1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @rtp_n_lock_retries: Rough lock-contention statistic. 29 * @rtp_work: Work queue for invoking callbacks. 30 * @rtp_irq_work: IRQ work queue for deferred wakeups. 31 * @barrier_q_head: RCU callback for barrier operation. 32 * @rtp_blkd_tasks: List of tasks blocked as readers. 33 * @cpu: CPU number corresponding to this entry. 34 * @rtpp: Pointer to the rcu_tasks structure. 35 */ 36 struct rcu_tasks_percpu { 37 struct rcu_segcblist cblist; 38 raw_spinlock_t __private lock; 39 unsigned long rtp_jiffies; 40 unsigned long rtp_n_lock_retries; 41 struct work_struct rtp_work; 42 struct irq_work rtp_irq_work; 43 struct rcu_head barrier_q_head; 44 struct list_head rtp_blkd_tasks; 45 int cpu; 46 struct rcu_tasks *rtpp; 47 }; 48 49 /** 50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 52 * @cbs_gbl_lock: Lock protecting callback list. 53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 55 * @gp_func: This flavor's grace-period-wait function. 56 * @gp_state: Grace period's most recent state transition (debugging). 57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 58 * @init_fract: Initial backoff sleep interval. 59 * @gp_jiffies: Time of last @gp_state transition. 60 * @gp_start: Most recent grace-period start in jiffies. 61 * @tasks_gp_seq: Number of grace periods completed since boot. 62 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 63 * @n_ipis_fails: Number of IPI-send failures. 64 * @pregp_func: This flavor's pre-grace-period function (optional). 65 * @pertask_func: This flavor's per-task scan function (optional). 66 * @postscan_func: This flavor's post-task scan function (optional). 67 * @holdouts_func: This flavor's holdout-list scan function (optional). 68 * @postgp_func: This flavor's post-grace-period function (optional). 69 * @call_func: This flavor's call_rcu()-equivalent function. 70 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 75 * @barrier_q_mutex: Serialize barrier operations. 76 * @barrier_q_count: Number of queues being waited on. 77 * @barrier_q_completion: Barrier wait/wakeup mechanism. 78 * @barrier_q_seq: Sequence number for barrier operations. 79 * @name: This flavor's textual name. 80 * @kname: This flavor's kthread name. 81 */ 82 struct rcu_tasks { 83 struct rcuwait cbs_wait; 84 raw_spinlock_t cbs_gbl_lock; 85 struct mutex tasks_gp_mutex; 86 int gp_state; 87 int gp_sleep; 88 int init_fract; 89 unsigned long gp_jiffies; 90 unsigned long gp_start; 91 unsigned long tasks_gp_seq; 92 unsigned long n_ipis; 93 unsigned long n_ipis_fails; 94 struct task_struct *kthread_ptr; 95 rcu_tasks_gp_func_t gp_func; 96 pregp_func_t pregp_func; 97 pertask_func_t pertask_func; 98 postscan_func_t postscan_func; 99 holdouts_func_t holdouts_func; 100 postgp_func_t postgp_func; 101 call_rcu_func_t call_func; 102 struct rcu_tasks_percpu __percpu *rtpcpu; 103 int percpu_enqueue_shift; 104 int percpu_enqueue_lim; 105 int percpu_dequeue_lim; 106 unsigned long percpu_dequeue_gpseq; 107 struct mutex barrier_q_mutex; 108 atomic_t barrier_q_count; 109 struct completion barrier_q_completion; 110 unsigned long barrier_q_seq; 111 char *name; 112 char *kname; 113 }; 114 115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 116 117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 121 }; \ 122 static struct rcu_tasks rt_name = \ 123 { \ 124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 127 .gp_func = gp, \ 128 .call_func = call, \ 129 .rtpcpu = &rt_name ## __percpu, \ 130 .name = n, \ 131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 132 .percpu_enqueue_lim = 1, \ 133 .percpu_dequeue_lim = 1, \ 134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 136 .kname = #rt_name, \ 137 } 138 139 #ifdef CONFIG_TASKS_RCU 140 /* Track exiting tasks in order to allow them to be waited for. */ 141 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 142 #endif 143 144 #ifdef CONFIG_TASKS_RCU 145 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 146 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 147 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 148 #endif 149 150 /* Avoid IPIing CPUs early in the grace period. */ 151 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 152 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 153 module_param(rcu_task_ipi_delay, int, 0644); 154 155 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 156 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 157 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 158 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 159 module_param(rcu_task_stall_timeout, int, 0644); 160 #define RCU_TASK_STALL_INFO (HZ * 10) 161 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 162 module_param(rcu_task_stall_info, int, 0644); 163 static int rcu_task_stall_info_mult __read_mostly = 3; 164 module_param(rcu_task_stall_info_mult, int, 0444); 165 166 static int rcu_task_enqueue_lim __read_mostly = -1; 167 module_param(rcu_task_enqueue_lim, int, 0444); 168 169 static bool rcu_task_cb_adjust; 170 static int rcu_task_contend_lim __read_mostly = 100; 171 module_param(rcu_task_contend_lim, int, 0444); 172 static int rcu_task_collapse_lim __read_mostly = 10; 173 module_param(rcu_task_collapse_lim, int, 0444); 174 175 /* RCU tasks grace-period state for debugging. */ 176 #define RTGS_INIT 0 177 #define RTGS_WAIT_WAIT_CBS 1 178 #define RTGS_WAIT_GP 2 179 #define RTGS_PRE_WAIT_GP 3 180 #define RTGS_SCAN_TASKLIST 4 181 #define RTGS_POST_SCAN_TASKLIST 5 182 #define RTGS_WAIT_SCAN_HOLDOUTS 6 183 #define RTGS_SCAN_HOLDOUTS 7 184 #define RTGS_POST_GP 8 185 #define RTGS_WAIT_READERS 9 186 #define RTGS_INVOKE_CBS 10 187 #define RTGS_WAIT_CBS 11 188 #ifndef CONFIG_TINY_RCU 189 static const char * const rcu_tasks_gp_state_names[] = { 190 "RTGS_INIT", 191 "RTGS_WAIT_WAIT_CBS", 192 "RTGS_WAIT_GP", 193 "RTGS_PRE_WAIT_GP", 194 "RTGS_SCAN_TASKLIST", 195 "RTGS_POST_SCAN_TASKLIST", 196 "RTGS_WAIT_SCAN_HOLDOUTS", 197 "RTGS_SCAN_HOLDOUTS", 198 "RTGS_POST_GP", 199 "RTGS_WAIT_READERS", 200 "RTGS_INVOKE_CBS", 201 "RTGS_WAIT_CBS", 202 }; 203 #endif /* #ifndef CONFIG_TINY_RCU */ 204 205 //////////////////////////////////////////////////////////////////////// 206 // 207 // Generic code. 208 209 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 210 211 /* Record grace-period phase and time. */ 212 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 213 { 214 rtp->gp_state = newstate; 215 rtp->gp_jiffies = jiffies; 216 } 217 218 #ifndef CONFIG_TINY_RCU 219 /* Return state name. */ 220 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 221 { 222 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 223 int j = READ_ONCE(i); // Prevent the compiler from reading twice 224 225 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 226 return "???"; 227 return rcu_tasks_gp_state_names[j]; 228 } 229 #endif /* #ifndef CONFIG_TINY_RCU */ 230 231 // Initialize per-CPU callback lists for the specified flavor of 232 // Tasks RCU. 233 static void cblist_init_generic(struct rcu_tasks *rtp) 234 { 235 int cpu; 236 unsigned long flags; 237 int lim; 238 int shift; 239 240 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 241 if (rcu_task_enqueue_lim < 0) { 242 rcu_task_enqueue_lim = 1; 243 rcu_task_cb_adjust = true; 244 pr_info("%s: Setting adjustable number of callback queues.\n", __func__); 245 } else if (rcu_task_enqueue_lim == 0) { 246 rcu_task_enqueue_lim = 1; 247 } 248 lim = rcu_task_enqueue_lim; 249 250 if (lim > nr_cpu_ids) 251 lim = nr_cpu_ids; 252 shift = ilog2(nr_cpu_ids / lim); 253 if (((nr_cpu_ids - 1) >> shift) >= lim) 254 shift++; 255 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 256 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 257 smp_store_release(&rtp->percpu_enqueue_lim, lim); 258 for_each_possible_cpu(cpu) { 259 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 260 261 WARN_ON_ONCE(!rtpcp); 262 if (cpu) 263 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 264 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 265 if (rcu_segcblist_empty(&rtpcp->cblist)) 266 rcu_segcblist_init(&rtpcp->cblist); 267 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 268 rtpcp->cpu = cpu; 269 rtpcp->rtpp = rtp; 270 if (!rtpcp->rtp_blkd_tasks.next) 271 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 272 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 273 } 274 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 275 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim)); 276 } 277 278 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 279 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 280 { 281 struct rcu_tasks *rtp; 282 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 283 284 rtp = rtpcp->rtpp; 285 rcuwait_wake_up(&rtp->cbs_wait); 286 } 287 288 // Enqueue a callback for the specified flavor of Tasks RCU. 289 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 290 struct rcu_tasks *rtp) 291 { 292 int chosen_cpu; 293 unsigned long flags; 294 int ideal_cpu; 295 unsigned long j; 296 bool needadjust = false; 297 bool needwake; 298 struct rcu_tasks_percpu *rtpcp; 299 300 rhp->next = NULL; 301 rhp->func = func; 302 local_irq_save(flags); 303 rcu_read_lock(); 304 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 305 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 306 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 307 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 308 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 309 j = jiffies; 310 if (rtpcp->rtp_jiffies != j) { 311 rtpcp->rtp_jiffies = j; 312 rtpcp->rtp_n_lock_retries = 0; 313 } 314 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 315 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 316 needadjust = true; // Defer adjustment to avoid deadlock. 