1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 10 //////////////////////////////////////////////////////////////////////// 11 // 12 // Generic data structures. 13 14 struct rcu_tasks; 15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 16 typedef void (*pregp_func_t)(void); 17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 18 typedef void (*postscan_func_t)(struct list_head *hop); 19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 21 22 /** 23 * Definition for a Tasks-RCU-like mechanism. 24 * @cbs_head: Head of callback list. 25 * @cbs_tail: Tail pointer for callback list. 26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention. 27 * @cbs_lock: Lock protecting callback list. 28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 29 * @gp_func: This flavor's grace-period-wait function. 30 * @gp_state: Grace period's most recent state transition (debugging). 31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 32 * @init_fract: Initial backoff sleep interval. 33 * @gp_jiffies: Time of last @gp_state transition. 34 * @gp_start: Most recent grace-period start in jiffies. 35 * @n_gps: Number of grace periods completed since boot. 36 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 37 * @n_ipis_fails: Number of IPI-send failures. 38 * @pregp_func: This flavor's pre-grace-period function (optional). 39 * @pertask_func: This flavor's per-task scan function (optional). 40 * @postscan_func: This flavor's post-task scan function (optional). 41 * @holdout_func: This flavor's holdout-list scan function (optional). 42 * @postgp_func: This flavor's post-grace-period function (optional). 43 * @call_func: This flavor's call_rcu()-equivalent function. 44 * @name: This flavor's textual name. 45 * @kname: This flavor's kthread name. 46 */ 47 struct rcu_tasks { 48 struct rcu_head *cbs_head; 49 struct rcu_head **cbs_tail; 50 struct wait_queue_head cbs_wq; 51 raw_spinlock_t cbs_lock; 52 int gp_state; 53 int gp_sleep; 54 int init_fract; 55 unsigned long gp_jiffies; 56 unsigned long gp_start; 57 unsigned long n_gps; 58 unsigned long n_ipis; 59 unsigned long n_ipis_fails; 60 struct task_struct *kthread_ptr; 61 rcu_tasks_gp_func_t gp_func; 62 pregp_func_t pregp_func; 63 pertask_func_t pertask_func; 64 postscan_func_t postscan_func; 65 holdouts_func_t holdouts_func; 66 postgp_func_t postgp_func; 67 call_rcu_func_t call_func; 68 char *name; 69 char *kname; 70 }; 71 72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 73 static struct rcu_tasks rt_name = \ 74 { \ 75 .cbs_tail = &rt_name.cbs_head, \ 76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \ 77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \ 78 .gp_func = gp, \ 79 .call_func = call, \ 80 .name = n, \ 81 .kname = #rt_name, \ 82 } 83 84 /* Track exiting tasks in order to allow them to be waited for. */ 85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 86 87 /* Avoid IPIing CPUs early in the grace period. */ 88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 90 module_param(rcu_task_ipi_delay, int, 0644); 91 92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 95 module_param(rcu_task_stall_timeout, int, 0644); 96 97 /* RCU tasks grace-period state for debugging. */ 98 #define RTGS_INIT 0 99 #define RTGS_WAIT_WAIT_CBS 1 100 #define RTGS_WAIT_GP 2 101 #define RTGS_PRE_WAIT_GP 3 102 #define RTGS_SCAN_TASKLIST 4 103 #define RTGS_POST_SCAN_TASKLIST 5 104 #define RTGS_WAIT_SCAN_HOLDOUTS 6 105 #define RTGS_SCAN_HOLDOUTS 7 106 #define RTGS_POST_GP 8 107 #define RTGS_WAIT_READERS 9 108 #define RTGS_INVOKE_CBS 10 109 #define RTGS_WAIT_CBS 11 110 #ifndef CONFIG_TINY_RCU 111 static const char * const rcu_tasks_gp_state_names[] = { 112 "RTGS_INIT", 113 "RTGS_WAIT_WAIT_CBS", 114 "RTGS_WAIT_GP", 115 "RTGS_PRE_WAIT_GP", 116 "RTGS_SCAN_TASKLIST", 117 "RTGS_POST_SCAN_TASKLIST", 118 "RTGS_WAIT_SCAN_HOLDOUTS", 119 "RTGS_SCAN_HOLDOUTS", 120 "RTGS_POST_GP", 121 "RTGS_WAIT_READERS", 122 "RTGS_INVOKE_CBS", 123 "RTGS_WAIT_CBS", 124 }; 125 #endif /* #ifndef CONFIG_TINY_RCU */ 126 127 //////////////////////////////////////////////////////////////////////// 128 // 129 // Generic code. 130 131 /* Record grace-period phase and time. */ 132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 133 { 134 rtp->gp_state = newstate; 135 rtp->gp_jiffies = jiffies; 136 } 137 138 #ifndef CONFIG_TINY_RCU 139 /* Return state name. */ 140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 141 { 142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 143 int j = READ_ONCE(i); // Prevent the compiler from reading twice 144 145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 146 return "???"; 147 return rcu_tasks_gp_state_names[j]; 148 } 149 #endif /* #ifndef CONFIG_TINY_RCU */ 150 151 // Enqueue a callback for the specified flavor of Tasks RCU. 152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 153 struct rcu_tasks *rtp) 154 { 155 unsigned long flags; 156 bool needwake; 157 158 rhp->next = NULL; 159 rhp->func = func; 160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 161 needwake = !rtp->cbs_head; 162 