_gp_in_progress(rsp) && 1306 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) { 1307 1308 /* They had a few time units to dump stack, so complain. */ 1309 print_other_cpu_stall(rsp, gpnum); 1310 } 1311 } 1312 1313 /** 1314 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period 1315 * 1316 * Set the stall-warning timeout way off into the future, thus preventing 1317 * any RCU CPU stall-warning messages from appearing in the current set of 1318 * RCU grace periods. 1319 * 1320 * The caller must disable hard irqs. 1321 */ 1322 void rcu_cpu_stall_reset(void) 1323 { 1324 struct rcu_state *rsp; 1325 1326 for_each_rcu_flavor(rsp) 1327 ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2; 1328 } 1329 1330 /* 1331 * Initialize the specified rcu_data structure's callback list to empty. 1332 */ 1333 static void init_callback_list(struct rcu_data *rdp) 1334 { 1335 int i; 1336 1337 if (init_nocb_callback_list(rdp)) 1338 return; 1339 rdp->nxtlist = NULL; 1340 for (i = 0; i < RCU_NEXT_SIZE; i++) 1341 rdp->nxttail[i] = &rdp->nxtlist; 1342 } 1343 1344 /* 1345 * Determine the value that ->completed will have at the end of the 1346 * next subsequent grace period. This is used to tag callbacks so that 1347 * a CPU can invoke callbacks in a timely fashion even if that CPU has 1348 * been dyntick-idle for an extended period with callbacks under the 1349 * influence of RCU_FAST_NO_HZ. 1350 * 1351 * The caller must hold rnp->lock with interrupts disabled. 1352 */ 1353 static unsigned long rcu_cbs_completed(struct rcu_state *rsp, 1354 struct rcu_node *rnp) 1355 { 1356 /* 1357 * If RCU is idle, we just wait for the next grace period. 1358 * But we can only be sure that RCU is idle if we are looking 1359 * at the root rcu_node structure -- otherwise, a new grace 1360 * period might have started, but just not yet gotten around 1361 * to initializing the current non-root rcu_node structure. 1362 */ 1363 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed) 1364 return rnp->completed + 1; 1365 1366 /* 1367 * Otherwise, wait for a possible partial grace period and 1368 * then the subsequent full grace period. 1369 */ 1370 return rnp->completed + 2; 1371 } 1372 1373 /* 1374 * Trace-event helper function for rcu_start_future_gp() and 1375 * rcu_nocb_wait_gp(). 1376 */ 1377 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1378 unsigned long c, const char *s) 1379 { 1380 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, 1381 rnp->completed, c, rnp->level, 1382 rnp->grplo, rnp->grphi, s); 1383 } 1384 1385 /* 1386 * Start some future grace period, as needed to handle newly arrived 1387 * callbacks. The required future grace periods are recorded in each 1388 * rcu_node structure's ->need_future_gp field. Returns true if there 1389 * is reason to awaken the grace-period kthread. 1390 * 1391 * The caller must hold the specified rcu_node structure's ->lock. 1392 */ 1393 static bool __maybe_unused 1394 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp, 1395 unsigned long *c_out) 1396 { 1397 unsigned long c; 1398 int i; 1399 bool ret = false; 1400 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); 1401 1402 /* 1403 * Pick up grace-period number for new callbacks. If this 1404 * grace period is already marked as needed, return to the caller. 1405 */ 1406 c = rcu_cbs_completed(rdp->rsp, rnp); 1407 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf")); 1408 if (rnp->need_future_gp[c & 0x1]) { 1409 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf")); 1410 goto out; 1411 } 1412 1413 /* 1414 * If either this rcu_node structure or the root rcu_node structure 1415 * believe that a grace period is in progress, then we must wait 1416 * for the one following, which is in "c". Because our request 1417 * will be noticed at the end of the current grace period, we don't 1418 * need to explicitly start one. We only do the lockless check 1419 * of rnp_root's fields if the current rcu_node structure thinks 1420 * there is no grace period in flight, and because we hold rnp->lock, 1421 * the only possible change is when rnp_root's two fields are 1422 * equal, in which case rnp_root->gpnum might be concurrently 1423 * incremented. But that is OK, as it will just result in our 1424 * doing some extra useless work. 1425 */ 1426 if (rnp->gpnum != rnp->completed || 1427 ACCESS_ONCE(rnp_root->gpnum) != ACCESS_ONCE(rnp_root->completed)) { 1428 rnp->need_future_gp[c & 0x1]++; 1429 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf")); 1430 goto out; 1431 } 1432 1433 /* 1434 * There might be no grace period in progress. If we don't already 1435 * hold it, acquire the root rcu_node structure's lock in order to 1436 * start one (if needed). 1437 */ 1438 if (rnp != rnp_root) { 1439 raw_spin_lock(&rnp_root->lock); 1440 smp_mb__after_unlock_lock(); 1441 } 1442 1443 /* 1444 * Get a new grace-period number. If there really is no grace 1445 * period in progress, it will be smaller than the one we obtained 1446 * earlier. Adjust callbacks as needed. Note that even no-CBs 1447 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed. 1448 */ 1449 c = rcu_cbs_completed(rdp->rsp, rnp_root); 1450 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++) 1451 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i])) 1452 rdp->nxtcompleted[i] = c; 1453 1454 /* 1455 * If the needed for the required grace period is already 1456 * recorded, trace and leave. 1457 */ 1458 if (rnp_root->need_future_gp[c & 0x1]) { 1459 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot")); 1460 goto unlock_out; 1461 } 1462 1463 /* Record the need for the future grace period. */ 1464 rnp_root->need_future_gp[c & 0x1]++; 1465 1466 /* If a grace period is not already in progress, start one. */ 1467 if (rnp_root->gpnum != rnp_root->completed) { 1468 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot")); 1469 } else { 1470 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot")); 1471 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp); 1472 } 1473 unlock_out: 1474 if (rnp != rnp_root) 1475 raw_spin_unlock(&rnp_root->lock); 1476 out: 1477 if (c_out != NULL) 1478 *c_out = c; 1479 return ret; 1480 } 1481 1482 /* 1483 * Clean up any old requests for the just-ended grace period. Also return 1484 * whether any additional grace periods have been requested. Also invoke 1485 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads 1486 * waiting for this grace period to complete. 1487 */ 1488 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) 1489 { 1490 int c = rnp->completed; 1491 int needmore; 1492 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 1493 1494 rcu_nocb_gp_cleanup(rsp, rnp); 1495 rnp->need_future_gp[c & 0x1] = 0; 1496 needmore = rnp->need_future_gp[(c + 1) & 0x1]; 1497 trace_rcu_future_gp(rnp, rdp, c, 1498 needmore ? TPS("CleanupMore") : TPS("Cleanup")); 1499 return needmore; 1500 } 1501 1502 /* 1503 * Awaken the grace-period kthread for the specified flavor of RCU. 1504 * Don't do a self-awaken, and don't bother awakening when there is 1505 * nothing for the grace-period kthread to do (as in several CPUs 1506 * raced to awaken, and we lost), and finally don't try to awaken 1507 * a kthread that has not yet been created. 1508 */ 1509 static void rcu_gp_kthread_wake(struct rcu_state *rsp) 1510 { 1511 if (current == rsp->gp_kthread || 1512 !ACCESS_ONCE(rsp->gp_flags) || 1513 !rsp->gp_kthread) 1514 return; 1515 wake_up(&rsp->gp_wq); 1516 } 1517 1518 /* 1519 * If there is room, assign a ->completed number to any callbacks on 1520 * this CPU that have not already been assigned. Also accelerate any 1521 * callbacks that were previously assigned a ->completed number that has 1522 * since proven to be too conservative, which can happen if callbacks get 1523 * assigned a ->completed number while RCU is idle, but with reference to 1524 * a non-root rcu_node structure. This function is idempotent, so it does 1525 * not hurt to call it repeatedly. Returns an flag saying that we should 1526 * awaken the RCU grace-period kthread. 1527 * 1528 * The caller must hold rnp->lock with interrupts disabled. 1529 */ 1530 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1531 struct rcu_data *rdp) 1532 { 1533 unsigned long c; 1534 int i; 1535 bool ret; 1536 1537 /* If the CPU has no callbacks, nothing to do. */ 1538 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1539 return false; 1540 1541 /* 1542 * Starting from the sublist containing the callbacks most 1543 * recently assigned a ->completed number and working down, find the 1544 * first sublist that is not assignable to an upcoming grace period. 1545 * Such a sublist has something in it (first two tests) and has 1546 * a ->completed number assigned that will complete sooner than 1547 * the ->completed number for newly arrived callbacks (last test). 1548 * 1549 * The key point is that any later sublist can be assigned the 1550 * same ->completed number as the newly arrived callbacks, which 1551 * means that the callbacks in any of these later sublist can be 1552 * grouped into a single sublist, whether or not they have already 1553 * been assigned a ->completed number. 1554 */ 1555 c = rcu_cbs_completed(rsp, rnp); 1556 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--) 1557 if (rdp->nxttail[i] != rdp->nxttail[i - 1] && 1558 !ULONG_CMP_GE(rdp->nxtcompleted[i], c)) 1559 break; 1560 1561 /* 1562 * If there are no sublist for unassigned callbacks, leave. 1563 * At the same time, advance "i" one sublist, so that "i" will 1564 * index into the sublist where all the remaining callbacks should 1565 * be grouped into. 1566 */ 1567 if (++i >= RCU_NEXT_TAIL) 1568 return false; 1569 1570 /* 1571 * Assign all subsequent callbacks' ->completed number to the next 1572 * full grace period and group them all in the sublist initially 1573 * indexed by "i". 1574 */ 1575 for (; i <= RCU_NEXT_TAIL; i++) { 1576 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL]; 1577 rdp->nxtcompleted[i] = c; 1578 } 1579 /* Record any needed additional grace periods. */ 1580 ret = rcu_start_future_gp(rnp, rdp, NULL); 1581 1582 /* Trace depending on how much we were able to accelerate. */ 1583 if (!*rdp->nxttail[RCU_WAIT_TAIL]) 1584 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); 1585 else 1586 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); 1587 return ret; 1588 } 1589 1590 /* 1591 * Move any callbacks whose grace period has completed to the 1592 * RCU_DONE_TAIL sublist, then compact the remaining sublists and 1593 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL 1594 * sublist. This function is idempotent, so it does not hurt to 1595 * invoke it repeatedly. As long as it is not invoked -too- often... 1596 * Returns true if the RCU grace-period kthread needs to be awakened. 1597 * 1598 * The caller must hold rnp->lock with interrupts disabled. 1599 */ 1600 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, 1601 struct rcu_data *rdp) 1602 { 1603 int i, j; 1604 1605 /* If the CPU has no callbacks, nothing to do. */ 1606 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL]) 1607 return false; 1608 1609 /* 1610 * Find all callbacks whose ->completed numbers indicate that they 1611 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. 