xref: /openbmc/linux/kernel/rcu/tasks.h (revision 75016ca3)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(void);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @cpu: CPU number corresponding to this entry.
33  * @rtpp: Pointer to the rcu_tasks structure.
34  */
35 struct rcu_tasks_percpu {
36 	struct rcu_segcblist cblist;
37 	raw_spinlock_t __private lock;
38 	unsigned long rtp_jiffies;
39 	unsigned long rtp_n_lock_retries;
40 	struct work_struct rtp_work;
41 	struct irq_work rtp_irq_work;
42 	struct rcu_head barrier_q_head;
43 	int cpu;
44 	struct rcu_tasks *rtpp;
45 };
46 
47 /**
48  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
49  * @cbs_wq: Wait queue allowing new callback to get kthread's attention.
50  * @cbs_gbl_lock: Lock protecting callback list.
51  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
52  * @gp_func: This flavor's grace-period-wait function.
53  * @gp_state: Grace period's most recent state transition (debugging).
54  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
55  * @init_fract: Initial backoff sleep interval.
56  * @gp_jiffies: Time of last @gp_state transition.
57  * @gp_start: Most recent grace-period start in jiffies.
58  * @tasks_gp_seq: Number of grace periods completed since boot.
59  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
60  * @n_ipis_fails: Number of IPI-send failures.
61  * @pregp_func: This flavor's pre-grace-period function (optional).
62  * @pertask_func: This flavor's per-task scan function (optional).
63  * @postscan_func: This flavor's post-task scan function (optional).
64  * @holdouts_func: This flavor's holdout-list scan function (optional).
65  * @postgp_func: This flavor's post-grace-period function (optional).
66  * @call_func: This flavor's call_rcu()-equivalent function.
67  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
68  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
69  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
70  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
71  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
72  * @barrier_q_mutex: Serialize barrier operations.
73  * @barrier_q_count: Number of queues being waited on.
74  * @barrier_q_completion: Barrier wait/wakeup mechanism.
75  * @barrier_q_seq: Sequence number for barrier operations.
76  * @name: This flavor's textual name.
77  * @kname: This flavor's kthread name.
78  */
79 struct rcu_tasks {
80 	struct wait_queue_head cbs_wq;
81 	raw_spinlock_t cbs_gbl_lock;
82 	int gp_state;
83 	int gp_sleep;
84 	int init_fract;
85 	unsigned long gp_jiffies;
86 	unsigned long gp_start;
87 	unsigned long tasks_gp_seq;
88 	unsigned long n_ipis;
89 	unsigned long n_ipis_fails;
90 	struct task_struct *kthread_ptr;
91 	rcu_tasks_gp_func_t gp_func;
92 	pregp_func_t pregp_func;
93 	pertask_func_t pertask_func;
94 	postscan_func_t postscan_func;
95 	holdouts_func_t holdouts_func;
96 	postgp_func_t postgp_func;
97 	call_rcu_func_t call_func;
98 	struct rcu_tasks_percpu __percpu *rtpcpu;
99 	int percpu_enqueue_shift;
100 	int percpu_enqueue_lim;
101 	int percpu_dequeue_lim;
102 	unsigned long percpu_dequeue_gpseq;
103 	struct mutex barrier_q_mutex;
104 	atomic_t barrier_q_count;
105 	struct completion barrier_q_completion;
106 	unsigned long barrier_q_seq;
107 	char *name;
108 	char *kname;
109 };
110 
111 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
112 
113 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
114 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
115 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
116 	.rtp_irq_work = IRQ_WORK_INIT(call_rcu_tasks_iw_wakeup),			\
117 };											\
118 static struct rcu_tasks rt_name =							\
119 {											\
120 	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),			\
121 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
122 	.gp_func = gp,									\
123 	.call_func = call,								\
124 	.rtpcpu = &rt_name ## __percpu,							\
125 	.name = n,									\
126 	.percpu_enqueue_shift = ilog2(CONFIG_NR_CPUS),					\
127 	.percpu_enqueue_lim = 1,							\
128 	.percpu_dequeue_lim = 1,							\
129 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
130 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
131 	.kname = #rt_name,								\
132 }
133 
134 /* Track exiting tasks in order to allow them to be waited for. */
135 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
136 
137 /* Avoid IPIing CPUs early in the grace period. */
138 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
139 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
140 module_param(rcu_task_ipi_delay, int, 0644);
141 
142 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
143 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
144 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
145 module_param(rcu_task_stall_timeout, int, 0644);
146 
147 static int rcu_task_enqueue_lim __read_mostly = -1;
148 module_param(rcu_task_enqueue_lim, int, 0444);
149 
150 static bool rcu_task_cb_adjust;
151 static int rcu_task_contend_lim __read_mostly = 100;
152 module_param(rcu_task_contend_lim, int, 0444);
153 static int rcu_task_collapse_lim __read_mostly = 10;
154 module_param(rcu_task_collapse_lim, int, 0444);
155 
156 /* RCU tasks grace-period state for debugging. */
157 #define RTGS_INIT		 0
158 #define RTGS_WAIT_WAIT_CBS	 1
159 #define RTGS_WAIT_GP		 2
160 #define RTGS_PRE_WAIT_GP	 3
161 #define RTGS_SCAN_TASKLIST	 4
162 #define RTGS_POST_SCAN_TASKLIST	 5
163 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
164 #define RTGS_SCAN_HOLDOUTS	 7
165 #define RTGS_POST_GP		 8
166 #define RTGS_WAIT_READERS	 9
167 #define RTGS_INVOKE_CBS		10
168 #define RTGS_WAIT_CBS		11
169 #ifndef CONFIG_TINY_RCU
170 static const char * const rcu_tasks_gp_state_names[] = {
171 	"RTGS_INIT",
172 	"RTGS_WAIT_WAIT_CBS",
173 	"RTGS_WAIT_GP",
174 	"RTGS_PRE_WAIT_GP",
175 	"RTGS_SCAN_TASKLIST",
176 	"RTGS_POST_SCAN_TASKLIST",
177 	"RTGS_WAIT_SCAN_HOLDOUTS",
178 	"RTGS_SCAN_HOLDOUTS",
179 	"RTGS_POST_GP",
180 	"RTGS_WAIT_READERS",
181 	"RTGS_INVOKE_CBS",
182 	"RTGS_WAIT_CBS",
183 };
184 #endif /* #ifndef CONFIG_TINY_RCU */
185 
186 ////////////////////////////////////////////////////////////////////////
187 //
188 // Generic code.
189 
190 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
191 
192 /* Record grace-period phase and time. */
193 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
194 {
195 	rtp->gp_state = newstate;
196 	rtp->gp_jiffies = jiffies;
197 }
198 
199 #ifndef CONFIG_TINY_RCU
200 /* Return state name. */
201 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
202 {
203 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
204 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
205 
206 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
207 		return "???";
208 	return rcu_tasks_gp_state_names[j];
209 }
210 #endif /* #ifndef CONFIG_TINY_RCU */
211 
212 // Initialize per-CPU callback lists for the specified flavor of
213 // Tasks RCU.
