xref: /openbmc/linux/kernel/rcu/tasks.h (revision 8938c48f)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13 
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21 
22 /**
23  * Definition for a Tasks-RCU-like mechanism.
24  * @cbs_head: Head of callback list.
25  * @cbs_tail: Tail pointer for callback list.
26  * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27  * @cbs_lock: Lock protecting callback list.
28  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29  * @gp_func: This flavor's grace-period-wait function.
30  * @gp_state: Grace period's most recent state transition (debugging).
31  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
32  * @init_fract: Initial backoff sleep interval.
33  * @gp_jiffies: Time of last @gp_state transition.
34  * @gp_start: Most recent grace-period start in jiffies.
35  * @n_gps: Number of grace periods completed since boot.
36  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
37  * @n_ipis_fails: Number of IPI-send failures.
38  * @pregp_func: This flavor's pre-grace-period function (optional).
39  * @pertask_func: This flavor's per-task scan function (optional).
40  * @postscan_func: This flavor's post-task scan function (optional).
41  * @holdout_func: This flavor's holdout-list scan function (optional).
42  * @postgp_func: This flavor's post-grace-period function (optional).
43  * @call_func: This flavor's call_rcu()-equivalent function.
44  * @name: This flavor's textual name.
45  * @kname: This flavor's kthread name.
46  */
47 struct rcu_tasks {
48 	struct rcu_head *cbs_head;
49 	struct rcu_head **cbs_tail;
50 	struct wait_queue_head cbs_wq;
51 	raw_spinlock_t cbs_lock;
52 	int gp_state;
53 	int gp_sleep;
54 	int init_fract;
55 	unsigned long gp_jiffies;
56 	unsigned long gp_start;
57 	unsigned long n_gps;
58 	unsigned long n_ipis;
59 	unsigned long n_ipis_fails;
60 	struct task_struct *kthread_ptr;
61 	rcu_tasks_gp_func_t gp_func;
62 	pregp_func_t pregp_func;
63 	pertask_func_t pertask_func;
64 	postscan_func_t postscan_func;
65 	holdouts_func_t holdouts_func;
66 	postgp_func_t postgp_func;
67 	call_rcu_func_t call_func;
68 	char *name;
69 	char *kname;
70 };
71 
72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)				\
73 static struct rcu_tasks rt_name =					\
74 {									\
75 	.cbs_tail = &rt_name.cbs_head,					\
76 	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),	\
77 	.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock),		\
78 	.gp_func = gp,							\
79 	.call_func = call,						\
80 	.name = n,							\
81 	.kname = #rt_name,						\
82 }
83 
84 /* Track exiting tasks in order to allow them to be waited for. */
85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
86 
87 /* Avoid IPIing CPUs early in the grace period. */
88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
90 module_param(rcu_task_ipi_delay, int, 0644);
91 
92 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
95 module_param(rcu_task_stall_timeout, int, 0644);
96 
97 /* RCU tasks grace-period state for debugging. */
98 #define RTGS_INIT		 0
99 #define RTGS_WAIT_WAIT_CBS	 1
100 #define RTGS_WAIT_GP		 2
101 #define RTGS_PRE_WAIT_GP	 3
102 #define RTGS_SCAN_TASKLIST	 4
103 #define RTGS_POST_SCAN_TASKLIST	 5
104 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
105 #define RTGS_SCAN_HOLDOUTS	 7
106 #define RTGS_POST_GP		 8
107 #define RTGS_WAIT_READERS	 9
108 #define RTGS_INVOKE_CBS		10
109 #define RTGS_WAIT_CBS		11
110 #ifndef CONFIG_TINY_RCU
111 static const char * const rcu_tasks_gp_state_names[] = {
112 	"RTGS_INIT",
113 	"RTGS_WAIT_WAIT_CBS",
114 	"RTGS_WAIT_GP",
115 	"RTGS_PRE_WAIT_GP",
116 	"RTGS_SCAN_TASKLIST",
117 	"RTGS_POST_SCAN_TASKLIST",
118 	"RTGS_WAIT_SCAN_HOLDOUTS",
119 	"RTGS_SCAN_HOLDOUTS",
120 	"RTGS_POST_GP",
121 	"RTGS_WAIT_READERS",
122 	"RTGS_INVOKE_CBS",
123 	"RTGS_WAIT_CBS",
124 };
125 #endif /* #ifndef CONFIG_TINY_RCU */
126 
127 ////////////////////////////////////////////////////////////////////////
128 //
129 // Generic code.
130 
131 /* Record grace-period phase and time. */
132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
133 {
134 	rtp->gp_state = newstate;
135 	rtp->gp_jiffies = jiffies;
136 }
137 
138 #ifndef CONFIG_TINY_RCU
139 /* Return state name. */
140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
141 {
142 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
143 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
144 
145 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
146 		return "???";
147 	return rcu_tasks_gp_state_names[j];
148 }
149 #endif /* #ifndef CONFIG_TINY_RCU */
150 
151 // Enqueue a callback for the specified flavor of Tasks RCU.