1612 */ 1613 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { 1614 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i])) 1615 break; 1616 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i]; 1617 } 1618 /* Clean up any sublist tail pointers that were misordered above. */ 1619 for (j = RCU_WAIT_TAIL; j < i; j++) 1620 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL]; 1621 1622 /* Copy down callbacks to fill in empty sublists. */ 1623 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { 1624 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL]) 1625 break; 1626 rdp->nxttail[j] = rdp->nxttail[i]; 1627 rdp->nxtcompleted[j] = rdp->nxtcompleted[i]; 1628 } 1629 1630 /* Classify any remaining callbacks. */ 1631 return rcu_accelerate_cbs(rsp, rnp, rdp); 1632 } 1633 1634 /* 1635 * Update CPU-local rcu_data state to record the beginnings and ends of 1636 * grace periods. The caller must hold the ->lock of the leaf rcu_node 1637 * structure corresponding to the current CPU, and must have irqs disabled. 1638 * Returns true if the grace-period kthread needs to be awakened. 1639 */ 1640 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, 1641 struct rcu_data *rdp) 1642 { 1643 bool ret; 1644 1645 /* Handle the ends of any preceding grace periods first. */ 1646 if (rdp->completed == rnp->completed && 1647 !unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1648 1649 /* No grace period end, so just accelerate recent callbacks. */ 1650 ret = rcu_accelerate_cbs(rsp, rnp, rdp); 1651 1652 } else { 1653 1654 /* Advance callbacks. */ 1655 ret = rcu_advance_cbs(rsp, rnp, rdp); 1656 1657 /* Remember that we saw this grace-period completion. */ 1658 rdp->completed = rnp->completed; 1659 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend")); 1660 } 1661 1662 if (rdp->gpnum != rnp->gpnum || unlikely(ACCESS_ONCE(rdp->gpwrap))) { 1663 /* 1664 * If the current grace period is waiting for this CPU, 1665 * set up to detect a quiescent state, otherwise don't 1666 * go looking for one. 1667 */ 1668 rdp->gpnum = rnp->gpnum; 1669 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); 1670 rdp->passed_quiesce = 0; 1671 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 1672 rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask); 1673 zero_cpu_stall_ticks(rdp); 1674 ACCESS_ONCE(rdp->gpwrap) = false; 1675 } 1676 return ret; 1677 } 1678 1679 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) 1680 { 1681 unsigned long flags; 1682 bool needwake; 1683 struct rcu_node *rnp; 1684 1685 local_irq_save(flags); 1686 rnp = rdp->mynode; 1687 if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) && 1688 rdp->completed == ACCESS_ONCE(rnp->completed) && 1689 !unlikely(ACCESS_ONCE(rdp->gpwrap))) || /* w/out lock. */ 1690 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */ 1691 local_irq_restore(flags); 1692 return; 1693 } 1694 smp_mb__after_unlock_lock(); 1695 needwake = __note_gp_changes(rsp, rnp, rdp); 1696 raw_spin_unlock_irqrestore(&rnp->lock, flags); 1697 if (needwake) 1698 rcu_gp_kthread_wake(rsp); 1699 } 1700 1701 /* 1702 * Initialize a new grace period. Return 0 if no grace period required. 1703 */ 1704 static int rcu_gp_init(struct rcu_state *rsp) 1705 { 1706 struct rcu_data *rdp; 1707 struct rcu_node *rnp = rcu_get_root(rsp); 1708 1709 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1710 rcu_bind_gp_kthread(); 1711 raw_spin_lock_irq(&rnp->lock); 1712 smp_mb__after_unlock_lock(); 1713 if (!ACCESS_ONCE(rsp->gp_flags)) { 1714 /* Spurious wakeup, tell caller to go back to sleep. */ 1715 raw_spin_unlock_irq(&rnp->lock); 1716 return 0; 1717 } 1718 ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */ 1719 1720 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { 1721 /* 1722 * Grace period already in progress, don't start another. 1723 * Not supposed to be able to happen. 1724 */ 1725 raw_spin_unlock_irq(&rnp->lock); 1726 return 0; 1727 } 1728 1729 /* Advance to a new grace period and initialize state. */ 1730 record_gp_stall_check_time(rsp); 1731 /* Record GP times before starting GP, hence smp_store_release(). */ 1732 smp_store_release(&rsp->gpnum, rsp->gpnum + 1); 1733 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); 1734 raw_spin_unlock_irq(&rnp->lock); 1735 1736 /* Exclude any concurrent CPU-hotplug operations. */ 1737 mutex_lock(&rsp->onoff_mutex); 1738 smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */ 1739 1740 /* 1741 * Set the quiescent-state-needed bits in all the rcu_node 1742 * structures for all currently online CPUs in breadth-first order, 1743 * starting from the root rcu_node structure, relying on the layout 1744 * of the tree within the rsp->node[] array. Note that other CPUs 1745 * will access only the leaves of the hierarchy, thus seeing that no 1746 * grace period is in progress, at least until the corresponding 1747 * leaf node has been initialized. In addition, we have excluded 1748 * CPU-hotplug operations. 1749 * 1750 * The grace period cannot complete until the initialization 1751 * process finishes, because this kthread handles both. 1752 */ 1753 rcu_for_each_node_breadth_first(rsp, rnp) { 1754 raw_spin_lock_irq(&rnp->lock); 1755 smp_mb__after_unlock_lock(); 1756 rdp = this_cpu_ptr(rsp->rda); 1757 rcu_preempt_check_blocked_tasks(rnp); 1758 rnp->qsmask = rnp->qsmaskinit; 1759 ACCESS_ONCE(rnp->gpnum) = rsp->gpnum; 1760 WARN_ON_ONCE(rnp->completed != rsp->completed); 1761 ACCESS_ONCE(rnp->completed) = rsp->completed; 1762 if (rnp == rdp->mynode) 1763 (void)__note_gp_changes(rsp, rnp, rdp); 1764 rcu_preempt_boost_start_gp(rnp); 1765 trace_rcu_grace_period_init(rsp->name, rnp->gpnum, 1766 rnp->level, rnp->grplo, 1767 rnp->grphi, rnp->qsmask); 1768 raw_spin_unlock_irq(&rnp->lock); 1769 cond_resched_rcu_qs(); 1770 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1771 } 1772 1773 mutex_unlock(&rsp->onoff_mutex); 1774 return 1; 1775 } 1776 1777 /* 1778 * Do one round of quiescent-state forcing. 1779 */ 1780 static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in) 1781 { 1782 int fqs_state = fqs_state_in; 1783 bool isidle = false; 1784 unsigned long maxj; 1785 struct rcu_node *rnp = rcu_get_root(rsp); 1786 1787 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1788 rsp->n_force_qs++; 1789 if (fqs_state == RCU_SAVE_DYNTICK) { 1790 /* Collect dyntick-idle snapshots. */ 1791 if (is_sysidle_rcu_state(rsp)) { 1792 isidle = true; 1793 maxj = jiffies - ULONG_MAX / 4; 1794 } 1795 force_qs_rnp(rsp, dyntick_save_progress_counter, 1796 &isidle, &maxj); 1797 rcu_sysidle_report_gp(rsp, isidle, maxj); 1798 fqs_state = RCU_FORCE_QS; 1799 } else { 1800 /* Handle dyntick-idle and offline CPUs. */ 1801 isidle = false; 1802 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj); 1803 } 1804 /* Clear flag to prevent immediate re-entry. */ 1805 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 1806 raw_spin_lock_irq(&rnp->lock); 1807 smp_mb__after_unlock_lock(); 1808 ACCESS_ONCE(rsp->gp_flags) = 1809 ACCESS_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS; 1810 raw_spin_unlock_irq(&rnp->lock); 1811 } 1812 return fqs_state; 1813 } 1814 1815 /* 1816 * Clean up after the old grace period. 1817 */ 1818 static void rcu_gp_cleanup(struct rcu_state *rsp) 1819 { 1820 unsigned long gp_duration; 1821 bool needgp = false; 1822 int nocb = 0; 1823 struct rcu_data *rdp; 1824 struct rcu_node *rnp = rcu_get_root(rsp); 1825 1826 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1827 raw_spin_lock_irq(&rnp->lock); 1828 smp_mb__after_unlock_lock(); 1829 gp_duration = jiffies - rsp->gp_start; 1830 if (gp_duration > rsp->gp_max) 1831 rsp->gp_max = gp_duration; 1832 1833 /* 1834 * We know the grace period is complete, but to everyone else 1835 * it appears to still be ongoing. But it is also the case 1836 * that to everyone else it looks like there is nothing that 1837 * they can do to advance the grace period. It is therefore 1838 * safe for us to drop the lock in order to mark the grace 1839 * period as completed in all of the rcu_node structures. 1840 */ 1841 raw_spin_unlock_irq(&rnp->lock); 1842 1843 /* 1844 * Propagate new ->completed value to rcu_node structures so 1845 * that other CPUs don't have to wait until the start of the next 1846 * grace period to process their callbacks. This also avoids 1847 * some nasty RCU grace-period initialization races by forcing 1848 * the end of the current grace period to be completely recorded in 1849 * all of the rcu_node structures before the beginning of the next 1850 * grace period is recorded in any of the rcu_node structures. 1851 */ 1852 rcu_for_each_node_breadth_first(rsp, rnp) { 1853 raw_spin_lock_irq(&rnp->lock); 1854 smp_mb__after_unlock_lock(); 1855 ACCESS_ONCE(rnp->completed) = rsp->gpnum; 1856 rdp = this_cpu_ptr(rsp->rda); 1857 if (rnp == rdp->mynode) 1858 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; 1859 /* smp_mb() provided by prior unlock-lock pair. */ 1860 nocb += rcu_future_gp_cleanup(rsp, rnp); 1861 raw_spin_unlock_irq(&rnp->lock); 1862 cond_resched_rcu_qs(); 1863 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1864 } 1865 rnp = rcu_get_root(rsp); 1866 raw_spin_lock_irq(&rnp->lock); 1867 smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */ 1868 rcu_nocb_gp_set(rnp, nocb); 1869 1870 /* Declare grace period done. */ 1871 ACCESS_ONCE(rsp->completed) = rsp->gpnum; 1872 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); 1873 rsp->fqs_state = RCU_GP_IDLE; 1874 rdp = this_cpu_ptr(rsp->rda); 1875 /* Advance CBs to reduce false positives below. */ 1876 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp; 1877 if (needgp || cpu_needs_another_gp(rsp, rdp)) { 1878 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 1879 trace_rcu_grace_period(rsp->name, 1880 ACCESS_ONCE(rsp->gpnum), 1881 TPS("newreq")); 1882 } 1883 raw_spin_unlock_irq(&rnp->lock); 1884 } 1885 1886 /* 1887 * Body of kthread that handles grace periods. 1888 */ 1889 static int __noreturn rcu_gp_kthread(void *arg) 1890 { 1891 int fqs_state; 1892 int gf; 1893 unsigned long j; 1894 int ret; 1895 struct rcu_state *rsp = arg; 1896 struct rcu_node *rnp = rcu_get_root(rsp); 1897 1898 for (;;) { 1899 1900 /* Handle grace-period start. */ 1901 for (;;) { 1902 trace_rcu_grace_period(rsp->name, 1903 ACCESS_ONCE(rsp->gpnum), 1904 TPS("reqwait")); 1905 rsp->gp_state = RCU_GP_WAIT_GPS; 1906 wait_event_interruptible(rsp->gp_wq, 1907 ACCESS_ONCE(rsp->gp_flags) & 1908 RCU_GP_FLAG_INIT); 1909 /* Locking provides needed memory barrier. */ 1910 if (rcu_gp_init(rsp)) 1911 break; 1912 cond_resched_rcu_qs(); 1913 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1914 WARN_ON(signal_pending(current)); 1915 trace_rcu_grace_period(rsp->name, 1916 ACCESS_ONCE(rsp->gpnum), 1917 TPS("reqwaitsig")); 1918 } 1919 1920 /* Handle quiescent-state forcing. */ 1921 fqs_state = RCU_SAVE_DYNTICK; 1922 j = jiffies_till_first_fqs; 1923 if (j > HZ) { 1924 j = HZ; 1925 jiffies_till_first_fqs = HZ; 1926 } 1927 ret = 0; 1928 for (;;) { 1929 if (!ret) 1930 rsp->jiffies_force_qs = jiffies + j; 1931 trace_rcu_grace_period(rsp->name, 1932 ACCESS_ONCE(rsp->gpnum), 1933 TPS("fqswait")); 1934 rsp->gp_state = RCU_GP_WAIT_FQS; 1935 ret = wait_event_interruptible_timeout(rsp->gp_wq, 1936 ((gf = ACCESS_ONCE(rsp->gp_flags)) & 1937 RCU_GP_FLAG_FQS) || 1938 (!ACCESS_ONCE(rnp->qsmask) && 1939 !rcu_preempt_blocked_readers_cgp(rnp)), 1940 j); 1941 /* Locking provides needed memory barriers. */ 1942 /* If grace period done, leave loop. */ 1943 if (!ACCESS_ONCE(rnp->qsmask) && 1944 !rcu_preempt_blocked_readers_cgp(rnp)) 1945 break; 1946 /* If time for quiescent-state forcing, do it. */ 1947 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || 1948 (gf & RCU_GP_FLAG_FQS)) { 1949 trace_rcu_grace_period(rsp->name, 1950 ACCESS_ONCE(rsp->gpnum), 1951 TPS("fqsstart")); 1952 fqs_state = rcu_gp_fqs(rsp, fqs_state); 1953 trace_rcu_grace_period(rsp->name, 1954 ACCESS_ONCE(rsp->gpnum), 1955 TPS("fqsend")); 1956 cond_resched_rcu_qs(); 1957 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1958 } else { 1959 /* Deal with stray signal. */ 1960 cond_resched_rcu_qs(); 1961 ACCESS_ONCE(rsp->gp_activity) = jiffies; 1962 WARN_ON(signal_pending(current)); 1963 trace_rcu_grace_period(rsp->name, 1964 ACCESS_ONCE(rsp->gpnum), 1965 TPS("fqswaitsig")); 1966 } 1967 j = jiffies_till_next_fqs; 1968 if (j > HZ) { 1969 j = HZ; 1970 jiffies_till_next_fqs = HZ; 1971 } else if (j < 1) { 1972 j = 1; 1973 jiffies_till_next_fqs = 1; 1974 } 1975 } 1976 1977 /* Handle grace-period end. */ 1978 rcu_gp_cleanup(rsp); 1979 } 1980 } 1981 1982 /* 1983 * Start a new RCU grace period if warranted, re-initializing the hierarchy 1984 * in preparation for detecting the next grace period. The caller must hold 1985 * the root node's ->lock and hard irqs must be disabled. 