xref: /openbmc/linux/kernel/rcu/tasks.h (revision 8e7a49e0)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @rtp_blkd_tasks: List of tasks blocked as readers.
33  * @cpu: CPU number corresponding to this entry.
34  * @rtpp: Pointer to the rcu_tasks structure.
35  */
36 struct rcu_tasks_percpu {
37 	struct rcu_segcblist cblist;
38 	raw_spinlock_t __private lock;
39 	unsigned long rtp_jiffies;
40 	unsigned long rtp_n_lock_retries;
41 	struct work_struct rtp_work;
42 	struct irq_work rtp_irq_work;
43 	struct rcu_head barrier_q_head;
44 	struct list_head rtp_blkd_tasks;
45 	int cpu;
46 	struct rcu_tasks *rtpp;
47 };
48 
49 /**
50  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
51  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
52  * @cbs_gbl_lock: Lock protecting callback list.
53  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
54  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
55  * @gp_func: This flavor's grace-period-wait function.
56  * @gp_state: Grace period's most recent state transition (debugging).
57  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
58  * @init_fract: Initial backoff sleep interval.
59  * @gp_jiffies: Time of last @gp_state transition.
60  * @gp_start: Most recent grace-period start in jiffies.
61  * @tasks_gp_seq: Number of grace periods completed since boot.
62  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
63  * @n_ipis_fails: Number of IPI-send failures.
64  * @pregp_func: This flavor's pre-grace-period function (optional).
65  * @pertask_func: This flavor's per-task scan function (optional).
66  * @postscan_func: This flavor's post-task scan function (optional).
67  * @holdouts_func: This flavor's holdout-list scan function (optional).
68  * @postgp_func: This flavor's post-grace-period function (optional).
69  * @call_func: This flavor's call_rcu()-equivalent function.
70  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
71  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
72  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
73  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
74  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
75  * @barrier_q_mutex: Serialize barrier operations.
76  * @barrier_q_count: Number of queues being waited on.
77  * @barrier_q_completion: Barrier wait/wakeup mechanism.
78  * @barrier_q_seq: Sequence number for barrier operations.
79  * @name: This flavor's textual name.
80  * @kname: This flavor's kthread name.
81  */
82 struct rcu_tasks {
83 	struct rcuwait cbs_wait;
84 	raw_spinlock_t cbs_gbl_lock;
85 	struct mutex tasks_gp_mutex;
86 	int gp_state;
87 	int gp_sleep;
88 	int init_fract;
89 	unsigned long gp_jiffies;
90 	unsigned long gp_start;
91 	unsigned long tasks_gp_seq;
92 	unsigned long n_ipis;
93 	unsigned long n_ipis_fails;
94 	struct task_struct *kthread_ptr;
95 	rcu_tasks_gp_func_t gp_func;
96 	pregp_func_t pregp_func;
97 	pertask_func_t pertask_func;
98 	postscan_func_t postscan_func;
99 	holdouts_func_t holdouts_func;
100 	postgp_func_t postgp_func;
101 	call_rcu_func_t call_func;
102 	struct rcu_tasks_percpu __percpu *rtpcpu;
103 	int percpu_enqueue_shift;
104 	int percpu_enqueue_lim;
105 	int percpu_dequeue_lim;
106 	unsigned long percpu_dequeue_gpseq;
107 	struct mutex barrier_q_mutex;
108 	atomic_t barrier_q_count;
109 	struct completion barrier_q_completion;
110 	unsigned long barrier_q_seq;
111 	char *name;
112 	char *kname;
113 };
114 
115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
116 
117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
119 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
120 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
121 };											\
122 static struct rcu_tasks rt_name =							\
123 {											\
124 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
125 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
126 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
127 	.gp_func = gp,									\
128 	.call_func = call,								\
129 	.rtpcpu = &rt_name ## __percpu,							\
130 	.name = n,									\
131 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
132 	.percpu_enqueue_lim = 1,							\
133 	.percpu_dequeue_lim = 1,							\
134 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
135 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
136 	.kname = #rt_name,								\
137 }
138 
139 /* Track exiting tasks in order to allow them to be waited for. */
140 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
141 
142 /* Avoid IPIing CPUs early in the grace period. */
143 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
144 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
145 module_param(rcu_task_ipi_delay, int, 0644);
146 
147 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
148 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
149 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
150 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
151 module_param(rcu_task_stall_timeout, int, 0644);
152 #define RCU_TASK_STALL_INFO (HZ * 10)
153 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
154 module_param(rcu_task_stall_info, int, 0644);
155 static int rcu_task_stall_info_mult __read_mostly = 3;
156 module_param(rcu_task_stall_info_mult, int, 0444);
157 
158 static int rcu_task_enqueue_lim __read_mostly = -1;
159 module_param(rcu_task_enqueue_lim, int, 0444);
160 
161 static bool rcu_task_cb_adjust;
162 static int rcu_task_contend_lim __read_mostly = 100;
163 module_param(rcu_task_contend_lim, int, 0444);
164 static int rcu_task_collapse_lim __read_mostly = 10;
165 module_param(rcu_task_collapse_lim, int, 0444);
166 
167 /* RCU tasks grace-period state for debugging. */
168 #define RTGS_INIT		 0
169 #define RTGS_WAIT_WAIT_CBS	 1
170 #define RTGS_WAIT_GP		 2
171 #define RTGS_PRE_WAIT_GP	 3
172 #define RTGS_SCAN_TASKLIST	 4
173 #define RTGS_POST_SCAN_TASKLIST	 5
174 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
175 #define RTGS_SCAN_HOLDOUTS	 7
176 #define RTGS_POST_GP		 8
177 #define RTGS_WAIT_READERS	 9
178 #define RTGS_INVOKE_CBS		10
179 #define RTGS_WAIT_CBS		11
180 #ifndef CONFIG_TINY_RCU
181 static const char * const rcu_tasks_gp_state_names[] = {
182 	"RTGS_INIT",
183 	"RTGS_WAIT_WAIT_CBS",
184 	"RTGS_WAIT_GP",
185 	"RTGS_PRE_WAIT_GP",
186 	"RTGS_SCAN_TASKLIST",
187 	"RTGS_POST_SCAN_TASKLIST",
188 	"RTGS_WAIT_SCAN_HOLDOUTS",
189 	"RTGS_SCAN_HOLDOUTS",
190 	"RTGS_POST_GP",
191 	"RTGS_WAIT_READERS",
192 	"RTGS_INVOKE_CBS",
193 	"RTGS_WAIT_CBS",
194 };
195 #endif /* #ifndef CONFIG_TINY_RCU */
196 
197 ////////////////////////////////////////////////////////////////////////
198 //
199 // Generic code.
200 
201 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
202 
203 /* Record grace-period phase and time. */
204 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
205 {
206 	rtp->gp_state = newstate;
207 	rtp->gp_jiffies = jiffies;
208 }
209 
210 #ifndef CONFIG_TINY_RCU
211 /* Return state name. */
212 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
213 {
214 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
215 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
216 
217 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
218 		return "???";
219 	return rcu_tasks_gp_state_names[j];
220 }
221 #endif /* #ifndef CONFIG_TINY_RCU */
222 
223 // Initialize per-CPU callback lists for the specified flavor of
224 // Tasks RCU.
