xref: /openbmc/linux/kernel/rcu/tasks.h (revision 7b7090b4)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(void);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @cpu: CPU number corresponding to this entry.
33  * @rtpp: Pointer to the rcu_tasks structure.
34  */
35 struct rcu_tasks_percpu {
36 	struct rcu_segcblist cblist;
37 	raw_spinlock_t __private lock;
38 	unsigned long rtp_jiffies;
39 	unsigned long rtp_n_lock_retries;
40 	struct work_struct rtp_work;
41 	struct irq_work rtp_irq_work;
42 	struct rcu_head barrier_q_head;
43 	int cpu;
44 	struct rcu_tasks *rtpp;
45 };
46 
47 /**
48  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
49  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
50  * @cbs_gbl_lock: Lock protecting callback list.
51  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
52  * @gp_func: This flavor's grace-period-wait function.
53  * @gp_state: Grace period's most recent state transition (debugging).
54  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
55  * @init_fract: Initial backoff sleep interval.
56  * @gp_jiffies: Time of last @gp_state transition.
57  * @gp_start: Most recent grace-period start in jiffies.
58  * @tasks_gp_seq: Number of grace periods completed since boot.
59  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
60  * @n_ipis_fails: Number of IPI-send failures.
61  * @pregp_func: This flavor's pre-grace-period function (optional).
62  * @pertask_func: This flavor's per-task scan function (optional).
63  * @postscan_func: This flavor's post-task scan function (optional).
64  * @holdouts_func: This flavor's holdout-list scan function (optional).
65  * @postgp_func: This flavor's post-grace-period function (optional).
66  * @call_func: This flavor's call_rcu()-equivalent function.
67  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
68  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
69  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
70  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
71  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
72  * @barrier_q_mutex: Serialize barrier operations.
73  * @barrier_q_count: Number of queues being waited on.
74  * @barrier_q_completion: Barrier wait/wakeup mechanism.
75  * @barrier_q_seq: Sequence number for barrier operations.
76  * @name: This flavor's textual name.
77  * @kname: This flavor's kthread name.
78  */
79 struct rcu_tasks {
80 	struct rcuwait cbs_wait;
81 	raw_spinlock_t cbs_gbl_lock;
82 	int gp_state;
83 	int gp_sleep;
84 	int init_fract;
85 	unsigned long gp_jiffies;
86 	unsigned long gp_start;
87 	unsigned long tasks_gp_seq;
88 	unsigned long n_ipis;
89 	unsigned long n_ipis_fails;
90 	struct task_struct *kthread_ptr;
91 	rcu_tasks_gp_func_t gp_func;
92 	pregp_func_t pregp_func;
93 	pertask_func_t pertask_func;
94 	postscan_func_t postscan_func;
95 	holdouts_func_t holdouts_func;
96 	postgp_func_t postgp_func;
97 	call_rcu_func_t call_func;
98 	struct rcu_tasks_percpu __percpu *rtpcpu;
99 	int percpu_enqueue_shift;
100 	int percpu_enqueue_lim;
101 	int percpu_dequeue_lim;
102 	unsigned long percpu_dequeue_gpseq;
103 	struct mutex barrier_q_mutex;
104 	atomic_t barrier_q_count;
105 	struct completion barrier_q_completion;
106 	unsigned long barrier_q_seq;
107 	char *name;
108 	char *kname;
109 };
110 
111 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
112 
113 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
114 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
115 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
116 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
117 };											\
118 static struct rcu_tasks rt_name =							\
119 {											\
120 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
121 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
122 	.gp_func = gp,									\
123 	.call_func = call,								\
124 	.rtpcpu = &rt_name ## __percpu,							\
125 	.name = n,									\
126 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
127 	.percpu_enqueue_lim = 1,							\
128 	.percpu_dequeue_lim = 1,							\
129 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
130 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
131 	.kname = #rt_name,								\
132 }
133 
134 /* Track exiting tasks in order to allow them to be waited for. */
135 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
136 
137 /* Avoid IPIing CPUs early in the grace period. */
138 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
139 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
140 module_param(rcu_task_ipi_delay, int, 0644);
141 
142 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
143 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
144 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
145 module_param(rcu_task_stall_timeout, int, 0644);
146 #define RCU_TASK_STALL_INFO (HZ * 10)
147 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
148 module_param(rcu_task_stall_info, int, 0644);
149 static int rcu_task_stall_info_mult __read_mostly = 3;
150 module_param(rcu_task_stall_info_mult, int, 0444);
151 
152 static int rcu_task_enqueue_lim __read_mostly = -1;
153 module_param(rcu_task_enqueue_lim, int, 0444);
154 
155 static bool rcu_task_cb_adjust;
156 static int rcu_task_contend_lim __read_mostly = 100;
157 module_param(rcu_task_contend_lim, int, 0444);
158 static int rcu_task_collapse_lim __read_mostly = 10;
159 module_param(rcu_task_collapse_lim, int, 0444);
160 
161 /* RCU tasks grace-period state for debugging. */
162 #define RTGS_INIT		 0
163 #define RTGS_WAIT_WAIT_CBS	 1
164 #define RTGS_WAIT_GP		 2
165 #define RTGS_PRE_WAIT_GP	 3
166 #define RTGS_SCAN_TASKLIST	 4
167 #define RTGS_POST_SCAN_TASKLIST	 5
168 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
169 #define RTGS_SCAN_HOLDOUTS	 7
170 #define RTGS_POST_GP		 8
171 #define RTGS_WAIT_READERS	 9
172 #define RTGS_INVOKE_CBS		10
173 #define RTGS_WAIT_CBS		11
174 #ifndef CONFIG_TINY_RCU
175 static const char * const rcu_tasks_gp_state_names[] = {
176 	"RTGS_INIT",
177 	"RTGS_WAIT_WAIT_CBS",
178 	"RTGS_WAIT_GP",
179 	"RTGS_PRE_WAIT_GP",
180 	"RTGS_SCAN_TASKLIST",
181 	"RTGS_POST_SCAN_TASKLIST",
182 	"RTGS_WAIT_SCAN_HOLDOUTS",
183 	"RTGS_SCAN_HOLDOUTS",
184 	"RTGS_POST_GP",
185 	"RTGS_WAIT_READERS",
186 	"RTGS_INVOKE_CBS",
187 	"RTGS_WAIT_CBS",
188 };
189 #endif /* #ifndef CONFIG_TINY_RCU */
190 
191 ////////////////////////////////////////////////////////////////////////
192 //
193 // Generic code.
194 
195 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
196 
197 /* Record grace-period phase and time. */
198 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
199 {
200 	rtp->gp_state = newstate;
201 	rtp->gp_jiffies = jiffies;
202 }
203 
204 #ifndef CONFIG_TINY_RCU
205 /* Return state name. */
206 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
207 {
208 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
209 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
210 
211 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
212 		return "???";
213 	return rcu_tasks_gp_state_names[j];
214 }
215 #endif /* #ifndef CONFIG_TINY_RCU */
216 
217 // Initialize per-CPU callback lists for the specified flavor of
218 // Tasks RCU.
