1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @rtp_exit_list: List of tasks in the latter portion of do_exit(). 36 * @cpu: CPU number corresponding to this entry. 37 * @index: Index of this CPU in rtpcp_array of the rcu_tasks structure. 38 * @rtpp: Pointer to the rcu_tasks structure. 39 */ 40 struct rcu_tasks_percpu { 41 struct rcu_segcblist cblist; 42 raw_spinlock_t __private lock; 43 unsigned long rtp_jiffies; 44 unsigned long rtp_n_lock_retries; 45 struct timer_list lazy_timer; 46 unsigned int urgent_gp; 47 struct work_struct rtp_work; 48 struct irq_work rtp_irq_work; 49 struct rcu_head barrier_q_head; 50 struct list_head rtp_blkd_tasks; 51 struct list_head rtp_exit_list; 52 int cpu; 53 int index; 54 struct rcu_tasks *rtpp; 55 }; 56 57 /** 58 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 59 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 60 * @cbs_gbl_lock: Lock protecting callback list. 61 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 62 * @gp_func: This flavor's grace-period-wait function. 63 * @gp_state: Grace period's most recent state transition (debugging). 64 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 65 * @init_fract: Initial backoff sleep interval. 66 * @gp_jiffies: Time of last @gp_state transition. 67 * @gp_start: Most recent grace-period start in jiffies. 68 * @tasks_gp_seq: Number of grace periods completed since boot. 69 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 70 * @n_ipis_fails: Number of IPI-send failures. 71 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 72 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 73 * @pregp_func: This flavor's pre-grace-period function (optional). 74 * @pertask_func: This flavor's per-task scan function (optional). 75 * @postscan_func: This flavor's post-task scan function (optional). 76 * @holdouts_func: This flavor's holdout-list scan function (optional). 77 * @postgp_func: This flavor's post-grace-period function (optional). 78 * @call_func: This flavor's call_rcu()-equivalent function. 79 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 80 * @rtpcp_array: Array of pointers to rcu_tasks_percpu structure of CPUs in cpu_possible_mask. 81 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 82 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 83 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 84 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 85 * @barrier_q_mutex: Serialize barrier operations. 86 * @barrier_q_count: Number of queues being waited on. 87 * @barrier_q_completion: Barrier wait/wakeup mechanism. 88 * @barrier_q_seq: Sequence number for barrier operations. 89 * @name: This flavor's textual name. 90 * @kname: This flavor's kthread name. 91 */ 92 struct rcu_tasks { 93 struct rcuwait cbs_wait; 94 raw_spinlock_t cbs_gbl_lock; 95 struct mutex tasks_gp_mutex; 96 int gp_state; 97 int gp_sleep; 98 int init_fract; 99 unsigned long gp_jiffies; 100 unsigned long gp_start; 101 unsigned long tasks_gp_seq; 102 unsigned long n_ipis; 103 unsigned long n_ipis_fails; 104 struct task_struct *kthread_ptr; 105 unsigned long lazy_jiffies; 106 rcu_tasks_gp_func_t gp_func; 107 pregp_func_t pregp_func; 108 pertask_func_t pertask_func; 109 postscan_func_t postscan_func; 110 holdouts_func_t holdouts_func; 111 postgp_func_t postgp_func; 112 call_rcu_func_t call_func; 113 struct rcu_tasks_percpu __percpu *rtpcpu; 114 struct rcu_tasks_percpu **rtpcp_array; 115 int percpu_enqueue_shift; 116 int percpu_enqueue_lim; 117 int percpu_dequeue_lim; 118 unsigned long percpu_dequeue_gpseq; 119 struct mutex barrier_q_mutex; 120 atomic_t barrier_q_count; 121 struct completion barrier_q_completion; 122 unsigned long barrier_q_seq; 123 char *name; 124 char *kname; 125 }; 126 127 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 128 129 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 130 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 131 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 132 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 133 }; \ 134 static struct rcu_tasks rt_name = \ 135 { \ 136 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 137 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 138 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 139 .gp_func = gp, \ 140 .call_func = call, \ 141 .rtpcpu = &rt_name ## __percpu, \ 142 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 143 .name = n, \ 144 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 145 .percpu_enqueue_lim = 1, \ 146 .percpu_dequeue_lim = 1, \ 147 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 148 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 149 .kname = #rt_name, \ 150 } 151 152 #ifdef CONFIG_TASKS_RCU 153 /* Track exiting tasks in order to allow them to be waited for. */ 154 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 155 156 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 157 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 158 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 159 #endif 160 161 /* Avoid IPIing CPUs early in the grace period. */ 162 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 163 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 164 module_param(rcu_task_ipi_delay, int, 0644); 165 166 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 167 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 168 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 169 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 170 module_param(rcu_task_stall_timeout, int, 0644); 171 #define RCU_TASK_STALL_INFO (HZ * 10) 172 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 173 module_param(rcu_task_stall_info, int, 0644); 174 static int rcu_task_stall_info_mult __read_mostly = 3; 175 module_param(rcu_task_stall_info_mult, int, 0444); 176 177 static int rcu_task_enqueue_lim __read_mostly = -1; 178 module_param(rcu_task_enqueue_lim, int, 0444); 179 180 static bool rcu_task_cb_adjust; 181 static int rcu_task_contend_lim __read_mostly = 100; 182 module_param(rcu_task_contend_lim, int, 0444); 183 static int rcu_task_collapse_lim __read_mostly = 10; 184 module_param(rcu_task_collapse_lim, int, 0444); 185 static int rcu_task_lazy_lim __read_mostly = 32; 186 module_param(rcu_task_lazy_lim, int, 0444); 187 188 static int rcu_task_cpu_ids; 189 190 /* RCU tasks grace-period state for debugging. */ 191 #define RTGS_INIT 0 192 #define RTGS_WAIT_WAIT_CBS 1 193 #define RTGS_WAIT_GP 2 194 #define RTGS_PRE_WAIT_GP 3 195 #define RTGS_SCAN_TASKLIST 4 196 #define RTGS_POST_SCAN_TASKLIST 5 197 #define RTGS_WAIT_SCAN_HOLDOUTS 6 198 #define RTGS_SCAN_HOLDOUTS 7 199 #define RTGS_POST_GP 8 200 #define RTGS_WAIT_READERS 9 201 #define RTGS_INVOKE_CBS 10 202 #define RTGS_WAIT_CBS 11 203 #ifndef CONFIG_TINY_RCU 204 static const char * const rcu_tasks_gp_state_names[] = { 205 "RTGS_INIT", 206 "RTGS_WAIT_WAIT_CBS", 207 "RTGS_WAIT_GP", 208 "RTGS_PRE_WAIT_GP", 209 "RTGS_SCAN_TASKLIST", 210 "RTGS_POST_SCAN_TASKLIST", 211 "RTGS_WAIT_SCAN_HOLDOUTS", 212 "RTGS_SCAN_HOLDOUTS", 213 "RTGS_POST_GP", 214 "RTGS_WAIT_READERS", 215 "RTGS_INVOKE_CBS", 216 "RTGS_WAIT_CBS", 217 }; 218 #endif /* #ifndef CONFIG_TINY_RCU */ 219 220 //////////////////////////////////////////////////////////////////////// 221 // 222 // Generic code. 223 224 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 225 226 /* Record grace-period phase and time. */ 227 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 228 { 229 rtp->gp_state = newstate; 230 rtp->gp_jiffies = jiffies; 231 } 232 233 #ifndef CONFIG_TINY_RCU 234 /* Return state name. */ 235 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 236 { 237 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 238 int j = READ_ONCE(i); // Prevent the compiler from reading twice 239 240 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 241 return "???"; 242 return rcu_tasks_gp_state_names[j]; 243 } 244 #endif /* #ifndef CONFIG_TINY_RCU */ 245 246 // Initialize per-CPU callback lists for the specified flavor of 247 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 248 static void cblist_init_generic(struct rcu_tasks *rtp) 249 { 250 int cpu; 251 unsigned long flags; 252 int lim; 253 int shift; 254 int maxcpu; 255 int index = 0; 256 257 if (rcu_task_enqueue_lim < 0) { 258 rcu_task_enqueue_lim = 1; 259 rcu_task_cb_adjust = true; 260 } else if (rcu_task_enqueue_lim == 0) { 261 rcu_task_enqueue_lim = 1; 262 } 263 lim = rcu_task_enqueue_lim; 264 265 rtp->rtpcp_array = kcalloc(num_possible_cpus(), sizeof(struct rcu_tasks_percpu *), GFP_KERNEL); 266 BUG_ON(!rtp->rtpcp_array); 267 268 for_each_possible_cpu(cpu) { 269 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 270 271 WARN_ON_ONCE(!rtpcp); 272 if (cpu) 273 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 274 local_irq_save(flags); // serialize initialization 275 if (rcu_segcblist_empty(&rtpcp->cblist)) 276 rcu_segcblist_init(&rtpcp->cblist); 277 local_irq_restore(flags); 278 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 279 rtpcp->cpu = cpu; 280 rtpcp->rtpp = rtp; 281 rtpcp->index = index; 282 rtp->rtpcp_array[index] = rtpcp; 283 index++; 284 if (!rtpcp->rtp_blkd_tasks.next) 285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 286 if (!rtpcp->rtp_exit_list.next) 287 INIT_LIST_HEAD(&rtpcp->rtp_exit_list); 288 maxcpu = cpu; 289 } 290 291 rcu_task_cpu_ids = maxcpu + 1; 292 if (lim > rcu_task_cpu_ids) 293 lim = rcu_task_cpu_ids; 294 shift = ilog2(rcu_task_cpu_ids / lim); 295 if (((rcu_task_cpu_ids - 1) >> shift) >= lim) 296 shift++; 297 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 298 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 299 smp_store_release(&rtp->percpu_enqueue_lim, lim); 300 301 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d rcu_task_cpu_ids=%d.