214 static void cblist_init_generic(struct rcu_tasks *rtp)
215 {
216 	int cpu;
217 	unsigned long flags;
218 	int lim;
219 
220 	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
221 	if (rcu_task_enqueue_lim < 0) {
222 		rcu_task_enqueue_lim = 1;
223 		rcu_task_cb_adjust = true;
224 		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
225 	} else if (rcu_task_enqueue_lim == 0) {
226 		rcu_task_enqueue_lim = 1;
227 	}
228 	lim = rcu_task_enqueue_lim;
229 
230 	if (lim > nr_cpu_ids)
231 		lim = nr_cpu_ids;
232 	WRITE_ONCE(rtp->percpu_enqueue_shift, ilog2(nr_cpu_ids / lim));
233 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
234 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
235 	for_each_possible_cpu(cpu) {
236 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
237 
238 		WARN_ON_ONCE(!rtpcp);
239 		if (cpu)
240 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
241 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
242 		if (rcu_segcblist_empty(&rtpcp->cblist))
243 			rcu_segcblist_init(&rtpcp->cblist);
244 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
245 		rtpcp->cpu = cpu;
246 		rtpcp->rtpp = rtp;
247 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
248 	}
249 	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
250 	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
251 }
252 
253 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
254 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
255 {
256 	struct rcu_tasks *rtp;
257 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
258 
259 	rtp = rtpcp->rtpp;
260 	wake_up(&rtp->cbs_wq);
261 }
262 
263 // Enqueue a callback for the specified flavor of Tasks RCU.
264 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
265 				   struct rcu_tasks *rtp)
266 {
267 	unsigned long flags;
268 	unsigned long j;
269 	bool needadjust = false;
270 	bool needwake;
271 	struct rcu_tasks_percpu *rtpcp;
272 
273 	rhp->next = NULL;
274 	rhp->func = func;
275 	local_irq_save(flags);
276 	rcu_read_lock();
277 	rtpcp = per_cpu_ptr(rtp->rtpcpu,
278 			    smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift));
279 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
280 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
281 		j = jiffies;
282 		if (rtpcp->rtp_jiffies != j) {
283 			rtpcp->rtp_jiffies = j;
284 			rtpcp->rtp_n_lock_retries = 0;
285 		}
286 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
287 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
288 			needadjust = true;  // Defer adjustment to avoid deadlock.
289 	}
290 	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
291 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
292 		cblist_init_generic(rtp);
293 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
294 	}
295 	needwake = rcu_segcblist_empty(&rtpcp->cblist);
296 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
297 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
298 	if (unlikely(needadjust)) {
299 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
300 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
301 			WRITE_ONCE(rtp->percpu_enqueue_shift, ilog2(nr_cpu_ids));
302 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
303 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
304 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
305 		}
306 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
307 	}
308 	rcu_read_unlock();
309 	/* We can't create the thread unless interrupts are enabled. */
310 	if (needwake && READ_ONCE(rtp->kthread_ptr))
311 		irq_work_queue(&rtpcp->rtp_irq_work);
312 }
313 
314 // Wait for a grace period for the specified flavor of Tasks RCU.
315 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
316 {
317 	/* Complain if the scheduler has not started.  */
318 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
319 			 "synchronize_rcu_tasks called too soon");
320 
321 	/* Wait for the grace period. */
322 	wait_rcu_gp(rtp->call_func);
323 }
324 
325 // RCU callback function for rcu_barrier_tasks_generic().
326 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
327 {
328 	struct rcu_tasks *rtp;
329 	struct rcu_tasks_percpu *rtpcp;
330 
331 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
332 	rtp = rtpcp->rtpp;
333 	if (atomic_dec_and_test(&rtp->barrier_q_count))
334 		complete(&rtp->barrier_q_completion);
335 }
336 
337 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
338 // Operates in a manner similar to rcu_barrier().
339 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
340 {
341 	int cpu;
342 	unsigned long flags;
343 	struct rcu_tasks_percpu *rtpcp;
344 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
345 
346 	mutex_lock(&rtp->barrier_q_mutex);
347 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
348 		smp_mb();
349 		mutex_unlock(&rtp->barrier_q_mutex);
350 		return;
351 	}
352 	rcu_seq_start(&rtp->barrier_q_seq);
353 	init_completion(&rtp->barrier_q_completion);
354 	atomic_set(&rtp->barrier_q_count, 2);
355 	for_each_possible_cpu(cpu) {
356 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
357 			break;
358 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
359 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
360 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
361 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
362 			atomic_inc(&rtp->barrier_q_count);
363 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
364 	}
365 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
366 		complete(&rtp->barrier_q_completion);
367 	wait_for_completion(&rtp->barrier_q_completion);
368 	rcu_seq_end(&rtp->barrier_q_seq);
369 	mutex_unlock(&rtp->barrier_q_mutex);
370 }
371 
372 // Advance callbacks and indicate whether either a grace period or
373 // callback invocation is needed.
374 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
375 {
376 	int cpu;
377 	unsigned long flags;
378 	long n;
379 	long ncbs = 0;
380 	long ncbsnz = 0;
381 	int needgpcb = 0;
382 
383 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
384 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
385 
386 		/* Advance and accelerate any new callbacks. */
387 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
388 			continue;
389 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
390 		// Should we shrink down to a single callback queue?
391 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
392 		if (n) {
393 			ncbs += n;
394 			if (cpu > 0)
395 				ncbsnz += n;
396 		}
397 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
398 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
399 		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
400 			needgpcb |= 0x3;
401 		if (!rcu_segcblist_empty(&rtpcp->cblist))
402 			needgpcb |= 0x1;
403 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
404 	}
405 
406 	// Shrink down to a single callback queue if appropriate.
407 	// This is done in two stages: (1) If there are no more than
408 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
409 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
410 	// if there has not been an increase in callbacks, limit dequeuing
411 	// to CPU 0.  Note the matching RCU read-side critical section in
412 	// call_rcu_tasks_generic().
413 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
414 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
415 		if (rtp->percpu_enqueue_lim > 1) {
416 			WRITE_ONCE(rtp->percpu_enqueue_shift, ilog2(nr_cpu_ids));
417 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
418 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
419 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
420 		}
421 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
422 	}
423 	if (rcu_task_cb_adjust && !ncbsnz &&
424 	    poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
425 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
426 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
427 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
428 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
429 		}
430 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
431 	}
432 
433 	return needgpcb;
434 }
435 
436 // Advance callbacks and invoke any that are ready.
