1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_jiffies: Time of last @gp_state transition. 32 * @gp_start: Most recent grace-period start in jiffies. 33 * @n_gps: Number of grace periods completed since boot. 34 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 35 * @n_ipis_fails: Number of IPI-send failures. 36 * @pregp_func: This flavor's pre-grace-period function (optional). 37 * @pertask_func: This flavor's per-task scan function (optional). 38 * @postscan_func: This flavor's post-task scan function (optional). 39 * @holdout_func: This flavor's holdout-list scan function (optional). 40 * @postgp_func: This flavor's post-grace-period function (optional). 41 * @call_func: This flavor's call_rcu()-equivalent function. 42 * @name: This flavor's textual name. 43 * @kname: This flavor's kthread name. 44 */ 45 struct rcu_tasks { 46 struct rcu_head *cbs_head; 47 struct rcu_head **cbs_tail; 48 struct wait_queue_head cbs_wq; 49 raw_spinlock_t cbs_lock; 50 int gp_state; 51 unsigned long gp_jiffies; 52 unsigned long gp_start; 53 unsigned long n_gps; 54 unsigned long n_ipis; 55 unsigned long n_ipis_fails; 56 struct task_struct *kthread_ptr; 57 rcu_tasks_gp_func_t gp_func; 58 pregp_func_t pregp_func; 59 pertask_func_t pertask_func; 60 postscan_func_t postscan_func; 61 holdouts_func_t holdouts_func; 62 postgp_func_t postgp_func; 63 call_rcu_func_t call_func; 64 char *name; 65 char *kname; 66 }; 67 68 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 69 static struct rcu_tasks rt_name = \ 70 { \ 71 .cbs_tail = &rt_name.cbs_head, \ 72 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 73 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 74 .gp_func = gp, \ 75 .call_func = call, \ 76 .name = n, \ 77 .kname = #rt_name, \ 78 } 79 80 /* Track exiting tasks in order to allow them to be waited for. */ 81 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 82 83 /* Avoid IPIing CPUs early in the grace period. */ 84 #define RCU_TASK_IPI_DELAY (HZ / 2) 85 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 86 module_param(rcu_task_ipi_delay, int, 0644); 87 88 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 89 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 90 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 91 module_param(rcu_task_stall_timeout, int, 0644); 92 93 /* RCU tasks grace-period state for debugging. */ 94 #define RTGS_INIT 0 95 #define RTGS_WAIT_WAIT_CBS 1 96 #define RTGS_WAIT_GP 2 97 #define RTGS_PRE_WAIT_GP 3 98 #define RTGS_SCAN_TASKLIST 4 99 #define RTGS_POST_SCAN_TASKLIST 5 100 #define RTGS_WAIT_SCAN_HOLDOUTS 6 101 #define RTGS_SCAN_HOLDOUTS 7 102 #define RTGS_POST_GP 8 103 #define RTGS_WAIT_READERS 9 104 #define RTGS_INVOKE_CBS 10 105 #define RTGS_WAIT_CBS 11 106 static const char * const rcu_tasks_gp_state_names[] = { 107 "RTGS_INIT", 108 "RTGS_WAIT_WAIT_CBS", 109 "RTGS_WAIT_GP", 110 "RTGS_PRE_WAIT_GP", 111 "RTGS_SCAN_TASKLIST", 112 "RTGS_POST_SCAN_TASKLIST", 113 "RTGS_WAIT_SCAN_HOLDOUTS", 114 "RTGS_SCAN_HOLDOUTS", 115 "RTGS_POST_GP", 116 "RTGS_WAIT_READERS", 117 "RTGS_INVOKE_CBS", 118 "RTGS_WAIT_CBS", 119 }; 120 121 //////////////////////////////////////////////////////////////////////// 122 // 123 // Generic code. 124 125 /* Record grace-period phase and time. */ 126 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 127 { 128 rtp->gp_state = newstate; 129 rtp->gp_jiffies = jiffies; 130 } 131 132 /* Return state name. */ 133 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 134 { 135 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 136 int j = READ_ONCE(i); // Prevent the compiler from reading twice 137 138 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 139 return "???"; 140 return rcu_tasks_gp_state_names[j]; 141 } 142 143 // Enqueue a callback for the specified flavor of Tasks RCU. 144 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 145 struct rcu_tasks *rtp) 146 { 147 unsigned long flags; 148 bool needwake; 149 150 rhp->next = NULL; 151 rhp->func = func; 152 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 153 needwake = !rtp->cbs_head; 154 WRITE_ONCE(*rtp->cbs_tail, rhp); 155 rtp->cbs_tail = &rhp->next; 156 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 157 /* We can't create the thread unless interrupts are enabled. */ 158 if (needwake && READ_ONCE(rtp->kthread_ptr)) 159 wake_up(&rtp->cbs_wq); 160 } 161 162 // Wait for a grace period for the specified flavor of Tasks RCU. 163 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 164 { 165 /* Complain if the scheduler has not started. */ 166 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 167 "synchronize_rcu_tasks called too soon"); 168 169 /* Wait for the grace period. */ 170 wait_rcu_gp(rtp->call_func); 171 } 172 173 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 174 static int __noreturn rcu_tasks_kthread(void *arg) 175 { 176 unsigned long flags; 177 struct rcu_head *list; 178 struct rcu_head *next; 179 struct rcu_tasks *rtp = arg; 180 181 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 182 housekeeping_affine(current, HK_FLAG_RCU); 183 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 184 185 /* 186 * Each pass through the following loop makes one check for 187 * newly arrived callbacks, and, if there are some, waits for 188 * one RCU-tasks grace period and then invokes the callbacks. 