1986 * 1987 * Note that it is legal for a dying CPU (which is marked as offline) to 1988 * invoke this function. This can happen when the dying CPU reports its 1989 * quiescent state. 1990 * 1991 * Returns true if the grace-period kthread must be awakened. 1992 */ 1993 static bool 1994 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp, 1995 struct rcu_data *rdp) 1996 { 1997 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) { 1998 /* 1999 * Either we have not yet spawned the grace-period 2000 * task, this CPU does not need another grace period, 2001 * or a grace period is already in progress. 2002 * Either way, don't start a new grace period. 2003 */ 2004 return false; 2005 } 2006 ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT; 2007 trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum), 2008 TPS("newreq")); 2009 2010 /* 2011 * We can't do wakeups while holding the rnp->lock, as that 2012 * could cause possible deadlocks with the rq->lock. Defer 2013 * the wakeup to our caller. 2014 */ 2015 return true; 2016 } 2017 2018 /* 2019 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's 2020 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it 2021 * is invoked indirectly from rcu_advance_cbs(), which would result in 2022 * endless recursion -- or would do so if it wasn't for the self-deadlock 2023 * that is encountered beforehand. 2024 * 2025 * Returns true if the grace-period kthread needs to be awakened. 2026 */ 2027 static bool rcu_start_gp(struct rcu_state *rsp) 2028 { 2029 struct rcu_data *rdp = this_cpu_ptr(rsp->rda); 2030 struct rcu_node *rnp = rcu_get_root(rsp); 2031 bool ret = false; 2032 2033 /* 2034 * If there is no grace period in progress right now, any 2035 * callbacks we have up to this point will be satisfied by the 2036 * next grace period. Also, advancing the callbacks reduces the 2037 * probability of false positives from cpu_needs_another_gp() 2038 * resulting in pointless grace periods. So, advance callbacks 2039 * then start the grace period! 2040 */ 2041 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret; 2042 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret; 2043 return ret; 2044 } 2045 2046 /* 2047 * Report a full set of quiescent states to the specified rcu_state 2048 * data structure. This involves cleaning up after the prior grace 2049 * period and letting rcu_start_gp() start up the next grace period 2050 * if one is needed. Note that the caller must hold rnp->lock, which 2051 * is released before return. 2052 */ 2053 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) 2054 __releases(rcu_get_root(rsp)->lock) 2055 { 2056 WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); 2057 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2058 rcu_gp_kthread_wake(rsp); 2059 } 2060 2061 /* 2062 * Similar to rcu_report_qs_rdp(), for which it is a helper function. 2063 * Allows quiescent states for a group of CPUs to be reported at one go 2064 * to the specified rcu_node structure, though all the CPUs in the group 2065 * must be represented by the same rcu_node structure (which need not be 2066 * a leaf rcu_node structure, though it often will be). That structure's 2067 * lock must be held upon entry, and it is released before return. 2068 */ 2069 static void 2070 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, 2071 struct rcu_node *rnp, unsigned long flags) 2072 __releases(rnp->lock) 2073 { 2074 struct rcu_node *rnp_c; 2075 2076 /* Walk up the rcu_node hierarchy. */ 2077 for (;;) { 2078 if (!(rnp->qsmask & mask)) { 2079 2080 /* Our bit has already been cleared, so done. */ 2081 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2082 return; 2083 } 2084 rnp->qsmask &= ~mask; 2085 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, 2086 mask, rnp->qsmask, rnp->level, 2087 rnp->grplo, rnp->grphi, 2088 !!rnp->gp_tasks); 2089 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { 2090 2091 /* Other bits still set at this level, so done. */ 2092 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2093 return; 2094 } 2095 mask = rnp->grpmask; 2096 if (rnp->parent == NULL) { 2097 2098 /* No more levels. Exit loop holding root lock. */ 2099 2100 break; 2101 } 2102 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2103 rnp_c = rnp; 2104 rnp = rnp->parent; 2105 raw_spin_lock_irqsave(&rnp->lock, flags); 2106 smp_mb__after_unlock_lock(); 2107 WARN_ON_ONCE(rnp_c->qsmask); 2108 } 2109 2110 /* 2111 * Get here if we are the last CPU to pass through a quiescent 2112 * state for this grace period. Invoke rcu_report_qs_rsp() 2113 * to clean up and start the next grace period if one is needed. 2114 */ 2115 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ 2116 } 2117 2118 /* 2119 * Record a quiescent state for the specified CPU to that CPU's rcu_data 2120 * structure. This must be either called from the specified CPU, or 2121 * called when the specified CPU is known to be offline (and when it is 2122 * also known that no other CPU is concurrently trying to help the offline 2123 * CPU). The lastcomp argument is used to make sure we are still in the 2124 * grace period of interest. We don't want to end the current grace period 2125 * based on quiescent states detected in an earlier grace period! 2126 */ 2127 static void 2128 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) 2129 { 2130 unsigned long flags; 2131 unsigned long mask; 2132 bool needwake; 2133 struct rcu_node *rnp; 2134 2135 rnp = rdp->mynode; 2136 raw_spin_lock_irqsave(&rnp->lock, flags); 2137 smp_mb__after_unlock_lock(); 2138 if ((rdp->passed_quiesce == 0 && 2139 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) || 2140 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum || 2141 rdp->gpwrap) { 2142 2143 /* 2144 * The grace period in which this quiescent state was 2145 * recorded has ended, so don't report it upwards. 2146 * We will instead need a new quiescent state that lies 2147 * within the current grace period. 2148 */ 2149 rdp->passed_quiesce = 0; /* need qs for new gp. */ 2150 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 2151 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2152 return; 2153 } 2154 mask = rdp->grpmask; 2155 if ((rnp->qsmask & mask) == 0) { 2156 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2157 } else { 2158 rdp->qs_pending = 0; 2159 2160 /* 2161 * This GP can't end until cpu checks in, so all of our 2162 * callbacks can be processed during the next GP. 2163 */ 2164 needwake = rcu_accelerate_cbs(rsp, rnp, rdp); 2165 2166 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */ 2167 if (needwake) 2168 rcu_gp_kthread_wake(rsp); 2169 } 2170 } 2171 2172 /* 2173 * Check to see if there is a new grace period of which this CPU 2174 * is not yet aware, and if so, set up local rcu_data state for it. 2175 * Otherwise, see if this CPU has just passed through its first 2176 * quiescent state for this grace period, and record that fact if so. 2177 */ 2178 static void 2179 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) 2180 { 2181 /* Check for grace-period ends and beginnings. */ 2182 note_gp_changes(rsp, rdp); 2183 2184 /* 2185 * Does this CPU still need to do its part for current grace period? 2186 * If no, return and let the other CPUs do their part as well. 2187 */ 2188 if (!rdp->qs_pending) 2189 return; 2190 2191 /* 2192 * Was there a quiescent state since the beginning of the grace 2193 * period? If no, then exit and wait for the next call. 2194 */ 2195 if (!rdp->passed_quiesce && 2196 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) 2197 return; 2198 2199 /* 2200 * Tell RCU we are done (but rcu_report_qs_rdp() will be the 2201 * judge of that). 2202 */ 2203 rcu_report_qs_rdp(rdp->cpu, rsp, rdp); 2204 } 2205 2206 #ifdef CONFIG_HOTPLUG_CPU 2207 2208 /* 2209 * Send the specified CPU's RCU callbacks to the orphanage. The 2210 * specified CPU must be offline, and the caller must hold the 2211 * ->orphan_lock. 2212 */ 2213 static void 2214 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp, 2215 struct rcu_node *rnp, struct rcu_data *rdp) 2216 { 2217 /* No-CBs CPUs do not have orphanable callbacks. */ 2218 if (rcu_is_nocb_cpu(rdp->cpu)) 2219 return; 2220 2221 /* 2222 * Orphan the callbacks. First adjust the counts. This is safe 2223 * because _rcu_barrier() excludes CPU-hotplug operations, so it 2224 * cannot be running now. Thus no memory barrier is required. 2225 */ 2226 if (rdp->nxtlist != NULL) { 2227 rsp->qlen_lazy += rdp->qlen_lazy; 2228 rsp->qlen += rdp->qlen; 2229 rdp->n_cbs_orphaned += rdp->qlen; 2230 rdp->qlen_lazy = 0; 2231 ACCESS_ONCE(rdp->qlen) = 0; 2232 } 2233 2234 /* 2235 * Next, move those callbacks still needing a grace period to 2236 * the orphanage, where some other CPU will pick them up. 2237 * Some of the callbacks might have gone partway through a grace 2238 * period, but that is too bad. They get to start over because we 2239 * cannot assume that grace periods are synchronized across CPUs. 2240 * We don't bother updating the ->nxttail[] array yet, instead 2241 * we just reset the whole thing later on. 2242 */ 2243 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) { 2244 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL]; 2245 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL]; 2246 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2247 } 2248 2249 /* 2250 * Then move the ready-to-invoke callbacks to the orphanage, 2251 * where some other CPU will pick them up. These will not be 2252 * required to pass though another grace period: They are done. 2253 */ 2254 if (rdp->nxtlist != NULL) { 2255 *rsp->orphan_donetail = rdp->nxtlist; 2256 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL]; 2257 } 2258 2259 /* Finally, initialize the rcu_data structure's list to empty. */ 2260 init_callback_list(rdp); 2261 } 2262 2263 /* 2264 * Adopt the RCU callbacks from the specified rcu_state structure's 2265 * orphanage. The caller must hold the ->orphan_lock. 2266 */ 2267 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags) 2268 { 2269 int i; 2270 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2271 2272 /* No-CBs CPUs are handled specially. */ 2273 if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags)) 2274 return; 2275 2276 /* Do the accounting first. */ 2277 rdp->qlen_lazy += rsp->qlen_lazy; 2278 rdp->qlen += rsp->qlen; 2279 rdp->n_cbs_adopted += rsp->qlen; 2280 if (rsp->qlen_lazy != rsp->qlen) 2281 rcu_idle_count_callbacks_posted(); 2282 rsp->qlen_lazy = 0; 2283 rsp->qlen = 0; 2284 2285 /* 2286 * We do not need a memory barrier here because the only way we 2287 * can get here if there is an rcu_barrier() in flight is if 2288 * we are the task doing the rcu_barrier(). 