219 static void cblist_init_generic(struct rcu_tasks *rtp)
220 {
221 	int cpu;
222 	unsigned long flags;
223 	int lim;
224 	int shift;
225 
226 	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
227 	if (rcu_task_enqueue_lim < 0) {
228 		rcu_task_enqueue_lim = 1;
229 		rcu_task_cb_adjust = true;
230 		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
231 	} else if (rcu_task_enqueue_lim == 0) {
232 		rcu_task_enqueue_lim = 1;
233 	}
234 	lim = rcu_task_enqueue_lim;
235 
236 	if (lim > nr_cpu_ids)
237 		lim = nr_cpu_ids;
238 	shift = ilog2(nr_cpu_ids / lim);
239 	if (((nr_cpu_ids - 1) >> shift) >= lim)
240 		shift++;
241 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
242 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
243 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
244 	for_each_possible_cpu(cpu) {
245 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
246 
247 		WARN_ON_ONCE(!rtpcp);
248 		if (cpu)
249 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
250 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
251 		if (rcu_segcblist_empty(&rtpcp->cblist))
252 			rcu_segcblist_init(&rtpcp->cblist);
253 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
254 		rtpcp->cpu = cpu;
255 		rtpcp->rtpp = rtp;
256 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
257 	}
258 	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
259 	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
260 }
261 
262 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
263 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
264 {
265 	struct rcu_tasks *rtp;
266 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
267 
268 	rtp = rtpcp->rtpp;
269 	rcuwait_wake_up(&rtp->cbs_wait);
270 }
271 
272 // Enqueue a callback for the specified flavor of Tasks RCU.
273 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
274 				   struct rcu_tasks *rtp)
275 {
276 	int chosen_cpu;
277 	unsigned long flags;
278 	int ideal_cpu;
279 	unsigned long j;
280 	bool needadjust = false;
281 	bool needwake;
282 	struct rcu_tasks_percpu *rtpcp;
283 
284 	rhp->next = NULL;
285 	rhp->func = func;
286 	local_irq_save(flags);
287 	rcu_read_lock();
288 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
289 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
290 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
291 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
292 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
293 		j = jiffies;
294 		if (rtpcp->rtp_jiffies != j) {
295 			rtpcp->rtp_jiffies = j;
296 			rtpcp->rtp_n_lock_retries = 0;
297 		}
298 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
299 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
300 			needadjust = true;  // Defer adjustment to avoid deadlock.
301 	}
302 	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
303 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
304 		cblist_init_generic(rtp);
305 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
306 	}
307 	needwake = rcu_segcblist_empty(&rtpcp->cblist);
308 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
309 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
310 	if (unlikely(needadjust)) {
311 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
312 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
313 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
314 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
315 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
316 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
317 		}
318 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
319 	}
320 	rcu_read_unlock();
321 	/* We can't create the thread unless interrupts are enabled. */
322 	if (needwake && READ_ONCE(rtp->kthread_ptr))
323 		irq_work_queue(&rtpcp->rtp_irq_work);
324 }
325 
326 // Wait for a grace period for the specified flavor of Tasks RCU.
327 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
328 {
329 	/* Complain if the scheduler has not started.  */
330 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
331 			 "synchronize_rcu_tasks called too soon");
332 
333 	/* Wait for the grace period. */
334 	wait_rcu_gp(rtp->call_func);
335 }
336 
337 // RCU callback function for rcu_barrier_tasks_generic().
338 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
339 {
340 	struct rcu_tasks *rtp;
341 	struct rcu_tasks_percpu *rtpcp;
342 
343 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
344 	rtp = rtpcp->rtpp;
345 	if (atomic_dec_and_test(&rtp->barrier_q_count))
346 		complete(&rtp->barrier_q_completion);
347 }
348 
349 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
350 // Operates in a manner similar to rcu_barrier().
351 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
352 {
353 	int cpu;
354 	unsigned long flags;
355 	struct rcu_tasks_percpu *rtpcp;
356 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
357 
358 	mutex_lock(&rtp->barrier_q_mutex);
359 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
360 		smp_mb();
361 		mutex_unlock(&rtp->barrier_q_mutex);
362 		return;
363 	}
364 	rcu_seq_start(&rtp->barrier_q_seq);
365 	init_completion(&rtp->barrier_q_completion);
366 	atomic_set(&rtp->barrier_q_count, 2);
367 	for_each_possible_cpu(cpu) {
368 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
369 			break;
370 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
371 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
372 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
373 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
374 			atomic_inc(&rtp->barrier_q_count);
375 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
376 	}
377 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
378 		complete(&rtp->barrier_q_completion);
379 	wait_for_completion(&rtp->barrier_q_completion);
380 	rcu_seq_end(&rtp->barrier_q_seq);
381 	mutex_unlock(&rtp->barrier_q_mutex);
382 }
383 
384 // Advance callbacks and indicate whether either a grace period or
385 // callback invocation is needed.
386 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
387 {
388 	int cpu;
389 	unsigned long flags;
390 	long n;
391 	long ncbs = 0;
392 	long ncbsnz = 0;
393 	int needgpcb = 0;
394 
395 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
396 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
397 
398 		/* Advance and accelerate any new callbacks. */
399 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
400 			continue;
401 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
402 		// Should we shrink down to a single callback queue?
403 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
404 		if (n) {
405 			ncbs += n;
406 			if (cpu > 0)
407 				ncbsnz += n;
408 		}
409 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
410 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
411 		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
412 			needgpcb |= 0x3;
413 		if (!rcu_segcblist_empty(&rtpcp->cblist))
414 			needgpcb |= 0x1;
415 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
416 	}
417 
418 	// Shrink down to a single callback queue if appropriate.
419 	// This is done in two stages: (1) If there are no more than
420 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
421 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
422 	// if there has not been an increase in callbacks, limit dequeuing
423 	// to CPU 0.  Note the matching RCU read-side critical section in
424 	// call_rcu_tasks_generic().
425 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
426 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
427 		if (rtp->percpu_enqueue_lim > 1) {
428 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
429 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
430 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
431 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
432 		}
433 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
434 	}
435 	if (rcu_task_cb_adjust && !ncbsnz &&
436 	    poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
437 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
438 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
439 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
440 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
441 		}
442 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
443 	}
444 
445 	return needgpcb;
446 }
447 
448 // Advance callbacks and invoke any that are ready.
449 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
450 {
451 	int cpu;
452 	int cpunext;
453 	unsigned long flags;
454 	int len;
455 	struct rcu_head *rhp;
456 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
457 	struct rcu_tasks_percpu *rtpcp_next;
458 
459 	cpu = rtpcp->cpu;
460 	cpunext = cpu * 2 + 1;
461 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
462 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
463 		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
464 		cpunext++;
465 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
466 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
467 			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
468 		}
469 	}
470 
471 	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
472 		return;
473 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
474 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
475 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
476 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
477 	len = rcl.len;
478 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
479 		local_bh_disable();
480 		rhp->func(rhp);
481 		local_bh_enable();
482 		cond_resched();
483 	}
484 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
485 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
486 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
487 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
488 }
489 
490 // Workqueue flood to advance callbacks and invoke any that are ready.
