xref: /openbmc/linux/kernel/rcu/tasks.h (revision d7c1814f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13 
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21 
22 /**
23  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
24  * @cbs_head: Head of callback list.
25  * @cbs_tail: Tail pointer for callback list.
26  * @cbs_wq: Wait queue allowing new callback to get kthread's attention.
27  * @cbs_lock: Lock protecting callback list.
28  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29  * @gp_func: This flavor's grace-period-wait function.
30  * @gp_state: Grace period's most recent state transition (debugging).
31  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
32  * @init_fract: Initial backoff sleep interval.
33  * @gp_jiffies: Time of last @gp_state transition.
34  * @gp_start: Most recent grace-period start in jiffies.
35  * @n_gps: Number of grace periods completed since boot.
36  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
37  * @n_ipis_fails: Number of IPI-send failures.
38  * @pregp_func: This flavor's pre-grace-period function (optional).
39  * @pertask_func: This flavor's per-task scan function (optional).
40  * @postscan_func: This flavor's post-task scan function (optional).
41  * @holdouts_func: This flavor's holdout-list scan function (optional).
42  * @postgp_func: This flavor's post-grace-period function (optional).
43  * @call_func: This flavor's call_rcu()-equivalent function.
44  * @name: This flavor's textual name.
45  * @kname: This flavor's kthread name.
46  */
47 struct rcu_tasks {
48 	struct rcu_head *cbs_head;
49 	struct rcu_head **cbs_tail;
50 	struct wait_queue_head cbs_wq;
51 	raw_spinlock_t cbs_lock;
52 	int gp_state;
53 	int gp_sleep;
54 	int init_fract;
55 	unsigned long gp_jiffies;
56 	unsigned long gp_start;
57 	unsigned long n_gps;
58 	unsigned long n_ipis;
59 	unsigned long n_ipis_fails;
60 	struct task_struct *kthread_ptr;
61 	rcu_tasks_gp_func_t gp_func;
62 	pregp_func_t pregp_func;
63 	pertask_func_t pertask_func;
64 	postscan_func_t postscan_func;
65 	holdouts_func_t holdouts_func;
66 	postgp_func_t postgp_func;
67 	call_rcu_func_t call_func;
68 	char *name;
69 	char *kname;
70 };
71 
72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)				\
73 static struct rcu_tasks rt_name =					\
74 {									\
75 	.cbs_tail = &rt_name.cbs_head,					\
76 	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),	\
77 	.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock),		\
78 	.gp_func = gp,							\
79 	.call_func = call,						\
80 	.name = n,							\
81 	.kname = #rt_name,						\
82 }
83 
84 /* Track exiting tasks in order to allow them to be waited for. */
85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
86 
87 /* Avoid IPIing CPUs early in the grace period. */
88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
90 module_param(rcu_task_ipi_delay, int, 0644);
91 
92 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
95 module_param(rcu_task_stall_timeout, int, 0644);
96 
97 /* RCU tasks grace-period state for debugging. */
98 #define RTGS_INIT		 0
99 #define RTGS_WAIT_WAIT_CBS	 1
100 #define RTGS_WAIT_GP		 2
101 #define RTGS_PRE_WAIT_GP	 3
102 #define RTGS_SCAN_TASKLIST	 4
103 #define RTGS_POST_SCAN_TASKLIST	 5
104 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
105 #define RTGS_SCAN_HOLDOUTS	 7
106 #define RTGS_POST_GP		 8
107 #define RTGS_WAIT_READERS	 9
108 #define RTGS_INVOKE_CBS		10
109 #define RTGS_WAIT_CBS		11
110 #ifndef CONFIG_TINY_RCU
111 static const char * const rcu_tasks_gp_state_names[] = {
112 	"RTGS_INIT",
113 	"RTGS_WAIT_WAIT_CBS",
114 	"RTGS_WAIT_GP",
115 	"RTGS_PRE_WAIT_GP",
116 	"RTGS_SCAN_TASKLIST",
117 	"RTGS_POST_SCAN_TASKLIST",
118 	"RTGS_WAIT_SCAN_HOLDOUTS",
119 	"RTGS_SCAN_HOLDOUTS",
120 	"RTGS_POST_GP",
121 	"RTGS_WAIT_READERS",
122 	"RTGS_INVOKE_CBS",
123 	"RTGS_WAIT_CBS",
124 };
125 #endif /* #ifndef CONFIG_TINY_RCU */
126 
127 ////////////////////////////////////////////////////////////////////////
128 //
129 // Generic code.
130 
131 /* Record grace-period phase and time. */
132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
133 {
134 	rtp->gp_state = newstate;
135 	rtp->gp_jiffies = jiffies;
136 }
137 
138 #ifndef CONFIG_TINY_RCU
139 /* Return state name. */
140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
141 {
142 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
143 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
144 
145 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
146 		return "???";
147 	return rcu_tasks_gp_state_names[j];
148 }
149 #endif /* #ifndef CONFIG_TINY_RCU */
150 
151 // Enqueue a callback for the specified flavor of Tasks RCU.
152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
153 				   struct rcu_tasks *rtp)
154 {
155 	unsigned long flags;
156 	bool needwake;
157 
158 	rhp->next = NULL;
159 	rhp->func = func;
160 	raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
161 	needwake = !rtp->cbs_head;
162 	WRITE_ONCE(*rtp->cbs_tail, rhp);
163 	rtp->cbs_tail = &rhp->next;
164 	raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
165 	/* We can't create the thread unless interrupts are enabled. */
166 	if (needwake && READ_ONCE(rtp->kthread_ptr))
167 		wake_up(&rtp->cbs_wq);
168 }
169 
170 // Wait for a grace period for the specified flavor of Tasks RCU.