189 * This loop is terminated by the system going down. ;-) 190 */ 191 for (;;) { 192 193 /* Pick up any new callbacks. */ 194 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 195 smp_mb__after_spinlock(); // Order updates vs. GP. 196 list = rtp->cbs_head; 197 rtp->cbs_head = NULL; 198 rtp->cbs_tail = &rtp->cbs_head; 199 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 200 201 /* If there were none, wait a bit and start over. */ 202 if (!list) { 203 wait_event_interruptible(rtp->cbs_wq, 204 READ_ONCE(rtp->cbs_head)); 205 if (!rtp->cbs_head) { 206 WARN_ON(signal_pending(current)); 207 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 208 schedule_timeout_interruptible(HZ/10); 209 } 210 continue; 211 } 212 213 // Wait for one grace period. 214 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 215 rtp->gp_start = jiffies; 216 rtp->gp_func(rtp); 217 rtp->n_gps++; 218 219 /* Invoke the callbacks. */ 220 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 221 while (list) { 222 next = list->next; 223 local_bh_disable(); 224 list->func(list); 225 local_bh_enable(); 226 list = next; 227 cond_resched(); 228 } 229 /* Paranoid sleep to keep this from entering a tight loop */ 230 schedule_timeout_uninterruptible(HZ/10); 231 232 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 233 } 234 } 235 236 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */ 237 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 238 { 239 struct task_struct *t; 240 241 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 242 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 243 return; 244 smp_mb(); /* Ensure others see full kthread. */ 245 } 246 247 #ifndef CONFIG_TINY_RCU 248 249 /* 250 * Print any non-default Tasks RCU settings. 251 */ 252 static void __init rcu_tasks_bootup_oddness(void) 253 { 254 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 255 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 256 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 257 #endif /* #ifdef CONFIG_TASKS_RCU */ 258 #ifdef CONFIG_TASKS_RCU 259 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 260 #endif /* #ifdef CONFIG_TASKS_RCU */ 261 #ifdef CONFIG_TASKS_RUDE_RCU 262 pr_info("\tRude variant of Tasks RCU enabled.\n"); 263 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 264 #ifdef CONFIG_TASKS_TRACE_RCU 265 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 266 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 267 } 268 269 #endif /* #ifndef CONFIG_TINY_RCU */ 270 271 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 272 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 273 { 274 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 275 rtp->kname, 276 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 277 jiffies - data_race(rtp->gp_jiffies), 278 data_race(rtp->n_gps), 279 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 280 ".k"[!!data_race(rtp->kthread_ptr)], 281 ".C"[!!data_race(rtp->cbs_head)], 282 s); 283 } 284 285 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 286 287 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 288 289 //////////////////////////////////////////////////////////////////////// 290 // 291 // Shared code between task-list-scanning variants of Tasks RCU. 292 293 /* Wait for one RCU-tasks grace period. */ 294 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 295 { 296 struct task_struct *g, *t; 297 unsigned long lastreport; 298 LIST_HEAD(holdouts); 299 int fract; 300 301 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 302 rtp->pregp_func(); 303 304 /* 305 * There were callbacks, so we need to wait for an RCU-tasks 306 * grace period. Start off by scanning the task list for tasks 307 * that are not already voluntarily blocked. Mark these tasks 308 * and make a list of them in holdouts. 309 */ 310 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 311 rcu_read_lock(); 312 for_each_process_thread(g, t) 313 rtp->pertask_func(t, &holdouts); 314 rcu_read_unlock(); 315 316 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 317 rtp->postscan_func(&holdouts); 318 319 /* 320 * Each pass through the following loop scans the list of holdout 321 * tasks, removing any that are no longer holdouts. When the list 322 * is empty, we are done. 323 */ 324 lastreport = jiffies; 325 326 /* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */ 327 fract = 10; 328 329 for (;;) { 330 bool firstreport; 331 bool needreport; 332 int rtst; 333 334 if (list_empty(&holdouts)) 335 break; 336 337 /* Slowly back off waiting for holdouts */ 338 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 339 schedule_timeout_interruptible(HZ/fract); 340 341 if (fract > 1) 342 fract--; 343 344 rtst = READ_ONCE(rcu_task_stall_timeout); 345 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 346 if (needreport) 347 lastreport = jiffies; 348 firstreport = true; 349 WARN_ON(signal_pending(current)); 350 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 351 rtp->holdouts_func(&holdouts, needreport, &firstreport); 