317 } 318 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) { 319 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 320 cblist_init_generic(rtp); 321 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 322 } 323 needwake = rcu_segcblist_empty(&rtpcp->cblist); 324 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 325 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 326 if (unlikely(needadjust)) { 327 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 328 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 329 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 330 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 331 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 332 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 333 } 334 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 335 } 336 rcu_read_unlock(); 337 /* We can't create the thread unless interrupts are enabled. */ 338 if (needwake && READ_ONCE(rtp->kthread_ptr)) 339 irq_work_queue(&rtpcp->rtp_irq_work); 340 } 341 342 // RCU callback function for rcu_barrier_tasks_generic(). 343 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 344 { 345 struct rcu_tasks *rtp; 346 struct rcu_tasks_percpu *rtpcp; 347 348 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 349 rtp = rtpcp->rtpp; 350 if (atomic_dec_and_test(&rtp->barrier_q_count)) 351 complete(&rtp->barrier_q_completion); 352 } 353 354 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 355 // Operates in a manner similar to rcu_barrier(). 356 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 357 { 358 int cpu; 359 unsigned long flags; 360 struct rcu_tasks_percpu *rtpcp; 361 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 362 363 mutex_lock(&rtp->barrier_q_mutex); 364 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 365 smp_mb(); 366 mutex_unlock(&rtp->barrier_q_mutex); 367 return; 368 } 369 rcu_seq_start(&rtp->barrier_q_seq); 370 init_completion(&rtp->barrier_q_completion); 371 atomic_set(&rtp->barrier_q_count, 2); 372 for_each_possible_cpu(cpu) { 373 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 374 break; 375 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 376 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 377 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 378 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 379 atomic_inc(&rtp->barrier_q_count); 380 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 381 } 382 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 383 complete(&rtp->barrier_q_completion); 384 wait_for_completion(&rtp->barrier_q_completion); 385 rcu_seq_end(&rtp->barrier_q_seq); 386 mutex_unlock(&rtp->barrier_q_mutex); 387 } 388 389 // Advance callbacks and indicate whether either a grace period or 390 // callback invocation is needed. 391 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 392 { 393 int cpu; 394 unsigned long flags; 395 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 396 long n; 397 long ncbs = 0; 398 long ncbsnz = 0; 399 int needgpcb = 0; 400 401 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 402 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 403 404 /* Advance and accelerate any new callbacks. */ 405 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 406 continue; 407 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 408 // Should we shrink down to a single callback queue? 409 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 410 if (n) { 411 ncbs += n; 412 if (cpu > 0) 413 ncbsnz += n; 414 } 415 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 416 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 417 if (rcu_segcblist_pend_cbs(&rtpcp->cblist)) 418 needgpcb |= 0x3; 419 if (!rcu_segcblist_empty(&rtpcp->cblist)) 420 needgpcb |= 0x1; 421 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 422 } 423 424 // Shrink down to a single callback queue if appropriate. 425 // This is done in two stages: (1) If there are no more than 426 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 427 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 428 // if there has not been an increase in callbacks, limit dequeuing 429 // to CPU 0. Note the matching RCU read-side critical section in 430 // call_rcu_tasks_generic(). 431 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 432 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 433 if (rtp->percpu_enqueue_lim > 1) { 434 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 435 smp_store_release(&rtp->percpu_enqueue_lim, 1); 436 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 437 gpdone = false; 438 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 439 } 440 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 441 } 442 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 443 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 444 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 445 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 446 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 447 } 448 if (rtp->percpu_dequeue_lim == 1) { 449 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 450 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 451 452 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 453 } 454 } 455 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 456 } 457 458 return needgpcb; 459 } 460 461 // Advance callbacks and invoke any that are ready. 462 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 463 { 464 int cpu; 465 int cpunext; 466 unsigned long flags; 467 int len; 468 struct rcu_head *rhp; 469 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 470 struct rcu_tasks_percpu *rtpcp_next; 471 472 cpu = rtpcp->cpu; 473 cpunext = cpu * 2 + 1; 474 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 475 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 476 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 477 cpunext++; 478 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 479 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 480 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 481 } 482 } 483 484 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 485 return; 486 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 487 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 488 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 489 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 490 len = rcl.len; 491 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 492 local_bh_disable(); 493 rhp->func(rhp); 494 local_bh_enable(); 495 cond_resched(); 496 } 497 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 498 rcu_segcblist_add_len(&rtpcp->cblist, -len); 499 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 500 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 501 } 502 503 // Workqueue flood to advance callbacks and invoke any that are ready. 504 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 505 { 506 struct rcu_tasks *rtp; 507 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 508 509 rtp = rtpcp->rtpp; 510 rcu_tasks_invoke_cbs(rtp, rtpcp); 511 } 512 513 // Wait for one grace period. 514 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 515 { 516 int needgpcb; 517 518 mutex_lock(&rtp->tasks_gp_mutex); 519 520 // If there were none, wait a bit and start over. 521 if (unlikely(midboot)) { 522 needgpcb = 0x2; 523 } else { 524 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 525 rcuwait_wait_event(&rtp->cbs_wait, 526 (needgpcb = rcu_tasks_need_gpcb(rtp)), 527 TASK_IDLE); 528 } 529 530 if (needgpcb & 0x2) { 531 // Wait for one grace period. 