437 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
438 {
439 	int cpu;
440 	int cpunext;
441 	unsigned long flags;
442 	int len;
443 	struct rcu_head *rhp;
444 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
445 	struct rcu_tasks_percpu *rtpcp_next;
446 
447 	cpu = rtpcp->cpu;
448 	cpunext = cpu * 2 + 1;
449 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
450 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
451 		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
452 		cpunext++;
453 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
454 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
455 			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
456 		}
457 	}
458 
459 	if (rcu_segcblist_empty(&rtpcp->cblist))
460 		return;
461 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
462 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
463 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
464 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
465 	len = rcl.len;
466 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
467 		local_bh_disable();
468 		rhp->func(rhp);
469 		local_bh_enable();
470 		cond_resched();
471 	}
472 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
473 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
474 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
475 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
476 }
477 
478 // Workqueue flood to advance callbacks and invoke any that are ready.
479 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
480 {
481 	struct rcu_tasks *rtp;
482 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
483 
484 	rtp = rtpcp->rtpp;
485 	rcu_tasks_invoke_cbs(rtp, rtpcp);
486 }
487 
488 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
489 static int __noreturn rcu_tasks_kthread(void *arg)
490 {
491 	int needgpcb;
492 	struct rcu_tasks *rtp = arg;
493 
494 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
495 	housekeeping_affine(current, HK_FLAG_RCU);
496 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
497 
498 	/*
499 	 * Each pass through the following loop makes one check for
500 	 * newly arrived callbacks, and, if there are some, waits for
501 	 * one RCU-tasks grace period and then invokes the callbacks.
502 	 * This loop is terminated by the system going down.  ;-)
503 	 */
504 	for (;;) {
505 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
506 
507 		/* If there were none, wait a bit and start over. */
508 		wait_event_idle(rtp->cbs_wq, (needgpcb = rcu_tasks_need_gpcb(rtp)));
509 
510 		if (needgpcb & 0x2) {
511 			// Wait for one grace period.
512 			set_tasks_gp_state(rtp, RTGS_WAIT_GP);
513 			rtp->gp_start = jiffies;
514 			rcu_seq_start(&rtp->tasks_gp_seq);
515 			rtp->gp_func(rtp);
516 			rcu_seq_end(&rtp->tasks_gp_seq);
517 		}
518 
519 		/* Invoke callbacks. */
520 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
521 		rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
522 
523 		/* Paranoid sleep to keep this from entering a tight loop */
524 		schedule_timeout_idle(rtp->gp_sleep);
525 	}
526 }
527 
528 /* Spawn RCU-tasks grace-period kthread. */
529 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
530 {
531 	struct task_struct *t;
532 
533 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
534 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
535 		return;
536 	smp_mb(); /* Ensure others see full kthread. */
537 }
538 
539 #ifndef CONFIG_TINY_RCU
540 
541 /*
542  * Print any non-default Tasks RCU settings.
543  */
544 static void __init rcu_tasks_bootup_oddness(void)
545 {
546 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
547 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
548 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
549 #endif /* #ifdef CONFIG_TASKS_RCU */
550 #ifdef CONFIG_TASKS_RCU
551 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
552 #endif /* #ifdef CONFIG_TASKS_RCU */
553 #ifdef CONFIG_TASKS_RUDE_RCU
554 	pr_info("\tRude variant of Tasks RCU enabled.\n");
555 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
556 #ifdef CONFIG_TASKS_TRACE_RCU
557 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
558 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
559 }
560 
561 #endif /* #ifndef CONFIG_TINY_RCU */
562 
563 #ifndef CONFIG_TINY_RCU
564 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
565 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
566 {
567 	struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, 0); // for_each...
568 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
569 		rtp->kname,
570 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
571 		jiffies - data_race(rtp->gp_jiffies),
572 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
573 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
574 		".k"[!!data_race(rtp->kthread_ptr)],
575 		".C"[!data_race(rcu_segcblist_empty(&rtpcp->cblist))],
576 		s);
577 }
578 #endif // #ifndef CONFIG_TINY_RCU
579 
580 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
581 
582 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
583 
584 ////////////////////////////////////////////////////////////////////////
585 //
586 // Shared code between task-list-scanning variants of Tasks RCU.
587 
588 /* Wait for one RCU-tasks grace period. */
589 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
590 {
591 	struct task_struct *g, *t;
592 	unsigned long lastreport;
593 	LIST_HEAD(holdouts);
594 	int fract;
595 
596 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
597 	rtp->pregp_func();
598 
599 	/*
600 	 * There were callbacks, so we need to wait for an RCU-tasks
601 	 * grace period.  Start off by scanning the task list for tasks
602 	 * that are not already voluntarily blocked.  Mark these tasks
603 	 * and make a list of them in holdouts.
604 	 */
605 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
606 	rcu_read_lock();
607 	for_each_process_thread(g, t)
608 		rtp->pertask_func(t, &holdouts);
609 	rcu_read_unlock();
610 
611 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
612 	rtp->postscan_func(&holdouts);
613 
614 	/*
615 	 * Each pass through the following loop scans the list of holdout
616 	 * tasks, removing any that are no longer holdouts.  When the list
617 	 * is empty, we are done.
618 	 */
619 	lastreport = jiffies;
620 
621 	// Start off with initial wait and slowly back off to 1 HZ wait.
622 	fract = rtp->init_fract;
623 
624 	while (!list_empty(&holdouts)) {
625 		bool firstreport;
626 		bool needreport;
627 		int rtst;
628 
629 		/* Slowly back off waiting for holdouts */
630 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
631 		schedule_timeout_idle(fract);
632 
633 		if (fract < HZ)
634 			fract++;
635 
636 		rtst = READ_ONCE(rcu_task_stall_timeout);
637 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
638 		if (needreport)
639 			lastreport = jiffies;
640 		firstreport = true;
641 		WARN_ON(signal_pending(current));
642 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
643 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
644 	}
645 
646 	set_tasks_gp_state(rtp, RTGS_POST_GP);
647 	rtp->postgp_func(rtp);
648 }
649 
650 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
651 
652 #ifdef CONFIG_TASKS_RCU
653 
654 ////////////////////////////////////////////////////////////////////////
655 //
656 // Simple variant of RCU whose quiescent states are voluntary context
657 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
658 // As such, grace periods can take one good long time.  There are no
659 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
660 // because this implementation is intended to get the system into a safe
661 // state for some of the manipulations involved in tracing and the like.
662 // Finally, this implementation does not support high call_rcu_tasks()
663 // rates from multiple CPUs.  If this is required, per-CPU callback lists
664 // will be needed.
665 //
666 // The implementation uses rcu_tasks_wait_gp(), which relies on function
667 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
668 // function sets these function pointers up so that rcu_tasks_wait_gp()
669 // invokes these functions in this order:
670 //
671 // rcu_tasks_pregp_step():
672 //	Invokes synchronize_rcu() in order to wait for all in-flight
673 //	t->on_rq and t->nvcsw transitions to complete.	This works because
674 //	all such transitions are carried out with interrupts disabled.
675 // rcu_tasks_pertask(), invoked on every non-idle task:
676 //	For every runnable non-idle task other than the current one, use
677 //	get_task_struct() to pin down that task, snapshot that task's
678 //	number of voluntary context switches, and add that task to the
679 //	holdout list.