152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
153 				   struct rcu_tasks *rtp)
154 {
155 	unsigned long flags;
156 	bool needwake;
157 
158 	rhp->next = NULL;
159 	rhp->func = func;
160 	raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
161 	needwake = !rtp->cbs_head;
162 	WRITE_ONCE(*rtp->cbs_tail, rhp);
163 	rtp->cbs_tail = &rhp->next;
164 	raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
165 	/* We can't create the thread unless interrupts are enabled. */
166 	if (needwake && READ_ONCE(rtp->kthread_ptr))
167 		wake_up(&rtp->cbs_wq);
168 }
169 
170 // Wait for a grace period for the specified flavor of Tasks RCU.
171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
172 {
173 	/* Complain if the scheduler has not started.  */
174 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
175 			 "synchronize_rcu_tasks called too soon");
176 
177 	/* Wait for the grace period. */
178 	wait_rcu_gp(rtp->call_func);
179 }
180 
181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
182 static int __noreturn rcu_tasks_kthread(void *arg)
183 {
184 	unsigned long flags;
185 	struct rcu_head *list;
186 	struct rcu_head *next;
187 	struct rcu_tasks *rtp = arg;
188 
189 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
190 	housekeeping_affine(current, HK_FLAG_RCU);
191 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
192 
193 	/*
194 	 * Each pass through the following loop makes one check for
195 	 * newly arrived callbacks, and, if there are some, waits for
196 	 * one RCU-tasks grace period and then invokes the callbacks.
197 	 * This loop is terminated by the system going down.  ;-)
198 	 */
199 	for (;;) {
200 
201 		/* Pick up any new callbacks. */
202 		raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
203 		smp_mb__after_spinlock(); // Order updates vs. GP.
204 		list = rtp->cbs_head;
205 		rtp->cbs_head = NULL;
206 		rtp->cbs_tail = &rtp->cbs_head;
207 		raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
208 
209 		/* If there were none, wait a bit and start over. */
210 		if (!list) {
211 			wait_event_interruptible(rtp->cbs_wq,
212 						 READ_ONCE(rtp->cbs_head));
213 			if (!rtp->cbs_head) {
214 				WARN_ON(signal_pending(current));
215 				set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
216 				schedule_timeout_idle(HZ/10);
217 			}
218 			continue;
219 		}
220 
221 		// Wait for one grace period.
222 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
223 		rtp->gp_start = jiffies;
224 		rtp->gp_func(rtp);
225 		rtp->n_gps++;
226 
227 		/* Invoke the callbacks. */
228 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
229 		while (list) {
230 			next = list->next;
231 			local_bh_disable();
232 			list->func(list);
233 			local_bh_enable();
234 			list = next;
235 			cond_resched();
236 		}
237 		/* Paranoid sleep to keep this from entering a tight loop */
238 		schedule_timeout_idle(rtp->gp_sleep);
239 
240 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
241 	}
242 }
243 
244 /* Spawn RCU-tasks grace-period kthread. */
245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
246 {
247 	struct task_struct *t;
248 
249 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
250 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
251 		return;
252 	smp_mb(); /* Ensure others see full kthread. */
253 }
254 
255 #ifndef CONFIG_TINY_RCU
256 
257 /*
258  * Print any non-default Tasks RCU settings.
259  */
260 static void __init rcu_tasks_bootup_oddness(void)
261 {
262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
263 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
264 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
265 #endif /* #ifdef CONFIG_TASKS_RCU */
266 #ifdef CONFIG_TASKS_RCU
267 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
268 #endif /* #ifdef CONFIG_TASKS_RCU */
269 #ifdef CONFIG_TASKS_RUDE_RCU
270 	pr_info("\tRude variant of Tasks RCU enabled.\n");
271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
272 #ifdef CONFIG_TASKS_TRACE_RCU
273 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
275 }
276 
277 #endif /* #ifndef CONFIG_TINY_RCU */
278 
279 #ifndef CONFIG_TINY_RCU
280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
282 {
283 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
284 		rtp->kname,
285 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
286 		jiffies - data_race(rtp->gp_jiffies),
287 		data_race(rtp->n_gps),
288 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
289 		".k"[!!data_race(rtp->kthread_ptr)],
290 		".C"[!!data_race(rtp->cbs_head)],
291 		s);
292 }
293 #endif // #ifndef CONFIG_TINY_RCU
294 
295 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
296 
297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
298 
299 ////////////////////////////////////////////////////////////////////////
300 //
301 // Shared code between task-list-scanning variants of Tasks RCU.
302 
303 /* Wait for one RCU-tasks grace period. */
304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
305 {
306 	struct task_struct *g, *t;
307 	unsigned long lastreport;
308 	LIST_HEAD(holdouts);
309 	int fract;
310 
311 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
312 	rtp->pregp_func();
313 
314 	/*
315 	 * There were callbacks, so we need to wait for an RCU-tasks
316 	 * grace period.  Start off by scanning the task list for tasks
317 	 * that are not already voluntarily blocked.  Mark these tasks
318 	 * and make a list of them in holdouts.
319 	 */
320 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
321 	rcu_read_lock();
322 	for_each_process_thread(g, t)
323 		rtp->pertask_func(t, &holdouts);
324 	rcu_read_unlock();
325 
326 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
327 	rtp->postscan_func(&holdouts);
328 
329 	/*
330 	 * Each pass through the following loop scans the list of holdout
331 	 * tasks, removing any that are no longer holdouts.  When the list
332 	 * is empty, we are done.
333 	 */
334 	lastreport = jiffies;
335 
336 	// Start off with initial wait and slowly back off to 1 HZ wait.
