1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @cpu: CPU number corresponding to this entry. 36 * @rtpp: Pointer to the rcu_tasks structure. 37 */ 38 struct rcu_tasks_percpu { 39 struct rcu_segcblist cblist; 40 raw_spinlock_t __private lock; 41 unsigned long rtp_jiffies; 42 unsigned long rtp_n_lock_retries; 43 struct timer_list lazy_timer; 44 unsigned int urgent_gp; 45 struct work_struct rtp_work; 46 struct irq_work rtp_irq_work; 47 struct rcu_head barrier_q_head; 48 struct list_head rtp_blkd_tasks; 49 int cpu; 50 struct rcu_tasks *rtpp; 51 }; 52 53 /** 54 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 55 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 56 * @cbs_gbl_lock: Lock protecting callback list. 57 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 58 * @gp_func: This flavor's grace-period-wait function. 59 * @gp_state: Grace period's most recent state transition (debugging). 60 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 61 * @init_fract: Initial backoff sleep interval. 62 * @gp_jiffies: Time of last @gp_state transition. 63 * @gp_start: Most recent grace-period start in jiffies. 64 * @tasks_gp_seq: Number of grace periods completed since boot. 65 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 66 * @n_ipis_fails: Number of IPI-send failures. 67 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 68 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 69 * @pregp_func: This flavor's pre-grace-period function (optional). 70 * @pertask_func: This flavor's per-task scan function (optional). 71 * @postscan_func: This flavor's post-task scan function (optional). 72 * @holdouts_func: This flavor's holdout-list scan function (optional). 73 * @postgp_func: This flavor's post-grace-period function (optional). 74 * @call_func: This flavor's call_rcu()-equivalent function. 75 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 76 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 77 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 78 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 79 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 80 * @barrier_q_mutex: Serialize barrier operations. 81 * @barrier_q_count: Number of queues being waited on. 82 * @barrier_q_completion: Barrier wait/wakeup mechanism. 83 * @barrier_q_seq: Sequence number for barrier operations. 84 * @name: This flavor's textual name. 85 * @kname: This flavor's kthread name. 86 */ 87 struct rcu_tasks { 88 struct rcuwait cbs_wait; 89 raw_spinlock_t cbs_gbl_lock; 90 struct mutex tasks_gp_mutex; 91 int gp_state; 92 int gp_sleep; 93 int init_fract; 94 unsigned long gp_jiffies; 95 unsigned long gp_start; 96 unsigned long tasks_gp_seq; 97 unsigned long n_ipis; 98 unsigned long n_ipis_fails; 99 struct task_struct *kthread_ptr; 100 unsigned long lazy_jiffies; 101 rcu_tasks_gp_func_t gp_func; 102 pregp_func_t pregp_func; 103 pertask_func_t pertask_func; 104 postscan_func_t postscan_func; 105 holdouts_func_t holdouts_func; 106 postgp_func_t postgp_func; 107 call_rcu_func_t call_func; 108 struct rcu_tasks_percpu __percpu *rtpcpu; 109 int percpu_enqueue_shift; 110 int percpu_enqueue_lim; 111 int percpu_dequeue_lim; 112 unsigned long percpu_dequeue_gpseq; 113 struct mutex barrier_q_mutex; 114 atomic_t barrier_q_count; 115 struct completion barrier_q_completion; 116 unsigned long barrier_q_seq; 117 char *name; 118 char *kname; 119 }; 120 121 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 122 123 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 124 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 125 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 126 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 127 }; \ 128 static struct rcu_tasks rt_name = \ 129 { \ 130 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 131 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 132 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 133 .gp_func = gp, \ 134 .call_func = call, \ 135 .rtpcpu = &rt_name ## __percpu, \ 136 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 137 .name = n, \ 138 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 139 .percpu_enqueue_lim = 1, \ 140 .percpu_dequeue_lim = 1, \ 141 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 142 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 143 .kname = #rt_name, \ 144 } 145 146 #ifdef CONFIG_TASKS_RCU 147 /* Track exiting tasks in order to allow them to be waited for. */ 148 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 149 150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 153 #endif 154 155 /* Avoid IPIing CPUs early in the grace period. */ 156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 158 module_param(rcu_task_ipi_delay, int, 0644); 159 160 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 164 module_param(rcu_task_stall_timeout, int, 0644); 165 #define RCU_TASK_STALL_INFO (HZ * 10) 166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 167 module_param(rcu_task_stall_info, int, 0644); 168 static int rcu_task_stall_info_mult __read_mostly = 3; 169 module_param(rcu_task_stall_info_mult, int, 0444); 170 171 static int rcu_task_enqueue_lim __read_mostly = -1; 172 module_param(rcu_task_enqueue_lim, int, 0444); 173 174 static bool rcu_task_cb_adjust; 175 static int rcu_task_contend_lim __read_mostly = 100; 176 module_param(rcu_task_contend_lim, int, 0444); 177 static int rcu_task_collapse_lim __read_mostly = 10; 178 module_param(rcu_task_collapse_lim, int, 0444); 179 static int rcu_task_lazy_lim __read_mostly = 32; 180 module_param(rcu_task_lazy_lim, int, 0444); 181 182 /* RCU tasks grace-period state for debugging. */ 183 #define RTGS_INIT 0 184 #define RTGS_WAIT_WAIT_CBS 1 185 #define RTGS_WAIT_GP 2 186 #define RTGS_PRE_WAIT_GP 3 187 #define RTGS_SCAN_TASKLIST 4 188 #define RTGS_POST_SCAN_TASKLIST 5 189 #define RTGS_WAIT_SCAN_HOLDOUTS 6 190 #define RTGS_SCAN_HOLDOUTS 7 191 #define RTGS_POST_GP 8 192 #define RTGS_WAIT_READERS 9 193 #define RTGS_INVOKE_CBS 10 194 #define RTGS_WAIT_CBS 11 195 #ifndef CONFIG_TINY_RCU 196 static const char * const rcu_tasks_gp_state_names[] = { 197 "RTGS_INIT", 198 "RTGS_WAIT_WAIT_CBS", 199 "RTGS_WAIT_GP", 200 "RTGS_PRE_WAIT_GP", 201 "RTGS_SCAN_TASKLIST", 202 "RTGS_POST_SCAN_TASKLIST", 203 "RTGS_WAIT_SCAN_HOLDOUTS", 204 "RTGS_SCAN_HOLDOUTS", 205 "RTGS_POST_GP", 206 "RTGS_WAIT_READERS", 207 "RTGS_INVOKE_CBS", 208 "RTGS_WAIT_CBS", 209 }; 210 #endif /* #ifndef CONFIG_TINY_RCU */ 211 212 //////////////////////////////////////////////////////////////////////// 213 // 214 // Generic code. 215 216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 217 218 /* Record grace-period phase and time. */ 219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 220 { 221 rtp->gp_state = newstate; 222 rtp->gp_jiffies = jiffies; 223 } 224 225 #ifndef CONFIG_TINY_RCU 226 /* Return state name. */ 227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 228 { 229 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 230 int j = READ_ONCE(i); // Prevent the compiler from reading twice 231 232 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 233 return "???"; 234 return rcu_tasks_gp_state_names[j]; 235 } 236 #endif /* #ifndef CONFIG_TINY_RCU */ 237 238 // Initialize per-CPU callback lists for the specified flavor of 239 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 240 static void cblist_init_generic(struct rcu_tasks *rtp) 241 { 242 int cpu; 243 unsigned long flags; 244 int lim; 245 int shift; 246 247 if (rcu_task_enqueue_lim < 0) { 248 rcu_task_enqueue_lim = 1; 249 rcu_task_cb_adjust = true; 250 } else if (rcu_task_enqueue_lim == 0) { 251 rcu_task_enqueue_lim = 1; 252 } 253 lim = rcu_task_enqueue_lim; 254 255 if (lim > nr_cpu_ids) 256 lim = nr_cpu_ids; 257 shift = ilog2(nr_cpu_ids / lim); 258 if (((nr_cpu_ids - 1) >> shift) >= lim) 259 shift++; 260 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 261 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 262 smp_store_release(&rtp->percpu_enqueue_lim, lim); 263 for_each_possible_cpu(cpu) { 264 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 265 266 WARN_ON_ONCE(!rtpcp); 267 if (cpu) 268 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 269 local_irq_save(flags); // serialize initialization 270 if (rcu_segcblist_empty(&rtpcp->cblist)) 271 rcu_segcblist_init(&rtpcp->cblist); 272 local_irq_restore(flags); 273 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 274 rtpcp->cpu = cpu; 275 rtpcp->rtpp = rtp; 276 if (!rtpcp->rtp_blkd_tasks.next) 277 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 278 } 279 280 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, 281 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); 282 } 283 284 // Compute wakeup time for lazy callback timer. 285 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 286 { 287 return jiffies + rtp->lazy_jiffies; 288 } 289 290 // Timer handler that unlazifies lazy callbacks. 