1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 32 * @init_fract: Initial backoff sleep interval. 33 * @gp_jiffies: Time of last @gp_state transition. 34 * @gp_start: Most recent grace-period start in jiffies. 35 * @n_gps: Number of grace periods completed since boot. 36 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 37 * @n_ipis_fails: Number of IPI-send failures. 38 * @pregp_func: This flavor's pre-grace-period function (optional). 39 * @pertask_func: This flavor's per-task scan function (optional). 40 * @postscan_func: This flavor's post-task scan function (optional). 41 * @holdout_func: This flavor's holdout-list scan function (optional). 42 * @postgp_func: This flavor's post-grace-period function (optional). 43 * @call_func: This flavor's call_rcu()-equivalent function. 44 * @name: This flavor's textual name. 45 * @kname: This flavor's kthread name. 46 */ 47 struct rcu_tasks { 48 struct rcu_head *cbs_head; 49 struct rcu_head **cbs_tail; 50 struct wait_queue_head cbs_wq; 51 raw_spinlock_t cbs_lock; 52 int gp_state; 53 int gp_sleep; 54 int init_fract; 55 unsigned long gp_jiffies; 56 unsigned long gp_start; 57 unsigned long n_gps; 58 unsigned long n_ipis; 59 unsigned long n_ipis_fails; 60 struct task_struct *kthread_ptr; 61 rcu_tasks_gp_func_t gp_func; 62 pregp_func_t pregp_func; 63 pertask_func_t pertask_func; 64 postscan_func_t postscan_func; 65 holdouts_func_t holdouts_func; 66 postgp_func_t postgp_func; 67 call_rcu_func_t call_func; 68 char *name; 69 char *kname; 70 }; 71 72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 73 static struct rcu_tasks rt_name = \ 74 { \ 75 .cbs_tail = &rt_name.cbs_head, \ 76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 78 .gp_func = gp, \ 79 .call_func = call, \ 80 .name = n, \ 81 .kname = #rt_name, \ 82 } 83 84 /* Track exiting tasks in order to allow them to be waited for. */ 85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 86 87 /* Avoid IPIing CPUs early in the grace period. */ 88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 90 module_param(rcu_task_ipi_delay, int, 0644); 91 92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 95 module_param(rcu_task_stall_timeout, int, 0644); 96 97 /* RCU tasks grace-period state for debugging. */ 98 #define RTGS_INIT 0 99 #define RTGS_WAIT_WAIT_CBS 1 100 #define RTGS_WAIT_GP 2 101 #define RTGS_PRE_WAIT_GP 3 102 #define RTGS_SCAN_TASKLIST 4 103 #define RTGS_POST_SCAN_TASKLIST 5 104 #define RTGS_WAIT_SCAN_HOLDOUTS 6 105 #define RTGS_SCAN_HOLDOUTS 7 106 #define RTGS_POST_GP 8 107 #define RTGS_WAIT_READERS 9 108 #define RTGS_INVOKE_CBS 10 109 #define RTGS_WAIT_CBS 11 110 #ifndef CONFIG_TINY_RCU 111 static const char * const rcu_tasks_gp_state_names[] = { 112 "RTGS_INIT", 113 "RTGS_WAIT_WAIT_CBS", 114 "RTGS_WAIT_GP", 115 "RTGS_PRE_WAIT_GP", 116 "RTGS_SCAN_TASKLIST", 117 "RTGS_POST_SCAN_TASKLIST", 118 "RTGS_WAIT_SCAN_HOLDOUTS", 119 "RTGS_SCAN_HOLDOUTS", 120 "RTGS_POST_GP", 121 "RTGS_WAIT_READERS", 122 "RTGS_INVOKE_CBS", 123 "RTGS_WAIT_CBS", 124 }; 125 #endif /* #ifndef CONFIG_TINY_RCU */ 126 127 //////////////////////////////////////////////////////////////////////// 128 // 129 // Generic code. 130 131 /* Record grace-period phase and time. */ 132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 133 { 134 rtp->gp_state = newstate; 135 rtp->gp_jiffies = jiffies; 136 } 137 138 #ifndef CONFIG_TINY_RCU 139 /* Return state name. */ 140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 141 { 142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 143 int j = READ_ONCE(i); // Prevent the compiler from reading twice 144 145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 146 return "???"; 147 return rcu_tasks_gp_state_names[j]; 148 } 149 #endif /* #ifndef CONFIG_TINY_RCU */ 150 151 // Enqueue a callback for the specified flavor of Tasks RCU. 152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 153 struct rcu_tasks *rtp) 154 { 155 unsigned long flags; 156 bool needwake; 157 158 rhp->next = NULL; 159 rhp->func = func; 160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 161 needwake = !rtp->cbs_head; 162 WRITE_ONCE(*rtp->cbs_tail, rhp); 163 rtp->cbs_tail = &rhp->next; 164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 165 /* We can't create the thread unless interrupts are enabled. */ 166 if (needwake && READ_ONCE(rtp->kthread_ptr)) 167 wake_up(&rtp->cbs_wq); 168 } 169 170 // Wait for a grace period for the specified flavor of Tasks RCU. 171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 172 { 173 /* Complain if the scheduler has not started. */ 174 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 175 "synchronize_rcu_tasks called too soon"); 176 177 /* Wait for the grace period. */ 178 wait_rcu_gp(rtp->call_func); 179 } 180 181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 182 static int __noreturn rcu_tasks_kthread(void *arg) 183 { 184 unsigned long flags; 185 struct rcu_head *list; 186 struct rcu_head *next; 187 struct rcu_tasks *rtp = arg; 188 189 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 190 housekeeping_affine(current, HK_FLAG_RCU); 191 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 192 193 /* 194 * Each pass through the following loop makes one check for 195 * newly arrived callbacks, and, if there are some, waits for 196 * one RCU-tasks grace period and then invokes the callbacks. 