532 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 533 rtp->gp_start = jiffies; 534 rcu_seq_start(&rtp->tasks_gp_seq); 535 rtp->gp_func(rtp); 536 rcu_seq_end(&rtp->tasks_gp_seq); 537 } 538 539 // Invoke callbacks. 540 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 541 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 542 mutex_unlock(&rtp->tasks_gp_mutex); 543 } 544 545 // RCU-tasks kthread that detects grace periods and invokes callbacks. 546 static int __noreturn rcu_tasks_kthread(void *arg) 547 { 548 struct rcu_tasks *rtp = arg; 549 550 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 551 housekeeping_affine(current, HK_TYPE_RCU); 552 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 553 554 /* 555 * Each pass through the following loop makes one check for 556 * newly arrived callbacks, and, if there are some, waits for 557 * one RCU-tasks grace period and then invokes the callbacks. 558 * This loop is terminated by the system going down. ;-) 559 */ 560 for (;;) { 561 // Wait for one grace period and invoke any callbacks 562 // that are ready. 563 rcu_tasks_one_gp(rtp, false); 564 565 // Paranoid sleep to keep this from entering a tight loop. 566 schedule_timeout_idle(rtp->gp_sleep); 567 } 568 } 569 570 // Wait for a grace period for the specified flavor of Tasks RCU. 571 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 572 { 573 /* Complain if the scheduler has not started. */ 574 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 575 "synchronize_%s() called too soon", rtp->name)) 576 return; 577 578 // If the grace-period kthread is running, use it. 579 if (READ_ONCE(rtp->kthread_ptr)) { 580 wait_rcu_gp(rtp->call_func); 581 return; 582 } 583 rcu_tasks_one_gp(rtp, true); 584 } 585 586 /* Spawn RCU-tasks grace-period kthread. */ 587 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 588 { 589 struct task_struct *t; 590 591 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 592 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 593 return; 594 smp_mb(); /* Ensure others see full kthread. */ 595 } 596 597 #ifndef CONFIG_TINY_RCU 598 599 /* 600 * Print any non-default Tasks RCU settings. 601 */ 602 static void __init rcu_tasks_bootup_oddness(void) 603 { 604 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 605 int rtsimc; 606 607 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 608 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 609 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 610 if (rtsimc != rcu_task_stall_info_mult) { 611 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 612 rcu_task_stall_info_mult = rtsimc; 613 } 614 #endif /* #ifdef CONFIG_TASKS_RCU */ 615 #ifdef CONFIG_TASKS_RCU 616 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 617 #endif /* #ifdef CONFIG_TASKS_RCU */ 618 #ifdef CONFIG_TASKS_RUDE_RCU 619 pr_info("\tRude variant of Tasks RCU enabled.\n"); 620 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 621 #ifdef CONFIG_TASKS_TRACE_RCU 622 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 623 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 624 } 625 626 #endif /* #ifndef CONFIG_TINY_RCU */ 627 628 #ifndef CONFIG_TINY_RCU 629 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 630 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 631 { 632 int cpu; 633 bool havecbs = false; 634 635 for_each_possible_cpu(cpu) { 636 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 637 638 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) { 639 havecbs = true; 640 break; 641 } 642 } 643 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 644 rtp->kname, 645 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 646 jiffies - data_race(rtp->gp_jiffies), 647 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 648 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 649 ".k"[!!data_race(rtp->kthread_ptr)], 650 ".C"[havecbs], 651 s); 652 } 653 #endif // #ifndef CONFIG_TINY_RCU 654 655 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 656 657 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 658 659 //////////////////////////////////////////////////////////////////////// 660 // 661 // Shared code between task-list-scanning variants of Tasks RCU. 662 663 /* Wait for one RCU-tasks grace period. */ 664 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 665 { 666 struct task_struct *g; 667 int fract; 668 LIST_HEAD(holdouts); 669 unsigned long j; 670 unsigned long lastinfo; 671 unsigned long lastreport; 672 bool reported = false; 673 int rtsi; 674 struct task_struct *t; 675 676 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 677 rtp->pregp_func(&holdouts); 678 679 /* 680 * There were callbacks, so we need to wait for an RCU-tasks 681 * grace period. Start off by scanning the task list for tasks 682 * that are not already voluntarily blocked. Mark these tasks 683 * and make a list of them in holdouts. 684 */ 685 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 686 if (rtp->pertask_func) { 687 rcu_read_lock(); 688 for_each_process_thread(g, t) 689 rtp->pertask_func(t, &holdouts); 690 rcu_read_unlock(); 691 } 692 693 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 694 rtp->postscan_func(&holdouts); 695 696 /* 697 * Each pass through the following loop scans the list of holdout 698 * tasks, removing any that are no longer holdouts. When the list 699 * is empty, we are done. 700 */ 701 lastreport = jiffies; 702 lastinfo = lastreport; 703 rtsi = READ_ONCE(rcu_task_stall_info); 704 705 // Start off with initial wait and slowly back off to 1 HZ wait. 706 fract = rtp->init_fract; 707 708 while (!list_empty(&holdouts)) { 709 ktime_t exp; 710 bool firstreport; 711 bool needreport; 712 int rtst; 713 714 // Slowly back off waiting for holdouts 715 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 716 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 717 schedule_timeout_idle(fract); 718 } else { 719 exp = jiffies_to_nsecs(fract); 720 __set_current_state(TASK_IDLE); 721 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 722 } 723 724 if (fract < HZ) 725 fract++; 726 727 rtst = READ_ONCE(rcu_task_stall_timeout); 728 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 729 if (needreport) { 730 lastreport = jiffies; 731 reported = true; 732 } 733 firstreport = true; 734 WARN_ON(signal_pending(current)); 735 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 736 rtp->holdouts_func(&holdouts, needreport, &firstreport); 737 738 // Print pre-stall informational messages if needed. 739 j = jiffies; 740 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 741 lastinfo = j; 742 rtsi = rtsi * rcu_task_stall_info_mult; 743 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 744 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 745 } 746 } 747 748 set_tasks_gp_state(rtp, RTGS_POST_GP); 749 rtp->postgp_func(rtp); 750 } 751 752 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 753 754 #ifdef CONFIG_TASKS_RCU 755 756 //////////////////////////////////////////////////////////////////////// 757 // 758 // Simple variant of RCU whose quiescent states are voluntary context 759 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 760 // As such, grace periods can take one good long time. There are no 761 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 762 // because this implementation is intended to get the system into a safe 763 // state for some of the manipulations involved in tracing and the like. 764 // Finally, this implementation does not support high call_rcu_tasks() 765 // rates from multiple CPUs. If this is required, per-CPU callback lists 766 // will be needed. 767 // 768 // The implementation uses rcu_tasks_wait_gp(), which relies on function 769 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 770 // function sets these function pointers up so that rcu_tasks_wait_gp() 771 // invokes these functions in this order: 772 // 773 // rcu_tasks_pregp_step(): 774 // Invokes synchronize_rcu() in order to wait for all in-flight 775 // t->on_rq and t->nvcsw transitions to complete. This works because 776 // all such transitions are carried out with interrupts disabled. 777 // rcu_tasks_pertask(), invoked on every non-idle task: 778 // For every runnable non-idle task other than the current one, use 779 // get_task_struct() to pin down that task, snapshot that task's 780 // number of voluntary context switches, and add that task to the 781 // holdout list. 782 // rcu_tasks_postscan(): 783 // Invoke synchronize_srcu() to ensure that all tasks that were 784 // in the process of exiting (and which thus might not know to 785 // synchronize with this RCU Tasks grace period) have completed 786 // exiting. 