\n", 302 rtp->name, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), 303 rcu_task_cb_adjust, rcu_task_cpu_ids); 304 } 305 306 // Compute wakeup time for lazy callback timer. 307 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 308 { 309 return jiffies + rtp->lazy_jiffies; 310 } 311 312 // Timer handler that unlazifies lazy callbacks. 313 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 314 { 315 unsigned long flags; 316 bool needwake = false; 317 struct rcu_tasks *rtp; 318 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); 319 320 rtp = rtpcp->rtpp; 321 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 322 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 323 if (!rtpcp->urgent_gp) 324 rtpcp->urgent_gp = 1; 325 needwake = true; 326 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 327 } 328 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 329 if (needwake) 330 rcuwait_wake_up(&rtp->cbs_wait); 331 } 332 333 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 334 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 335 { 336 struct rcu_tasks *rtp; 337 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 338 339 rtp = rtpcp->rtpp; 340 rcuwait_wake_up(&rtp->cbs_wait); 341 } 342 343 // Enqueue a callback for the specified flavor of Tasks RCU. 344 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 345 struct rcu_tasks *rtp) 346 { 347 int chosen_cpu; 348 unsigned long flags; 349 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 350 int ideal_cpu; 351 unsigned long j; 352 bool needadjust = false; 353 bool needwake; 354 struct rcu_tasks_percpu *rtpcp; 355 356 rhp->next = NULL; 357 rhp->func = func; 358 local_irq_save(flags); 359 rcu_read_lock(); 360 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 361 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 362 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 363 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 364 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 365 j = jiffies; 366 if (rtpcp->rtp_jiffies != j) { 367 rtpcp->rtp_jiffies = j; 368 rtpcp->rtp_n_lock_retries = 0; 369 } 370 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 371 READ_ONCE(rtp->percpu_enqueue_lim) != rcu_task_cpu_ids) 372 needadjust = true; // Defer adjustment to avoid deadlock. 373 } 374 // Queuing callbacks before initialization not yet supported. 375 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 376 rcu_segcblist_init(&rtpcp->cblist); 377 needwake = (func == wakeme_after_rcu) || 378 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 379 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 380 if (rtp->lazy_jiffies) 381 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 382 else 383 needwake = rcu_segcblist_empty(&rtpcp->cblist); 384 } 385 if (needwake) 386 rtpcp->urgent_gp = 3; 387 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 388 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 389 if (unlikely(needadjust)) { 390 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 391 if (rtp->percpu_enqueue_lim != rcu_task_cpu_ids) { 392 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 393 WRITE_ONCE(rtp->percpu_dequeue_lim, rcu_task_cpu_ids); 394 smp_store_release(&rtp->percpu_enqueue_lim, rcu_task_cpu_ids); 395 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 396 } 397 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 398 } 399 rcu_read_unlock(); 400 /* We can't create the thread unless interrupts are enabled. */ 401 if (needwake && READ_ONCE(rtp->kthread_ptr)) 402 irq_work_queue(&rtpcp->rtp_irq_work); 403 } 404 405 // RCU callback function for rcu_barrier_tasks_generic(). 406 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 407 { 408 struct rcu_tasks *rtp; 409 struct rcu_tasks_percpu *rtpcp; 410 411 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 412 rtp = rtpcp->rtpp; 413 if (atomic_dec_and_test(&rtp->barrier_q_count)) 414 complete(&rtp->barrier_q_completion); 415 } 416 417 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 418 // Operates in a manner similar to rcu_barrier(). 419 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 420 { 421 int cpu; 422 unsigned long flags; 423 struct rcu_tasks_percpu *rtpcp; 424 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 425 426 mutex_lock(&rtp->barrier_q_mutex); 427 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 428 smp_mb(); 429 mutex_unlock(&rtp->barrier_q_mutex); 430 return; 431 } 432 rcu_seq_start(&rtp->barrier_q_seq); 433 init_completion(&rtp->barrier_q_completion); 434 atomic_set(&rtp->barrier_q_count, 2); 435 for_each_possible_cpu(cpu) { 436 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 437 break; 438 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 439 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 440 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 441 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 442 atomic_inc(&rtp->barrier_q_count); 443 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 444 } 445 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 446 complete(&rtp->barrier_q_completion); 447 wait_for_completion(&rtp->barrier_q_completion); 448 rcu_seq_end(&rtp->barrier_q_seq); 449 mutex_unlock(&rtp->barrier_q_mutex); 450 } 451 452 // Advance callbacks and indicate whether either a grace period or 453 // callback invocation is needed. 454 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 455 { 456 int cpu; 457 int dequeue_limit; 458 unsigned long flags; 459 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 460 long n; 461 long ncbs = 0; 462 long ncbsnz = 0; 463 int needgpcb = 0; 464 465 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim); 466 for (cpu = 0; cpu < dequeue_limit; cpu++) { 467 if (!cpu_possible(cpu)) 468 continue; 469 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 470 471 /* Advance and accelerate any new callbacks. */ 472 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 473 continue; 474 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 475 // Should we shrink down to a single callback queue? 476 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 477 if (n) { 478 ncbs += n; 479 if (cpu > 0) 480 ncbsnz += n; 481 } 482 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 483 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 484 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 485 if (rtp->lazy_jiffies) 486 rtpcp->urgent_gp--; 487 needgpcb |= 0x3; 488 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 489 rtpcp->urgent_gp = 0; 490 } 491 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 492 needgpcb |= 0x1; 493 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 494 } 495 496 // Shrink down to a single callback queue if appropriate. 497 // This is done in two stages: (1) If there are no more than 498 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 499 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 500 // if there has not been an increase in callbacks, limit dequeuing 501 // to CPU 0. Note the matching RCU read-side critical section in 502 // call_rcu_tasks_generic(). 503 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 504 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 505 if (rtp->percpu_enqueue_lim > 1) { 506 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(rcu_task_cpu_ids)); 507 smp_store_release(&rtp->percpu_enqueue_lim, 1); 508 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 509 gpdone = false; 510 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 511 } 512 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 513 } 514 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 515 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 516 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 517 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 518 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 519 } 520 if (rtp->percpu_dequeue_lim == 1) { 521 for (cpu = rtp->percpu_dequeue_lim; cpu < rcu_task_cpu_ids; cpu++) { 522 if (!cpu_possible(cpu)) 523 continue; 524 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 525 526 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 527 } 528 } 529 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 530 } 531 532 return needgpcb; 533 } 534 535 // Advance callbacks and invoke any that are ready. 536 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 537 { 538 int cpuwq; 539 unsigned long flags; 540 int len; 541 int index; 542 struct rcu_head *rhp; 543 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 544 struct rcu_tasks_percpu *rtpcp_next; 545 546 index = rtpcp->index * 2 + 1; 547 if (index < num_possible_cpus()) { 548 rtpcp_next = rtp->rtpcp_array[index]; 549 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 550 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 551 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 552 index++; 553 if (index < num_possible_cpus()) { 554 rtpcp_next = rtp->rtpcp_array[index]; 555 if (rtpcp_next->cpu < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 556 cpuwq = rcu_cpu_beenfullyonline(rtpcp_next->cpu) ? rtpcp_next->cpu : WORK_CPU_UNBOUND; 557 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 558 } 559 } 560 } 561 } 562 563 if (rcu_segcblist_empty(&rtpcp->cblist)) 564 return; 565 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 566 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 567 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 568 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 569 len = rcl.len; 570 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 571 debug_rcu_head_callback(rhp); 572 local_bh_disable(); 573 rhp->func(rhp); 574 local_bh_enable(); 575 cond_resched(); 576 } 577 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 578 rcu_segcblist_add_len(&rtpcp->cblist, -len); 579 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 580 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 581 } 582 583 // Workqueue flood to advance callbacks and invoke any that are ready. 