171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
172 {
173 	/* Complain if the scheduler has not started.  */
174 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
175 			 "synchronize_rcu_tasks called too soon");
176 
177 	/* Wait for the grace period. */
178 	wait_rcu_gp(rtp->call_func);
179 }
180 
181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
182 static int __noreturn rcu_tasks_kthread(void *arg)
183 {
184 	unsigned long flags;
185 	struct rcu_head *list;
186 	struct rcu_head *next;
187 	struct rcu_tasks *rtp = arg;
188 
189 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
190 	housekeeping_affine(current, HK_FLAG_RCU);
191 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
192 
193 	/*
194 	 * Each pass through the following loop makes one check for
195 	 * newly arrived callbacks, and, if there are some, waits for
196 	 * one RCU-tasks grace period and then invokes the callbacks.
197 	 * This loop is terminated by the system going down.  ;-)
198 	 */
199 	for (;;) {
200 
201 		/* Pick up any new callbacks. */
202 		raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
203 		smp_mb__after_spinlock(); // Order updates vs. GP.
204 		list = rtp->cbs_head;
205 		rtp->cbs_head = NULL;
206 		rtp->cbs_tail = &rtp->cbs_head;
207 		raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
208 
209 		/* If there were none, wait a bit and start over. */
210 		if (!list) {
211 			wait_event_interruptible(rtp->cbs_wq,
212 						 READ_ONCE(rtp->cbs_head));
213 			if (!rtp->cbs_head) {
214 				WARN_ON(signal_pending(current));
215 				set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
216 				schedule_timeout_idle(HZ/10);
217 			}
218 			continue;
219 		}
220 
221 		// Wait for one grace period.
222 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
223 		rtp->gp_start = jiffies;
224 		rtp->gp_func(rtp);
225 		rtp->n_gps++;
226 
227 		/* Invoke the callbacks. */
228 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
229 		while (list) {
230 			next = list->next;
231 			local_bh_disable();
232 			list->func(list);
233 			local_bh_enable();
234 			list = next;
235 			cond_resched();
236 		}
237 		/* Paranoid sleep to keep this from entering a tight loop */
238 		schedule_timeout_idle(rtp->gp_sleep);
239 
240 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
241 	}
242 }
243 
244 /* Spawn RCU-tasks grace-period kthread. */
245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
246 {
247 	struct task_struct *t;
248 
249 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
250 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
251 		return;
252 	smp_mb(); /* Ensure others see full kthread. */
253 }
254 
255 #ifndef CONFIG_TINY_RCU
256 
257 /*
258  * Print any non-default Tasks RCU settings.
259  */
260 static void __init rcu_tasks_bootup_oddness(void)
261 {
262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
263 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
264 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
265 #endif /* #ifdef CONFIG_TASKS_RCU */
266 #ifdef CONFIG_TASKS_RCU
267 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
268 #endif /* #ifdef CONFIG_TASKS_RCU */
269 #ifdef CONFIG_TASKS_RUDE_RCU
270 	pr_info("\tRude variant of Tasks RCU enabled.\n");
271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
272 #ifdef CONFIG_TASKS_TRACE_RCU
273 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
275 }
276 
277 #endif /* #ifndef CONFIG_TINY_RCU */
278 
279 #ifndef CONFIG_TINY_RCU
280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
282 {
283 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
284 		rtp->kname,
285 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
286 		jiffies - data_race(rtp->gp_jiffies),
287 		data_race(rtp->n_gps),
288 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
289 		".k"[!!data_race(rtp->kthread_ptr)],
290 		".C"[!!data_race(rtp->cbs_head)],
291 		s);
292 }
293 #endif // #ifndef CONFIG_TINY_RCU
294 
295 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
296 
297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
298 
299 ////////////////////////////////////////////////////////////////////////
300 //
301 // Shared code between task-list-scanning variants of Tasks RCU.
302 
303 /* Wait for one RCU-tasks grace period. */
304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
305 {
306 	struct task_struct *g, *t;
307 	unsigned long lastreport;
308 	LIST_HEAD(holdouts);
309 	int fract;
310 
311 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
312 	rtp->pregp_func();
313 
314 	/*
315 	 * There were callbacks, so we need to wait for an RCU-tasks
316 	 * grace period.  Start off by scanning the task list for tasks
317 	 * that are not already voluntarily blocked.  Mark these tasks
318 	 * and make a list of them in holdouts.
319 	 */
320 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
321 	rcu_read_lock();
322 	for_each_process_thread(g, t)
323 		rtp->pertask_func(t, &holdouts);
324 	rcu_read_unlock();
325 
326 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
327 	rtp->postscan_func(&holdouts);
328 
329 	/*
330 	 * Each pass through the following loop scans the list of holdout
331 	 * tasks, removing any that are no longer holdouts.  When the list
332 	 * is empty, we are done.
333 	 */
334 	lastreport = jiffies;
335 
336 	// Start off with initial wait and slowly back off to 1 HZ wait.
337 	fract = rtp->init_fract;
338 
339 	while (!list_empty(&holdouts)) {
340 		bool firstreport;
341 		bool needreport;
342 		int rtst;
343 
344 		/* Slowly back off waiting for holdouts */
345 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
346 		schedule_timeout_idle(fract);
347 
348 		if (fract < HZ)
349 			fract++;
350 
351 		rtst = READ_ONCE(rcu_task_stall_timeout);
352 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
353 		if (needreport)
354 			lastreport = jiffies;
355 		firstreport = true;
356 		WARN_ON(signal_pending(current));
357 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
358 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
359 	}
360 
361 	set_tasks_gp_state(rtp, RTGS_POST_GP);
362 	rtp->postgp_func(rtp);
363 }
364 
365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
366 
367 #ifdef CONFIG_TASKS_RCU
368 
369 ////////////////////////////////////////////////////////////////////////
370 //
371 // Simple variant of RCU whose quiescent states are voluntary context
372 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
373 // As such, grace periods can take one good long time.  There are no
374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
375 // because this implementation is intended to get the system into a safe
376 // state for some of the manipulations involved in tracing and the like.
