1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_jiffies: Time of last @gp_state transition. 32 * @gp_start: Most recent grace-period start in jiffies. 33 * @n_gps: Number of grace periods completed since boot. 34 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 35 * @n_ipis_fails: Number of IPI-send failures. 36 * @pregp_func: This flavor's pre-grace-period function (optional). 37 * @pertask_func: This flavor's per-task scan function (optional). 38 * @postscan_func: This flavor's post-task scan function (optional). 39 * @holdout_func: This flavor's holdout-list scan function (optional). 40 * @postgp_func: This flavor's post-grace-period function (optional). 41 * @call_func: This flavor's call_rcu()-equivalent function. 42 * @name: This flavor's textual name. 43 * @kname: This flavor's kthread name. 44 */ 45 struct rcu_tasks { 46 struct rcu_head *cbs_head; 47 struct rcu_head **cbs_tail; 48 struct wait_queue_head cbs_wq; 49 raw_spinlock_t cbs_lock; 50 int gp_state; 51 unsigned long gp_jiffies; 52 unsigned long gp_start; 53 unsigned long n_gps; 54 unsigned long n_ipis; 55 unsigned long n_ipis_fails; 56 struct task_struct *kthread_ptr; 57 rcu_tasks_gp_func_t gp_func; 58 pregp_func_t pregp_func; 59 pertask_func_t pertask_func; 60 postscan_func_t postscan_func; 61 holdouts_func_t holdouts_func; 62 postgp_func_t postgp_func; 63 call_rcu_func_t call_func; 64 char *name; 65 char *kname; 66 }; 67 68 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 69 static struct rcu_tasks rt_name = \ 70 { \ 71 .cbs_tail = &rt_name.cbs_head, \ 72 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 73 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 74 .gp_func = gp, \ 75 .call_func = call, \ 76 .name = n, \ 77 .kname = #rt_name, \ 78 } 79 80 /* Track exiting tasks in order to allow them to be waited for. */ 81 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 82 83 /* Avoid IPIing CPUs early in the grace period. */ 84 #define RCU_TASK_IPI_DELAY (HZ / 2) 85 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 86 module_param(rcu_task_ipi_delay, int, 0644); 87 88 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 89 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 90 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 91 module_param(rcu_task_stall_timeout, int, 0644); 92 93 /* RCU tasks grace-period state for debugging. */ 94 #define RTGS_INIT 0 95 #define RTGS_WAIT_WAIT_CBS 1 96 #define RTGS_WAIT_GP 2 97 #define RTGS_PRE_WAIT_GP 3 98 #define RTGS_SCAN_TASKLIST 4 99 #define RTGS_POST_SCAN_TASKLIST 5 100 #define RTGS_WAIT_SCAN_HOLDOUTS 6 101 #define RTGS_SCAN_HOLDOUTS 7 102 #define RTGS_POST_GP 8 103 #define RTGS_WAIT_READERS 9 104 #define RTGS_INVOKE_CBS 10 105 #define RTGS_WAIT_CBS 11 106 #ifndef CONFIG_TINY_RCU 107 static const char * const rcu_tasks_gp_state_names[] = { 108 "RTGS_INIT", 109 "RTGS_WAIT_WAIT_CBS", 110 "RTGS_WAIT_GP", 111 "RTGS_PRE_WAIT_GP", 112 "RTGS_SCAN_TASKLIST", 113 "RTGS_POST_SCAN_TASKLIST", 114 "RTGS_WAIT_SCAN_HOLDOUTS", 115 "RTGS_SCAN_HOLDOUTS", 116 "RTGS_POST_GP", 117 "RTGS_WAIT_READERS", 118 "RTGS_INVOKE_CBS", 119 "RTGS_WAIT_CBS", 120 }; 121 #endif /* #ifndef CONFIG_TINY_RCU */ 122 123 //////////////////////////////////////////////////////////////////////// 124 // 125 // Generic code. 126 127 /* Record grace-period phase and time. */ 128 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 129 { 130 rtp->gp_state = newstate; 131 rtp->gp_jiffies = jiffies; 132 } 133 134 #ifndef CONFIG_TINY_RCU 135 /* Return state name. */ 136 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 137 { 138 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 139 int j = READ_ONCE(i); // Prevent the compiler from reading twice 140 141 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 142 return "???"; 143 return rcu_tasks_gp_state_names[j]; 144 } 145 #endif /* #ifndef CONFIG_TINY_RCU */ 146 147 // Enqueue a callback for the specified flavor of Tasks RCU. 148 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 149 struct rcu_tasks *rtp) 150 { 151 unsigned long flags; 152 bool needwake; 153 154 rhp->next = NULL; 155 rhp->func = func; 156 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 157 needwake = !rtp->cbs_head; 158 WRITE_ONCE(*rtp->cbs_tail, rhp); 159 rtp->cbs_tail = &rhp->next; 160 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 161 /* We can't create the thread unless interrupts are enabled. */ 162 if (needwake && READ_ONCE(rtp->kthread_ptr)) 163 wake_up(&rtp->cbs_wq); 164 } 165 166 // Wait for a grace period for the specified flavor of Tasks RCU. 167 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 168 { 169 /* Complain if the scheduler has not started. */ 170 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 171 "synchronize_rcu_tasks called too soon"); 172 173 /* Wait for the grace period. */ 174 wait_rcu_gp(rtp->call_func); 175 } 176 177 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 178 static int __noreturn rcu_tasks_kthread(void *arg) 179 { 180 unsigned long flags; 181 struct rcu_head *list; 182 struct rcu_head *next; 183 struct rcu_tasks *rtp = arg; 184 185 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 186 housekeeping_affine(current, HK_FLAG_RCU); 187 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 188 189 /* 190 * Each pass through the following loop makes one check for 191 * newly arrived callbacks, and, if there are some, waits for 192 * one RCU-tasks grace period and then invokes the callbacks. 