584 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 585 { 586 struct rcu_tasks *rtp; 587 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 588 589 rtp = rtpcp->rtpp; 590 rcu_tasks_invoke_cbs(rtp, rtpcp); 591 } 592 593 // Wait for one grace period. 594 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 595 { 596 int needgpcb; 597 598 mutex_lock(&rtp->tasks_gp_mutex); 599 600 // If there were none, wait a bit and start over. 601 if (unlikely(midboot)) { 602 needgpcb = 0x2; 603 } else { 604 mutex_unlock(&rtp->tasks_gp_mutex); 605 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 606 rcuwait_wait_event(&rtp->cbs_wait, 607 (needgpcb = rcu_tasks_need_gpcb(rtp)), 608 TASK_IDLE); 609 mutex_lock(&rtp->tasks_gp_mutex); 610 } 611 612 if (needgpcb & 0x2) { 613 // Wait for one grace period. 614 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 615 rtp->gp_start = jiffies; 616 rcu_seq_start(&rtp->tasks_gp_seq); 617 rtp->gp_func(rtp); 618 rcu_seq_end(&rtp->tasks_gp_seq); 619 } 620 621 // Invoke callbacks. 622 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 623 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 624 mutex_unlock(&rtp->tasks_gp_mutex); 625 } 626 627 // RCU-tasks kthread that detects grace periods and invokes callbacks. 628 static int __noreturn rcu_tasks_kthread(void *arg) 629 { 630 int cpu; 631 struct rcu_tasks *rtp = arg; 632 633 for_each_possible_cpu(cpu) { 634 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 635 636 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 637 rtpcp->urgent_gp = 1; 638 } 639 640 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 641 housekeeping_affine(current, HK_TYPE_RCU); 642 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 643 644 /* 645 * Each pass through the following loop makes one check for 646 * newly arrived callbacks, and, if there are some, waits for 647 * one RCU-tasks grace period and then invokes the callbacks. 648 * This loop is terminated by the system going down. ;-) 649 */ 650 for (;;) { 651 // Wait for one grace period and invoke any callbacks 652 // that are ready. 653 rcu_tasks_one_gp(rtp, false); 654 655 // Paranoid sleep to keep this from entering a tight loop. 656 schedule_timeout_idle(rtp->gp_sleep); 657 } 658 } 659 660 // Wait for a grace period for the specified flavor of Tasks RCU. 661 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 662 { 663 /* Complain if the scheduler has not started. */ 664 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 665 "synchronize_%s() called too soon", rtp->name)) 666 return; 667 668 // If the grace-period kthread is running, use it. 669 if (READ_ONCE(rtp->kthread_ptr)) { 670 wait_rcu_gp(rtp->call_func); 671 return; 672 } 673 rcu_tasks_one_gp(rtp, true); 674 } 675 676 /* Spawn RCU-tasks grace-period kthread. */ 677 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 678 { 679 struct task_struct *t; 680 681 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 682 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 683 return; 684 smp_mb(); /* Ensure others see full kthread. */ 685 } 686 687 #ifndef CONFIG_TINY_RCU 688 689 /* 690 * Print any non-default Tasks RCU settings. 691 */ 692 static void __init rcu_tasks_bootup_oddness(void) 693 { 694 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 695 int rtsimc; 696 697 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 698 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 699 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 700 if (rtsimc != rcu_task_stall_info_mult) { 701 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 702 rcu_task_stall_info_mult = rtsimc; 703 } 704 #endif /* #ifdef CONFIG_TASKS_RCU */ 705 #ifdef CONFIG_TASKS_RCU 706 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 707 #endif /* #ifdef CONFIG_TASKS_RCU */ 708 #ifdef CONFIG_TASKS_RUDE_RCU 709 pr_info("\tRude variant of Tasks RCU enabled.\n"); 710 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 711 #ifdef CONFIG_TASKS_TRACE_RCU 712 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 713 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 714 } 715 716 #endif /* #ifndef CONFIG_TINY_RCU */ 717 718 #ifndef CONFIG_TINY_RCU 719 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 720 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 721 { 722 int cpu; 723 bool havecbs = false; 724 bool haveurgent = false; 725 bool haveurgentcbs = false; 726 727 for_each_possible_cpu(cpu) { 728 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 729 730 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 731 havecbs = true; 732 if (data_race(rtpcp->urgent_gp)) 733 haveurgent = true; 734 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 735 haveurgentcbs = true; 736 if (havecbs && haveurgent && haveurgentcbs) 737 break; 738 } 739 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 740 rtp->kname, 741 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 742 jiffies - data_race(rtp->gp_jiffies), 743 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 744 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 745 ".k"[!!data_race(rtp->kthread_ptr)], 746 ".C"[havecbs], 747 ".u"[haveurgent], 748 ".U"[haveurgentcbs], 749 rtp->lazy_jiffies, 750 s); 751 } 752 #endif // #ifndef CONFIG_TINY_RCU 753 754 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 755 756 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 757 758 //////////////////////////////////////////////////////////////////////// 759 // 760 // Shared code between task-list-scanning variants of Tasks RCU. 761 762 /* Wait for one RCU-tasks grace period. */ 763 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 764 { 765 struct task_struct *g; 766 int fract; 767 LIST_HEAD(holdouts); 768 unsigned long j; 769 unsigned long lastinfo; 770 unsigned long lastreport; 771 bool reported = false; 772 int rtsi; 773 struct task_struct *t; 774 775 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 776 rtp->pregp_func(&holdouts); 777 778 /* 779 * There were callbacks, so we need to wait for an RCU-tasks 780 * grace period. Start off by scanning the task list for tasks 781 * that are not already voluntarily blocked. Mark these tasks 782 * and make a list of them in holdouts. 783 */ 784 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 785 if (rtp->pertask_func) { 786 rcu_read_lock(); 787 for_each_process_thread(g, t) 788 rtp->pertask_func(t, &holdouts); 789 rcu_read_unlock(); 790 } 791 792 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 793 rtp->postscan_func(&holdouts); 794 795 /* 796 * Each pass through the following loop scans the list of holdout 797 * tasks, removing any that are no longer holdouts. When the list 798 * is empty, we are done. 799 */ 800 lastreport = jiffies; 801 lastinfo = lastreport; 802 rtsi = READ_ONCE(rcu_task_stall_info); 803 804 // Start off with initial wait and slowly back off to 1 HZ wait. 805 fract = rtp->init_fract; 806 807 while (!list_empty(&holdouts)) { 808 ktime_t exp; 809 bool firstreport; 810 bool needreport; 811 int rtst; 812 813 // Slowly back off waiting for holdouts 814 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 815 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 816 schedule_timeout_idle(fract); 817 } else { 818 exp = jiffies_to_nsecs(fract); 819 __set_current_state(TASK_IDLE); 820 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 821 } 822 823 if (fract < HZ) 824 fract++; 825 826 rtst = READ_ONCE(rcu_task_stall_timeout); 827 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 828 if (needreport) { 829 lastreport = jiffies; 830 reported = true; 831 } 832 firstreport = true; 833 WARN_ON(signal_pending(current)); 834 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 835 rtp->holdouts_func(&holdouts, needreport, &firstreport); 836 837 // Print pre-stall informational messages if needed. 838 j = jiffies; 839 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 840 lastinfo = j; 841 rtsi = rtsi * rcu_task_stall_info_mult; 842 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 843 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 844 } 845 } 846 847 set_tasks_gp_state(rtp, RTGS_POST_GP); 848 rtp->postgp_func(rtp); 849 } 850 851 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 852 853 #ifdef CONFIG_TASKS_RCU 854 855 //////////////////////////////////////////////////////////////////////// 856 // 857 // Simple variant of RCU whose quiescent states are voluntary context 858 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 859 // As such, grace periods can take one good long time. There are no 860 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 861 // because this implementation is intended to get the system into a safe 862 // state for some of the manipulations involved in tracing and the like. 863 // Finally, this implementation does not support high call_rcu_tasks() 864 // rates from multiple CPUs. If this is required, per-CPU callback lists 865 // will be needed. 