1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowing new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 32 * @init_fract: Initial backoff sleep interval. 33 * @gp_jiffies: Time of last @gp_state transition. 34 * @gp_start: Most recent grace-period start in jiffies. 35 * @n_gps: Number of grace periods completed since boot. 36 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 37 * @n_ipis_fails: Number of IPI-send failures. 38 * @pregp_func: This flavor's pre-grace-period function (optional). 39 * @pertask_func: This flavor's per-task scan function (optional). 40 * @postscan_func: This flavor's post-task scan function (optional). 41 * @holdouts_func: This flavor's holdout-list scan function (optional). 42 * @postgp_func: This flavor's post-grace-period function (optional). 43 * @call_func: This flavor's call_rcu()-equivalent function. 44 * @name: This flavor's textual name. 45 * @kname: This flavor's kthread name. 46 */ 47 struct rcu_tasks { 48 struct rcu_head *cbs_head; 49 struct rcu_head **cbs_tail; 50 struct wait_queue_head cbs_wq; 51 raw_spinlock_t cbs_lock; 52 int gp_state; 53 int gp_sleep; 54 int init_fract; 55 unsigned long gp_jiffies; 56 unsigned long gp_start; 57 unsigned long n_gps; 58 unsigned long n_ipis; 59 unsigned long n_ipis_fails; 60 struct task_struct *kthread_ptr; 61 rcu_tasks_gp_func_t gp_func; 62 pregp_func_t pregp_func; 63 pertask_func_t pertask_func; 64 postscan_func_t postscan_func; 65 holdouts_func_t holdouts_func; 66 postgp_func_t postgp_func; 67 call_rcu_func_t call_func; 68 char *name; 69 char *kname; 70 }; 71 72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 73 static struct rcu_tasks rt_name = \ 74 { \ 75 .cbs_tail = &rt_name.cbs_head, \ 76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 78 .gp_func = gp, \ 79 .call_func = call, \ 80 .name = n, \ 81 .kname = #rt_name, \ 82 } 83 84 /* Track exiting tasks in order to allow them to be waited for. */ 85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 86 87 /* Avoid IPIing CPUs early in the grace period. */ 88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 90 module_param(rcu_task_ipi_delay, int, 0644); 91 92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 95 module_param(rcu_task_stall_timeout, int, 0644); 96 97 /* RCU tasks grace-period state for debugging. */ 98 #define RTGS_INIT 0 99 #define RTGS_WAIT_WAIT_CBS 1 100 #define RTGS_WAIT_GP 2 101 #define RTGS_PRE_WAIT_GP 3 102 #define RTGS_SCAN_TASKLIST 4 103 #define RTGS_POST_SCAN_TASKLIST 5 104 #define RTGS_WAIT_SCAN_HOLDOUTS 6 105 #define RTGS_SCAN_HOLDOUTS 7 106 #define RTGS_POST_GP 8 107 #define RTGS_WAIT_READERS 9 108 #define RTGS_INVOKE_CBS 10 109 #define RTGS_WAIT_CBS 11 110 #ifndef CONFIG_TINY_RCU 111 static const char * const rcu_tasks_gp_state_names[] = { 112 "RTGS_INIT", 113 "RTGS_WAIT_WAIT_CBS", 114 "RTGS_WAIT_GP", 115 "RTGS_PRE_WAIT_GP", 116 "RTGS_SCAN_TASKLIST", 117 "RTGS_POST_SCAN_TASKLIST", 118 "RTGS_WAIT_SCAN_HOLDOUTS", 119 "RTGS_SCAN_HOLDOUTS", 120 "RTGS_POST_GP", 121 "RTGS_WAIT_READERS", 122 "RTGS_INVOKE_CBS", 123 "RTGS_WAIT_CBS", 124 }; 125 #endif /* #ifndef CONFIG_TINY_RCU */ 126 127 //////////////////////////////////////////////////////////////////////// 128 // 129 // Generic code. 130 131 /* Record grace-period phase and time. */ 132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 133 { 134 rtp->gp_state = newstate; 135 rtp->gp_jiffies = jiffies; 136 } 137 138 #ifndef CONFIG_TINY_RCU 139 /* Return state name. */ 140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 141 { 142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 143 int j = READ_ONCE(i); // Prevent the compiler from reading twice 144 145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 146 return "???"; 147 return rcu_tasks_gp_state_names[j]; 148 } 149 #endif /* #ifndef CONFIG_TINY_RCU */ 150 151 // Enqueue a callback for the specified flavor of Tasks RCU. 152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 153 struct rcu_tasks *rtp) 154 { 155 unsigned long flags; 156 bool needwake; 157 158 rhp->next = NULL; 159 rhp->func = func; 160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 161 needwake = !rtp->cbs_head; 162 WRITE_ONCE(*rtp->cbs_tail, rhp); 163 rtp->cbs_tail = &rhp->next; 164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 165 /* We can't create the thread unless interrupts are enabled. */ 166 if (needwake && READ_ONCE(rtp->kthread_ptr)) 167 wake_up(&rtp->cbs_wq); 168 } 169 170 // Wait for a grace period for the specified flavor of Tasks RCU. 171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 172 { 173 /* Complain if the scheduler has not started. */ 174 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 175 "synchronize_rcu_tasks called too soon"); 176 177 /* Wait for the grace period. */ 178 wait_rcu_gp(rtp->call_func); 179 } 180 181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 182 static int __noreturn rcu_tasks_kthread(void *arg) 183 { 184 unsigned long flags; 185 struct rcu_head *list; 186 struct rcu_head *next; 187 struct rcu_tasks *rtp = arg; 188 189 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 190 housekeeping_affine(current, HK_FLAG_RCU); 191 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 192 193 /* 194 * Each pass through the following loop makes one check for 195 * newly arrived callbacks, and, if there are some, waits for 196 * one RCU-tasks grace period and then invokes the callbacks. 197 * This loop is terminated by the system going down. ;-) 198 */ 199 for (;;) { 200 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 201 202 /* Pick up any new callbacks. */ 203 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 204 smp_mb__after_spinlock(); // Order updates vs. GP. 205 list = rtp->cbs_head; 206 rtp->cbs_head = NULL; 207 rtp->cbs_tail = &rtp->cbs_head; 208 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 209 210 /* If there were none, wait a bit and start over. */ 211 if (!list) { 212 wait_event_interruptible(rtp->cbs_wq, 213 READ_ONCE(rtp->cbs_head)); 214 if (!rtp->cbs_head) { 215 WARN_ON(signal_pending(current)); 216 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 217 schedule_timeout_idle(HZ/10); 218 } 219 continue; 220 } 221 222 // Wait for one grace period. 