197 * This loop is terminated by the system going down. ;-) 198 */ 199 for (;;) { 200 201 /* Pick up any new callbacks. */ 202 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 203 smp_mb__after_spinlock(); // Order updates vs. GP. 204 list = rtp->cbs_head; 205 rtp->cbs_head = NULL; 206 rtp->cbs_tail = &rtp->cbs_head; 207 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 208 209 /* If there were none, wait a bit and start over. */ 210 if (!list) { 211 wait_event_interruptible(rtp->cbs_wq, 212 READ_ONCE(rtp->cbs_head)); 213 if (!rtp->cbs_head) { 214 WARN_ON(signal_pending(current)); 215 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 216 schedule_timeout_idle(HZ/10); 217 } 218 continue; 219 } 220 221 // Wait for one grace period. 222 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 223 rtp->gp_start = jiffies; 224 rtp->gp_func(rtp); 225 rtp->n_gps++; 226 227 /* Invoke the callbacks. */ 228 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 229 while (list) { 230 next = list->next; 231 local_bh_disable(); 232 list->func(list); 233 local_bh_enable(); 234 list = next; 235 cond_resched(); 236 } 237 /* Paranoid sleep to keep this from entering a tight loop */ 238 schedule_timeout_idle(rtp->gp_sleep); 239 240 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 241 } 242 } 243 244 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */ 245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 246 { 247 struct task_struct *t; 248 249 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 250 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 251 return; 252 smp_mb(); /* Ensure others see full kthread. */ 253 } 254 255 #ifndef CONFIG_TINY_RCU 256 257 /* 258 * Print any non-default Tasks RCU settings. 259 */ 260 static void __init rcu_tasks_bootup_oddness(void) 261 { 262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 263 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 264 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 265 #endif /* #ifdef CONFIG_TASKS_RCU */ 266 #ifdef CONFIG_TASKS_RCU 267 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 268 #endif /* #ifdef CONFIG_TASKS_RCU */ 269 #ifdef CONFIG_TASKS_RUDE_RCU 270 pr_info("\tRude variant of Tasks RCU enabled.\n"); 271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 272 #ifdef CONFIG_TASKS_TRACE_RCU 273 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 275 } 276 277 #endif /* #ifndef CONFIG_TINY_RCU */ 278 279 #ifndef CONFIG_TINY_RCU 280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 282 { 283 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 284 rtp->kname, 285 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 286 jiffies - data_race(rtp->gp_jiffies), 287 data_race(rtp->n_gps), 288 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 289 ".k"[!!data_race(rtp->kthread_ptr)], 290 ".C"[!!data_race(rtp->cbs_head)], 291 s); 292 } 293 #endif // #ifndef CONFIG_TINY_RCU 294 295 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 296 297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 298 299 //////////////////////////////////////////////////////////////////////// 300 // 301 // Shared code between task-list-scanning variants of Tasks RCU. 302 303 /* Wait for one RCU-tasks grace period. */ 304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 305 { 306 struct task_struct *g, *t; 307 unsigned long lastreport; 308 LIST_HEAD(holdouts); 309 int fract; 310 311 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 312 rtp->pregp_func(); 313 314 /* 315 * There were callbacks, so we need to wait for an RCU-tasks 316 * grace period. Start off by scanning the task list for tasks 317 * that are not already voluntarily blocked. Mark these tasks 318 * and make a list of them in holdouts. 319 */ 320 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 321 rcu_read_lock(); 322 for_each_process_thread(g, t) 323 rtp->pertask_func(t, &holdouts); 324 rcu_read_unlock(); 325 326 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 327 rtp->postscan_func(&holdouts); 328 329 /* 330 * Each pass through the following loop scans the list of holdout 331 * tasks, removing any that are no longer holdouts. When the list 332 * is empty, we are done. 333 */ 334 lastreport = jiffies; 335 336 // Start off with initial wait and slowly back off to 1 HZ wait. 337 fract = rtp->init_fract; 338 339 while (!list_empty(&holdouts)) { 340 bool firstreport; 341 bool needreport; 342 int rtst; 343 344 /* Slowly back off waiting for holdouts */ 345 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 346 schedule_timeout_idle(fract); 347 348 if (fract < HZ) 349 fract++; 350 351 rtst = READ_ONCE(rcu_task_stall_timeout); 352 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 353 if (needreport) 354 lastreport = jiffies; 355 firstreport = true; 356 WARN_ON(signal_pending(current)); 357 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 358 rtp->holdouts_func(&holdouts, needreport, &firstreport); 359 } 360 361 set_tasks_gp_state(rtp, RTGS_POST_GP); 362 rtp->postgp_func(rtp); 363 } 364 365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 366 367 #ifdef CONFIG_TASKS_RCU 368 369 //////////////////////////////////////////////////////////////////////// 370 // 371 // Simple variant of RCU whose quiescent states are voluntary context 372 // switch, cond_resched_rcu_qs(), user-space execution, and idle. 373 // As such, grace periods can take one good long time. There are no 374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 375 // because this implementation is intended to get the system into a safe 376 // state for some of the manipulations involved in tracing and the like. 377 // Finally, this implementation does not support high call_rcu_tasks() 378 // rates from multiple CPUs. If this is required, per-CPU callback lists 379 // will be needed. 