337 	fract = rtp->init_fract;
338 
339 	while (!list_empty(&holdouts)) {
340 		bool firstreport;
341 		bool needreport;
342 		int rtst;
343 
344 		/* Slowly back off waiting for holdouts */
345 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
346 		schedule_timeout_idle(fract);
347 
348 		if (fract < HZ)
349 			fract++;
350 
351 		rtst = READ_ONCE(rcu_task_stall_timeout);
352 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
353 		if (needreport)
354 			lastreport = jiffies;
355 		firstreport = true;
356 		WARN_ON(signal_pending(current));
357 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
358 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
359 	}
360 
361 	set_tasks_gp_state(rtp, RTGS_POST_GP);
362 	rtp->postgp_func(rtp);
363 }
364 
365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
366 
367 #ifdef CONFIG_TASKS_RCU
368 
369 ////////////////////////////////////////////////////////////////////////
370 //
371 // Simple variant of RCU whose quiescent states are voluntary context
372 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
373 // As such, grace periods can take one good long time.  There are no
374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
375 // because this implementation is intended to get the system into a safe
376 // state for some of the manipulations involved in tracing and the like.
377 // Finally, this implementation does not support high call_rcu_tasks()
378 // rates from multiple CPUs.  If this is required, per-CPU callback lists
379 // will be needed.
380 
381 /* Pre-grace-period preparation. */
382 static void rcu_tasks_pregp_step(void)
383 {
384 	/*
385 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
386 	 * to complete.  Invoking synchronize_rcu() suffices because all
387 	 * these transitions occur with interrupts disabled.  Without this
388 	 * synchronize_rcu(), a read-side critical section that started
389 	 * before the grace period might be incorrectly seen as having
390 	 * started after the grace period.
391 	 *
392 	 * This synchronize_rcu() also dispenses with the need for a
393 	 * memory barrier on the first store to t->rcu_tasks_holdout,
394 	 * as it forces the store to happen after the beginning of the
395 	 * grace period.
396 	 */
397 	synchronize_rcu();
398 }
399 
400 /* Per-task initial processing. */
401 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
402 {
403 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
404 		get_task_struct(t);
405 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
406 		WRITE_ONCE(t->rcu_tasks_holdout, true);
407 		list_add(&t->rcu_tasks_holdout_list, hop);
408 	}
409 }
410 
411 /* Processing between scanning taskslist and draining the holdout list. */
412 static void rcu_tasks_postscan(struct list_head *hop)
413 {
414 	/*
415 	 * Wait for tasks that are in the process of exiting.  This
416 	 * does only part of the job, ensuring that all tasks that were
417 	 * previously exiting reach the point where they have disabled
418 	 * preemption, allowing the later synchronize_rcu() to finish
419 	 * the job.
420 	 */
421 	synchronize_srcu(&tasks_rcu_exit_srcu);
422 }
423 
424 /* See if tasks are still holding out, complain if so. */
425 static void check_holdout_task(struct task_struct *t,
426 			       bool needreport, bool *firstreport)
427 {
428 	int cpu;
429 
430 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
431 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
432 	    !READ_ONCE(t->on_rq) ||
433 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
434 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
435 		WRITE_ONCE(t->rcu_tasks_holdout, false);
436 		list_del_init(&t->rcu_tasks_holdout_list);
437 		put_task_struct(t);
438 		return;
439 	}
440 	rcu_request_urgent_qs_task(t);
441 	if (!needreport)
442 		return;
443 	if (*firstreport) {
444 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
445 		*firstreport = false;
446 	}
447 	cpu = task_cpu(t);
448 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
449 		 t, ".I"[is_idle_task(t)],
450 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
451 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
452 		 t->rcu_tasks_idle_cpu, cpu);
453 	sched_show_task(t);
454 }
455 
456 /* Scan the holdout lists for tasks no longer holding out. */
457 static void check_all_holdout_tasks(struct list_head *hop,
458 				    bool needreport, bool *firstreport)
459 {
460 	struct task_struct *t, *t1;
461 
462 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
463 		check_holdout_task(t, needreport, firstreport);
464 		cond_resched();
465 	}
466 }
467 
468 /* Finish off the Tasks-RCU grace period. */
469 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
470 {
471 	/*
472 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
473 	 * memory barriers prior to them in the schedule() path, memory
474 	 * reordering on other CPUs could cause their RCU-tasks read-side
475 	 * critical sections to extend past the end of the grace period.
476 	 * However, because these ->nvcsw updates are carried out with
477 	 * interrupts disabled, we can use synchronize_rcu() to force the
478 	 * needed ordering on all such CPUs.
479 	 *
480 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
481 	 * accesses to be within the grace period, avoiding the need for
482 	 * memory barriers for ->rcu_tasks_holdout accesses.
483 	 *
484 	 * In addition, this synchronize_rcu() waits for exiting tasks
485 	 * to complete their final preempt_disable() region of execution,
486 	 * cleaning up after the synchronize_srcu() above.
487 	 */
488 	synchronize_rcu();
489 }
490 
491 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
492 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
493 
494 /**
495  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
496  * @rhp: structure to be used for queueing the RCU updates.