223 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 224 rtp->gp_start = jiffies; 225 rtp->gp_func(rtp); 226 rtp->n_gps++; 227 228 /* Invoke the callbacks. */ 229 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 230 while (list) { 231 next = list->next; 232 local_bh_disable(); 233 list->func(list); 234 local_bh_enable(); 235 list = next; 236 cond_resched(); 237 } 238 /* Paranoid sleep to keep this from entering a tight loop */ 239 schedule_timeout_idle(rtp->gp_sleep); 240 } 241 } 242 243 /* Spawn RCU-tasks grace-period kthread. */ 244 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 245 { 246 struct task_struct *t; 247 248 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 249 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 250 return; 251 smp_mb(); /* Ensure others see full kthread. */ 252 } 253 254 #ifndef CONFIG_TINY_RCU 255 256 /* 257 * Print any non-default Tasks RCU settings. 258 */ 259 static void __init rcu_tasks_bootup_oddness(void) 260 { 261 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 262 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 263 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 264 #endif /* #ifdef CONFIG_TASKS_RCU */ 265 #ifdef CONFIG_TASKS_RCU 266 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 267 #endif /* #ifdef CONFIG_TASKS_RCU */ 268 #ifdef CONFIG_TASKS_RUDE_RCU 269 pr_info("\tRude variant of Tasks RCU enabled.\n"); 270 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 271 #ifdef CONFIG_TASKS_TRACE_RCU 272 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 273 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 274 } 275 276 #endif /* #ifndef CONFIG_TINY_RCU */ 277 278 #ifndef CONFIG_TINY_RCU 279 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 280 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 281 { 282 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 283 rtp->kname, 284 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 285 jiffies - data_race(rtp->gp_jiffies), 286 data_race(rtp->n_gps), 287 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 288 ".k"[!!data_race(rtp->kthread_ptr)], 289 ".C"[!!data_race(rtp->cbs_head)], 290 s); 291 } 292 #endif // #ifndef CONFIG_TINY_RCU 293 294 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 295 296 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 297 298 //////////////////////////////////////////////////////////////////////// 299 // 300 // Shared code between task-list-scanning variants of Tasks RCU. 301 302 /* Wait for one RCU-tasks grace period. */ 303 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 304 { 305 struct task_struct *g, *t; 306 unsigned long lastreport; 307 LIST_HEAD(holdouts); 308 int fract; 309 310 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 311 rtp->pregp_func(); 312 313 /* 314 * There were callbacks, so we need to wait for an RCU-tasks 315 * grace period. Start off by scanning the task list for tasks 316 * that are not already voluntarily blocked. Mark these tasks 317 * and make a list of them in holdouts. 318 */ 319 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 320 rcu_read_lock(); 321 for_each_process_thread(g, t) 322 rtp->pertask_func(t, &holdouts); 323 rcu_read_unlock(); 324 325 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 326 rtp->postscan_func(&holdouts); 327 328 /* 329 * Each pass through the following loop scans the list of holdout 330 * tasks, removing any that are no longer holdouts. When the list 331 * is empty, we are done. 332 */ 333 lastreport = jiffies; 334 335 // Start off with initial wait and slowly back off to 1 HZ wait. 336 fract = rtp->init_fract; 337 338 while (!list_empty(&holdouts)) { 339 bool firstreport; 340 bool needreport; 341 int rtst; 342 343 /* Slowly back off waiting for holdouts */ 344 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 345 schedule_timeout_idle(fract); 346 347 if (fract < HZ) 348 fract++; 349 350 rtst = READ_ONCE(rcu_task_stall_timeout); 351 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 352 if (needreport) 353 lastreport = jiffies; 354 firstreport = true; 355 WARN_ON(signal_pending(current)); 356 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 357 rtp->holdouts_func(&holdouts, needreport, &firstreport); 358 } 359 360 set_tasks_gp_state(rtp, RTGS_POST_GP); 361 rtp->postgp_func(rtp); 362 } 363 364 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 365 366 #ifdef CONFIG_TASKS_RCU 367 368 //////////////////////////////////////////////////////////////////////// 369 // 370 // Simple variant of RCU whose quiescent states are voluntary context 371 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 372 // As such, grace periods can take one good long time. There are no 373 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 374 // because this implementation is intended to get the system into a safe 375 // state for some of the manipulations involved in tracing and the like. 376 // Finally, this implementation does not support high call_rcu_tasks() 377 // rates from multiple CPUs. If this is required, per-CPU callback lists 378 // will be needed. 379 // 380 // The implementation uses rcu_tasks_wait_gp(), which relies on function 381 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 382 // function sets these function pointers up so that rcu_tasks_wait_gp() 383 // invokes these functions in this order: 384 // 385 // rcu_tasks_pregp_step(): 386 // Invokes synchronize_rcu() in order to wait for all in-flight 387 // t->on_rq and t->nvcsw transitions to complete. This works because 388 // all such transitions are carried out with interrupts disabled. 389 // rcu_tasks_pertask(), invoked on every non-idle task: 390 // For every runnable non-idle task other than the current one, use 391 // get_task_struct() to pin down that task, snapshot that task's 392 // number of voluntary context switches, and add that task to the 393 // holdout list. 394 // rcu_tasks_postscan(): 395 // Invoke synchronize_srcu() to ensure that all tasks that were 396 // in the process of exiting (and which thus might not know to 397 // synchronize with this RCU Tasks grace period) have completed 398 // exiting. 