193 * This loop is terminated by the system going down. ;-) 194 */ 195 for (;;) { 196 197 /* Pick up any new callbacks. */ 198 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 199 smp_mb__after_spinlock(); // Order updates vs. GP. 200 list = rtp->cbs_head; 201 rtp->cbs_head = NULL; 202 rtp->cbs_tail = &rtp->cbs_head; 203 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 204 205 /* If there were none, wait a bit and start over. */ 206 if (!list) { 207 wait_event_interruptible(rtp->cbs_wq, 208 READ_ONCE(rtp->cbs_head)); 209 if (!rtp->cbs_head) { 210 WARN_ON(signal_pending(current)); 211 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 212 schedule_timeout_idle(HZ/10); 213 } 214 continue; 215 } 216 217 // Wait for one grace period. 218 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 219 rtp->gp_start = jiffies; 220 rtp->gp_func(rtp); 221 rtp->n_gps++; 222 223 /* Invoke the callbacks. */ 224 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 225 while (list) { 226 next = list->next; 227 local_bh_disable(); 228 list->func(list); 229 local_bh_enable(); 230 list = next; 231 cond_resched(); 232 } 233 /* Paranoid sleep to keep this from entering a tight loop */ 234 schedule_timeout_idle(HZ/10); 235 236 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 237 } 238 } 239 240 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */ 241 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 242 { 243 struct task_struct *t; 244 245 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 246 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 247 return; 248 smp_mb(); /* Ensure others see full kthread. */ 249 } 250 251 #ifndef CONFIG_TINY_RCU 252 253 /* 254 * Print any non-default Tasks RCU settings. 255 */ 256 static void __init rcu_tasks_bootup_oddness(void) 257 { 258 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 259 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 260 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 261 #endif /* #ifdef CONFIG_TASKS_RCU */ 262 #ifdef CONFIG_TASKS_RCU 263 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 264 #endif /* #ifdef CONFIG_TASKS_RCU */ 265 #ifdef CONFIG_TASKS_RUDE_RCU 266 pr_info("\tRude variant of Tasks RCU enabled.\n"); 267 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 268 #ifdef CONFIG_TASKS_TRACE_RCU 269 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 270 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 271 } 272 273 #endif /* #ifndef CONFIG_TINY_RCU */ 274 275 #ifndef CONFIG_TINY_RCU 276 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 277 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 278 { 279 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 280 rtp->kname, 281 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 282 jiffies - data_race(rtp->gp_jiffies), 283 data_race(rtp->n_gps), 284 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 285 ".k"[!!data_race(rtp->kthread_ptr)], 286 ".C"[!!data_race(rtp->cbs_head)], 287 s); 288 } 289 #endif /* #ifndef CONFIG_TINY_RCU */ 290 291 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 292 293 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 294 295 //////////////////////////////////////////////////////////////////////// 296 // 297 // Shared code between task-list-scanning variants of Tasks RCU. 298 299 /* Wait for one RCU-tasks grace period. */ 300 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 301 { 302 struct task_struct *g, *t; 303 unsigned long lastreport; 304 LIST_HEAD(holdouts); 305 int fract; 306 307 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 308 rtp->pregp_func(); 309 310 /* 311 * There were callbacks, so we need to wait for an RCU-tasks 312 * grace period. Start off by scanning the task list for tasks 313 * that are not already voluntarily blocked. Mark these tasks 314 * and make a list of them in holdouts. 315 */ 316 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 317 rcu_read_lock(); 318 for_each_process_thread(g, t) 319 rtp->pertask_func(t, &holdouts); 320 rcu_read_unlock(); 321 322 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 323 rtp->postscan_func(&holdouts); 324 325 /* 326 * Each pass through the following loop scans the list of holdout 327 * tasks, removing any that are no longer holdouts. When the list 328 * is empty, we are done. 329 */ 330 lastreport = jiffies; 331 332 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */ 333 fract = 10; 334 335 for (;;) { 336 bool firstreport; 337 bool needreport; 338 int rtst; 339 340 if (list_empty(&holdouts)) 341 break; 342 343 /* Slowly back off waiting for holdouts */ 344 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 345 schedule_timeout_idle(HZ/fract); 346 347 if (fract > 1) 348 fract--; 349 350 rtst = READ_ONCE(rcu_task_stall_timeout); 351 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 352 if (needreport) 353 lastreport = jiffies; 354 firstreport = true; 355 WARN_ON(signal_pending(current)); 356 