352 } 353 354 set_tasks_gp_state(rtp, RTGS_POST_GP); 355 rtp->postgp_func(rtp); 356 } 357 358 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 359 360 #ifdef CONFIG_TASKS_RCU 361 362 //////////////////////////////////////////////////////////////////////// 363 // 364 // Simple variant of RCU whose quiescent states are voluntary context 365 // switch, cond_resched_rcu_qs(), user-space execution, and idle. 366 // As such, grace periods can take one good long time. There are no 367 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 368 // because this implementation is intended to get the system into a safe 369 // state for some of the manipulations involved in tracing and the like. 370 // Finally, this implementation does not support high call_rcu_tasks() 371 // rates from multiple CPUs. If this is required, per-CPU callback lists 372 // will be needed. 373 374 /* Pre-grace-period preparation. */ 375 static void rcu_tasks_pregp_step(void) 376 { 377 /* 378 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 379 * to complete. Invoking synchronize_rcu() suffices because all 380 * these transitions occur with interrupts disabled. Without this 381 * synchronize_rcu(), a read-side critical section that started 382 * before the grace period might be incorrectly seen as having 383 * started after the grace period. 384 * 385 * This synchronize_rcu() also dispenses with the need for a 386 * memory barrier on the first store to t->rcu_tasks_holdout, 387 * as it forces the store to happen after the beginning of the 388 * grace period. 389 */ 390 synchronize_rcu(); 391 } 392 393 /* Per-task initial processing. */ 394 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 395 { 396 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 397 get_task_struct(t); 398 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 399 WRITE_ONCE(t->rcu_tasks_holdout, true); 400 list_add(&t->rcu_tasks_holdout_list, hop); 401 } 402 } 403 404 /* Processing between scanning taskslist and draining the holdout list. */ 405 void rcu_tasks_postscan(struct list_head *hop) 406 { 407 /* 408 * Wait for tasks that are in the process of exiting. This 409 * does only part of the job, ensuring that all tasks that were 410 * previously exiting reach the point where they have disabled 411 * preemption, allowing the later synchronize_rcu() to finish 412 * the job. 413 */ 414 synchronize_srcu(&tasks_rcu_exit_srcu); 415 } 416 417 /* See if tasks are still holding out, complain if so. */ 418 static void check_holdout_task(struct task_struct *t, 419 bool needreport, bool *firstreport) 420 { 421 int cpu; 422 423 if (!READ_ONCE(t->rcu_tasks_holdout) || 424 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 425 !READ_ONCE(t->on_rq) || 426 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 427 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 428 WRITE_ONCE(t->rcu_tasks_holdout, false); 429 list_del_init(&t->rcu_tasks_holdout_list); 430 put_task_struct(t); 431 return; 432 } 433 rcu_request_urgent_qs_task(t); 434 if (!needreport) 435 return; 436 if (*firstreport) { 437 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 438 *firstreport = false; 439 } 440 cpu = task_cpu(t); 441 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 442 t, ".I"[is_idle_task(t)], 443 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 444 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 445 t->rcu_tasks_idle_cpu, cpu); 446 sched_show_task(t); 447 } 448 449 /* Scan the holdout lists for tasks no longer holding out. */ 450 static void check_all_holdout_tasks(struct list_head *hop, 451 bool needreport, bool *firstreport) 452 { 453 struct task_struct *t, *t1; 454 455 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 456 check_holdout_task(t, needreport, firstreport); 457 cond_resched(); 458 } 459 } 460 461 /* Finish off the Tasks-RCU grace period. */ 462 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 463 { 464 /* 465 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 466 * memory barriers prior to them in the schedule() path, memory 467 * reordering on other CPUs could cause their RCU-tasks read-side 468 * critical sections to extend past the end of the grace period. 469 * However, because these ->nvcsw updates are carried out with 470 * interrupts disabled, we can use synchronize_rcu() to force the 471 * needed ordering on all such CPUs. 472 * 473 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 474 * accesses to be within the grace period, avoiding the need for 475 * memory barriers for ->rcu_tasks_holdout accesses. 476 * 477 * In addition, this synchronize_rcu() waits for exiting tasks 478 * to complete their final preempt_disable() region of execution, 479 * cleaning up after the synchronize_srcu() above. 480 */ 481 synchronize_rcu(); 482 } 483 484 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 485 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 486 487 /** 488 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 489 * @rhp: structure to be used for queueing the RCU updates. 