225 static void cblist_init_generic(struct rcu_tasks *rtp)
226 {
227 	int cpu;
228 	unsigned long flags;
229 	int lim;
230 	int shift;
231 
232 	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
233 	if (rcu_task_enqueue_lim < 0) {
234 		rcu_task_enqueue_lim = 1;
235 		rcu_task_cb_adjust = true;
236 		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
237 	} else if (rcu_task_enqueue_lim == 0) {
238 		rcu_task_enqueue_lim = 1;
239 	}
240 	lim = rcu_task_enqueue_lim;
241 
242 	if (lim > nr_cpu_ids)
243 		lim = nr_cpu_ids;
244 	shift = ilog2(nr_cpu_ids / lim);
245 	if (((nr_cpu_ids - 1) >> shift) >= lim)
246 		shift++;
247 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
248 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
249 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
250 	for_each_possible_cpu(cpu) {
251 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
252 
253 		WARN_ON_ONCE(!rtpcp);
254 		if (cpu)
255 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
256 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
257 		if (rcu_segcblist_empty(&rtpcp->cblist))
258 			rcu_segcblist_init(&rtpcp->cblist);
259 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
260 		rtpcp->cpu = cpu;
261 		rtpcp->rtpp = rtp;
262 		if (!rtpcp->rtp_blkd_tasks.next)
263 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
264 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
265 	}
266 	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
267 	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
268 }
269 
270 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
271 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
272 {
273 	struct rcu_tasks *rtp;
274 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
275 
276 	rtp = rtpcp->rtpp;
277 	rcuwait_wake_up(&rtp->cbs_wait);
278 }
279 
280 // Enqueue a callback for the specified flavor of Tasks RCU.
281 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
282 				   struct rcu_tasks *rtp)
283 {
284 	int chosen_cpu;
285 	unsigned long flags;
286 	int ideal_cpu;
287 	unsigned long j;
288 	bool needadjust = false;
289 	bool needwake;
290 	struct rcu_tasks_percpu *rtpcp;
291 
292 	rhp->next = NULL;
293 	rhp->func = func;
294 	local_irq_save(flags);
295 	rcu_read_lock();
296 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
297 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
298 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
299 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
300 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
301 		j = jiffies;
302 		if (rtpcp->rtp_jiffies != j) {
303 			rtpcp->rtp_jiffies = j;
304 			rtpcp->rtp_n_lock_retries = 0;
305 		}
306 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
307 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
308 			needadjust = true;  // Defer adjustment to avoid deadlock.
309 	}
310 	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
311 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
312 		cblist_init_generic(rtp);
313 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
314 	}
315 	needwake = rcu_segcblist_empty(&rtpcp->cblist);
316 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
317 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
318 	if (unlikely(needadjust)) {
319 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
320 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
321 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
322 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
323 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
324 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
325 		}
326 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
327 	}
328 	rcu_read_unlock();
329 	/* We can't create the thread unless interrupts are enabled. */
330 	if (needwake && READ_ONCE(rtp->kthread_ptr))
331 		irq_work_queue(&rtpcp->rtp_irq_work);
332 }
333 
334 // RCU callback function for rcu_barrier_tasks_generic().
335 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
336 {
337 	struct rcu_tasks *rtp;
338 	struct rcu_tasks_percpu *rtpcp;
339 
340 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
341 	rtp = rtpcp->rtpp;
342 	if (atomic_dec_and_test(&rtp->barrier_q_count))
343 		complete(&rtp->barrier_q_completion);
344 }
345 
346 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
347 // Operates in a manner similar to rcu_barrier().
348 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
349 {
350 	int cpu;
351 	unsigned long flags;
352 	struct rcu_tasks_percpu *rtpcp;
353 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
354 
355 	mutex_lock(&rtp->barrier_q_mutex);
356 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
357 		smp_mb();
358 		mutex_unlock(&rtp->barrier_q_mutex);
359 		return;
360 	}
361 	rcu_seq_start(&rtp->barrier_q_seq);
362 	init_completion(&rtp->barrier_q_completion);
363 	atomic_set(&rtp->barrier_q_count, 2);
364 	for_each_possible_cpu(cpu) {
365 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
366 			break;
367 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
368 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
369 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
370 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
371 			atomic_inc(&rtp->barrier_q_count);
372 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
373 	}
374 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
375 		complete(&rtp->barrier_q_completion);
376 	wait_for_completion(&rtp->barrier_q_completion);
377 	rcu_seq_end(&rtp->barrier_q_seq);
378 	mutex_unlock(&rtp->barrier_q_mutex);
379 }
380 
381 // Advance callbacks and indicate whether either a grace period or
382 // callback invocation is needed.
383 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
384 {
385 	int cpu;
386 	unsigned long flags;
387 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
388 	long n;
389 	long ncbs = 0;
390 	long ncbsnz = 0;
391 	int needgpcb = 0;
392 
393 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
394 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
395 
396 		/* Advance and accelerate any new callbacks. */
397 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
398 			continue;
399 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
400 		// Should we shrink down to a single callback queue?
401 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
402 		if (n) {
403 			ncbs += n;
404 			if (cpu > 0)
405 				ncbsnz += n;
406 		}
407 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
408 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
409 		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
410 			needgpcb |= 0x3;
411 		if (!rcu_segcblist_empty(&rtpcp->cblist))
412 			needgpcb |= 0x1;
413 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
414 	}
415 
416 	// Shrink down to a single callback queue if appropriate.
417 	// This is done in two stages: (1) If there are no more than
418 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
419 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
420 	// if there has not been an increase in callbacks, limit dequeuing
421 	// to CPU 0.  Note the matching RCU read-side critical section in
422 	// call_rcu_tasks_generic().
423 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
424 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
425 		if (rtp->percpu_enqueue_lim > 1) {
426 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
427 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
428 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
429 			gpdone = false;
430 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
431 		}
432 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
433 	}
434 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
435 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
436 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
437 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
438 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
439 		}
440 		if (rtp->percpu_dequeue_lim == 1) {
441 			for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
442 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
443 
444 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
445 			}
446 		}
447 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
448 	}
449 
450 	return needgpcb;
451 }
452 
453 // Advance callbacks and invoke any that are ready.
454 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
455 {
456 	int cpu;
457 	int cpunext;
458 	unsigned long flags;
459 	int len;
460 	struct rcu_head *rhp;
461 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
462 	struct rcu_tasks_percpu *rtpcp_next;
463 
464 	cpu = rtpcp->cpu;
465 	cpunext = cpu * 2 + 1;
466 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
467 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
468 		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
469 		cpunext++;
470 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
471 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
472 			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
473 		}
474 	}
475 
476 	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
477 		return;
478 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
479 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
480 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
481 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
482 	len = rcl.len;
483 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
484 		local_bh_disable();
485 		rhp->func(rhp);
486 		local_bh_enable();
487 		cond_resched();
488 	}
489 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
490 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
491 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
492 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
493 }
494 
495 // Workqueue flood to advance callbacks and invoke any that are ready.
496 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
497 {
498 	struct rcu_tasks *rtp;
499 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
500 
501 	rtp = rtpcp->rtpp;
502 	rcu_tasks_invoke_cbs(rtp, rtpcp);
503 }
504 
505 // Wait for one grace period.
506 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
507 {
508 	int needgpcb;
509 
510 	mutex_lock(&rtp->tasks_gp_mutex);
511 
512 	// If there were none, wait a bit and start over.
513 	if (unlikely(midboot)) {
514 		needgpcb = 0x2;
515 	} else {
516 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
517 		rcuwait_wait_event(&rtp->cbs_wait,
518 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
519 				   TASK_IDLE);
520 	}
521 
522 	if (needgpcb & 0x2) {
523 		// Wait for one grace period.