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 357 rtp->holdouts_func(&holdouts, needreport, &firstreport); 358 } 359 360 set_tasks_gp_state(rtp, RTGS_POST_GP); 361 rtp->postgp_func(rtp); 362 } 363 364 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 365 366 #ifdef CONFIG_TASKS_RCU 367 368 //////////////////////////////////////////////////////////////////////// 369 // 370 // Simple variant of RCU whose quiescent states are voluntary context 371 // switch, cond_resched_rcu_qs(), user-space execution, and idle. 372 // As such, grace periods can take one good long time. There are no 373 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 374 // because this implementation is intended to get the system into a safe 375 // state for some of the manipulations involved in tracing and the like. 376 // Finally, this implementation does not support high call_rcu_tasks() 377 // rates from multiple CPUs. If this is required, per-CPU callback lists 378 // will be needed. 379 380 /* Pre-grace-period preparation. */ 381 static void rcu_tasks_pregp_step(void) 382 { 383 /* 384 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 385 * to complete. Invoking synchronize_rcu() suffices because all 386 * these transitions occur with interrupts disabled. Without this 387 * synchronize_rcu(), a read-side critical section that started 388 * before the grace period might be incorrectly seen as having 389 * started after the grace period. 390 * 391 * This synchronize_rcu() also dispenses with the need for a 392 * memory barrier on the first store to t->rcu_tasks_holdout, 393 * as it forces the store to happen after the beginning of the 394 * grace period. 395 */ 396 synchronize_rcu(); 397 } 398 399 /* Per-task initial processing. */ 400 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 401 { 402 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 403 get_task_struct(t); 404 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 405 WRITE_ONCE(t->rcu_tasks_holdout, true); 406 list_add(&t->rcu_tasks_holdout_list, hop); 407 } 408 } 409 410 /* Processing between scanning taskslist and draining the holdout list. */ 411 static void rcu_tasks_postscan(struct list_head *hop) 412 { 413 /* 414 * Wait for tasks that are in the process of exiting. This 415 * does only part of the job, ensuring that all tasks that were 416 * previously exiting reach the point where they have disabled 417 * preemption, allowing the later synchronize_rcu() to finish 418 * the job. 419 */ 420 synchronize_srcu(&tasks_rcu_exit_srcu); 421 } 422 423 /* See if tasks are still holding out, complain if so. */ 424 static void check_holdout_task(struct task_struct *t, 425 bool needreport, bool *firstreport) 426 { 427 int cpu; 428 429 if (!READ_ONCE(t->rcu_tasks_holdout) || 430 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 431 !READ_ONCE(t->on_rq) || 432 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 433 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 434 WRITE_ONCE(t->rcu_tasks_holdout, false); 435 list_del_init(&t->rcu_tasks_holdout_list); 436 put_task_struct(t); 437 return; 438 } 439 rcu_request_urgent_qs_task(t); 440 if (!needreport) 441 return; 442 if (*firstreport) { 443 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 444 *firstreport = false; 445 } 446 cpu = task_cpu(t); 447 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 448 t, ".I"[is_idle_task(t)], 449 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 450 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 451 t->rcu_tasks_idle_cpu, cpu); 452 sched_show_task(t); 453 } 454 455 /* Scan the holdout lists for tasks no longer holding out. */ 456 static void check_all_holdout_tasks(struct list_head *hop, 457 bool needreport, bool *firstreport) 458 { 459 struct task_struct *t, *t1; 460 461 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 462 check_holdout_task(t, needreport, firstreport); 463 cond_resched(); 464 } 465 } 466 467 /* Finish off the Tasks-RCU grace period. */ 468 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 469 { 470 /* 471 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 472 * memory barriers prior to them in the schedule() path, memory 473 * reordering on other CPUs could cause their RCU-tasks read-side 474 * critical sections to extend past the end of the grace period. 475 * However, because these ->nvcsw updates are carried out with 476 * interrupts disabled, we can use synchronize_rcu() to force the 477 * needed ordering on all such CPUs. 478 * 479 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 480 * accesses to be within the grace period, avoiding the need for 481 * memory barriers for ->rcu_tasks_holdout accesses. 482 * 483 * In addition, this synchronize_rcu() waits for exiting tasks 484 * to complete their final preempt_disable() region of execution, 485 * cleaning up after the synchronize_srcu() above. 486 */ 487 synchronize_rcu(); 488 } 489 490 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 491 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 492 493 /** 494 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 495 * @rhp: structure to be used for queueing the RCU updates. 