291 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 292 { 293 unsigned long flags; 294 bool needwake = false; 295 struct rcu_tasks *rtp; 296 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); 297 298 rtp = rtpcp->rtpp; 299 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 300 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 301 if (!rtpcp->urgent_gp) 302 rtpcp->urgent_gp = 1; 303 needwake = true; 304 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 305 } 306 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 307 if (needwake) 308 rcuwait_wake_up(&rtp->cbs_wait); 309 } 310 311 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 312 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 313 { 314 struct rcu_tasks *rtp; 315 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 316 317 rtp = rtpcp->rtpp; 318 rcuwait_wake_up(&rtp->cbs_wait); 319 } 320 321 // Enqueue a callback for the specified flavor of Tasks RCU. 322 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 323 struct rcu_tasks *rtp) 324 { 325 int chosen_cpu; 326 unsigned long flags; 327 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 328 int ideal_cpu; 329 unsigned long j; 330 bool needadjust = false; 331 bool needwake; 332 struct rcu_tasks_percpu *rtpcp; 333 334 rhp->next = NULL; 335 rhp->func = func; 336 local_irq_save(flags); 337 rcu_read_lock(); 338 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 339 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 340 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 341 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 342 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 343 j = jiffies; 344 if (rtpcp->rtp_jiffies != j) { 345 rtpcp->rtp_jiffies = j; 346 rtpcp->rtp_n_lock_retries = 0; 347 } 348 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 349 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 350 needadjust = true; // Defer adjustment to avoid deadlock. 351 } 352 // Queuing callbacks before initialization not yet supported. 353 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 354 rcu_segcblist_init(&rtpcp->cblist); 355 needwake = (func == wakeme_after_rcu) || 356 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 357 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 358 if (rtp->lazy_jiffies) 359 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 360 else 361 needwake = rcu_segcblist_empty(&rtpcp->cblist); 362 } 363 if (needwake) 364 rtpcp->urgent_gp = 3; 365 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 366 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 367 if (unlikely(needadjust)) { 368 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 369 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 370 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 371 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 372 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 373 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 374 } 375 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 376 } 377 rcu_read_unlock(); 378 /* We can't create the thread unless interrupts are enabled. */ 379 if (needwake && READ_ONCE(rtp->kthread_ptr)) 380 irq_work_queue(&rtpcp->rtp_irq_work); 381 } 382 383 // RCU callback function for rcu_barrier_tasks_generic(). 384 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 385 { 386 struct rcu_tasks *rtp; 387 struct rcu_tasks_percpu *rtpcp; 388 389 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 390 rtp = rtpcp->rtpp; 391 if (atomic_dec_and_test(&rtp->barrier_q_count)) 392 complete(&rtp->barrier_q_completion); 393 } 394 395 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 396 // Operates in a manner similar to rcu_barrier(). 397 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 398 { 399 int cpu; 400 unsigned long flags; 401 struct rcu_tasks_percpu *rtpcp; 402 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 403 404 mutex_lock(&rtp->barrier_q_mutex); 405 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 406 smp_mb(); 407 mutex_unlock(&rtp->barrier_q_mutex); 408 return; 409 } 410 rcu_seq_start(&rtp->barrier_q_seq); 411 init_completion(&rtp->barrier_q_completion); 412 atomic_set(&rtp->barrier_q_count, 2); 413 for_each_possible_cpu(cpu) { 414 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 415 break; 416 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 417 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 418 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 419 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 420 atomic_inc(&rtp->barrier_q_count); 421 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 422 } 423 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 424 complete(&rtp->barrier_q_completion); 425 wait_for_completion(&rtp->barrier_q_completion); 426 rcu_seq_end(&rtp->barrier_q_seq); 427 mutex_unlock(&rtp->barrier_q_mutex); 428 } 429 430 // Advance callbacks and indicate whether either a grace period or 431 // callback invocation is needed. 432 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 433 { 434 int cpu; 435 unsigned long flags; 436 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 437 long n; 438 long ncbs = 0; 439 long ncbsnz = 0; 440 int needgpcb = 0; 441 442 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 443 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 444 445 /* Advance and accelerate any new callbacks. */ 446 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 447 continue; 448 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 449 // Should we shrink down to a single callback queue? 450 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 451 if (n) { 452 ncbs += n; 453 if (cpu > 0) 454 ncbsnz += n; 455 } 456 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 457 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 458 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 459 if (rtp->lazy_jiffies) 460 rtpcp->urgent_gp--; 461 needgpcb |= 0x3; 462 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 463 rtpcp->urgent_gp = 0; 464 } 465 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 466 needgpcb |= 0x1; 467 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 468 } 469 470 // Shrink down to a single callback queue if appropriate. 471 // This is done in two stages: (1) If there are no more than 472 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 473 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 474 // if there has not been an increase in callbacks, limit dequeuing 475 // to CPU 0. Note the matching RCU read-side critical section in 476 // call_rcu_tasks_generic(). 477 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 478 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 479 if (rtp->percpu_enqueue_lim > 1) { 480 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 481 smp_store_release(&rtp->percpu_enqueue_lim, 1); 482 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 483 gpdone = false; 484 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 485 } 486 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 487 } 488 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 489 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 490 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 491 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 492 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 493 } 494 if (rtp->percpu_dequeue_lim == 1) { 495 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 496 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 497 498 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 499 } 500 } 501 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 502 } 503 504 return needgpcb; 505 } 506 507 // Advance callbacks and invoke any that are ready. 508 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 509 { 510 int cpu; 511 int cpunext; 512 int cpuwq; 513 unsigned long flags; 514 int len; 515 struct rcu_head *rhp; 516 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 517 struct rcu_tasks_percpu *rtpcp_next; 518 519 cpu = rtpcp->cpu; 520 cpunext = cpu * 2 + 1; 521 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 522 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 523 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 524 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 525 cpunext++; 526 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 527 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 528 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 529 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 530 } 531 } 532 533 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 534 return; 535 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 536 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 537 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 538 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 539 len = rcl.len; 540 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 541 local_bh_disable(); 542 rhp->func(rhp); 543 local_bh_enable(); 544 cond_resched(); 545 } 546 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 547 rcu_segcblist_add_len(&rtpcp->cblist, -len); 548 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 549 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 550 } 551 552 // Workqueue flood to advance callbacks and invoke any that are ready. 553 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 554 { 555 struct rcu_tasks *rtp; 556 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 557 558 rtp = rtpcp->rtpp; 559 rcu_tasks_invoke_cbs(rtp, rtpcp); 560 } 561 562 // Wait for one grace period. 