497  * @func: actual callback function to be invoked after the grace period
498  *
499  * The callback function will be invoked some time after a full grace
500  * period elapses, in other words after all currently executing RCU
501  * read-side critical sections have completed. call_rcu_tasks() assumes
502  * that the read-side critical sections end at a voluntary context
503  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
504  * or transition to usermode execution.  As such, there are no read-side
505  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
506  * this primitive is intended to determine that all tasks have passed
507  * through a safe state, not so much for data-strcuture synchronization.
508  *
509  * See the description of call_rcu() for more detailed information on
510  * memory ordering guarantees.
511  */
512 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
513 {
514 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
515 }
516 EXPORT_SYMBOL_GPL(call_rcu_tasks);
517 
518 /**
519  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
520  *
521  * Control will return to the caller some time after a full rcu-tasks
522  * grace period has elapsed, in other words after all currently
523  * executing rcu-tasks read-side critical sections have elapsed.  These
524  * read-side critical sections are delimited by calls to schedule(),
525  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
526  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
527  *
528  * This is a very specialized primitive, intended only for a few uses in
529  * tracing and other situations requiring manipulation of function
530  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
531  * is not (yet) intended for heavy use from multiple CPUs.
532  *
533  * See the description of synchronize_rcu() for more detailed information
534  * on memory ordering guarantees.
535  */
536 void synchronize_rcu_tasks(void)
537 {
538 	synchronize_rcu_tasks_generic(&rcu_tasks);
539 }
540 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
541 
542 /**
543  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
544  *
545  * Although the current implementation is guaranteed to wait, it is not
546  * obligated to, for example, if there are no pending callbacks.
547  */
548 void rcu_barrier_tasks(void)
549 {
550 	/* There is only one callback queue, so this is easy.  ;-) */
551 	synchronize_rcu_tasks();
552 }
553 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
554 
555 static int __init rcu_spawn_tasks_kthread(void)
556 {
557 	rcu_tasks.gp_sleep = HZ / 10;
558 	rcu_tasks.init_fract = HZ / 10;
559 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
560 	rcu_tasks.pertask_func = rcu_tasks_pertask;
561 	rcu_tasks.postscan_func = rcu_tasks_postscan;
562 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
563 	rcu_tasks.postgp_func = rcu_tasks_postgp;
564 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
565 	return 0;
566 }
567 
568 #if !defined(CONFIG_TINY_RCU)
569 void show_rcu_tasks_classic_gp_kthread(void)
570 {
571 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
572 }
573 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
574 #endif // !defined(CONFIG_TINY_RCU)
575 
576 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
577 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
578 {
579 	preempt_disable();
580 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
581 	preempt_enable();
582 }
583 
584 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
585 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
586 {
587 	struct task_struct *t = current;
588 
589 	preempt_disable();
590 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
591 	preempt_enable();
592 	exit_tasks_rcu_finish_trace(t);
593 }
594 
595 #else /* #ifdef CONFIG_TASKS_RCU */
596 void exit_tasks_rcu_start(void) { }
597 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
598 #endif /* #else #ifdef CONFIG_TASKS_RCU */
599 
600 #ifdef CONFIG_TASKS_RUDE_RCU
601 
602 ////////////////////////////////////////////////////////////////////////
603 //
604 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
605 // passing an empty function to schedule_on_each_cpu().  This approach
606 // provides an asynchronous call_rcu_tasks_rude() API and batching
607 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
608 // This sends IPIs far and wide and induces otherwise unnecessary context
609 // switches on all online CPUs, whether idle or not.
610 
611 // Empty function to allow workqueues to force a context switch.
612 static void rcu_tasks_be_rude(struct work_struct *work)
613 {
614 }
615 
616 // Wait for one rude RCU-tasks grace period.
617 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
618 {
619 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
620 	schedule_on_each_cpu(rcu_tasks_be_rude);
621 }
622 
623 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
624 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
625 		 "RCU Tasks Rude");
626 
627 /**
628  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
629  * @rhp: structure to be used for queueing the RCU updates.
630  * @func: actual callback function to be invoked after the grace period
631  *
632  * The callback function will be invoked some time after a full grace
633  * period elapses, in other words after all currently executing RCU
634  * read-side critical sections have completed. call_rcu_tasks_rude()
635  * assumes that the read-side critical sections end at context switch,
636  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
637  * there are no read-side primitives analogous to rcu_read_lock() and
638  * rcu_read_unlock() because this primitive is intended to determine
639  * that all tasks have passed through a safe state, not so much for
640  * data-strcuture synchronization.
641  *
642  * See the description of call_rcu() for more detailed information on
643  * memory ordering guarantees.
644  */
645 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
646 {
647 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
648 }
649 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
650 
651 /**
652  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
653  *
654  * Control will return to the caller some time after a rude rcu-tasks
655  * grace period has elapsed, in other words after all currently
656  * executing rcu-tasks read-side critical sections have elapsed.  These
657  * read-side critical sections are delimited by calls to schedule(),
658  * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
659  * anyway) cond_resched().
660  *
661  * This is a very specialized primitive, intended only for a few uses in
662  * tracing and other situations requiring manipulation of function preambles
663  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
664  * (yet) intended for heavy use from multiple CPUs.
665  *
666  * See the description of synchronize_rcu() for more detailed information
667  * on memory ordering guarantees.
668  */
669 void synchronize_rcu_tasks_rude(void)
670 {
671 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
672 }
673 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
674 
675 /**
676  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
677  *
678  * Although the current implementation is guaranteed to wait, it is not
679  * obligated to, for example, if there are no pending callbacks.