496 * @func: actual callback function to be invoked after the grace period 497 * 498 * The callback function will be invoked some time after a full grace 499 * period elapses, in other words after all currently executing RCU 500 * read-side critical sections have completed. call_rcu_tasks() assumes 501 * that the read-side critical sections end at a voluntary context 502 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 503 * or transition to usermode execution. As such, there are no read-side 504 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 505 * this primitive is intended to determine that all tasks have passed 506 * through a safe state, not so much for data-strcuture synchronization. 507 * 508 * See the description of call_rcu() for more detailed information on 509 * memory ordering guarantees. 510 */ 511 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 512 { 513 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 514 } 515 EXPORT_SYMBOL_GPL(call_rcu_tasks); 516 517 /** 518 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 519 * 520 * Control will return to the caller some time after a full rcu-tasks 521 * grace period has elapsed, in other words after all currently 522 * executing rcu-tasks read-side critical sections have elapsed. These 523 * read-side critical sections are delimited by calls to schedule(), 524 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 525 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 526 * 527 * This is a very specialized primitive, intended only for a few uses in 528 * tracing and other situations requiring manipulation of function 529 * preambles and profiling hooks. The synchronize_rcu_tasks() function 530 * is not (yet) intended for heavy use from multiple CPUs. 531 * 532 * See the description of synchronize_rcu() for more detailed information 533 * on memory ordering guarantees. 534 */ 535 void synchronize_rcu_tasks(void) 536 { 537 synchronize_rcu_tasks_generic(&rcu_tasks); 538 } 539 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 540 541 /** 542 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 543 * 544 * Although the current implementation is guaranteed to wait, it is not 545 * obligated to, for example, if there are no pending callbacks. 546 */ 547 void rcu_barrier_tasks(void) 548 { 549 /* There is only one callback queue, so this is easy. ;-) */ 550 synchronize_rcu_tasks(); 551 } 552 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 553 554 static int __init rcu_spawn_tasks_kthread(void) 555 { 556 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 557 rcu_tasks.pertask_func = rcu_tasks_pertask; 558 rcu_tasks.postscan_func = rcu_tasks_postscan; 559 rcu_tasks.holdouts_func = check_all_holdout_tasks; 560 rcu_tasks.postgp_func = rcu_tasks_postgp; 561 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 562 return 0; 563 } 564 core_initcall(rcu_spawn_tasks_kthread); 565 566 #ifndef CONFIG_TINY_RCU 567 static void show_rcu_tasks_classic_gp_kthread(void) 568 { 569 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 570 } 571 #endif /* #ifndef CONFIG_TINY_RCU */ 572 573 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 574 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 575 { 576 preempt_disable(); 577 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 578 preempt_enable(); 579 } 580 581 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 582 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 583 { 584 struct task_struct *t = current; 585 586 preempt_disable(); 587 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 588 preempt_enable(); 589 exit_tasks_rcu_finish_trace(t); 590 } 591 592 #else /* #ifdef CONFIG_TASKS_RCU */ 593 static inline void show_rcu_tasks_classic_gp_kthread(void) { } 594 void exit_tasks_rcu_start(void) { } 595 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 596 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 597 598 #ifdef CONFIG_TASKS_RUDE_RCU 599 600 //////////////////////////////////////////////////////////////////////// 601 // 602 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 603 // passing an empty function to schedule_on_each_cpu(). This approach 604 // provides an asynchronous call_rcu_tasks_rude() API and batching 605 // of concurrent calls to the synchronous synchronize_rcu_rude() API. 606 // This sends IPIs far and wide and induces otherwise unnecessary context 607 // switches on all online CPUs, whether idle or not. 608 609 // Empty function to allow workqueues to force a context switch. 610 static void rcu_tasks_be_rude(struct work_struct *work) 611 { 612 } 613 614 // Wait for one rude RCU-tasks grace period. 615 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 616 { 617 rtp->n_ipis += cpumask_weight(cpu_online_mask); 618 schedule_on_each_cpu(rcu_tasks_be_rude); 619 } 620 621 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 622 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 623 "RCU Tasks Rude"); 624 625 /** 626 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 627 * @rhp: structure to be used for queueing the RCU updates. 