563 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 564 { 565 int needgpcb; 566 567 mutex_lock(&rtp->tasks_gp_mutex); 568 569 // If there were none, wait a bit and start over. 570 if (unlikely(midboot)) { 571 needgpcb = 0x2; 572 } else { 573 mutex_unlock(&rtp->tasks_gp_mutex); 574 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 575 rcuwait_wait_event(&rtp->cbs_wait, 576 (needgpcb = rcu_tasks_need_gpcb(rtp)), 577 TASK_IDLE); 578 mutex_lock(&rtp->tasks_gp_mutex); 579 } 580 581 if (needgpcb & 0x2) { 582 // Wait for one grace period. 583 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 584 rtp->gp_start = jiffies; 585 rcu_seq_start(&rtp->tasks_gp_seq); 586 rtp->gp_func(rtp); 587 rcu_seq_end(&rtp->tasks_gp_seq); 588 } 589 590 // Invoke callbacks. 591 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 592 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 593 mutex_unlock(&rtp->tasks_gp_mutex); 594 } 595 596 // RCU-tasks kthread that detects grace periods and invokes callbacks. 597 static int __noreturn rcu_tasks_kthread(void *arg) 598 { 599 int cpu; 600 struct rcu_tasks *rtp = arg; 601 602 for_each_possible_cpu(cpu) { 603 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 604 605 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 606 rtpcp->urgent_gp = 1; 607 } 608 609 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 610 housekeeping_affine(current, HK_TYPE_RCU); 611 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 612 613 /* 614 * Each pass through the following loop makes one check for 615 * newly arrived callbacks, and, if there are some, waits for 616 * one RCU-tasks grace period and then invokes the callbacks. 617 * This loop is terminated by the system going down. ;-) 618 */ 619 for (;;) { 620 // Wait for one grace period and invoke any callbacks 621 // that are ready. 622 rcu_tasks_one_gp(rtp, false); 623 624 // Paranoid sleep to keep this from entering a tight loop. 625 schedule_timeout_idle(rtp->gp_sleep); 626 } 627 } 628 629 // Wait for a grace period for the specified flavor of Tasks RCU. 630 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 631 { 632 /* Complain if the scheduler has not started. */ 633 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 634 "synchronize_%s() called too soon", rtp->name)) 635 return; 636 637 // If the grace-period kthread is running, use it. 638 if (READ_ONCE(rtp->kthread_ptr)) { 639 wait_rcu_gp(rtp->call_func); 640 return; 641 } 642 rcu_tasks_one_gp(rtp, true); 643 } 644 645 /* Spawn RCU-tasks grace-period kthread. */ 646 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 647 { 648 struct task_struct *t; 649 650 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 651 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 652 return; 653 smp_mb(); /* Ensure others see full kthread. */ 654 } 655 656 #ifndef CONFIG_TINY_RCU 657 658 /* 659 * Print any non-default Tasks RCU settings. 660 */ 661 static void __init rcu_tasks_bootup_oddness(void) 662 { 663 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 664 int rtsimc; 665 666 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 667 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 668 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 669 if (rtsimc != rcu_task_stall_info_mult) { 670 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 671 rcu_task_stall_info_mult = rtsimc; 672 } 673 #endif /* #ifdef CONFIG_TASKS_RCU */ 674 #ifdef CONFIG_TASKS_RCU 675 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 676 #endif /* #ifdef CONFIG_TASKS_RCU */ 677 #ifdef CONFIG_TASKS_RUDE_RCU 678 pr_info("\tRude variant of Tasks RCU enabled.\n"); 679 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 680 #ifdef CONFIG_TASKS_TRACE_RCU 681 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 682 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 683 } 684 685 #endif /* #ifndef CONFIG_TINY_RCU */ 686 687 #ifndef CONFIG_TINY_RCU 688 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 689 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 690 { 691 int cpu; 692 bool havecbs = false; 693 bool haveurgent = false; 694 bool haveurgentcbs = false; 695 696 for_each_possible_cpu(cpu) { 697 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 698 699 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 700 havecbs = true; 701 if (data_race(rtpcp->urgent_gp)) 702 haveurgent = true; 703 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 704 haveurgentcbs = true; 705 if (havecbs && haveurgent && haveurgentcbs) 706 break; 707 } 708 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 709 rtp->kname, 710 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 711 jiffies - data_race(rtp->gp_jiffies), 712 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 713 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 714 ".k"[!!data_race(rtp->kthread_ptr)], 715 ".C"[havecbs], 716 ".u"[haveurgent], 717 ".U"[haveurgentcbs], 718 rtp->lazy_jiffies, 719 s); 720 } 721 #endif // #ifndef CONFIG_TINY_RCU 722 723 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 724 725 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 726 727 //////////////////////////////////////////////////////////////////////// 728 // 729 // Shared code between task-list-scanning variants of Tasks RCU. 730 731 /* Wait for one RCU-tasks grace period. */ 732 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 733 { 734 struct task_struct *g; 735 int fract; 736 LIST_HEAD(holdouts); 737 unsigned long j; 738 unsigned long lastinfo; 739 unsigned long lastreport; 740 bool reported = false; 741 int rtsi; 742 struct task_struct *t; 743 744 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 745 rtp->pregp_func(&holdouts); 746 747 /* 748 * There were callbacks, so we need to wait for an RCU-tasks 749 * grace period. Start off by scanning the task list for tasks 750 * that are not already voluntarily blocked. Mark these tasks 751 * and make a list of them in holdouts. 752 */ 753 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 754 if (rtp->pertask_func) { 755 rcu_read_lock(); 756 for_each_process_thread(g, t) 757 rtp->pertask_func(t, &holdouts); 758 rcu_read_unlock(); 759 } 760 761 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 762 rtp->postscan_func(&holdouts); 763 764 /* 765 * Each pass through the following loop scans the list of holdout 766 * tasks, removing any that are no longer holdouts. When the list 767 * is empty, we are done. 768 */ 769 lastreport = jiffies; 770 lastinfo = lastreport; 771 rtsi = READ_ONCE(rcu_task_stall_info); 772 773 // Start off with initial wait and slowly back off to 1 HZ wait. 774 fract = rtp->init_fract; 775 776 while (!list_empty(&holdouts)) { 777 ktime_t exp; 778 bool firstreport; 779 bool needreport; 780 int rtst; 781 782 // Slowly back off waiting for holdouts 783 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 784 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 785 schedule_timeout_idle(fract); 786 } else { 787 exp = jiffies_to_nsecs(fract); 788 __set_current_state(TASK_IDLE); 789 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 790 } 791 792 if (fract < HZ) 793 fract++; 794 795 rtst = READ_ONCE(rcu_task_stall_timeout); 796 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 797 if (needreport) { 798 lastreport = jiffies; 799 reported = true; 800 } 801 firstreport = true; 802 WARN_ON(signal_pending(current)); 803 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 804 rtp->holdouts_func(&holdouts, needreport, &firstreport); 805 806 // Print pre-stall informational messages if needed. 807 j = jiffies; 808 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 809 lastinfo = j; 810 rtsi = rtsi * rcu_task_stall_info_mult; 811 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 812 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 813 } 814 } 815 816 set_tasks_gp_state(rtp, RTGS_POST_GP); 817 rtp->postgp_func(rtp); 818 } 819 820 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 821 822 #ifdef CONFIG_TASKS_RCU 823 824 //////////////////////////////////////////////////////////////////////// 825 // 826 // Simple variant of RCU whose quiescent states are voluntary context 827 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 828 // As such, grace periods can take one good long time. There are no 829 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 830 // because this implementation is intended to get the system into a safe 831 // state for some of the manipulations involved in tracing and the like. 832 // Finally, this implementation does not support high call_rcu_tasks() 833 // rates from multiple CPUs. If this is required, per-CPU callback lists 834 // will be needed. 835 // 836 // The implementation uses rcu_tasks_wait_gp(), which relies on function 837 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 838 // function sets these function pointers up so that rcu_tasks_wait_gp() 839 // invokes these functions in this order: 840 // 841 // rcu_tasks_pregp_step(): 842 // Invokes synchronize_rcu() in order to wait for all in-flight 843 // t->on_rq and t->nvcsw transitions to complete. This works because 844 // all such transitions are carried out with interrupts disabled. 