377 // Finally, this implementation does not support high call_rcu_tasks()
378 // rates from multiple CPUs.  If this is required, per-CPU callback lists
379 // will be needed.
380 //
381 // The implementation uses rcu_tasks_wait_gp(), which relies on function
382 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
383 // function sets these function pointers up so that rcu_tasks_wait_gp()
384 // invokes these functions in this order:
385 //
386 // rcu_tasks_pregp_step():
387 //	Invokes synchronize_rcu() in order to wait for all in-flight
388 //	t->on_rq and t->nvcsw transitions to complete.	This works because
389 //	all such transitions are carried out with interrupts disabled.
390 // rcu_tasks_pertask(), invoked on every non-idle task:
391 //	For every runnable non-idle task other than the current one, use
392 //	get_task_struct() to pin down that task, snapshot that task's
393 //	number of voluntary context switches, and add that task to the
394 //	holdout list.
395 // rcu_tasks_postscan():
396 //	Invoke synchronize_srcu() to ensure that all tasks that were
397 //	in the process of exiting (and which thus might not know to
398 //	synchronize with this RCU Tasks grace period) have completed
399 //	exiting.
400 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
401 //	Scans the holdout list, attempting to identify a quiescent state
402 //	for each task on the list.  If there is a quiescent state, the
403 //	corresponding task is removed from the holdout list.
404 // rcu_tasks_postgp():
405 //	Invokes synchronize_rcu() in order to ensure that all prior
406 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
407 //	to have happened before the end of this RCU Tasks grace period.
408 //	Again, this works because all such transitions are carried out
409 //	with interrupts disabled.
410 //
411 // For each exiting task, the exit_tasks_rcu_start() and
412 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
413 // read-side critical sections waited for by rcu_tasks_postscan().
414 //
415 // Pre-grace-period update-side code is ordered before the grace via the
416 // ->cbs_lock and the smp_mb__after_spinlock().  Pre-grace-period read-side
417 // code is ordered before the grace period via synchronize_rcu() call
418 // in rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
419 // disabling.
420 
421 /* Pre-grace-period preparation. */
422 static void rcu_tasks_pregp_step(void)
423 {
424 	/*
425 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
426 	 * to complete.  Invoking synchronize_rcu() suffices because all
427 	 * these transitions occur with interrupts disabled.  Without this
428 	 * synchronize_rcu(), a read-side critical section that started
429 	 * before the grace period might be incorrectly seen as having
430 	 * started after the grace period.
431 	 *
432 	 * This synchronize_rcu() also dispenses with the need for a
433 	 * memory barrier on the first store to t->rcu_tasks_holdout,
434 	 * as it forces the store to happen after the beginning of the
435 	 * grace period.
436 	 */
437 	synchronize_rcu();
438 }
439 
440 /* Per-task initial processing. */
441 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
442 {
443 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
444 		get_task_struct(t);
445 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
446 		WRITE_ONCE(t->rcu_tasks_holdout, true);
447 		list_add(&t->rcu_tasks_holdout_list, hop);
448 	}
449 }
450 
451 /* Processing between scanning taskslist and draining the holdout list. */
452 static void rcu_tasks_postscan(struct list_head *hop)
453 {
454 	/*
455 	 * Wait for tasks that are in the process of exiting.  This
456 	 * does only part of the job, ensuring that all tasks that were
457 	 * previously exiting reach the point where they have disabled
458 	 * preemption, allowing the later synchronize_rcu() to finish
459 	 * the job.
460 	 */
461 	synchronize_srcu(&tasks_rcu_exit_srcu);
462 }
463 
464 /* See if tasks are still holding out, complain if so. */
465 static void check_holdout_task(struct task_struct *t,
466 			       bool needreport, bool *firstreport)
467 {
468 	int cpu;
469 
470 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
471 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
472 	    !READ_ONCE(t->on_rq) ||
473 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
474 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
475 		WRITE_ONCE(t->rcu_tasks_holdout, false);
476 		list_del_init(&t->rcu_tasks_holdout_list);
477 		put_task_struct(t);
478 		return;
479 	}
480 	rcu_request_urgent_qs_task(t);
481 	if (!needreport)
482 		return;
483 	if (*firstreport) {
484 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
485 		*firstreport = false;
486 	}
487 	cpu = task_cpu(t);
488 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
489 		 t, ".I"[is_idle_task(t)],
490 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
491 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
492 		 t->rcu_tasks_idle_cpu, cpu);
493 	sched_show_task(t);
494 }
495 
496 /* Scan the holdout lists for tasks no longer holding out. */
497 static void check_all_holdout_tasks(struct list_head *hop,
498 				    bool needreport, bool *firstreport)
499 {
500 	struct task_struct *t, *t1;
501 
502 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
503 		check_holdout_task(t, needreport, firstreport);
504 		cond_resched();
505 	}
506 }
507 
508 /* Finish off the Tasks-RCU grace period. */
509 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
510 {
511 	/*
512 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
513 	 * memory barriers prior to them in the schedule() path, memory
514 	 * reordering on other CPUs could cause their RCU-tasks read-side
515 	 * critical sections to extend past the end of the grace period.
516 	 * However, because these ->nvcsw updates are carried out with
517 	 * interrupts disabled, we can use synchronize_rcu() to force the
518 	 * needed ordering on all such CPUs.
519 	 *
520 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
521 	 * accesses to be within the grace period, avoiding the need for
522 	 * memory barriers for ->rcu_tasks_holdout accesses.