628 * @func: actual callback function to be invoked after the grace period 629 * 630 * The callback function will be invoked some time after a full grace 631 * period elapses, in other words after all currently executing RCU 632 * read-side critical sections have completed. call_rcu_tasks_rude() 633 * assumes that the read-side critical sections end at context switch, 634 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 635 * there are no read-side primitives analogous to rcu_read_lock() and 636 * rcu_read_unlock() because this primitive is intended to determine 637 * that all tasks have passed through a safe state, not so much for 638 * data-strcuture synchronization. 639 * 640 * See the description of call_rcu() for more detailed information on 641 * memory ordering guarantees. 642 */ 643 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 644 { 645 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 646 } 647 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 648 649 /** 650 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 651 * 652 * Control will return to the caller some time after a rude rcu-tasks 653 * grace period has elapsed, in other words after all currently 654 * executing rcu-tasks read-side critical sections have elapsed. These 655 * read-side critical sections are delimited by calls to schedule(), 656 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 657 * anyway) cond_resched(). 658 * 659 * This is a very specialized primitive, intended only for a few uses in 660 * tracing and other situations requiring manipulation of function preambles 661 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 662 * (yet) intended for heavy use from multiple CPUs. 663 * 664 * See the description of synchronize_rcu() for more detailed information 665 * on memory ordering guarantees. 666 */ 667 void synchronize_rcu_tasks_rude(void) 668 { 669 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 670 } 671 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 672 673 /** 674 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 675 * 676 * Although the current implementation is guaranteed to wait, it is not 677 * obligated to, for example, if there are no pending callbacks. 678 */ 679 void rcu_barrier_tasks_rude(void) 680 { 681 /* There is only one callback queue, so this is easy. ;-) */ 682 synchronize_rcu_tasks_rude(); 683 } 684 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 685 686 static int __init rcu_spawn_tasks_rude_kthread(void) 687 { 688 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 689 return 0; 690 } 691 core_initcall(rcu_spawn_tasks_rude_kthread); 692 693 #ifndef CONFIG_TINY_RCU 694 static void show_rcu_tasks_rude_gp_kthread(void) 695 { 696 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 697 } 698 #endif /* #ifndef CONFIG_TINY_RCU */ 699 700 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */ 701 static void show_rcu_tasks_rude_gp_kthread(void) {} 702 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */ 703 704 //////////////////////////////////////////////////////////////////////// 705 // 706 // Tracing variant of Tasks RCU. This variant is designed to be used 707 // to protect tracing hooks, including those of BPF. This variant 708 // therefore: 709 // 710 // 1. Has explicit read-side markers to allow finite grace periods 711 // in the face of in-kernel loops for PREEMPT=n builds. 712 // 713 // 2. Protects code in the idle loop, exception entry/exit, and 714 // CPU-hotplug code paths, similar to the capabilities of SRCU. 715 // 716 // 3. Avoids expensive read-side instruction, having overhead similar 717 // to that of Preemptible RCU. 718 // 719 // There are of course downsides. The grace-period code can send IPIs to 720 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 721 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 722 // is a single callback queue guarded by a single lock, again, much as for 723 // Tasks RCU. If needed, these downsides can be at least partially remedied. 724 // 725 // Perhaps most important, this variant of RCU does not affect the vanilla 726 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 727 // readers can operate from idle, offline, and exception entry/exit in no 728 // way allows rcu_preempt and rcu_sched readers to also do so. 729 730 // The lockdep state must be outside of #ifdef to be useful. 731 #ifdef CONFIG_DEBUG_LOCK_ALLOC 732 static struct lock_class_key rcu_lock_trace_key; 733 struct lockdep_map rcu_trace_lock_map = 734 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 735 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 736 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 737 738 #ifdef CONFIG_TASKS_TRACE_RCU 739 740 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 741 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 742 743 // Record outstanding IPIs to each CPU. No point in sending two... 744 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 745 746 // The number of detections of task quiescent state relying on 747 // heavyweight readers executing explicit memory barriers. 