WRITE_ONCE(*rtp->cbs_tail, rhp); 163 rtp->cbs_tail = &rhp->next; 164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 165 /* We can't create the thread unless interrupts are enabled. */ 166 if (needwake && READ_ONCE(rtp->kthread_ptr)) 167 wake_up(&rtp->cbs_wq); 168 } 169 170 // Wait for a grace period for the specified flavor of Tasks RCU. 171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 172 { 173 /* Complain if the scheduler has not started. */ 174 RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 175 "synchronize_rcu_tasks called too soon"); 176 177 /* Wait for the grace period. */ 178 wait_rcu_gp(rtp->call_func); 179 } 180 181 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ 182 static int __noreturn rcu_tasks_kthread(void *arg) 183 { 184 unsigned long flags; 185 struct rcu_head *list; 186 struct rcu_head *next; 187 struct rcu_tasks *rtp = arg; 188 189 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 190 housekeeping_affine(current, HK_FLAG_RCU); 191 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 192 193 /* 194 * Each pass through the following loop makes one check for 195 * newly arrived callbacks, and, if there are some, waits for 196 * one RCU-tasks grace period and then invokes the callbacks. 197 * This loop is terminated by the system going down. ;-) 198 */ 199 for (;;) { 200 201 /* Pick up any new callbacks. */ 202 raw_spin_lock_irqsave(&rtp->cbs_lock, flags); 203 smp_mb__after_spinlock(); // Order updates vs. GP. 204 list = rtp->cbs_head; 205 rtp->cbs_head = NULL; 206 rtp->cbs_tail = &rtp->cbs_head; 207 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags); 208 209 /* If there were none, wait a bit and start over. */ 210 if (!list) { 211 wait_event_interruptible(rtp->cbs_wq, 212 READ_ONCE(rtp->cbs_head)); 213 if (!rtp->cbs_head) { 214 WARN_ON(signal_pending(current)); 215 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS); 216 schedule_timeout_idle(HZ/10); 217 } 218 continue; 219 } 220 221 // Wait for one grace period. 222 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 223 rtp->gp_start = jiffies; 224 rtp->gp_func(rtp); 225 rtp->n_gps++; 226 227 /* Invoke the callbacks. */ 228 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 229 while (list) { 230 next = list->next; 231 local_bh_disable(); 232 list->func(list); 233 local_bh_enable(); 234 list = next; 235 cond_resched(); 236 } 237 /* Paranoid sleep to keep this from entering a tight loop */ 238 schedule_timeout_idle(rtp->gp_sleep); 239 240 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 241 } 242 } 243 244 /* Spawn RCU-tasks grace-period kthread. */ 245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 246 { 247 struct task_struct *t; 248 249 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 250 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 251 return; 252 smp_mb(); /* Ensure others see full kthread. */ 253 } 254 255 #ifndef CONFIG_TINY_RCU 256 257 /* 258 * Print any non-default Tasks RCU settings. 259 */ 260 static void __init rcu_tasks_bootup_oddness(void) 261 { 262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 263 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 264 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 265 #endif /* #ifdef CONFIG_TASKS_RCU */ 266 #ifdef CONFIG_TASKS_RCU 267 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 268 #endif /* #ifdef CONFIG_TASKS_RCU */ 269 #ifdef CONFIG_TASKS_RUDE_RCU 270 pr_info("\tRude variant of Tasks RCU enabled.\n"); 271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 272 #ifdef CONFIG_TASKS_TRACE_RCU 273 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 275 } 276 277 #endif /* #ifndef CONFIG_TINY_RCU */ 278 279 #ifndef CONFIG_TINY_RCU 280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 282 { 283 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 284 rtp->kname, 285 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 286 jiffies - data_race(rtp->gp_jiffies), 287 data_race(rtp->n_gps), 288 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 289 ".k"[!!data_race(rtp->kthread_ptr)], 290 ".C"[!!data_race(rtp->cbs_head)], 291 s); 292 } 293 #endif // #ifndef CONFIG_TINY_RCU 294 295 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 296 297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 298 299 //////////////////////////////////////////////////////////////////////// 300 // 301 // Shared code between task-list-scanning variants of Tasks RCU. 302 303 /* Wait for one RCU-tasks grace period. */ 304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 305 { 306 struct task_struct *g, *t; 307 unsigned long lastreport; 308 LIST_HEAD(holdouts); 309 int fract; 310 311 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 312 rtp->pregp_func(); 313 314 /* 315 * There were callbacks, so we need to wait for an RCU-tasks 316 * grace period. Start off by scanning the task list for tasks 317 * that are not already voluntarily blocked. Mark these tasks 318 * and make a list of them in holdouts. 