524 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
525 		rtp->gp_start = jiffies;
526 		rcu_seq_start(&rtp->tasks_gp_seq);
527 		rtp->gp_func(rtp);
528 		rcu_seq_end(&rtp->tasks_gp_seq);
529 	}
530 
531 	// Invoke callbacks.
532 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
533 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
534 	mutex_unlock(&rtp->tasks_gp_mutex);
535 }
536 
537 // RCU-tasks kthread that detects grace periods and invokes callbacks.
538 static int __noreturn rcu_tasks_kthread(void *arg)
539 {
540 	struct rcu_tasks *rtp = arg;
541 
542 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
543 	housekeeping_affine(current, HK_TYPE_RCU);
544 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
545 
546 	/*
547 	 * Each pass through the following loop makes one check for
548 	 * newly arrived callbacks, and, if there are some, waits for
549 	 * one RCU-tasks grace period and then invokes the callbacks.
550 	 * This loop is terminated by the system going down.  ;-)
551 	 */
552 	for (;;) {
553 		// Wait for one grace period and invoke any callbacks
554 		// that are ready.
555 		rcu_tasks_one_gp(rtp, false);
556 
557 		// Paranoid sleep to keep this from entering a tight loop.
558 		schedule_timeout_idle(rtp->gp_sleep);
559 	}
560 }
561 
562 // Wait for a grace period for the specified flavor of Tasks RCU.
563 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
564 {
565 	/* Complain if the scheduler has not started.  */
566 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
567 			 "synchronize_%s() called too soon", rtp->name))
568 		return;
569 
570 	// If the grace-period kthread is running, use it.
571 	if (READ_ONCE(rtp->kthread_ptr)) {
572 		wait_rcu_gp(rtp->call_func);
573 		return;
574 	}
575 	rcu_tasks_one_gp(rtp, true);
576 }
577 
578 /* Spawn RCU-tasks grace-period kthread. */
579 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
580 {
581 	struct task_struct *t;
582 
583 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
584 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
585 		return;
586 	smp_mb(); /* Ensure others see full kthread. */
587 }
588 
589 #ifndef CONFIG_TINY_RCU
590 
591 /*
592  * Print any non-default Tasks RCU settings.
593  */
594 static void __init rcu_tasks_bootup_oddness(void)
595 {
596 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
597 	int rtsimc;
598 
599 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
600 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
601 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
602 	if (rtsimc != rcu_task_stall_info_mult) {
603 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
604 		rcu_task_stall_info_mult = rtsimc;
605 	}
606 #endif /* #ifdef CONFIG_TASKS_RCU */
607 #ifdef CONFIG_TASKS_RCU
608 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
609 #endif /* #ifdef CONFIG_TASKS_RCU */
610 #ifdef CONFIG_TASKS_RUDE_RCU
611 	pr_info("\tRude variant of Tasks RCU enabled.\n");
612 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
613 #ifdef CONFIG_TASKS_TRACE_RCU
614 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
615 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
616 }
617 
618 #endif /* #ifndef CONFIG_TINY_RCU */
619 
620 #ifndef CONFIG_TINY_RCU
621 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
622 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
623 {
624 	int cpu;
625 	bool havecbs = false;
626 
627 	for_each_possible_cpu(cpu) {
628 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
629 
630 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
631 			havecbs = true;
632 			break;
633 		}
634 	}
635 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
636 		rtp->kname,
637 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
638 		jiffies - data_race(rtp->gp_jiffies),
639 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
640 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
641 		".k"[!!data_race(rtp->kthread_ptr)],
642 		".C"[havecbs],
643 		s);
644 }
645 #endif // #ifndef CONFIG_TINY_RCU
646 
647 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
648 
649 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
650 
651 ////////////////////////////////////////////////////////////////////////
652 //
653 // Shared code between task-list-scanning variants of Tasks RCU.
654 
655 /* Wait for one RCU-tasks grace period. */
656 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
657 {
658 	struct task_struct *g;
659 	int fract;
660 	LIST_HEAD(holdouts);
661 	unsigned long j;
662 	unsigned long lastinfo;
663 	unsigned long lastreport;
664 	bool reported = false;
665 	int rtsi;
666 	struct task_struct *t;
667 
668 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
669 	rtp->pregp_func(&holdouts);
670 
671 	/*
672 	 * There were callbacks, so we need to wait for an RCU-tasks
673 	 * grace period.  Start off by scanning the task list for tasks
674 	 * that are not already voluntarily blocked.  Mark these tasks
675 	 * and make a list of them in holdouts.
676 	 */
677 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
678 	if (rtp->pertask_func) {
679 		rcu_read_lock();
680 		for_each_process_thread(g, t)
681 			rtp->pertask_func(t, &holdouts);
682 		rcu_read_unlock();
683 	}
684 
685 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
686 	rtp->postscan_func(&holdouts);
687 
688 	/*
689 	 * Each pass through the following loop scans the list of holdout
690 	 * tasks, removing any that are no longer holdouts.  When the list
691 	 * is empty, we are done.
692 	 */
693 	lastreport = jiffies;
694 	lastinfo = lastreport;
695 	rtsi = READ_ONCE(rcu_task_stall_info);
696 
697 	// Start off with initial wait and slowly back off to 1 HZ wait.
698 	fract = rtp->init_fract;
699 
700 	while (!list_empty(&holdouts)) {
701 		ktime_t exp;
702 		bool firstreport;
703 		bool needreport;
704 		int rtst;
705 
706 		// Slowly back off waiting for holdouts
707 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
708 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
709 			schedule_timeout_idle(fract);
710 		} else {
711 			exp = jiffies_to_nsecs(fract);
712 			__set_current_state(TASK_IDLE);
713 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
714 		}
715 
716 		if (fract < HZ)
717 			fract++;
718 
719 		rtst = READ_ONCE(rcu_task_stall_timeout);
720 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
721 		if (needreport) {
722 			lastreport = jiffies;
723 			reported = true;
724 		}
725 		firstreport = true;
726 		WARN_ON(signal_pending(current));
727 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
728 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
729 
730 		// Print pre-stall informational messages if needed.
731 		j = jiffies;
732 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
733 			lastinfo = j;
734 			rtsi = rtsi * rcu_task_stall_info_mult;
735 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
736 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
737 		}
738 	}
739 
740 	set_tasks_gp_state(rtp, RTGS_POST_GP);
741 	rtp->postgp_func(rtp);
742 }
743 
744 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
745 
746 #ifdef CONFIG_TASKS_RCU
747 
748 ////////////////////////////////////////////////////////////////////////
749 //
750 // Simple variant of RCU whose quiescent states are voluntary context
751 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
752 // As such, grace periods can take one good long time.  There are no
753 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
754 // because this implementation is intended to get the system into a safe
755 // state for some of the manipulations involved in tracing and the like.
756 // Finally, this implementation does not support high call_rcu_tasks()
757 // rates from multiple CPUs.  If this is required, per-CPU callback lists
758 // will be needed.
759 //
760 // The implementation uses rcu_tasks_wait_gp(), which relies on function
761 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
762 // function sets these function pointers up so that rcu_tasks_wait_gp()
763 // invokes these functions in this order:
764 //
765 // rcu_tasks_pregp_step():
766 //	Invokes synchronize_rcu() in order to wait for all in-flight
767 //	t->on_rq and t->nvcsw transitions to complete.	This works because
768 //	all such transitions are carried out with interrupts disabled.
769 // rcu_tasks_pertask(), invoked on every non-idle task:
770 //	For every runnable non-idle task other than the current one, use
771 //	get_task_struct() to pin down that task, snapshot that task's
772 //	number of voluntary context switches, and add that task to the
773 //	holdout list.