380 381 /* Pre-grace-period preparation. */ 382 static void rcu_tasks_pregp_step(void) 383 { 384 /* 385 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 386 * to complete. Invoking synchronize_rcu() suffices because all 387 * these transitions occur with interrupts disabled. Without this 388 * synchronize_rcu(), a read-side critical section that started 389 * before the grace period might be incorrectly seen as having 390 * started after the grace period. 391 * 392 * This synchronize_rcu() also dispenses with the need for a 393 * memory barrier on the first store to t->rcu_tasks_holdout, 394 * as it forces the store to happen after the beginning of the 395 * grace period. 396 */ 397 synchronize_rcu(); 398 } 399 400 /* Per-task initial processing. */ 401 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 402 { 403 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 404 get_task_struct(t); 405 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 406 WRITE_ONCE(t->rcu_tasks_holdout, true); 407 list_add(&t->rcu_tasks_holdout_list, hop); 408 } 409 } 410 411 /* Processing between scanning taskslist and draining the holdout list. */ 412 static void rcu_tasks_postscan(struct list_head *hop) 413 { 414 /* 415 * Wait for tasks that are in the process of exiting. This 416 * does only part of the job, ensuring that all tasks that were 417 * previously exiting reach the point where they have disabled 418 * preemption, allowing the later synchronize_rcu() to finish 419 * the job. 420 */ 421 synchronize_srcu(&tasks_rcu_exit_srcu); 422 } 423 424 /* See if tasks are still holding out, complain if so. */ 425 static void check_holdout_task(struct task_struct *t, 426 bool needreport, bool *firstreport) 427 { 428 int cpu; 429 430 if (!READ_ONCE(t->rcu_tasks_holdout) || 431 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 432 !READ_ONCE(t->on_rq) || 433 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 434 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 435 WRITE_ONCE(t->rcu_tasks_holdout, false); 436 list_del_init(&t->rcu_tasks_holdout_list); 437 put_task_struct(t); 438 return; 439 } 440 rcu_request_urgent_qs_task(t); 441 if (!needreport) 442 return; 443 if (*firstreport) { 444 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 445 *firstreport = false; 446 } 447 cpu = task_cpu(t); 448 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 449 t, ".I"[is_idle_task(t)], 450 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 451 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 452 t->rcu_tasks_idle_cpu, cpu); 453 sched_show_task(t); 454 } 455 456 /* Scan the holdout lists for tasks no longer holding out. */ 457 static void check_all_holdout_tasks(struct list_head *hop, 458 bool needreport, bool *firstreport) 459 { 460 struct task_struct *t, *t1; 461 462 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 463 check_holdout_task(t, needreport, firstreport); 464 cond_resched(); 465 } 466 } 467 468 /* Finish off the Tasks-RCU grace period. */ 469 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 470 { 471 /* 472 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 473 * memory barriers prior to them in the schedule() path, memory 474 * reordering on other CPUs could cause their RCU-tasks read-side 475 * critical sections to extend past the end of the grace period. 476 * However, because these ->nvcsw updates are carried out with 477 * interrupts disabled, we can use synchronize_rcu() to force the 478 * needed ordering on all such CPUs. 479 * 480 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 481 * accesses to be within the grace period, avoiding the need for 482 * memory barriers for ->rcu_tasks_holdout accesses. 483 * 484 * In addition, this synchronize_rcu() waits for exiting tasks 485 * to complete their final preempt_disable() region of execution, 486 * cleaning up after the synchronize_srcu() above. 487 */ 488 synchronize_rcu(); 489 } 490 491 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 492 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 493 494 /** 495 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 496 * @rhp: structure to be used for queueing the RCU updates. 497 * @func: actual callback function to be invoked after the grace period 498 * 499 * The callback function will be invoked some time after a full grace 500 * period elapses, in other words after all currently executing RCU 501 * read-side critical sections have completed. call_rcu_tasks() assumes 502 * that the read-side critical sections end at a voluntary context 503 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 504 * or transition to usermode execution. As such, there are no read-side 505 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 506 * this primitive is intended to determine that all tasks have passed 507 * through a safe state, not so much for data-strcuture synchronization. 