491 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
492 {
493 	struct rcu_tasks *rtp;
494 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
495 
496 	rtp = rtpcp->rtpp;
497 	rcu_tasks_invoke_cbs(rtp, rtpcp);
498 }
499 
500 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
501 static int __noreturn rcu_tasks_kthread(void *arg)
502 {
503 	int needgpcb;
504 	struct rcu_tasks *rtp = arg;
505 
506 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
507 	housekeeping_affine(current, HK_TYPE_RCU);
508 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
509 
510 	/*
511 	 * Each pass through the following loop makes one check for
512 	 * newly arrived callbacks, and, if there are some, waits for
513 	 * one RCU-tasks grace period and then invokes the callbacks.
514 	 * This loop is terminated by the system going down.  ;-)
515 	 */
516 	for (;;) {
517 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
518 
519 		/* If there were none, wait a bit and start over. */
520 		rcuwait_wait_event(&rtp->cbs_wait,
521 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
522 				   TASK_IDLE);
523 
524 		if (needgpcb & 0x2) {
525 			// Wait for one grace period.
526 			set_tasks_gp_state(rtp, RTGS_WAIT_GP);
527 			rtp->gp_start = jiffies;
528 			rcu_seq_start(&rtp->tasks_gp_seq);
529 			rtp->gp_func(rtp);
530 			rcu_seq_end(&rtp->tasks_gp_seq);
531 		}
532 
533 		/* Invoke callbacks. */
534 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
535 		rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
536 
537 		/* Paranoid sleep to keep this from entering a tight loop */
538 		schedule_timeout_idle(rtp->gp_sleep);
539 	}
540 }
541 
542 /* Spawn RCU-tasks grace-period kthread. */
543 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
544 {
545 	struct task_struct *t;
546 
547 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
548 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
549 		return;
550 	smp_mb(); /* Ensure others see full kthread. */
551 }
552 
553 #ifndef CONFIG_TINY_RCU
554 
555 /*
556  * Print any non-default Tasks RCU settings.
557  */
558 static void __init rcu_tasks_bootup_oddness(void)
559 {
560 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
561 	int rtsimc;
562 
563 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
564 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
565 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
566 	if (rtsimc != rcu_task_stall_info_mult) {
567 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
568 		rcu_task_stall_info_mult = rtsimc;
569 	}
570 #endif /* #ifdef CONFIG_TASKS_RCU */
571 #ifdef CONFIG_TASKS_RCU
572 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
573 #endif /* #ifdef CONFIG_TASKS_RCU */
574 #ifdef CONFIG_TASKS_RUDE_RCU
575 	pr_info("\tRude variant of Tasks RCU enabled.\n");
576 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
577 #ifdef CONFIG_TASKS_TRACE_RCU
578 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
579 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
580 }
581 
582 #endif /* #ifndef CONFIG_TINY_RCU */
583 
584 #ifndef CONFIG_TINY_RCU
585 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
586 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
587 {
588 	int cpu;
589 	bool havecbs = false;
590 
591 	for_each_possible_cpu(cpu) {
592 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
593 
594 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
595 			havecbs = true;
596 			break;
597 		}
598 	}
599 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
600 		rtp->kname,
601 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
602 		jiffies - data_race(rtp->gp_jiffies),
603 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
604 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
605 		".k"[!!data_race(rtp->kthread_ptr)],
606 		".C"[havecbs],
607 		s);
608 }
609 #endif // #ifndef CONFIG_TINY_RCU
610 
611 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
612 
613 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
614 
615 ////////////////////////////////////////////////////////////////////////
616 //
617 // Shared code between task-list-scanning variants of Tasks RCU.
618 
619 /* Wait for one RCU-tasks grace period. */
620 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
621 {
622 	struct task_struct *g;
623 	int fract;
624 	LIST_HEAD(holdouts);
625 	unsigned long j;
626 	unsigned long lastinfo;
627 	unsigned long lastreport;
628 	bool reported = false;
629 	int rtsi;
630 	struct task_struct *t;
631 
632 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
633 	rtp->pregp_func();
634 
635 	/*
636 	 * There were callbacks, so we need to wait for an RCU-tasks
637 	 * grace period.  Start off by scanning the task list for tasks
638 	 * that are not already voluntarily blocked.  Mark these tasks
639 	 * and make a list of them in holdouts.
640 	 */
641 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
642 	rcu_read_lock();
643 	for_each_process_thread(g, t)
644 		rtp->pertask_func(t, &holdouts);
645 	rcu_read_unlock();
646 
647 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
648 	rtp->postscan_func(&holdouts);
649 
650 	/*
651 	 * Each pass through the following loop scans the list of holdout
652 	 * tasks, removing any that are no longer holdouts.  When the list
653 	 * is empty, we are done.
654 	 */
655 	lastreport = jiffies;
656 	lastinfo = lastreport;
657 	rtsi = READ_ONCE(rcu_task_stall_info);
658 
659 	// Start off with initial wait and slowly back off to 1 HZ wait.
660 	fract = rtp->init_fract;
661 
662 	while (!list_empty(&holdouts)) {
663 		ktime_t exp;
664 		bool firstreport;
665 		bool needreport;
666 		int rtst;
667 
668 		// Slowly back off waiting for holdouts
669 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
670 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
671 			schedule_timeout_idle(fract);
672 		} else {
673 			exp = jiffies_to_nsecs(fract);
674 			__set_current_state(TASK_IDLE);
675 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
676 		}
677 
678 		if (fract < HZ)
679 			fract++;
680 
681 		rtst = READ_ONCE(rcu_task_stall_timeout);
682 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
683 		if (needreport) {
684 			lastreport = jiffies;
685 			reported = true;
686 		}
687 		firstreport = true;
688 		WARN_ON(signal_pending(current));
689 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
690 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
691 
692 		// Print pre-stall informational messages if needed.
693 		j = jiffies;
694 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
695 			lastinfo = j;
696 			rtsi = rtsi * rcu_task_stall_info_mult;
697 			pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
698 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
699 		}
700 	}
701 
702 	set_tasks_gp_state(rtp, RTGS_POST_GP);
703 	rtp->postgp_func(rtp);
704 }
705 
706 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
707 
708 #ifdef CONFIG_TASKS_RCU
709 
710 ////////////////////////////////////////////////////////////////////////
711 //
712 // Simple variant of RCU whose quiescent states are voluntary context
713 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
714 // As such, grace periods can take one good long time.  There are no
715 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
716 // because this implementation is intended to get the system into a safe
717 // state for some of the manipulations involved in tracing and the like.
718 // Finally, this implementation does not support high call_rcu_tasks()
719 // rates from multiple CPUs.  If this is required, per-CPU callback lists
720 // will be needed.
721 //
722 // The implementation uses rcu_tasks_wait_gp(), which relies on function
723 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
724 // function sets these function pointers up so that rcu_tasks_wait_gp()
725 // invokes these functions in this order:
726 //
727 // rcu_tasks_pregp_step():
728 //	Invokes synchronize_rcu() in order to wait for all in-flight
729 //	t->on_rq and t->nvcsw transitions to complete.	This works because
730 //	all such transitions are carried out with interrupts disabled.