866 // 867 // The implementation uses rcu_tasks_wait_gp(), which relies on function 868 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 869 // function sets these function pointers up so that rcu_tasks_wait_gp() 870 // invokes these functions in this order: 871 // 872 // rcu_tasks_pregp_step(): 873 // Invokes synchronize_rcu() in order to wait for all in-flight 874 // t->on_rq and t->nvcsw transitions to complete. This works because 875 // all such transitions are carried out with interrupts disabled. 876 // rcu_tasks_pertask(), invoked on every non-idle task: 877 // For every runnable non-idle task other than the current one, use 878 // get_task_struct() to pin down that task, snapshot that task's 879 // number of voluntary context switches, and add that task to the 880 // holdout list. 881 // rcu_tasks_postscan(): 882 // Invoke synchronize_srcu() to ensure that all tasks that were 883 // in the process of exiting (and which thus might not know to 884 // synchronize with this RCU Tasks grace period) have completed 885 // exiting. 886 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 887 // Scans the holdout list, attempting to identify a quiescent state 888 // for each task on the list. If there is a quiescent state, the 889 // corresponding task is removed from the holdout list. 890 // rcu_tasks_postgp(): 891 // Invokes synchronize_rcu() in order to ensure that all prior 892 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 893 // to have happened before the end of this RCU Tasks grace period. 894 // Again, this works because all such transitions are carried out 895 // with interrupts disabled. 896 // 897 // For each exiting task, the exit_tasks_rcu_start() and 898 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 899 // read-side critical sections waited for by rcu_tasks_postscan(). 900 // 901 // Pre-grace-period update-side code is ordered before the grace 902 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 903 // is ordered before the grace period via synchronize_rcu() call in 904 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 905 // disabling. 906 907 /* Pre-grace-period preparation. */ 908 static void rcu_tasks_pregp_step(struct list_head *hop) 909 { 910 /* 911 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 912 * to complete. Invoking synchronize_rcu() suffices because all 913 * these transitions occur with interrupts disabled. Without this 914 * synchronize_rcu(), a read-side critical section that started 915 * before the grace period might be incorrectly seen as having 916 * started after the grace period. 917 * 918 * This synchronize_rcu() also dispenses with the need for a 919 * memory barrier on the first store to t->rcu_tasks_holdout, 920 * as it forces the store to happen after the beginning of the 921 * grace period. 922 */ 923 synchronize_rcu(); 924 } 925 926 /* Check for quiescent states since the pregp's synchronize_rcu() */ 927 static bool rcu_tasks_is_holdout(struct task_struct *t) 928 { 929 int cpu; 930 931 /* Has the task been seen voluntarily sleeping? */ 932 if (!READ_ONCE(t->on_rq)) 933 return false; 934 935 /* 936 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 937 * quiescent states. But CPU boot code performed by the idle task 938 * isn't a quiescent state. 939 */ 940 if (is_idle_task(t)) 941 return false; 942 943 cpu = task_cpu(t); 944 945 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 946 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 947 return false; 948 949 return true; 950 } 951 952 /* Per-task initial processing. */ 953 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 954 { 955 if (t != current && rcu_tasks_is_holdout(t)) { 956 get_task_struct(t); 957 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 958 WRITE_ONCE(t->rcu_tasks_holdout, true); 959 list_add(&t->rcu_tasks_holdout_list, hop); 960 } 961 } 962 963 /* Processing between scanning taskslist and draining the holdout list. */ 964 static void rcu_tasks_postscan(struct list_head *hop) 965 { 966 int rtsi = READ_ONCE(rcu_task_stall_info); 967 968 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 969 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 970 add_timer(&tasks_rcu_exit_srcu_stall_timer); 971 } 972 973 /* 974 * Exiting tasks may escape the tasklist scan. Those are vulnerable 975 * until their final schedule() with TASK_DEAD state. To cope with 976 * this, divide the fragile exit path part in two intersecting 977 * read side critical sections: 978 * 979 * 1) An _SRCU_ read side starting before calling exit_notify(), 980 * which may remove the task from the tasklist, and ending after 981 * the final preempt_disable() call in do_exit(). 982 * 983 * 2) An _RCU_ read side starting with the final preempt_disable() 984 * call in do_exit() and ending with the final call to schedule() 985 * with TASK_DEAD state. 986 * 987 * This handles the part 1). And postgp will handle part 2) with a 988 * call to synchronize_rcu(). 989 */ 990 synchronize_srcu(&tasks_rcu_exit_srcu); 991 992 if (!IS_ENABLED(CONFIG_TINY_RCU)) 993 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 994 } 995 996 /* See if tasks are still holding out, complain if so. */ 997 static void check_holdout_task(struct task_struct *t, 998 bool needreport, bool *firstreport) 999 { 1000 int cpu; 1001 1002 if (!READ_ONCE(t->rcu_tasks_holdout) || 1003 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 1004 !rcu_tasks_is_holdout(t) || 1005 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 1006 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 1007 WRITE_ONCE(t->rcu_tasks_holdout, false); 1008 list_del_init(&t->rcu_tasks_holdout_list); 1009 put_task_struct(t); 1010 return; 1011 } 1012 rcu_request_urgent_qs_task(t); 1013 if (!needreport) 1014 return; 1015 if (*firstreport) { 1016 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 1017 *firstreport = false; 1018 } 1019 cpu = task_cpu(t); 1020 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 1021 t, ".I"[is_idle_task(t)], 1022 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 1023 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 1024 t->rcu_tasks_idle_cpu, cpu); 1025 sched_show_task(t); 1026 } 1027 1028 /* Scan the holdout lists for tasks no longer holding out. */ 1029 static void check_all_holdout_tasks(struct list_head *hop, 1030 bool needreport, bool *firstreport) 1031 { 1032 struct task_struct *t, *t1; 1033 1034 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1035 check_holdout_task(t, needreport, firstreport); 1036 cond_resched(); 1037 } 1038 } 1039 1040 /* Finish off the Tasks-RCU grace period. */ 1041 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1042 { 1043 /* 1044 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1045 * memory barriers prior to them in the schedule() path, memory 1046 * reordering on other CPUs could cause their RCU-tasks read-side 1047 * critical sections to extend past the end of the grace period. 1048 * However, because these ->nvcsw updates are carried out with 1049 * interrupts disabled, we can use synchronize_rcu() to force the 1050 * needed ordering on all such CPUs. 1051 * 1052 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1053 * accesses to be within the grace period, avoiding the need for 1054 * memory barriers for ->rcu_tasks_holdout accesses. 1055 * 1056 * In addition, this synchronize_rcu() waits for exiting tasks 1057 * to complete their final preempt_disable() region of execution, 1058 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 1059 * enforcing the whole region before tasklist removal until 1060 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1061 * read side critical section. 1062 */ 1063 synchronize_rcu(); 1064 } 1065 1066 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1067 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1068 1069 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1070 { 1071 #ifndef CONFIG_TINY_RCU 1072 int rtsi; 1073 1074 rtsi = READ_ONCE(rcu_task_stall_info); 1075 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1076 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1077 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1078 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1079 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1080 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1081 #endif // #ifndef CONFIG_TINY_RCU 1082 } 1083 1084 /** 1085 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1086 * @rhp: structure to be used for queueing the RCU updates. 1087 * @func: actual callback function to be invoked after the grace period 1088 * 1089 * The callback function will be invoked some time after a full grace 1090 * period elapses, in other words after all currently executing RCU 1091 * read-side critical sections have completed. call_rcu_tasks() assumes 1092 * that the read-side critical sections end at a voluntary context 1093 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1094 * or transition to usermode execution. As such, there are no read-side 1095 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1096 * this primitive is intended to determine that all tasks have passed 1097 * through a safe state, not so much for data-structure synchronization. 