508 * 509 * See the description of call_rcu() for more detailed information on 510 * memory ordering guarantees. 511 */ 512 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 513 { 514 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 515 } 516 EXPORT_SYMBOL_GPL(call_rcu_tasks); 517 518 /** 519 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 520 * 521 * Control will return to the caller some time after a full rcu-tasks 522 * grace period has elapsed, in other words after all currently 523 * executing rcu-tasks read-side critical sections have elapsed. These 524 * read-side critical sections are delimited by calls to schedule(), 525 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 526 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 527 * 528 * This is a very specialized primitive, intended only for a few uses in 529 * tracing and other situations requiring manipulation of function 530 * preambles and profiling hooks. The synchronize_rcu_tasks() function 531 * is not (yet) intended for heavy use from multiple CPUs. 532 * 533 * See the description of synchronize_rcu() for more detailed information 534 * on memory ordering guarantees. 535 */ 536 void synchronize_rcu_tasks(void) 537 { 538 synchronize_rcu_tasks_generic(&rcu_tasks); 539 } 540 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 541 542 /** 543 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 544 * 545 * Although the current implementation is guaranteed to wait, it is not 546 * obligated to, for example, if there are no pending callbacks. 547 */ 548 void rcu_barrier_tasks(void) 549 { 550 /* There is only one callback queue, so this is easy. ;-) */ 551 synchronize_rcu_tasks(); 552 } 553 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 554 555 static int __init rcu_spawn_tasks_kthread(void) 556 { 557 rcu_tasks.gp_sleep = HZ / 10; 558 rcu_tasks.init_fract = HZ / 10; 559 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 560 rcu_tasks.pertask_func = rcu_tasks_pertask; 561 rcu_tasks.postscan_func = rcu_tasks_postscan; 562 rcu_tasks.holdouts_func = check_all_holdout_tasks; 563 rcu_tasks.postgp_func = rcu_tasks_postgp; 564 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 565 return 0; 566 } 567 core_initcall(rcu_spawn_tasks_kthread); 568 569 #if !defined(CONFIG_TINY_RCU) 570 void show_rcu_tasks_classic_gp_kthread(void) 571 { 572 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 573 } 574 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 575 #endif // !defined(CONFIG_TINY_RCU) 576 577 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 578 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 579 { 580 preempt_disable(); 581 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 582 preempt_enable(); 583 } 584 585 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 586 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 587 { 588 struct task_struct *t = current; 589 590 preempt_disable(); 591 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 592 preempt_enable(); 593 exit_tasks_rcu_finish_trace(t); 594 } 595 596 #else /* #ifdef CONFIG_TASKS_RCU */ 597 void exit_tasks_rcu_start(void) { } 598 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 599 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 600 601 #ifdef CONFIG_TASKS_RUDE_RCU 602 603 //////////////////////////////////////////////////////////////////////// 604 // 605 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 606 // passing an empty function to schedule_on_each_cpu(). This approach 607 // provides an asynchronous call_rcu_tasks_rude() API and batching 608 // of concurrent calls to the synchronous synchronize_rcu_rude() API. 609 // This sends IPIs far and wide and induces otherwise unnecessary context 610 // switches on all online CPUs, whether idle or not. 611 612 // Empty function to allow workqueues to force a context switch. 613 static void rcu_tasks_be_rude(struct work_struct *work) 614 { 615 } 616 617 // Wait for one rude RCU-tasks grace period. 618 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 619 { 620 rtp->n_ipis += cpumask_weight(cpu_online_mask); 621 schedule_on_each_cpu(rcu_tasks_be_rude); 622 } 623 624 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 625 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 626 "RCU Tasks Rude"); 627 628 /** 629 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 630 * @rhp: structure to be used for queueing the RCU updates. 631 * @func: actual callback function to be invoked after the grace period 632 * 633 * The callback function will be invoked some time after a full grace 634 * period elapses, in other words after all currently executing RCU 635 * read-side critical sections have completed. call_rcu_tasks_rude() 636 * assumes that the read-side critical sections end at context switch, 637 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 638 * there are no read-side primitives analogous to rcu_read_lock() and 639 * rcu_read_unlock() because this primitive is intended to determine 640 * that all tasks have passed through a safe state, not so much for 641 * data-strcuture synchronization. 