845 // rcu_tasks_pertask(), invoked on every non-idle task: 846 // For every runnable non-idle task other than the current one, use 847 // get_task_struct() to pin down that task, snapshot that task's 848 // number of voluntary context switches, and add that task to the 849 // holdout list. 850 // rcu_tasks_postscan(): 851 // Invoke synchronize_srcu() to ensure that all tasks that were 852 // in the process of exiting (and which thus might not know to 853 // synchronize with this RCU Tasks grace period) have completed 854 // exiting. 855 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 856 // Scans the holdout list, attempting to identify a quiescent state 857 // for each task on the list. If there is a quiescent state, the 858 // corresponding task is removed from the holdout list. 859 // rcu_tasks_postgp(): 860 // Invokes synchronize_rcu() in order to ensure that all prior 861 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 862 // to have happened before the end of this RCU Tasks grace period. 863 // Again, this works because all such transitions are carried out 864 // with interrupts disabled. 865 // 866 // For each exiting task, the exit_tasks_rcu_start() and 867 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 868 // read-side critical sections waited for by rcu_tasks_postscan(). 869 // 870 // Pre-grace-period update-side code is ordered before the grace 871 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 872 // is ordered before the grace period via synchronize_rcu() call in 873 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 874 // disabling. 875 876 /* Pre-grace-period preparation. */ 877 static void rcu_tasks_pregp_step(struct list_head *hop) 878 { 879 /* 880 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 881 * to complete. Invoking synchronize_rcu() suffices because all 882 * these transitions occur with interrupts disabled. Without this 883 * synchronize_rcu(), a read-side critical section that started 884 * before the grace period might be incorrectly seen as having 885 * started after the grace period. 886 * 887 * This synchronize_rcu() also dispenses with the need for a 888 * memory barrier on the first store to t->rcu_tasks_holdout, 889 * as it forces the store to happen after the beginning of the 890 * grace period. 891 */ 892 synchronize_rcu(); 893 } 894 895 /* Check for quiescent states since the pregp's synchronize_rcu() */ 896 static bool rcu_tasks_is_holdout(struct task_struct *t) 897 { 898 int cpu; 899 900 /* Has the task been seen voluntarily sleeping? */ 901 if (!READ_ONCE(t->on_rq)) 902 return false; 903 904 /* 905 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 906 * quiescent states. But CPU boot code performed by the idle task 907 * isn't a quiescent state. 908 */ 909 if (is_idle_task(t)) 910 return false; 911 912 cpu = task_cpu(t); 913 914 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 915 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 916 return false; 917 918 return true; 919 } 920 921 /* Per-task initial processing. */ 922 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 923 { 924 if (t != current && rcu_tasks_is_holdout(t)) { 925 get_task_struct(t); 926 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 927 WRITE_ONCE(t->rcu_tasks_holdout, true); 928 list_add(&t->rcu_tasks_holdout_list, hop); 929 } 930 } 931 932 /* Processing between scanning taskslist and draining the holdout list. */ 933 static void rcu_tasks_postscan(struct list_head *hop) 934 { 935 int rtsi = READ_ONCE(rcu_task_stall_info); 936 937 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 938 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 939 add_timer(&tasks_rcu_exit_srcu_stall_timer); 940 } 941 942 /* 943 * Exiting tasks may escape the tasklist scan. Those are vulnerable 944 * until their final schedule() with TASK_DEAD state. To cope with 945 * this, divide the fragile exit path part in two intersecting 946 * read side critical sections: 947 * 948 * 1) An _SRCU_ read side starting before calling exit_notify(), 949 * which may remove the task from the tasklist, and ending after 950 * the final preempt_disable() call in do_exit(). 951 * 952 * 2) An _RCU_ read side starting with the final preempt_disable() 953 * call in do_exit() and ending with the final call to schedule() 954 * with TASK_DEAD state. 955 * 956 * This handles the part 1). And postgp will handle part 2) with a 957 * call to synchronize_rcu(). 958 */ 959 synchronize_srcu(&tasks_rcu_exit_srcu); 960 961 if (!IS_ENABLED(CONFIG_TINY_RCU)) 962 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 963 } 964 965 /* See if tasks are still holding out, complain if so. */ 966 static void check_holdout_task(struct task_struct *t, 967 bool needreport, bool *firstreport) 968 { 969 int cpu; 970 971 if (!READ_ONCE(t->rcu_tasks_holdout) || 972 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 973 !rcu_tasks_is_holdout(t) || 974 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 975 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 976 WRITE_ONCE(t->rcu_tasks_holdout, false); 977 list_del_init(&t->rcu_tasks_holdout_list); 978 put_task_struct(t); 979 return; 980 } 981 rcu_request_urgent_qs_task(t); 982 if (!needreport) 983 return; 984 if (*firstreport) { 985 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 986 *firstreport = false; 987 } 988 cpu = task_cpu(t); 989 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 990 t, ".I"[is_idle_task(t)], 991 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 992 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 993 t->rcu_tasks_idle_cpu, cpu); 994 sched_show_task(t); 995 } 996 997 /* Scan the holdout lists for tasks no longer holding out. */ 998 static void check_all_holdout_tasks(struct list_head *hop, 999 bool needreport, bool *firstreport) 1000 { 1001 struct task_struct *t, *t1; 1002 1003 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1004 check_holdout_task(t, needreport, firstreport); 1005 cond_resched(); 1006 } 1007 } 1008 1009 /* Finish off the Tasks-RCU grace period. */ 1010 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1011 { 1012 /* 1013 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1014 * memory barriers prior to them in the schedule() path, memory 1015 * reordering on other CPUs could cause their RCU-tasks read-side 1016 * critical sections to extend past the end of the grace period. 1017 * However, because these ->nvcsw updates are carried out with 1018 * interrupts disabled, we can use synchronize_rcu() to force the 1019 * needed ordering on all such CPUs. 1020 * 1021 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1022 * accesses to be within the grace period, avoiding the need for 1023 * memory barriers for ->rcu_tasks_holdout accesses. 1024 * 1025 * In addition, this synchronize_rcu() waits for exiting tasks 1026 * to complete their final preempt_disable() region of execution, 1027 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 1028 * enforcing the whole region before tasklist removal until 1029 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1030 * read side critical section. 1031 */ 1032 synchronize_rcu(); 1033 } 1034 1035 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1036 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1037 1038 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1039 { 1040 #ifndef CONFIG_TINY_RCU 1041 int rtsi; 1042 1043 rtsi = READ_ONCE(rcu_task_stall_info); 1044 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1045 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1046 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1047 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1048 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1049 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1050 #endif // #ifndef CONFIG_TINY_RCU 1051 } 1052 1053 /** 1054 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1055 * @rhp: structure to be used for queueing the RCU updates. 1056 * @func: actual callback function to be invoked after the grace period 1057 * 1058 * The callback function will be invoked some time after a full grace 1059 * period elapses, in other words after all currently executing RCU 1060 * read-side critical sections have completed. call_rcu_tasks() assumes 1061 * that the read-side critical sections end at a voluntary context 1062 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1063 * or transition to usermode execution. As such, there are no read-side 1064 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1065 * this primitive is intended to determine that all tasks have passed 1066 * through a safe state, not so much for data-structure synchronization. 1067 * 1068 * See the description of call_rcu() for more detailed information on 1069 * memory ordering guarantees. 1070 */ 1071 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1072 { 1073 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1074 } 1075 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1076 1077 /** 1078 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1079 * 1080 * Control will return to the caller some time after a full rcu-tasks 1081 * grace period has elapsed, in other words after all currently 1082 * executing rcu-tasks read-side critical sections have elapsed. These 1083 * read-side critical sections are delimited by calls to schedule(), 1084 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1085 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1086 * 1087 * This is a very specialized primitive, intended only for a few uses in 1088 * tracing and other situations requiring manipulation of function 1089 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1090 * is not (yet) intended for heavy use from multiple CPUs. 1091 * 1092 * See the description of synchronize_rcu() for more detailed information 1093 * on memory ordering guarantees. 