2289 */ 2290 2291 /* First adopt the ready-to-invoke callbacks. */ 2292 if (rsp->orphan_donelist != NULL) { 2293 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL]; 2294 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist; 2295 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--) 2296 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2297 rdp->nxttail[i] = rsp->orphan_donetail; 2298 rsp->orphan_donelist = NULL; 2299 rsp->orphan_donetail = &rsp->orphan_donelist; 2300 } 2301 2302 /* And then adopt the callbacks that still need a grace period. */ 2303 if (rsp->orphan_nxtlist != NULL) { 2304 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist; 2305 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail; 2306 rsp->orphan_nxtlist = NULL; 2307 rsp->orphan_nxttail = &rsp->orphan_nxtlist; 2308 } 2309 } 2310 2311 /* 2312 * Trace the fact that this CPU is going offline. 2313 */ 2314 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2315 { 2316 RCU_TRACE(unsigned long mask); 2317 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda)); 2318 RCU_TRACE(struct rcu_node *rnp = rdp->mynode); 2319 2320 RCU_TRACE(mask = rdp->grpmask); 2321 trace_rcu_grace_period(rsp->name, 2322 rnp->gpnum + 1 - !!(rnp->qsmask & mask), 2323 TPS("cpuofl")); 2324 } 2325 2326 /* 2327 * All CPUs for the specified rcu_node structure have gone offline, 2328 * and all tasks that were preempted within an RCU read-side critical 2329 * section while running on one of those CPUs have since exited their RCU 2330 * read-side critical section. Some other CPU is reporting this fact with 2331 * the specified rcu_node structure's ->lock held and interrupts disabled. 2332 * This function therefore goes up the tree of rcu_node structures, 2333 * clearing the corresponding bits in the ->qsmaskinit fields. Note that 2334 * the leaf rcu_node structure's ->qsmaskinit field has already been 2335 * updated 2336 * 2337 * This function does check that the specified rcu_node structure has 2338 * all CPUs offline and no blocked tasks, so it is OK to invoke it 2339 * prematurely. That said, invoking it after the fact will cost you 2340 * a needless lock acquisition. So once it has done its work, don't 2341 * invoke it again. 2342 */ 2343 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2344 { 2345 long mask; 2346 struct rcu_node *rnp = rnp_leaf; 2347 2348 if (rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) 2349 return; 2350 for (;;) { 2351 mask = rnp->grpmask; 2352 rnp = rnp->parent; 2353 if (!rnp) 2354 break; 2355 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 2356 smp_mb__after_unlock_lock(); /* GP memory ordering. */ 2357 rnp->qsmaskinit &= ~mask; 2358 if (rnp->qsmaskinit) { 2359 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2360 return; 2361 } 2362 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 2363 } 2364 } 2365 2366 /* 2367 * The CPU has been completely removed, and some other CPU is reporting 2368 * this fact from process context. Do the remainder of the cleanup, 2369 * including orphaning the outgoing CPU's RCU callbacks, and also 2370 * adopting them. There can only be one CPU hotplug operation at a time, 2371 * so no other CPU can be attempting to update rcu_cpu_kthread_task. 2372 */ 2373 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2374 { 2375 unsigned long flags; 2376 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 2377 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ 2378 2379 /* Adjust any no-longer-needed kthreads. */ 2380 rcu_boost_kthread_setaffinity(rnp, -1); 2381 2382 /* Exclude any attempts to start a new grace period. */ 2383 mutex_lock(&rsp->onoff_mutex); 2384 raw_spin_lock_irqsave(&rsp->orphan_lock, flags); 2385 2386 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */ 2387 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp); 2388 rcu_adopt_orphan_cbs(rsp, flags); 2389 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags); 2390 2391 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ 2392 raw_spin_lock_irqsave(&rnp->lock, flags); 2393 smp_mb__after_unlock_lock(); /* Enforce GP memory-order guarantee. */ 2394 rnp->qsmaskinit &= ~rdp->grpmask; 2395 if (rnp->qsmaskinit == 0 && !rcu_preempt_has_tasks(rnp)) 2396 rcu_cleanup_dead_rnp(rnp); 2397 rcu_report_qs_rnp(rdp->grpmask, rsp, rnp, flags); /* Rlses rnp->lock. */ 2398 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL, 2399 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n", 2400 cpu, rdp->qlen, rdp->nxtlist); 2401 init_callback_list(rdp); 2402 /* Disallow further callbacks on this CPU. */ 2403 rdp->nxttail[RCU_NEXT_TAIL] = NULL; 2404 mutex_unlock(&rsp->onoff_mutex); 2405 } 2406 2407 #else /* #ifdef CONFIG_HOTPLUG_CPU */ 2408 2409 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) 2410 { 2411 } 2412 2413 static void __maybe_unused rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) 2414 { 2415 } 2416 2417 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) 2418 { 2419 } 2420 2421 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */ 2422 2423 /* 2424 * Invoke any RCU callbacks that have made it to the end of their grace 2425 * period. Thottle as specified by rdp->blimit. 2426 */ 2427 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) 2428 { 2429 unsigned long flags; 2430 struct rcu_head *next, *list, **tail; 2431 long bl, count, count_lazy; 2432 int i; 2433 2434 /* If no callbacks are ready, just return. */ 2435 if (!cpu_has_callbacks_ready_to_invoke(rdp)) { 2436 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0); 2437 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist), 2438 need_resched(), is_idle_task(current), 2439 rcu_is_callbacks_kthread()); 2440 return; 2441 } 2442 2443 /* 2444 * Extract the list of ready callbacks, disabling to prevent 2445 * races with call_rcu() from interrupt handlers. 2446 */ 2447 local_irq_save(flags); 2448 WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); 2449 bl = rdp->blimit; 2450 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl); 2451 list = rdp->nxtlist; 2452 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL]; 2453 *rdp->nxttail[RCU_DONE_TAIL] = NULL; 2454 tail = rdp->nxttail[RCU_DONE_TAIL]; 2455 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--) 2456 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL]) 2457 rdp->nxttail[i] = &rdp->nxtlist; 2458 local_irq_restore(flags); 2459 2460 /* Invoke callbacks. */ 2461 count = count_lazy = 0; 2462 while (list) { 2463 next = list->next; 2464 prefetch(next); 2465 debug_rcu_head_unqueue(list); 2466 if (__rcu_reclaim(rsp->name, list)) 2467 count_lazy++; 2468 list = next; 2469 /* Stop only if limit reached and CPU has something to do. */ 2470 if (++count >= bl && 2471 (need_resched() || 2472 (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) 2473 break; 2474 } 2475 2476 local_irq_save(flags); 2477 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(), 2478 is_idle_task(current), 2479 rcu_is_callbacks_kthread()); 2480 2481 /* Update count, and requeue any remaining callbacks. */ 2482 if (list != NULL) { 2483 *tail = rdp->nxtlist; 2484 rdp->nxtlist = list; 2485 for (i = 0; i < RCU_NEXT_SIZE; i++) 2486 if (&rdp->nxtlist == rdp->nxttail[i]) 2487 rdp->nxttail[i] = tail; 2488 else 2489 break; 2490 } 2491 smp_mb(); /* List handling before counting for rcu_barrier(). */ 2492 rdp->qlen_lazy -= count_lazy; 2493 ACCESS_ONCE(rdp->qlen) = rdp->qlen - count; 2494 rdp->n_cbs_invoked += count; 2495 2496 /* Reinstate batch limit if we have worked down the excess. */ 2497 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark) 2498 rdp->blimit = blimit; 2499 2500 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ 2501 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) { 2502 rdp->qlen_last_fqs_check = 0; 2503 rdp->n_force_qs_snap = rsp->n_force_qs; 2504 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark) 2505 rdp->qlen_last_fqs_check = rdp->qlen; 2506 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0)); 2507 2508 local_irq_restore(flags); 2509 2510 /* Re-invoke RCU core processing if there are callbacks remaining. */ 2511 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2512 invoke_rcu_core(); 2513 } 2514 2515 /* 2516 * Check to see if this CPU is in a non-context-switch quiescent state 2517 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). 2518 * Also schedule RCU core processing. 2519 * 2520 * This function must be called from hardirq context. It is normally 2521 * invoked from the scheduling-clock interrupt. If rcu_pending returns 2522 * false, there is no point in invoking rcu_check_callbacks(). 2523 */ 2524 void rcu_check_callbacks(int user) 2525 { 2526 trace_rcu_utilization(TPS("Start scheduler-tick")); 2527 increment_cpu_stall_ticks(); 2528 if (user || rcu_is_cpu_rrupt_from_idle()) { 2529 2530 /* 2531 * Get here if this CPU took its interrupt from user 2532 * mode or from the idle loop, and if this is not a 2533 * nested interrupt. In this case, the CPU is in 2534 * a quiescent state, so note it. 2535 * 2536 * No memory barrier is required here because both 2537 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local 2538 * variables that other CPUs neither access nor modify, 2539 * at least not while the corresponding CPU is online. 2540 */ 2541 2542 rcu_sched_qs(); 2543 rcu_bh_qs(); 2544 2545 } else if (!in_softirq()) { 2546 2547 /* 2548 * Get here if this CPU did not take its interrupt from 2549 * softirq, in other words, if it is not interrupting 2550 * a rcu_bh read-side critical section. This is an _bh 2551 * critical section, so note it. 2552 */ 2553 2554 rcu_bh_qs(); 2555 } 2556 rcu_preempt_check_callbacks(); 2557 if (rcu_pending()) 2558 invoke_rcu_core(); 2559 if (user) 2560 rcu_note_voluntary_context_switch(current); 2561 trace_rcu_utilization(TPS("End scheduler-tick")); 2562 } 2563 2564 /* 2565 * Scan the leaf rcu_node structures, processing dyntick state for any that 2566 * have not yet encountered a quiescent state, using the function specified. 2567 * Also initiate boosting for any threads blocked on the root rcu_node. 2568 * 2569 * The caller must have suppressed start of new grace periods. 