642 * 643 * See the description of call_rcu() for more detailed information on 644 * memory ordering guarantees. 645 */ 646 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 647 { 648 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 649 } 650 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 651 652 /** 653 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 654 * 655 * Control will return to the caller some time after a rude rcu-tasks 656 * grace period has elapsed, in other words after all currently 657 * executing rcu-tasks read-side critical sections have elapsed. These 658 * read-side critical sections are delimited by calls to schedule(), 659 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 660 * anyway) cond_resched(). 661 * 662 * This is a very specialized primitive, intended only for a few uses in 663 * tracing and other situations requiring manipulation of function preambles 664 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 665 * (yet) intended for heavy use from multiple CPUs. 666 * 667 * See the description of synchronize_rcu() for more detailed information 668 * on memory ordering guarantees. 669 */ 670 void synchronize_rcu_tasks_rude(void) 671 { 672 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 673 } 674 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 675 676 /** 677 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 678 * 679 * Although the current implementation is guaranteed to wait, it is not 680 * obligated to, for example, if there are no pending callbacks. 681 */ 682 void rcu_barrier_tasks_rude(void) 683 { 684 /* There is only one callback queue, so this is easy. ;-) */ 685 synchronize_rcu_tasks_rude(); 686 } 687 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 688 689 static int __init rcu_spawn_tasks_rude_kthread(void) 690 { 691 rcu_tasks_rude.gp_sleep = HZ / 10; 692 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 693 return 0; 694 } 695 core_initcall(rcu_spawn_tasks_rude_kthread); 696 697 #if !defined(CONFIG_TINY_RCU) 698 void show_rcu_tasks_rude_gp_kthread(void) 699 { 700 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 701 } 702 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 703 #endif // !defined(CONFIG_TINY_RCU) 704 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 705 706 //////////////////////////////////////////////////////////////////////// 707 // 708 // Tracing variant of Tasks RCU. This variant is designed to be used 709 // to protect tracing hooks, including those of BPF. This variant 710 // therefore: 711 // 712 // 1. Has explicit read-side markers to allow finite grace periods 713 // in the face of in-kernel loops for PREEMPT=n builds. 714 // 715 // 2. Protects code in the idle loop, exception entry/exit, and 716 // CPU-hotplug code paths, similar to the capabilities of SRCU. 717 // 718 // 3. Avoids expensive read-side instruction, having overhead similar 719 // to that of Preemptible RCU. 720 // 721 // There are of course downsides. The grace-period code can send IPIs to 722 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 723 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 724 // is a single callback queue guarded by a single lock, again, much as for 725 // Tasks RCU. If needed, these downsides can be at least partially remedied. 726 // 727 // Perhaps most important, this variant of RCU does not affect the vanilla 728 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 729 // readers can operate from idle, offline, and exception entry/exit in no 730 // way allows rcu_preempt and rcu_sched readers to also do so. 731 732 // The lockdep state must be outside of #ifdef to be useful. 733 #ifdef CONFIG_DEBUG_LOCK_ALLOC 734 static struct lock_class_key rcu_lock_trace_key; 735 struct lockdep_map rcu_trace_lock_map = 736 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 737 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 738 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 739 740 #ifdef CONFIG_TASKS_TRACE_RCU 741 742 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 743 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 744 745 // Record outstanding IPIs to each CPU. No point in sending two... 746 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 747 748 // The number of detections of task quiescent state relying on 749 // heavyweight readers executing explicit memory barriers. 750 static unsigned long n_heavy_reader_attempts; 751 static unsigned long n_heavy_reader_updates; 752 static unsigned long n_heavy_reader_ofl_updates; 753 754 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 755 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 756 "RCU Tasks Trace"); 757 758 /* 759 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 760 * while the scheduler locks are held. 761 */ 762 static void rcu_read_unlock_iw(struct irq_work *iwp) 763 { 764 wake_up(&trc_wait); 765 } 766 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 767 768 /* If we are the last reader, wake up the grace-period kthread. */ 769 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) 770 { 771 int nq = t->trc_reader_special.b.need_qs; 772 773 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 774 t->trc_reader_special.b.need_mb) 775 smp_mb(); // Pairs with update-side barriers. 