399 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 400 // Scans the holdout list, attempting to identify a quiescent state 401 // for each task on the list. If there is a quiescent state, the 402 // corresponding task is removed from the holdout list. 403 // rcu_tasks_postgp(): 404 // Invokes synchronize_rcu() in order to ensure that all prior 405 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 406 // to have happened before the end of this RCU Tasks grace period. 407 // Again, this works because all such transitions are carried out 408 // with interrupts disabled. 409 // 410 // For each exiting task, the exit_tasks_rcu_start() and 411 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 412 // read-side critical sections waited for by rcu_tasks_postscan(). 413 // 414 // Pre-grace-period update-side code is ordered before the grace via the 415 // ->cbs_lock and the smp_mb__after_spinlock(). Pre-grace-period read-side 416 // code is ordered before the grace period via synchronize_rcu() call 417 // in rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 418 // disabling. 419 420 /* Pre-grace-period preparation. */ 421 static void rcu_tasks_pregp_step(void) 422 { 423 /* 424 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 425 * to complete. Invoking synchronize_rcu() suffices because all 426 * these transitions occur with interrupts disabled. Without this 427 * synchronize_rcu(), a read-side critical section that started 428 * before the grace period might be incorrectly seen as having 429 * started after the grace period. 430 * 431 * This synchronize_rcu() also dispenses with the need for a 432 * memory barrier on the first store to t->rcu_tasks_holdout, 433 * as it forces the store to happen after the beginning of the 434 * grace period. 435 */ 436 synchronize_rcu(); 437 } 438 439 /* Per-task initial processing. */ 440 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 441 { 442 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 443 get_task_struct(t); 444 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 445 WRITE_ONCE(t->rcu_tasks_holdout, true); 446 list_add(&t->rcu_tasks_holdout_list, hop); 447 } 448 } 449 450 /* Processing between scanning taskslist and draining the holdout list. */ 451 static void rcu_tasks_postscan(struct list_head *hop) 452 { 453 /* 454 * Wait for tasks that are in the process of exiting. This 455 * does only part of the job, ensuring that all tasks that were 456 * previously exiting reach the point where they have disabled 457 * preemption, allowing the later synchronize_rcu() to finish 458 * the job. 459 */ 460 synchronize_srcu(&tasks_rcu_exit_srcu); 461 } 462 463 /* See if tasks are still holding out, complain if so. */ 464 static void check_holdout_task(struct task_struct *t, 465 bool needreport, bool *firstreport) 466 { 467 int cpu; 468 469 if (!READ_ONCE(t->rcu_tasks_holdout) || 470 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 471 !READ_ONCE(t->on_rq) || 472 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 473 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 474 WRITE_ONCE(t->rcu_tasks_holdout, false); 475 list_del_init(&t->rcu_tasks_holdout_list); 476 put_task_struct(t); 477 return; 478 } 479 rcu_request_urgent_qs_task(t); 480 if (!needreport) 481 return; 482 if (*firstreport) { 483 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 484 *firstreport = false; 485 } 486 cpu = task_cpu(t); 487 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 488 t, ".I"[is_idle_task(t)], 489 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 490 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 491 t->rcu_tasks_idle_cpu, cpu); 492 sched_show_task(t); 493 } 494 495 /* Scan the holdout lists for tasks no longer holding out. */ 496 static void check_all_holdout_tasks(struct list_head *hop, 497 bool needreport, bool *firstreport) 498 { 499 struct task_struct *t, *t1; 500 501 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 502 check_holdout_task(t, needreport, firstreport); 503 cond_resched(); 504 } 505 } 506 507 /* Finish off the Tasks-RCU grace period. */ 508 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 509 { 510 /* 511 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 512 * memory barriers prior to them in the schedule() path, memory 513 * reordering on other CPUs could cause their RCU-tasks read-side 514 * critical sections to extend past the end of the grace period. 515 * However, because these ->nvcsw updates are carried out with 516 * interrupts disabled, we can use synchronize_rcu() to force the 517 * needed ordering on all such CPUs. 518 * 519 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 520 * accesses to be within the grace period, avoiding the need for 521 * memory barriers for ->rcu_tasks_holdout accesses. 522 * 523 * In addition, this synchronize_rcu() waits for exiting tasks 524 * to complete their final preempt_disable() region of execution, 525 * cleaning up after the synchronize_srcu() above. 526 */ 527 synchronize_rcu(); 528 } 529 530 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 531 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 532 533 /** 534 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 535 * @rhp: structure to be used for queueing the RCU updates. 536 * @func: actual callback function to be invoked after the grace period 537 * 538 * The callback function will be invoked some time after a full grace 539 * period elapses, in other words after all currently executing RCU 540 * read-side critical sections have completed. call_rcu_tasks() assumes 541 * that the read-side critical sections end at a voluntary context 542 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 543 * or transition to usermode execution. As such, there are no read-side 544 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 545 * this primitive is intended to determine that all tasks have passed 546 * through a safe state, not so much for data-structure synchronization. 547 * 548 * See the description of call_rcu() for more detailed information on 549 * memory ordering guarantees. 