490 * @func: actual callback function to be invoked after the grace period 491 * 492 * The callback function will be invoked some time after a full grace 493 * period elapses, in other words after all currently executing RCU 494 * read-side critical sections have completed. call_rcu_tasks() assumes 495 * that the read-side critical sections end at a voluntary context 496 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 497 * or transition to usermode execution. As such, there are no read-side 498 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 499 * this primitive is intended to determine that all tasks have passed 500 * through a safe state, not so much for data-strcuture synchronization. 501 * 502 * See the description of call_rcu() for more detailed information on 503 * memory ordering guarantees. 504 */ 505 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 506 { 507 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 508 } 509 EXPORT_SYMBOL_GPL(call_rcu_tasks); 510 511 /** 512 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 513 * 514 * Control will return to the caller some time after a full rcu-tasks 515 * grace period has elapsed, in other words after all currently 516 * executing rcu-tasks read-side critical sections have elapsed. These 517 * read-side critical sections are delimited by calls to schedule(), 518 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 519 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 520 * 521 * This is a very specialized primitive, intended only for a few uses in 522 * tracing and other situations requiring manipulation of function 523 * preambles and profiling hooks. The synchronize_rcu_tasks() function 524 * is not (yet) intended for heavy use from multiple CPUs. 525 * 526 * See the description of synchronize_rcu() for more detailed information 527 * on memory ordering guarantees. 528 */ 529 void synchronize_rcu_tasks(void) 530 { 531 synchronize_rcu_tasks_generic(&rcu_tasks); 532 } 533 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 534 535 /** 536 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 537 * 538 * Although the current implementation is guaranteed to wait, it is not 539 * obligated to, for example, if there are no pending callbacks. 540 */ 541 void rcu_barrier_tasks(void) 542 { 543 /* There is only one callback queue, so this is easy. ;-) */ 544 synchronize_rcu_tasks(); 545 } 546 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 547 548 static int __init rcu_spawn_tasks_kthread(void) 549 { 550 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 551 rcu_tasks.pertask_func = rcu_tasks_pertask; 552 rcu_tasks.postscan_func = rcu_tasks_postscan; 553 rcu_tasks.holdouts_func = check_all_holdout_tasks; 554 rcu_tasks.postgp_func = rcu_tasks_postgp; 555 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 556 return 0; 557 } 558 core_initcall(rcu_spawn_tasks_kthread); 559 560 static void show_rcu_tasks_classic_gp_kthread(void) 561 { 562 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 563 } 564 565 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 566 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 567 { 568 preempt_disable(); 569 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 570 preempt_enable(); 571 } 572 573 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 574 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 575 { 576 struct task_struct *t = current; 577 578 preempt_disable(); 579 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 580 preempt_enable(); 581 exit_tasks_rcu_finish_trace(t); 582 } 583 584 #else /* #ifdef CONFIG_TASKS_RCU */ 585 static void show_rcu_tasks_classic_gp_kthread(void) { } 586 void exit_tasks_rcu_start(void) { } 587 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 588 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 589 590 #ifdef CONFIG_TASKS_RUDE_RCU 591 592 //////////////////////////////////////////////////////////////////////// 593 // 594 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 595 // passing an empty function to schedule_on_each_cpu(). This approach 596 // provides an asynchronous call_rcu_tasks_rude() API and batching 597 // of concurrent calls to the synchronous synchronize_rcu_rude() API. 598 // This sends IPIs far and wide and induces otherwise unnecessary context 599 // switches on all online CPUs, whether idle or not. 600 601 // Empty function to allow workqueues to force a context switch. 602 static void rcu_tasks_be_rude(struct work_struct *work) 603 { 604 } 605 606 // Wait for one rude RCU-tasks grace period. 607 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 608 { 609 rtp->n_ipis += cpumask_weight(cpu_online_mask); 610 schedule_on_each_cpu(rcu_tasks_be_rude); 611 } 612 613 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 614 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 615 "RCU Tasks Rude"); 616 617 /** 618 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 619 * @rhp: structure to be used for queueing the RCU updates. 