680  */
681 void rcu_barrier_tasks_rude(void)
682 {
683 	/* There is only one callback queue, so this is easy.  ;-) */
684 	synchronize_rcu_tasks_rude();
685 }
686 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
687 
688 static int __init rcu_spawn_tasks_rude_kthread(void)
689 {
690 	rcu_tasks_rude.gp_sleep = HZ / 10;
691 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
692 	return 0;
693 }
694 
695 #if !defined(CONFIG_TINY_RCU)
696 void show_rcu_tasks_rude_gp_kthread(void)
697 {
698 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
699 }
700 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
701 #endif // !defined(CONFIG_TINY_RCU)
702 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
703 
704 ////////////////////////////////////////////////////////////////////////
705 //
706 // Tracing variant of Tasks RCU.  This variant is designed to be used
707 // to protect tracing hooks, including those of BPF.  This variant
708 // therefore:
709 //
710 // 1.	Has explicit read-side markers to allow finite grace periods
711 //	in the face of in-kernel loops for PREEMPT=n builds.
712 //
713 // 2.	Protects code in the idle loop, exception entry/exit, and
714 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
715 //
716 // 3.	Avoids expensive read-side instruction, having overhead similar
717 //	to that of Preemptible RCU.
718 //
719 // There are of course downsides.  The grace-period code can send IPIs to
720 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
721 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
722 // is a single callback queue guarded by a single lock, again, much as for
723 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
724 //
725 // Perhaps most important, this variant of RCU does not affect the vanilla
726 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
727 // readers can operate from idle, offline, and exception entry/exit in no
728 // way allows rcu_preempt and rcu_sched readers to also do so.
729 
730 // The lockdep state must be outside of #ifdef to be useful.
731 #ifdef CONFIG_DEBUG_LOCK_ALLOC
732 static struct lock_class_key rcu_lock_trace_key;
733 struct lockdep_map rcu_trace_lock_map =
734 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
735 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
736 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
737 
738 #ifdef CONFIG_TASKS_TRACE_RCU
739 
740 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
741 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
742 
743 // Record outstanding IPIs to each CPU.  No point in sending two...
744 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
745 
746 // The number of detections of task quiescent state relying on
747 // heavyweight readers executing explicit memory barriers.
748 static unsigned long n_heavy_reader_attempts;
749 static unsigned long n_heavy_reader_updates;
750 static unsigned long n_heavy_reader_ofl_updates;
751 
752 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
753 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
754 		 "RCU Tasks Trace");
755 
756 /*
757  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
758  * while the scheduler locks are held.
759  */
760 static void rcu_read_unlock_iw(struct irq_work *iwp)
761 {
762 	wake_up(&trc_wait);
763 }
764 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
765 
766 /* If we are the last reader, wake up the grace-period kthread. */
767 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
768 {
769 	int nq = t->trc_reader_special.b.need_qs;
770 
771 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
772 	    t->trc_reader_special.b.need_mb)
773 		smp_mb(); // Pairs with update-side barriers.
774 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
775 	if (nq)
776 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
777 	WRITE_ONCE(t->trc_reader_nesting, nesting);
778 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
779 		irq_work_queue(&rcu_tasks_trace_iw);
780 }
781 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
782 
783 /* Add a task to the holdout list, if it is not already on the list. */
784 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
785 {
786 	if (list_empty(&t->trc_holdout_list)) {
787 		get_task_struct(t);
788 		list_add(&t->trc_holdout_list, bhp);
789 	}
790 }
791 
792 /* Remove a task from the holdout list, if it is in fact present. */
793 static void trc_del_holdout(struct task_struct *t)
794 {
795 	if (!list_empty(&t->trc_holdout_list)) {
796 		list_del_init(&t->trc_holdout_list);
797 		put_task_struct(t);
798 	}
799 }
800 
801 /* IPI handler to check task state. */
802 static void trc_read_check_handler(void *t_in)
803 {
804 	struct task_struct *t = current;
805 	struct task_struct *texp = t_in;
806 
807 	// If the task is no longer running on this CPU, leave.
808 	if (unlikely(texp != t)) {
809 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
810 			wake_up(&trc_wait);
811 		goto reset_ipi; // Already on holdout list, so will check later.
812 	}
813 
814 	// If the task is not in a read-side critical section, and
815 	// if this is the last reader, awaken the grace-period kthread.
816 	if (likely(!t->trc_reader_nesting)) {
817 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
818 			wake_up(&trc_wait);
819 		// Mark as checked after decrement to avoid false
820 		// positives on the above WARN_ON_ONCE().
821 		WRITE_ONCE(t->trc_reader_checked, true);
822 		goto reset_ipi;
823 	}
824 	// If we are racing with an rcu_read_unlock_trace(), try again later.
825 	if (unlikely(t->trc_reader_nesting < 0)) {
826 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
827 			wake_up(&trc_wait);
828 		goto reset_ipi;
829 	}
830 	WRITE_ONCE(t->trc_reader_checked, true);
831 
832 	// Get here if the task is in a read-side critical section.  Set
833 	// its state so that it will awaken the grace-period kthread upon
834 	// exit from that critical section.
835 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
836 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
837 
838 reset_ipi:
839 	// Allow future IPIs to be sent on CPU and for task.
840 	// Also order this IPI handler against any later manipulations of
841 	// the intended task.