1098 * 1099 * See the description of call_rcu() for more detailed information on 1100 * memory ordering guarantees. 1101 */ 1102 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1103 { 1104 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1105 } 1106 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1107 1108 /** 1109 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1110 * 1111 * Control will return to the caller some time after a full rcu-tasks 1112 * grace period has elapsed, in other words after all currently 1113 * executing rcu-tasks read-side critical sections have elapsed. These 1114 * read-side critical sections are delimited by calls to schedule(), 1115 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1116 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1117 * 1118 * This is a very specialized primitive, intended only for a few uses in 1119 * tracing and other situations requiring manipulation of function 1120 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1121 * is not (yet) intended for heavy use from multiple CPUs. 1122 * 1123 * See the description of synchronize_rcu() for more detailed information 1124 * on memory ordering guarantees. 1125 */ 1126 void synchronize_rcu_tasks(void) 1127 { 1128 synchronize_rcu_tasks_generic(&rcu_tasks); 1129 } 1130 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1131 1132 /** 1133 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1134 * 1135 * Although the current implementation is guaranteed to wait, it is not 1136 * obligated to, for example, if there are no pending callbacks. 1137 */ 1138 void rcu_barrier_tasks(void) 1139 { 1140 rcu_barrier_tasks_generic(&rcu_tasks); 1141 } 1142 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1143 1144 int rcu_tasks_lazy_ms = -1; 1145 module_param(rcu_tasks_lazy_ms, int, 0444); 1146 1147 static int __init rcu_spawn_tasks_kthread(void) 1148 { 1149 cblist_init_generic(&rcu_tasks); 1150 rcu_tasks.gp_sleep = HZ / 10; 1151 rcu_tasks.init_fract = HZ / 10; 1152 if (rcu_tasks_lazy_ms >= 0) 1153 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1154 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1155 rcu_tasks.pertask_func = rcu_tasks_pertask; 1156 rcu_tasks.postscan_func = rcu_tasks_postscan; 1157 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1158 rcu_tasks.postgp_func = rcu_tasks_postgp; 1159 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1160 return 0; 1161 } 1162 1163 #if !defined(CONFIG_TINY_RCU) 1164 void show_rcu_tasks_classic_gp_kthread(void) 1165 { 1166 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1167 } 1168 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1169 #endif // !defined(CONFIG_TINY_RCU) 1170 1171 struct task_struct *get_rcu_tasks_gp_kthread(void) 1172 { 1173 return rcu_tasks.kthread_ptr; 1174 } 1175 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1176 1177 /* 1178 * Contribute to protect against tasklist scan blind spot while the 1179 * task is exiting and may be removed from the tasklist. See 1180 * corresponding synchronize_srcu() for further details. 1181 */ 1182 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1183 { 1184 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1185 } 1186 1187 /* 1188 * Contribute to protect against tasklist scan blind spot while the 1189 * task is exiting and may be removed from the tasklist. See 1190 * corresponding synchronize_srcu() for further details. 1191 */ 1192 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1193 { 1194 struct task_struct *t = current; 1195 1196 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1197 } 1198 1199 /* 1200 * Contribute to protect against tasklist scan blind spot while the 1201 * task is exiting and may be removed from the tasklist. See 1202 * corresponding synchronize_srcu() for further details. 1203 */ 1204 void exit_tasks_rcu_finish(void) 1205 { 1206 exit_tasks_rcu_stop(); 1207 exit_tasks_rcu_finish_trace(current); 1208 } 1209 1210 #else /* #ifdef CONFIG_TASKS_RCU */ 1211 void exit_tasks_rcu_start(void) { } 1212 void exit_tasks_rcu_stop(void) { } 1213 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1214 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1215 1216 #ifdef CONFIG_TASKS_RUDE_RCU 1217 1218 //////////////////////////////////////////////////////////////////////// 1219 // 1220 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1221 // passing an empty function to schedule_on_each_cpu(). This approach 1222 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1223 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1224 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1225 // and induces otherwise unnecessary context switches on all online CPUs, 1226 // whether idle or not. 1227 // 1228 // Callback handling is provided by the rcu_tasks_kthread() function. 1229 // 1230 // Ordering is provided by the scheduler's context-switch code. 1231 1232 // Empty function to allow workqueues to force a context switch. 1233 static void rcu_tasks_be_rude(struct work_struct *work) 1234 { 1235 } 1236 1237 // Wait for one rude RCU-tasks grace period. 1238 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1239 { 1240 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1241 schedule_on_each_cpu(rcu_tasks_be_rude); 1242 } 1243 1244 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1245 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1246 "RCU Tasks Rude"); 1247 1248 /** 1249 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1250 * @rhp: structure to be used for queueing the RCU updates. 1251 * @func: actual callback function to be invoked after the grace period 1252 * 1253 * The callback function will be invoked some time after a full grace 1254 * period elapses, in other words after all currently executing RCU 1255 * read-side critical sections have completed. call_rcu_tasks_rude() 1256 * assumes that the read-side critical sections end at context switch, 1257 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1258 * usermode execution is schedulable). As such, there are no read-side 1259 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1260 * this primitive is intended to determine that all tasks have passed 1261 * through a safe state, not so much for data-structure synchronization. 1262 * 1263 * See the description of call_rcu() for more detailed information on 1264 * memory ordering guarantees. 1265 */ 1266 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1267 { 1268 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1269 } 1270 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1271 1272 /** 1273 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1274 * 1275 * Control will return to the caller some time after a rude rcu-tasks 1276 * grace period has elapsed, in other words after all currently 1277 * executing rcu-tasks read-side critical sections have elapsed. These 1278 * read-side critical sections are delimited by calls to schedule(), 1279 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1280 * context), and (in theory, anyway) cond_resched(). 1281 * 1282 * This is a very specialized primitive, intended only for a few uses in 1283 * tracing and other situations requiring manipulation of function preambles 1284 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1285 * (yet) intended for heavy use from multiple CPUs. 1286 * 1287 * See the description of synchronize_rcu() for more detailed information 1288 * on memory ordering guarantees. 1289 */ 1290 void synchronize_rcu_tasks_rude(void) 1291 { 1292 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1293 } 1294 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1295 1296 /** 1297 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1298 * 1299 * Although the current implementation is guaranteed to wait, it is not 1300 * obligated to, for example, if there are no pending callbacks. 1301 */ 1302 void rcu_barrier_tasks_rude(void) 1303 { 1304 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1305 } 1306 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1307 1308 int rcu_tasks_rude_lazy_ms = -1; 1309 module_param(rcu_tasks_rude_lazy_ms, int, 0444); 1310 1311 static int __init rcu_spawn_tasks_rude_kthread(void) 1312 { 1313 cblist_init_generic(&rcu_tasks_rude); 1314 rcu_tasks_rude.gp_sleep = HZ / 10; 1315 if (rcu_tasks_rude_lazy_ms >= 0) 1316 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); 1317 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1318 return 0; 1319 } 1320 1321 #if !defined(CONFIG_TINY_RCU) 1322 void show_rcu_tasks_rude_gp_kthread(void) 1323 { 1324 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1325 } 1326 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1327 #endif // !defined(CONFIG_TINY_RCU) 1328 1329 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1330 { 1331 return rcu_tasks_rude.kthread_ptr; 1332 } 1333 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1334 1335 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1336 1337 //////////////////////////////////////////////////////////////////////// 1338 // 1339 // Tracing variant of Tasks RCU. This variant is designed to be used 1340 // to protect tracing hooks, including those of BPF. This variant 1341 // therefore: 1342 // 1343 // 1. Has explicit read-side markers to allow finite grace periods 1344 // in the face of in-kernel loops for PREEMPT=n builds. 