787 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 788 // Scans the holdout list, attempting to identify a quiescent state 789 // for each task on the list. If there is a quiescent state, the 790 // corresponding task is removed from the holdout list. 791 // rcu_tasks_postgp(): 792 // Invokes synchronize_rcu() in order to ensure that all prior 793 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 794 // to have happened before the end of this RCU Tasks grace period. 795 // Again, this works because all such transitions are carried out 796 // with interrupts disabled. 797 // 798 // For each exiting task, the exit_tasks_rcu_start() and 799 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 800 // read-side critical sections waited for by rcu_tasks_postscan(). 801 // 802 // Pre-grace-period update-side code is ordered before the grace 803 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 804 // is ordered before the grace period via synchronize_rcu() call in 805 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 806 // disabling. 807 808 /* Pre-grace-period preparation. */ 809 static void rcu_tasks_pregp_step(struct list_head *hop) 810 { 811 /* 812 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 813 * to complete. Invoking synchronize_rcu() suffices because all 814 * these transitions occur with interrupts disabled. Without this 815 * synchronize_rcu(), a read-side critical section that started 816 * before the grace period might be incorrectly seen as having 817 * started after the grace period. 818 * 819 * This synchronize_rcu() also dispenses with the need for a 820 * memory barrier on the first store to t->rcu_tasks_holdout, 821 * as it forces the store to happen after the beginning of the 822 * grace period. 823 */ 824 synchronize_rcu(); 825 } 826 827 /* Per-task initial processing. */ 828 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 829 { 830 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 831 get_task_struct(t); 832 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 833 WRITE_ONCE(t->rcu_tasks_holdout, true); 834 list_add(&t->rcu_tasks_holdout_list, hop); 835 } 836 } 837 838 /* Processing between scanning taskslist and draining the holdout list. */ 839 static void rcu_tasks_postscan(struct list_head *hop) 840 { 841 int rtsi = READ_ONCE(rcu_task_stall_info); 842 843 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 844 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 845 add_timer(&tasks_rcu_exit_srcu_stall_timer); 846 } 847 848 /* 849 * Exiting tasks may escape the tasklist scan. Those are vulnerable 850 * until their final schedule() with TASK_DEAD state. To cope with 851 * this, divide the fragile exit path part in two intersecting 852 * read side critical sections: 853 * 854 * 1) An _SRCU_ read side starting before calling exit_notify(), 855 * which may remove the task from the tasklist, and ending after 856 * the final preempt_disable() call in do_exit(). 857 * 858 * 2) An _RCU_ read side starting with the final preempt_disable() 859 * call in do_exit() and ending with the final call to schedule() 860 * with TASK_DEAD state. 861 * 862 * This handles the part 1). And postgp will handle part 2) with a 863 * call to synchronize_rcu(). 864 */ 865 synchronize_srcu(&tasks_rcu_exit_srcu); 866 867 if (!IS_ENABLED(CONFIG_TINY_RCU)) 868 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 869 } 870 871 /* See if tasks are still holding out, complain if so. */ 872 static void check_holdout_task(struct task_struct *t, 873 bool needreport, bool *firstreport) 874 { 875 int cpu; 876 877 if (!READ_ONCE(t->rcu_tasks_holdout) || 878 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 879 !READ_ONCE(t->on_rq) || 880 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 881 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 882 WRITE_ONCE(t->rcu_tasks_holdout, false); 883 list_del_init(&t->rcu_tasks_holdout_list); 884 put_task_struct(t); 885 return; 886 } 887 rcu_request_urgent_qs_task(t); 888 if (!needreport) 889 return; 890 if (*firstreport) { 891 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 892 *firstreport = false; 893 } 894 cpu = task_cpu(t); 895 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 896 t, ".I"[is_idle_task(t)], 897 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 898 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 899 t->rcu_tasks_idle_cpu, cpu); 900 sched_show_task(t); 901 } 902 903 /* Scan the holdout lists for tasks no longer holding out. */ 904 static void check_all_holdout_tasks(struct list_head *hop, 905 bool needreport, bool *firstreport) 906 { 907 struct task_struct *t, *t1; 908 909 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 910 check_holdout_task(t, needreport, firstreport); 911 cond_resched(); 912 } 913 } 914 915 /* Finish off the Tasks-RCU grace period. */ 916 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 917 { 918 /* 919 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 920 * memory barriers prior to them in the schedule() path, memory 921 * reordering on other CPUs could cause their RCU-tasks read-side 922 * critical sections to extend past the end of the grace period. 923 * However, because these ->nvcsw updates are carried out with 924 * interrupts disabled, we can use synchronize_rcu() to force the 925 * needed ordering on all such CPUs. 926 * 927 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 928 * accesses to be within the grace period, avoiding the need for 929 * memory barriers for ->rcu_tasks_holdout accesses. 930 * 931 * In addition, this synchronize_rcu() waits for exiting tasks 932 * to complete their final preempt_disable() region of execution, 933 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 934 * enforcing the whole region before tasklist removal until 935 * the final schedule() with TASK_DEAD state to be an RCU TASKS 936 * read side critical section. 937 */ 938 synchronize_rcu(); 939 } 940 941 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 942 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 943 944 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 945 { 946 #ifndef CONFIG_TINY_RCU 947 int rtsi; 948 949 rtsi = READ_ONCE(rcu_task_stall_info); 950 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 951 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 952 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 953 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 954 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 955 add_timer(&tasks_rcu_exit_srcu_stall_timer); 956 #endif // #ifndef CONFIG_TINY_RCU 957 } 958 959 /** 960 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 961 * @rhp: structure to be used for queueing the RCU updates. 962 * @func: actual callback function to be invoked after the grace period 963 * 964 * The callback function will be invoked some time after a full grace 965 * period elapses, in other words after all currently executing RCU 966 * read-side critical sections have completed. call_rcu_tasks() assumes 967 * that the read-side critical sections end at a voluntary context 968 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 969 * or transition to usermode execution. As such, there are no read-side 970 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 971 * this primitive is intended to determine that all tasks have passed 972 * through a safe state, not so much for data-structure synchronization. 973 * 974 * See the description of call_rcu() for more detailed information on 975 * memory ordering guarantees. 976 */ 977 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 978 { 979 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 980 } 981 EXPORT_SYMBOL_GPL(call_rcu_tasks); 982 983 /** 984 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 985 * 986 * Control will return to the caller some time after a full rcu-tasks 987 * grace period has elapsed, in other words after all currently 988 * executing rcu-tasks read-side critical sections have elapsed. These 989 * read-side critical sections are delimited by calls to schedule(), 990 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 991 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 992 * 993 * This is a very specialized primitive, intended only for a few uses in 994 * tracing and other situations requiring manipulation of function 995 * preambles and profiling hooks. The synchronize_rcu_tasks() function 996 * is not (yet) intended for heavy use from multiple CPUs. 997 * 998 * See the description of synchronize_rcu() for more detailed information 999 * on memory ordering guarantees. 1000 */ 1001 void synchronize_rcu_tasks(void) 1002 { 1003 synchronize_rcu_tasks_generic(&rcu_tasks); 1004 } 1005 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1006 1007 /** 1008 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1009 * 1010 * Although the current implementation is guaranteed to wait, it is not 1011 * obligated to, for example, if there are no pending callbacks. 