774 // rcu_tasks_postscan():
775 //	Invoke synchronize_srcu() to ensure that all tasks that were
776 //	in the process of exiting (and which thus might not know to
777 //	synchronize with this RCU Tasks grace period) have completed
778 //	exiting.
779 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
780 //	Scans the holdout list, attempting to identify a quiescent state
781 //	for each task on the list.  If there is a quiescent state, the
782 //	corresponding task is removed from the holdout list.
783 // rcu_tasks_postgp():
784 //	Invokes synchronize_rcu() in order to ensure that all prior
785 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
786 //	to have happened before the end of this RCU Tasks grace period.
787 //	Again, this works because all such transitions are carried out
788 //	with interrupts disabled.
789 //
790 // For each exiting task, the exit_tasks_rcu_start() and
791 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
792 // read-side critical sections waited for by rcu_tasks_postscan().
793 //
794 // Pre-grace-period update-side code is ordered before the grace
795 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
796 // is ordered before the grace period via synchronize_rcu() call in
797 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
798 // disabling.
799 
800 /* Pre-grace-period preparation. */
801 static void rcu_tasks_pregp_step(struct list_head *hop)
802 {
803 	/*
804 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
805 	 * to complete.  Invoking synchronize_rcu() suffices because all
806 	 * these transitions occur with interrupts disabled.  Without this
807 	 * synchronize_rcu(), a read-side critical section that started
808 	 * before the grace period might be incorrectly seen as having
809 	 * started after the grace period.
810 	 *
811 	 * This synchronize_rcu() also dispenses with the need for a
812 	 * memory barrier on the first store to t->rcu_tasks_holdout,
813 	 * as it forces the store to happen after the beginning of the
814 	 * grace period.
815 	 */
816 	synchronize_rcu();
817 }
818 
819 /* Per-task initial processing. */
820 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
821 {
822 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
823 		get_task_struct(t);
824 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
825 		WRITE_ONCE(t->rcu_tasks_holdout, true);
826 		list_add(&t->rcu_tasks_holdout_list, hop);
827 	}
828 }
829 
830 /* Processing between scanning taskslist and draining the holdout list. */
831 static void rcu_tasks_postscan(struct list_head *hop)
832 {
833 	/*
834 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
835 	 * until their final schedule() with TASK_DEAD state. To cope with
836 	 * this, divide the fragile exit path part in two intersecting
837 	 * read side critical sections:
838 	 *
839 	 * 1) An _SRCU_ read side starting before calling exit_notify(),
840 	 *    which may remove the task from the tasklist, and ending after
841 	 *    the final preempt_disable() call in do_exit().
842 	 *
843 	 * 2) An _RCU_ read side starting with the final preempt_disable()
844 	 *    call in do_exit() and ending with the final call to schedule()
845 	 *    with TASK_DEAD state.
846 	 *
847 	 * This handles the part 1). And postgp will handle part 2) with a
848 	 * call to synchronize_rcu().
849 	 */
850 	synchronize_srcu(&tasks_rcu_exit_srcu);
851 }
852 
853 /* See if tasks are still holding out, complain if so. */
854 static void check_holdout_task(struct task_struct *t,
855 			       bool needreport, bool *firstreport)
856 {
857 	int cpu;
858 
859 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
860 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
861 	    !READ_ONCE(t->on_rq) ||
862 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
863 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
864 		WRITE_ONCE(t->rcu_tasks_holdout, false);
865 		list_del_init(&t->rcu_tasks_holdout_list);
866 		put_task_struct(t);
867 		return;
868 	}
869 	rcu_request_urgent_qs_task(t);
870 	if (!needreport)
871 		return;
872 	if (*firstreport) {
873 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
874 		*firstreport = false;
875 	}
876 	cpu = task_cpu(t);
877 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
878 		 t, ".I"[is_idle_task(t)],
879 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
880 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
881 		 t->rcu_tasks_idle_cpu, cpu);
882 	sched_show_task(t);
883 }
884 
885 /* Scan the holdout lists for tasks no longer holding out. */
886 static void check_all_holdout_tasks(struct list_head *hop,
887 				    bool needreport, bool *firstreport)
888 {
889 	struct task_struct *t, *t1;
890 
891 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
892 		check_holdout_task(t, needreport, firstreport);
893 		cond_resched();
894 	}
895 }
896 
897 /* Finish off the Tasks-RCU grace period. */
898 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
899 {
900 	/*
901 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
902 	 * memory barriers prior to them in the schedule() path, memory
903 	 * reordering on other CPUs could cause their RCU-tasks read-side
904 	 * critical sections to extend past the end of the grace period.
905 	 * However, because these ->nvcsw updates are carried out with
906 	 * interrupts disabled, we can use synchronize_rcu() to force the
907 	 * needed ordering on all such CPUs.
908 	 *
909 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
910 	 * accesses to be within the grace period, avoiding the need for
911 	 * memory barriers for ->rcu_tasks_holdout accesses.
912 	 *
913 	 * In addition, this synchronize_rcu() waits for exiting tasks
914 	 * to complete their final preempt_disable() region of execution,
915 	 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
916 	 * enforcing the whole region before tasklist removal until
917 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
918 	 * read side critical section.
919 	 */
920 	synchronize_rcu();
921 }
922 
923 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
924 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
925 
926 /**
927  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
928  * @rhp: structure to be used for queueing the RCU updates.
929  * @func: actual callback function to be invoked after the grace period
930  *
931  * The callback function will be invoked some time after a full grace
932  * period elapses, in other words after all currently executing RCU
933  * read-side critical sections have completed. call_rcu_tasks() assumes
934  * that the read-side critical sections end at a voluntary context
935  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
936  * or transition to usermode execution.  As such, there are no read-side
937  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
938  * this primitive is intended to determine that all tasks have passed
939  * through a safe state, not so much for data-structure synchronization.
940  *
941  * See the description of call_rcu() for more detailed information on
942  * memory ordering guarantees.
943  */
944 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
945 {
946 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
947 }
948 EXPORT_SYMBOL_GPL(call_rcu_tasks);
949 
950 /**
951  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
952  *
953  * Control will return to the caller some time after a full rcu-tasks
954  * grace period has elapsed, in other words after all currently
955  * executing rcu-tasks read-side critical sections have elapsed.  These
956  * read-side critical sections are delimited by calls to schedule(),
957  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
958  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
959  *
960  * This is a very specialized primitive, intended only for a few uses in
961  * tracing and other situations requiring manipulation of function
962  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
963  * is not (yet) intended for heavy use from multiple CPUs.
964  *
965  * See the description of synchronize_rcu() for more detailed information
966  * on memory ordering guarantees.
967  */
968 void synchronize_rcu_tasks(void)
969 {
970 	synchronize_rcu_tasks_generic(&rcu_tasks);
971 }
972 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
973 
974 /**
975  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
976  *
977  * Although the current implementation is guaranteed to wait, it is not
978  * obligated to, for example, if there are no pending callbacks.
979  */
980 void rcu_barrier_tasks(void)
981 {
982 	rcu_barrier_tasks_generic(&rcu_tasks);
983 }
984 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
985 
986 static int __init rcu_spawn_tasks_kthread(void)
987 {
988 	cblist_init_generic(&rcu_tasks);
989 	rcu_tasks.gp_sleep = HZ / 10;
990 	rcu_tasks.init_fract = HZ / 10;
991 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
992 	rcu_tasks.pertask_func = rcu_tasks_pertask;
993 	rcu_tasks.postscan_func = rcu_tasks_postscan;
994 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
995 	rcu_tasks.postgp_func = rcu_tasks_postgp;
996 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
997 	return 0;
998 }
999 
1000 #if !defined(CONFIG_TINY_RCU)
1001 void show_rcu_tasks_classic_gp_kthread(void)
1002 {
1003 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1004 }
1005 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1006 #endif // !defined(CONFIG_TINY_RCU)
1007 
1008 /*
1009  * Contribute to protect against tasklist scan blind spot while the
1010  * task is exiting and may be removed from the tasklist. See
1011  * corresponding synchronize_srcu() for further details.