680 // rcu_tasks_postscan():
681 //	Invoke synchronize_srcu() to ensure that all tasks that were
682 //	in the process of exiting (and which thus might not know to
683 //	synchronize with this RCU Tasks grace period) have completed
684 //	exiting.
685 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
686 //	Scans the holdout list, attempting to identify a quiescent state
687 //	for each task on the list.  If there is a quiescent state, the
688 //	corresponding task is removed from the holdout list.
689 // rcu_tasks_postgp():
690 //	Invokes synchronize_rcu() in order to ensure that all prior
691 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
692 //	to have happened before the end of this RCU Tasks grace period.
693 //	Again, this works because all such transitions are carried out
694 //	with interrupts disabled.
695 //
696 // For each exiting task, the exit_tasks_rcu_start() and
697 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
698 // read-side critical sections waited for by rcu_tasks_postscan().
699 //
700 // Pre-grace-period update-side code is ordered before the grace
701 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
702 // is ordered before the grace period via synchronize_rcu() call in
703 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
704 // disabling.
705 
706 /* Pre-grace-period preparation. */
707 static void rcu_tasks_pregp_step(void)
708 {
709 	/*
710 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
711 	 * to complete.  Invoking synchronize_rcu() suffices because all
712 	 * these transitions occur with interrupts disabled.  Without this
713 	 * synchronize_rcu(), a read-side critical section that started
714 	 * before the grace period might be incorrectly seen as having
715 	 * started after the grace period.
716 	 *
717 	 * This synchronize_rcu() also dispenses with the need for a
718 	 * memory barrier on the first store to t->rcu_tasks_holdout,
719 	 * as it forces the store to happen after the beginning of the
720 	 * grace period.
721 	 */
722 	synchronize_rcu();
723 }
724 
725 /* Per-task initial processing. */
726 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
727 {
728 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
729 		get_task_struct(t);
730 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
731 		WRITE_ONCE(t->rcu_tasks_holdout, true);
732 		list_add(&t->rcu_tasks_holdout_list, hop);
733 	}
734 }
735 
736 /* Processing between scanning taskslist and draining the holdout list. */
737 static void rcu_tasks_postscan(struct list_head *hop)
738 {
739 	/*
740 	 * Wait for tasks that are in the process of exiting.  This
741 	 * does only part of the job, ensuring that all tasks that were
742 	 * previously exiting reach the point where they have disabled
743 	 * preemption, allowing the later synchronize_rcu() to finish
744 	 * the job.
745 	 */
746 	synchronize_srcu(&tasks_rcu_exit_srcu);
747 }
748 
749 /* See if tasks are still holding out, complain if so. */
750 static void check_holdout_task(struct task_struct *t,
751 			       bool needreport, bool *firstreport)
752 {
753 	int cpu;
754 
755 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
756 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
757 	    !READ_ONCE(t->on_rq) ||
758 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
759 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
760 		WRITE_ONCE(t->rcu_tasks_holdout, false);
761 		list_del_init(&t->rcu_tasks_holdout_list);
762 		put_task_struct(t);
763 		return;
764 	}
765 	rcu_request_urgent_qs_task(t);
766 	if (!needreport)
767 		return;
768 	if (*firstreport) {
769 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
770 		*firstreport = false;
771 	}
772 	cpu = task_cpu(t);
773 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
774 		 t, ".I"[is_idle_task(t)],
775 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
776 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
777 		 t->rcu_tasks_idle_cpu, cpu);
778 	sched_show_task(t);
779 }
780 
781 /* Scan the holdout lists for tasks no longer holding out. */
782 static void check_all_holdout_tasks(struct list_head *hop,
783 				    bool needreport, bool *firstreport)
784 {
785 	struct task_struct *t, *t1;
786 
787 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
788 		check_holdout_task(t, needreport, firstreport);
789 		cond_resched();
790 	}
791 }
792 
793 /* Finish off the Tasks-RCU grace period. */
794 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
795 {
796 	/*
797 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
798 	 * memory barriers prior to them in the schedule() path, memory
799 	 * reordering on other CPUs could cause their RCU-tasks read-side
800 	 * critical sections to extend past the end of the grace period.
801 	 * However, because these ->nvcsw updates are carried out with
802 	 * interrupts disabled, we can use synchronize_rcu() to force the
803 	 * needed ordering on all such CPUs.
804 	 *
805 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
806 	 * accesses to be within the grace period, avoiding the need for
807 	 * memory barriers for ->rcu_tasks_holdout accesses.
808 	 *
809 	 * In addition, this synchronize_rcu() waits for exiting tasks
810 	 * to complete their final preempt_disable() region of execution,
811 	 * cleaning up after the synchronize_srcu() above.
812 	 */
813 	synchronize_rcu();
814 }
815 
816 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
817 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
818 
819 /**
820  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
821  * @rhp: structure to be used for queueing the RCU updates.
822  * @func: actual callback function to be invoked after the grace period
823  *
824  * The callback function will be invoked some time after a full grace
825  * period elapses, in other words after all currently executing RCU
826  * read-side critical sections have completed. call_rcu_tasks() assumes
827  * that the read-side critical sections end at a voluntary context
828  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
829  * or transition to usermode execution.  As such, there are no read-side
830  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
831  * this primitive is intended to determine that all tasks have passed
832  * through a safe state, not so much for data-structure synchronization.
833  *
834  * See the description of call_rcu() for more detailed information on
835  * memory ordering guarantees.
836  */
837 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
838 {
839 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
840 }
841 EXPORT_SYMBOL_GPL(call_rcu_tasks);
842 
843 /**
844  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
845  *
846  * Control will return to the caller some time after a full rcu-tasks
847  * grace period has elapsed, in other words after all currently
848  * executing rcu-tasks read-side critical sections have elapsed.  These
849  * read-side critical sections are delimited by calls to schedule(),
850  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
851  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
852  *
853  * This is a very specialized primitive, intended only for a few uses in
854  * tracing and other situations requiring manipulation of function
855  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
856  * is not (yet) intended for heavy use from multiple CPUs.
857  *
858  * See the description of synchronize_rcu() for more detailed information
859  * on memory ordering guarantees.
860  */
861 void synchronize_rcu_tasks(void)
862 {
863 	synchronize_rcu_tasks_generic(&rcu_tasks);
864 }
865 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
866 
867 /**
868  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
869  *
870  * Although the current implementation is guaranteed to wait, it is not
871  * obligated to, for example, if there are no pending callbacks.