1012 */ 1013 void rcu_barrier_tasks(void) 1014 { 1015 rcu_barrier_tasks_generic(&rcu_tasks); 1016 } 1017 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1018 1019 static int __init rcu_spawn_tasks_kthread(void) 1020 { 1021 cblist_init_generic(&rcu_tasks); 1022 rcu_tasks.gp_sleep = HZ / 10; 1023 rcu_tasks.init_fract = HZ / 10; 1024 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1025 rcu_tasks.pertask_func = rcu_tasks_pertask; 1026 rcu_tasks.postscan_func = rcu_tasks_postscan; 1027 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1028 rcu_tasks.postgp_func = rcu_tasks_postgp; 1029 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1030 return 0; 1031 } 1032 1033 #if !defined(CONFIG_TINY_RCU) 1034 void show_rcu_tasks_classic_gp_kthread(void) 1035 { 1036 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1037 } 1038 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1039 #endif // !defined(CONFIG_TINY_RCU) 1040 1041 /* 1042 * Contribute to protect against tasklist scan blind spot while the 1043 * task is exiting and may be removed from the tasklist. See 1044 * corresponding synchronize_srcu() for further details. 1045 */ 1046 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1047 { 1048 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1049 } 1050 1051 /* 1052 * Contribute to protect against tasklist scan blind spot while the 1053 * task is exiting and may be removed from the tasklist. See 1054 * corresponding synchronize_srcu() for further details. 1055 */ 1056 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1057 { 1058 struct task_struct *t = current; 1059 1060 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1061 } 1062 1063 /* 1064 * Contribute to protect against tasklist scan blind spot while the 1065 * task is exiting and may be removed from the tasklist. See 1066 * corresponding synchronize_srcu() for further details. 1067 */ 1068 void exit_tasks_rcu_finish(void) 1069 { 1070 exit_tasks_rcu_stop(); 1071 exit_tasks_rcu_finish_trace(current); 1072 } 1073 1074 #else /* #ifdef CONFIG_TASKS_RCU */ 1075 void exit_tasks_rcu_start(void) { } 1076 void exit_tasks_rcu_stop(void) { } 1077 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1078 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1079 1080 #ifdef CONFIG_TASKS_RUDE_RCU 1081 1082 //////////////////////////////////////////////////////////////////////// 1083 // 1084 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1085 // passing an empty function to schedule_on_each_cpu(). This approach 1086 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1087 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1088 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1089 // and induces otherwise unnecessary context switches on all online CPUs, 1090 // whether idle or not. 1091 // 1092 // Callback handling is provided by the rcu_tasks_kthread() function. 1093 // 1094 // Ordering is provided by the scheduler's context-switch code. 1095 1096 // Empty function to allow workqueues to force a context switch. 1097 static void rcu_tasks_be_rude(struct work_struct *work) 1098 { 1099 } 1100 1101 // Wait for one rude RCU-tasks grace period. 1102 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1103 { 1104 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1105 schedule_on_each_cpu(rcu_tasks_be_rude); 1106 } 1107 1108 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1109 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1110 "RCU Tasks Rude"); 1111 1112 /** 1113 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1114 * @rhp: structure to be used for queueing the RCU updates. 1115 * @func: actual callback function to be invoked after the grace period 1116 * 1117 * The callback function will be invoked some time after a full grace 1118 * period elapses, in other words after all currently executing RCU 1119 * read-side critical sections have completed. call_rcu_tasks_rude() 1120 * assumes that the read-side critical sections end at context switch, 1121 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1122 * usermode execution is schedulable). As such, there are no read-side 1123 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1124 * this primitive is intended to determine that all tasks have passed 1125 * through a safe state, not so much for data-structure synchronization. 1126 * 1127 * See the description of call_rcu() for more detailed information on 1128 * memory ordering guarantees. 1129 */ 1130 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1131 { 1132 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1133 } 1134 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1135 1136 /** 1137 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1138 * 1139 * Control will return to the caller some time after a rude rcu-tasks 1140 * grace period has elapsed, in other words after all currently 1141 * executing rcu-tasks read-side critical sections have elapsed. These 1142 * read-side critical sections are delimited by calls to schedule(), 1143 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1144 * context), and (in theory, anyway) cond_resched(). 1145 * 1146 * This is a very specialized primitive, intended only for a few uses in 1147 * tracing and other situations requiring manipulation of function preambles 1148 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1149 * (yet) intended for heavy use from multiple CPUs. 1150 * 1151 * See the description of synchronize_rcu() for more detailed information 1152 * on memory ordering guarantees. 1153 */ 1154 void synchronize_rcu_tasks_rude(void) 1155 { 1156 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1157 } 1158 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1159 1160 /** 1161 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1162 * 1163 * Although the current implementation is guaranteed to wait, it is not 1164 * obligated to, for example, if there are no pending callbacks. 1165 */ 1166 void rcu_barrier_tasks_rude(void) 1167 { 1168 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1169 } 1170 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1171 1172 static int __init rcu_spawn_tasks_rude_kthread(void) 1173 { 1174 cblist_init_generic(&rcu_tasks_rude); 1175 rcu_tasks_rude.gp_sleep = HZ / 10; 1176 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1177 return 0; 1178 } 1179 1180 #if !defined(CONFIG_TINY_RCU) 1181 void show_rcu_tasks_rude_gp_kthread(void) 1182 { 1183 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1184 } 1185 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1186 #endif // !defined(CONFIG_TINY_RCU) 1187 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1188 1189 //////////////////////////////////////////////////////////////////////// 1190 // 1191 // Tracing variant of Tasks RCU. This variant is designed to be used 1192 // to protect tracing hooks, including those of BPF. This variant 1193 // therefore: 1194 // 1195 // 1. Has explicit read-side markers to allow finite grace periods 1196 // in the face of in-kernel loops for PREEMPT=n builds. 1197 // 1198 // 2. Protects code in the idle loop, exception entry/exit, and 1199 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1200 // 1201 // 3. Avoids expensive read-side instructions, having overhead similar 1202 // to that of Preemptible RCU. 1203 // 1204 // There are of course downsides. For example, the grace-period code 1205 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1206 // in nohz_full userspace. If needed, these downsides can be at least 1207 // partially remedied. 1208 // 1209 // Perhaps most important, this variant of RCU does not affect the vanilla 1210 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1211 // readers can operate from idle, offline, and exception entry/exit in no 1212 // way allows rcu_preempt and rcu_sched readers to also do so. 1213 // 1214 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1215 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1216 // function sets these function pointers up so that rcu_tasks_wait_gp() 1217 // invokes these functions in this order: 1218 // 1219 // rcu_tasks_trace_pregp_step(): 1220 // Disables CPU hotplug, adds all currently executing tasks to the 1221 // holdout list, then checks the state of all tasks that blocked 1222 // or were preempted within their current RCU Tasks Trace read-side 1223 // critical section, adding them to the holdout list if appropriate. 1224 // Finally, this function re-enables CPU hotplug. 1225 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1226 // rcu_tasks_trace_postscan(): 1227 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1228 // to finish exiting. 