319 */ 320 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 321 rcu_read_lock(); 322 for_each_process_thread(g, t) 323 rtp->pertask_func(t, &holdouts); 324 rcu_read_unlock(); 325 326 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 327 rtp->postscan_func(&holdouts); 328 329 /* 330 * Each pass through the following loop scans the list of holdout 331 * tasks, removing any that are no longer holdouts. When the list 332 * is empty, we are done. 333 */ 334 lastreport = jiffies; 335 336 // Start off with initial wait and slowly back off to 1 HZ wait. 337 fract = rtp->init_fract; 338 339 while (!list_empty(&holdouts)) { 340 bool firstreport; 341 bool needreport; 342 int rtst; 343 344 /* Slowly back off waiting for holdouts */ 345 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 346 schedule_timeout_idle(fract); 347 348 if (fract < HZ) 349 fract++; 350 351 rtst = READ_ONCE(rcu_task_stall_timeout); 352 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 353 if (needreport) 354 lastreport = jiffies; 355 firstreport = true; 356 WARN_ON(signal_pending(current)); 357 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 358 rtp->holdouts_func(&holdouts, needreport, &firstreport); 359 } 360 361 set_tasks_gp_state(rtp, RTGS_POST_GP); 362 rtp->postgp_func(rtp); 363 } 364 365 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 366 367 #ifdef CONFIG_TASKS_RCU 368 369 //////////////////////////////////////////////////////////////////////// 370 // 371 // Simple variant of RCU whose quiescent states are voluntary context 372 // switch, cond_resched_rcu_qs(), user-space execution, and idle. 373 // As such, grace periods can take one good long time. There are no 374 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 375 // because this implementation is intended to get the system into a safe 376 // state for some of the manipulations involved in tracing and the like. 377 // Finally, this implementation does not support high call_rcu_tasks() 378 // rates from multiple CPUs. If this is required, per-CPU callback lists 379 // will be needed. 380 381 /* Pre-grace-period preparation. */ 382 static void rcu_tasks_pregp_step(void) 383 { 384 /* 385 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 386 * to complete. Invoking synchronize_rcu() suffices because all 387 * these transitions occur with interrupts disabled. Without this 388 * synchronize_rcu(), a read-side critical section that started 389 * before the grace period might be incorrectly seen as having 390 * started after the grace period. 391 * 392 * This synchronize_rcu() also dispenses with the need for a 393 * memory barrier on the first store to t->rcu_tasks_holdout, 394 * as it forces the store to happen after the beginning of the 395 * grace period. 396 */ 397 synchronize_rcu(); 398 } 399 400 /* Per-task initial processing. */ 401 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 402 { 403 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 404 get_task_struct(t); 405 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 406 WRITE_ONCE(t->rcu_tasks_holdout, true); 407 list_add(&t->rcu_tasks_holdout_list, hop); 408 } 409 } 410 411 /* Processing between scanning taskslist and draining the holdout list. */ 412 static void rcu_tasks_postscan(struct list_head *hop) 413 { 414 /* 415 * Wait for tasks that are in the process of exiting. This 416 * does only part of the job, ensuring that all tasks that were 417 * previously exiting reach the point where they have disabled 418 * preemption, allowing the later synchronize_rcu() to finish 419 * the job. 420 */ 421 synchronize_srcu(&tasks_rcu_exit_srcu); 422 } 423 424 /* See if tasks are still holding out, complain if so. */ 425 static void check_holdout_task(struct task_struct *t, 426 bool needreport, bool *firstreport) 427 { 428 int cpu; 429 430 if (!READ_ONCE(t->rcu_tasks_holdout) || 431 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 432 !READ_ONCE(t->on_rq) || 433 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 434 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 435 WRITE_ONCE(t->rcu_tasks_holdout, false); 436 list_del_init(&t->rcu_tasks_holdout_list); 437 put_task_struct(t); 438 return; 439 } 440 rcu_request_urgent_qs_task(t); 441 if (!needreport) 442 return; 443 if (*firstreport) { 444 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 445 *firstreport = false; 446 } 447 cpu = task_cpu(t); 448 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 449 t, ".I"[is_idle_task(t)], 450 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 451 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 452 t->rcu_tasks_idle_cpu, cpu); 453 sched_show_task(t); 454 } 455 456 /* Scan the holdout lists for tasks no longer holding out. */ 457 static void check_all_holdout_tasks(struct list_head *hop, 458 bool needreport, bool *firstreport) 459 { 460 struct task_struct *t, *t1; 461 462 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 463 check_holdout_task(t, needreport, firstreport); 464 cond_resched(); 465 } 466 } 467 468 /* Finish off the Tasks-RCU grace period. */ 469 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 470 { 471 /* 472 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 473 * memory barriers prior to them in the schedule() path, memory 474 * reordering on other CPUs could cause their RCU-tasks read-side 475 * critical sections to extend past the end of the grace period. 