550 */ 551 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 552 { 553 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 554 } 555 EXPORT_SYMBOL_GPL(call_rcu_tasks); 556 557 /** 558 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 559 * 560 * Control will return to the caller some time after a full rcu-tasks 561 * grace period has elapsed, in other words after all currently 562 * executing rcu-tasks read-side critical sections have elapsed. These 563 * read-side critical sections are delimited by calls to schedule(), 564 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 565 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 566 * 567 * This is a very specialized primitive, intended only for a few uses in 568 * tracing and other situations requiring manipulation of function 569 * preambles and profiling hooks. The synchronize_rcu_tasks() function 570 * is not (yet) intended for heavy use from multiple CPUs. 571 * 572 * See the description of synchronize_rcu() for more detailed information 573 * on memory ordering guarantees. 574 */ 575 void synchronize_rcu_tasks(void) 576 { 577 synchronize_rcu_tasks_generic(&rcu_tasks); 578 } 579 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 580 581 /** 582 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 583 * 584 * Although the current implementation is guaranteed to wait, it is not 585 * obligated to, for example, if there are no pending callbacks. 586 */ 587 void rcu_barrier_tasks(void) 588 { 589 /* There is only one callback queue, so this is easy. ;-) */ 590 synchronize_rcu_tasks(); 591 } 592 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 593 594 static int __init rcu_spawn_tasks_kthread(void) 595 { 596 rcu_tasks.gp_sleep = HZ / 10; 597 rcu_tasks.init_fract = HZ / 10; 598 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 599 rcu_tasks.pertask_func = rcu_tasks_pertask; 600 rcu_tasks.postscan_func = rcu_tasks_postscan; 601 rcu_tasks.holdouts_func = check_all_holdout_tasks; 602 rcu_tasks.postgp_func = rcu_tasks_postgp; 603 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 604 return 0; 605 } 606 607 #if !defined(CONFIG_TINY_RCU) 608 void show_rcu_tasks_classic_gp_kthread(void) 609 { 610 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 611 } 612 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 613 #endif // !defined(CONFIG_TINY_RCU) 614 615 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 616 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 617 { 618 preempt_disable(); 619 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 620 preempt_enable(); 621 } 622 623 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 624 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 625 { 626 struct task_struct *t = current; 627 628 preempt_disable(); 629 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 630 preempt_enable(); 631 exit_tasks_rcu_finish_trace(t); 632 } 633 634 #else /* #ifdef CONFIG_TASKS_RCU */ 635 void exit_tasks_rcu_start(void) { } 636 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 637 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 638 639 #ifdef CONFIG_TASKS_RUDE_RCU 640 641 //////////////////////////////////////////////////////////////////////// 642 // 643 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 644 // passing an empty function to schedule_on_each_cpu(). This approach 645 // provides an asynchronous call_rcu_tasks_rude() API and batching of 646 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 647 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 648 // and induces otherwise unnecessary context switches on all online CPUs, 649 // whether idle or not. 650 // 651 // Callback handling is provided by the rcu_tasks_kthread() function. 652 // 653 // Ordering is provided by the scheduler's context-switch code. 654 655 // Empty function to allow workqueues to force a context switch. 656 static void rcu_tasks_be_rude(struct work_struct *work) 657 { 658 } 659 660 // Wait for one rude RCU-tasks grace period. 661 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 662 { 663 rtp->n_ipis += cpumask_weight(cpu_online_mask); 664 schedule_on_each_cpu(rcu_tasks_be_rude); 665 } 666 667 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 668 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 669 "RCU Tasks Rude"); 670 671 /** 672 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 673 * @rhp: structure to be used for queueing the RCU updates. 674 * @func: actual callback function to be invoked after the grace period 675 * 676 * The callback function will be invoked some time after a full grace 677 * period elapses, in other words after all currently executing RCU 678 * read-side critical sections have completed. call_rcu_tasks_rude() 679 * assumes that the read-side critical sections end at context switch, 680 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 681 * usermode execution is schedulable). As such, there are no read-side 682 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 683 * this primitive is intended to determine that all tasks have passed 684 * through a safe state, not so much for data-structure synchronization. 685 * 686 * See the description of call_rcu() for more detailed information on 687 * memory ordering guarantees. 688 */ 689 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 690 { 691 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 692 } 693 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 694 695 /** 696 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 697 * 698 * Control will return to the caller some time after a rude rcu-tasks 699 * grace period has elapsed, in other words after all currently 700 * executing rcu-tasks read-side critical sections have elapsed. These 701 * read-side critical sections are delimited by calls to schedule(), 702 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 703 * context), and (in theory, anyway) cond_resched(). 704 * 705 * This is a very specialized primitive, intended only for a few uses in 706 * tracing and other situations requiring manipulation of function preambles 707 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 708 * (yet) intended for heavy use from multiple CPUs. 709 * 710 * See the description of synchronize_rcu() for more detailed information 711 * on memory ordering guarantees. 