1345 // 1346 // 2. Protects code in the idle loop, exception entry/exit, and 1347 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1348 // 1349 // 3. Avoids expensive read-side instructions, having overhead similar 1350 // to that of Preemptible RCU. 1351 // 1352 // There are of course downsides. For example, the grace-period code 1353 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1354 // in nohz_full userspace. If needed, these downsides can be at least 1355 // partially remedied. 1356 // 1357 // Perhaps most important, this variant of RCU does not affect the vanilla 1358 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1359 // readers can operate from idle, offline, and exception entry/exit in no 1360 // way allows rcu_preempt and rcu_sched readers to also do so. 1361 // 1362 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1363 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1364 // function sets these function pointers up so that rcu_tasks_wait_gp() 1365 // invokes these functions in this order: 1366 // 1367 // rcu_tasks_trace_pregp_step(): 1368 // Disables CPU hotplug, adds all currently executing tasks to the 1369 // holdout list, then checks the state of all tasks that blocked 1370 // or were preempted within their current RCU Tasks Trace read-side 1371 // critical section, adding them to the holdout list if appropriate. 1372 // Finally, this function re-enables CPU hotplug. 1373 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1374 // rcu_tasks_trace_postscan(): 1375 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1376 // to finish exiting. 1377 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1378 // Scans the holdout list, attempting to identify a quiescent state 1379 // for each task on the list. If there is a quiescent state, the 1380 // corresponding task is removed from the holdout list. Once this 1381 // list is empty, the grace period has completed. 1382 // rcu_tasks_trace_postgp(): 1383 // Provides the needed full memory barrier and does debug checks. 1384 // 1385 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1386 // 1387 // Pre-grace-period update-side code is ordered before the grace period 1388 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1389 // read-side code is ordered before the grace period by atomic operations 1390 // on .b.need_qs flag of each task involved in this process, or by scheduler 1391 // context-switch ordering (for locked-down non-running readers). 1392 1393 // The lockdep state must be outside of #ifdef to be useful. 1394 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1395 static struct lock_class_key rcu_lock_trace_key; 1396 struct lockdep_map rcu_trace_lock_map = 1397 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1398 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1399 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1400 1401 #ifdef CONFIG_TASKS_TRACE_RCU 1402 1403 // Record outstanding IPIs to each CPU. No point in sending two... 1404 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1405 1406 // The number of detections of task quiescent state relying on 1407 // heavyweight readers executing explicit memory barriers. 1408 static unsigned long n_heavy_reader_attempts; 1409 static unsigned long n_heavy_reader_updates; 1410 static unsigned long n_heavy_reader_ofl_updates; 1411 static unsigned long n_trc_holdouts; 1412 1413 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1414 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1415 "RCU Tasks Trace"); 1416 1417 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1418 static u8 rcu_ld_need_qs(struct task_struct *t) 1419 { 1420 smp_mb(); // Enforce full grace-period ordering. 1421 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1422 } 1423 1424 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1425 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1426 { 1427 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1428 smp_mb(); // Enforce full grace-period ordering. 1429 } 1430 1431 /* 1432 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1433 * the four-byte operand-size restriction of some platforms. 1434 * Returns the old value, which is often ignored. 1435 */ 1436 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1437 { 1438 union rcu_special ret; 1439 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1440 union rcu_special trs_new = trs_old; 1441 1442 if (trs_old.b.need_qs != old) 1443 return trs_old.b.need_qs; 1444 trs_new.b.need_qs = new; 1445 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1446 return ret.b.need_qs; 1447 } 1448 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1449 1450 /* 1451 * If we are the last reader, signal the grace-period kthread. 1452 * Also remove from the per-CPU list of blocked tasks. 1453 */ 1454 void rcu_read_unlock_trace_special(struct task_struct *t) 1455 { 1456 unsigned long flags; 1457 struct rcu_tasks_percpu *rtpcp; 1458 union rcu_special trs; 1459 1460 // Open-coded full-word version of rcu_ld_need_qs(). 1461 smp_mb(); // Enforce full grace-period ordering. 1462 trs = smp_load_acquire(&t->trc_reader_special); 1463 1464 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1465 smp_mb(); // Pairs with update-side barriers. 1466 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1467 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1468 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1469 TRC_NEED_QS_CHECKED); 1470 1471 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1472 } 1473 if (trs.b.blocked) { 1474 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1475 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1476 list_del_init(&t->trc_blkd_node); 1477 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1478 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1479 } 1480 WRITE_ONCE(t->trc_reader_nesting, 0); 1481 } 1482 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1483 1484 /* Add a newly blocked reader task to its CPU's list. */ 1485 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1486 { 1487 unsigned long flags; 1488 struct rcu_tasks_percpu *rtpcp; 1489 1490 local_irq_save(flags); 1491 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1492 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1493 t->trc_blkd_cpu = smp_processor_id(); 1494 if (!rtpcp->rtp_blkd_tasks.next) 1495 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1496 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1497 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1498 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1499 } 1500 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1501 1502 /* Add a task to the holdout list, if it is not already on the list. */ 1503 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1504 { 1505 if (list_empty(&t->trc_holdout_list)) { 1506 get_task_struct(t); 1507 list_add(&t->trc_holdout_list, bhp); 1508 n_trc_holdouts++; 1509 } 1510 } 1511 1512 /* Remove a task from the holdout list, if it is in fact present. */ 1513 static void trc_del_holdout(struct task_struct *t) 1514 { 1515 if (!list_empty(&t->trc_holdout_list)) { 1516 list_del_init(&t->trc_holdout_list); 1517 put_task_struct(t); 1518 n_trc_holdouts--; 1519 } 1520 } 1521 1522 /* IPI handler to check task state. */ 1523 static void trc_read_check_handler(void *t_in) 1524 { 1525 int nesting; 1526 struct task_struct *t = current; 1527 struct task_struct *texp = t_in; 1528 1529 // If the task is no longer running on this CPU, leave. 1530 if (unlikely(texp != t)) 1531 goto reset_ipi; // Already on holdout list, so will check later. 1532 1533 // If the task is not in a read-side critical section, and 1534 // if this is the last reader, awaken the grace-period kthread. 1535 nesting = READ_ONCE(t->trc_reader_nesting); 1536 if (likely(!nesting)) { 1537 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1538 goto reset_ipi; 1539 } 1540 // If we are racing with an rcu_read_unlock_trace(), try again later. 1541 if (unlikely(nesting < 0)) 1542 goto reset_ipi; 1543 1544 // Get here if the task is in a read-side critical section. 1545 // Set its state so that it will update state for the grace-period 1546 // kthread upon exit from that critical section. 1547 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1548 1549 reset_ipi: 1550 // Allow future IPIs to be sent on CPU and for task. 1551 // Also order this IPI handler against any later manipulations of 1552 // the intended task. 1553 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1554 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1555 } 1556 1557 /* Callback function for scheduler to check locked-down task. */ 1558 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1559 { 1560 struct list_head *bhp = bhp_in; 1561 int cpu = task_cpu(t); 1562 int nesting; 1563 bool ofl = cpu_is_offline(cpu); 1564 1565 if (task_curr(t) && !ofl) { 1566 // If no chance of heavyweight readers, do it the hard way. 1567 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1568 return -EINVAL; 1569 1570 // If heavyweight readers are enabled on the remote task, 1571 // we can inspect its state despite its currently running. 1572 // However, we cannot safely change its state. 1573 n_heavy_reader_attempts++; 1574 // Check for "running" idle tasks on offline CPUs. 1575 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1576 return -EINVAL; // No quiescent state, do it the hard way. 1577 n_heavy_reader_updates++; 1578 nesting = 0; 1579 } else { 1580 // The task is not running, so C-language access is safe. 1581 nesting = t->trc_reader_nesting; 1582 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1583 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1584 n_heavy_reader_ofl_updates++; 1585 } 1586 1587 // If not exiting a read-side critical section, mark as checked 1588 // so that the grace-period kthread will remove it from the 1589 // holdout list. 1590 if (!nesting) { 1591 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1592 return 0; // In QS, so done. 1593 } 1594 if (nesting < 0) 1595 return -EINVAL; // Reader transitioning, try again later. 