842 	smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
843 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
844 }
845 
846 /* Callback function for scheduler to check locked-down task.  */
847 static bool trc_inspect_reader(struct task_struct *t, void *arg)
848 {
849 	int cpu = task_cpu(t);
850 	bool in_qs = false;
851 	bool ofl = cpu_is_offline(cpu);
852 
853 	if (task_curr(t)) {
854 		WARN_ON_ONCE(ofl && !is_idle_task(t));
855 
856 		// If no chance of heavyweight readers, do it the hard way.
857 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
858 			return false;
859 
860 		// If heavyweight readers are enabled on the remote task,
861 		// we can inspect its state despite its currently running.
862 		// However, we cannot safely change its state.
863 		n_heavy_reader_attempts++;
864 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
865 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
866 			return false; // No quiescent state, do it the hard way.
867 		n_heavy_reader_updates++;
868 		if (ofl)
869 			n_heavy_reader_ofl_updates++;
870 		in_qs = true;
871 	} else {
872 		in_qs = likely(!t->trc_reader_nesting);
873 	}
874 
875 	// Mark as checked.  Because this is called from the grace-period
876 	// kthread, also remove the task from the holdout list.
877 	t->trc_reader_checked = true;
878 	trc_del_holdout(t);
879 
880 	if (in_qs)
881 		return true;  // Already in quiescent state, done!!!
882 
883 	// The task is in a read-side critical section, so set up its
884 	// state so that it will awaken the grace-period kthread upon exit
885 	// from that critical section.
886 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
887 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
888 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
889 	return true;
890 }
891 
892 /* Attempt to extract the state for the specified task. */
893 static void trc_wait_for_one_reader(struct task_struct *t,
894 				    struct list_head *bhp)
895 {
896 	int cpu;
897 
898 	// If a previous IPI is still in flight, let it complete.
899 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
900 		return;
901 
902 	// The current task had better be in a quiescent state.
903 	if (t == current) {
904 		t->trc_reader_checked = true;
905 		trc_del_holdout(t);
906 		WARN_ON_ONCE(t->trc_reader_nesting);
907 		return;
908 	}
909 
910 	// Attempt to nail down the task for inspection.
911 	get_task_struct(t);
912 	if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
913 		put_task_struct(t);
914 		return;
915 	}
916 	put_task_struct(t);
917 
918 	// If currently running, send an IPI, either way, add to list.
919 	trc_add_holdout(t, bhp);
920 	if (task_curr(t) &&
921 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
922 		// The task is currently running, so try IPIing it.
923 		cpu = task_cpu(t);
924 
925 		// If there is already an IPI outstanding, let it happen.
926 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
927 			return;
928 
929 		atomic_inc(&trc_n_readers_need_end);
930 		per_cpu(trc_ipi_to_cpu, cpu) = true;
931 		t->trc_ipi_to_cpu = cpu;
932 		rcu_tasks_trace.n_ipis++;
933 		if (smp_call_function_single(cpu,
934 					     trc_read_check_handler, t, 0)) {
935 			// Just in case there is some other reason for
936 			// failure than the target CPU being offline.
937 			rcu_tasks_trace.n_ipis_fails++;
938 			per_cpu(trc_ipi_to_cpu, cpu) = false;
939 			t->trc_ipi_to_cpu = cpu;
940 			if (atomic_dec_and_test(&trc_n_readers_need_end)) {
941 				WARN_ON_ONCE(1);
942 				wake_up(&trc_wait);
943 			}
944 		}
945 	}
946 }
947 
948 /* Initialize for a new RCU-tasks-trace grace period. */
949 static void rcu_tasks_trace_pregp_step(void)
950 {
951 	int cpu;
952 
953 	// Allow for fast-acting IPIs.
954 	atomic_set(&trc_n_readers_need_end, 1);
955 
956 	// There shouldn't be any old IPIs, but...
957 	for_each_possible_cpu(cpu)
958 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
959 
960 	// Disable CPU hotplug across the tasklist scan.
961 	// This also waits for all readers in CPU-hotplug code paths.
962 	cpus_read_lock();
963 }
964 
965 /* Do first-round processing for the specified task. */
966 static void rcu_tasks_trace_pertask(struct task_struct *t,
967 				    struct list_head *hop)
968 {
969 	// During early boot when there is only the one boot CPU, there
970 	// is no idle task for the other CPUs. Just return.
971 	if (unlikely(t == NULL))
972 		return;
973 
974 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
975 	WRITE_ONCE(t->trc_reader_checked, false);
976 	t->trc_ipi_to_cpu = -1;
977 	trc_wait_for_one_reader(t, hop);
978 }
979 
980 /*
981  * Do intermediate processing between task and holdout scans and
982  * pick up the idle tasks.
983  */
984 static void rcu_tasks_trace_postscan(struct list_head *hop)
985 {
986 	int cpu;
987 
988 	for_each_possible_cpu(cpu)
989 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
990 
991 	// Re-enable CPU hotplug now that the tasklist scan has completed.
992 	cpus_read_unlock();
993 
994 	// Wait for late-stage exiting tasks to finish exiting.
995 	// These might have passed the call to exit_tasks_rcu_finish().
996 	synchronize_rcu();
997 	// Any tasks that exit after this point will set ->trc_reader_checked.