712 */ 713 void synchronize_rcu_tasks_rude(void) 714 { 715 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 716 } 717 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 718 719 /** 720 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 721 * 722 * Although the current implementation is guaranteed to wait, it is not 723 * obligated to, for example, if there are no pending callbacks. 724 */ 725 void rcu_barrier_tasks_rude(void) 726 { 727 /* There is only one callback queue, so this is easy. ;-) */ 728 synchronize_rcu_tasks_rude(); 729 } 730 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 731 732 static int __init rcu_spawn_tasks_rude_kthread(void) 733 { 734 rcu_tasks_rude.gp_sleep = HZ / 10; 735 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 736 return 0; 737 } 738 739 #if !defined(CONFIG_TINY_RCU) 740 void show_rcu_tasks_rude_gp_kthread(void) 741 { 742 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 743 } 744 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 745 #endif // !defined(CONFIG_TINY_RCU) 746 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 747 748 //////////////////////////////////////////////////////////////////////// 749 // 750 // Tracing variant of Tasks RCU. This variant is designed to be used 751 // to protect tracing hooks, including those of BPF. This variant 752 // therefore: 753 // 754 // 1. Has explicit read-side markers to allow finite grace periods 755 // in the face of in-kernel loops for PREEMPT=n builds. 756 // 757 // 2. Protects code in the idle loop, exception entry/exit, and 758 // CPU-hotplug code paths, similar to the capabilities of SRCU. 759 // 760 // 3. Avoids expensive read-side instructions, having overhead similar 761 // to that of Preemptible RCU. 762 // 763 // There are of course downsides. The grace-period code can send IPIs to 764 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 765 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 766 // is a single callback queue guarded by a single lock, again, much as for 767 // Tasks RCU. If needed, these downsides can be at least partially remedied. 768 // 769 // Perhaps most important, this variant of RCU does not affect the vanilla 770 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 771 // readers can operate from idle, offline, and exception entry/exit in no 772 // way allows rcu_preempt and rcu_sched readers to also do so. 773 // 774 // The implementation uses rcu_tasks_wait_gp(), which relies on function 775 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 776 // function sets these function pointers up so that rcu_tasks_wait_gp() 777 // invokes these functions in this order: 778 // 779 // rcu_tasks_trace_pregp_step(): 780 // Initialize the count of readers and block CPU-hotplug operations. 781 // rcu_tasks_trace_pertask(), invoked on every non-idle task: 782 // Initialize per-task state and attempt to identify an immediate 783 // quiescent state for that task, or, failing that, attempt to 784 // set that task's .need_qs flag so that task's next outermost 785 // rcu_read_unlock_trace() will report the quiescent state (in which 786 // case the count of readers is incremented). If both attempts fail, 787 // the task is added to a "holdout" list. Note that IPIs are used 788 // to invoke trc_read_check_handler() in the context of running tasks 789 // in order to avoid ordering overhead on common-case shared-variable 790 // accessses. 791 // rcu_tasks_trace_postscan(): 792 // Initialize state and attempt to identify an immediate quiescent 793 // state as above (but only for idle tasks), unblock CPU-hotplug 794 // operations, and wait for an RCU grace period to avoid races with 795 // tasks that are in the process of exiting. 796 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 797 // Scans the holdout list, attempting to identify a quiescent state 798 // for each task on the list. If there is a quiescent state, the 799 // corresponding task is removed from the holdout list. 800 // rcu_tasks_trace_postgp(): 801 // Wait for the count of readers do drop to zero, reporting any stalls. 802 // Also execute full memory barriers to maintain ordering with code 803 // executing after the grace period. 804 // 805 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 806 // 807 // Pre-grace-period update-side code is ordered before the grace 808 // period via the ->cbs_lock and barriers in rcu_tasks_kthread(). 809 // Pre-grace-period read-side code is ordered before the grace period by 810 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by 811 // scheduler context-switch ordering (for locked-down non-running readers). 812 813 // The lockdep state must be outside of #ifdef to be useful. 814 #ifdef CONFIG_DEBUG_LOCK_ALLOC 815 static struct lock_class_key rcu_lock_trace_key; 816 struct lockdep_map rcu_trace_lock_map = 817 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 818 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 819 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 820 821 #ifdef CONFIG_TASKS_TRACE_RCU 822 823 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 824 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 825 826 // Record outstanding IPIs to each CPU. No point in sending two... 827 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 828 829 // The number of detections of task quiescent state relying on 830 // heavyweight readers executing explicit memory barriers. 831 static unsigned long n_heavy_reader_attempts; 832 static unsigned long n_heavy_reader_updates; 833 static unsigned long n_heavy_reader_ofl_updates; 834 835 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 836 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 837 "RCU Tasks Trace"); 838 839 /* 840 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 841 * while the scheduler locks are held. 842 */ 843 static void rcu_read_unlock_iw(struct irq_work *iwp) 844 { 845 wake_up(&trc_wait); 846 } 847 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 848 849 /* If we are the last reader, wake up the grace-period kthread. */ 850 void rcu_read_unlock_trace_special(struct task_struct *t) 851 { 852 int nq = READ_ONCE(t->trc_reader_special.b.need_qs); 853 854 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 855 t->trc_reader_special.b.need_mb) 856 smp_mb(); // Pairs with update-side barriers. 