1094 */ 1095 void synchronize_rcu_tasks(void) 1096 { 1097 synchronize_rcu_tasks_generic(&rcu_tasks); 1098 } 1099 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1100 1101 /** 1102 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1103 * 1104 * Although the current implementation is guaranteed to wait, it is not 1105 * obligated to, for example, if there are no pending callbacks. 1106 */ 1107 void rcu_barrier_tasks(void) 1108 { 1109 rcu_barrier_tasks_generic(&rcu_tasks); 1110 } 1111 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1112 1113 int rcu_tasks_lazy_ms = -1; 1114 module_param(rcu_tasks_lazy_ms, int, 0444); 1115 1116 static int __init rcu_spawn_tasks_kthread(void) 1117 { 1118 cblist_init_generic(&rcu_tasks); 1119 rcu_tasks.gp_sleep = HZ / 10; 1120 rcu_tasks.init_fract = HZ / 10; 1121 if (rcu_tasks_lazy_ms >= 0) 1122 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1123 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1124 rcu_tasks.pertask_func = rcu_tasks_pertask; 1125 rcu_tasks.postscan_func = rcu_tasks_postscan; 1126 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1127 rcu_tasks.postgp_func = rcu_tasks_postgp; 1128 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1129 return 0; 1130 } 1131 1132 #if !defined(CONFIG_TINY_RCU) 1133 void show_rcu_tasks_classic_gp_kthread(void) 1134 { 1135 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1136 } 1137 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1138 #endif // !defined(CONFIG_TINY_RCU) 1139 1140 struct task_struct *get_rcu_tasks_gp_kthread(void) 1141 { 1142 return rcu_tasks.kthread_ptr; 1143 } 1144 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1145 1146 /* 1147 * Contribute to protect against tasklist scan blind spot while the 1148 * task is exiting and may be removed from the tasklist. See 1149 * corresponding synchronize_srcu() for further details. 1150 */ 1151 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1152 { 1153 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1154 } 1155 1156 /* 1157 * Contribute to protect against tasklist scan blind spot while the 1158 * task is exiting and may be removed from the tasklist. See 1159 * corresponding synchronize_srcu() for further details. 1160 */ 1161 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1162 { 1163 struct task_struct *t = current; 1164 1165 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1166 } 1167 1168 /* 1169 * Contribute to protect against tasklist scan blind spot while the 1170 * task is exiting and may be removed from the tasklist. See 1171 * corresponding synchronize_srcu() for further details. 1172 */ 1173 void exit_tasks_rcu_finish(void) 1174 { 1175 exit_tasks_rcu_stop(); 1176 exit_tasks_rcu_finish_trace(current); 1177 } 1178 1179 #else /* #ifdef CONFIG_TASKS_RCU */ 1180 void exit_tasks_rcu_start(void) { } 1181 void exit_tasks_rcu_stop(void) { } 1182 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1183 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1184 1185 #ifdef CONFIG_TASKS_RUDE_RCU 1186 1187 //////////////////////////////////////////////////////////////////////// 1188 // 1189 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1190 // passing an empty function to schedule_on_each_cpu(). This approach 1191 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1192 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1193 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1194 // and induces otherwise unnecessary context switches on all online CPUs, 1195 // whether idle or not. 1196 // 1197 // Callback handling is provided by the rcu_tasks_kthread() function. 1198 // 1199 // Ordering is provided by the scheduler's context-switch code. 1200 1201 // Empty function to allow workqueues to force a context switch. 1202 static void rcu_tasks_be_rude(struct work_struct *work) 1203 { 1204 } 1205 1206 // Wait for one rude RCU-tasks grace period. 1207 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1208 { 1209 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1210 schedule_on_each_cpu(rcu_tasks_be_rude); 1211 } 1212 1213 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1214 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1215 "RCU Tasks Rude"); 1216 1217 /** 1218 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1219 * @rhp: structure to be used for queueing the RCU updates. 1220 * @func: actual callback function to be invoked after the grace period 1221 * 1222 * The callback function will be invoked some time after a full grace 1223 * period elapses, in other words after all currently executing RCU 1224 * read-side critical sections have completed. call_rcu_tasks_rude() 1225 * assumes that the read-side critical sections end at context switch, 1226 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1227 * usermode execution is schedulable). As such, there are no read-side 1228 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1229 * this primitive is intended to determine that all tasks have passed 1230 * through a safe state, not so much for data-structure synchronization. 1231 * 1232 * See the description of call_rcu() for more detailed information on 1233 * memory ordering guarantees. 1234 */ 1235 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1236 { 1237 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1238 } 1239 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1240 1241 /** 1242 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1243 * 1244 * Control will return to the caller some time after a rude rcu-tasks 1245 * grace period has elapsed, in other words after all currently 1246 * executing rcu-tasks read-side critical sections have elapsed. These 1247 * read-side critical sections are delimited by calls to schedule(), 1248 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1249 * context), and (in theory, anyway) cond_resched(). 1250 * 1251 * This is a very specialized primitive, intended only for a few uses in 1252 * tracing and other situations requiring manipulation of function preambles 1253 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1254 * (yet) intended for heavy use from multiple CPUs. 1255 * 1256 * See the description of synchronize_rcu() for more detailed information 1257 * on memory ordering guarantees. 1258 */ 1259 void synchronize_rcu_tasks_rude(void) 1260 { 1261 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1262 } 1263 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1264 1265 /** 1266 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1267 * 1268 * Although the current implementation is guaranteed to wait, it is not 1269 * obligated to, for example, if there are no pending callbacks. 1270 */ 1271 void rcu_barrier_tasks_rude(void) 1272 { 1273 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1274 } 1275 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1276 1277 int rcu_tasks_rude_lazy_ms = -1; 1278 module_param(rcu_tasks_rude_lazy_ms, int, 0444); 1279 1280 static int __init rcu_spawn_tasks_rude_kthread(void) 1281 { 1282 cblist_init_generic(&rcu_tasks_rude); 1283 rcu_tasks_rude.gp_sleep = HZ / 10; 1284 if (rcu_tasks_rude_lazy_ms >= 0) 1285 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); 1286 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1287 return 0; 1288 } 1289 1290 #if !defined(CONFIG_TINY_RCU) 1291 void show_rcu_tasks_rude_gp_kthread(void) 1292 { 1293 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1294 } 1295 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1296 #endif // !defined(CONFIG_TINY_RCU) 1297 1298 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1299 { 1300 return rcu_tasks_rude.kthread_ptr; 1301 } 1302 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1303 1304 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1305 1306 //////////////////////////////////////////////////////////////////////// 1307 // 1308 // Tracing variant of Tasks RCU. This variant is designed to be used 1309 // to protect tracing hooks, including those of BPF. This variant 1310 // therefore: 1311 // 1312 // 1. Has explicit read-side markers to allow finite grace periods 1313 // in the face of in-kernel loops for PREEMPT=n builds. 1314 // 1315 // 2. Protects code in the idle loop, exception entry/exit, and 1316 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1317 // 1318 // 3. Avoids expensive read-side instructions, having overhead similar 1319 // to that of Preemptible RCU. 1320 // 1321 // There are of course downsides. For example, the grace-period code 1322 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1323 // in nohz_full userspace. If needed, these downsides can be at least 1324 // partially remedied. 