872  */
873 void rcu_barrier_tasks(void)
874 {
875 	rcu_barrier_tasks_generic(&rcu_tasks);
876 }
877 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
878 
879 static int __init rcu_spawn_tasks_kthread(void)
880 {
881 	cblist_init_generic(&rcu_tasks);
882 	rcu_tasks.gp_sleep = HZ / 10;
883 	rcu_tasks.init_fract = HZ / 10;
884 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
885 	rcu_tasks.pertask_func = rcu_tasks_pertask;
886 	rcu_tasks.postscan_func = rcu_tasks_postscan;
887 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
888 	rcu_tasks.postgp_func = rcu_tasks_postgp;
889 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
890 	return 0;
891 }
892 
893 #if !defined(CONFIG_TINY_RCU)
894 void show_rcu_tasks_classic_gp_kthread(void)
895 {
896 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
897 }
898 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
899 #endif // !defined(CONFIG_TINY_RCU)
900 
901 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
902 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
903 {
904 	preempt_disable();
905 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
906 	preempt_enable();
907 }
908 
909 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
910 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
911 {
912 	struct task_struct *t = current;
913 
914 	preempt_disable();
915 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
916 	preempt_enable();
917 	exit_tasks_rcu_finish_trace(t);
918 }
919 
920 #else /* #ifdef CONFIG_TASKS_RCU */
921 void exit_tasks_rcu_start(void) { }
922 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
923 #endif /* #else #ifdef CONFIG_TASKS_RCU */
924 
925 #ifdef CONFIG_TASKS_RUDE_RCU
926 
927 ////////////////////////////////////////////////////////////////////////
928 //
929 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
930 // passing an empty function to schedule_on_each_cpu().  This approach
931 // provides an asynchronous call_rcu_tasks_rude() API and batching of
932 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
933 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
934 // and induces otherwise unnecessary context switches on all online CPUs,
935 // whether idle or not.
936 //
937 // Callback handling is provided by the rcu_tasks_kthread() function.
938 //
939 // Ordering is provided by the scheduler's context-switch code.
940 
941 // Empty function to allow workqueues to force a context switch.
942 static void rcu_tasks_be_rude(struct work_struct *work)
943 {
944 }
945 
946 // Wait for one rude RCU-tasks grace period.
947 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
948 {
949 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
950 	schedule_on_each_cpu(rcu_tasks_be_rude);
951 }
952 
953 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
954 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
955 		 "RCU Tasks Rude");
956 
957 /**
958  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
959  * @rhp: structure to be used for queueing the RCU updates.
960  * @func: actual callback function to be invoked after the grace period
961  *
962  * The callback function will be invoked some time after a full grace
963  * period elapses, in other words after all currently executing RCU
964  * read-side critical sections have completed. call_rcu_tasks_rude()
965  * assumes that the read-side critical sections end at context switch,
966  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
967  * usermode execution is schedulable). As such, there are no read-side
968  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
969  * this primitive is intended to determine that all tasks have passed
970  * through a safe state, not so much for data-structure synchronization.
971  *
972  * See the description of call_rcu() for more detailed information on
973  * memory ordering guarantees.
974  */
975 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
976 {
977 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
978 }
979 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
980 
981 /**
982  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
983  *
984  * Control will return to the caller some time after a rude rcu-tasks
985  * grace period has elapsed, in other words after all currently
986  * executing rcu-tasks read-side critical sections have elapsed.  These
987  * read-side critical sections are delimited by calls to schedule(),
988  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
989  * context), and (in theory, anyway) cond_resched().
990  *
991  * This is a very specialized primitive, intended only for a few uses in
992  * tracing and other situations requiring manipulation of function preambles
993  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
994  * (yet) intended for heavy use from multiple CPUs.
995  *
996  * See the description of synchronize_rcu() for more detailed information
997  * on memory ordering guarantees.
998  */
999 void synchronize_rcu_tasks_rude(void)
1000 {
1001 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1002 }
1003 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1004 
1005 /**
1006  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1007  *
1008  * Although the current implementation is guaranteed to wait, it is not
1009  * obligated to, for example, if there are no pending callbacks.
1010  */
1011 void rcu_barrier_tasks_rude(void)
1012 {
1013 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1014 }
1015 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1016 
1017 static int __init rcu_spawn_tasks_rude_kthread(void)
1018 {
1019 	cblist_init_generic(&rcu_tasks_rude);
1020 	rcu_tasks_rude.gp_sleep = HZ / 10;
1021 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1022 	return 0;
1023 }
1024 
1025 #if !defined(CONFIG_TINY_RCU)
1026 void show_rcu_tasks_rude_gp_kthread(void)
1027 {
1028 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1029 }
1030 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1031 #endif // !defined(CONFIG_TINY_RCU)
1032 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1033 
1034 ////////////////////////////////////////////////////////////////////////
1035 //
1036 // Tracing variant of Tasks RCU.  This variant is designed to be used
1037 // to protect tracing hooks, including those of BPF.  This variant
1038 // therefore:
1039 //
1040 // 1.	Has explicit read-side markers to allow finite grace periods
1041 //	in the face of in-kernel loops for PREEMPT=n builds.
1042 //
1043 // 2.	Protects code in the idle loop, exception entry/exit, and
1044 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1045 //
1046 // 3.	Avoids expensive read-side instructions, having overhead similar
1047 //	to that of Preemptible RCU.
1048 //
1049 // There are of course downsides.  The grace-period code can send IPIs to
1050 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
1051 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
1052 // is a single callback queue guarded by a single lock, again, much as for
1053 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
1054 //
1055 // Perhaps most important, this variant of RCU does not affect the vanilla
1056 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1057 // readers can operate from idle, offline, and exception entry/exit in no
1058 // way allows rcu_preempt and rcu_sched readers to also do so.
1059 //
1060 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1061 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1062 // function sets these function pointers up so that rcu_tasks_wait_gp()
1063 // invokes these functions in this order:
1064 //
1065 // rcu_tasks_trace_pregp_step():
1066 //	Initialize the count of readers and block CPU-hotplug operations.
1067 // rcu_tasks_trace_pertask(), invoked on every non-idle task:
1068 //	Initialize per-task state and attempt to identify an immediate
1069 //	quiescent state for that task, or, failing that, attempt to
1070 //	set that task's .need_qs flag so that task's next outermost
1071 //	rcu_read_unlock_trace() will report the quiescent state (in which
1072 //	case the count of readers is incremented).  If both attempts fail,
1073 //	the task is added to a "holdout" list.  Note that IPIs are used
1074 //	to invoke trc_read_check_handler() in the context of running tasks
1075 //	in order to avoid ordering overhead on common-case shared-variable
1076 //	accessses.
1077 // rcu_tasks_trace_postscan():
1078 //	Initialize state and attempt to identify an immediate quiescent
1079 //	state as above (but only for idle tasks), unblock CPU-hotplug
1080 //	operations, and wait for an RCU grace period to avoid races with
1081 //	tasks that are in the process of exiting.
1082 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1083 //	Scans the holdout list, attempting to identify a quiescent state
1084 //	for each task on the list.  If there is a quiescent state, the
1085 //	corresponding task is removed from the holdout list.
1086 // rcu_tasks_trace_postgp():
1087 //	Wait for the count of readers do drop to zero, reporting any stalls.
1088 //	Also execute full memory barriers to maintain ordering with code
1089 //	executing after the grace period.
1090 //
1091 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1092 //
1093 // Pre-grace-period update-side code is ordered before the grace
1094 // period via the ->cbs_lock and barriers in rcu_tasks_kthread().