1229 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1230 // Scans the holdout list, attempting to identify a quiescent state 1231 // for each task on the list. If there is a quiescent state, the 1232 // corresponding task is removed from the holdout list. Once this 1233 // list is empty, the grace period has completed. 1234 // rcu_tasks_trace_postgp(): 1235 // Provides the needed full memory barrier and does debug checks. 1236 // 1237 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1238 // 1239 // Pre-grace-period update-side code is ordered before the grace period 1240 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1241 // read-side code is ordered before the grace period by atomic operations 1242 // on .b.need_qs flag of each task involved in this process, or by scheduler 1243 // context-switch ordering (for locked-down non-running readers). 1244 1245 // The lockdep state must be outside of #ifdef to be useful. 1246 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1247 static struct lock_class_key rcu_lock_trace_key; 1248 struct lockdep_map rcu_trace_lock_map = 1249 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1250 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1251 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1252 1253 #ifdef CONFIG_TASKS_TRACE_RCU 1254 1255 // Record outstanding IPIs to each CPU. No point in sending two... 1256 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1257 1258 // The number of detections of task quiescent state relying on 1259 // heavyweight readers executing explicit memory barriers. 1260 static unsigned long n_heavy_reader_attempts; 1261 static unsigned long n_heavy_reader_updates; 1262 static unsigned long n_heavy_reader_ofl_updates; 1263 static unsigned long n_trc_holdouts; 1264 1265 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1266 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1267 "RCU Tasks Trace"); 1268 1269 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1270 static u8 rcu_ld_need_qs(struct task_struct *t) 1271 { 1272 smp_mb(); // Enforce full grace-period ordering. 1273 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1274 } 1275 1276 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1277 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1278 { 1279 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1280 smp_mb(); // Enforce full grace-period ordering. 1281 } 1282 1283 /* 1284 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1285 * the four-byte operand-size restriction of some platforms. 1286 * Returns the old value, which is often ignored. 1287 */ 1288 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1289 { 1290 union rcu_special ret; 1291 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1292 union rcu_special trs_new = trs_old; 1293 1294 if (trs_old.b.need_qs != old) 1295 return trs_old.b.need_qs; 1296 trs_new.b.need_qs = new; 1297 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1298 return ret.b.need_qs; 1299 } 1300 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1301 1302 /* 1303 * If we are the last reader, signal the grace-period kthread. 1304 * Also remove from the per-CPU list of blocked tasks. 1305 */ 1306 void rcu_read_unlock_trace_special(struct task_struct *t) 1307 { 1308 unsigned long flags; 1309 struct rcu_tasks_percpu *rtpcp; 1310 union rcu_special trs; 1311 1312 // Open-coded full-word version of rcu_ld_need_qs(). 1313 smp_mb(); // Enforce full grace-period ordering. 1314 trs = smp_load_acquire(&t->trc_reader_special); 1315 1316 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1317 smp_mb(); // Pairs with update-side barriers. 1318 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1319 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1320 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1321 TRC_NEED_QS_CHECKED); 1322 1323 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1324 } 1325 if (trs.b.blocked) { 1326 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1327 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1328 list_del_init(&t->trc_blkd_node); 1329 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1330 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1331 } 1332 WRITE_ONCE(t->trc_reader_nesting, 0); 1333 } 1334 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1335 1336 /* Add a newly blocked reader task to its CPU's list. */ 1337 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1338 { 1339 unsigned long flags; 1340 struct rcu_tasks_percpu *rtpcp; 1341 1342 local_irq_save(flags); 1343 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1344 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1345 t->trc_blkd_cpu = smp_processor_id(); 1346 if (!rtpcp->rtp_blkd_tasks.next) 1347 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1348 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1349 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1350 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1351 } 1352 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1353 1354 /* Add a task to the holdout list, if it is not already on the list. */ 1355 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1356 { 1357 if (list_empty(&t->trc_holdout_list)) { 1358 get_task_struct(t); 1359 list_add(&t->trc_holdout_list, bhp); 1360 n_trc_holdouts++; 1361 } 1362 } 1363 1364 /* Remove a task from the holdout list, if it is in fact present. */ 1365 static void trc_del_holdout(struct task_struct *t) 1366 { 1367 if (!list_empty(&t->trc_holdout_list)) { 1368 list_del_init(&t->trc_holdout_list); 1369 put_task_struct(t); 1370 n_trc_holdouts--; 1371 } 1372 } 1373 1374 /* IPI handler to check task state. */ 1375 static void trc_read_check_handler(void *t_in) 1376 { 1377 int nesting; 1378 struct task_struct *t = current; 1379 struct task_struct *texp = t_in; 1380 1381 // If the task is no longer running on this CPU, leave. 1382 if (unlikely(texp != t)) 1383 goto reset_ipi; // Already on holdout list, so will check later. 1384 1385 // If the task is not in a read-side critical section, and 1386 // if this is the last reader, awaken the grace-period kthread. 1387 nesting = READ_ONCE(t->trc_reader_nesting); 1388 if (likely(!nesting)) { 1389 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1390 goto reset_ipi; 1391 } 1392 // If we are racing with an rcu_read_unlock_trace(), try again later. 1393 if (unlikely(nesting < 0)) 1394 goto reset_ipi; 1395 1396 // Get here if the task is in a read-side critical section. 1397 // Set its state so that it will update state for the grace-period 1398 // kthread upon exit from that critical section. 1399 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1400 1401 reset_ipi: 1402 // Allow future IPIs to be sent on CPU and for task. 1403 // Also order this IPI handler against any later manipulations of 1404 // the intended task. 1405 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1406 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1407 } 1408 1409 /* Callback function for scheduler to check locked-down task. */ 1410 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1411 { 1412 struct list_head *bhp = bhp_in; 1413 int cpu = task_cpu(t); 1414 int nesting; 1415 bool ofl = cpu_is_offline(cpu); 1416 1417 if (task_curr(t) && !ofl) { 1418 // If no chance of heavyweight readers, do it the hard way. 1419 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1420 return -EINVAL; 1421 1422 // If heavyweight readers are enabled on the remote task, 1423 // we can inspect its state despite its currently running. 1424 // However, we cannot safely change its state. 1425 n_heavy_reader_attempts++; 1426 // Check for "running" idle tasks on offline CPUs. 1427 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1428 return -EINVAL; // No quiescent state, do it the hard way. 1429 n_heavy_reader_updates++; 1430 nesting = 0; 1431 } else { 1432 // The task is not running, so C-language access is safe. 1433 nesting = t->trc_reader_nesting; 1434 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t)); 1435 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1436 n_heavy_reader_ofl_updates++; 1437 } 1438 1439 // If not exiting a read-side critical section, mark as checked 1440 // so that the grace-period kthread will remove it from the 1441 // holdout list. 1442 if (!nesting) { 1443 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1444 return 0; // In QS, so done. 1445 } 1446 if (nesting < 0) 1447 return -EINVAL; // Reader transitioning, try again later. 1448 1449 // The task is in a read-side critical section, so set up its 1450 // state so that it will update state upon exit from that critical 1451 // section. 