1012  */
1013 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
1014 {
1015 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
1016 }
1017 
1018 /*
1019  * Contribute to protect against tasklist scan blind spot while the
1020  * task is exiting and may be removed from the tasklist. See
1021  * corresponding synchronize_srcu() for further details.
1022  */
1023 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
1024 {
1025 	struct task_struct *t = current;
1026 
1027 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1028 }
1029 
1030 /*
1031  * Contribute to protect against tasklist scan blind spot while the
1032  * task is exiting and may be removed from the tasklist. See
1033  * corresponding synchronize_srcu() for further details.
1034  */
1035 void exit_tasks_rcu_finish(void)
1036 {
1037 	exit_tasks_rcu_stop();
1038 	exit_tasks_rcu_finish_trace(current);
1039 }
1040 
1041 #else /* #ifdef CONFIG_TASKS_RCU */
1042 void exit_tasks_rcu_start(void) { }
1043 void exit_tasks_rcu_stop(void) { }
1044 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1045 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1046 
1047 #ifdef CONFIG_TASKS_RUDE_RCU
1048 
1049 ////////////////////////////////////////////////////////////////////////
1050 //
1051 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1052 // passing an empty function to schedule_on_each_cpu().  This approach
1053 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1054 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1055 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1056 // and induces otherwise unnecessary context switches on all online CPUs,
1057 // whether idle or not.
1058 //
1059 // Callback handling is provided by the rcu_tasks_kthread() function.
1060 //
1061 // Ordering is provided by the scheduler's context-switch code.
1062 
1063 // Empty function to allow workqueues to force a context switch.
1064 static void rcu_tasks_be_rude(struct work_struct *work)
1065 {
1066 }
1067 
1068 // Wait for one rude RCU-tasks grace period.
1069 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1070 {
1071 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1072 	schedule_on_each_cpu(rcu_tasks_be_rude);
1073 }
1074 
1075 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1076 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1077 		 "RCU Tasks Rude");
1078 
1079 /**
1080  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1081  * @rhp: structure to be used for queueing the RCU updates.
1082  * @func: actual callback function to be invoked after the grace period
1083  *
1084  * The callback function will be invoked some time after a full grace
1085  * period elapses, in other words after all currently executing RCU
1086  * read-side critical sections have completed. call_rcu_tasks_rude()
1087  * assumes that the read-side critical sections end at context switch,
1088  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1089  * usermode execution is schedulable). As such, there are no read-side
1090  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1091  * this primitive is intended to determine that all tasks have passed
1092  * through a safe state, not so much for data-structure synchronization.
1093  *
1094  * See the description of call_rcu() for more detailed information on
1095  * memory ordering guarantees.
1096  */
1097 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1098 {
1099 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1100 }
1101 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1102 
1103 /**
1104  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1105  *
1106  * Control will return to the caller some time after a rude rcu-tasks
1107  * grace period has elapsed, in other words after all currently
1108  * executing rcu-tasks read-side critical sections have elapsed.  These
1109  * read-side critical sections are delimited by calls to schedule(),
1110  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1111  * context), and (in theory, anyway) cond_resched().
1112  *
1113  * This is a very specialized primitive, intended only for a few uses in
1114  * tracing and other situations requiring manipulation of function preambles
1115  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1116  * (yet) intended for heavy use from multiple CPUs.
1117  *
1118  * See the description of synchronize_rcu() for more detailed information
1119  * on memory ordering guarantees.
1120  */
1121 void synchronize_rcu_tasks_rude(void)
1122 {
1123 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1124 }
1125 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1126 
1127 /**
1128  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1129  *
1130  * Although the current implementation is guaranteed to wait, it is not
1131  * obligated to, for example, if there are no pending callbacks.
1132  */
1133 void rcu_barrier_tasks_rude(void)
1134 {
1135 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1136 }
1137 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1138 
1139 static int __init rcu_spawn_tasks_rude_kthread(void)
1140 {
1141 	cblist_init_generic(&rcu_tasks_rude);
1142 	rcu_tasks_rude.gp_sleep = HZ / 10;
1143 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1144 	return 0;
1145 }
1146 
1147 #if !defined(CONFIG_TINY_RCU)
1148 void show_rcu_tasks_rude_gp_kthread(void)
1149 {
1150 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1151 }
1152 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1153 #endif // !defined(CONFIG_TINY_RCU)
1154 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1155 
1156 ////////////////////////////////////////////////////////////////////////
1157 //
1158 // Tracing variant of Tasks RCU.  This variant is designed to be used
1159 // to protect tracing hooks, including those of BPF.  This variant
1160 // therefore:
1161 //
1162 // 1.	Has explicit read-side markers to allow finite grace periods
1163 //	in the face of in-kernel loops for PREEMPT=n builds.
1164 //
1165 // 2.	Protects code in the idle loop, exception entry/exit, and
1166 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1167 //
1168 // 3.	Avoids expensive read-side instructions, having overhead similar
1169 //	to that of Preemptible RCU.
1170 //
1171 // There are of course downsides.  For example, the grace-period code
1172 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1173 // in nohz_full userspace.  If needed, these downsides can be at least
1174 // partially remedied.
1175 //
1176 // Perhaps most important, this variant of RCU does not affect the vanilla
1177 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1178 // readers can operate from idle, offline, and exception entry/exit in no
1179 // way allows rcu_preempt and rcu_sched readers to also do so.
1180 //
1181 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1182 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1183 // function sets these function pointers up so that rcu_tasks_wait_gp()
1184 // invokes these functions in this order:
1185 //
1186 // rcu_tasks_trace_pregp_step():
1187 //	Disables CPU hotplug, adds all currently executing tasks to the
1188 //	holdout list, then checks the state of all tasks that blocked
1189 //	or were preempted within their current RCU Tasks Trace read-side
1190 //	critical section, adding them to the holdout list if appropriate.
1191 //	Finally, this function re-enables CPU hotplug.
1192 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1193 // rcu_tasks_trace_postscan():
1194 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1195 //	to finish exiting.
1196 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1197 //	Scans the holdout list, attempting to identify a quiescent state
1198 //	for each task on the list.  If there is a quiescent state, the
1199 //	corresponding task is removed from the holdout list.  Once this
1200 //	list is empty, the grace period has completed.
1201 // rcu_tasks_trace_postgp():
1202 //	Provides the needed full memory barrier and does debug checks.
1203 //
1204 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1205 //
1206 // Pre-grace-period update-side code is ordered before the grace period
1207 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1208 // read-side code is ordered before the grace period by atomic operations
1209 // on .b.need_qs flag of each task involved in this process, or by scheduler
1210 // context-switch ordering (for locked-down non-running readers).
1211 
1212 // The lockdep state must be outside of #ifdef to be useful.
1213 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1214 static struct lock_class_key rcu_lock_trace_key;
1215 struct lockdep_map rcu_trace_lock_map =
1216 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1217 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1218 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1219 
1220 #ifdef CONFIG_TASKS_TRACE_RCU
1221 
1222 // Record outstanding IPIs to each CPU.  No point in sending two...