523 	 *
524 	 * In addition, this synchronize_rcu() waits for exiting tasks
525 	 * to complete their final preempt_disable() region of execution,
526 	 * cleaning up after the synchronize_srcu() above.
527 	 */
528 	synchronize_rcu();
529 }
530 
531 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
532 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
533 
534 /**
535  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
536  * @rhp: structure to be used for queueing the RCU updates.
537  * @func: actual callback function to be invoked after the grace period
538  *
539  * The callback function will be invoked some time after a full grace
540  * period elapses, in other words after all currently executing RCU
541  * read-side critical sections have completed. call_rcu_tasks() assumes
542  * that the read-side critical sections end at a voluntary context
543  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
544  * or transition to usermode execution.  As such, there are no read-side
545  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
546  * this primitive is intended to determine that all tasks have passed
547  * through a safe state, not so much for data-structure synchronization.
548  *
549  * See the description of call_rcu() for more detailed information on
550  * memory ordering guarantees.
551  */
552 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
553 {
554 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
555 }
556 EXPORT_SYMBOL_GPL(call_rcu_tasks);
557 
558 /**
559  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
560  *
561  * Control will return to the caller some time after a full rcu-tasks
562  * grace period has elapsed, in other words after all currently
563  * executing rcu-tasks read-side critical sections have elapsed.  These
564  * read-side critical sections are delimited by calls to schedule(),
565  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
566  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
567  *
568  * This is a very specialized primitive, intended only for a few uses in
569  * tracing and other situations requiring manipulation of function
570  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
571  * is not (yet) intended for heavy use from multiple CPUs.
572  *
573  * See the description of synchronize_rcu() for more detailed information
574  * on memory ordering guarantees.
575  */
576 void synchronize_rcu_tasks(void)
577 {
578 	synchronize_rcu_tasks_generic(&rcu_tasks);
579 }
580 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
581 
582 /**
583  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
584  *
585  * Although the current implementation is guaranteed to wait, it is not
586  * obligated to, for example, if there are no pending callbacks.
587  */
588 void rcu_barrier_tasks(void)
589 {
590 	/* There is only one callback queue, so this is easy.  ;-) */
591 	synchronize_rcu_tasks();
592 }
593 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
594 
595 static int __init rcu_spawn_tasks_kthread(void)
596 {
597 	rcu_tasks.gp_sleep = HZ / 10;
598 	rcu_tasks.init_fract = HZ / 10;
599 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
600 	rcu_tasks.pertask_func = rcu_tasks_pertask;
601 	rcu_tasks.postscan_func = rcu_tasks_postscan;
602 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
603 	rcu_tasks.postgp_func = rcu_tasks_postgp;
604 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
605 	return 0;
606 }
607 
608 #if !defined(CONFIG_TINY_RCU)
609 void show_rcu_tasks_classic_gp_kthread(void)
610 {
611 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
612 }
613 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
614 #endif // !defined(CONFIG_TINY_RCU)
615 
616 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
617 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
618 {
619 	preempt_disable();
620 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
621 	preempt_enable();
622 }
623 
624 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
625 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
626 {
627 	struct task_struct *t = current;
628 
629 	preempt_disable();
630 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
631 	preempt_enable();
632 	exit_tasks_rcu_finish_trace(t);
633 }
634 
635 #else /* #ifdef CONFIG_TASKS_RCU */
636 void exit_tasks_rcu_start(void) { }
637 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
638 #endif /* #else #ifdef CONFIG_TASKS_RCU */
639 
640 #ifdef CONFIG_TASKS_RUDE_RCU
641 
642 ////////////////////////////////////////////////////////////////////////
643 //
644 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
645 // passing an empty function to schedule_on_each_cpu().  This approach
646 // provides an asynchronous call_rcu_tasks_rude() API and batching
647 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
648 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
649 // and induces otherwise unnecessary context switches on all online CPUs,
650 // whether idle or not.
651 //
652 // Callback handling is provided by the rcu_tasks_kthread() function.
653 //
654 // Ordering is provided by the scheduler's context-switch code.
655 
656 // Empty function to allow workqueues to force a context switch.
657 static void rcu_tasks_be_rude(struct work_struct *work)
658 {
659 }
660 
661 // Wait for one rude RCU-tasks grace period.
662 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
663 {
664 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
665 	schedule_on_each_cpu(rcu_tasks_be_rude);
666 }
667 
668 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
669 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
670 		 "RCU Tasks Rude");
671 
672 /**
673  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
674  * @rhp: structure to be used for queueing the RCU updates.
675  * @func: actual callback function to be invoked after the grace period
676  *
677  * The callback function will be invoked some time after a full grace
678  * period elapses, in other words after all currently executing RCU
679  * read-side critical sections have completed. call_rcu_tasks_rude()
680  * assumes that the read-side critical sections end at context switch,
681  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
682  * there are no read-side primitives analogous to rcu_read_lock() and
683  * rcu_read_unlock() because this primitive is intended to determine
684  * that all tasks have passed through a safe state, not so much for
685  * data-structure synchronization.
686  *
687  * See the description of call_rcu() for more detailed information on
688  * memory ordering guarantees.
689  */
690 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
691 {
692 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
693 }
694 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
695 
696 /**
697  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
698  *
699  * Control will return to the caller some time after a rude rcu-tasks
700  * grace period has elapsed, in other words after all currently
701  * executing rcu-tasks read-side critical sections have elapsed.  These
702  * read-side critical sections are delimited by calls to schedule(),
703  * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
704  * anyway) cond_resched().
705  *
706  * This is a very specialized primitive, intended only for a few uses in
707  * tracing and other situations requiring manipulation of function preambles
708  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
709  * (yet) intended for heavy use from multiple CPUs.
710  *
711  * See the description of synchronize_rcu() for more detailed information
712  * on memory ordering guarantees.