1325 // 1326 // Perhaps most important, this variant of RCU does not affect the vanilla 1327 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1328 // readers can operate from idle, offline, and exception entry/exit in no 1329 // way allows rcu_preempt and rcu_sched readers to also do so. 1330 // 1331 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1332 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1333 // function sets these function pointers up so that rcu_tasks_wait_gp() 1334 // invokes these functions in this order: 1335 // 1336 // rcu_tasks_trace_pregp_step(): 1337 // Disables CPU hotplug, adds all currently executing tasks to the 1338 // holdout list, then checks the state of all tasks that blocked 1339 // or were preempted within their current RCU Tasks Trace read-side 1340 // critical section, adding them to the holdout list if appropriate. 1341 // Finally, this function re-enables CPU hotplug. 1342 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1343 // rcu_tasks_trace_postscan(): 1344 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1345 // to finish exiting. 1346 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1347 // Scans the holdout list, attempting to identify a quiescent state 1348 // for each task on the list. If there is a quiescent state, the 1349 // corresponding task is removed from the holdout list. Once this 1350 // list is empty, the grace period has completed. 1351 // rcu_tasks_trace_postgp(): 1352 // Provides the needed full memory barrier and does debug checks. 1353 // 1354 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1355 // 1356 // Pre-grace-period update-side code is ordered before the grace period 1357 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1358 // read-side code is ordered before the grace period by atomic operations 1359 // on .b.need_qs flag of each task involved in this process, or by scheduler 1360 // context-switch ordering (for locked-down non-running readers). 1361 1362 // The lockdep state must be outside of #ifdef to be useful. 1363 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1364 static struct lock_class_key rcu_lock_trace_key; 1365 struct lockdep_map rcu_trace_lock_map = 1366 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1367 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1368 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1369 1370 #ifdef CONFIG_TASKS_TRACE_RCU 1371 1372 // Record outstanding IPIs to each CPU. No point in sending two... 1373 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1374 1375 // The number of detections of task quiescent state relying on 1376 // heavyweight readers executing explicit memory barriers. 1377 static unsigned long n_heavy_reader_attempts; 1378 static unsigned long n_heavy_reader_updates; 1379 static unsigned long n_heavy_reader_ofl_updates; 1380 static unsigned long n_trc_holdouts; 1381 1382 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1383 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1384 "RCU Tasks Trace"); 1385 1386 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1387 static u8 rcu_ld_need_qs(struct task_struct *t) 1388 { 1389 smp_mb(); // Enforce full grace-period ordering. 1390 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1391 } 1392 1393 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1394 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1395 { 1396 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1397 smp_mb(); // Enforce full grace-period ordering. 1398 } 1399 1400 /* 1401 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1402 * the four-byte operand-size restriction of some platforms. 1403 * Returns the old value, which is often ignored. 1404 */ 1405 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1406 { 1407 union rcu_special ret; 1408 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1409 union rcu_special trs_new = trs_old; 1410 1411 if (trs_old.b.need_qs != old) 1412 return trs_old.b.need_qs; 1413 trs_new.b.need_qs = new; 1414 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1415 return ret.b.need_qs; 1416 } 1417 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1418 1419 /* 1420 * If we are the last reader, signal the grace-period kthread. 1421 * Also remove from the per-CPU list of blocked tasks. 1422 */ 1423 void rcu_read_unlock_trace_special(struct task_struct *t) 1424 { 1425 unsigned long flags; 1426 struct rcu_tasks_percpu *rtpcp; 1427 union rcu_special trs; 1428 1429 // Open-coded full-word version of rcu_ld_need_qs(). 1430 smp_mb(); // Enforce full grace-period ordering. 1431 trs = smp_load_acquire(&t->trc_reader_special); 1432 1433 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1434 smp_mb(); // Pairs with update-side barriers. 1435 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1436 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1437 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1438 TRC_NEED_QS_CHECKED); 1439 1440 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1441 } 1442 if (trs.b.blocked) { 1443 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1444 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1445 list_del_init(&t->trc_blkd_node); 1446 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1447 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1448 } 1449 WRITE_ONCE(t->trc_reader_nesting, 0); 1450 } 1451 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1452 1453 /* Add a newly blocked reader task to its CPU's list. */ 1454 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1455 { 1456 unsigned long flags; 1457 struct rcu_tasks_percpu *rtpcp; 1458 1459 local_irq_save(flags); 1460 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1461 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1462 t->trc_blkd_cpu = smp_processor_id(); 1463 if (!rtpcp->rtp_blkd_tasks.next) 1464 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1465 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1466 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1467 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1468 } 1469 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1470 1471 /* Add a task to the holdout list, if it is not already on the list. */ 1472 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1473 { 1474 if (list_empty(&t->trc_holdout_list)) { 1475 get_task_struct(t); 1476 list_add(&t->trc_holdout_list, bhp); 1477 n_trc_holdouts++; 1478 } 1479 } 1480 1481 /* Remove a task from the holdout list, if it is in fact present. */ 1482 static void trc_del_holdout(struct task_struct *t) 1483 { 1484 if (!list_empty(&t->trc_holdout_list)) { 1485 list_del_init(&t->trc_holdout_list); 1486 put_task_struct(t); 1487 n_trc_holdouts--; 1488 } 1489 } 1490 1491 /* IPI handler to check task state. */ 1492 static void trc_read_check_handler(void *t_in) 1493 { 1494 int nesting; 1495 struct task_struct *t = current; 1496 struct task_struct *texp = t_in; 1497 1498 // If the task is no longer running on this CPU, leave. 1499 if (unlikely(texp != t)) 1500 goto reset_ipi; // Already on holdout list, so will check later. 1501 1502 // If the task is not in a read-side critical section, and 1503 // if this is the last reader, awaken the grace-period kthread. 1504 nesting = READ_ONCE(t->trc_reader_nesting); 1505 if (likely(!nesting)) { 1506 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1507 goto reset_ipi; 1508 } 1509 // If we are racing with an rcu_read_unlock_trace(), try again later. 1510 if (unlikely(nesting < 0)) 1511 goto reset_ipi; 1512 1513 // Get here if the task is in a read-side critical section. 1514 // Set its state so that it will update state for the grace-period 1515 // kthread upon exit from that critical section. 1516 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1517 1518 reset_ipi: 1519 // Allow future IPIs to be sent on CPU and for task. 1520 // Also order this IPI handler against any later manipulations of 1521 // the intended task. 1522 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1523 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1524 } 1525 1526 /* Callback function for scheduler to check locked-down task. */ 1527 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1528 { 1529 struct list_head *bhp = bhp_in; 1530 int cpu = task_cpu(t); 1531 int nesting; 1532 bool ofl = cpu_is_offline(cpu); 1533 1534 if (task_curr(t) && !ofl) { 1535 // If no chance of heavyweight readers, do it the hard way. 1536 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1537 return -EINVAL; 1538 1539 // If heavyweight readers are enabled on the remote task, 1540 // we can inspect its state despite its currently running. 1541 // However, we cannot safely change its state. 1542 n_heavy_reader_attempts++; 1543 // Check for "running" idle tasks on offline CPUs. 1544 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1545 return -EINVAL; // No quiescent state, do it the hard way. 1546 n_heavy_reader_updates++; 1547 nesting = 0; 1548 } else { 1549 // The task is not running, so C-language access is safe. 1550 nesting = t->trc_reader_nesting; 1551 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1552 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1553 n_heavy_reader_ofl_updates++; 1554 } 1555 1556 // If not exiting a read-side critical section, mark as checked 1557 // so that the grace-period kthread will remove it from the 1558 // holdout list. 1559 if (!nesting) { 1560 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1561 return 0; // In QS, so done. 1562 } 1563 if (nesting < 0) 1564 return -EINVAL; // Reader transitioning, try again later. 