1223 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1224 
1225 // The number of detections of task quiescent state relying on
1226 // heavyweight readers executing explicit memory barriers.
1227 static unsigned long n_heavy_reader_attempts;
1228 static unsigned long n_heavy_reader_updates;
1229 static unsigned long n_heavy_reader_ofl_updates;
1230 static unsigned long n_trc_holdouts;
1231 
1232 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1233 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1234 		 "RCU Tasks Trace");
1235 
1236 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1237 static u8 rcu_ld_need_qs(struct task_struct *t)
1238 {
1239 	smp_mb(); // Enforce full grace-period ordering.
1240 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1241 }
1242 
1243 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1244 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1245 {
1246 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1247 	smp_mb(); // Enforce full grace-period ordering.
1248 }
1249 
1250 /*
1251  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1252  * the four-byte operand-size restriction of some platforms.
1253  * Returns the old value, which is often ignored.
1254  */
1255 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1256 {
1257 	union rcu_special ret;
1258 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1259 	union rcu_special trs_new = trs_old;
1260 
1261 	if (trs_old.b.need_qs != old)
1262 		return trs_old.b.need_qs;
1263 	trs_new.b.need_qs = new;
1264 	ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1265 	return ret.b.need_qs;
1266 }
1267 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1268 
1269 /*
1270  * If we are the last reader, signal the grace-period kthread.
1271  * Also remove from the per-CPU list of blocked tasks.
1272  */
1273 void rcu_read_unlock_trace_special(struct task_struct *t)
1274 {
1275 	unsigned long flags;
1276 	struct rcu_tasks_percpu *rtpcp;
1277 	union rcu_special trs;
1278 
1279 	// Open-coded full-word version of rcu_ld_need_qs().
1280 	smp_mb(); // Enforce full grace-period ordering.
1281 	trs = smp_load_acquire(&t->trc_reader_special);
1282 
1283 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1284 		smp_mb(); // Pairs with update-side barriers.
1285 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1286 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1287 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1288 						       TRC_NEED_QS_CHECKED);
1289 
1290 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1291 	}
1292 	if (trs.b.blocked) {
1293 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1294 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1295 		list_del_init(&t->trc_blkd_node);
1296 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1297 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1298 	}
1299 	WRITE_ONCE(t->trc_reader_nesting, 0);
1300 }
1301 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1302 
1303 /* Add a newly blocked reader task to its CPU's list. */
1304 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1305 {
1306 	unsigned long flags;
1307 	struct rcu_tasks_percpu *rtpcp;
1308 
1309 	local_irq_save(flags);
1310 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1311 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1312 	t->trc_blkd_cpu = smp_processor_id();
1313 	if (!rtpcp->rtp_blkd_tasks.next)
1314 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1315 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1316 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1317 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1318 }
1319 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1320 
1321 /* Add a task to the holdout list, if it is not already on the list. */
1322 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1323 {
1324 	if (list_empty(&t->trc_holdout_list)) {
1325 		get_task_struct(t);
1326 		list_add(&t->trc_holdout_list, bhp);
1327 		n_trc_holdouts++;
1328 	}
1329 }
1330 
1331 /* Remove a task from the holdout list, if it is in fact present. */
1332 static void trc_del_holdout(struct task_struct *t)
1333 {
1334 	if (!list_empty(&t->trc_holdout_list)) {
1335 		list_del_init(&t->trc_holdout_list);
1336 		put_task_struct(t);
1337 		n_trc_holdouts--;
1338 	}
1339 }
1340 
1341 /* IPI handler to check task state. */
1342 static void trc_read_check_handler(void *t_in)
1343 {
1344 	int nesting;
1345 	struct task_struct *t = current;
1346 	struct task_struct *texp = t_in;
1347 
1348 	// If the task is no longer running on this CPU, leave.
1349 	if (unlikely(texp != t))
1350 		goto reset_ipi; // Already on holdout list, so will check later.
1351 
1352 	// If the task is not in a read-side critical section, and
1353 	// if this is the last reader, awaken the grace-period kthread.
1354 	nesting = READ_ONCE(t->trc_reader_nesting);
1355 	if (likely(!nesting)) {
1356 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1357 		goto reset_ipi;
1358 	}
1359 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1360 	if (unlikely(nesting < 0))
1361 		goto reset_ipi;
1362 
1363 	// Get here if the task is in a read-side critical section.
1364 	// Set its state so that it will update state for the grace-period
1365 	// kthread upon exit from that critical section.
1366 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1367 
1368 reset_ipi:
1369 	// Allow future IPIs to be sent on CPU and for task.
1370 	// Also order this IPI handler against any later manipulations of
1371 	// the intended task.
1372 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1373 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1374 }
1375 
1376 /* Callback function for scheduler to check locked-down task.  */
1377 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1378 {
1379 	struct list_head *bhp = bhp_in;
1380 	int cpu = task_cpu(t);
1381 	int nesting;
1382 	bool ofl = cpu_is_offline(cpu);
1383 
1384 	if (task_curr(t) && !ofl) {
1385 		// If no chance of heavyweight readers, do it the hard way.
1386 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1387 			return -EINVAL;
1388 
1389 		// If heavyweight readers are enabled on the remote task,
1390 		// we can inspect its state despite its currently running.
1391 		// However, we cannot safely change its state.
1392 		n_heavy_reader_attempts++;
1393 		// Check for "running" idle tasks on offline CPUs.
1394 		if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1395 			return -EINVAL; // No quiescent state, do it the hard way.
1396 		n_heavy_reader_updates++;
1397 		nesting = 0;
1398 	} else {
1399 		// The task is not running, so C-language access is safe.
1400 		nesting = t->trc_reader_nesting;
1401 		WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1402 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1403 			n_heavy_reader_ofl_updates++;
1404 	}
1405 
1406 	// If not exiting a read-side critical section, mark as checked
1407 	// so that the grace-period kthread will remove it from the
1408 	// holdout list.
1409 	if (!nesting) {
1410 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1411 		return 0;  // In QS, so done.
1412 	}
1413 	if (nesting < 0)
1414 		return -EINVAL; // Reader transitioning, try again later.
1415 
1416 	// The task is in a read-side critical section, so set up its
1417 	// state so that it will update state upon exit from that critical
1418 	// section.
1419 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1420 		trc_add_holdout(t, bhp);
1421 	return 0;
1422 }
1423 
1424 /* Attempt to extract the state for the specified task. */
1425 static void trc_wait_for_one_reader(struct task_struct *t,
1426 				    struct list_head *bhp)
1427 {
1428 	int cpu;
1429 
1430 	// If a previous IPI is still in flight, let it complete.
1431 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1432 		return;
1433 
1434 	// The current task had better be in a quiescent state.
1435 	if (t == current) {
1436 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1437 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1438 		return;
1439 	}
1440 
1441 	// Attempt to nail down the task for inspection.
1442 	get_task_struct(t);
1443 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1444 		put_task_struct(t);
1445 		return;
1446 	}
1447 	put_task_struct(t);
1448 
1449 	// If this task is not yet on the holdout list, then we are in
1450 	// an RCU read-side critical section.  Otherwise, the invocation of
1451 	// trc_add_holdout() that added it to the list did the necessary
1452 	// get_task_struct().  Either way, the task cannot be freed out
1453 	// from under this code.
1454 
1455 	// If currently running, send an IPI, either way, add to list.
1456 	trc_add_holdout(t, bhp);
1457 	if (task_curr(t) &&
1458 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1459 		// The task is currently running, so try IPIing it.