713  */
714 void synchronize_rcu_tasks_rude(void)
715 {
716 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
717 }
718 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
719 
720 /**
721  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
722  *
723  * Although the current implementation is guaranteed to wait, it is not
724  * obligated to, for example, if there are no pending callbacks.
725  */
726 void rcu_barrier_tasks_rude(void)
727 {
728 	/* There is only one callback queue, so this is easy.  ;-) */
729 	synchronize_rcu_tasks_rude();
730 }
731 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
732 
733 static int __init rcu_spawn_tasks_rude_kthread(void)
734 {
735 	rcu_tasks_rude.gp_sleep = HZ / 10;
736 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
737 	return 0;
738 }
739 
740 #if !defined(CONFIG_TINY_RCU)
741 void show_rcu_tasks_rude_gp_kthread(void)
742 {
743 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
744 }
745 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
746 #endif // !defined(CONFIG_TINY_RCU)
747 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
748 
749 ////////////////////////////////////////////////////////////////////////
750 //
751 // Tracing variant of Tasks RCU.  This variant is designed to be used
752 // to protect tracing hooks, including those of BPF.  This variant
753 // therefore:
754 //
755 // 1.	Has explicit read-side markers to allow finite grace periods
756 //	in the face of in-kernel loops for PREEMPT=n builds.
757 //
758 // 2.	Protects code in the idle loop, exception entry/exit, and
759 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
760 //
761 // 3.	Avoids expensive read-side instruction, having overhead similar
762 //	to that of Preemptible RCU.
763 //
764 // There are of course downsides.  The grace-period code can send IPIs to
765 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
766 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
767 // is a single callback queue guarded by a single lock, again, much as for
768 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
769 //
770 // Perhaps most important, this variant of RCU does not affect the vanilla
771 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
772 // readers can operate from idle, offline, and exception entry/exit in no
773 // way allows rcu_preempt and rcu_sched readers to also do so.
774 //
775 // The implementation uses rcu_tasks_wait_gp(), which relies on function
776 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
777 // function sets these function pointers up so that rcu_tasks_wait_gp()
778 // invokes these functions in this order:
779 //
780 // rcu_tasks_trace_pregp_step():
781 //	Initialize the count of readers and block CPU-hotplug operations.
782 // rcu_tasks_trace_pertask(), invoked on every non-idle task:
783 //	Initialize per-task state and attempt to identify an immediate
784 //	quiescent state for that task, or, failing that, attempt to
785 //	set that task's .need_qs flag so that task's next outermost
786 //	rcu_read_unlock_trace() will report the quiescent state (in which
787 //	case the count of readers is incremented).  If both attempts fail,
788 //	the task is added to a "holdout" list.
789 // rcu_tasks_trace_postscan():
790 //	Initialize state and attempt to identify an immediate quiescent
791 //	state as above (but only for idle tasks), unblock CPU-hotplug
792 //	operations, and wait for an RCU grace period to avoid races with
793 //	tasks that are in the process of exiting.
794 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
795 //	Scans the holdout list, attempting to identify a quiescent state
796 //	for each task on the list.  If there is a quiescent state, the
797 //	corresponding task is removed from the holdout list.
798 // rcu_tasks_trace_postgp():
799 //	Wait for the count of readers do drop to zero, reporting any stalls.
800 //	Also execute full memory barriers to maintain ordering with code
801 //	executing after the grace period.
802 //
803 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
804 //
805 // Pre-grace-period update-side code is ordered before the grace
806 // period via the ->cbs_lock and barriers in rcu_tasks_kthread().
807 // Pre-grace-period read-side code is ordered before the grace period by
808 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by
809 // scheduler context-switch ordering (for locked-down non-running readers).
810 
811 // The lockdep state must be outside of #ifdef to be useful.
812 #ifdef CONFIG_DEBUG_LOCK_ALLOC
813 static struct lock_class_key rcu_lock_trace_key;
814 struct lockdep_map rcu_trace_lock_map =
815 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
816 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
817 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
818 
819 #ifdef CONFIG_TASKS_TRACE_RCU
820 
821 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
822 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
823 
824 // Record outstanding IPIs to each CPU.  No point in sending two...
825 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
826 
827 // The number of detections of task quiescent state relying on
828 // heavyweight readers executing explicit memory barriers.
829 static unsigned long n_heavy_reader_attempts;
830 static unsigned long n_heavy_reader_updates;
831 static unsigned long n_heavy_reader_ofl_updates;
832 
833 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
834 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
835 		 "RCU Tasks Trace");
836 
837 /*
838  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
839  * while the scheduler locks are held.
840  */
841 static void rcu_read_unlock_iw(struct irq_work *iwp)
842 {
843 	wake_up(&trc_wait);
844 }
845 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
846 
847 /* If we are the last reader, wake up the grace-period kthread. */
848 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
849 {
850 	int nq = t->trc_reader_special.b.need_qs;
851 
852 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
853 	    t->trc_reader_special.b.need_mb)
854 		smp_mb(); // Pairs with update-side barriers.
855 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
856 	if (nq)
857 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
858 	WRITE_ONCE(t->trc_reader_nesting, nesting);
859 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
860 		irq_work_queue(&rcu_tasks_trace_iw);
861 }
862 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
863 
864 /* Add a task to the holdout list, if it is not already on the list. */
865 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
866 {
867 	if (list_empty(&t->trc_holdout_list)) {
868 		get_task_struct(t);
869 		list_add(&t->trc_holdout_list, bhp);
870 	}
871 }
872 
873 /* Remove a task from the holdout list, if it is in fact present. */
874 static void trc_del_holdout(struct task_struct *t)
875 {
876 	if (!list_empty(&t->trc_holdout_list)) {
877 		list_del_init(&t->trc_holdout_list);
878 		put_task_struct(t);
879 	}
880 }
881 
882 /* IPI handler to check task state. */
883 static void trc_read_check_handler(void *t_in)
884 {
885 	struct task_struct *t = current;
886 	struct task_struct *texp = t_in;
887 
888 	// If the task is no longer running on this CPU, leave.