2570 */ 2571 static void force_qs_rnp(struct rcu_state *rsp, 2572 int (*f)(struct rcu_data *rsp, bool *isidle, 2573 unsigned long *maxj), 2574 bool *isidle, unsigned long *maxj) 2575 { 2576 unsigned long bit; 2577 int cpu; 2578 unsigned long flags; 2579 unsigned long mask; 2580 struct rcu_node *rnp; 2581 2582 rcu_for_each_leaf_node(rsp, rnp) { 2583 cond_resched_rcu_qs(); 2584 mask = 0; 2585 raw_spin_lock_irqsave(&rnp->lock, flags); 2586 smp_mb__after_unlock_lock(); 2587 if (!rcu_gp_in_progress(rsp)) { 2588 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2589 return; 2590 } 2591 if (rnp->qsmask == 0) { 2592 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */ 2593 continue; 2594 } 2595 cpu = rnp->grplo; 2596 bit = 1; 2597 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) { 2598 if ((rnp->qsmask & bit) != 0) { 2599 if ((rnp->qsmaskinit & bit) != 0) 2600 *isidle = false; 2601 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj)) 2602 mask |= bit; 2603 } 2604 } 2605 if (mask != 0) { 2606 2607 /* rcu_report_qs_rnp() releases rnp->lock. */ 2608 rcu_report_qs_rnp(mask, rsp, rnp, flags); 2609 continue; 2610 } 2611 raw_spin_unlock_irqrestore(&rnp->lock, flags); 2612 } 2613 } 2614 2615 /* 2616 * Force quiescent states on reluctant CPUs, and also detect which 2617 * CPUs are in dyntick-idle mode. 2618 */ 2619 static void force_quiescent_state(struct rcu_state *rsp) 2620 { 2621 unsigned long flags; 2622 bool ret; 2623 struct rcu_node *rnp; 2624 struct rcu_node *rnp_old = NULL; 2625 2626 /* Funnel through hierarchy to reduce memory contention. */ 2627 rnp = __this_cpu_read(rsp->rda->mynode); 2628 for (; rnp != NULL; rnp = rnp->parent) { 2629 ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || 2630 !raw_spin_trylock(&rnp->fqslock); 2631 if (rnp_old != NULL) 2632 raw_spin_unlock(&rnp_old->fqslock); 2633 if (ret) { 2634 rsp->n_force_qs_lh++; 2635 return; 2636 } 2637 rnp_old = rnp; 2638 } 2639 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ 2640 2641 /* Reached the root of the rcu_node tree, acquire lock. */ 2642 raw_spin_lock_irqsave(&rnp_old->lock, flags); 2643 smp_mb__after_unlock_lock(); 2644 raw_spin_unlock(&rnp_old->fqslock); 2645 if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { 2646 rsp->n_force_qs_lh++; 2647 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2648 return; /* Someone beat us to it. */ 2649 } 2650 ACCESS_ONCE(rsp->gp_flags) = 2651 ACCESS_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS; 2652 raw_spin_unlock_irqrestore(&rnp_old->lock, flags); 2653 rcu_gp_kthread_wake(rsp); 2654 } 2655 2656 /* 2657 * This does the RCU core processing work for the specified rcu_state 2658 * and rcu_data structures. This may be called only from the CPU to 2659 * whom the rdp belongs. 2660 */ 2661 static void 2662 __rcu_process_callbacks(struct rcu_state *rsp) 2663 { 2664 unsigned long flags; 2665 bool needwake; 2666 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 2667 2668 WARN_ON_ONCE(rdp->beenonline == 0); 2669 2670 /* Update RCU state based on any recent quiescent states. */ 2671 rcu_check_quiescent_state(rsp, rdp); 2672 2673 /* Does this CPU require a not-yet-started grace period? */ 2674 local_irq_save(flags); 2675 if (cpu_needs_another_gp(rsp, rdp)) { 2676 raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */ 2677 needwake = rcu_start_gp(rsp); 2678 raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags); 2679 if (needwake) 2680 rcu_gp_kthread_wake(rsp); 2681 } else { 2682 local_irq_restore(flags); 2683 } 2684 2685 /* If there are callbacks ready, invoke them. */ 2686 if (cpu_has_callbacks_ready_to_invoke(rdp)) 2687 invoke_rcu_callbacks(rsp, rdp); 2688 2689 /* Do any needed deferred wakeups of rcuo kthreads. */ 2690 do_nocb_deferred_wakeup(rdp); 2691 } 2692 2693 /* 2694 * Do RCU core processing for the current CPU. 2695 */ 2696 static void rcu_process_callbacks(struct softirq_action *unused) 2697 { 2698 struct rcu_state *rsp; 2699 2700 if (cpu_is_offline(smp_processor_id())) 2701 return; 2702 trace_rcu_utilization(TPS("Start RCU core")); 2703 for_each_rcu_flavor(rsp) 2704 __rcu_process_callbacks(rsp); 2705 trace_rcu_utilization(TPS("End RCU core")); 2706 } 2707 2708 /* 2709 * Schedule RCU callback invocation. If the specified type of RCU 2710 * does not support RCU priority boosting, just do a direct call, 2711 * otherwise wake up the per-CPU kernel kthread. Note that because we 2712 * are running on the current CPU with softirqs disabled, the 2713 * rcu_cpu_kthread_task cannot disappear out from under us. 2714 */ 2715 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) 2716 { 2717 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active))) 2718 return; 2719 if (likely(!rsp->boost)) { 2720 rcu_do_batch(rsp, rdp); 2721 return; 2722 } 2723 invoke_rcu_callbacks_kthread(); 2724 } 2725 2726 static void invoke_rcu_core(void) 2727 { 2728 if (cpu_online(smp_processor_id())) 2729 raise_softirq(RCU_SOFTIRQ); 2730 } 2731 2732 /* 2733 * Handle any core-RCU processing required by a call_rcu() invocation. 2734 */ 2735 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, 2736 struct rcu_head *head, unsigned long flags) 2737 { 2738 bool needwake; 2739 2740 /* 2741 * If called from an extended quiescent state, invoke the RCU 2742 * core in order to force a re-evaluation of RCU's idleness. 2743 */ 2744 if (!rcu_is_watching() && cpu_online(smp_processor_id())) 2745 invoke_rcu_core(); 2746 2747 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ 2748 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) 2749 return; 2750 2751 /* 2752 * Force the grace period if too many callbacks or too long waiting. 2753 * Enforce hysteresis, and don't invoke force_quiescent_state() 2754 * if some other CPU has recently done so. Also, don't bother 2755 * invoking force_quiescent_state() if the newly enqueued callback 2756 * is the only one waiting for a grace period to complete. 2757 */ 2758 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) { 2759 2760 /* Are we ignoring a completed grace period? */ 2761 note_gp_changes(rsp, rdp); 2762 2763 /* Start a new grace period if one not already started. */ 2764 if (!rcu_gp_in_progress(rsp)) { 2765 struct rcu_node *rnp_root = rcu_get_root(rsp); 2766 2767 raw_spin_lock(&rnp_root->lock); 2768 smp_mb__after_unlock_lock(); 2769 needwake = rcu_start_gp(rsp); 2770 raw_spin_unlock(&rnp_root->lock); 2771 if (needwake) 2772 rcu_gp_kthread_wake(rsp); 2773 } else { 2774 /* Give the grace period a kick. */ 2775 rdp->blimit = LONG_MAX; 2776 if (rsp->n_force_qs == rdp->n_force_qs_snap && 2777 *rdp->nxttail[RCU_DONE_TAIL] != head) 2778 force_quiescent_state(rsp); 2779 rdp->n_force_qs_snap = rsp->n_force_qs; 2780 rdp->qlen_last_fqs_check = rdp->qlen; 2781 } 2782 } 2783 } 2784 2785 /* 2786 * RCU callback function to leak a callback. 2787 */ 2788 static void rcu_leak_callback(struct rcu_head *rhp) 2789 { 2790 } 2791 2792 /* 2793 * Helper function for call_rcu() and friends. The cpu argument will 2794 * normally be -1, indicating "currently running CPU". It may specify 2795 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() 2796 * is expected to specify a CPU. 2797 */ 2798 static void 2799 __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu), 2800 struct rcu_state *rsp, int cpu, bool lazy) 2801 { 2802 unsigned long flags; 2803 struct rcu_data *rdp; 2804 2805 WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */ 2806 if (debug_rcu_head_queue(head)) { 2807 /* Probable double call_rcu(), so leak the callback. */ 2808 ACCESS_ONCE(head->func) = rcu_leak_callback; 2809 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n"); 2810 return; 2811 } 2812 head->func = func; 2813 head->next = NULL; 2814 2815 /* 2816 * Opportunistically note grace-period endings and beginnings. 2817 * Note that we might see a beginning right after we see an 2818 * end, but never vice versa, since this CPU has to pass through 2819 * a quiescent state betweentimes. 2820 */ 2821 local_irq_save(flags); 2822 rdp = this_cpu_ptr(rsp->rda); 2823 2824 /* Add the callback to our list. */ 2825 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) { 2826 int offline; 2827 2828 if (cpu != -1) 2829 rdp = per_cpu_ptr(rsp->rda, cpu); 2830 offline = !__call_rcu_nocb(rdp, head, lazy, flags); 2831 WARN_ON_ONCE(offline); 2832 /* _call_rcu() is illegal on offline CPU; leak the callback. */ 2833 local_irq_restore(flags); 2834 return; 2835 } 2836 ACCESS_ONCE(rdp->qlen) = rdp->qlen + 1; 2837 if (lazy) 2838 rdp->qlen_lazy++; 2839 else 2840 rcu_idle_count_callbacks_posted(); 2841 smp_mb(); /* Count before adding callback for rcu_barrier(). */ 2842 *rdp->nxttail[RCU_NEXT_TAIL] = head; 2843 rdp->nxttail[RCU_NEXT_TAIL] = &head->next; 2844 2845 if (__is_kfree_rcu_offset((unsigned long)func)) 2846 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, 2847 rdp->qlen_lazy, rdp->qlen); 2848 else 2849 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen); 2850 2851 /* Go handle any RCU core processing required. */ 2852 __call_rcu_core(rsp, rdp, head, flags); 2853 local_irq_restore(flags); 2854 } 2855 2856 /* 2857 * Queue an RCU-sched callback for invocation after a grace period. 2858 */ 2859 void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2860 { 2861 __call_rcu(head, func, &rcu_sched_state, -1, 0); 2862 } 2863 EXPORT_SYMBOL_GPL(call_rcu_sched); 2864 2865 /* 2866 * Queue an RCU callback for invocation after a quicker grace period. 2867 */ 2868 void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) 2869 { 2870 __call_rcu(head, func, &rcu_bh_state, -1, 0); 2871 } 2872 EXPORT_SYMBOL_GPL(call_rcu_bh); 2873 2874 /* 2875 * Queue an RCU callback for lazy invocation after a grace period. 2876 * This will likely be later named something like "call_rcu_lazy()", 2877 * but this change will require some way of tagging the lazy RCU 2878 * callbacks in the list of pending callbacks. Until then, this 2879 * function may only be called from __kfree_rcu(). 2880 */ 2881 void kfree_call_rcu(struct rcu_head *head, 2882 void (*func)(struct rcu_head *rcu)) 2883 { 2884 __call_rcu(head, func, rcu_state_p, -1, 1); 2885 } 2886 EXPORT_SYMBOL_GPL(kfree_call_rcu); 2887 2888 /* 2889 * Because a context switch is a grace period for RCU-sched and RCU-bh, 2890 * any blocking grace-period wait automatically implies a grace period 2891 * if there is only one CPU online at any point time during execution 2892 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to 2893 * occasionally incorrectly indicate that there are multiple CPUs online 2894 * when there was in fact only one the whole time, as this just adds 2895 * some overhead: RCU still operates correctly. 2896 */ 2897 static inline int rcu_blocking_is_gp(void) 2898 { 2899 int ret; 2900 2901 might_sleep(); /* Check for RCU read-side critical section. */ 2902 preempt_disable(); 2903 ret = num_online_cpus() <= 1; 2904 preempt_enable(); 2905 return ret; 2906 } 2907 2908 /** 2909 * synchronize_sched - wait until an rcu-sched grace period has elapsed. 2910 * 2911 * Control will return to the caller some time after a full rcu-sched 2912 * grace period has elapsed, in other words after all currently executing 2913 * rcu-sched read-side critical sections have completed. These read-side 2914 * critical sections are delimited by rcu_read_lock_sched() and 2915 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), 2916 * local_irq_disable(), and so on may be used in place of 2917 * rcu_read_lock_sched(). 2918 * 2919 * This means that all preempt_disable code sequences, including NMI and 2920 * non-threaded hardware-interrupt handlers, in progress on entry will 2921 * have completed before this primitive returns. However, this does not 2922 * guarantee that softirq handlers will have completed, since in some 2923 * kernels, these handlers can run in process context, and can block. 2924 * 2925 * Note that this guarantee implies further memory-ordering guarantees. 2926 * On systems with more than one CPU, when synchronize_sched() returns, 2927 * each CPU is guaranteed to have executed a full memory barrier since the 2928 * end of its last RCU-sched read-side critical section whose beginning 2929 * preceded the call to synchronize_sched(). In addition, each CPU having 2930 * an RCU read-side critical section that extends beyond the return from 2931 * synchronize_sched() is guaranteed to have executed a full memory barrier 2932 * after the beginning of synchronize_sched() and before the beginning of 2933 * that RCU read-side critical section. Note that these guarantees include 2934 * CPUs that are offline, idle, or executing in user mode, as well as CPUs 2935 * that are executing in the kernel. 