1565 1566 // The task is in a read-side critical section, so set up its 1567 // state so that it will update state upon exit from that critical 1568 // section. 1569 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1570 trc_add_holdout(t, bhp); 1571 return 0; 1572 } 1573 1574 /* Attempt to extract the state for the specified task. */ 1575 static void trc_wait_for_one_reader(struct task_struct *t, 1576 struct list_head *bhp) 1577 { 1578 int cpu; 1579 1580 // If a previous IPI is still in flight, let it complete. 1581 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1582 return; 1583 1584 // The current task had better be in a quiescent state. 1585 if (t == current) { 1586 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1587 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1588 return; 1589 } 1590 1591 // Attempt to nail down the task for inspection. 1592 get_task_struct(t); 1593 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1594 put_task_struct(t); 1595 return; 1596 } 1597 put_task_struct(t); 1598 1599 // If this task is not yet on the holdout list, then we are in 1600 // an RCU read-side critical section. Otherwise, the invocation of 1601 // trc_add_holdout() that added it to the list did the necessary 1602 // get_task_struct(). Either way, the task cannot be freed out 1603 // from under this code. 1604 1605 // If currently running, send an IPI, either way, add to list. 1606 trc_add_holdout(t, bhp); 1607 if (task_curr(t) && 1608 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1609 // The task is currently running, so try IPIing it. 1610 cpu = task_cpu(t); 1611 1612 // If there is already an IPI outstanding, let it happen. 1613 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1614 return; 1615 1616 per_cpu(trc_ipi_to_cpu, cpu) = true; 1617 t->trc_ipi_to_cpu = cpu; 1618 rcu_tasks_trace.n_ipis++; 1619 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1620 // Just in case there is some other reason for 1621 // failure than the target CPU being offline. 1622 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1623 __func__, cpu); 1624 rcu_tasks_trace.n_ipis_fails++; 1625 per_cpu(trc_ipi_to_cpu, cpu) = false; 1626 t->trc_ipi_to_cpu = -1; 1627 } 1628 } 1629 } 1630 1631 /* 1632 * Initialize for first-round processing for the specified task. 1633 * Return false if task is NULL or already taken care of, true otherwise. 1634 */ 1635 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1636 { 1637 // During early boot when there is only the one boot CPU, there 1638 // is no idle task for the other CPUs. Also, the grace-period 1639 // kthread is always in a quiescent state. In addition, just return 1640 // if this task is already on the list. 1641 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1642 return false; 1643 1644 rcu_st_need_qs(t, 0); 1645 t->trc_ipi_to_cpu = -1; 1646 return true; 1647 } 1648 1649 /* Do first-round processing for the specified task. */ 1650 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1651 { 1652 if (rcu_tasks_trace_pertask_prep(t, true)) 1653 trc_wait_for_one_reader(t, hop); 1654 } 1655 1656 /* Initialize for a new RCU-tasks-trace grace period. */ 1657 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1658 { 1659 LIST_HEAD(blkd_tasks); 1660 int cpu; 1661 unsigned long flags; 1662 struct rcu_tasks_percpu *rtpcp; 1663 struct task_struct *t; 1664 1665 // There shouldn't be any old IPIs, but... 1666 for_each_possible_cpu(cpu) 1667 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1668 1669 // Disable CPU hotplug across the CPU scan for the benefit of 1670 // any IPIs that might be needed. This also waits for all readers 1671 // in CPU-hotplug code paths. 1672 cpus_read_lock(); 1673 1674 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1675 // allow safe access to the hop list. 1676 for_each_online_cpu(cpu) { 1677 rcu_read_lock(); 1678 // Note that cpu_curr_snapshot() picks up the target 1679 // CPU's current task while its runqueue is locked with 1680 // an smp_mb__after_spinlock(). This ensures that either 1681 // the grace-period kthread will see that task's read-side 1682 // critical section or the task will see the updater's pre-GP 1683 // accesses. The trailing smp_mb() in cpu_curr_snapshot() 1684 // does not currently play a role other than simplify 1685 // that function's ordering semantics. If these simplified 1686 // ordering semantics continue to be redundant, that smp_mb() 1687 // might be removed. 1688 t = cpu_curr_snapshot(cpu); 1689 if (rcu_tasks_trace_pertask_prep(t, true)) 1690 trc_add_holdout(t, hop); 1691 rcu_read_unlock(); 1692 cond_resched_tasks_rcu_qs(); 1693 } 1694 1695 // Only after all running tasks have been accounted for is it 1696 // safe to take care of the tasks that have blocked within their 1697 // current RCU tasks trace read-side critical section. 1698 for_each_possible_cpu(cpu) { 1699 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1700 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1701 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1702 while (!list_empty(&blkd_tasks)) { 1703 rcu_read_lock(); 1704 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1705 list_del_init(&t->trc_blkd_node); 1706 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1707 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1708 rcu_tasks_trace_pertask(t, hop); 1709 rcu_read_unlock(); 1710 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1711 } 1712 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1713 cond_resched_tasks_rcu_qs(); 1714 } 1715 1716 // Re-enable CPU hotplug now that the holdout list is populated. 1717 cpus_read_unlock(); 1718 } 1719 1720 /* 1721 * Do intermediate processing between task and holdout scans. 1722 */ 1723 static void rcu_tasks_trace_postscan(struct list_head *hop) 1724 { 1725 // Wait for late-stage exiting tasks to finish exiting. 1726 // These might have passed the call to exit_tasks_rcu_finish(). 1727 1728 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1729 synchronize_rcu(); 1730 // Any tasks that exit after this point will set 1731 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1732 } 1733 1734 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1735 struct trc_stall_chk_rdr { 1736 int nesting; 1737 int ipi_to_cpu; 1738 u8 needqs; 1739 }; 1740 1741 static int trc_check_slow_task(struct task_struct *t, void *arg) 1742 { 1743 struct trc_stall_chk_rdr *trc_rdrp = arg; 1744 1745 if (task_curr(t) && cpu_online(task_cpu(t))) 1746 return false; // It is running, so decline to inspect it. 1747 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1748 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1749 trc_rdrp->needqs = rcu_ld_need_qs(t); 1750 return true; 1751 } 1752 1753 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1754 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1755 { 1756 int cpu; 1757 struct trc_stall_chk_rdr trc_rdr; 1758 bool is_idle_tsk = is_idle_task(t); 1759 1760 if (*firstreport) { 1761 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1762 *firstreport = false; 1763 } 1764 cpu = task_cpu(t); 1765 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1766 pr_alert("P%d: %c%c\n", 1767 t->pid, 1768 ".I"[t->trc_ipi_to_cpu >= 0], 1769 ".i"[is_idle_tsk]); 1770 else 1771 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1772 t->pid, 1773 ".I"[trc_rdr.ipi_to_cpu >= 0], 1774 ".i"[is_idle_tsk], 1775 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1776 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1777 trc_rdr.nesting, 1778 " !CN"[trc_rdr.needqs & 0x3], 1779 " ?"[trc_rdr.needqs > 0x3], 1780 cpu, cpu_online(cpu) ? "" : "(offline)"); 1781 sched_show_task(t); 1782 } 1783 1784 /* List stalled IPIs for RCU tasks trace. */ 1785 static void show_stalled_ipi_trace(void) 1786 { 1787 int cpu; 1788 1789 for_each_possible_cpu(cpu) 1790 if (per_cpu(trc_ipi_to_cpu, cpu)) 1791 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1792 } 1793 1794 /* Do one scan of the holdout list. */ 1795 static void check_all_holdout_tasks_trace(struct list_head *hop, 1796 bool needreport, bool *firstreport) 1797 { 1798 struct task_struct *g, *t; 1799 1800 // Disable CPU hotplug across the holdout list scan for IPIs. 1801 cpus_read_lock(); 1802 1803 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1804 // If safe and needed, try to check the current task. 1805 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1806 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1807 trc_wait_for_one_reader(t, hop); 1808 1809 // If check succeeded, remove this task from the list. 1810 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1811 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1812 trc_del_holdout(t); 1813 else if (needreport) 1814 show_stalled_task_trace(t, firstreport); 1815 cond_resched_tasks_rcu_qs(); 1816 } 1817 1818 // Re-enable CPU hotplug now that the holdout list scan has completed. 1819 cpus_read_unlock(); 1820 1821 if (needreport) { 1822 if (*firstreport) 1823 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1824 show_stalled_ipi_trace(); 1825 } 1826 } 1827 1828 static void rcu_tasks_trace_empty_fn(void *unused) 1829 { 1830 } 1831 1832 /* Wait for grace period to complete and provide ordering. */ 1833 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1834 { 1835 int cpu; 1836 1837 // Wait for any lingering IPI handlers to complete. Note that 1838 // if a CPU has gone offline or transitioned to userspace in the 1839 // meantime, all IPI handlers should have been drained beforehand. 