857 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 858 if (nq) 859 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 860 WRITE_ONCE(t->trc_reader_nesting, 0); 861 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 862 irq_work_queue(&rcu_tasks_trace_iw); 863 } 864 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 865 866 /* Add a task to the holdout list, if it is not already on the list. */ 867 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 868 { 869 if (list_empty(&t->trc_holdout_list)) { 870 get_task_struct(t); 871 list_add(&t->trc_holdout_list, bhp); 872 } 873 } 874 875 /* Remove a task from the holdout list, if it is in fact present. */ 876 static void trc_del_holdout(struct task_struct *t) 877 { 878 if (!list_empty(&t->trc_holdout_list)) { 879 list_del_init(&t->trc_holdout_list); 880 put_task_struct(t); 881 } 882 } 883 884 /* IPI handler to check task state. */ 885 static void trc_read_check_handler(void *t_in) 886 { 887 struct task_struct *t = current; 888 struct task_struct *texp = t_in; 889 890 // If the task is no longer running on this CPU, leave. 891 if (unlikely(texp != t)) { 892 goto reset_ipi; // Already on holdout list, so will check later. 893 } 894 895 // If the task is not in a read-side critical section, and 896 // if this is the last reader, awaken the grace-period kthread. 897 if (likely(!READ_ONCE(t->trc_reader_nesting))) { 898 WRITE_ONCE(t->trc_reader_checked, true); 899 goto reset_ipi; 900 } 901 // If we are racing with an rcu_read_unlock_trace(), try again later. 902 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0)) 903 goto reset_ipi; 904 WRITE_ONCE(t->trc_reader_checked, true); 905 906 // Get here if the task is in a read-side critical section. Set 907 // its state so that it will awaken the grace-period kthread upon 908 // exit from that critical section. 909 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 910 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 911 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 912 913 reset_ipi: 914 // Allow future IPIs to be sent on CPU and for task. 915 // Also order this IPI handler against any later manipulations of 916 // the intended task. 917 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 918 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 919 } 920 921 /* Callback function for scheduler to check locked-down task. */ 922 static int trc_inspect_reader(struct task_struct *t, void *arg) 923 { 924 int cpu = task_cpu(t); 925 int nesting; 926 bool ofl = cpu_is_offline(cpu); 927 928 if (task_curr(t)) { 929 WARN_ON_ONCE(ofl && !is_idle_task(t)); 930 931 // If no chance of heavyweight readers, do it the hard way. 932 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 933 return -EINVAL; 934 935 // If heavyweight readers are enabled on the remote task, 936 // we can inspect its state despite its currently running. 937 // However, we cannot safely change its state. 938 n_heavy_reader_attempts++; 939 if (!ofl && // Check for "running" idle tasks on offline CPUs. 940 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 941 return -EINVAL; // No quiescent state, do it the hard way. 942 n_heavy_reader_updates++; 943 if (ofl) 944 n_heavy_reader_ofl_updates++; 945 nesting = 0; 946 } else { 947 // The task is not running, so C-language access is safe. 948 nesting = t->trc_reader_nesting; 949 } 950 951 // If not exiting a read-side critical section, mark as checked 952 // so that the grace-period kthread will remove it from the 953 // holdout list. 954 t->trc_reader_checked = nesting >= 0; 955 if (nesting <= 0) 956 return nesting ? -EINVAL : 0; // If in QS, done, otherwise try again later. 957 958 // The task is in a read-side critical section, so set up its 959 // state so that it will awaken the grace-period kthread upon exit 960 // from that critical section. 961 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 962 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)); 963 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 964 return 0; 965 } 966 967 /* Attempt to extract the state for the specified task. */ 968 static void trc_wait_for_one_reader(struct task_struct *t, 969 struct list_head *bhp) 970 { 971 int cpu; 972 973 // If a previous IPI is still in flight, let it complete. 974 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 975 return; 976 977 // The current task had better be in a quiescent state. 978 if (t == current) { 979 t->trc_reader_checked = true; 980 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 981 return; 982 } 983 984 // Attempt to nail down the task for inspection. 985 get_task_struct(t); 986 if (!task_call_func(t, trc_inspect_reader, NULL)) { 987 put_task_struct(t); 988 return; 989 } 990 put_task_struct(t); 991 992 // If this task is not yet on the holdout list, then we are in 993 // an RCU read-side critical section. Otherwise, the invocation of 994 // trc_add_holdout() that added it to the list did the necessary 995 // get_task_struct(). Either way, the task cannot be freed out 996 // from under this code. 997 998 // If currently running, send an IPI, either way, add to list. 999 trc_add_holdout(t, bhp); 1000 if (task_curr(t) && 1001 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1002 // The task is currently running, so try IPIing it. 1003 cpu = task_cpu(t); 1004 1005 // If there is already an IPI outstanding, let it happen. 1006 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1007 return; 1008 1009 per_cpu(trc_ipi_to_cpu, cpu) = true; 1010 t->trc_ipi_to_cpu = cpu; 1011 rcu_tasks_trace.n_ipis++; 1012 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1013 // Just in case there is some other reason for 1014 // failure than the target CPU being offline. 1015 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1016 __func__, cpu); 1017 rcu_tasks_trace.n_ipis_fails++; 1018 per_cpu(trc_ipi_to_cpu, cpu) = false; 1019 t->trc_ipi_to_cpu = -1; 1020 } 1021 } 1022 } 1023 1024 /* Initialize for a new RCU-tasks-trace grace period. */ 1025 static void rcu_tasks_trace_pregp_step(void) 1026 { 1027 int cpu; 1028 1029 // Allow for fast-acting IPIs. 1030 atomic_set(&trc_n_readers_need_end, 1); 1031 1032 // There shouldn't be any old IPIs, but... 1033 for_each_possible_cpu(cpu) 1034 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1035 1036 // Disable CPU hotplug across the tasklist scan. 1037 // This also waits for all readers in CPU-hotplug code paths. 