776 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 777 if (nq) 778 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 779 WRITE_ONCE(t->trc_reader_nesting, nesting); 780 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 781 irq_work_queue(&rcu_tasks_trace_iw); 782 } 783 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 784 785 /* Add a task to the holdout list, if it is not already on the list. */ 786 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 787 { 788 if (list_empty(&t->trc_holdout_list)) { 789 get_task_struct(t); 790 list_add(&t->trc_holdout_list, bhp); 791 } 792 } 793 794 /* Remove a task from the holdout list, if it is in fact present. */ 795 static void trc_del_holdout(struct task_struct *t) 796 { 797 if (!list_empty(&t->trc_holdout_list)) { 798 list_del_init(&t->trc_holdout_list); 799 put_task_struct(t); 800 } 801 } 802 803 /* IPI handler to check task state. */ 804 static void trc_read_check_handler(void *t_in) 805 { 806 struct task_struct *t = current; 807 struct task_struct *texp = t_in; 808 809 // If the task is no longer running on this CPU, leave. 810 if (unlikely(texp != t)) { 811 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 812 wake_up(&trc_wait); 813 goto reset_ipi; // Already on holdout list, so will check later. 814 } 815 816 // If the task is not in a read-side critical section, and 817 // if this is the last reader, awaken the grace-period kthread. 818 if (likely(!t->trc_reader_nesting)) { 819 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 820 wake_up(&trc_wait); 821 // Mark as checked after decrement to avoid false 822 // positives on the above WARN_ON_ONCE(). 823 WRITE_ONCE(t->trc_reader_checked, true); 824 goto reset_ipi; 825 } 826 // If we are racing with an rcu_read_unlock_trace(), try again later. 827 if (unlikely(t->trc_reader_nesting < 0)) { 828 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 829 wake_up(&trc_wait); 830 goto reset_ipi; 831 } 832 WRITE_ONCE(t->trc_reader_checked, true); 833 834 // Get here if the task is in a read-side critical section. Set 835 // its state so that it will awaken the grace-period kthread upon 836 // exit from that critical section. 837 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 838 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 839 840 reset_ipi: 841 // Allow future IPIs to be sent on CPU and for task. 842 // Also order this IPI handler against any later manipulations of 843 // the intended task. 844 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 845 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 846 } 847 848 /* Callback function for scheduler to check locked-down task. */ 849 static bool trc_inspect_reader(struct task_struct *t, void *arg) 850 { 851 int cpu = task_cpu(t); 852 bool in_qs = false; 853 bool ofl = cpu_is_offline(cpu); 854 855 if (task_curr(t)) { 856 WARN_ON_ONCE(ofl && !is_idle_task(t)); 857 858 // If no chance of heavyweight readers, do it the hard way. 859 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 860 return false; 861 862 // If heavyweight readers are enabled on the remote task, 863 // we can inspect its state despite its currently running. 864 // However, we cannot safely change its state. 865 n_heavy_reader_attempts++; 866 if (!ofl && // Check for "running" idle tasks on offline CPUs. 867 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 868 return false; // No quiescent state, do it the hard way. 869 n_heavy_reader_updates++; 870 if (ofl) 871 n_heavy_reader_ofl_updates++; 872 in_qs = true; 873 } else { 874 in_qs = likely(!t->trc_reader_nesting); 875 } 876 877 // Mark as checked. Because this is called from the grace-period 878 // kthread, also remove the task from the holdout list. 879 t->trc_reader_checked = true; 880 trc_del_holdout(t); 881 882 if (in_qs) 883 return true; // Already in quiescent state, done!!! 884 885 // The task is in a read-side critical section, so set up its 886 // state so that it will awaken the grace-period kthread upon exit 887 // from that critical section. 888 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 889 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 890 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 891 return true; 892 } 893 894 /* Attempt to extract the state for the specified task. */ 895 static void trc_wait_for_one_reader(struct task_struct *t, 896 struct list_head *bhp) 897 { 898 int cpu; 899 900 // If a previous IPI is still in flight, let it complete. 901 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 902 return; 903 904 // The current task had better be in a quiescent state. 905 if (t == current) { 906 t->trc_reader_checked = true; 907 trc_del_holdout(t); 908 WARN_ON_ONCE(t->trc_reader_nesting); 909 return; 910 } 911 912 // Attempt to nail down the task for inspection. 913 get_task_struct(t); 914 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { 915 put_task_struct(t); 916 return; 917 } 918 put_task_struct(t); 919 920 // If currently running, send an IPI, either way, add to list. 921 trc_add_holdout(t, bhp); 922 if (task_curr(t) && 923 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 924 // The task is currently running, so try IPIing it. 925 cpu = task_cpu(t); 926 927 // If there is already an IPI outstanding, let it happen. 