1840 // Yes, this assumes that CPUs process IPIs in order. If that ever 1841 // changes, there will need to be a recheck and/or timed wait. 1842 for_each_online_cpu(cpu) 1843 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1844 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1845 1846 smp_mb(); // Caller's code must be ordered after wakeup. 1847 // Pairs with pretty much every ordering primitive. 1848 } 1849 1850 /* Report any needed quiescent state for this exiting task. */ 1851 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1852 { 1853 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1854 1855 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1856 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1857 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1858 rcu_read_unlock_trace_special(t); 1859 else 1860 WRITE_ONCE(t->trc_reader_nesting, 0); 1861 } 1862 1863 /** 1864 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1865 * @rhp: structure to be used for queueing the RCU updates. 1866 * @func: actual callback function to be invoked after the grace period 1867 * 1868 * The callback function will be invoked some time after a trace rcu-tasks 1869 * grace period elapses, in other words after all currently executing 1870 * trace rcu-tasks read-side critical sections have completed. These 1871 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1872 * and rcu_read_unlock_trace(). 1873 * 1874 * See the description of call_rcu() for more detailed information on 1875 * memory ordering guarantees. 1876 */ 1877 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1878 { 1879 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1880 } 1881 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1882 1883 /** 1884 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1885 * 1886 * Control will return to the caller some time after a trace rcu-tasks 1887 * grace period has elapsed, in other words after all currently executing 1888 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1889 * critical sections are delimited by calls to rcu_read_lock_trace() 1890 * and rcu_read_unlock_trace(). 1891 * 1892 * This is a very specialized primitive, intended only for a few uses in 1893 * tracing and other situations requiring manipulation of function preambles 1894 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1895 * (yet) intended for heavy use from multiple CPUs. 1896 * 1897 * See the description of synchronize_rcu() for more detailed information 1898 * on memory ordering guarantees. 1899 */ 1900 void synchronize_rcu_tasks_trace(void) 1901 { 1902 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1903 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1904 } 1905 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1906 1907 /** 1908 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1909 * 1910 * Although the current implementation is guaranteed to wait, it is not 1911 * obligated to, for example, if there are no pending callbacks. 1912 */ 1913 void rcu_barrier_tasks_trace(void) 1914 { 1915 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1916 } 1917 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1918 1919 int rcu_tasks_trace_lazy_ms = -1; 1920 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 1921 1922 static int __init rcu_spawn_tasks_trace_kthread(void) 1923 { 1924 cblist_init_generic(&rcu_tasks_trace); 1925 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1926 rcu_tasks_trace.gp_sleep = HZ / 10; 1927 rcu_tasks_trace.init_fract = HZ / 10; 1928 } else { 1929 rcu_tasks_trace.gp_sleep = HZ / 200; 1930 if (rcu_tasks_trace.gp_sleep <= 0) 1931 rcu_tasks_trace.gp_sleep = 1; 1932 rcu_tasks_trace.init_fract = HZ / 200; 1933 if (rcu_tasks_trace.init_fract <= 0) 1934 rcu_tasks_trace.init_fract = 1; 1935 } 1936 if (rcu_tasks_trace_lazy_ms >= 0) 1937 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 1938 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1939 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1940 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1941 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1942 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1943 return 0; 1944 } 1945 1946 #if !defined(CONFIG_TINY_RCU) 1947 void show_rcu_tasks_trace_gp_kthread(void) 1948 { 1949 char buf[64]; 1950 1951 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", 1952 data_race(n_trc_holdouts), 1953 data_race(n_heavy_reader_ofl_updates), 1954 data_race(n_heavy_reader_updates), 1955 data_race(n_heavy_reader_attempts)); 1956 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1957 } 1958 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1959 #endif // !defined(CONFIG_TINY_RCU) 1960 1961 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 1962 { 1963 return rcu_tasks_trace.kthread_ptr; 1964 } 1965 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 1966 1967 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1968 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1969 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1970 1971 #ifndef CONFIG_TINY_RCU 1972 void show_rcu_tasks_gp_kthreads(void) 1973 { 1974 show_rcu_tasks_classic_gp_kthread(); 1975 show_rcu_tasks_rude_gp_kthread(); 1976 show_rcu_tasks_trace_gp_kthread(); 1977 } 1978 #endif /* #ifndef CONFIG_TINY_RCU */ 1979 1980 #ifdef CONFIG_PROVE_RCU 1981 struct rcu_tasks_test_desc { 1982 struct rcu_head rh; 1983 const char *name; 1984 bool notrun; 1985 unsigned long runstart; 1986 }; 1987 1988 static struct rcu_tasks_test_desc tests[] = { 1989 { 1990 .name = "call_rcu_tasks()", 1991 /* If not defined, the test is skipped. */ 1992 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1993 }, 1994 { 1995 .name = "call_rcu_tasks_rude()", 1996 /* If not defined, the test is skipped. */ 1997 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1998 }, 1999 { 2000 .name = "call_rcu_tasks_trace()", 2001 /* If not defined, the test is skipped. */ 2002 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 2003 } 2004 }; 2005 2006 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2007 { 2008 struct rcu_tasks_test_desc *rttd = 2009 container_of(rhp, struct rcu_tasks_test_desc, rh); 2010 2011 pr_info("Callback from %s invoked.\n", rttd->name); 2012 2013 rttd->notrun = false; 2014 } 2015 2016 static void rcu_tasks_initiate_self_tests(void) 2017 { 2018 pr_info("Running RCU-tasks wait API self tests\n"); 2019 #ifdef CONFIG_TASKS_RCU 2020 tests[0].runstart = jiffies; 2021 synchronize_rcu_tasks(); 2022 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2023 #endif 2024 2025 #ifdef CONFIG_TASKS_RUDE_RCU 2026 tests[1].runstart = jiffies; 2027 synchronize_rcu_tasks_rude(); 2028 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 2029 #endif 2030 2031 #ifdef CONFIG_TASKS_TRACE_RCU 2032 tests[2].runstart = jiffies; 2033 synchronize_rcu_tasks_trace(); 2034 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 2035 #endif 2036 } 2037 2038 /* 2039 * Return: 0 - test passed 2040 * 1 - test failed, but have not timed out yet 2041 * -1 - test failed and timed out 2042 */ 2043 static int rcu_tasks_verify_self_tests(void) 2044 { 2045 int ret = 0; 2046 int i; 2047 unsigned long bst = rcu_task_stall_timeout; 2048 2049 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2050 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2051 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2052 while (tests[i].notrun) { // still hanging. 2053 if (time_after(jiffies, tests[i].runstart + bst)) { 2054 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2055 ret = -1; 2056 break; 2057 } 2058 ret = 1; 2059 break; 2060 } 2061 } 2062 WARN_ON(ret < 0); 2063 2064 return ret; 2065 } 2066 2067 /* 2068 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2069 * test passes or has timed out. 2070 */ 2071 static struct delayed_work rcu_tasks_verify_work; 2072 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2073 { 2074 int ret = rcu_tasks_verify_self_tests(); 2075 2076 if (ret <= 0) 2077 return; 2078 2079 /* Test fails but not timed out yet, reschedule another check */ 2080 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2081 } 2082 2083 static int rcu_tasks_verify_schedule_work(void) 2084 { 2085 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2086 rcu_tasks_verify_work_fn(NULL); 2087 return 0; 2088 } 2089 late_initcall(rcu_tasks_verify_schedule_work); 2090 #else /* #ifdef CONFIG_PROVE_RCU */ 2091 static void rcu_tasks_initiate_self_tests(void) { } 2092 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2093 2094 void __init rcu_init_tasks_generic(void) 2095 { 2096 #ifdef CONFIG_TASKS_RCU 2097 rcu_spawn_tasks_kthread(); 2098 #endif 2099 2100 #ifdef CONFIG_TASKS_RUDE_RCU 2101 rcu_spawn_tasks_rude_kthread(); 2102 #endif 2103 2104 #ifdef CONFIG_TASKS_TRACE_RCU 2105 rcu_spawn_tasks_trace_kthread(); 2106 #endif 2107 2108 // Run the self-tests. 2109 rcu_tasks_initiate_self_tests(); 2110 } 2111 2112 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2113 static inline void rcu_tasks_bootup_oddness(void) {} 2114 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2115