731 // rcu_tasks_pertask(), invoked on every non-idle task:
732 //	For every runnable non-idle task other than the current one, use
733 //	get_task_struct() to pin down that task, snapshot that task's
734 //	number of voluntary context switches, and add that task to the
735 //	holdout list.
736 // rcu_tasks_postscan():
737 //	Invoke synchronize_srcu() to ensure that all tasks that were
738 //	in the process of exiting (and which thus might not know to
739 //	synchronize with this RCU Tasks grace period) have completed
740 //	exiting.
741 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
742 //	Scans the holdout list, attempting to identify a quiescent state
743 //	for each task on the list.  If there is a quiescent state, the
744 //	corresponding task is removed from the holdout list.
745 // rcu_tasks_postgp():
746 //	Invokes synchronize_rcu() in order to ensure that all prior
747 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
748 //	to have happened before the end of this RCU Tasks grace period.
749 //	Again, this works because all such transitions are carried out
750 //	with interrupts disabled.
751 //
752 // For each exiting task, the exit_tasks_rcu_start() and
753 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
754 // read-side critical sections waited for by rcu_tasks_postscan().
755 //
756 // Pre-grace-period update-side code is ordered before the grace
757 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
758 // is ordered before the grace period via synchronize_rcu() call in
759 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
760 // disabling.
761 
762 /* Pre-grace-period preparation. */
763 static void rcu_tasks_pregp_step(void)
764 {
765 	/*
766 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
767 	 * to complete.  Invoking synchronize_rcu() suffices because all
768 	 * these transitions occur with interrupts disabled.  Without this
769 	 * synchronize_rcu(), a read-side critical section that started
770 	 * before the grace period might be incorrectly seen as having
771 	 * started after the grace period.
772 	 *
773 	 * This synchronize_rcu() also dispenses with the need for a
774 	 * memory barrier on the first store to t->rcu_tasks_holdout,
775 	 * as it forces the store to happen after the beginning of the
776 	 * grace period.
777 	 */
778 	synchronize_rcu();
779 }
780 
781 /* Per-task initial processing. */
782 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
783 {
784 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
785 		get_task_struct(t);
786 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
787 		WRITE_ONCE(t->rcu_tasks_holdout, true);
788 		list_add(&t->rcu_tasks_holdout_list, hop);
789 	}
790 }
791 
792 /* Processing between scanning taskslist and draining the holdout list. */
793 static void rcu_tasks_postscan(struct list_head *hop)
794 {
795 	/*
796 	 * Wait for tasks that are in the process of exiting.  This
797 	 * does only part of the job, ensuring that all tasks that were
798 	 * previously exiting reach the point where they have disabled
799 	 * preemption, allowing the later synchronize_rcu() to finish
800 	 * the job.
801 	 */
802 	synchronize_srcu(&tasks_rcu_exit_srcu);
803 }
804 
805 /* See if tasks are still holding out, complain if so. */
806 static void check_holdout_task(struct task_struct *t,
807 			       bool needreport, bool *firstreport)
808 {
809 	int cpu;
810 
811 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
812 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
813 	    !READ_ONCE(t->on_rq) ||
814 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
815 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
816 		WRITE_ONCE(t->rcu_tasks_holdout, false);
817 		list_del_init(&t->rcu_tasks_holdout_list);
818 		put_task_struct(t);
819 		return;
820 	}
821 	rcu_request_urgent_qs_task(t);
822 	if (!needreport)
823 		return;
824 	if (*firstreport) {
825 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
826 		*firstreport = false;
827 	}
828 	cpu = task_cpu(t);
829 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
830 		 t, ".I"[is_idle_task(t)],
831 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
832 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
833 		 t->rcu_tasks_idle_cpu, cpu);
834 	sched_show_task(t);
835 }
836 
837 /* Scan the holdout lists for tasks no longer holding out. */
838 static void check_all_holdout_tasks(struct list_head *hop,
839 				    bool needreport, bool *firstreport)
840 {
841 	struct task_struct *t, *t1;
842 
843 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
844 		check_holdout_task(t, needreport, firstreport);
845 		cond_resched();
846 	}
847 }
848 
849 /* Finish off the Tasks-RCU grace period. */
850 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
851 {
852 	/*
853 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
854 	 * memory barriers prior to them in the schedule() path, memory
855 	 * reordering on other CPUs could cause their RCU-tasks read-side
856 	 * critical sections to extend past the end of the grace period.
857 	 * However, because these ->nvcsw updates are carried out with
858 	 * interrupts disabled, we can use synchronize_rcu() to force the
859 	 * needed ordering on all such CPUs.
860 	 *
861 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
862 	 * accesses to be within the grace period, avoiding the need for
863 	 * memory barriers for ->rcu_tasks_holdout accesses.
864 	 *
865 	 * In addition, this synchronize_rcu() waits for exiting tasks
866 	 * to complete their final preempt_disable() region of execution,
867 	 * cleaning up after the synchronize_srcu() above.
868 	 */
869 	synchronize_rcu();
870 }
871 
872 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
873 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
874 
875 /**
876  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
877  * @rhp: structure to be used for queueing the RCU updates.
878  * @func: actual callback function to be invoked after the grace period
879  *
880  * The callback function will be invoked some time after a full grace
881  * period elapses, in other words after all currently executing RCU
882  * read-side critical sections have completed. call_rcu_tasks() assumes
883  * that the read-side critical sections end at a voluntary context
884  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
885  * or transition to usermode execution.  As such, there are no read-side
886  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
887  * this primitive is intended to determine that all tasks have passed
888  * through a safe state, not so much for data-structure synchronization.
889  *
890  * See the description of call_rcu() for more detailed information on
891  * memory ordering guarantees.
892  */
893 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
894 {
895 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
896 }
897 EXPORT_SYMBOL_GPL(call_rcu_tasks);
898 
899 /**
900  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
901  *
902  * Control will return to the caller some time after a full rcu-tasks
903  * grace period has elapsed, in other words after all currently
904  * executing rcu-tasks read-side critical sections have elapsed.  These
905  * read-side critical sections are delimited by calls to schedule(),
906  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
907  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
908  *
909  * This is a very specialized primitive, intended only for a few uses in
910  * tracing and other situations requiring manipulation of function
911  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
912  * is not (yet) intended for heavy use from multiple CPUs.
913  *
914  * See the description of synchronize_rcu() for more detailed information
915  * on memory ordering guarantees.
916  */
917 void synchronize_rcu_tasks(void)
918 {
919 	synchronize_rcu_tasks_generic(&rcu_tasks);
920 }
921 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
922 
923 /**
924  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
925  *
926  * Although the current implementation is guaranteed to wait, it is not
927  * obligated to, for example, if there are no pending callbacks.