620 * @func: actual callback function to be invoked after the grace period 621 * 622 * The callback function will be invoked some time after a full grace 623 * period elapses, in other words after all currently executing RCU 624 * read-side critical sections have completed. call_rcu_tasks_rude() 625 * assumes that the read-side critical sections end at context switch, 626 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 627 * there are no read-side primitives analogous to rcu_read_lock() and 628 * rcu_read_unlock() because this primitive is intended to determine 629 * that all tasks have passed through a safe state, not so much for 630 * data-strcuture synchronization. 631 * 632 * See the description of call_rcu() for more detailed information on 633 * memory ordering guarantees. 634 */ 635 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 636 { 637 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 638 } 639 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 640 641 /** 642 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 643 * 644 * Control will return to the caller some time after a rude rcu-tasks 645 * grace period has elapsed, in other words after all currently 646 * executing rcu-tasks read-side critical sections have elapsed. These 647 * read-side critical sections are delimited by calls to schedule(), 648 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 649 * anyway) cond_resched(). 650 * 651 * This is a very specialized primitive, intended only for a few uses in 652 * tracing and other situations requiring manipulation of function preambles 653 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 654 * (yet) intended for heavy use from multiple CPUs. 655 * 656 * See the description of synchronize_rcu() for more detailed information 657 * on memory ordering guarantees. 658 */ 659 void synchronize_rcu_tasks_rude(void) 660 { 661 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 662 } 663 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 664 665 /** 666 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 667 * 668 * Although the current implementation is guaranteed to wait, it is not 669 * obligated to, for example, if there are no pending callbacks. 670 */ 671 void rcu_barrier_tasks_rude(void) 672 { 673 /* There is only one callback queue, so this is easy. ;-) */ 674 synchronize_rcu_tasks_rude(); 675 } 676 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 677 678 static int __init rcu_spawn_tasks_rude_kthread(void) 679 { 680 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 681 return 0; 682 } 683 core_initcall(rcu_spawn_tasks_rude_kthread); 684 685 static void show_rcu_tasks_rude_gp_kthread(void) 686 { 687 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 688 } 689 690 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */ 691 static void show_rcu_tasks_rude_gp_kthread(void) {} 692 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */ 693 694 //////////////////////////////////////////////////////////////////////// 695 // 696 // Tracing variant of Tasks RCU. This variant is designed to be used 697 // to protect tracing hooks, including those of BPF. This variant 698 // therefore: 699 // 700 // 1. Has explicit read-side markers to allow finite grace periods 701 // in the face of in-kernel loops for PREEMPT=n builds. 702 // 703 // 2. Protects code in the idle loop, exception entry/exit, and 704 // CPU-hotplug code paths, similar to the capabilities of SRCU. 705 // 706 // 3. Avoids expensive read-side instruction, having overhead similar 707 // to that of Preemptible RCU. 708 // 709 // There are of course downsides. The grace-period code can send IPIs to 710 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 711 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 712 // is a single callback queue guarded by a single lock, again, much as for 713 // Tasks RCU. If needed, these downsides can be at least partially remedied. 714 // 715 // Perhaps most important, this variant of RCU does not affect the vanilla 716 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 717 // readers can operate from idle, offline, and exception entry/exit in no 718 // way allows rcu_preempt and rcu_sched readers to also do so. 719 720 // The lockdep state must be outside of #ifdef to be useful. 721 #ifdef CONFIG_DEBUG_LOCK_ALLOC 722 static struct lock_class_key rcu_lock_trace_key; 723 struct lockdep_map rcu_trace_lock_map = 724 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 725 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 726 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 727 728 #ifdef CONFIG_TASKS_TRACE_RCU 729 730 atomic_t trc_n_readers_need_end; // Number of waited-for readers. 731 DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 732 733 // Record outstanding IPIs to each CPU. No point in sending two... 734 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 735 736 // The number of detections of task quiescent state relying on 737 // heavyweight readers executing explicit memory barriers. 