998 }
999 
1000 /* Show the state of a task stalling the current RCU tasks trace GP. */
1001 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1002 {
1003 	int cpu;
1004 
1005 	if (*firstreport) {
1006 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1007 		*firstreport = false;
1008 	}
1009 	// FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1010 	cpu = task_cpu(t);
1011 	pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1012 		 t->pid,
1013 		 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1014 		 ".i"[is_idle_task(t)],
1015 		 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1016 		 t->trc_reader_nesting,
1017 		 " N"[!!t->trc_reader_special.b.need_qs],
1018 		 cpu);
1019 	sched_show_task(t);
1020 }
1021 
1022 /* List stalled IPIs for RCU tasks trace. */
1023 static void show_stalled_ipi_trace(void)
1024 {
1025 	int cpu;
1026 
1027 	for_each_possible_cpu(cpu)
1028 		if (per_cpu(trc_ipi_to_cpu, cpu))
1029 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1030 }
1031 
1032 /* Do one scan of the holdout list. */
1033 static void check_all_holdout_tasks_trace(struct list_head *hop,
1034 					  bool needreport, bool *firstreport)
1035 {
1036 	struct task_struct *g, *t;
1037 
1038 	// Disable CPU hotplug across the holdout list scan.
1039 	cpus_read_lock();
1040 
1041 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1042 		// If safe and needed, try to check the current task.
1043 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1044 		    !READ_ONCE(t->trc_reader_checked))
1045 			trc_wait_for_one_reader(t, hop);
1046 
1047 		// If check succeeded, remove this task from the list.
1048 		if (READ_ONCE(t->trc_reader_checked))
1049 			trc_del_holdout(t);
1050 		else if (needreport)
1051 			show_stalled_task_trace(t, firstreport);
1052 	}
1053 
1054 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1055 	cpus_read_unlock();
1056 
1057 	if (needreport) {
1058 		if (firstreport)
1059 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1060 		show_stalled_ipi_trace();
1061 	}
1062 }
1063 
1064 /* Wait for grace period to complete and provide ordering. */
1065 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1066 {
1067 	bool firstreport;
1068 	struct task_struct *g, *t;
1069 	LIST_HEAD(holdouts);
1070 	long ret;
1071 
1072 	// Remove the safety count.
1073 	smp_mb__before_atomic();  // Order vs. earlier atomics
1074 	atomic_dec(&trc_n_readers_need_end);
1075 	smp_mb__after_atomic();  // Order vs. later atomics
1076 
1077 	// Wait for readers.
1078 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1079 	for (;;) {
1080 		ret = wait_event_idle_exclusive_timeout(
1081 				trc_wait,
1082 				atomic_read(&trc_n_readers_need_end) == 0,
1083 				READ_ONCE(rcu_task_stall_timeout));
1084 		if (ret)
1085 			break;  // Count reached zero.
1086 		// Stall warning time, so make a list of the offenders.
1087 		rcu_read_lock();
1088 		for_each_process_thread(g, t)
1089 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1090 				trc_add_holdout(t, &holdouts);
1091 		rcu_read_unlock();
1092 		firstreport = true;
1093 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1094 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1095 				show_stalled_task_trace(t, &firstreport);
1096 			trc_del_holdout(t); // Release task_struct reference.
1097 		}
1098 		if (firstreport)
1099 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1100 		show_stalled_ipi_trace();
1101 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1102 	}
1103 	smp_mb(); // Caller's code must be ordered after wakeup.
1104 		  // Pairs with pretty much every ordering primitive.
1105 }
1106 
1107 /* Report any needed quiescent state for this exiting task. */
1108 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1109 {
1110 	WRITE_ONCE(t->trc_reader_checked, true);
1111 	WARN_ON_ONCE(t->trc_reader_nesting);
1112 	WRITE_ONCE(t->trc_reader_nesting, 0);
1113 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1114 		rcu_read_unlock_trace_special(t, 0);
1115 }
1116 
1117 /**
1118  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1119  * @rhp: structure to be used for queueing the RCU updates.
1120  * @func: actual callback function to be invoked after the grace period
1121  *
1122  * The callback function will be invoked some time after a full grace
1123  * period elapses, in other words after all currently executing RCU
1124  * read-side critical sections have completed. call_rcu_tasks_trace()
1125  * assumes that the read-side critical sections end at context switch,
1126  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
1127  * there are no read-side primitives analogous to rcu_read_lock() and
1128  * rcu_read_unlock() because this primitive is intended to determine
1129  * that all tasks have passed through a safe state, not so much for
1130  * data-strcuture synchronization.
1131  *
1132  * See the description of call_rcu() for more detailed information on
1133  * memory ordering guarantees.
1134  */
1135 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1136 {
1137 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1138 }
1139 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1140 
1141 /**
1142  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1143  *
1144  * Control will return to the caller some time after a trace rcu-tasks
1145  * grace period has elapsed, in other words after all currently executing
1146  * rcu-tasks read-side critical sections have elapsed.  These read-side
1147  * critical sections are delimited by calls to rcu_read_lock_trace()
1148  * and rcu_read_unlock_trace().
1149  *
1150  * This is a very specialized primitive, intended only for a few uses in
1151  * tracing and other situations requiring manipulation of function preambles
1152  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1153  * (yet) intended for heavy use from multiple CPUs.
1154  *
1155  * See the description of synchronize_rcu() for more detailed information
1156  * on memory ordering guarantees.