928  */
929 void rcu_barrier_tasks(void)
930 {
931 	rcu_barrier_tasks_generic(&rcu_tasks);
932 }
933 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
934 
935 static int __init rcu_spawn_tasks_kthread(void)
936 {
937 	cblist_init_generic(&rcu_tasks);
938 	rcu_tasks.gp_sleep = HZ / 10;
939 	rcu_tasks.init_fract = HZ / 10;
940 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
941 	rcu_tasks.pertask_func = rcu_tasks_pertask;
942 	rcu_tasks.postscan_func = rcu_tasks_postscan;
943 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
944 	rcu_tasks.postgp_func = rcu_tasks_postgp;
945 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
946 	return 0;
947 }
948 
949 #if !defined(CONFIG_TINY_RCU)
950 void show_rcu_tasks_classic_gp_kthread(void)
951 {
952 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
953 }
954 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
955 #endif // !defined(CONFIG_TINY_RCU)
956 
957 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
958 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
959 {
960 	preempt_disable();
961 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
962 	preempt_enable();
963 }
964 
965 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
966 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
967 {
968 	struct task_struct *t = current;
969 
970 	preempt_disable();
971 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
972 	preempt_enable();
973 	exit_tasks_rcu_finish_trace(t);
974 }
975 
976 #else /* #ifdef CONFIG_TASKS_RCU */
977 void exit_tasks_rcu_start(void) { }
978 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
979 #endif /* #else #ifdef CONFIG_TASKS_RCU */
980 
981 #ifdef CONFIG_TASKS_RUDE_RCU
982 
983 ////////////////////////////////////////////////////////////////////////
984 //
985 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
986 // passing an empty function to schedule_on_each_cpu().  This approach
987 // provides an asynchronous call_rcu_tasks_rude() API and batching of
988 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
989 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
990 // and induces otherwise unnecessary context switches on all online CPUs,
991 // whether idle or not.
992 //
993 // Callback handling is provided by the rcu_tasks_kthread() function.
994 //
995 // Ordering is provided by the scheduler's context-switch code.
996 
997 // Empty function to allow workqueues to force a context switch.
998 static void rcu_tasks_be_rude(struct work_struct *work)
999 {
1000 }
1001 
1002 // Wait for one rude RCU-tasks grace period.
1003 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1004 {
1005 	if (num_online_cpus() <= 1)
1006 		return;	// Fastpath for only one CPU.
1007 
1008 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1009 	schedule_on_each_cpu(rcu_tasks_be_rude);
1010 }
1011 
1012 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1013 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1014 		 "RCU Tasks Rude");
1015 
1016 /**
1017  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1018  * @rhp: structure to be used for queueing the RCU updates.
1019  * @func: actual callback function to be invoked after the grace period
1020  *
1021  * The callback function will be invoked some time after a full grace
1022  * period elapses, in other words after all currently executing RCU
1023  * read-side critical sections have completed. call_rcu_tasks_rude()
1024  * assumes that the read-side critical sections end at context switch,
1025  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1026  * usermode execution is schedulable). As such, there are no read-side
1027  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1028  * this primitive is intended to determine that all tasks have passed
1029  * through a safe state, not so much for data-structure synchronization.
1030  *
1031  * See the description of call_rcu() for more detailed information on
1032  * memory ordering guarantees.
1033  */
1034 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1035 {
1036 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1037 }
1038 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1039 
1040 /**
1041  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1042  *
1043  * Control will return to the caller some time after a rude rcu-tasks
1044  * grace period has elapsed, in other words after all currently
1045  * executing rcu-tasks read-side critical sections have elapsed.  These
1046  * read-side critical sections are delimited by calls to schedule(),
1047  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1048  * context), and (in theory, anyway) cond_resched().
1049  *
1050  * This is a very specialized primitive, intended only for a few uses in
1051  * tracing and other situations requiring manipulation of function preambles
1052  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1053  * (yet) intended for heavy use from multiple CPUs.
1054  *
1055  * See the description of synchronize_rcu() for more detailed information
1056  * on memory ordering guarantees.
1057  */
1058 void synchronize_rcu_tasks_rude(void)
1059 {
1060 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1061 }
1062 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1063 
1064 /**
1065  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1066  *
1067  * Although the current implementation is guaranteed to wait, it is not
1068  * obligated to, for example, if there are no pending callbacks.
1069  */
1070 void rcu_barrier_tasks_rude(void)
1071 {
1072 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1073 }
1074 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1075 
1076 static int __init rcu_spawn_tasks_rude_kthread(void)
1077 {
1078 	cblist_init_generic(&rcu_tasks_rude);
1079 	rcu_tasks_rude.gp_sleep = HZ / 10;
1080 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1081 	return 0;
1082 }
1083 
1084 #if !defined(CONFIG_TINY_RCU)
1085 void show_rcu_tasks_rude_gp_kthread(void)
1086 {
1087 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1088 }
1089 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1090 #endif // !defined(CONFIG_TINY_RCU)
1091 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1092 
1093 ////////////////////////////////////////////////////////////////////////
1094 //
1095 // Tracing variant of Tasks RCU.  This variant is designed to be used
1096 // to protect tracing hooks, including those of BPF.  This variant
1097 // therefore:
1098 //
1099 // 1.	Has explicit read-side markers to allow finite grace periods
1100 //	in the face of in-kernel loops for PREEMPT=n builds.
1101 //
1102 // 2.	Protects code in the idle loop, exception entry/exit, and
1103 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1104 //
1105 // 3.	Avoids expensive read-side instructions, having overhead similar
1106 //	to that of Preemptible RCU.
1107 //
1108 // There are of course downsides.  The grace-period code can send IPIs to
1109 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
1110 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
1111 // is a single callback queue guarded by a single lock, again, much as for
1112 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
1113 //
1114 // Perhaps most important, this variant of RCU does not affect the vanilla
1115 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1116 // readers can operate from idle, offline, and exception entry/exit in no
1117 // way allows rcu_preempt and rcu_sched readers to also do so.
1118 //
1119 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1120 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1121 // function sets these function pointers up so that rcu_tasks_wait_gp()
1122 // invokes these functions in this order:
1123 //
1124 // rcu_tasks_trace_pregp_step():
1125 //	Initialize the count of readers and block CPU-hotplug operations.
1126 // rcu_tasks_trace_pertask(), invoked on every non-idle task:
1127 //	Initialize per-task state and attempt to identify an immediate
1128 //	quiescent state for that task, or, failing that, attempt to
1129 //	set that task's .need_qs flag so that task's next outermost
1130 //	rcu_read_unlock_trace() will report the quiescent state (in which
1131 //	case the count of readers is incremented).  If both attempts fail,
1132 //	the task is added to a "holdout" list.  Note that IPIs are used
1133 //	to invoke trc_read_check_handler() in the context of running tasks
1134 //	in order to avoid ordering overhead on common-case shared-variable
1135 //	accessses.
1136 // rcu_tasks_trace_postscan():
1137 //	Initialize state and attempt to identify an immediate quiescent
1138 //	state as above (but only for idle tasks), unblock CPU-hotplug
1139 //	operations, and wait for an RCU grace period to avoid races with
1140 //	tasks that are in the process of exiting.