1596 1597 // The task is in a read-side critical section, so set up its 1598 // state so that it will update state upon exit from that critical 1599 // section. 1600 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1601 trc_add_holdout(t, bhp); 1602 return 0; 1603 } 1604 1605 /* Attempt to extract the state for the specified task. */ 1606 static void trc_wait_for_one_reader(struct task_struct *t, 1607 struct list_head *bhp) 1608 { 1609 int cpu; 1610 1611 // If a previous IPI is still in flight, let it complete. 1612 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1613 return; 1614 1615 // The current task had better be in a quiescent state. 1616 if (t == current) { 1617 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1618 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1619 return; 1620 } 1621 1622 // Attempt to nail down the task for inspection. 1623 get_task_struct(t); 1624 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1625 put_task_struct(t); 1626 return; 1627 } 1628 put_task_struct(t); 1629 1630 // If this task is not yet on the holdout list, then we are in 1631 // an RCU read-side critical section. Otherwise, the invocation of 1632 // trc_add_holdout() that added it to the list did the necessary 1633 // get_task_struct(). Either way, the task cannot be freed out 1634 // from under this code. 1635 1636 // If currently running, send an IPI, either way, add to list. 1637 trc_add_holdout(t, bhp); 1638 if (task_curr(t) && 1639 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1640 // The task is currently running, so try IPIing it. 1641 cpu = task_cpu(t); 1642 1643 // If there is already an IPI outstanding, let it happen. 1644 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1645 return; 1646 1647 per_cpu(trc_ipi_to_cpu, cpu) = true; 1648 t->trc_ipi_to_cpu = cpu; 1649 rcu_tasks_trace.n_ipis++; 1650 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1651 // Just in case there is some other reason for 1652 // failure than the target CPU being offline. 1653 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1654 __func__, cpu); 1655 rcu_tasks_trace.n_ipis_fails++; 1656 per_cpu(trc_ipi_to_cpu, cpu) = false; 1657 t->trc_ipi_to_cpu = -1; 1658 } 1659 } 1660 } 1661 1662 /* 1663 * Initialize for first-round processing for the specified task. 1664 * Return false if task is NULL or already taken care of, true otherwise. 1665 */ 1666 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1667 { 1668 // During early boot when there is only the one boot CPU, there 1669 // is no idle task for the other CPUs. Also, the grace-period 1670 // kthread is always in a quiescent state. In addition, just return 1671 // if this task is already on the list. 1672 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1673 return false; 1674 1675 rcu_st_need_qs(t, 0); 1676 t->trc_ipi_to_cpu = -1; 1677 return true; 1678 } 1679 1680 /* Do first-round processing for the specified task. */ 1681 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1682 { 1683 if (rcu_tasks_trace_pertask_prep(t, true)) 1684 trc_wait_for_one_reader(t, hop); 1685 } 1686 1687 /* Initialize for a new RCU-tasks-trace grace period. */ 1688 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1689 { 1690 LIST_HEAD(blkd_tasks); 1691 int cpu; 1692 unsigned long flags; 1693 struct rcu_tasks_percpu *rtpcp; 1694 struct task_struct *t; 1695 1696 // There shouldn't be any old IPIs, but... 1697 for_each_possible_cpu(cpu) 1698 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1699 1700 // Disable CPU hotplug across the CPU scan for the benefit of 1701 // any IPIs that might be needed. This also waits for all readers 1702 // in CPU-hotplug code paths. 1703 cpus_read_lock(); 1704 1705 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1706 // allow safe access to the hop list. 1707 for_each_online_cpu(cpu) { 1708 rcu_read_lock(); 1709 // Note that cpu_curr_snapshot() picks up the target 1710 // CPU's current task while its runqueue is locked with 1711 // an smp_mb__after_spinlock(). This ensures that either 1712 // the grace-period kthread will see that task's read-side 1713 // critical section or the task will see the updater's pre-GP 1714 // accesses. The trailing smp_mb() in cpu_curr_snapshot() 1715 // does not currently play a role other than simplify 1716 // that function's ordering semantics. If these simplified 1717 // ordering semantics continue to be redundant, that smp_mb() 1718 // might be removed. 1719 t = cpu_curr_snapshot(cpu); 1720 if (rcu_tasks_trace_pertask_prep(t, true)) 1721 trc_add_holdout(t, hop); 1722 rcu_read_unlock(); 1723 cond_resched_tasks_rcu_qs(); 1724 } 1725 1726 // Only after all running tasks have been accounted for is it 1727 // safe to take care of the tasks that have blocked within their 1728 // current RCU tasks trace read-side critical section. 1729 for_each_possible_cpu(cpu) { 1730 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1731 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1732 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1733 while (!list_empty(&blkd_tasks)) { 1734 rcu_read_lock(); 1735 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1736 list_del_init(&t->trc_blkd_node); 1737 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1738 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1739 rcu_tasks_trace_pertask(t, hop); 1740 rcu_read_unlock(); 1741 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1742 } 1743 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1744 cond_resched_tasks_rcu_qs(); 1745 } 1746 1747 // Re-enable CPU hotplug now that the holdout list is populated. 1748 cpus_read_unlock(); 1749 } 1750 1751 /* 1752 * Do intermediate processing between task and holdout scans. 1753 */ 1754 static void rcu_tasks_trace_postscan(struct list_head *hop) 1755 { 1756 // Wait for late-stage exiting tasks to finish exiting. 1757 // These might have passed the call to exit_tasks_rcu_finish(). 1758 1759 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1760 synchronize_rcu(); 1761 // Any tasks that exit after this point will set 1762 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1763 } 1764 1765 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1766 struct trc_stall_chk_rdr { 1767 int nesting; 1768 int ipi_to_cpu; 1769 u8 needqs; 1770 }; 1771 1772 static int trc_check_slow_task(struct task_struct *t, void *arg) 1773 { 1774 struct trc_stall_chk_rdr *trc_rdrp = arg; 1775 1776 if (task_curr(t) && cpu_online(task_cpu(t))) 1777 return false; // It is running, so decline to inspect it. 1778 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1779 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1780 trc_rdrp->needqs = rcu_ld_need_qs(t); 1781 return true; 1782 } 1783 1784 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1785 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1786 { 1787 int cpu; 1788 struct trc_stall_chk_rdr trc_rdr; 1789 bool is_idle_tsk = is_idle_task(t); 1790 1791 if (*firstreport) { 1792 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1793 *firstreport = false; 1794 } 1795 cpu = task_cpu(t); 1796 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1797 pr_alert("P%d: %c%c\n", 1798 t->pid, 1799 ".I"[t->trc_ipi_to_cpu >= 0], 1800 ".i"[is_idle_tsk]); 1801 else 1802 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1803 t->pid, 1804 ".I"[trc_rdr.ipi_to_cpu >= 0], 1805 ".i"[is_idle_tsk], 1806 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1807 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1808 trc_rdr.nesting, 1809 " !CN"[trc_rdr.needqs & 0x3], 1810 " ?"[trc_rdr.needqs > 0x3], 1811 cpu, cpu_online(cpu) ? "" : "(offline)"); 1812 sched_show_task(t); 1813 } 1814 1815 /* List stalled IPIs for RCU tasks trace. */ 1816 static void show_stalled_ipi_trace(void) 1817 { 1818 int cpu; 1819 1820 for_each_possible_cpu(cpu) 1821 if (per_cpu(trc_ipi_to_cpu, cpu)) 1822 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1823 } 1824 1825 /* Do one scan of the holdout list. */ 1826 static void check_all_holdout_tasks_trace(struct list_head *hop, 1827 bool needreport, bool *firstreport) 1828 { 1829 struct task_struct *g, *t; 1830 1831 // Disable CPU hotplug across the holdout list scan for IPIs. 1832 cpus_read_lock(); 1833 1834 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1835 // If safe and needed, try to check the current task. 1836 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1837 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1838 trc_wait_for_one_reader(t, hop); 1839 1840 // If check succeeded, remove this task from the list. 1841 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1842 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1843 trc_del_holdout(t); 1844 else if (needreport) 1845 show_stalled_task_trace(t, firstreport); 1846 cond_resched_tasks_rcu_qs(); 1847 } 1848 1849 // Re-enable CPU hotplug now that the holdout list scan has completed. 