1460 		cpu = task_cpu(t);
1461 
1462 		// If there is already an IPI outstanding, let it happen.
1463 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1464 			return;
1465 
1466 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1467 		t->trc_ipi_to_cpu = cpu;
1468 		rcu_tasks_trace.n_ipis++;
1469 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1470 			// Just in case there is some other reason for
1471 			// failure than the target CPU being offline.
1472 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1473 				  __func__, cpu);
1474 			rcu_tasks_trace.n_ipis_fails++;
1475 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1476 			t->trc_ipi_to_cpu = -1;
1477 		}
1478 	}
1479 }
1480 
1481 /*
1482  * Initialize for first-round processing for the specified task.
1483  * Return false if task is NULL or already taken care of, true otherwise.
1484  */
1485 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1486 {
1487 	// During early boot when there is only the one boot CPU, there
1488 	// is no idle task for the other CPUs.	Also, the grace-period
1489 	// kthread is always in a quiescent state.  In addition, just return
1490 	// if this task is already on the list.
1491 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1492 		return false;
1493 
1494 	rcu_st_need_qs(t, 0);
1495 	t->trc_ipi_to_cpu = -1;
1496 	return true;
1497 }
1498 
1499 /* Do first-round processing for the specified task. */
1500 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1501 {
1502 	if (rcu_tasks_trace_pertask_prep(t, true))
1503 		trc_wait_for_one_reader(t, hop);
1504 }
1505 
1506 /* Initialize for a new RCU-tasks-trace grace period. */
1507 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1508 {
1509 	LIST_HEAD(blkd_tasks);
1510 	int cpu;
1511 	unsigned long flags;
1512 	struct rcu_tasks_percpu *rtpcp;
1513 	struct task_struct *t;
1514 
1515 	// There shouldn't be any old IPIs, but...
1516 	for_each_possible_cpu(cpu)
1517 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1518 
1519 	// Disable CPU hotplug across the CPU scan for the benefit of
1520 	// any IPIs that might be needed.  This also waits for all readers
1521 	// in CPU-hotplug code paths.
1522 	cpus_read_lock();
1523 
1524 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1525 	// allow safe access to the hop list.
1526 	for_each_online_cpu(cpu) {
1527 		rcu_read_lock();
1528 		t = cpu_curr_snapshot(cpu);
1529 		if (rcu_tasks_trace_pertask_prep(t, true))
1530 			trc_add_holdout(t, hop);
1531 		rcu_read_unlock();
1532 		cond_resched_tasks_rcu_qs();
1533 	}
1534 
1535 	// Only after all running tasks have been accounted for is it
1536 	// safe to take care of the tasks that have blocked within their
1537 	// current RCU tasks trace read-side critical section.
1538 	for_each_possible_cpu(cpu) {
1539 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1540 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1541 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1542 		while (!list_empty(&blkd_tasks)) {
1543 			rcu_read_lock();
1544 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1545 			list_del_init(&t->trc_blkd_node);
1546 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1547 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1548 			rcu_tasks_trace_pertask(t, hop);
1549 			rcu_read_unlock();
1550 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1551 		}
1552 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1553 		cond_resched_tasks_rcu_qs();
1554 	}
1555 
1556 	// Re-enable CPU hotplug now that the holdout list is populated.
1557 	cpus_read_unlock();
1558 }
1559 
1560 /*
1561  * Do intermediate processing between task and holdout scans.
1562  */
1563 static void rcu_tasks_trace_postscan(struct list_head *hop)
1564 {
1565 	// Wait for late-stage exiting tasks to finish exiting.
1566 	// These might have passed the call to exit_tasks_rcu_finish().
1567 
1568 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1569 	synchronize_rcu();
1570 	// Any tasks that exit after this point will set
1571 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1572 }
1573 
1574 /* Communicate task state back to the RCU tasks trace stall warning request. */
1575 struct trc_stall_chk_rdr {
1576 	int nesting;
1577 	int ipi_to_cpu;
1578 	u8 needqs;
1579 };
1580 
1581 static int trc_check_slow_task(struct task_struct *t, void *arg)
1582 {
1583 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1584 
1585 	if (task_curr(t) && cpu_online(task_cpu(t)))
1586 		return false; // It is running, so decline to inspect it.
1587 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1588 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1589 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1590 	return true;
1591 }
1592 
1593 /* Show the state of a task stalling the current RCU tasks trace GP. */
1594 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1595 {
1596 	int cpu;
1597 	struct trc_stall_chk_rdr trc_rdr;
1598 	bool is_idle_tsk = is_idle_task(t);
1599 
1600 	if (*firstreport) {
1601 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1602 		*firstreport = false;
1603 	}
1604 	cpu = task_cpu(t);
1605 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1606 		pr_alert("P%d: %c%c\n",
1607 			 t->pid,
1608 			 ".I"[t->trc_ipi_to_cpu >= 0],
1609 			 ".i"[is_idle_tsk]);
1610 	else
1611 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1612 			 t->pid,
1613 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1614 			 ".i"[is_idle_tsk],
1615 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1616 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1617 			 trc_rdr.nesting,
1618 			 " !CN"[trc_rdr.needqs & 0x3],
1619 			 " ?"[trc_rdr.needqs > 0x3],
1620 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1621 	sched_show_task(t);
1622 }
1623 
1624 /* List stalled IPIs for RCU tasks trace. */
1625 static void show_stalled_ipi_trace(void)
1626 {
1627 	int cpu;
1628 
1629 	for_each_possible_cpu(cpu)
1630 		if (per_cpu(trc_ipi_to_cpu, cpu))
1631 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1632 }
1633 
1634 /* Do one scan of the holdout list. */
1635 static void check_all_holdout_tasks_trace(struct list_head *hop,
1636 					  bool needreport, bool *firstreport)
1637 {
1638 	struct task_struct *g, *t;
1639 
1640 	// Disable CPU hotplug across the holdout list scan for IPIs.
1641 	cpus_read_lock();
1642 
1643 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1644 		// If safe and needed, try to check the current task.
1645 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1646 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1647 			trc_wait_for_one_reader(t, hop);
1648 
1649 		// If check succeeded, remove this task from the list.
1650 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1651 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1652 			trc_del_holdout(t);
1653 		else if (needreport)
1654 			show_stalled_task_trace(t, firstreport);
1655 		cond_resched_tasks_rcu_qs();
1656 	}
1657 
1658 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1659 	cpus_read_unlock();
1660 
1661 	if (needreport) {
1662 		if (*firstreport)
1663 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1664 		show_stalled_ipi_trace();
1665 	}
1666 }
1667 
1668 static void rcu_tasks_trace_empty_fn(void *unused)
1669 {
1670 }
1671 
1672 /* Wait for grace period to complete and provide ordering. */
1673 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1674 {
1675 	int cpu;
1676 
1677 	// Wait for any lingering IPI handlers to complete.  Note that
1678 	// if a CPU has gone offline or transitioned to userspace in the
1679 	// meantime, all IPI handlers should have been drained beforehand.
1680 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1681 	// changes, there will need to be a recheck and/or timed wait.
1682 	for_each_online_cpu(cpu)
1683 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1684 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1685 
1686 	smp_mb(); // Caller's code must be ordered after wakeup.
1687 		  // Pairs with pretty much every ordering primitive.
1688 }
1689 
1690 /* Report any needed quiescent state for this exiting task. */
1691 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1692 {
1693 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1694 
1695 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1696 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1697 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1698 		rcu_read_unlock_trace_special(t);
1699 	else
1700 		WRITE_ONCE(t->trc_reader_nesting, 0);
1701 }
1702 
1703 /**
1704  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1705  * @rhp: structure to be used for queueing the RCU updates.