1141 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1142 //	Scans the holdout list, attempting to identify a quiescent state
1143 //	for each task on the list.  If there is a quiescent state, the
1144 //	corresponding task is removed from the holdout list.
1145 // rcu_tasks_trace_postgp():
1146 //	Wait for the count of readers do drop to zero, reporting any stalls.
1147 //	Also execute full memory barriers to maintain ordering with code
1148 //	executing after the grace period.
1149 //
1150 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1151 //
1152 // Pre-grace-period update-side code is ordered before the grace
1153 // period via the ->cbs_lock and barriers in rcu_tasks_kthread().
1154 // Pre-grace-period read-side code is ordered before the grace period by
1155 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by
1156 // scheduler context-switch ordering (for locked-down non-running readers).
1157 
1158 // The lockdep state must be outside of #ifdef to be useful.
1159 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1160 static struct lock_class_key rcu_lock_trace_key;
1161 struct lockdep_map rcu_trace_lock_map =
1162 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1163 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1164 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1165 
1166 #ifdef CONFIG_TASKS_TRACE_RCU
1167 
1168 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
1169 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
1170 
1171 // Record outstanding IPIs to each CPU.  No point in sending two...
1172 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1173 
1174 // The number of detections of task quiescent state relying on
1175 // heavyweight readers executing explicit memory barriers.
1176 static unsigned long n_heavy_reader_attempts;
1177 static unsigned long n_heavy_reader_updates;
1178 static unsigned long n_heavy_reader_ofl_updates;
1179 
1180 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1181 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1182 		 "RCU Tasks Trace");
1183 
1184 /*
1185  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
1186  * while the scheduler locks are held.
1187  */
1188 static void rcu_read_unlock_iw(struct irq_work *iwp)
1189 {
1190 	wake_up(&trc_wait);
1191 }
1192 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
1193 
1194 /* If we are the last reader, wake up the grace-period kthread. */
1195 void rcu_read_unlock_trace_special(struct task_struct *t)
1196 {
1197 	int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
1198 
1199 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
1200 	    t->trc_reader_special.b.need_mb)
1201 		smp_mb(); // Pairs with update-side barriers.
1202 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1203 	if (nq)
1204 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1205 	WRITE_ONCE(t->trc_reader_nesting, 0);
1206 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
1207 		irq_work_queue(&rcu_tasks_trace_iw);
1208 }
1209 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1210 
1211 /* Add a task to the holdout list, if it is not already on the list. */
1212 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1213 {
1214 	if (list_empty(&t->trc_holdout_list)) {
1215 		get_task_struct(t);
1216 		list_add(&t->trc_holdout_list, bhp);
1217 	}
1218 }
1219 
1220 /* Remove a task from the holdout list, if it is in fact present. */
1221 static void trc_del_holdout(struct task_struct *t)
1222 {
1223 	if (!list_empty(&t->trc_holdout_list)) {
1224 		list_del_init(&t->trc_holdout_list);
1225 		put_task_struct(t);
1226 	}
1227 }
1228 
1229 /* IPI handler to check task state. */
1230 static void trc_read_check_handler(void *t_in)
1231 {
1232 	struct task_struct *t = current;
1233 	struct task_struct *texp = t_in;
1234 
1235 	// If the task is no longer running on this CPU, leave.
1236 	if (unlikely(texp != t)) {
1237 		goto reset_ipi; // Already on holdout list, so will check later.
1238 	}
1239 
1240 	// If the task is not in a read-side critical section, and
1241 	// if this is the last reader, awaken the grace-period kthread.
1242 	if (likely(!READ_ONCE(t->trc_reader_nesting))) {
1243 		WRITE_ONCE(t->trc_reader_checked, true);
1244 		goto reset_ipi;
1245 	}
1246 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1247 	if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
1248 		goto reset_ipi;
1249 	WRITE_ONCE(t->trc_reader_checked, true);
1250 
1251 	// Get here if the task is in a read-side critical section.  Set
1252 	// its state so that it will awaken the grace-period kthread upon
1253 	// exit from that critical section.
1254 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1255 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1256 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1257 
1258 reset_ipi:
1259 	// Allow future IPIs to be sent on CPU and for task.
1260 	// Also order this IPI handler against any later manipulations of
1261 	// the intended task.
1262 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1263 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1264 }
1265 
1266 /* Callback function for scheduler to check locked-down task.  */
1267 static int trc_inspect_reader(struct task_struct *t, void *arg)
1268 {
1269 	int cpu = task_cpu(t);
1270 	int nesting;
1271 	bool ofl = cpu_is_offline(cpu);
1272 
1273 	if (task_curr(t)) {
1274 		WARN_ON_ONCE(ofl && !is_idle_task(t));
1275 
1276 		// If no chance of heavyweight readers, do it the hard way.
1277 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1278 			return -EINVAL;
1279 
1280 		// If heavyweight readers are enabled on the remote task,
1281 		// we can inspect its state despite its currently running.
1282 		// However, we cannot safely change its state.
1283 		n_heavy_reader_attempts++;
1284 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
1285 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1286 			return -EINVAL; // No quiescent state, do it the hard way.
1287 		n_heavy_reader_updates++;
1288 		if (ofl)
1289 			n_heavy_reader_ofl_updates++;
1290 		nesting = 0;
1291 	} else {
1292 		// The task is not running, so C-language access is safe.
1293 		nesting = t->trc_reader_nesting;
1294 	}
1295 
1296 	// If not exiting a read-side critical section, mark as checked
1297 	// so that the grace-period kthread will remove it from the
1298 	// holdout list.
1299 	t->trc_reader_checked = nesting >= 0;
1300 	if (nesting <= 0)
1301 		return nesting ? -EINVAL : 0;  // If in QS, done, otherwise try again later.
1302 
1303 	// The task is in a read-side critical section, so set up its
1304 	// state so that it will awaken the grace-period kthread upon exit
1305 	// from that critical section.
1306 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1307 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1308 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1309 	return 0;
1310 }
1311 
1312 /* Attempt to extract the state for the specified task. */
1313 static void trc_wait_for_one_reader(struct task_struct *t,
1314 				    struct list_head *bhp)
1315 {
1316 	int cpu;
1317 
1318 	// If a previous IPI is still in flight, let it complete.
1319 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1320 		return;
1321 
1322 	// The current task had better be in a quiescent state.
1323 	if (t == current) {
1324 		t->trc_reader_checked = true;
1325 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1326 		return;
1327 	}
1328 
1329 	// Attempt to nail down the task for inspection.
1330 	get_task_struct(t);
1331 	if (!task_call_func(t, trc_inspect_reader, NULL)) {
1332 		put_task_struct(t);
1333 		return;
1334 	}
1335 	put_task_struct(t);
1336 
1337 	// If this task is not yet on the holdout list, then we are in
1338 	// an RCU read-side critical section.  Otherwise, the invocation of
1339 	// trc_add_holdout() that added it to the list did the necessary
1340 	// get_task_struct().  Either way, the task cannot be freed out
1341 	// from under this code.