1452 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1453 trc_add_holdout(t, bhp); 1454 return 0; 1455 } 1456 1457 /* Attempt to extract the state for the specified task. */ 1458 static void trc_wait_for_one_reader(struct task_struct *t, 1459 struct list_head *bhp) 1460 { 1461 int cpu; 1462 1463 // If a previous IPI is still in flight, let it complete. 1464 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1465 return; 1466 1467 // The current task had better be in a quiescent state. 1468 if (t == current) { 1469 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1470 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1471 return; 1472 } 1473 1474 // Attempt to nail down the task for inspection. 1475 get_task_struct(t); 1476 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1477 put_task_struct(t); 1478 return; 1479 } 1480 put_task_struct(t); 1481 1482 // If this task is not yet on the holdout list, then we are in 1483 // an RCU read-side critical section. Otherwise, the invocation of 1484 // trc_add_holdout() that added it to the list did the necessary 1485 // get_task_struct(). Either way, the task cannot be freed out 1486 // from under this code. 1487 1488 // If currently running, send an IPI, either way, add to list. 1489 trc_add_holdout(t, bhp); 1490 if (task_curr(t) && 1491 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1492 // The task is currently running, so try IPIing it. 1493 cpu = task_cpu(t); 1494 1495 // If there is already an IPI outstanding, let it happen. 1496 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1497 return; 1498 1499 per_cpu(trc_ipi_to_cpu, cpu) = true; 1500 t->trc_ipi_to_cpu = cpu; 1501 rcu_tasks_trace.n_ipis++; 1502 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1503 // Just in case there is some other reason for 1504 // failure than the target CPU being offline. 1505 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1506 __func__, cpu); 1507 rcu_tasks_trace.n_ipis_fails++; 1508 per_cpu(trc_ipi_to_cpu, cpu) = false; 1509 t->trc_ipi_to_cpu = -1; 1510 } 1511 } 1512 } 1513 1514 /* 1515 * Initialize for first-round processing for the specified task. 1516 * Return false if task is NULL or already taken care of, true otherwise. 1517 */ 1518 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1519 { 1520 // During early boot when there is only the one boot CPU, there 1521 // is no idle task for the other CPUs. Also, the grace-period 1522 // kthread is always in a quiescent state. In addition, just return 1523 // if this task is already on the list. 1524 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1525 return false; 1526 1527 rcu_st_need_qs(t, 0); 1528 t->trc_ipi_to_cpu = -1; 1529 return true; 1530 } 1531 1532 /* Do first-round processing for the specified task. */ 1533 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1534 { 1535 if (rcu_tasks_trace_pertask_prep(t, true)) 1536 trc_wait_for_one_reader(t, hop); 1537 } 1538 1539 /* Initialize for a new RCU-tasks-trace grace period. */ 1540 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1541 { 1542 LIST_HEAD(blkd_tasks); 1543 int cpu; 1544 unsigned long flags; 1545 struct rcu_tasks_percpu *rtpcp; 1546 struct task_struct *t; 1547 1548 // There shouldn't be any old IPIs, but... 1549 for_each_possible_cpu(cpu) 1550 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1551 1552 // Disable CPU hotplug across the CPU scan for the benefit of 1553 // any IPIs that might be needed. This also waits for all readers 1554 // in CPU-hotplug code paths. 1555 cpus_read_lock(); 1556 1557 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1558 // allow safe access to the hop list. 1559 for_each_online_cpu(cpu) { 1560 rcu_read_lock(); 1561 t = cpu_curr_snapshot(cpu); 1562 if (rcu_tasks_trace_pertask_prep(t, true)) 1563 trc_add_holdout(t, hop); 1564 rcu_read_unlock(); 1565 cond_resched_tasks_rcu_qs(); 1566 } 1567 1568 // Only after all running tasks have been accounted for is it 1569 // safe to take care of the tasks that have blocked within their 1570 // current RCU tasks trace read-side critical section. 1571 for_each_possible_cpu(cpu) { 1572 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1573 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1574 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1575 while (!list_empty(&blkd_tasks)) { 1576 rcu_read_lock(); 1577 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1578 list_del_init(&t->trc_blkd_node); 1579 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1580 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1581 rcu_tasks_trace_pertask(t, hop); 1582 rcu_read_unlock(); 1583 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1584 } 1585 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1586 cond_resched_tasks_rcu_qs(); 1587 } 1588 1589 // Re-enable CPU hotplug now that the holdout list is populated. 1590 cpus_read_unlock(); 1591 } 1592 1593 /* 1594 * Do intermediate processing between task and holdout scans. 1595 */ 1596 static void rcu_tasks_trace_postscan(struct list_head *hop) 1597 { 1598 // Wait for late-stage exiting tasks to finish exiting. 1599 // These might have passed the call to exit_tasks_rcu_finish(). 1600 1601 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1602 synchronize_rcu(); 1603 // Any tasks that exit after this point will set 1604 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1605 } 1606 1607 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1608 struct trc_stall_chk_rdr { 1609 int nesting; 1610 int ipi_to_cpu; 1611 u8 needqs; 1612 }; 1613 1614 static int trc_check_slow_task(struct task_struct *t, void *arg) 1615 { 1616 struct trc_stall_chk_rdr *trc_rdrp = arg; 1617 1618 if (task_curr(t) && cpu_online(task_cpu(t))) 1619 return false; // It is running, so decline to inspect it. 1620 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1621 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1622 trc_rdrp->needqs = rcu_ld_need_qs(t); 1623 return true; 1624 } 1625 1626 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1627 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1628 { 1629 int cpu; 1630 struct trc_stall_chk_rdr trc_rdr; 1631 bool is_idle_tsk = is_idle_task(t); 1632 1633 if (*firstreport) { 1634 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1635 *firstreport = false; 1636 } 1637 cpu = task_cpu(t); 1638 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1639 pr_alert("P%d: %c%c\n", 1640 t->pid, 1641 ".I"[t->trc_ipi_to_cpu >= 0], 1642 ".i"[is_idle_tsk]); 1643 else 1644 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1645 t->pid, 1646 ".I"[trc_rdr.ipi_to_cpu >= 0], 1647 ".i"[is_idle_tsk], 1648 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1649 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1650 trc_rdr.nesting, 1651 " !CN"[trc_rdr.needqs & 0x3], 1652 " ?"[trc_rdr.needqs > 0x3], 1653 cpu, cpu_online(cpu) ? "" : "(offline)"); 1654 sched_show_task(t); 1655 } 1656 1657 /* List stalled IPIs for RCU tasks trace. */ 1658 static void show_stalled_ipi_trace(void) 1659 { 1660 int cpu; 1661 1662 for_each_possible_cpu(cpu) 1663 if (per_cpu(trc_ipi_to_cpu, cpu)) 1664 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1665 } 1666 1667 /* Do one scan of the holdout list. */ 1668 static void check_all_holdout_tasks_trace(struct list_head *hop, 1669 bool needreport, bool *firstreport) 1670 { 1671 struct task_struct *g, *t; 1672 1673 // Disable CPU hotplug across the holdout list scan for IPIs. 1674 cpus_read_lock(); 1675 1676 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1677 // If safe and needed, try to check the current task. 1678 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1679 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1680 trc_wait_for_one_reader(t, hop); 1681 1682 // If check succeeded, remove this task from the list. 1683 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1684 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1685 trc_del_holdout(t); 1686 else if (needreport) 1687 show_stalled_task_trace(t, firstreport); 1688 cond_resched_tasks_rcu_qs(); 1689 } 1690 1691 // Re-enable CPU hotplug now that the holdout list scan has completed. 1692 cpus_read_unlock(); 1693 1694 if (needreport) { 1695 if (*firstreport) 1696 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1697 show_stalled_ipi_trace(); 1698 } 1699 } 1700 1701 static void rcu_tasks_trace_empty_fn(void *unused) 1702 { 1703 } 1704 1705 /* Wait for grace period to complete and provide ordering. */ 1706 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1707 { 1708 int cpu; 1709 1710 // Wait for any lingering IPI handlers to complete. Note that 1711 // if a CPU has gone offline or transitioned to userspace in the 1712 // meantime, all IPI handlers should have been drained beforehand. 