1850 cpus_read_unlock(); 1851 1852 if (needreport) { 1853 if (*firstreport) 1854 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1855 show_stalled_ipi_trace(); 1856 } 1857 } 1858 1859 static void rcu_tasks_trace_empty_fn(void *unused) 1860 { 1861 } 1862 1863 /* Wait for grace period to complete and provide ordering. */ 1864 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1865 { 1866 int cpu; 1867 1868 // Wait for any lingering IPI handlers to complete. Note that 1869 // if a CPU has gone offline or transitioned to userspace in the 1870 // meantime, all IPI handlers should have been drained beforehand. 1871 // Yes, this assumes that CPUs process IPIs in order. If that ever 1872 // changes, there will need to be a recheck and/or timed wait. 1873 for_each_online_cpu(cpu) 1874 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1875 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1876 1877 smp_mb(); // Caller's code must be ordered after wakeup. 1878 // Pairs with pretty much every ordering primitive. 1879 } 1880 1881 /* Report any needed quiescent state for this exiting task. */ 1882 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1883 { 1884 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1885 1886 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1887 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1888 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1889 rcu_read_unlock_trace_special(t); 1890 else 1891 WRITE_ONCE(t->trc_reader_nesting, 0); 1892 } 1893 1894 /** 1895 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1896 * @rhp: structure to be used for queueing the RCU updates. 1897 * @func: actual callback function to be invoked after the grace period 1898 * 1899 * The callback function will be invoked some time after a trace rcu-tasks 1900 * grace period elapses, in other words after all currently executing 1901 * trace rcu-tasks read-side critical sections have completed. These 1902 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1903 * and rcu_read_unlock_trace(). 1904 * 1905 * See the description of call_rcu() for more detailed information on 1906 * memory ordering guarantees. 1907 */ 1908 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1909 { 1910 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1911 } 1912 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1913 1914 /** 1915 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1916 * 1917 * Control will return to the caller some time after a trace rcu-tasks 1918 * grace period has elapsed, in other words after all currently executing 1919 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1920 * critical sections are delimited by calls to rcu_read_lock_trace() 1921 * and rcu_read_unlock_trace(). 1922 * 1923 * This is a very specialized primitive, intended only for a few uses in 1924 * tracing and other situations requiring manipulation of function preambles 1925 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1926 * (yet) intended for heavy use from multiple CPUs. 1927 * 1928 * See the description of synchronize_rcu() for more detailed information 1929 * on memory ordering guarantees. 1930 */ 1931 void synchronize_rcu_tasks_trace(void) 1932 { 1933 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1934 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1935 } 1936 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1937 1938 /** 1939 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1940 * 1941 * Although the current implementation is guaranteed to wait, it is not 1942 * obligated to, for example, if there are no pending callbacks. 1943 */ 1944 void rcu_barrier_tasks_trace(void) 1945 { 1946 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1947 } 1948 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1949 1950 int rcu_tasks_trace_lazy_ms = -1; 1951 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 1952 1953 static int __init rcu_spawn_tasks_trace_kthread(void) 1954 { 1955 cblist_init_generic(&rcu_tasks_trace); 1956 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1957 rcu_tasks_trace.gp_sleep = HZ / 10; 1958 rcu_tasks_trace.init_fract = HZ / 10; 1959 } else { 1960 rcu_tasks_trace.gp_sleep = HZ / 200; 1961 if (rcu_tasks_trace.gp_sleep <= 0) 1962 rcu_tasks_trace.gp_sleep = 1; 1963 rcu_tasks_trace.init_fract = HZ / 200; 1964 if (rcu_tasks_trace.init_fract <= 0) 1965 rcu_tasks_trace.init_fract = 1; 1966 } 1967 if (rcu_tasks_trace_lazy_ms >= 0) 1968 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 1969 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1970 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1971 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1972 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1973 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1974 return 0; 1975 } 1976 1977 #if !defined(CONFIG_TINY_RCU) 1978 void show_rcu_tasks_trace_gp_kthread(void) 1979 { 1980 char buf[64]; 1981 1982 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", 1983 data_race(n_trc_holdouts), 1984 data_race(n_heavy_reader_ofl_updates), 1985 data_race(n_heavy_reader_updates), 1986 data_race(n_heavy_reader_attempts)); 1987 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1988 } 1989 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1990 #endif // !defined(CONFIG_TINY_RCU) 1991 1992 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 1993 { 1994 return rcu_tasks_trace.kthread_ptr; 1995 } 1996 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 1997 1998 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1999 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 2000 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 2001 2002 #ifndef CONFIG_TINY_RCU 2003 void show_rcu_tasks_gp_kthreads(void) 2004 { 2005 show_rcu_tasks_classic_gp_kthread(); 2006 show_rcu_tasks_rude_gp_kthread(); 2007 show_rcu_tasks_trace_gp_kthread(); 2008 } 2009 #endif /* #ifndef CONFIG_TINY_RCU */ 2010 2011 #ifdef CONFIG_PROVE_RCU 2012 struct rcu_tasks_test_desc { 2013 struct rcu_head rh; 2014 const char *name; 2015 bool notrun; 2016 unsigned long runstart; 2017 }; 2018 2019 static struct rcu_tasks_test_desc tests[] = { 2020 { 2021 .name = "call_rcu_tasks()", 2022 /* If not defined, the test is skipped. */ 2023 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 2024 }, 2025 { 2026 .name = "call_rcu_tasks_rude()", 2027 /* If not defined, the test is skipped. */ 2028 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 2029 }, 2030 { 2031 .name = "call_rcu_tasks_trace()", 2032 /* If not defined, the test is skipped. */ 2033 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 2034 } 2035 }; 2036 2037 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2038 { 2039 struct rcu_tasks_test_desc *rttd = 2040 container_of(rhp, struct rcu_tasks_test_desc, rh); 2041 2042 pr_info("Callback from %s invoked.\n", rttd->name); 2043 2044 rttd->notrun = false; 2045 } 2046 2047 static void rcu_tasks_initiate_self_tests(void) 2048 { 2049 pr_info("Running RCU-tasks wait API self tests\n"); 2050 #ifdef CONFIG_TASKS_RCU 2051 tests[0].runstart = jiffies; 2052 synchronize_rcu_tasks(); 2053 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2054 #endif 2055 2056 #ifdef CONFIG_TASKS_RUDE_RCU 2057 tests[1].runstart = jiffies; 2058 synchronize_rcu_tasks_rude(); 2059 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 2060 #endif 2061 2062 #ifdef CONFIG_TASKS_TRACE_RCU 2063 tests[2].runstart = jiffies; 2064 synchronize_rcu_tasks_trace(); 2065 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 2066 #endif 2067 } 2068 2069 /* 2070 * Return: 0 - test passed 2071 * 1 - test failed, but have not timed out yet 2072 * -1 - test failed and timed out 2073 */ 2074 static int rcu_tasks_verify_self_tests(void) 2075 { 2076 int ret = 0; 2077 int i; 2078 unsigned long bst = rcu_task_stall_timeout; 2079 2080 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2081 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2082 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2083 while (tests[i].notrun) { // still hanging. 2084 if (time_after(jiffies, tests[i].runstart + bst)) { 2085 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2086 ret = -1; 2087 break; 2088 } 2089 ret = 1; 2090 break; 2091 } 2092 } 2093 WARN_ON(ret < 0); 2094 2095 return ret; 2096 } 2097 2098 /* 2099 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2100 * test passes or has timed out. 2101 */ 2102 static struct delayed_work rcu_tasks_verify_work; 2103 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2104 { 2105 int ret = rcu_tasks_verify_self_tests(); 2106 2107 if (ret <= 0) 2108 return; 2109 2110 /* Test fails but not timed out yet, reschedule another check */ 2111 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2112 } 2113 2114 static int rcu_tasks_verify_schedule_work(void) 2115 { 2116 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2117 rcu_tasks_verify_work_fn(NULL); 2118 return 0; 2119 } 2120 late_initcall(rcu_tasks_verify_schedule_work); 2121 #else /* #ifdef CONFIG_PROVE_RCU */ 2122 static void rcu_tasks_initiate_self_tests(void) { } 2123 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2124 2125 void __init rcu_init_tasks_generic(void) 2126 { 2127 #ifdef CONFIG_TASKS_RCU 2128 rcu_spawn_tasks_kthread(); 2129 #endif 2130 2131 #ifdef CONFIG_TASKS_RUDE_RCU 2132 rcu_spawn_tasks_rude_kthread(); 2133 #endif 2134 2135 #ifdef CONFIG_TASKS_TRACE_RCU 2136 rcu_spawn_tasks_trace_kthread(); 2137 #endif 2138 2139 // Run the self-tests. 2140 rcu_tasks_initiate_self_tests(); 2141 } 2142 2143 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2144 static inline void rcu_tasks_bootup_oddness(void) {} 2145 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2146