1095 // Pre-grace-period read-side code is ordered before the grace period by
1096 // atomic_dec_and_test() of the count of readers (for IPIed readers) and by
1097 // scheduler context-switch ordering (for locked-down non-running readers).
1098 
1099 // The lockdep state must be outside of #ifdef to be useful.
1100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1101 static struct lock_class_key rcu_lock_trace_key;
1102 struct lockdep_map rcu_trace_lock_map =
1103 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1104 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1105 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1106 
1107 #ifdef CONFIG_TASKS_TRACE_RCU
1108 
1109 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
1110 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
1111 
1112 // Record outstanding IPIs to each CPU.  No point in sending two...
1113 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1114 
1115 // The number of detections of task quiescent state relying on
1116 // heavyweight readers executing explicit memory barriers.
1117 static unsigned long n_heavy_reader_attempts;
1118 static unsigned long n_heavy_reader_updates;
1119 static unsigned long n_heavy_reader_ofl_updates;
1120 
1121 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1122 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1123 		 "RCU Tasks Trace");
1124 
1125 /*
1126  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
1127  * while the scheduler locks are held.
1128  */
1129 static void rcu_read_unlock_iw(struct irq_work *iwp)
1130 {
1131 	wake_up(&trc_wait);
1132 }
1133 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
1134 
1135 /* If we are the last reader, wake up the grace-period kthread. */
1136 void rcu_read_unlock_trace_special(struct task_struct *t)
1137 {
1138 	int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
1139 
1140 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
1141 	    t->trc_reader_special.b.need_mb)
1142 		smp_mb(); // Pairs with update-side barriers.
1143 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1144 	if (nq)
1145 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1146 	WRITE_ONCE(t->trc_reader_nesting, 0);
1147 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
1148 		irq_work_queue(&rcu_tasks_trace_iw);
1149 }
1150 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1151 
1152 /* Add a task to the holdout list, if it is not already on the list. */
1153 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1154 {
1155 	if (list_empty(&t->trc_holdout_list)) {
1156 		get_task_struct(t);
1157 		list_add(&t->trc_holdout_list, bhp);
1158 	}
1159 }
1160 
1161 /* Remove a task from the holdout list, if it is in fact present. */
1162 static void trc_del_holdout(struct task_struct *t)
1163 {
1164 	if (!list_empty(&t->trc_holdout_list)) {
1165 		list_del_init(&t->trc_holdout_list);
1166 		put_task_struct(t);
1167 	}
1168 }
1169 
1170 /* IPI handler to check task state. */
1171 static void trc_read_check_handler(void *t_in)
1172 {
1173 	struct task_struct *t = current;
1174 	struct task_struct *texp = t_in;
1175 
1176 	// If the task is no longer running on this CPU, leave.
1177 	if (unlikely(texp != t)) {
1178 		goto reset_ipi; // Already on holdout list, so will check later.
1179 	}
1180 
1181 	// If the task is not in a read-side critical section, and
1182 	// if this is the last reader, awaken the grace-period kthread.
1183 	if (likely(!READ_ONCE(t->trc_reader_nesting))) {
1184 		WRITE_ONCE(t->trc_reader_checked, true);
1185 		goto reset_ipi;
1186 	}
1187 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1188 	if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
1189 		goto reset_ipi;
1190 	WRITE_ONCE(t->trc_reader_checked, true);
1191 
1192 	// Get here if the task is in a read-side critical section.  Set
1193 	// its state so that it will awaken the grace-period kthread upon
1194 	// exit from that critical section.
1195 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1196 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1197 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1198 
1199 reset_ipi:
1200 	// Allow future IPIs to be sent on CPU and for task.
1201 	// Also order this IPI handler against any later manipulations of
1202 	// the intended task.
1203 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1204 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1205 }
1206 
1207 /* Callback function for scheduler to check locked-down task.  */
1208 static int trc_inspect_reader(struct task_struct *t, void *arg)
1209 {
1210 	int cpu = task_cpu(t);
1211 	int nesting;
1212 	bool ofl = cpu_is_offline(cpu);
1213 
1214 	if (task_curr(t)) {
1215 		WARN_ON_ONCE(ofl && !is_idle_task(t));
1216 
1217 		// If no chance of heavyweight readers, do it the hard way.
1218 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1219 			return -EINVAL;
1220 
1221 		// If heavyweight readers are enabled on the remote task,
1222 		// we can inspect its state despite its currently running.
1223 		// However, we cannot safely change its state.
1224 		n_heavy_reader_attempts++;
1225 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
1226 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1227 			return -EINVAL; // No quiescent state, do it the hard way.
1228 		n_heavy_reader_updates++;
1229 		if (ofl)
1230 			n_heavy_reader_ofl_updates++;
1231 		nesting = 0;
1232 	} else {
1233 		// The task is not running, so C-language access is safe.
1234 		nesting = t->trc_reader_nesting;
1235 	}
1236 
1237 	// If not exiting a read-side critical section, mark as checked
1238 	// so that the grace-period kthread will remove it from the
1239 	// holdout list.
1240 	t->trc_reader_checked = nesting >= 0;
1241 	if (nesting <= 0)
1242 		return nesting ? -EINVAL : 0;  // If in QS, done, otherwise try again later.
1243 
1244 	// The task is in a read-side critical section, so set up its
1245 	// state so that it will awaken the grace-period kthread upon exit
1246 	// from that critical section.
1247 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
1248 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
1249 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
1250 	return 0;
1251 }
1252 
1253 /* Attempt to extract the state for the specified task. */
1254 static void trc_wait_for_one_reader(struct task_struct *t,
1255 				    struct list_head *bhp)
1256 {
1257 	int cpu;
1258 
1259 	// If a previous IPI is still in flight, let it complete.
1260 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1261 		return;
1262 
1263 	// The current task had better be in a quiescent state.
1264 	if (t == current) {
1265 		t->trc_reader_checked = true;
1266 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1267 		return;
1268 	}
1269 
1270 	// Attempt to nail down the task for inspection.
1271 	get_task_struct(t);
1272 	if (!task_call_func(t, trc_inspect_reader, NULL)) {
1273 		put_task_struct(t);
1274 		return;
1275 	}
1276 	put_task_struct(t);
1277 
1278 	// If this task is not yet on the holdout list, then we are in
1279 	// an RCU read-side critical section.  Otherwise, the invocation of
1280 	// trc_add_holdout() that added it to the list did the necessary
1281 	// get_task_struct().  Either way, the task cannot be freed out
1282 	// from under this code.
1283 
1284 	// If currently running, send an IPI, either way, add to list.
1285 	trc_add_holdout(t, bhp);
1286 	if (task_curr(t) &&
1287 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1288 		// The task is currently running, so try IPIing it.
1289 		cpu = task_cpu(t);
1290 
1291 		// If there is already an IPI outstanding, let it happen.