889 	if (unlikely(texp != t)) {
890 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
891 			wake_up(&trc_wait);
892 		goto reset_ipi; // Already on holdout list, so will check later.
893 	}
894 
895 	// If the task is not in a read-side critical section, and
896 	// if this is the last reader, awaken the grace-period kthread.
897 	if (likely(!t->trc_reader_nesting)) {
898 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
899 			wake_up(&trc_wait);
900 		// Mark as checked after decrement to avoid false
901 		// positives on the above WARN_ON_ONCE().
902 		WRITE_ONCE(t->trc_reader_checked, true);
903 		goto reset_ipi;
904 	}
905 	// If we are racing with an rcu_read_unlock_trace(), try again later.
906 	if (unlikely(t->trc_reader_nesting < 0)) {
907 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
908 			wake_up(&trc_wait);
909 		goto reset_ipi;
910 	}
911 	WRITE_ONCE(t->trc_reader_checked, true);
912 
913 	// Get here if the task is in a read-side critical section.  Set
914 	// its state so that it will awaken the grace-period kthread upon
915 	// exit from that critical section.
916 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
917 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
918 
919 reset_ipi:
920 	// Allow future IPIs to be sent on CPU and for task.
921 	// Also order this IPI handler against any later manipulations of
922 	// the intended task.
923 	smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
924 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
925 }
926 
927 /* Callback function for scheduler to check locked-down task.  */
928 static bool trc_inspect_reader(struct task_struct *t, void *arg)
929 {
930 	int cpu = task_cpu(t);
931 	bool in_qs = false;
932 	bool ofl = cpu_is_offline(cpu);
933 
934 	if (task_curr(t)) {
935 		WARN_ON_ONCE(ofl && !is_idle_task(t));
936 
937 		// If no chance of heavyweight readers, do it the hard way.
938 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
939 			return false;
940 
941 		// If heavyweight readers are enabled on the remote task,
942 		// we can inspect its state despite its currently running.
943 		// However, we cannot safely change its state.
944 		n_heavy_reader_attempts++;
945 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
946 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
947 			return false; // No quiescent state, do it the hard way.
948 		n_heavy_reader_updates++;
949 		if (ofl)
950 			n_heavy_reader_ofl_updates++;
951 		in_qs = true;
952 	} else {
953 		in_qs = likely(!t->trc_reader_nesting);
954 	}
955 
956 	// Mark as checked so that the grace-period kthread will
957 	// remove it from the holdout list.
958 	t->trc_reader_checked = true;
959 
960 	if (in_qs)
961 		return true;  // Already in quiescent state, done!!!
962 
963 	// The task is in a read-side critical section, so set up its
964 	// state so that it will awaken the grace-period kthread upon exit
965 	// from that critical section.
966 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
967 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
968 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
969 	return true;
970 }
971 
972 /* Attempt to extract the state for the specified task. */
973 static void trc_wait_for_one_reader(struct task_struct *t,
974 				    struct list_head *bhp)
975 {
976 	int cpu;
977 
978 	// If a previous IPI is still in flight, let it complete.
979 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
980 		return;
981 
982 	// The current task had better be in a quiescent state.
983 	if (t == current) {
984 		t->trc_reader_checked = true;
985 		WARN_ON_ONCE(t->trc_reader_nesting);
986 		return;
987 	}
988 
989 	// Attempt to nail down the task for inspection.
990 	get_task_struct(t);
991 	if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
992 		put_task_struct(t);
993 		return;
994 	}
995 	put_task_struct(t);
996 
997 	// If currently running, send an IPI, either way, add to list.
998 	trc_add_holdout(t, bhp);
999 	if (task_curr(t) &&
1000 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1001 		// The task is currently running, so try IPIing it.
1002 		cpu = task_cpu(t);
1003 
1004 		// If there is already an IPI outstanding, let it happen.
1005 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1006 			return;
1007 
1008 		atomic_inc(&trc_n_readers_need_end);
1009 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1010 		t->trc_ipi_to_cpu = cpu;
1011 		rcu_tasks_trace.n_ipis++;
1012 		if (smp_call_function_single(cpu,
1013 					     trc_read_check_handler, t, 0)) {
1014 			// Just in case there is some other reason for
1015 			// failure than the target CPU being offline.
1016 			rcu_tasks_trace.n_ipis_fails++;
1017 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1018 			t->trc_ipi_to_cpu = cpu;
1019 			if (atomic_dec_and_test(&trc_n_readers_need_end)) {
1020 				WARN_ON_ONCE(1);
1021 				wake_up(&trc_wait);
1022 			}
1023 		}
1024 	}
1025 }
1026 
1027 /* Initialize for a new RCU-tasks-trace grace period. */
1028 static void rcu_tasks_trace_pregp_step(void)
1029 {
1030 	int cpu;
1031 
1032 	// Allow for fast-acting IPIs.
1033 	atomic_set(&trc_n_readers_need_end, 1);
1034 
1035 	// There shouldn't be any old IPIs, but...
1036 	for_each_possible_cpu(cpu)
1037 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1038 
1039 	// Disable CPU hotplug across the tasklist scan.
1040 	// This also waits for all readers in CPU-hotplug code paths.
1041 	cpus_read_lock();
1042 }
1043 
1044 /* Do first-round processing for the specified task. */
1045 static void rcu_tasks_trace_pertask(struct task_struct *t,
1046 				    struct list_head *hop)
1047 {
1048 	// During early boot when there is only the one boot CPU, there
1049 	// is no idle task for the other CPUs. Just return.