476 * However, because these ->nvcsw updates are carried out with 477 * interrupts disabled, we can use synchronize_rcu() to force the 478 * needed ordering on all such CPUs. 479 * 480 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 481 * accesses to be within the grace period, avoiding the need for 482 * memory barriers for ->rcu_tasks_holdout accesses. 483 * 484 * In addition, this synchronize_rcu() waits for exiting tasks 485 * to complete their final preempt_disable() region of execution, 486 * cleaning up after the synchronize_srcu() above. 487 */ 488 synchronize_rcu(); 489 } 490 491 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 492 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 493 494 /** 495 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 496 * @rhp: structure to be used for queueing the RCU updates. 497 * @func: actual callback function to be invoked after the grace period 498 * 499 * The callback function will be invoked some time after a full grace 500 * period elapses, in other words after all currently executing RCU 501 * read-side critical sections have completed. call_rcu_tasks() assumes 502 * that the read-side critical sections end at a voluntary context 503 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle, 504 * or transition to usermode execution. As such, there are no read-side 505 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 506 * this primitive is intended to determine that all tasks have passed 507 * through a safe state, not so much for data-strcuture synchronization. 508 * 509 * See the description of call_rcu() for more detailed information on 510 * memory ordering guarantees. 511 */ 512 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 513 { 514 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 515 } 516 EXPORT_SYMBOL_GPL(call_rcu_tasks); 517 518 /** 519 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 520 * 521 * Control will return to the caller some time after a full rcu-tasks 522 * grace period has elapsed, in other words after all currently 523 * executing rcu-tasks read-side critical sections have elapsed. These 524 * read-side critical sections are delimited by calls to schedule(), 525 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 526 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 527 * 528 * This is a very specialized primitive, intended only for a few uses in 529 * tracing and other situations requiring manipulation of function 530 * preambles and profiling hooks. The synchronize_rcu_tasks() function 531 * is not (yet) intended for heavy use from multiple CPUs. 532 * 533 * See the description of synchronize_rcu() for more detailed information 534 * on memory ordering guarantees. 535 */ 536 void synchronize_rcu_tasks(void) 537 { 538 synchronize_rcu_tasks_generic(&rcu_tasks); 539 } 540 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 541 542 /** 543 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 544 * 545 * Although the current implementation is guaranteed to wait, it is not 546 * obligated to, for example, if there are no pending callbacks. 547 */ 548 void rcu_barrier_tasks(void) 549 { 550 /* There is only one callback queue, so this is easy. ;-) */ 551 synchronize_rcu_tasks(); 552 } 553 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 554 555 static int __init rcu_spawn_tasks_kthread(void) 556 { 557 rcu_tasks.gp_sleep = HZ / 10; 558 rcu_tasks.init_fract = HZ / 10; 559 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 560 rcu_tasks.pertask_func = rcu_tasks_pertask; 561 rcu_tasks.postscan_func = rcu_tasks_postscan; 562 rcu_tasks.holdouts_func = check_all_holdout_tasks; 563 rcu_tasks.postgp_func = rcu_tasks_postgp; 564 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 565 return 0; 566 } 567 568 #if !defined(CONFIG_TINY_RCU) 569 void show_rcu_tasks_classic_gp_kthread(void) 570 { 571 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 572 } 573 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 574 #endif // !defined(CONFIG_TINY_RCU) 575 576 /* Do the srcu_read_lock() for the above synchronize_srcu(). */ 577 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 578 { 579 preempt_disable(); 580 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 581 preempt_enable(); 582 } 583 584 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */ 585 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu) 586 { 587 struct task_struct *t = current; 588 589 preempt_disable(); 590 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 591 preempt_enable(); 592 exit_tasks_rcu_finish_trace(t); 593 } 594 595 #else /* #ifdef CONFIG_TASKS_RCU */ 596 void exit_tasks_rcu_start(void) { } 597 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 598 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 599 600 #ifdef CONFIG_TASKS_RUDE_RCU 601 602 //////////////////////////////////////////////////////////////////////// 603 // 604 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 605 // passing an empty function to schedule_on_each_cpu(). This approach 606 // provides an asynchronous call_rcu_tasks_rude() API and batching 607 // of concurrent calls to the synchronous synchronize_rcu_rude() API. 608 // This sends IPIs far and wide and induces otherwise unnecessary context 609 // switches on all online CPUs, whether idle or not. 610 611 // Empty function to allow workqueues to force a context switch. 