748 unsigned long n_heavy_reader_attempts; 749 unsigned long n_heavy_reader_updates; 750 unsigned long n_heavy_reader_ofl_updates; 751 752 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 753 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 754 "RCU Tasks Trace"); 755 756 /* 757 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 758 * while the scheduler locks are held. 759 */ 760 static void rcu_read_unlock_iw(struct irq_work *iwp) 761 { 762 wake_up(&trc_wait); 763 } 764 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 765 766 /* If we are the last reader, wake up the grace-period kthread. */ 767 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) 768 { 769 int nq = t->trc_reader_special.b.need_qs; 770 771 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 772 t->trc_reader_special.b.need_mb) 773 smp_mb(); // Pairs with update-side barriers. 774 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 775 if (nq) 776 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 777 WRITE_ONCE(t->trc_reader_nesting, nesting); 778 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 779 irq_work_queue(&rcu_tasks_trace_iw); 780 } 781 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 782 783 /* Add a task to the holdout list, if it is not already on the list. */ 784 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 785 { 786 if (list_empty(&t->trc_holdout_list)) { 787 get_task_struct(t); 788 list_add(&t->trc_holdout_list, bhp); 789 } 790 } 791 792 /* Remove a task from the holdout list, if it is in fact present. */ 793 static void trc_del_holdout(struct task_struct *t) 794 { 795 if (!list_empty(&t->trc_holdout_list)) { 796 list_del_init(&t->trc_holdout_list); 797 put_task_struct(t); 798 } 799 } 800 801 /* IPI handler to check task state. */ 802 static void trc_read_check_handler(void *t_in) 803 { 804 struct task_struct *t = current; 805 struct task_struct *texp = t_in; 806 807 // If the task is no longer running on this CPU, leave. 808 if (unlikely(texp != t)) { 809 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 810 wake_up(&trc_wait); 811 goto reset_ipi; // Already on holdout list, so will check later. 812 } 813 814 // If the task is not in a read-side critical section, and 815 // if this is the last reader, awaken the grace-period kthread. 816 if (likely(!t->trc_reader_nesting)) { 817 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 818 wake_up(&trc_wait); 819 // Mark as checked after decrement to avoid false 820 // positives on the above WARN_ON_ONCE(). 821 WRITE_ONCE(t->trc_reader_checked, true); 822 goto reset_ipi; 823 } 824 WRITE_ONCE(t->trc_reader_checked, true); 825 826 // Get here if the task is in a read-side critical section. Set 827 // its state so that it will awaken the grace-period kthread upon 828 // exit from that critical section. 829 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 830 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 831 832 reset_ipi: 833 // Allow future IPIs to be sent on CPU and for task. 834 // Also order this IPI handler against any later manipulations of 835 // the intended task. 836 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 837 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 838 } 839 840 /* Callback function for scheduler to check locked-down task. */ 841 static bool trc_inspect_reader(struct task_struct *t, void *arg) 842 { 843 int cpu = task_cpu(t); 844 bool in_qs = false; 845 bool ofl = cpu_is_offline(cpu); 846 847 if (task_curr(t)) { 848 WARN_ON_ONCE(ofl && !is_idle_task(t)); 849 850 // If no chance of heavyweight readers, do it the hard way. 851 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 852 return false; 853 854 // If heavyweight readers are enabled on the remote task, 855 // we can inspect its state despite its currently running. 856 // However, we cannot safely change its state. 857 n_heavy_reader_attempts++; 858 if (!ofl && // Check for "running" idle tasks on offline CPUs. 859 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 860 return false; // No quiescent state, do it the hard way. 861 n_heavy_reader_updates++; 862 if (ofl) 863 n_heavy_reader_ofl_updates++; 864 in_qs = true; 865 } else { 866 in_qs = likely(!t->trc_reader_nesting); 867 } 868 869 // Mark as checked. Because this is called from the grace-period 870 // kthread, also remove the task from the holdout list. 871 t->trc_reader_checked = true; 872 trc_del_holdout(t); 873 874 if (in_qs) 875 return true; // Already in quiescent state, done!!! 876 877 // The task is in a read-side critical section, so set up its 878 // state so that it will awaken the grace-period kthread upon exit 879 // from that critical section. 880 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 881 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 882 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 883 return true; 884 } 885 886 /* Attempt to extract the state for the specified task. */ 887 static void trc_wait_for_one_reader(struct task_struct *t, 888 struct list_head *bhp) 889 { 890 int cpu; 891 892 // If a previous IPI is still in flight, let it complete. 893 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 894 return; 895 896 // The current task had better be in a quiescent state. 897 if (t == current) { 898 t->trc_reader_checked = true; 899 trc_del_holdout(t); 900 WARN_ON_ONCE(t->trc_reader_nesting); 901 return; 902 } 903 904 // Attempt to nail down the task for inspection. 