2936 * 2937 * Furthermore, if CPU A invoked synchronize_sched(), which returned 2938 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 2939 * to have executed a full memory barrier during the execution of 2940 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but 2941 * again only if the system has more than one CPU). 2942 * 2943 * This primitive provides the guarantees made by the (now removed) 2944 * synchronize_kernel() API. In contrast, synchronize_rcu() only 2945 * guarantees that rcu_read_lock() sections will have completed. 2946 * In "classic RCU", these two guarantees happen to be one and 2947 * the same, but can differ in realtime RCU implementations. 2948 */ 2949 void synchronize_sched(void) 2950 { 2951 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2952 !lock_is_held(&rcu_lock_map) && 2953 !lock_is_held(&rcu_sched_lock_map), 2954 "Illegal synchronize_sched() in RCU-sched read-side critical section"); 2955 if (rcu_blocking_is_gp()) 2956 return; 2957 if (rcu_expedited) 2958 synchronize_sched_expedited(); 2959 else 2960 wait_rcu_gp(call_rcu_sched); 2961 } 2962 EXPORT_SYMBOL_GPL(synchronize_sched); 2963 2964 /** 2965 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. 2966 * 2967 * Control will return to the caller some time after a full rcu_bh grace 2968 * period has elapsed, in other words after all currently executing rcu_bh 2969 * read-side critical sections have completed. RCU read-side critical 2970 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), 2971 * and may be nested. 2972 * 2973 * See the description of synchronize_sched() for more detailed information 2974 * on memory ordering guarantees. 2975 */ 2976 void synchronize_rcu_bh(void) 2977 { 2978 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) && 2979 !lock_is_held(&rcu_lock_map) && 2980 !lock_is_held(&rcu_sched_lock_map), 2981 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); 2982 if (rcu_blocking_is_gp()) 2983 return; 2984 if (rcu_expedited) 2985 synchronize_rcu_bh_expedited(); 2986 else 2987 wait_rcu_gp(call_rcu_bh); 2988 } 2989 EXPORT_SYMBOL_GPL(synchronize_rcu_bh); 2990 2991 /** 2992 * get_state_synchronize_rcu - Snapshot current RCU state 2993 * 2994 * Returns a cookie that is used by a later call to cond_synchronize_rcu() 2995 * to determine whether or not a full grace period has elapsed in the 2996 * meantime. 2997 */ 2998 unsigned long get_state_synchronize_rcu(void) 2999 { 3000 /* 3001 * Any prior manipulation of RCU-protected data must happen 3002 * before the load from ->gpnum. 3003 */ 3004 smp_mb(); /* ^^^ */ 3005 3006 /* 3007 * Make sure this load happens before the purportedly 3008 * time-consuming work between get_state_synchronize_rcu() 3009 * and cond_synchronize_rcu(). 3010 */ 3011 return smp_load_acquire(&rcu_state_p->gpnum); 3012 } 3013 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); 3014 3015 /** 3016 * cond_synchronize_rcu - Conditionally wait for an RCU grace period 3017 * 3018 * @oldstate: return value from earlier call to get_state_synchronize_rcu() 3019 * 3020 * If a full RCU grace period has elapsed since the earlier call to 3021 * get_state_synchronize_rcu(), just return. Otherwise, invoke 3022 * synchronize_rcu() to wait for a full grace period. 3023 * 3024 * Yes, this function does not take counter wrap into account. But 3025 * counter wrap is harmless. If the counter wraps, we have waited for 3026 * more than 2 billion grace periods (and way more on a 64-bit system!), 3027 * so waiting for one additional grace period should be just fine. 3028 */ 3029 void cond_synchronize_rcu(unsigned long oldstate) 3030 { 3031 unsigned long newstate; 3032 3033 /* 3034 * Ensure that this load happens before any RCU-destructive 3035 * actions the caller might carry out after we return. 3036 */ 3037 newstate = smp_load_acquire(&rcu_state_p->completed); 3038 if (ULONG_CMP_GE(oldstate, newstate)) 3039 synchronize_rcu(); 3040 } 3041 EXPORT_SYMBOL_GPL(cond_synchronize_rcu); 3042 3043 static int synchronize_sched_expedited_cpu_stop(void *data) 3044 { 3045 /* 3046 * There must be a full memory barrier on each affected CPU 3047 * between the time that try_stop_cpus() is called and the 3048 * time that it returns. 3049 * 3050 * In the current initial implementation of cpu_stop, the 3051 * above condition is already met when the control reaches 3052 * this point and the following smp_mb() is not strictly 3053 * necessary. Do smp_mb() anyway for documentation and 3054 * robustness against future implementation changes. 3055 */ 3056 smp_mb(); /* See above comment block. */ 3057 return 0; 3058 } 3059 3060 /** 3061 * synchronize_sched_expedited - Brute-force RCU-sched grace period 3062 * 3063 * Wait for an RCU-sched grace period to elapse, but use a "big hammer" 3064 * approach to force the grace period to end quickly. This consumes 3065 * significant time on all CPUs and is unfriendly to real-time workloads, 3066 * so is thus not recommended for any sort of common-case code. In fact, 3067 * if you are using synchronize_sched_expedited() in a loop, please 3068 * restructure your code to batch your updates, and then use a single 3069 * synchronize_sched() instead. 3070 * 3071 * This implementation can be thought of as an application of ticket 3072 * locking to RCU, with sync_sched_expedited_started and 3073 * sync_sched_expedited_done taking on the roles of the halves 3074 * of the ticket-lock word. Each task atomically increments 3075 * sync_sched_expedited_started upon entry, snapshotting the old value, 3076 * then attempts to stop all the CPUs. If this succeeds, then each 3077 * CPU will have executed a context switch, resulting in an RCU-sched 3078 * grace period. We are then done, so we use atomic_cmpxchg() to 3079 * update sync_sched_expedited_done to match our snapshot -- but 3080 * only if someone else has not already advanced past our snapshot. 3081 * 3082 * On the other hand, if try_stop_cpus() fails, we check the value 3083 * of sync_sched_expedited_done. If it has advanced past our 3084 * initial snapshot, then someone else must have forced a grace period 3085 * some time after we took our snapshot. In this case, our work is 3086 * done for us, and we can simply return. Otherwise, we try again, 3087 * but keep our initial snapshot for purposes of checking for someone 3088 * doing our work for us. 3089 * 3090 * If we fail too many times in a row, we fall back to synchronize_sched(). 3091 */ 3092 void synchronize_sched_expedited(void) 3093 { 3094 cpumask_var_t cm; 3095 bool cma = false; 3096 int cpu; 3097 long firstsnap, s, snap; 3098 int trycount = 0; 3099 struct rcu_state *rsp = &rcu_sched_state; 3100 3101 /* 3102 * If we are in danger of counter wrap, just do synchronize_sched(). 3103 * By allowing sync_sched_expedited_started to advance no more than 3104 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring 3105 * that more than 3.5 billion CPUs would be required to force a 3106 * counter wrap on a 32-bit system. Quite a few more CPUs would of 3107 * course be required on a 64-bit system. 3108 */ 3109 if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start), 3110 (ulong)atomic_long_read(&rsp->expedited_done) + 3111 ULONG_MAX / 8)) { 3112 synchronize_sched(); 3113 atomic_long_inc(&rsp->expedited_wrap); 3114 return; 3115 } 3116 3117 /* 3118 * Take a ticket. Note that atomic_inc_return() implies a 3119 * full memory barrier. 3120 */ 3121 snap = atomic_long_inc_return(&rsp->expedited_start); 3122 firstsnap = snap; 3123 if (!try_get_online_cpus()) { 3124 /* CPU hotplug operation in flight, fall back to normal GP. */ 3125 wait_rcu_gp(call_rcu_sched); 3126 atomic_long_inc(&rsp->expedited_normal); 3127 return; 3128 } 3129 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id())); 3130 3131 /* Offline CPUs, idle CPUs, and any CPU we run on are quiescent. */ 3132 cma = zalloc_cpumask_var(&cm, GFP_KERNEL); 3133 if (cma) { 3134 cpumask_copy(cm, cpu_online_mask); 3135 cpumask_clear_cpu(raw_smp_processor_id(), cm); 3136 for_each_cpu(cpu, cm) { 3137 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); 3138 3139 if (!(atomic_add_return(0, &rdtp->dynticks) & 0x1)) 3140 cpumask_clear_cpu(cpu, cm); 3141 } 3142 if (cpumask_weight(cm) == 0) 3143 goto all_cpus_idle; 3144 } 3145 3146 /* 3147 * Each pass through the following loop attempts to force a 3148 * context switch on each CPU. 3149 */ 3150 while (try_stop_cpus(cma ? cm : cpu_online_mask, 3151 synchronize_sched_expedited_cpu_stop, 3152 NULL) == -EAGAIN) { 3153 put_online_cpus(); 3154 atomic_long_inc(&rsp->expedited_tryfail); 3155 3156 /* Check to see if someone else did our work for us. */ 3157 s = atomic_long_read(&rsp->expedited_done); 3158 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3159 /* ensure test happens before caller kfree */ 3160 smp_mb__before_atomic(); /* ^^^ */ 3161 atomic_long_inc(&rsp->expedited_workdone1); 3162 free_cpumask_var(cm); 3163 return; 3164 } 3165 3166 /* No joy, try again later. Or just synchronize_sched(). */ 3167 if (trycount++ < 10) { 3168 udelay(trycount * num_online_cpus()); 3169 } else { 3170 wait_rcu_gp(call_rcu_sched); 3171 atomic_long_inc(&rsp->expedited_normal); 3172 free_cpumask_var(cm); 3173 return; 3174 } 3175 3176 /* Recheck to see if someone else did our work for us. */ 3177 s = atomic_long_read(&rsp->expedited_done); 3178 if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) { 3179 /* ensure test happens before caller kfree */ 3180 smp_mb__before_atomic(); /* ^^^ */ 3181 atomic_long_inc(&rsp->expedited_workdone2); 3182 free_cpumask_var(cm); 3183 return; 3184 } 3185 3186 /* 3187 * Refetching sync_sched_expedited_started allows later 3188 * callers to piggyback on our grace period. We retry 3189 * after they started, so our grace period works for them, 3190 * and they started after our first try, so their grace 3191 * period works for us. 3192 */ 3193 if (!try_get_online_cpus()) { 3194 /* CPU hotplug operation in flight, use normal GP. */ 3195 wait_rcu_gp(call_rcu_sched); 3196 atomic_long_inc(&rsp->expedited_normal); 3197 free_cpumask_var(cm); 3198 return; 3199 } 3200 snap = atomic_long_read(&rsp->expedited_start); 3201 smp_mb(); /* ensure read is before try_stop_cpus(). */ 3202 } 3203 atomic_long_inc(&rsp->expedited_stoppedcpus); 3204 3205 all_cpus_idle: 3206 free_cpumask_var(cm); 3207 3208 /* 3209 * Everyone up to our most recent fetch is covered by our grace 3210 * period. Update the counter, but only if our work is still 3211 * relevant -- which it won't be if someone who started later 3212 * than we did already did their update. 3213 */ 3214 do { 3215 atomic_long_inc(&rsp->expedited_done_tries); 3216 s = atomic_long_read(&rsp->expedited_done); 3217 if (ULONG_CMP_GE((ulong)s, (ulong)snap)) { 3218 /* ensure test happens before caller kfree */ 3219 smp_mb__before_atomic(); /* ^^^ */ 3220 atomic_long_inc(&rsp->expedited_done_lost); 3221 break; 3222 } 3223 } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s); 3224 atomic_long_inc(&rsp->expedited_done_exit); 3225 3226 put_online_cpus(); 3227 } 3228 EXPORT_SYMBOL_GPL(synchronize_sched_expedited); 3229 3230 /* 3231 * Check to see if there is any immediate RCU-related work to be done 3232 * by the current CPU, for the specified type of RCU, returning 1 if so. 3233 * The checks are in order of increasing expense: checks that can be 3234 * carried out against CPU-local state are performed first. However, 3235 * we must check for CPU stalls first, else we might not get a chance. 