928 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 929 return; 930 931 atomic_inc(&trc_n_readers_need_end); 932 per_cpu(trc_ipi_to_cpu, cpu) = true; 933 t->trc_ipi_to_cpu = cpu; 934 rcu_tasks_trace.n_ipis++; 935 if (smp_call_function_single(cpu, 936 trc_read_check_handler, t, 0)) { 937 // Just in case there is some other reason for 938 // failure than the target CPU being offline. 939 rcu_tasks_trace.n_ipis_fails++; 940 per_cpu(trc_ipi_to_cpu, cpu) = false; 941 t->trc_ipi_to_cpu = cpu; 942 if (atomic_dec_and_test(&trc_n_readers_need_end)) { 943 WARN_ON_ONCE(1); 944 wake_up(&trc_wait); 945 } 946 } 947 } 948 } 949 950 /* Initialize for a new RCU-tasks-trace grace period. */ 951 static void rcu_tasks_trace_pregp_step(void) 952 { 953 int cpu; 954 955 // Allow for fast-acting IPIs. 956 atomic_set(&trc_n_readers_need_end, 1); 957 958 // There shouldn't be any old IPIs, but... 959 for_each_possible_cpu(cpu) 960 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 961 962 // Disable CPU hotplug across the tasklist scan. 963 // This also waits for all readers in CPU-hotplug code paths. 964 cpus_read_lock(); 965 } 966 967 /* Do first-round processing for the specified task. */ 968 static void rcu_tasks_trace_pertask(struct task_struct *t, 969 struct list_head *hop) 970 { 971 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 972 WRITE_ONCE(t->trc_reader_checked, false); 973 t->trc_ipi_to_cpu = -1; 974 trc_wait_for_one_reader(t, hop); 975 } 976 977 /* 978 * Do intermediate processing between task and holdout scans and 979 * pick up the idle tasks. 980 */ 981 static void rcu_tasks_trace_postscan(struct list_head *hop) 982 { 983 int cpu; 984 985 for_each_possible_cpu(cpu) 986 rcu_tasks_trace_pertask(idle_task(cpu), hop); 987 988 // Re-enable CPU hotplug now that the tasklist scan has completed. 989 cpus_read_unlock(); 990 991 // Wait for late-stage exiting tasks to finish exiting. 992 // These might have passed the call to exit_tasks_rcu_finish(). 993 synchronize_rcu(); 994 // Any tasks that exit after this point will set ->trc_reader_checked. 995 } 996 997 /* Show the state of a task stalling the current RCU tasks trace GP. */ 998 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 999 { 1000 int cpu; 1001 1002 if (*firstreport) { 1003 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1004 *firstreport = false; 1005 } 1006 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 1007 cpu = task_cpu(t); 1008 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1009 t->pid, 1010 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], 1011 ".i"[is_idle_task(t)], 1012 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], 1013 t->trc_reader_nesting, 1014 " N"[!!t->trc_reader_special.b.need_qs], 1015 cpu); 1016 sched_show_task(t); 1017 } 1018 1019 /* List stalled IPIs for RCU tasks trace. */ 1020 static void show_stalled_ipi_trace(void) 1021 { 1022 int cpu; 1023 1024 for_each_possible_cpu(cpu) 1025 if (per_cpu(trc_ipi_to_cpu, cpu)) 1026 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1027 } 1028 1029 /* Do one scan of the holdout list. */ 1030 static void check_all_holdout_tasks_trace(struct list_head *hop, 1031 bool needreport, bool *firstreport) 1032 { 1033 struct task_struct *g, *t; 1034 1035 // Disable CPU hotplug across the holdout list scan. 1036 cpus_read_lock(); 1037 1038 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1039 // If safe and needed, try to check the current task. 1040 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1041 !READ_ONCE(t->trc_reader_checked)) 1042 trc_wait_for_one_reader(t, hop); 1043 1044 // If check succeeded, remove this task from the list. 1045 if (READ_ONCE(t->trc_reader_checked)) 1046 trc_del_holdout(t); 1047 else if (needreport) 1048 show_stalled_task_trace(t, firstreport); 1049 } 1050 1051 // Re-enable CPU hotplug now that the holdout list scan has completed. 1052 cpus_read_unlock(); 1053 1054 if (needreport) { 1055 if (firstreport) 1056 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1057 show_stalled_ipi_trace(); 1058 } 1059 } 1060 1061 /* Wait for grace period to complete and provide ordering. */ 1062 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1063 { 1064 bool firstreport; 1065 struct task_struct *g, *t; 1066 LIST_HEAD(holdouts); 1067 long ret; 1068 1069 // Remove the safety count. 1070 smp_mb__before_atomic(); // Order vs. earlier atomics 1071 atomic_dec(&trc_n_readers_need_end); 1072 smp_mb__after_atomic(); // Order vs. later atomics 1073 1074 // Wait for readers. 1075 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1076 for (;;) { 1077 ret = wait_event_idle_exclusive_timeout( 1078 trc_wait, 1079 atomic_read(&trc_n_readers_need_end) == 0, 1080 READ_ONCE(rcu_task_stall_timeout)); 1081 if (ret) 1082 break; // Count reached zero. 1083 // Stall warning time, so make a list of the offenders. 1084 rcu_read_lock(); 1085 for_each_process_thread(g, t) 1086 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1087 trc_add_holdout(t, &holdouts); 1088 rcu_read_unlock(); 1089 firstreport = true; 1090 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { 1091 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1092 show_stalled_task_trace(t, &firstreport); 1093 trc_del_holdout(t); // Release task_struct reference. 