905 get_task_struct(t); 906 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { 907 put_task_struct(t); 908 return; 909 } 910 put_task_struct(t); 911 912 // If currently running, send an IPI, either way, add to list. 913 trc_add_holdout(t, bhp); 914 if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 915 // The task is currently running, so try IPIing it. 916 cpu = task_cpu(t); 917 918 // If there is already an IPI outstanding, let it happen. 919 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 920 return; 921 922 atomic_inc(&trc_n_readers_need_end); 923 per_cpu(trc_ipi_to_cpu, cpu) = true; 924 t->trc_ipi_to_cpu = cpu; 925 rcu_tasks_trace.n_ipis++; 926 if (smp_call_function_single(cpu, 927 trc_read_check_handler, t, 0)) { 928 // Just in case there is some other reason for 929 // failure than the target CPU being offline. 930 rcu_tasks_trace.n_ipis_fails++; 931 per_cpu(trc_ipi_to_cpu, cpu) = false; 932 t->trc_ipi_to_cpu = cpu; 933 if (atomic_dec_and_test(&trc_n_readers_need_end)) { 934 WARN_ON_ONCE(1); 935 wake_up(&trc_wait); 936 } 937 } 938 } 939 } 940 941 /* Initialize for a new RCU-tasks-trace grace period. */ 942 static void rcu_tasks_trace_pregp_step(void) 943 { 944 int cpu; 945 946 // Allow for fast-acting IPIs. 947 atomic_set(&trc_n_readers_need_end, 1); 948 949 // There shouldn't be any old IPIs, but... 950 for_each_possible_cpu(cpu) 951 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 952 953 // Disable CPU hotplug across the tasklist scan. 954 // This also waits for all readers in CPU-hotplug code paths. 955 cpus_read_lock(); 956 } 957 958 /* Do first-round processing for the specified task. */ 959 static void rcu_tasks_trace_pertask(struct task_struct *t, 960 struct list_head *hop) 961 { 962 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 963 WRITE_ONCE(t->trc_reader_checked, false); 964 t->trc_ipi_to_cpu = -1; 965 trc_wait_for_one_reader(t, hop); 966 } 967 968 /* 969 * Do intermediate processing between task and holdout scans and 970 * pick up the idle tasks. 971 */ 972 static void rcu_tasks_trace_postscan(struct list_head *hop) 973 { 974 int cpu; 975 976 for_each_possible_cpu(cpu) 977 rcu_tasks_trace_pertask(idle_task(cpu), hop); 978 979 // Re-enable CPU hotplug now that the tasklist scan has completed. 980 cpus_read_unlock(); 981 982 // Wait for late-stage exiting tasks to finish exiting. 983 // These might have passed the call to exit_tasks_rcu_finish(). 984 synchronize_rcu(); 985 // Any tasks that exit after this point will set ->trc_reader_checked. 986 } 987 988 /* Show the state of a task stalling the current RCU tasks trace GP. */ 989 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 990 { 991 int cpu; 992 993 if (*firstreport) { 994 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 995 *firstreport = false; 996 } 997 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 998 cpu = task_cpu(t); 999 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1000 t->pid, 1001 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], 1002 ".i"[is_idle_task(t)], 1003 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], 1004 t->trc_reader_nesting, 1005 " N"[!!t->trc_reader_special.b.need_qs], 1006 cpu); 1007 sched_show_task(t); 1008 } 1009 1010 /* List stalled IPIs for RCU tasks trace. */ 1011 static void show_stalled_ipi_trace(void) 1012 { 1013 int cpu; 1014 1015 for_each_possible_cpu(cpu) 1016 if (per_cpu(trc_ipi_to_cpu, cpu)) 1017 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1018 } 1019 1020 /* Do one scan of the holdout list. */ 1021 static void check_all_holdout_tasks_trace(struct list_head *hop, 1022 bool needreport, bool *firstreport) 1023 { 1024 struct task_struct *g, *t; 1025 1026 // Disable CPU hotplug across the holdout list scan. 1027 cpus_read_lock(); 1028 1029 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1030 // If safe and needed, try to check the current task. 1031 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1032 !READ_ONCE(t->trc_reader_checked)) 1033 trc_wait_for_one_reader(t, hop); 1034 1035 // If check succeeded, remove this task from the list. 1036 if (READ_ONCE(t->trc_reader_checked)) 1037 trc_del_holdout(t); 1038 else if (needreport) 1039 show_stalled_task_trace(t, firstreport); 1040 } 1041 1042 // Re-enable CPU hotplug now that the holdout list scan has completed. 1043 cpus_read_unlock(); 1044 1045 if (needreport) { 1046 if (firstreport) 1047 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1048 show_stalled_ipi_trace(); 1049 } 1050 } 1051 1052 /* Wait for grace period to complete and provide ordering. */ 1053 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1054 { 1055 bool firstreport; 1056 struct task_struct *g, *t; 1057 LIST_HEAD(holdouts); 1058 long ret; 1059 1060 // Remove the safety count. 1061 smp_mb__before_atomic(); // Order vs. earlier atomics 1062 atomic_dec(&trc_n_readers_need_end); 1063 smp_mb__after_atomic(); // Order vs. later atomics 1064 1065 // Wait for readers. 1066 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1067 for (;;) { 1068 ret = wait_event_idle_exclusive_timeout( 1069 trc_wait, 1070 atomic_read(&trc_n_readers_need_end) == 0, 1071 READ_ONCE(rcu_task_stall_timeout)); 1072 if (ret) 1073 break; // Count reached zero. 1074 // Stall warning time, so make a list of the offenders. 