3236 */ 3237 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) 3238 { 3239 struct rcu_node *rnp = rdp->mynode; 3240 3241 rdp->n_rcu_pending++; 3242 3243 /* Check for CPU stalls, if enabled. */ 3244 check_cpu_stall(rsp, rdp); 3245 3246 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ 3247 if (rcu_nohz_full_cpu(rsp)) 3248 return 0; 3249 3250 /* Is the RCU core waiting for a quiescent state from this CPU? */ 3251 if (rcu_scheduler_fully_active && 3252 rdp->qs_pending && !rdp->passed_quiesce && 3253 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) { 3254 rdp->n_rp_qs_pending++; 3255 } else if (rdp->qs_pending && 3256 (rdp->passed_quiesce || 3257 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) { 3258 rdp->n_rp_report_qs++; 3259 return 1; 3260 } 3261 3262 /* Does this CPU have callbacks ready to invoke? */ 3263 if (cpu_has_callbacks_ready_to_invoke(rdp)) { 3264 rdp->n_rp_cb_ready++; 3265 return 1; 3266 } 3267 3268 /* Has RCU gone idle with this CPU needing another grace period? */ 3269 if (cpu_needs_another_gp(rsp, rdp)) { 3270 rdp->n_rp_cpu_needs_gp++; 3271 return 1; 3272 } 3273 3274 /* Has another RCU grace period completed? */ 3275 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */ 3276 rdp->n_rp_gp_completed++; 3277 return 1; 3278 } 3279 3280 /* Has a new RCU grace period started? */ 3281 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum || 3282 unlikely(ACCESS_ONCE(rdp->gpwrap))) { /* outside lock */ 3283 rdp->n_rp_gp_started++; 3284 return 1; 3285 } 3286 3287 /* Does this CPU need a deferred NOCB wakeup? */ 3288 if (rcu_nocb_need_deferred_wakeup(rdp)) { 3289 rdp->n_rp_nocb_defer_wakeup++; 3290 return 1; 3291 } 3292 3293 /* nothing to do */ 3294 rdp->n_rp_need_nothing++; 3295 return 0; 3296 } 3297 3298 /* 3299 * Check to see if there is any immediate RCU-related work to be done 3300 * by the current CPU, returning 1 if so. This function is part of the 3301 * RCU implementation; it is -not- an exported member of the RCU API. 3302 */ 3303 static int rcu_pending(void) 3304 { 3305 struct rcu_state *rsp; 3306 3307 for_each_rcu_flavor(rsp) 3308 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) 3309 return 1; 3310 return 0; 3311 } 3312 3313 /* 3314 * Return true if the specified CPU has any callback. If all_lazy is 3315 * non-NULL, store an indication of whether all callbacks are lazy. 3316 * (If there are no callbacks, all of them are deemed to be lazy.) 3317 */ 3318 static int __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) 3319 { 3320 bool al = true; 3321 bool hc = false; 3322 struct rcu_data *rdp; 3323 struct rcu_state *rsp; 3324 3325 for_each_rcu_flavor(rsp) { 3326 rdp = this_cpu_ptr(rsp->rda); 3327 if (!rdp->nxtlist) 3328 continue; 3329 hc = true; 3330 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) { 3331 al = false; 3332 break; 3333 } 3334 } 3335 if (all_lazy) 3336 *all_lazy = al; 3337 return hc; 3338 } 3339 3340 /* 3341 * Helper function for _rcu_barrier() tracing. If tracing is disabled, 3342 * the compiler is expected to optimize this away. 3343 */ 3344 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, 3345 int cpu, unsigned long done) 3346 { 3347 trace_rcu_barrier(rsp->name, s, cpu, 3348 atomic_read(&rsp->barrier_cpu_count), done); 3349 } 3350 3351 /* 3352 * RCU callback function for _rcu_barrier(). If we are last, wake 3353 * up the task executing _rcu_barrier(). 3354 */ 3355 static void rcu_barrier_callback(struct rcu_head *rhp) 3356 { 3357 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); 3358 struct rcu_state *rsp = rdp->rsp; 3359 3360 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { 3361 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done); 3362 complete(&rsp->barrier_completion); 3363 } else { 3364 _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done); 3365 } 3366 } 3367 3368 /* 3369 * Called with preemption disabled, and from cross-cpu IRQ context. 3370 */ 3371 static void rcu_barrier_func(void *type) 3372 { 3373 struct rcu_state *rsp = type; 3374 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); 3375 3376 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done); 3377 atomic_inc(&rsp->barrier_cpu_count); 3378 rsp->call(&rdp->barrier_head, rcu_barrier_callback); 3379 } 3380 3381 /* 3382 * Orchestrate the specified type of RCU barrier, waiting for all 3383 * RCU callbacks of the specified type to complete. 3384 */ 3385 static void _rcu_barrier(struct rcu_state *rsp) 3386 { 3387 int cpu; 3388 struct rcu_data *rdp; 3389 unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done); 3390 unsigned long snap_done; 3391 3392 _rcu_barrier_trace(rsp, "Begin", -1, snap); 3393 3394 /* Take mutex to serialize concurrent rcu_barrier() requests. */ 3395 mutex_lock(&rsp->barrier_mutex); 3396 3397 /* 3398 * Ensure that all prior references, including to ->n_barrier_done, 3399 * are ordered before the _rcu_barrier() machinery. 3400 */ 3401 smp_mb(); /* See above block comment. */ 3402 3403 /* 3404 * Recheck ->n_barrier_done to see if others did our work for us. 3405 * This means checking ->n_barrier_done for an even-to-odd-to-even 3406 * transition. The "if" expression below therefore rounds the old 3407 * value up to the next even number and adds two before comparing. 3408 */ 3409 snap_done = rsp->n_barrier_done; 3410 _rcu_barrier_trace(rsp, "Check", -1, snap_done); 3411 3412 /* 3413 * If the value in snap is odd, we needed to wait for the current 3414 * rcu_barrier() to complete, then wait for the next one, in other 3415 * words, we need the value of snap_done to be three larger than 3416 * the value of snap. On the other hand, if the value in snap is 3417 * even, we only had to wait for the next rcu_barrier() to complete, 3418 * in other words, we need the value of snap_done to be only two 3419 * greater than the value of snap. The "(snap + 3) & ~0x1" computes 3420 * this for us (thank you, Linus!). 3421 */ 3422 if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) { 3423 _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done); 3424 smp_mb(); /* caller's subsequent code after above check. */ 3425 mutex_unlock(&rsp->barrier_mutex); 3426 return; 3427 } 3428 3429 /* 3430 * Increment ->n_barrier_done to avoid duplicate work. Use 3431 * ACCESS_ONCE() to prevent the compiler from speculating 3432 * the increment to precede the early-exit check. 3433 */ 3434 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3435 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1); 3436 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done); 3437 smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */ 3438 3439 /* 3440 * Initialize the count to one rather than to zero in order to 3441 * avoid a too-soon return to zero in case of a short grace period 3442 * (or preemption of this task). Exclude CPU-hotplug operations 3443 * to ensure that no offline CPU has callbacks queued. 3444 */ 3445 init_completion(&rsp->barrier_completion); 3446 atomic_set(&rsp->barrier_cpu_count, 1); 3447 get_online_cpus(); 3448 3449 /* 3450 * Force each CPU with callbacks to register a new callback. 3451 * When that callback is invoked, we will know that all of the 3452 * corresponding CPU's preceding callbacks have been invoked. 3453 */ 3454 for_each_possible_cpu(cpu) { 3455 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) 3456 continue; 3457 rdp = per_cpu_ptr(rsp->rda, cpu); 3458 if (rcu_is_nocb_cpu(cpu)) { 3459 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { 3460 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu, 3461 rsp->n_barrier_done); 3462 } else { 3463 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu, 3464 rsp->n_barrier_done); 3465 smp_mb__before_atomic(); 3466 atomic_inc(&rsp->barrier_cpu_count); 3467 __call_rcu(&rdp->barrier_head, 3468 rcu_barrier_callback, rsp, cpu, 0); 3469 } 3470 } else if (ACCESS_ONCE(rdp->qlen)) { 3471 _rcu_barrier_trace(rsp, "OnlineQ", cpu, 3472 rsp->n_barrier_done); 3473 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); 3474 } else { 3475 _rcu_barrier_trace(rsp, "OnlineNQ", cpu, 3476 rsp->n_barrier_done); 3477 } 3478 } 3479 put_online_cpus(); 3480 3481 /* 3482 * Now that we have an rcu_barrier_callback() callback on each 3483 * CPU, and thus each counted, remove the initial count. 3484 */ 3485 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) 3486 complete(&rsp->barrier_completion); 3487 3488 /* Increment ->n_barrier_done to prevent duplicate work. */ 3489 smp_mb(); /* Keep increment after above mechanism. */ 3490 ACCESS_ONCE(rsp->n_barrier_done) = rsp->n_barrier_done + 1; 3491 WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0); 3492 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done); 3493 smp_mb(); /* Keep increment before caller's subsequent code. */ 3494 3495 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ 3496 wait_for_completion(&rsp->barrier_completion); 3497 3498 /* Other rcu_barrier() invocations can now safely proceed. */ 3499 mutex_unlock(&rsp->barrier_mutex); 3500 } 3501 3502 /** 3503 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. 3504 */ 3505 void rcu_barrier_bh(void) 3506 { 3507 _rcu_barrier(&rcu_bh_state); 3508 } 3509 EXPORT_SYMBOL_GPL(rcu_barrier_bh); 3510 3511 /** 3512 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. 3513 */ 3514 void rcu_barrier_sched(void) 3515 { 3516 _rcu_barrier(&rcu_sched_state); 3517 } 3518 EXPORT_SYMBOL_GPL(rcu_barrier_sched); 3519 3520 /* 3521 * Do boot-time initialization of a CPU's per-CPU RCU data. 3522 */ 3523 static void __init 3524 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) 3525 { 3526 unsigned long flags; 3527 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3528 struct rcu_node *rnp = rcu_get_root(rsp); 3529 3530 /* Set up local state, ensuring consistent view of global state. */ 3531 raw_spin_lock_irqsave(&rnp->lock, flags); 3532 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo); 3533 rdp->dynticks = &per_cpu(rcu_dynticks, cpu); 3534 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE); 3535 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1); 3536 rdp->cpu = cpu; 3537 rdp->rsp = rsp; 3538 rcu_boot_init_nocb_percpu_data(rdp); 3539 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3540 } 3541 3542 /* 3543 * Initialize a CPU's per-CPU RCU data. Note that only one online or 3544 * offline event can be happening at a given time. Note also that we 3545 * can accept some slop in the rsp->completed access due to the fact 3546 * that this CPU cannot possibly have any RCU callbacks in flight yet. 3547 */ 3548 static void 3549 rcu_init_percpu_data(int cpu, struct rcu_state *rsp) 3550 { 3551 unsigned long flags; 3552 unsigned long mask; 3553 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); 3554 struct rcu_node *rnp = rcu_get_root(rsp); 3555 3556 /* Exclude new grace periods. */ 3557 mutex_lock(&rsp->onoff_mutex); 3558 3559 /* Set up local state, ensuring consistent view of global state. */ 3560 raw_spin_lock_irqsave(&rnp->lock, flags); 3561 rdp->beenonline = 1; /* We have now been online. */ 3562 rdp->qlen_last_fqs_check = 0; 3563 rdp->n_force_qs_snap = rsp->n_force_qs; 3564 rdp->blimit = blimit; 3565 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */ 3566 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE; 3567 rcu_sysidle_init_percpu_data(rdp->dynticks); 3568 atomic_set(&rdp->dynticks->dynticks, 3569 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1); 3570 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */ 3571 3572 /* Add CPU to rcu_node bitmasks. */ 3573 rnp = rdp->mynode; 3574 mask = rdp->grpmask; 3575 do { 3576 /* Exclude any attempts to start a new GP on small systems. */ 3577 raw_spin_lock(&rnp->lock); /* irqs already disabled. */ 3578 rnp->qsmaskinit |= mask; 3579 mask = rnp->grpmask; 3580 if (rnp == rdp->mynode) { 3581 /* 3582 * If there is a grace period in progress, we will 3583 * set up to wait for it next time we run the 3584 * RCU core code. 3585 */ 3586 rdp->gpnum = rnp->completed; 3587 rdp->completed = rnp->completed; 3588 rdp->passed_quiesce = 0; 3589 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr); 3590 rdp->qs_pending = 0; 3591 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); 3592 } 3593 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */ 3594 rnp = rnp->parent; 3595 } while (rnp != NULL && !