1038 cpus_read_lock(); 1039 } 1040 1041 /* Do first-round processing for the specified task. */ 1042 static void rcu_tasks_trace_pertask(struct task_struct *t, 1043 struct list_head *hop) 1044 { 1045 // During early boot when there is only the one boot CPU, there 1046 // is no idle task for the other CPUs. Just return. 1047 if (unlikely(t == NULL)) 1048 return; 1049 1050 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 1051 WRITE_ONCE(t->trc_reader_checked, false); 1052 t->trc_ipi_to_cpu = -1; 1053 trc_wait_for_one_reader(t, hop); 1054 } 1055 1056 /* 1057 * Do intermediate processing between task and holdout scans and 1058 * pick up the idle tasks. 1059 */ 1060 static void rcu_tasks_trace_postscan(struct list_head *hop) 1061 { 1062 int cpu; 1063 1064 for_each_possible_cpu(cpu) 1065 rcu_tasks_trace_pertask(idle_task(cpu), hop); 1066 1067 // Re-enable CPU hotplug now that the tasklist scan has completed. 1068 cpus_read_unlock(); 1069 1070 // Wait for late-stage exiting tasks to finish exiting. 1071 // These might have passed the call to exit_tasks_rcu_finish(). 1072 synchronize_rcu(); 1073 // Any tasks that exit after this point will set ->trc_reader_checked. 1074 } 1075 1076 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1077 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1078 { 1079 int cpu; 1080 1081 if (*firstreport) { 1082 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1083 *firstreport = false; 1084 } 1085 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 1086 cpu = task_cpu(t); 1087 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1088 t->pid, 1089 ".I"[READ_ONCE(t->trc_ipi_to_cpu) >= 0], 1090 ".i"[is_idle_task(t)], 1091 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1092 READ_ONCE(t->trc_reader_nesting), 1093 " N"[!!READ_ONCE(t->trc_reader_special.b.need_qs)], 1094 cpu); 1095 sched_show_task(t); 1096 } 1097 1098 /* List stalled IPIs for RCU tasks trace. */ 1099 static void show_stalled_ipi_trace(void) 1100 { 1101 int cpu; 1102 1103 for_each_possible_cpu(cpu) 1104 if (per_cpu(trc_ipi_to_cpu, cpu)) 1105 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1106 } 1107 1108 /* Do one scan of the holdout list. */ 1109 static void check_all_holdout_tasks_trace(struct list_head *hop, 1110 bool needreport, bool *firstreport) 1111 { 1112 struct task_struct *g, *t; 1113 1114 // Disable CPU hotplug across the holdout list scan. 1115 cpus_read_lock(); 1116 1117 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1118 // If safe and needed, try to check the current task. 1119 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1120 !READ_ONCE(t->trc_reader_checked)) 1121 trc_wait_for_one_reader(t, hop); 1122 1123 // If check succeeded, remove this task from the list. 1124 if (READ_ONCE(t->trc_reader_checked)) 1125 trc_del_holdout(t); 1126 else if (needreport) 1127 show_stalled_task_trace(t, firstreport); 1128 } 1129 1130 // Re-enable CPU hotplug now that the holdout list scan has completed. 1131 cpus_read_unlock(); 1132 1133 if (needreport) { 1134 if (*firstreport) 1135 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1136 show_stalled_ipi_trace(); 1137 } 1138 } 1139 1140 static void rcu_tasks_trace_empty_fn(void *unused) 1141 { 1142 } 1143 1144 /* Wait for grace period to complete and provide ordering. */ 1145 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1146 { 1147 int cpu; 1148 bool firstreport; 1149 struct task_struct *g, *t; 1150 LIST_HEAD(holdouts); 1151 long ret; 1152 1153 // Wait for any lingering IPI handlers to complete. Note that 1154 // if a CPU has gone offline or transitioned to userspace in the 1155 // meantime, all IPI handlers should have been drained beforehand. 1156 // Yes, this assumes that CPUs process IPIs in order. If that ever 1157 // changes, there will need to be a recheck and/or timed wait. 1158 for_each_online_cpu(cpu) 1159 if (smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))) 1160 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1161 1162 // Remove the safety count. 1163 smp_mb__before_atomic(); // Order vs. earlier atomics 1164 atomic_dec(&trc_n_readers_need_end); 1165 smp_mb__after_atomic(); // Order vs. later atomics 1166 1167 // Wait for readers. 1168 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1169 for (;;) { 1170 ret = wait_event_idle_exclusive_timeout( 1171 trc_wait, 1172 atomic_read(&trc_n_readers_need_end) == 0, 1173 READ_ONCE(rcu_task_stall_timeout)); 1174 if (ret) 1175 break; // Count reached zero. 1176 // Stall warning time, so make a list of the offenders. 1177 rcu_read_lock(); 1178 for_each_process_thread(g, t) 1179 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1180 trc_add_holdout(t, &holdouts); 1181 rcu_read_unlock(); 1182 firstreport = true; 1183 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { 1184 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1185 show_stalled_task_trace(t, &firstreport); 1186 trc_del_holdout(t); // Release task_struct reference. 1187 } 1188 if (firstreport) 1189 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1190 show_stalled_ipi_trace(); 1191 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1192 } 1193 smp_mb(); // Caller's code must be ordered after wakeup. 1194 // Pairs with pretty much every ordering primitive. 1195 } 1196 1197 /* Report any needed quiescent state for this exiting task. */ 1198 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1199 { 1200 WRITE_ONCE(t->trc_reader_checked, true); 1201 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1202 WRITE_ONCE(t->trc_reader_nesting, 0); 1203 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1204 rcu_read_unlock_trace_special(t); 1205 } 1206 1207 /** 1208 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1209 * @rhp: structure to be used for queueing the RCU updates. 1210 * @func: actual callback function to be invoked after the grace period 1211 * 1212 * The callback function will be invoked some time after a trace rcu-tasks 1213 * grace period elapses, in other words after all currently executing 1214 * trace rcu-tasks read-side critical sections have completed. These 1215 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1216 * and rcu_read_unlock_trace(). 