738 unsigned long n_heavy_reader_attempts; 739 unsigned long n_heavy_reader_updates; 740 unsigned long n_heavy_reader_ofl_updates; 741 742 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 743 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 744 "RCU Tasks Trace"); 745 746 /* 747 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 748 * while the scheduler locks are held. 749 */ 750 static void rcu_read_unlock_iw(struct irq_work *iwp) 751 { 752 wake_up(&trc_wait); 753 } 754 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 755 756 /* If we are the last reader, wake up the grace-period kthread. */ 757 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) 758 { 759 int nq = t->trc_reader_special.b.need_qs; 760 761 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 762 t->trc_reader_special.b.need_mb) 763 smp_mb(); // Pairs with update-side barriers. 764 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 765 if (nq) 766 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 767 WRITE_ONCE(t->trc_reader_nesting, nesting); 768 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 769 irq_work_queue(&rcu_tasks_trace_iw); 770 } 771 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 772 773 /* Add a task to the holdout list, if it is not already on the list. */ 774 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 775 { 776 if (list_empty(&t->trc_holdout_list)) { 777 get_task_struct(t); 778 list_add(&t->trc_holdout_list, bhp); 779 } 780 } 781 782 /* Remove a task from the holdout list, if it is in fact present. */ 783 static void trc_del_holdout(struct task_struct *t) 784 { 785 if (!list_empty(&t->trc_holdout_list)) { 786 list_del_init(&t->trc_holdout_list); 787 put_task_struct(t); 788 } 789 } 790 791 /* IPI handler to check task state. */ 792 static void trc_read_check_handler(void *t_in) 793 { 794 struct task_struct *t = current; 795 struct task_struct *texp = t_in; 796 797 // If the task is no longer running on this CPU, leave. 798 if (unlikely(texp != t)) { 799 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 800 wake_up(&trc_wait); 801 goto reset_ipi; // Already on holdout list, so will check later. 802 } 803 804 // If the task is not in a read-side critical section, and 805 // if this is the last reader, awaken the grace-period kthread. 806 if (likely(!t->trc_reader_nesting)) { 807 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 808 wake_up(&trc_wait); 809 // Mark as checked after decrement to avoid false 810 // positives on the above WARN_ON_ONCE(). 811 WRITE_ONCE(t->trc_reader_checked, true); 812 goto reset_ipi; 813 } 814 WRITE_ONCE(t->trc_reader_checked, true); 815 816 // Get here if the task is in a read-side critical section. Set 817 // its state so that it will awaken the grace-period kthread upon 818 // exit from that critical section. 819 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 820 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 821 822 reset_ipi: 823 // Allow future IPIs to be sent on CPU and for task. 824 // Also order this IPI handler against any later manipulations of 825 // the intended task. 826 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 827 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 828 } 829 830 /* Callback function for scheduler to check locked-down task. */ 831 static bool trc_inspect_reader(struct task_struct *t, void *arg) 832 { 833 int cpu = task_cpu(t); 834 bool in_qs = false; 835 bool ofl = cpu_is_offline(cpu); 836 837 if (task_curr(t)) { 838 WARN_ON_ONCE(ofl & !is_idle_task(t)); 839 840 // If no chance of heavyweight readers, do it the hard way. 841 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 842 return false; 843 844 // If heavyweight readers are enabled on the remote task, 845 // we can inspect its state despite its currently running. 846 // However, we cannot safely change its state. 847 n_heavy_reader_attempts++; 848 if (!ofl && // Check for "running" idle tasks on offline CPUs. 849 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 850 return false; // No quiescent state, do it the hard way. 851 n_heavy_reader_updates++; 852 if (ofl) 853 n_heavy_reader_ofl_updates++; 854 in_qs = true; 855 } else { 856 in_qs = likely(!t->trc_reader_nesting); 857 } 858 859 // Mark as checked. Because this is called from the grace-period 860 // kthread, also remove the task from the holdout list. 861 t->trc_reader_checked = true; 862 trc_del_holdout(t); 863 864 if (in_qs) 865 return true; // Already in quiescent state, done!!! 866 867 // The task is in a read-side critical section, so set up its 868 // state so that it will awaken the grace-period kthread upon exit 869 // from that critical section. 870 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 871 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 872 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 873 return true; 874 } 875 876 /* Attempt to extract the state for the specified task. */ 877 static void trc_wait_for_one_reader(struct task_struct *t, 878 struct list_head *bhp) 879 { 880 int cpu; 881 882 // If a previous IPI is still in flight, let it complete. 883 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 884 return; 885 886 // The current task had better be in a quiescent state. 887 if (t == current) { 888 t->trc_reader_checked = true; 889 trc_del_holdout(t); 890 WARN_ON_ONCE(t->trc_reader_nesting); 891 return; 892 } 893 894 // Attempt to nail down the task for inspection. 