1292 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1293 			return;
1294 
1295 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1296 		t->trc_ipi_to_cpu = cpu;
1297 		rcu_tasks_trace.n_ipis++;
1298 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1299 			// Just in case there is some other reason for
1300 			// failure than the target CPU being offline.
1301 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1302 				  __func__, cpu);
1303 			rcu_tasks_trace.n_ipis_fails++;
1304 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1305 			t->trc_ipi_to_cpu = -1;
1306 		}
1307 	}
1308 }
1309 
1310 /* Initialize for a new RCU-tasks-trace grace period. */
1311 static void rcu_tasks_trace_pregp_step(void)
1312 {
1313 	int cpu;
1314 
1315 	// Allow for fast-acting IPIs.
1316 	atomic_set(&trc_n_readers_need_end, 1);
1317 
1318 	// There shouldn't be any old IPIs, but...
1319 	for_each_possible_cpu(cpu)
1320 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1321 
1322 	// Disable CPU hotplug across the tasklist scan.
1323 	// This also waits for all readers in CPU-hotplug code paths.
1324 	cpus_read_lock();
1325 }
1326 
1327 /* Do first-round processing for the specified task. */
1328 static void rcu_tasks_trace_pertask(struct task_struct *t,
1329 				    struct list_head *hop)
1330 {
1331 	// During early boot when there is only the one boot CPU, there
1332 	// is no idle task for the other CPUs. Just return.
1333 	if (unlikely(t == NULL))
1334 		return;
1335 
1336 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
1337 	WRITE_ONCE(t->trc_reader_checked, false);
1338 	t->trc_ipi_to_cpu = -1;
1339 	trc_wait_for_one_reader(t, hop);
1340 }
1341 
1342 /*
1343  * Do intermediate processing between task and holdout scans and
1344  * pick up the idle tasks.
1345  */
1346 static void rcu_tasks_trace_postscan(struct list_head *hop)
1347 {
1348 	int cpu;
1349 
1350 	for_each_possible_cpu(cpu)
1351 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
1352 
1353 	// Re-enable CPU hotplug now that the tasklist scan has completed.
1354 	cpus_read_unlock();
1355 
1356 	// Wait for late-stage exiting tasks to finish exiting.
1357 	// These might have passed the call to exit_tasks_rcu_finish().
1358 	synchronize_rcu();
1359 	// Any tasks that exit after this point will set ->trc_reader_checked.
1360 }
1361 
1362 /* Communicate task state back to the RCU tasks trace stall warning request. */
1363 struct trc_stall_chk_rdr {
1364 	int nesting;
1365 	int ipi_to_cpu;
1366 	u8 needqs;
1367 };
1368 
1369 static int trc_check_slow_task(struct task_struct *t, void *arg)
1370 {
1371 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1372 
1373 	if (task_curr(t))
1374 		return false; // It is running, so decline to inspect it.
1375 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1376 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1377 	trc_rdrp->needqs = READ_ONCE(t->trc_reader_special.b.need_qs);
1378 	return true;
1379 }
1380 
1381 /* Show the state of a task stalling the current RCU tasks trace GP. */
1382 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1383 {
1384 	int cpu;
1385 	struct trc_stall_chk_rdr trc_rdr;
1386 	bool is_idle_tsk = is_idle_task(t);
1387 
1388 	if (*firstreport) {
1389 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1390 		*firstreport = false;
1391 	}
1392 	cpu = task_cpu(t);
1393 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1394 		pr_alert("P%d: %c\n",
1395 			 t->pid,
1396 			 ".i"[is_idle_tsk]);
1397 	else
1398 		pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1399 			 t->pid,
1400 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1401 			 ".i"[is_idle_tsk],
1402 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1403 			 trc_rdr.nesting,
1404 			 " N"[!!trc_rdr.needqs],
1405 			 cpu);
1406 	sched_show_task(t);
1407 }
1408 
1409 /* List stalled IPIs for RCU tasks trace. */
1410 static void show_stalled_ipi_trace(void)
1411 {
1412 	int cpu;
1413 
1414 	for_each_possible_cpu(cpu)
1415 		if (per_cpu(trc_ipi_to_cpu, cpu))
1416 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1417 }
1418 
1419 /* Do one scan of the holdout list. */
1420 static void check_all_holdout_tasks_trace(struct list_head *hop,
1421 					  bool needreport, bool *firstreport)
1422 {
1423 	struct task_struct *g, *t;
1424 
1425 	// Disable CPU hotplug across the holdout list scan.
1426 	cpus_read_lock();
1427 
1428 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1429 		// If safe and needed, try to check the current task.
1430 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1431 		    !READ_ONCE(t->trc_reader_checked))
1432 			trc_wait_for_one_reader(t, hop);
1433 
1434 		// If check succeeded, remove this task from the list.
1435 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1436 		    READ_ONCE(t->trc_reader_checked))
1437 			trc_del_holdout(t);
1438 		else if (needreport)
1439 			show_stalled_task_trace(t, firstreport);
1440 	}
1441 
1442 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1443 	cpus_read_unlock();
1444 
1445 	if (needreport) {
1446 		if (*firstreport)
1447 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1448 		show_stalled_ipi_trace();
1449 	}
1450 }
1451 
1452 static void rcu_tasks_trace_empty_fn(void *unused)
1453 {
1454 }
1455 
1456 /* Wait for grace period to complete and provide ordering. */
1457 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1458 {
1459 	int cpu;
1460 	bool firstreport;
1461 	struct task_struct *g, *t;
1462 	LIST_HEAD(holdouts);
1463 	long ret;
1464 
1465 	// Wait for any lingering IPI handlers to complete.  Note that
1466 	// if a CPU has gone offline or transitioned to userspace in the
1467 	// meantime, all IPI handlers should have been drained beforehand.
1468 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1469 	// changes, there will need to be a recheck and/or timed wait.
1470 	for_each_online_cpu(cpu)
1471 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1472 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1473 
1474 	// Remove the safety count.
1475 	smp_mb__before_atomic();  // Order vs. earlier atomics
1476 	atomic_dec(&trc_n_readers_need_end);
1477 	smp_mb__after_atomic();  // Order vs. later atomics
1478 
1479 	// Wait for readers.
1480 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1481 	for (;;) {
1482 		ret = wait_event_idle_exclusive_timeout(
1483 				trc_wait,
1484 				atomic_read(&trc_n_readers_need_end) == 0,
1485 				READ_ONCE(rcu_task_stall_timeout));
1486 		if (ret)
1487 			break;  // Count reached zero.
1488 		// Stall warning time, so make a list of the offenders.
1489 		rcu_read_lock();
1490 		for_each_process_thread(g, t)
1491 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1492 				trc_add_holdout(t, &holdouts);
1493 		rcu_read_unlock();
1494 		firstreport = true;
1495 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1496 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1497 				show_stalled_task_trace(t, &firstreport);
1498 			trc_del_holdout(t); // Release task_struct reference.