1050 	if (unlikely(t == NULL))
1051 		return;
1052 
1053 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1054 	WRITE_ONCE(t->trc_reader_checked, false);
1055 	t->trc_ipi_to_cpu = -1;
1056 	trc_wait_for_one_reader(t, hop);
1057 }
1058 
1059 /*
1060  * Do intermediate processing between task and holdout scans and
1061  * pick up the idle tasks.
1062  */
1063 static void rcu_tasks_trace_postscan(struct list_head *hop)
1064 {
1065 	int cpu;
1066 
1067 	for_each_possible_cpu(cpu)
1068 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
1069 
1070 	// Re-enable CPU hotplug now that the tasklist scan has completed.
1071 	cpus_read_unlock();
1072 
1073 	// Wait for late-stage exiting tasks to finish exiting.
1074 	// These might have passed the call to exit_tasks_rcu_finish().
1075 	synchronize_rcu();
1076 	// Any tasks that exit after this point will set ->trc_reader_checked.
1077 }
1078 
1079 /* Show the state of a task stalling the current RCU tasks trace GP. */
1080 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1081 {
1082 	int cpu;
1083 
1084 	if (*firstreport) {
1085 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1086 		*firstreport = false;
1087 	}
1088 	// FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1089 	cpu = task_cpu(t);
1090 	pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1091 		 t->pid,
1092 		 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1093 		 ".i"[is_idle_task(t)],
1094 		 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1095 		 t->trc_reader_nesting,
1096 		 " N"[!!t->trc_reader_special.b.need_qs],
1097 		 cpu);
1098 	sched_show_task(t);
1099 }
1100 
1101 /* List stalled IPIs for RCU tasks trace. */
1102 static void show_stalled_ipi_trace(void)
1103 {
1104 	int cpu;
1105 
1106 	for_each_possible_cpu(cpu)
1107 		if (per_cpu(trc_ipi_to_cpu, cpu))
1108 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1109 }
1110 
1111 /* Do one scan of the holdout list. */
1112 static void check_all_holdout_tasks_trace(struct list_head *hop,
1113 					  bool needreport, bool *firstreport)
1114 {
1115 	struct task_struct *g, *t;
1116 
1117 	// Disable CPU hotplug across the holdout list scan.
1118 	cpus_read_lock();
1119 
1120 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1121 		// If safe and needed, try to check the current task.
1122 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1123 		    !READ_ONCE(t->trc_reader_checked))
1124 			trc_wait_for_one_reader(t, hop);
1125 
1126 		// If check succeeded, remove this task from the list.
1127 		if (READ_ONCE(t->trc_reader_checked))
1128 			trc_del_holdout(t);
1129 		else if (needreport)
1130 			show_stalled_task_trace(t, firstreport);
1131 	}
1132 
1133 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1134 	cpus_read_unlock();
1135 
1136 	if (needreport) {
1137 		if (firstreport)
1138 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1139 		show_stalled_ipi_trace();
1140 	}
1141 }
1142 
1143 /* Wait for grace period to complete and provide ordering. */
1144 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1145 {
1146 	bool firstreport;
1147 	struct task_struct *g, *t;
1148 	LIST_HEAD(holdouts);
1149 	long ret;
1150 
1151 	// Remove the safety count.
1152 	smp_mb__before_atomic();  // Order vs. earlier atomics
1153 	atomic_dec(&trc_n_readers_need_end);
1154 	smp_mb__after_atomic();  // Order vs. later atomics
1155 
1156 	// Wait for readers.
1157 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1158 	for (;;) {
1159 		ret = wait_event_idle_exclusive_timeout(
1160 				trc_wait,
1161 				atomic_read(&trc_n_readers_need_end) == 0,
1162 				READ_ONCE(rcu_task_stall_timeout));
1163 		if (ret)
1164 			break;  // Count reached zero.
1165 		// Stall warning time, so make a list of the offenders.
1166 		rcu_read_lock();
1167 		for_each_process_thread(g, t)
1168 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1169 				trc_add_holdout(t, &holdouts);
1170 		rcu_read_unlock();
1171 		firstreport = true;
1172 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1173 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1174 				show_stalled_task_trace(t, &firstreport);
1175 			trc_del_holdout(t); // Release task_struct reference.
1176 		}
1177 		if (firstreport)
1178 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1179 		show_stalled_ipi_trace();
1180 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1181 	}
1182 	smp_mb(); // Caller's code must be ordered after wakeup.
1183 		  // Pairs with pretty much every ordering primitive.
1184 }
1185 
1186 /* Report any needed quiescent state for this exiting task. */
1187 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1188 {
1189 	WRITE_ONCE(t->trc_reader_checked, true);
1190 	WARN_ON_ONCE(t->trc_reader_nesting);
1191 	WRITE_ONCE(t->trc_reader_nesting, 0);
1192 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1193 		rcu_read_unlock_trace_special(t, 0);
1194 }
1195 
1196 /**
1197  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1198  * @rhp: structure to be used for queueing the RCU updates.
1199  * @func: actual callback function to be invoked after the grace period
1200  *
1201  * The callback function will be invoked some time after a full grace
1202  * period elapses, in other words after all currently executing RCU
1203  * read-side critical sections have completed. call_rcu_tasks_trace()
1204  * assumes that the read-side critical sections end at context switch,
1205  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
1206  * there are no read-side primitives analogous to rcu_read_lock() and
1207  * rcu_read_unlock() because this primitive is intended to determine
1208  * that all tasks have passed through a safe state, not so much for
1209  * data-structure synchronization.
1210  *
1211  * See the description of call_rcu() for more detailed information on
1212  * memory ordering guarantees.