895 get_task_struct(t); 896 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { 897 put_task_struct(t); 898 return; 899 } 900 put_task_struct(t); 901 902 // If currently running, send an IPI, either way, add to list. 903 trc_add_holdout(t, bhp); 904 if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 905 // The task is currently running, so try IPIing it. 906 cpu = task_cpu(t); 907 908 // If there is already an IPI outstanding, let it happen. 909 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 910 return; 911 912 atomic_inc(&trc_n_readers_need_end); 913 per_cpu(trc_ipi_to_cpu, cpu) = true; 914 t->trc_ipi_to_cpu = cpu; 915 rcu_tasks_trace.n_ipis++; 916 if (smp_call_function_single(cpu, 917 trc_read_check_handler, t, 0)) { 918 // Just in case there is some other reason for 919 // failure than the target CPU being offline. 920 rcu_tasks_trace.n_ipis_fails++; 921 per_cpu(trc_ipi_to_cpu, cpu) = false; 922 t->trc_ipi_to_cpu = cpu; 923 if (atomic_dec_and_test(&trc_n_readers_need_end)) { 924 WARN_ON_ONCE(1); 925 wake_up(&trc_wait); 926 } 927 } 928 } 929 } 930 931 /* Initialize for a new RCU-tasks-trace grace period. */ 932 static void rcu_tasks_trace_pregp_step(void) 933 { 934 int cpu; 935 936 // Allow for fast-acting IPIs. 937 atomic_set(&trc_n_readers_need_end, 1); 938 939 // There shouldn't be any old IPIs, but... 940 for_each_possible_cpu(cpu) 941 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 942 943 // Disable CPU hotplug across the tasklist scan. 944 // This also waits for all readers in CPU-hotplug code paths. 945 cpus_read_lock(); 946 } 947 948 /* Do first-round processing for the specified task. */ 949 static void rcu_tasks_trace_pertask(struct task_struct *t, 950 struct list_head *hop) 951 { 952 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 953 WRITE_ONCE(t->trc_reader_checked, false); 954 t->trc_ipi_to_cpu = -1; 955 trc_wait_for_one_reader(t, hop); 956 } 957 958 /* 959 * Do intermediate processing between task and holdout scans and 960 * pick up the idle tasks. 961 */ 962 static void rcu_tasks_trace_postscan(struct list_head *hop) 963 { 964 int cpu; 965 966 for_each_possible_cpu(cpu) 967 rcu_tasks_trace_pertask(idle_task(cpu), hop); 968 969 // Re-enable CPU hotplug now that the tasklist scan has completed. 970 cpus_read_unlock(); 971 972 // Wait for late-stage exiting tasks to finish exiting. 973 // These might have passed the call to exit_tasks_rcu_finish(). 974 synchronize_rcu(); 975 // Any tasks that exit after this point will set ->trc_reader_checked. 976 } 977 978 /* Show the state of a task stalling the current RCU tasks trace GP. */ 979 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 980 { 981 int cpu; 982 983 if (*firstreport) { 984 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 985 *firstreport = false; 986 } 987 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 988 cpu = task_cpu(t); 989 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 990 t->pid, 991 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], 992 ".i"[is_idle_task(t)], 993 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], 994 t->trc_reader_nesting, 995 " N"[!!t->trc_reader_special.b.need_qs], 996 cpu); 997 sched_show_task(t); 998 } 999 1000 /* List stalled IPIs for RCU tasks trace. */ 1001 static void show_stalled_ipi_trace(void) 1002 { 1003 int cpu; 1004 1005 for_each_possible_cpu(cpu) 1006 if (per_cpu(trc_ipi_to_cpu, cpu)) 1007 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1008 } 1009 1010 /* Do one scan of the holdout list. */ 1011 static void check_all_holdout_tasks_trace(struct list_head *hop, 1012 bool needreport, bool *firstreport) 1013 { 1014 struct task_struct *g, *t; 1015 1016 // Disable CPU hotplug across the holdout list scan. 1017 cpus_read_lock(); 1018 1019 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1020 // If safe and needed, try to check the current task. 1021 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1022 !READ_ONCE(t->trc_reader_checked)) 1023 trc_wait_for_one_reader(t, hop); 1024 1025 // If check succeeded, remove this task from the list. 1026 if (READ_ONCE(t->trc_reader_checked)) 1027 trc_del_holdout(t); 1028 else if (needreport) 1029 show_stalled_task_trace(t, firstreport); 1030 } 1031 1032 // Re-enable CPU hotplug now that the holdout list scan has completed. 1033 cpus_read_unlock(); 1034 1035 if (needreport) { 1036 if (firstreport) 1037 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1038 show_stalled_ipi_trace(); 1039 } 1040 } 1041 1042 /* Wait for grace period to complete and provide ordering. */ 1043 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1044 { 1045 bool firstreport; 1046 struct task_struct *g, *t; 1047 LIST_HEAD(holdouts); 1048 long ret; 1049 1050 // Remove the safety count. 1051 smp_mb__before_atomic(); // Order vs. earlier atomics 1052 atomic_dec(&trc_n_readers_need_end); 1053 smp_mb__after_atomic(); // Order vs. later atomics 1054 1055 // Wait for readers. 1056 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1057 for (;;) { 1058 ret = wait_event_idle_exclusive_timeout( 1059 trc_wait, 1060 atomic_read(&trc_n_readers_need_end) == 0, 1061 READ_ONCE(rcu_task_stall_timeout)); 1062 if (ret) 1063 break; // Count reached zero. 1064 // Stall warning time, so make a list of the offenders. 