1499 		}
1500 		if (firstreport)
1501 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1502 		show_stalled_ipi_trace();
1503 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1504 	}
1505 	smp_mb(); // Caller's code must be ordered after wakeup.
1506 		  // Pairs with pretty much every ordering primitive.
1507 }
1508 
1509 /* Report any needed quiescent state for this exiting task. */
1510 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1511 {
1512 	WRITE_ONCE(t->trc_reader_checked, true);
1513 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1514 	WRITE_ONCE(t->trc_reader_nesting, 0);
1515 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1516 		rcu_read_unlock_trace_special(t);
1517 }
1518 
1519 /**
1520  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1521  * @rhp: structure to be used for queueing the RCU updates.
1522  * @func: actual callback function to be invoked after the grace period
1523  *
1524  * The callback function will be invoked some time after a trace rcu-tasks
1525  * grace period elapses, in other words after all currently executing
1526  * trace rcu-tasks read-side critical sections have completed. These
1527  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1528  * and rcu_read_unlock_trace().
1529  *
1530  * See the description of call_rcu() for more detailed information on
1531  * memory ordering guarantees.
1532  */
1533 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1534 {
1535 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1536 }
1537 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1538 
1539 /**
1540  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1541  *
1542  * Control will return to the caller some time after a trace rcu-tasks
1543  * grace period has elapsed, in other words after all currently executing
1544  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1545  * critical sections are delimited by calls to rcu_read_lock_trace()
1546  * and rcu_read_unlock_trace().
1547  *
1548  * This is a very specialized primitive, intended only for a few uses in
1549  * tracing and other situations requiring manipulation of function preambles
1550  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1551  * (yet) intended for heavy use from multiple CPUs.
1552  *
1553  * See the description of synchronize_rcu() for more detailed information
1554  * on memory ordering guarantees.
1555  */
1556 void synchronize_rcu_tasks_trace(void)
1557 {
1558 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1559 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1560 }
1561 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1562 
1563 /**
1564  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1565  *
1566  * Although the current implementation is guaranteed to wait, it is not
1567  * obligated to, for example, if there are no pending callbacks.
1568  */
1569 void rcu_barrier_tasks_trace(void)
1570 {
1571 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1572 }
1573 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1574 
1575 static int __init rcu_spawn_tasks_trace_kthread(void)
1576 {
1577 	cblist_init_generic(&rcu_tasks_trace);
1578 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1579 		rcu_tasks_trace.gp_sleep = HZ / 10;
1580 		rcu_tasks_trace.init_fract = HZ / 10;
1581 	} else {
1582 		rcu_tasks_trace.gp_sleep = HZ / 200;
1583 		if (rcu_tasks_trace.gp_sleep <= 0)
1584 			rcu_tasks_trace.gp_sleep = 1;
1585 		rcu_tasks_trace.init_fract = HZ / 200;
1586 		if (rcu_tasks_trace.init_fract <= 0)
1587 			rcu_tasks_trace.init_fract = 1;
1588 	}
1589 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1590 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1591 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1592 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1593 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1594 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1595 	return 0;
1596 }
1597 
1598 #if !defined(CONFIG_TINY_RCU)
1599 void show_rcu_tasks_trace_gp_kthread(void)
1600 {
1601 	char buf[64];
1602 
1603 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1604 		data_race(n_heavy_reader_ofl_updates),
1605 		data_race(n_heavy_reader_updates),
1606 		data_race(n_heavy_reader_attempts));
1607 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1608 }
1609 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1610 #endif // !defined(CONFIG_TINY_RCU)
1611 
1612 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1613 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1614 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1615 
1616 #ifndef CONFIG_TINY_RCU
1617 void show_rcu_tasks_gp_kthreads(void)
1618 {
1619 	show_rcu_tasks_classic_gp_kthread();
1620 	show_rcu_tasks_rude_gp_kthread();
1621 	show_rcu_tasks_trace_gp_kthread();
1622 }
1623 #endif /* #ifndef CONFIG_TINY_RCU */
1624 
1625 #ifdef CONFIG_PROVE_RCU
1626 struct rcu_tasks_test_desc {
1627 	struct rcu_head rh;
1628 	const char *name;
1629 	bool notrun;
1630 };
1631 
1632 static struct rcu_tasks_test_desc tests[] = {
1633 	{
1634 		.name = "call_rcu_tasks()",
1635 		/* If not defined, the test is skipped. */
1636 		.notrun = !IS_ENABLED(CONFIG_TASKS_RCU),
1637 	},
1638 	{
1639 		.name = "call_rcu_tasks_rude()",
1640 		/* If not defined, the test is skipped. */
1641 		.notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1642 	},
1643 	{
1644 		.name = "call_rcu_tasks_trace()",
1645 		/* If not defined, the test is skipped. */
1646 		.notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1647 	}
1648 };
1649 
1650 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1651 {
1652 	struct rcu_tasks_test_desc *rttd =
1653 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1654 
1655 	pr_info("Callback from %s invoked.\n", rttd->name);
1656 
1657 	rttd->notrun = true;
1658 }
1659 
1660 static void rcu_tasks_initiate_self_tests(void)
1661 {
1662 	pr_info("Running RCU-tasks wait API self tests\n");
1663 #ifdef CONFIG_TASKS_RCU
1664 	synchronize_rcu_tasks();
1665 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1666 #endif
1667 
1668 #ifdef CONFIG_TASKS_RUDE_RCU
1669 	synchronize_rcu_tasks_rude();
1670 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1671 #endif
1672 
1673 #ifdef CONFIG_TASKS_TRACE_RCU
1674 	synchronize_rcu_tasks_trace();
1675 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1676 #endif
1677 }
1678 
1679 static int rcu_tasks_verify_self_tests(void)
1680 {
1681 	int ret = 0;
1682 	int i;
1683 
1684 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1685 		if (!tests[i].notrun) {		// still hanging.
1686 			pr_err("%s has been failed.\n", tests[i].name);
1687 			ret = -1;
1688 		}
1689 	}
1690 
1691 	if (ret)
1692 		WARN_ON(1);
1693 
1694 	return ret;
1695 }
1696 late_initcall(rcu_tasks_verify_self_tests);
1697 #else /* #ifdef CONFIG_PROVE_RCU */
1698 static void rcu_tasks_initiate_self_tests(void) { }
1699 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1700 
1701 void __init rcu_init_tasks_generic(void)
1702 {
1703 #ifdef CONFIG_TASKS_RCU
1704 	rcu_spawn_tasks_kthread();
1705 #endif
1706 
1707 #ifdef CONFIG_TASKS_RUDE_RCU
1708 	rcu_spawn_tasks_rude_kthread();
1709 #endif
1710 
1711 #ifdef CONFIG_TASKS_TRACE_RCU
1712 	rcu_spawn_tasks_trace_kthread();
1713 #endif
1714 
1715 	// Run the self-tests.
1716 	rcu_tasks_initiate_self_tests();
1717 }
1718 
1719 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1720 static inline void rcu_tasks_bootup_oddness(void) {}
1721 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1722