1713 // Yes, this assumes that CPUs process IPIs in order. If that ever 1714 // changes, there will need to be a recheck and/or timed wait. 1715 for_each_online_cpu(cpu) 1716 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1717 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1718 1719 smp_mb(); // Caller's code must be ordered after wakeup. 1720 // Pairs with pretty much every ordering primitive. 1721 } 1722 1723 /* Report any needed quiescent state for this exiting task. */ 1724 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1725 { 1726 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1727 1728 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1729 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1730 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1731 rcu_read_unlock_trace_special(t); 1732 else 1733 WRITE_ONCE(t->trc_reader_nesting, 0); 1734 } 1735 1736 /** 1737 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1738 * @rhp: structure to be used for queueing the RCU updates. 1739 * @func: actual callback function to be invoked after the grace period 1740 * 1741 * The callback function will be invoked some time after a trace rcu-tasks 1742 * grace period elapses, in other words after all currently executing 1743 * trace rcu-tasks read-side critical sections have completed. These 1744 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1745 * and rcu_read_unlock_trace(). 1746 * 1747 * See the description of call_rcu() for more detailed information on 1748 * memory ordering guarantees. 1749 */ 1750 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1751 { 1752 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1753 } 1754 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1755 1756 /** 1757 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1758 * 1759 * Control will return to the caller some time after a trace rcu-tasks 1760 * grace period has elapsed, in other words after all currently executing 1761 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1762 * critical sections are delimited by calls to rcu_read_lock_trace() 1763 * and rcu_read_unlock_trace(). 1764 * 1765 * This is a very specialized primitive, intended only for a few uses in 1766 * tracing and other situations requiring manipulation of function preambles 1767 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1768 * (yet) intended for heavy use from multiple CPUs. 1769 * 1770 * See the description of synchronize_rcu() for more detailed information 1771 * on memory ordering guarantees. 1772 */ 1773 void synchronize_rcu_tasks_trace(void) 1774 { 1775 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1776 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1777 } 1778 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1779 1780 /** 1781 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1782 * 1783 * Although the current implementation is guaranteed to wait, it is not 1784 * obligated to, for example, if there are no pending callbacks. 1785 */ 1786 void rcu_barrier_tasks_trace(void) 1787 { 1788 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1789 } 1790 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1791 1792 static int __init rcu_spawn_tasks_trace_kthread(void) 1793 { 1794 cblist_init_generic(&rcu_tasks_trace); 1795 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1796 rcu_tasks_trace.gp_sleep = HZ / 10; 1797 rcu_tasks_trace.init_fract = HZ / 10; 1798 } else { 1799 rcu_tasks_trace.gp_sleep = HZ / 200; 1800 if (rcu_tasks_trace.gp_sleep <= 0) 1801 rcu_tasks_trace.gp_sleep = 1; 1802 rcu_tasks_trace.init_fract = HZ / 200; 1803 if (rcu_tasks_trace.init_fract <= 0) 1804 rcu_tasks_trace.init_fract = 1; 1805 } 1806 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1807 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1808 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1809 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1810 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1811 return 0; 1812 } 1813 1814 #if !defined(CONFIG_TINY_RCU) 1815 void show_rcu_tasks_trace_gp_kthread(void) 1816 { 1817 char buf[64]; 1818 1819 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1820 data_race(n_trc_holdouts), 1821 data_race(n_heavy_reader_ofl_updates), 1822 data_race(n_heavy_reader_updates), 1823 data_race(n_heavy_reader_attempts)); 1824 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1825 } 1826 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1827 #endif // !defined(CONFIG_TINY_RCU) 1828 1829 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1830 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1831 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1832 1833 #ifndef CONFIG_TINY_RCU 1834 void show_rcu_tasks_gp_kthreads(void) 1835 { 1836 show_rcu_tasks_classic_gp_kthread(); 1837 show_rcu_tasks_rude_gp_kthread(); 1838 show_rcu_tasks_trace_gp_kthread(); 1839 } 1840 #endif /* #ifndef CONFIG_TINY_RCU */ 1841 1842 #ifdef CONFIG_PROVE_RCU 1843 struct rcu_tasks_test_desc { 1844 struct rcu_head rh; 1845 const char *name; 1846 bool notrun; 1847 unsigned long runstart; 1848 }; 1849 1850 static struct rcu_tasks_test_desc tests[] = { 1851 { 1852 .name = "call_rcu_tasks()", 1853 /* If not defined, the test is skipped. */ 1854 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1855 }, 1856 { 1857 .name = "call_rcu_tasks_rude()", 1858 /* If not defined, the test is skipped. */ 1859 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1860 }, 1861 { 1862 .name = "call_rcu_tasks_trace()", 1863 /* If not defined, the test is skipped. */ 1864 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1865 } 1866 }; 1867 1868 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1869 { 1870 struct rcu_tasks_test_desc *rttd = 1871 container_of(rhp, struct rcu_tasks_test_desc, rh); 1872 1873 pr_info("Callback from %s invoked.\n", rttd->name); 1874 1875 rttd->notrun = false; 1876 } 1877 1878 static void rcu_tasks_initiate_self_tests(void) 1879 { 1880 pr_info("Running RCU-tasks wait API self tests\n"); 1881 #ifdef CONFIG_TASKS_RCU 1882 tests[0].runstart = jiffies; 1883 synchronize_rcu_tasks(); 1884 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1885 #endif 1886 1887 #ifdef CONFIG_TASKS_RUDE_RCU 1888 tests[1].runstart = jiffies; 1889 synchronize_rcu_tasks_rude(); 1890 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1891 #endif 1892 1893 #ifdef CONFIG_TASKS_TRACE_RCU 1894 tests[2].runstart = jiffies; 1895 synchronize_rcu_tasks_trace(); 1896 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1897 #endif 1898 } 1899 1900 /* 1901 * Return: 0 - test passed 1902 * 1 - test failed, but have not timed out yet 1903 * -1 - test failed and timed out 1904 */ 1905 static int rcu_tasks_verify_self_tests(void) 1906 { 1907 int ret = 0; 1908 int i; 1909 unsigned long bst = rcu_task_stall_timeout; 1910 1911 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 1912 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 1913 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1914 while (tests[i].notrun) { // still hanging. 1915 if (time_after(jiffies, tests[i].runstart + bst)) { 1916 pr_err("%s has failed boot-time tests.\n", tests[i].name); 1917 ret = -1; 1918 break; 1919 } 1920 ret = 1; 1921 break; 1922 } 1923 } 1924 WARN_ON(ret < 0); 1925 1926 return ret; 1927 } 1928 1929 /* 1930 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 1931 * test passes or has timed out. 1932 */ 1933 static struct delayed_work rcu_tasks_verify_work; 1934 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 1935 { 1936 int ret = rcu_tasks_verify_self_tests(); 1937 1938 if (ret <= 0) 1939 return; 1940 1941 /* Test fails but not timed out yet, reschedule another check */ 1942 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 1943 } 1944 1945 static int rcu_tasks_verify_schedule_work(void) 1946 { 1947 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 1948 rcu_tasks_verify_work_fn(NULL); 1949 return 0; 1950 } 1951 late_initcall(rcu_tasks_verify_schedule_work); 1952 #else /* #ifdef CONFIG_PROVE_RCU */ 1953 static void rcu_tasks_initiate_self_tests(void) { } 1954 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1955 1956 void __init rcu_init_tasks_generic(void) 1957 { 1958 #ifdef CONFIG_TASKS_RCU 1959 rcu_spawn_tasks_kthread(); 1960 #endif 1961 1962 #ifdef CONFIG_TASKS_RUDE_RCU 1963 rcu_spawn_tasks_rude_kthread(); 1964 #endif 1965 1966 #ifdef CONFIG_TASKS_TRACE_RCU 1967 rcu_spawn_tasks_trace_kthread(); 1968 #endif 1969 1970 // Run the self-tests. 1971 rcu_tasks_initiate_self_tests(); 1972 } 1973 1974 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1975 static inline void rcu_tasks_bootup_oddness(void) {} 1976 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1977