1706  * @func: actual callback function to be invoked after the grace period
1707  *
1708  * The callback function will be invoked some time after a trace rcu-tasks
1709  * grace period elapses, in other words after all currently executing
1710  * trace rcu-tasks read-side critical sections have completed. These
1711  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1712  * and rcu_read_unlock_trace().
1713  *
1714  * See the description of call_rcu() for more detailed information on
1715  * memory ordering guarantees.
1716  */
1717 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1718 {
1719 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1720 }
1721 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1722 
1723 /**
1724  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1725  *
1726  * Control will return to the caller some time after a trace rcu-tasks
1727  * grace period has elapsed, in other words after all currently executing
1728  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1729  * critical sections are delimited by calls to rcu_read_lock_trace()
1730  * and rcu_read_unlock_trace().
1731  *
1732  * This is a very specialized primitive, intended only for a few uses in
1733  * tracing and other situations requiring manipulation of function preambles
1734  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1735  * (yet) intended for heavy use from multiple CPUs.
1736  *
1737  * See the description of synchronize_rcu() for more detailed information
1738  * on memory ordering guarantees.
1739  */
1740 void synchronize_rcu_tasks_trace(void)
1741 {
1742 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1743 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1744 }
1745 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1746 
1747 /**
1748  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1749  *
1750  * Although the current implementation is guaranteed to wait, it is not
1751  * obligated to, for example, if there are no pending callbacks.
1752  */
1753 void rcu_barrier_tasks_trace(void)
1754 {
1755 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1756 }
1757 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1758 
1759 static int __init rcu_spawn_tasks_trace_kthread(void)
1760 {
1761 	cblist_init_generic(&rcu_tasks_trace);
1762 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1763 		rcu_tasks_trace.gp_sleep = HZ / 10;
1764 		rcu_tasks_trace.init_fract = HZ / 10;
1765 	} else {
1766 		rcu_tasks_trace.gp_sleep = HZ / 200;
1767 		if (rcu_tasks_trace.gp_sleep <= 0)
1768 			rcu_tasks_trace.gp_sleep = 1;
1769 		rcu_tasks_trace.init_fract = HZ / 200;
1770 		if (rcu_tasks_trace.init_fract <= 0)
1771 			rcu_tasks_trace.init_fract = 1;
1772 	}
1773 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1774 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1775 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1776 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1777 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1778 	return 0;
1779 }
1780 
1781 #if !defined(CONFIG_TINY_RCU)
1782 void show_rcu_tasks_trace_gp_kthread(void)
1783 {
1784 	char buf[64];
1785 
1786 	sprintf(buf, "N%lu h:%lu/%lu/%lu",
1787 		data_race(n_trc_holdouts),
1788 		data_race(n_heavy_reader_ofl_updates),
1789 		data_race(n_heavy_reader_updates),
1790 		data_race(n_heavy_reader_attempts));
1791 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1792 }
1793 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1794 #endif // !defined(CONFIG_TINY_RCU)
1795 
1796 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1797 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1798 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1799 
1800 #ifndef CONFIG_TINY_RCU
1801 void show_rcu_tasks_gp_kthreads(void)
1802 {
1803 	show_rcu_tasks_classic_gp_kthread();
1804 	show_rcu_tasks_rude_gp_kthread();
1805 	show_rcu_tasks_trace_gp_kthread();
1806 }
1807 #endif /* #ifndef CONFIG_TINY_RCU */
1808 
1809 #ifdef CONFIG_PROVE_RCU
1810 struct rcu_tasks_test_desc {
1811 	struct rcu_head rh;
1812 	const char *name;
1813 	bool notrun;
1814 	unsigned long runstart;
1815 };
1816 
1817 static struct rcu_tasks_test_desc tests[] = {
1818 	{
1819 		.name = "call_rcu_tasks()",
1820 		/* If not defined, the test is skipped. */
1821 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1822 	},
1823 	{
1824 		.name = "call_rcu_tasks_rude()",
1825 		/* If not defined, the test is skipped. */
1826 		.notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1827 	},
1828 	{
1829 		.name = "call_rcu_tasks_trace()",
1830 		/* If not defined, the test is skipped. */
1831 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1832 	}
1833 };
1834 
1835 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1836 {
1837 	struct rcu_tasks_test_desc *rttd =
1838 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1839 
1840 	pr_info("Callback from %s invoked.\n", rttd->name);
1841 
1842 	rttd->notrun = false;
1843 }
1844 
1845 static void rcu_tasks_initiate_self_tests(void)
1846 {
1847 	pr_info("Running RCU-tasks wait API self tests\n");
1848 #ifdef CONFIG_TASKS_RCU
1849 	tests[0].runstart = jiffies;
1850 	synchronize_rcu_tasks();
1851 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1852 #endif
1853 
1854 #ifdef CONFIG_TASKS_RUDE_RCU
1855 	tests[1].runstart = jiffies;
1856 	synchronize_rcu_tasks_rude();
1857 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1858 #endif
1859 
1860 #ifdef CONFIG_TASKS_TRACE_RCU
1861 	tests[2].runstart = jiffies;
1862 	synchronize_rcu_tasks_trace();
1863 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1864 #endif
1865 }
1866 
1867 /*
1868  * Return:  0 - test passed
1869  *	    1 - test failed, but have not timed out yet
1870  *	   -1 - test failed and timed out
1871  */
1872 static int rcu_tasks_verify_self_tests(void)
1873 {
1874 	int ret = 0;
1875 	int i;
1876 	unsigned long bst = rcu_task_stall_timeout;
1877 
1878 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
1879 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
1880 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1881 		while (tests[i].notrun) {		// still hanging.
1882 			if (time_after(jiffies, tests[i].runstart + bst)) {
1883 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
1884 				ret = -1;
1885 				break;
1886 			}
1887 			ret = 1;
1888 			break;
1889 		}
1890 	}
1891 	WARN_ON(ret < 0);
1892 
1893 	return ret;
1894 }
1895 
1896 /*
1897  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
1898  * test passes or has timed out.
1899  */
1900 static struct delayed_work rcu_tasks_verify_work;
1901 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
1902 {
1903 	int ret = rcu_tasks_verify_self_tests();
1904 
1905 	if (ret <= 0)
1906 		return;
1907 
1908 	/* Test fails but not timed out yet, reschedule another check */
1909 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
1910 }
1911 
1912 static int rcu_tasks_verify_schedule_work(void)
1913 {
1914 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
1915 	rcu_tasks_verify_work_fn(NULL);
1916 	return 0;
1917 }
1918 late_initcall(rcu_tasks_verify_schedule_work);
1919 #else /* #ifdef CONFIG_PROVE_RCU */
1920 static void rcu_tasks_initiate_self_tests(void) { }
1921 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1922 
1923 void __init rcu_init_tasks_generic(void)
1924 {
1925 #ifdef CONFIG_TASKS_RCU
1926 	rcu_spawn_tasks_kthread();
1927 #endif
1928 
1929 #ifdef CONFIG_TASKS_RUDE_RCU
1930 	rcu_spawn_tasks_rude_kthread();
1931 #endif
1932 
1933 #ifdef CONFIG_TASKS_TRACE_RCU
1934 	rcu_spawn_tasks_trace_kthread();
1935 #endif
1936 
1937 	// Run the self-tests.
1938 	rcu_tasks_initiate_self_tests();
1939 }
1940 
1941 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1942 static inline void rcu_tasks_bootup_oddness(void) {}
1943 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1944