1342 
1343 	// If currently running, send an IPI, either way, add to list.
1344 	trc_add_holdout(t, bhp);
1345 	if (task_curr(t) &&
1346 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1347 		// The task is currently running, so try IPIing it.
1348 		cpu = task_cpu(t);
1349 
1350 		// If there is already an IPI outstanding, let it happen.
1351 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1352 			return;
1353 
1354 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1355 		t->trc_ipi_to_cpu = cpu;
1356 		rcu_tasks_trace.n_ipis++;
1357 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1358 			// Just in case there is some other reason for
1359 			// failure than the target CPU being offline.
1360 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1361 				  __func__, cpu);
1362 			rcu_tasks_trace.n_ipis_fails++;
1363 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1364 			t->trc_ipi_to_cpu = -1;
1365 		}
1366 	}
1367 }
1368 
1369 /* Initialize for a new RCU-tasks-trace grace period. */
1370 static void rcu_tasks_trace_pregp_step(void)
1371 {
1372 	int cpu;
1373 
1374 	// Allow for fast-acting IPIs.
1375 	atomic_set(&trc_n_readers_need_end, 1);
1376 
1377 	// There shouldn't be any old IPIs, but...
1378 	for_each_possible_cpu(cpu)
1379 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1380 
1381 	// Disable CPU hotplug across the tasklist scan.
1382 	// This also waits for all readers in CPU-hotplug code paths.
1383 	cpus_read_lock();
1384 }
1385 
1386 /* Do first-round processing for the specified task. */
1387 static void rcu_tasks_trace_pertask(struct task_struct *t,
1388 				    struct list_head *hop)
1389 {
1390 	// During early boot when there is only the one boot CPU, there
1391 	// is no idle task for the other CPUs. Just return.
1392 	if (unlikely(t == NULL))
1393 		return;
1394 
1395 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1396 	WRITE_ONCE(t->trc_reader_checked, false);
1397 	t->trc_ipi_to_cpu = -1;
1398 	trc_wait_for_one_reader(t, hop);
1399 }
1400 
1401 /*
1402  * Do intermediate processing between task and holdout scans and
1403  * pick up the idle tasks.
1404  */
1405 static void rcu_tasks_trace_postscan(struct list_head *hop)
1406 {
1407 	int cpu;
1408 
1409 	for_each_possible_cpu(cpu)
1410 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
1411 
1412 	// Re-enable CPU hotplug now that the tasklist scan has completed.
1413 	cpus_read_unlock();
1414 
1415 	// Wait for late-stage exiting tasks to finish exiting.
1416 	// These might have passed the call to exit_tasks_rcu_finish().
1417 	synchronize_rcu();
1418 	// Any tasks that exit after this point will set ->trc_reader_checked.
1419 }
1420 
1421 /* Communicate task state back to the RCU tasks trace stall warning request. */
1422 struct trc_stall_chk_rdr {
1423 	int nesting;
1424 	int ipi_to_cpu;
1425 	u8 needqs;
1426 };
1427 
1428 static int trc_check_slow_task(struct task_struct *t, void *arg)
1429 {
1430 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1431 
1432 	if (task_curr(t))
1433 		return false; // It is running, so decline to inspect it.
1434 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1435 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1436 	trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs);
1437 	return true;
1438 }
1439 
1440 /* Show the state of a task stalling the current RCU tasks trace GP. */
1441 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1442 {
1443 	int cpu;
1444 	struct trc_stall_chk_rdr trc_rdr;
1445 	bool is_idle_tsk = is_idle_task(t);
1446 
1447 	if (*firstreport) {
1448 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1449 		*firstreport = false;
1450 	}
1451 	cpu = task_cpu(t);
1452 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1453 		pr_alert("P%d: %c\n",
1454 			 t->pid,
1455 			 ".i"[is_idle_tsk]);
1456 	else
1457 		pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1458 			 t->pid,
1459 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1460 			 ".i"[is_idle_tsk],
1461 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1462 			 trc_rdr.nesting,
1463 			 " N"[!!trc_rdr.needqs],
1464 			 cpu);
1465 	sched_show_task(t);
1466 }
1467 
1468 /* List stalled IPIs for RCU tasks trace. */
1469 static void show_stalled_ipi_trace(void)
1470 {
1471 	int cpu;
1472 
1473 	for_each_possible_cpu(cpu)
1474 		if (per_cpu(trc_ipi_to_cpu, cpu))
1475 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1476 }
1477 
1478 /* Do one scan of the holdout list. */
1479 static void check_all_holdout_tasks_trace(struct list_head *hop,
1480 					  bool needreport, bool *firstreport)
1481 {
1482 	struct task_struct *g, *t;
1483 
1484 	// Disable CPU hotplug across the holdout list scan.
1485 	cpus_read_lock();
1486 
1487 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1488 		// If safe and needed, try to check the current task.
1489 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1490 		    !READ_ONCE(t->trc_reader_checked))
1491 			trc_wait_for_one_reader(t, hop);
1492 
1493 		// If check succeeded, remove this task from the list.
1494 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1495 		    READ_ONCE(t->trc_reader_checked))
1496 			trc_del_holdout(t);
1497 		else if (needreport)
1498 			show_stalled_task_trace(t, firstreport);
1499 	}
1500 
1501 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1502 	cpus_read_unlock();
1503 
1504 	if (needreport) {
1505 		if (*firstreport)
1506 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1507 		show_stalled_ipi_trace();
1508 	}
1509 }
1510 
1511 static void rcu_tasks_trace_empty_fn(void *unused)
1512 {
1513 }
1514 
1515 /* Wait for grace period to complete and provide ordering. */
1516 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1517 {
1518 	int cpu;
1519 	bool firstreport;
1520 	struct task_struct *g, *t;
1521 	LIST_HEAD(holdouts);
1522 	long ret;
1523 
1524 	// Wait for any lingering IPI handlers to complete.  Note that
1525 	// if a CPU has gone offline or transitioned to userspace in the
1526 	// meantime, all IPI handlers should have been drained beforehand.
1527 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1528 	// changes, there will need to be a recheck and/or timed wait.
1529 	for_each_online_cpu(cpu)
1530 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1531 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1532 
1533 	// Remove the safety count.
1534 	smp_mb__before_atomic();  // Order vs. earlier atomics
1535 	atomic_dec(&trc_n_readers_need_end);
1536 	smp_mb__after_atomic();  // Order vs. later atomics
1537 
1538 	// Wait for readers.
1539 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1540 	for (;;) {
1541 		ret = wait_event_idle_exclusive_timeout(
1542 				trc_wait,
1543 				atomic_read(&trc_n_readers_need_end) == 0,
1544 				READ_ONCE(rcu_task_stall_timeout));
1545 		if (ret)
1546 			break;  // Count reached zero.
1547 		// Stall warning time, so make a list of the offenders.
1548 		rcu_read_lock();
1549 		for_each_process_thread(g, t)
1550 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1551 				trc_add_holdout(t, &holdouts);
1552 		rcu_read_unlock();
1553 		firstreport = true;
1554 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1555 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1556 				show_stalled_task_trace(t, &firstreport);
1557 			trc_del_holdout(t); // Release task_struct reference.