1065 for_each_process_thread(g, t) 1066 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1067 trc_add_holdout(t, &holdouts); 1068 firstreport = true; 1069 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) 1070 if (READ_ONCE(t->trc_reader_special.b.need_qs)) { 1071 show_stalled_task_trace(t, &firstreport); 1072 trc_del_holdout(t); 1073 } 1074 if (firstreport) 1075 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1076 show_stalled_ipi_trace(); 1077 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1078 } 1079 smp_mb(); // Caller's code must be ordered after wakeup. 1080 // Pairs with pretty much every ordering primitive. 1081 } 1082 1083 /* Report any needed quiescent state for this exiting task. */ 1084 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1085 { 1086 WRITE_ONCE(t->trc_reader_checked, true); 1087 WARN_ON_ONCE(t->trc_reader_nesting); 1088 WRITE_ONCE(t->trc_reader_nesting, 0); 1089 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1090 rcu_read_unlock_trace_special(t, 0); 1091 } 1092 1093 /** 1094 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1095 * @rhp: structure to be used for queueing the RCU updates. 1096 * @func: actual callback function to be invoked after the grace period 1097 * 1098 * The callback function will be invoked some time after a full grace 1099 * period elapses, in other words after all currently executing RCU 1100 * read-side critical sections have completed. call_rcu_tasks_trace() 1101 * assumes that the read-side critical sections end at context switch, 1102 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 1103 * there are no read-side primitives analogous to rcu_read_lock() and 1104 * rcu_read_unlock() because this primitive is intended to determine 1105 * that all tasks have passed through a safe state, not so much for 1106 * data-strcuture synchronization. 1107 * 1108 * See the description of call_rcu() for more detailed information on 1109 * memory ordering guarantees. 1110 */ 1111 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1112 { 1113 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1114 } 1115 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1116 1117 /** 1118 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1119 * 1120 * Control will return to the caller some time after a trace rcu-tasks 1121 * grace period has elapsed, in other words after all currently 1122 * executing rcu-tasks read-side critical sections have elapsed. These 1123 * read-side critical sections are delimited by calls to schedule(), 1124 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 1125 * anyway) cond_resched(). 1126 * 1127 * This is a very specialized primitive, intended only for a few uses in 1128 * tracing and other situations requiring manipulation of function preambles 1129 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1130 * (yet) intended for heavy use from multiple CPUs. 1131 * 1132 * See the description of synchronize_rcu() for more detailed information 1133 * on memory ordering guarantees. 1134 */ 1135 void synchronize_rcu_tasks_trace(void) 1136 { 1137 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1138 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1139 } 1140 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1141 1142 /** 1143 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1144 * 1145 * Although the current implementation is guaranteed to wait, it is not 1146 * obligated to, for example, if there are no pending callbacks. 1147 */ 1148 void rcu_barrier_tasks_trace(void) 1149 { 1150 /* There is only one callback queue, so this is easy. ;-) */ 1151 synchronize_rcu_tasks_trace(); 1152 } 1153 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1154 1155 static int __init rcu_spawn_tasks_trace_kthread(void) 1156 { 1157 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1158 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1159 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1160 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1161 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1162 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1163 return 0; 1164 } 1165 core_initcall(rcu_spawn_tasks_trace_kthread); 1166 1167 static void show_rcu_tasks_trace_gp_kthread(void) 1168 { 1169 char buf[64]; 1170 1171 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1172 data_race(n_heavy_reader_ofl_updates), 1173 data_race(n_heavy_reader_updates), 1174 data_race(n_heavy_reader_attempts)); 1175 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1176 } 1177 1178 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1179 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1180 static inline void show_rcu_tasks_trace_gp_kthread(void) {} 1181 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1182 1183 void show_rcu_tasks_gp_kthreads(void) 1184 { 1185 show_rcu_tasks_classic_gp_kthread(); 1186 show_rcu_tasks_rude_gp_kthread(); 1187 show_rcu_tasks_trace_gp_kthread(); 1188 } 1189 1190 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1191 static inline void rcu_tasks_bootup_oddness(void) {} 1192 void show_rcu_tasks_gp_kthreads(void) {} 1193 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1194