1217 * 1218 * See the description of call_rcu() for more detailed information on 1219 * memory ordering guarantees. 1220 */ 1221 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1222 { 1223 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1224 } 1225 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1226 1227 /** 1228 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1229 * 1230 * Control will return to the caller some time after a trace rcu-tasks 1231 * grace period has elapsed, in other words after all currently executing 1232 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1233 * critical sections are delimited by calls to rcu_read_lock_trace() 1234 * and rcu_read_unlock_trace(). 1235 * 1236 * This is a very specialized primitive, intended only for a few uses in 1237 * tracing and other situations requiring manipulation of function preambles 1238 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1239 * (yet) intended for heavy use from multiple CPUs. 1240 * 1241 * See the description of synchronize_rcu() for more detailed information 1242 * on memory ordering guarantees. 1243 */ 1244 void synchronize_rcu_tasks_trace(void) 1245 { 1246 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1247 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1248 } 1249 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1250 1251 /** 1252 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1253 * 1254 * Although the current implementation is guaranteed to wait, it is not 1255 * obligated to, for example, if there are no pending callbacks. 1256 */ 1257 void rcu_barrier_tasks_trace(void) 1258 { 1259 /* There is only one callback queue, so this is easy. ;-) */ 1260 synchronize_rcu_tasks_trace(); 1261 } 1262 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1263 1264 static int __init rcu_spawn_tasks_trace_kthread(void) 1265 { 1266 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1267 rcu_tasks_trace.gp_sleep = HZ / 10; 1268 rcu_tasks_trace.init_fract = HZ / 10; 1269 } else { 1270 rcu_tasks_trace.gp_sleep = HZ / 200; 1271 if (rcu_tasks_trace.gp_sleep <= 0) 1272 rcu_tasks_trace.gp_sleep = 1; 1273 rcu_tasks_trace.init_fract = HZ / 200; 1274 if (rcu_tasks_trace.init_fract <= 0) 1275 rcu_tasks_trace.init_fract = 1; 1276 } 1277 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1278 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1279 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1280 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1281 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1282 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1283 return 0; 1284 } 1285 1286 #if !defined(CONFIG_TINY_RCU) 1287 void show_rcu_tasks_trace_gp_kthread(void) 1288 { 1289 char buf[64]; 1290 1291 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1292 data_race(n_heavy_reader_ofl_updates), 1293 data_race(n_heavy_reader_updates), 1294 data_race(n_heavy_reader_attempts)); 1295 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1296 } 1297 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1298 #endif // !defined(CONFIG_TINY_RCU) 1299 1300 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1301 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1302 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1303 1304 #ifndef CONFIG_TINY_RCU 1305 void show_rcu_tasks_gp_kthreads(void) 1306 { 1307 show_rcu_tasks_classic_gp_kthread(); 1308 show_rcu_tasks_rude_gp_kthread(); 1309 show_rcu_tasks_trace_gp_kthread(); 1310 } 1311 #endif /* #ifndef CONFIG_TINY_RCU */ 1312 1313 #ifdef CONFIG_PROVE_RCU 1314 struct rcu_tasks_test_desc { 1315 struct rcu_head rh; 1316 const char *name; 1317 bool notrun; 1318 }; 1319 1320 static struct rcu_tasks_test_desc tests[] = { 1321 { 1322 .name = "call_rcu_tasks()", 1323 /* If not defined, the test is skipped. */ 1324 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU), 1325 }, 1326 { 1327 .name = "call_rcu_tasks_rude()", 1328 /* If not defined, the test is skipped. */ 1329 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1330 }, 1331 { 1332 .name = "call_rcu_tasks_trace()", 1333 /* If not defined, the test is skipped. */ 1334 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1335 } 1336 }; 1337 1338 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1339 { 1340 struct rcu_tasks_test_desc *rttd = 1341 container_of(rhp, struct rcu_tasks_test_desc, rh); 1342 1343 pr_info("Callback from %s invoked.\n", rttd->name); 1344 1345 rttd->notrun = true; 1346 } 1347 1348 static void rcu_tasks_initiate_self_tests(void) 1349 { 1350 pr_info("Running RCU-tasks wait API self tests\n"); 1351 #ifdef CONFIG_TASKS_RCU 1352 synchronize_rcu_tasks(); 1353 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1354 #endif 1355 1356 #ifdef CONFIG_TASKS_RUDE_RCU 1357 synchronize_rcu_tasks_rude(); 1358 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1359 #endif 1360 1361 #ifdef CONFIG_TASKS_TRACE_RCU 1362 synchronize_rcu_tasks_trace(); 1363 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1364 #endif 1365 } 1366 1367 static int rcu_tasks_verify_self_tests(void) 1368 { 1369 int ret = 0; 1370 int i; 1371 1372 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1373 if (!tests[i].notrun) { // still hanging. 1374 pr_err("%s has been failed.\n", tests[i].name); 1375 ret = -1; 1376 } 1377 } 1378 1379 if (ret) 1380 WARN_ON(1); 1381 1382 return ret; 1383 } 1384 late_initcall(rcu_tasks_verify_self_tests); 1385 #else /* #ifdef CONFIG_PROVE_RCU */ 1386 static void rcu_tasks_initiate_self_tests(void) { } 1387 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1388 1389 void __init rcu_init_tasks_generic(void) 1390 { 1391 #ifdef CONFIG_TASKS_RCU 1392 rcu_spawn_tasks_kthread(); 1393 #endif 1394 1395 #ifdef CONFIG_TASKS_RUDE_RCU 1396 rcu_spawn_tasks_rude_kthread(); 1397 #endif 1398 1399 #ifdef CONFIG_TASKS_TRACE_RCU 1400 rcu_spawn_tasks_trace_kthread(); 1401 #endif 1402 1403 // Run the self-tests. 1404 rcu_tasks_initiate_self_tests(); 1405 } 1406 1407 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1408 static inline void rcu_tasks_bootup_oddness(void) {} 1409 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1410