(rnp->qsmaskinit & mask)); 3596 local_irq_restore(flags); 3597 3598 mutex_unlock(&rsp->onoff_mutex); 3599 } 3600 3601 static void rcu_prepare_cpu(int cpu) 3602 { 3603 struct rcu_state *rsp; 3604 3605 for_each_rcu_flavor(rsp) 3606 rcu_init_percpu_data(cpu, rsp); 3607 } 3608 3609 /* 3610 * Handle CPU online/offline notification events. 3611 */ 3612 static int rcu_cpu_notify(struct notifier_block *self, 3613 unsigned long action, void *hcpu) 3614 { 3615 long cpu = (long)hcpu; 3616 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); 3617 struct rcu_node *rnp = rdp->mynode; 3618 struct rcu_state *rsp; 3619 3620 trace_rcu_utilization(TPS("Start CPU hotplug")); 3621 switch (action) { 3622 case CPU_UP_PREPARE: 3623 case CPU_UP_PREPARE_FROZEN: 3624 rcu_prepare_cpu(cpu); 3625 rcu_prepare_kthreads(cpu); 3626 rcu_spawn_all_nocb_kthreads(cpu); 3627 break; 3628 case CPU_ONLINE: 3629 case CPU_DOWN_FAILED: 3630 rcu_boost_kthread_setaffinity(rnp, -1); 3631 break; 3632 case CPU_DOWN_PREPARE: 3633 rcu_boost_kthread_setaffinity(rnp, cpu); 3634 break; 3635 case CPU_DYING: 3636 case CPU_DYING_FROZEN: 3637 for_each_rcu_flavor(rsp) 3638 rcu_cleanup_dying_cpu(rsp); 3639 break; 3640 case CPU_DEAD: 3641 case CPU_DEAD_FROZEN: 3642 case CPU_UP_CANCELED: 3643 case CPU_UP_CANCELED_FROZEN: 3644 for_each_rcu_flavor(rsp) { 3645 rcu_cleanup_dead_cpu(cpu, rsp); 3646 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); 3647 } 3648 break; 3649 default: 3650 break; 3651 } 3652 trace_rcu_utilization(TPS("End CPU hotplug")); 3653 return NOTIFY_OK; 3654 } 3655 3656 static int rcu_pm_notify(struct notifier_block *self, 3657 unsigned long action, void *hcpu) 3658 { 3659 switch (action) { 3660 case PM_HIBERNATION_PREPARE: 3661 case PM_SUSPEND_PREPARE: 3662 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ 3663 rcu_expedited = 1; 3664 break; 3665 case PM_POST_HIBERNATION: 3666 case PM_POST_SUSPEND: 3667 rcu_expedited = 0; 3668 break; 3669 default: 3670 break; 3671 } 3672 return NOTIFY_OK; 3673 } 3674 3675 /* 3676 * Spawn the kthreads that handle each RCU flavor's grace periods. 3677 */ 3678 static int __init rcu_spawn_gp_kthread(void) 3679 { 3680 unsigned long flags; 3681 int kthread_prio_in = kthread_prio; 3682 struct rcu_node *rnp; 3683 struct rcu_state *rsp; 3684 struct sched_param sp; 3685 struct task_struct *t; 3686 3687 /* Force priority into range. */ 3688 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) 3689 kthread_prio = 1; 3690 else if (kthread_prio < 0) 3691 kthread_prio = 0; 3692 else if (kthread_prio > 99) 3693 kthread_prio = 99; 3694 if (kthread_prio != kthread_prio_in) 3695 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", 3696 kthread_prio, kthread_prio_in); 3697 3698 rcu_scheduler_fully_active = 1; 3699 for_each_rcu_flavor(rsp) { 3700 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); 3701 BUG_ON(IS_ERR(t)); 3702 rnp = rcu_get_root(rsp); 3703 raw_spin_lock_irqsave(&rnp->lock, flags); 3704 rsp->gp_kthread = t; 3705 if (kthread_prio) { 3706 sp.sched_priority = kthread_prio; 3707 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); 3708 } 3709 wake_up_process(t); 3710 raw_spin_unlock_irqrestore(&rnp->lock, flags); 3711 } 3712 rcu_spawn_nocb_kthreads(); 3713 rcu_spawn_boost_kthreads(); 3714 return 0; 3715 } 3716 early_initcall(rcu_spawn_gp_kthread); 3717 3718 /* 3719 * This function is invoked towards the end of the scheduler's initialization 3720 * process. Before this is called, the idle task might contain 3721 * RCU read-side critical sections (during which time, this idle 3722 * task is booting the system). After this function is called, the 3723 * idle tasks are prohibited from containing RCU read-side critical 3724 * sections. This function also enables RCU lockdep checking. 3725 */ 3726 void rcu_scheduler_starting(void) 3727 { 3728 WARN_ON(num_online_cpus() != 1); 3729 WARN_ON(nr_context_switches() > 0); 3730 rcu_scheduler_active = 1; 3731 } 3732 3733 /* 3734 * Compute the per-level fanout, either using the exact fanout specified 3735 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT. 3736 */ 3737 #ifdef CONFIG_RCU_FANOUT_EXACT 3738 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3739 { 3740 int i; 3741 3742 rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf; 3743 for (i = rcu_num_lvls - 2; i >= 0; i--) 3744 rsp->levelspread[i] = CONFIG_RCU_FANOUT; 3745 } 3746 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */ 3747 static void __init rcu_init_levelspread(struct rcu_state *rsp) 3748 { 3749 int ccur; 3750 int cprv; 3751 int i; 3752 3753 cprv = nr_cpu_ids; 3754 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3755 ccur = rsp->levelcnt[i]; 3756 rsp->levelspread[i] = (cprv + ccur - 1) / ccur; 3757 cprv = ccur; 3758 } 3759 } 3760 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */ 3761 3762 /* 3763 * Helper function for rcu_init() that initializes one rcu_state structure. 3764 */ 3765 static void __init rcu_init_one(struct rcu_state *rsp, 3766 struct rcu_data __percpu *rda) 3767 { 3768 static const char * const buf[] = { 3769 "rcu_node_0", 3770 "rcu_node_1", 3771 "rcu_node_2", 3772 "rcu_node_3" }; /* Match MAX_RCU_LVLS */ 3773 static const char * const fqs[] = { 3774 "rcu_node_fqs_0", 3775 "rcu_node_fqs_1", 3776 "rcu_node_fqs_2", 3777 "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */ 3778 static u8 fl_mask = 0x1; 3779 int cpustride = 1; 3780 int i; 3781 int j; 3782 struct rcu_node *rnp; 3783 3784 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ 3785 3786 /* Silence gcc 4.8 warning about array index out of range. */ 3787 if (rcu_num_lvls > RCU_NUM_LVLS) 3788 panic("rcu_init_one: rcu_num_lvls overflow"); 3789 3790 /* Initialize the level-tracking arrays. */ 3791 3792 for (i = 0; i < rcu_num_lvls; i++) 3793 rsp->levelcnt[i] = num_rcu_lvl[i]; 3794 for (i = 1; i < rcu_num_lvls; i++) 3795 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1]; 3796 rcu_init_levelspread(rsp); 3797 rsp->flavor_mask = fl_mask; 3798 fl_mask <<= 1; 3799 3800 /* Initialize the elements themselves, starting from the leaves. */ 3801 3802 for (i = rcu_num_lvls - 1; i >= 0; i--) { 3803 cpustride *= rsp->levelspread[i]; 3804 rnp = rsp->level[i]; 3805 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) { 3806 raw_spin_lock_init(&rnp->lock); 3807 lockdep_set_class_and_name(&rnp->lock, 3808 &rcu_node_class[i], buf[i]); 3809 raw_spin_lock_init(&rnp->fqslock); 3810 lockdep_set_class_and_name(&rnp->fqslock, 3811 &rcu_fqs_class[i], fqs[i]); 3812 rnp->gpnum = rsp->gpnum; 3813 rnp->completed = rsp->completed; 3814 rnp->qsmask = 0; 3815 rnp->qsmaskinit = 0; 3816 rnp->grplo = j * cpustride; 3817 rnp->grphi = (j + 1) * cpustride - 1; 3818 if (rnp->grphi >= nr_cpu_ids) 3819 rnp->grphi = nr_cpu_ids - 1; 3820 if (i == 0) { 3821 rnp->grpnum = 0; 3822 rnp->grpmask = 0; 3823 rnp->parent = NULL; 3824 } else { 3825 rnp->grpnum = j % rsp->levelspread[i - 1]; 3826 rnp->grpmask = 1UL << rnp->grpnum; 3827 rnp->parent = rsp->level[i - 1] + 3828 j / rsp->levelspread[i - 1]; 3829 } 3830 rnp->level = i; 3831 INIT_LIST_HEAD(&rnp->blkd_tasks); 3832 rcu_init_one_nocb(rnp); 3833 } 3834 } 3835 3836 rsp->rda = rda; 3837 init_waitqueue_head(&rsp->gp_wq); 3838 rnp = rsp->level[rcu_num_lvls - 1]; 3839 for_each_possible_cpu(i) { 3840 while (i > rnp->grphi) 3841 rnp++; 3842 per_cpu_ptr(rsp->rda, i)->mynode = rnp; 3843 rcu_boot_init_percpu_data(i, rsp); 3844 } 3845 list_add(&rsp->flavors, &rcu_struct_flavors); 3846 } 3847 3848 /* 3849 * Compute the rcu_node tree geometry from kernel parameters. This cannot 3850 * replace the definitions in tree.h because those are needed to size 3851 * the ->node array in the rcu_state structure. 3852 */ 3853 static void __init rcu_init_geometry(void) 3854 { 3855 ulong d; 3856 int i; 3857 int j; 3858 int n = nr_cpu_ids; 3859 int rcu_capacity[MAX_RCU_LVLS + 1]; 3860 3861 /* 3862 * Initialize any unspecified boot parameters. 3863 * The default values of jiffies_till_first_fqs and 3864 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS 3865 * value, which is a function of HZ, then adding one for each 3866 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. 3867 */ 3868 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; 3869 if (jiffies_till_first_fqs == ULONG_MAX) 3870 jiffies_till_first_fqs = d; 3871 if (jiffies_till_next_fqs == ULONG_MAX) 3872 jiffies_till_next_fqs = d; 3873 3874 /* If the compile-time values are accurate, just leave. */ 3875 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF && 3876 nr_cpu_ids == NR_CPUS) 3877 return; 3878 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n", 3879 rcu_fanout_leaf, nr_cpu_ids); 3880 3881 /* 3882 * Compute number of nodes that can be handled an rcu_node tree 3883 * with the given number of levels. Setting rcu_capacity[0] makes 3884 * some of the arithmetic easier. 3885 */ 3886 rcu_capacity[0] = 1; 3887 rcu_capacity[1] = rcu_fanout_leaf; 3888 for (i = 2; i <= MAX_RCU_LVLS; i++) 3889 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT; 3890 3891 /* 3892 * The boot-time rcu_fanout_leaf parameter is only permitted 3893 * to increase the leaf-level fanout, not decrease it. Of course, 3894 * the leaf-level fanout cannot exceed the number of bits in 3895 * the rcu_node masks. Finally, the tree must be able to accommodate 3896 * the configured number of CPUs. Complain and fall back to the 3897 * compile-time values if these limits are exceeded. 3898 */ 3899 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF || 3900 rcu_fanout_leaf > sizeof(unsigned long) * 8 || 3901 n > rcu_capacity[MAX_RCU_LVLS]) { 3902 WARN_ON(1); 3903 return; 3904 } 3905 3906 /* Calculate the number of rcu_nodes at each level of the tree. */ 3907 for (i = 1; i <= MAX_RCU_LVLS; i++) 3908 if (n <= rcu_capacity[i]) { 3909 for (j = 0; j <= i; j++) 3910 num_rcu_lvl[j] = 3911 DIV_ROUND_UP(n, rcu_capacity[i - j]); 3912 rcu_num_lvls = i; 3913 for (j = i + 1; j <= MAX_RCU_LVLS; j++) 3914 num_rcu_lvl[j] = 0; 3915 break; 3916 } 3917 3918 /* Calculate the total number of rcu_node structures. */ 3919 rcu_num_nodes = 0; 3920 for (i = 0; i <= MAX_RCU_LVLS; i++) 3921 rcu_num_nodes += num_rcu_lvl[i]; 3922 rcu_num_nodes -= n; 3923 } 3924 3925 void __init rcu_init(void) 3926 { 3927 int cpu; 3928 3929 rcu_bootup_announce(); 3930 rcu_init_geometry(); 3931 rcu_init_one(&rcu_bh_state, &rcu_bh_data); 3932 rcu_init_one(&rcu_sched_state, &rcu_sched_data); 3933 __rcu_init_preempt(); 3934 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); 3935 3936 /* 3937 * We don't need protection against CPU-hotplug here because 3938 * this is called early in boot, before either interrupts 3939 * or the scheduler are operational. 3940 */ 3941 cpu_notifier(rcu_cpu_notify, 0); 3942 pm_notifier(rcu_pm_notify, 0); 3943 for_each_online_cpu(cpu) 3944 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu); 3945 3946 rcu_early_boot_tests(); 3947 } 3948 3949 #include "tree_plugin.h" 3950