1094 } 1095 if (firstreport) 1096 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1097 show_stalled_ipi_trace(); 1098 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1099 } 1100 smp_mb(); // Caller's code must be ordered after wakeup. 1101 // Pairs with pretty much every ordering primitive. 1102 } 1103 1104 /* Report any needed quiescent state for this exiting task. */ 1105 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1106 { 1107 WRITE_ONCE(t->trc_reader_checked, true); 1108 WARN_ON_ONCE(t->trc_reader_nesting); 1109 WRITE_ONCE(t->trc_reader_nesting, 0); 1110 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1111 rcu_read_unlock_trace_special(t, 0); 1112 } 1113 1114 /** 1115 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1116 * @rhp: structure to be used for queueing the RCU updates. 1117 * @func: actual callback function to be invoked after the grace period 1118 * 1119 * The callback function will be invoked some time after a full grace 1120 * period elapses, in other words after all currently executing RCU 1121 * read-side critical sections have completed. call_rcu_tasks_trace() 1122 * assumes that the read-side critical sections end at context switch, 1123 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 1124 * there are no read-side primitives analogous to rcu_read_lock() and 1125 * rcu_read_unlock() because this primitive is intended to determine 1126 * that all tasks have passed through a safe state, not so much for 1127 * data-strcuture synchronization. 1128 * 1129 * See the description of call_rcu() for more detailed information on 1130 * memory ordering guarantees. 1131 */ 1132 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1133 { 1134 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1135 } 1136 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1137 1138 /** 1139 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1140 * 1141 * Control will return to the caller some time after a trace rcu-tasks 1142 * grace period has elapsed, in other words after all currently executing 1143 * rcu-tasks read-side critical sections have elapsed. These read-side 1144 * critical sections are delimited by calls to rcu_read_lock_trace() 1145 * and rcu_read_unlock_trace(). 1146 * 1147 * This is a very specialized primitive, intended only for a few uses in 1148 * tracing and other situations requiring manipulation of function preambles 1149 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1150 * (yet) intended for heavy use from multiple CPUs. 1151 * 1152 * See the description of synchronize_rcu() for more detailed information 1153 * on memory ordering guarantees. 1154 */ 1155 void synchronize_rcu_tasks_trace(void) 1156 { 1157 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1158 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1159 } 1160 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1161 1162 /** 1163 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1164 * 1165 * Although the current implementation is guaranteed to wait, it is not 1166 * obligated to, for example, if there are no pending callbacks. 1167 */ 1168 void rcu_barrier_tasks_trace(void) 1169 { 1170 /* There is only one callback queue, so this is easy. ;-) */ 1171 synchronize_rcu_tasks_trace(); 1172 } 1173 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1174 1175 static int __init rcu_spawn_tasks_trace_kthread(void) 1176 { 1177 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1178 rcu_tasks_trace.gp_sleep = HZ / 10; 1179 rcu_tasks_trace.init_fract = HZ / 10; 1180 } else { 1181 rcu_tasks_trace.gp_sleep = HZ / 200; 1182 if (rcu_tasks_trace.gp_sleep <= 0) 1183 rcu_tasks_trace.gp_sleep = 1; 1184 rcu_tasks_trace.init_fract = HZ / 200; 1185 if (rcu_tasks_trace.init_fract <= 0) 1186 rcu_tasks_trace.init_fract = 1; 1187 } 1188 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1189 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1190 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1191 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1192 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1193 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1194 return 0; 1195 } 1196 core_initcall(rcu_spawn_tasks_trace_kthread); 1197 1198 #if !defined(CONFIG_TINY_RCU) 1199 void show_rcu_tasks_trace_gp_kthread(void) 1200 { 1201 char buf[64]; 1202 1203 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1204 data_race(n_heavy_reader_ofl_updates), 1205 data_race(n_heavy_reader_updates), 1206 data_race(n_heavy_reader_attempts)); 1207 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1208 } 1209 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1210 #endif // !defined(CONFIG_TINY_RCU) 1211 1212 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1213 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1214 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1215 1216 #ifndef CONFIG_TINY_RCU 1217 void show_rcu_tasks_gp_kthreads(void) 1218 { 1219 show_rcu_tasks_classic_gp_kthread(); 1220 show_rcu_tasks_rude_gp_kthread(); 1221 show_rcu_tasks_trace_gp_kthread(); 1222 } 1223 #endif /* #ifndef CONFIG_TINY_RCU */ 1224 1225 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1226 static inline void rcu_tasks_bootup_oddness(void) {} 1227 void show_rcu_tasks_gp_kthreads(void) {} 1228 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1229