1075 for_each_process_thread(g, t) 1076 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1077 trc_add_holdout(t, &holdouts); 1078 firstreport = true; 1079 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) 1080 if (READ_ONCE(t->trc_reader_special.b.need_qs)) { 1081 show_stalled_task_trace(t, &firstreport); 1082 trc_del_holdout(t); 1083 } 1084 if (firstreport) 1085 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1086 show_stalled_ipi_trace(); 1087 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1088 } 1089 smp_mb(); // Caller's code must be ordered after wakeup. 1090 // Pairs with pretty much every ordering primitive. 1091 } 1092 1093 /* Report any needed quiescent state for this exiting task. */ 1094 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1095 { 1096 WRITE_ONCE(t->trc_reader_checked, true); 1097 WARN_ON_ONCE(t->trc_reader_nesting); 1098 WRITE_ONCE(t->trc_reader_nesting, 0); 1099 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1100 rcu_read_unlock_trace_special(t, 0); 1101 } 1102 1103 /** 1104 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1105 * @rhp: structure to be used for queueing the RCU updates. 1106 * @func: actual callback function to be invoked after the grace period 1107 * 1108 * The callback function will be invoked some time after a full grace 1109 * period elapses, in other words after all currently executing RCU 1110 * read-side critical sections have completed. call_rcu_tasks_trace() 1111 * assumes that the read-side critical sections end at context switch, 1112 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 1113 * there are no read-side primitives analogous to rcu_read_lock() and 1114 * rcu_read_unlock() because this primitive is intended to determine 1115 * that all tasks have passed through a safe state, not so much for 1116 * data-strcuture synchronization. 1117 * 1118 * See the description of call_rcu() for more detailed information on 1119 * memory ordering guarantees. 1120 */ 1121 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1122 { 1123 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1124 } 1125 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1126 1127 /** 1128 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1129 * 1130 * Control will return to the caller some time after a trace rcu-tasks 1131 * grace period has elapsed, in other words after all currently executing 1132 * rcu-tasks read-side critical sections have elapsed. These read-side 1133 * critical sections are delimited by calls to rcu_read_lock_trace() 1134 * and rcu_read_unlock_trace(). 1135 * 1136 * This is a very specialized primitive, intended only for a few uses in 1137 * tracing and other situations requiring manipulation of function preambles 1138 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1139 * (yet) intended for heavy use from multiple CPUs. 1140 * 1141 * See the description of synchronize_rcu() for more detailed information 1142 * on memory ordering guarantees. 1143 */ 1144 void synchronize_rcu_tasks_trace(void) 1145 { 1146 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1147 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1148 } 1149 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1150 1151 /** 1152 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1153 * 1154 * Although the current implementation is guaranteed to wait, it is not 1155 * obligated to, for example, if there are no pending callbacks. 1156 */ 1157 void rcu_barrier_tasks_trace(void) 1158 { 1159 /* There is only one callback queue, so this is easy. ;-) */ 1160 synchronize_rcu_tasks_trace(); 1161 } 1162 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1163 1164 static int __init rcu_spawn_tasks_trace_kthread(void) 1165 { 1166 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1167 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1168 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1169 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1170 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1171 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1172 return 0; 1173 } 1174 core_initcall(rcu_spawn_tasks_trace_kthread); 1175 1176 #ifndef CONFIG_TINY_RCU 1177 static void show_rcu_tasks_trace_gp_kthread(void) 1178 { 1179 char buf[64]; 1180 1181 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1182 data_race(n_heavy_reader_ofl_updates), 1183 data_race(n_heavy_reader_updates), 1184 data_race(n_heavy_reader_attempts)); 1185 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1186 } 1187 #endif /* #ifndef CONFIG_TINY_RCU */ 1188 1189 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1190 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1191 static inline void show_rcu_tasks_trace_gp_kthread(void) {} 1192 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1193 1194 #ifndef CONFIG_TINY_RCU 1195 void show_rcu_tasks_gp_kthreads(void) 1196 { 1197 show_rcu_tasks_classic_gp_kthread(); 1198 show_rcu_tasks_rude_gp_kthread(); 1199 show_rcu_tasks_trace_gp_kthread(); 1200 } 1201 #endif /* #ifndef CONFIG_TINY_RCU */ 1202 1203 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1204 static inline void rcu_tasks_bootup_oddness(void) {} 1205 void show_rcu_tasks_gp_kthreads(void) {} 1206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1207