1157  */
1158 void synchronize_rcu_tasks_trace(void)
1159 {
1160 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1161 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1162 }
1163 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1164 
1165 /**
1166  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1167  *
1168  * Although the current implementation is guaranteed to wait, it is not
1169  * obligated to, for example, if there are no pending callbacks.
1170  */
1171 void rcu_barrier_tasks_trace(void)
1172 {
1173 	/* There is only one callback queue, so this is easy.  ;-) */
1174 	synchronize_rcu_tasks_trace();
1175 }
1176 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1177 
1178 static int __init rcu_spawn_tasks_trace_kthread(void)
1179 {
1180 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1181 		rcu_tasks_trace.gp_sleep = HZ / 10;
1182 		rcu_tasks_trace.init_fract = HZ / 10;
1183 	} else {
1184 		rcu_tasks_trace.gp_sleep = HZ / 200;
1185 		if (rcu_tasks_trace.gp_sleep <= 0)
1186 			rcu_tasks_trace.gp_sleep = 1;
1187 		rcu_tasks_trace.init_fract = HZ / 200;
1188 		if (rcu_tasks_trace.init_fract <= 0)
1189 			rcu_tasks_trace.init_fract = 1;
1190 	}
1191 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1192 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1193 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1194 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1195 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1196 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1197 	return 0;
1198 }
1199 
1200 #if !defined(CONFIG_TINY_RCU)
1201 void show_rcu_tasks_trace_gp_kthread(void)
1202 {
1203 	char buf[64];
1204 
1205 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1206 		data_race(n_heavy_reader_ofl_updates),
1207 		data_race(n_heavy_reader_updates),
1208 		data_race(n_heavy_reader_attempts));
1209 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1210 }
1211 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1212 #endif // !defined(CONFIG_TINY_RCU)
1213 
1214 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1215 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1216 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1217 
1218 #ifndef CONFIG_TINY_RCU
1219 void show_rcu_tasks_gp_kthreads(void)
1220 {
1221 	show_rcu_tasks_classic_gp_kthread();
1222 	show_rcu_tasks_rude_gp_kthread();
1223 	show_rcu_tasks_trace_gp_kthread();
1224 }
1225 #endif /* #ifndef CONFIG_TINY_RCU */
1226 
1227 #ifdef CONFIG_PROVE_RCU
1228 struct rcu_tasks_test_desc {
1229 	struct rcu_head rh;
1230 	const char *name;
1231 	bool notrun;
1232 };
1233 
1234 static struct rcu_tasks_test_desc tests[] = {
1235 	{
1236 		.name = "call_rcu_tasks()",
1237 		/* If not defined, the test is skipped. */
1238 		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1239 	},
1240 	{
1241 		.name = "call_rcu_tasks_rude()",
1242 		/* If not defined, the test is skipped. */
1243 		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1244 	},
1245 	{
1246 		.name = "call_rcu_tasks_trace()",
1247 		/* If not defined, the test is skipped. */
1248 		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1249 	}
1250 };
1251 
1252 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1253 {
1254 	struct rcu_tasks_test_desc *rttd =
1255 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1256 
1257 	pr_info("Callback from %s invoked.\n", rttd->name);
1258 
1259 	rttd->notrun = true;
1260 }
1261 
1262 static void rcu_tasks_initiate_self_tests(void)
1263 {
1264 	pr_info("Running RCU-tasks wait API self tests\n");
1265 #ifdef CONFIG_TASKS_RCU
1266 	synchronize_rcu_tasks();
1267 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1268 #endif
1269 
1270 #ifdef CONFIG_TASKS_RUDE_RCU
1271 	synchronize_rcu_tasks_rude();
1272 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1273 #endif
1274 
1275 #ifdef CONFIG_TASKS_TRACE_RCU
1276 	synchronize_rcu_tasks_trace();
1277 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1278 #endif
1279 }
1280 
1281 static int rcu_tasks_verify_self_tests(void)
1282 {
1283 	int ret = 0;
1284 	int i;
1285 
1286 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1287 		if (!tests[i].notrun) {		// still hanging.
1288 			pr_err("%s has been failed.\n", tests[i].name);
1289 			ret = -1;
1290 		}
1291 	}
1292 
1293 	if (ret)
1294 		WARN_ON(1);
1295 
1296 	return ret;
1297 }
1298 late_initcall(rcu_tasks_verify_self_tests);
1299 #else /* #ifdef CONFIG_PROVE_RCU */
1300 static void rcu_tasks_initiate_self_tests(void) { }
1301 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1302 
1303 void __init rcu_init_tasks_generic(void)
1304 {
1305 #ifdef CONFIG_TASKS_RCU
1306 	rcu_spawn_tasks_kthread();
1307 #endif
1308 
1309 #ifdef CONFIG_TASKS_RUDE_RCU
1310 	rcu_spawn_tasks_rude_kthread();
1311 #endif
1312 
1313 #ifdef CONFIG_TASKS_TRACE_RCU
1314 	rcu_spawn_tasks_trace_kthread();
1315 #endif
1316 
1317 	// Run the self-tests.
1318 	rcu_tasks_initiate_self_tests();
1319 }
1320 
1321 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1322 static inline void rcu_tasks_bootup_oddness(void) {}
1323 void show_rcu_tasks_gp_kthreads(void) {}
1324 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1325