1213  */
1214 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1215 {
1216 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1217 }
1218 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1219 
1220 /**
1221  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1222  *
1223  * Control will return to the caller some time after a trace rcu-tasks
1224  * grace period has elapsed, in other words after all currently executing
1225  * rcu-tasks read-side critical sections have elapsed.  These read-side
1226  * critical sections are delimited by calls to rcu_read_lock_trace()
1227  * and rcu_read_unlock_trace().
1228  *
1229  * This is a very specialized primitive, intended only for a few uses in
1230  * tracing and other situations requiring manipulation of function preambles
1231  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1232  * (yet) intended for heavy use from multiple CPUs.
1233  *
1234  * See the description of synchronize_rcu() for more detailed information
1235  * on memory ordering guarantees.
1236  */
1237 void synchronize_rcu_tasks_trace(void)
1238 {
1239 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1240 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1241 }
1242 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1243 
1244 /**
1245  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1246  *
1247  * Although the current implementation is guaranteed to wait, it is not
1248  * obligated to, for example, if there are no pending callbacks.
1249  */
1250 void rcu_barrier_tasks_trace(void)
1251 {
1252 	/* There is only one callback queue, so this is easy.  ;-) */
1253 	synchronize_rcu_tasks_trace();
1254 }
1255 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1256 
1257 static int __init rcu_spawn_tasks_trace_kthread(void)
1258 {
1259 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1260 		rcu_tasks_trace.gp_sleep = HZ / 10;
1261 		rcu_tasks_trace.init_fract = HZ / 10;
1262 	} else {
1263 		rcu_tasks_trace.gp_sleep = HZ / 200;
1264 		if (rcu_tasks_trace.gp_sleep <= 0)
1265 			rcu_tasks_trace.gp_sleep = 1;
1266 		rcu_tasks_trace.init_fract = HZ / 200;
1267 		if (rcu_tasks_trace.init_fract <= 0)
1268 			rcu_tasks_trace.init_fract = 1;
1269 	}
1270 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1271 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1272 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1273 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1274 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1275 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1276 	return 0;
1277 }
1278 
1279 #if !defined(CONFIG_TINY_RCU)
1280 void show_rcu_tasks_trace_gp_kthread(void)
1281 {
1282 	char buf[64];
1283 
1284 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1285 		data_race(n_heavy_reader_ofl_updates),
1286 		data_race(n_heavy_reader_updates),
1287 		data_race(n_heavy_reader_attempts));
1288 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1289 }
1290 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1291 #endif // !defined(CONFIG_TINY_RCU)
1292 
1293 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1294 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1295 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1296 
1297 #ifndef CONFIG_TINY_RCU
1298 void show_rcu_tasks_gp_kthreads(void)
1299 {
1300 	show_rcu_tasks_classic_gp_kthread();
1301 	show_rcu_tasks_rude_gp_kthread();
1302 	show_rcu_tasks_trace_gp_kthread();
1303 }
1304 #endif /* #ifndef CONFIG_TINY_RCU */
1305 
1306 #ifdef CONFIG_PROVE_RCU
1307 struct rcu_tasks_test_desc {
1308 	struct rcu_head rh;
1309 	const char *name;
1310 	bool notrun;
1311 };
1312 
1313 static struct rcu_tasks_test_desc tests[] = {
1314 	{
1315 		.name = "call_rcu_tasks()",
1316 		/* If not defined, the test is skipped. */
1317 		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1318 	},
1319 	{
1320 		.name = "call_rcu_tasks_rude()",
1321 		/* If not defined, the test is skipped. */
1322 		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1323 	},
1324 	{
1325 		.name = "call_rcu_tasks_trace()",
1326 		/* If not defined, the test is skipped. */
1327 		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1328 	}
1329 };
1330 
1331 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1332 {
1333 	struct rcu_tasks_test_desc *rttd =
1334 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1335 
1336 	pr_info("Callback from %s invoked.\n", rttd->name);
1337 
1338 	rttd->notrun = true;
1339 }
1340 
1341 static void rcu_tasks_initiate_self_tests(void)
1342 {
1343 	pr_info("Running RCU-tasks wait API self tests\n");
1344 #ifdef CONFIG_TASKS_RCU
1345 	synchronize_rcu_tasks();
1346 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1347 #endif
1348 
1349 #ifdef CONFIG_TASKS_RUDE_RCU
1350 	synchronize_rcu_tasks_rude();
1351 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1352 #endif
1353 
1354 #ifdef CONFIG_TASKS_TRACE_RCU
1355 	synchronize_rcu_tasks_trace();
1356 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1357 #endif
1358 }
1359 
1360 static int rcu_tasks_verify_self_tests(void)
1361 {
1362 	int ret = 0;
1363 	int i;
1364 
1365 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1366 		if (!tests[i].notrun) {		// still hanging.
1367 			pr_err("%s has been failed.\n", tests[i].name);
1368 			ret = -1;
1369 		}
1370 	}
1371 
1372 	if (ret)
1373 		WARN_ON(1);
1374 
1375 	return ret;
1376 }
1377 late_initcall(rcu_tasks_verify_self_tests);
1378 #else /* #ifdef CONFIG_PROVE_RCU */
1379 static void rcu_tasks_initiate_self_tests(void) { }
1380 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1381 
1382 void __init rcu_init_tasks_generic(void)
1383 {
1384 #ifdef CONFIG_TASKS_RCU
1385 	rcu_spawn_tasks_kthread();
1386 #endif
1387 
1388 #ifdef CONFIG_TASKS_RUDE_RCU
1389 	rcu_spawn_tasks_rude_kthread();
1390 #endif
1391 
1392 #ifdef CONFIG_TASKS_TRACE_RCU
1393 	rcu_spawn_tasks_trace_kthread();
1394 #endif
1395 
1396 	// Run the self-tests.
1397 	rcu_tasks_initiate_self_tests();
1398 }
1399 
1400 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1401 static inline void rcu_tasks_bootup_oddness(void) {}
1402 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1403