1558 		}
1559 		if (firstreport)
1560 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1561 		show_stalled_ipi_trace();
1562 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1563 	}
1564 	smp_mb(); // Caller's code must be ordered after wakeup.
1565 		  // Pairs with pretty much every ordering primitive.
1566 }
1567 
1568 /* Report any needed quiescent state for this exiting task. */
1569 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1570 {
1571 	WRITE_ONCE(t->trc_reader_checked, true);
1572 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1573 	WRITE_ONCE(t->trc_reader_nesting, 0);
1574 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1575 		rcu_read_unlock_trace_special(t);
1576 }
1577 
1578 /**
1579  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1580  * @rhp: structure to be used for queueing the RCU updates.
1581  * @func: actual callback function to be invoked after the grace period
1582  *
1583  * The callback function will be invoked some time after a trace rcu-tasks
1584  * grace period elapses, in other words after all currently executing
1585  * trace rcu-tasks read-side critical sections have completed. These
1586  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1587  * and rcu_read_unlock_trace().
1588  *
1589  * See the description of call_rcu() for more detailed information on
1590  * memory ordering guarantees.
1591  */
1592 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1593 {
1594 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1595 }
1596 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1597 
1598 /**
1599  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1600  *
1601  * Control will return to the caller some time after a trace rcu-tasks
1602  * grace period has elapsed, in other words after all currently executing
1603  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1604  * critical sections are delimited by calls to rcu_read_lock_trace()
1605  * and rcu_read_unlock_trace().
1606  *
1607  * This is a very specialized primitive, intended only for a few uses in
1608  * tracing and other situations requiring manipulation of function preambles
1609  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1610  * (yet) intended for heavy use from multiple CPUs.
1611  *
1612  * See the description of synchronize_rcu() for more detailed information
1613  * on memory ordering guarantees.
1614  */
1615 void synchronize_rcu_tasks_trace(void)
1616 {
1617 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1618 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1619 }
1620 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1621 
1622 /**
1623  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1624  *
1625  * Although the current implementation is guaranteed to wait, it is not
1626  * obligated to, for example, if there are no pending callbacks.
1627  */
1628 void rcu_barrier_tasks_trace(void)
1629 {
1630 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1631 }
1632 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1633 
1634 static int __init rcu_spawn_tasks_trace_kthread(void)
1635 {
1636 	cblist_init_generic(&rcu_tasks_trace);
1637 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1638 		rcu_tasks_trace.gp_sleep = HZ / 10;
1639 		rcu_tasks_trace.init_fract = HZ / 10;
1640 	} else {
1641 		rcu_tasks_trace.gp_sleep = HZ / 200;
1642 		if (rcu_tasks_trace.gp_sleep <= 0)
1643 			rcu_tasks_trace.gp_sleep = 1;
1644 		rcu_tasks_trace.init_fract = HZ / 200;
1645 		if (rcu_tasks_trace.init_fract <= 0)
1646 			rcu_tasks_trace.init_fract = 1;
1647 	}
1648 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1649 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1650 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1651 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1652 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1653 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1654 	return 0;
1655 }
1656 
1657 #if !defined(CONFIG_TINY_RCU)
1658 void show_rcu_tasks_trace_gp_kthread(void)
1659 {
1660 	char buf[64];
1661 
1662 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1663 		data_race(n_heavy_reader_ofl_updates),
1664 		data_race(n_heavy_reader_updates),
1665 		data_race(n_heavy_reader_attempts));
1666 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1667 }
1668 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1669 #endif // !defined(CONFIG_TINY_RCU)
1670 
1671 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1672 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1673 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1674 
1675 #ifndef CONFIG_TINY_RCU
1676 void show_rcu_tasks_gp_kthreads(void)
1677 {
1678 	show_rcu_tasks_classic_gp_kthread();
1679 	show_rcu_tasks_rude_gp_kthread();
1680 	show_rcu_tasks_trace_gp_kthread();
1681 }
1682 #endif /* #ifndef CONFIG_TINY_RCU */
1683 
1684 #ifdef CONFIG_PROVE_RCU
1685 struct rcu_tasks_test_desc {
1686 	struct rcu_head rh;
1687 	const char *name;
1688 	bool notrun;
1689 };
1690 
1691 static struct rcu_tasks_test_desc tests[] = {
1692 	{
1693 		.name = "call_rcu_tasks()",
1694 		/* If not defined, the test is skipped. */
1695 		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1696 	},
1697 	{
1698 		.name = "call_rcu_tasks_rude()",
1699 		/* If not defined, the test is skipped. */
1700 		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1701 	},
1702 	{
1703 		.name = "call_rcu_tasks_trace()",
1704 		/* If not defined, the test is skipped. */
1705 		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1706 	}
1707 };
1708 
1709 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1710 {
1711 	struct rcu_tasks_test_desc *rttd =
1712 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1713 
1714 	pr_info("Callback from %s invoked.\n", rttd->name);
1715 
1716 	rttd->notrun = true;
1717 }
1718 
1719 static void rcu_tasks_initiate_self_tests(void)
1720 {
1721 	pr_info("Running RCU-tasks wait API self tests\n");
1722 #ifdef CONFIG_TASKS_RCU
1723 	synchronize_rcu_tasks();
1724 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1725 #endif
1726 
1727 #ifdef CONFIG_TASKS_RUDE_RCU
1728 	synchronize_rcu_tasks_rude();
1729 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1730 #endif
1731 
1732 #ifdef CONFIG_TASKS_TRACE_RCU
1733 	synchronize_rcu_tasks_trace();
1734 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1735 #endif
1736 }
1737 
1738 static int rcu_tasks_verify_self_tests(void)
1739 {
1740 	int ret = 0;
1741 	int i;
1742 
1743 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1744 		if (!tests[i].notrun) {		// still hanging.
1745 			pr_err("%s has been failed.\n", tests[i].name);
1746 			ret = -1;
1747 		}
1748 	}
1749 
1750 	if (ret)
1751 		WARN_ON(1);
1752 
1753 	return ret;
1754 }
1755 late_initcall(rcu_tasks_verify_self_tests);
1756 #else /* #ifdef CONFIG_PROVE_RCU */
1757 static void rcu_tasks_initiate_self_tests(void) { }
1758 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1759 
1760 void __init rcu_init_tasks_generic(void)
1761 {
1762 #ifdef CONFIG_TASKS_RCU
1763 	rcu_spawn_tasks_kthread();
1764 #endif
1765 
1766 #ifdef CONFIG_TASKS_RUDE_RCU
1767 	rcu_spawn_tasks_rude_kthread();
1768 #endif
1769 
1770 #ifdef CONFIG_TASKS_TRACE_RCU
1771 	rcu_spawn_tasks_trace_kthread();
1772 #endif
1773 
1774 	// Run the self-tests.
1775 	rcu_tasks_initiate_self_tests();
1776 }
1777 
1778 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1779 static inline void rcu_tasks_bootup_oddness(void) {}
1780 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1781