612 static void rcu_tasks_be_rude(struct work_struct *work) 613 { 614 } 615 616 // Wait for one rude RCU-tasks grace period. 617 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 618 { 619 rtp->n_ipis += cpumask_weight(cpu_online_mask); 620 schedule_on_each_cpu(rcu_tasks_be_rude); 621 } 622 623 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 624 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 625 "RCU Tasks Rude"); 626 627 /** 628 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 629 * @rhp: structure to be used for queueing the RCU updates. 630 * @func: actual callback function to be invoked after the grace period 631 * 632 * The callback function will be invoked some time after a full grace 633 * period elapses, in other words after all currently executing RCU 634 * read-side critical sections have completed. call_rcu_tasks_rude() 635 * assumes that the read-side critical sections end at context switch, 636 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 637 * there are no read-side primitives analogous to rcu_read_lock() and 638 * rcu_read_unlock() because this primitive is intended to determine 639 * that all tasks have passed through a safe state, not so much for 640 * data-strcuture synchronization. 641 * 642 * See the description of call_rcu() for more detailed information on 643 * memory ordering guarantees. 644 */ 645 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 646 { 647 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 648 } 649 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 650 651 /** 652 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 653 * 654 * Control will return to the caller some time after a rude rcu-tasks 655 * grace period has elapsed, in other words after all currently 656 * executing rcu-tasks read-side critical sections have elapsed. These 657 * read-side critical sections are delimited by calls to schedule(), 658 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory, 659 * anyway) cond_resched(). 660 * 661 * This is a very specialized primitive, intended only for a few uses in 662 * tracing and other situations requiring manipulation of function preambles 663 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 664 * (yet) intended for heavy use from multiple CPUs. 665 * 666 * See the description of synchronize_rcu() for more detailed information 667 * on memory ordering guarantees. 668 */ 669 void synchronize_rcu_tasks_rude(void) 670 { 671 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 672 } 673 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 674 675 /** 676 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 677 * 678 * Although the current implementation is guaranteed to wait, it is not 679 * obligated to, for example, if there are no pending callbacks. 680 */ 681 void rcu_barrier_tasks_rude(void) 682 { 683 /* There is only one callback queue, so this is easy. ;-) */ 684 synchronize_rcu_tasks_rude(); 685 } 686 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 687 688 static int __init rcu_spawn_tasks_rude_kthread(void) 689 { 690 rcu_tasks_rude.gp_sleep = HZ / 10; 691 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 692 return 0; 693 } 694 695 #if !defined(CONFIG_TINY_RCU) 696 void show_rcu_tasks_rude_gp_kthread(void) 697 { 698 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 699 } 700 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 701 #endif // !defined(CONFIG_TINY_RCU) 702 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 703 704 //////////////////////////////////////////////////////////////////////// 705 // 706 // Tracing variant of Tasks RCU. This variant is designed to be used 707 // to protect tracing hooks, including those of BPF. This variant 708 // therefore: 709 // 710 // 1. Has explicit read-side markers to allow finite grace periods 711 // in the face of in-kernel loops for PREEMPT=n builds. 712 // 713 // 2. Protects code in the idle loop, exception entry/exit, and 714 // CPU-hotplug code paths, similar to the capabilities of SRCU. 715 // 716 // 3. Avoids expensive read-side instruction, having overhead similar 717 // to that of Preemptible RCU. 718 // 719 // There are of course downsides. The grace-period code can send IPIs to 720 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace. 721 // It is necessary to scan the full tasklist, much as for Tasks RCU. There 722 // is a single callback queue guarded by a single lock, again, much as for 723 // Tasks RCU. If needed, these downsides can be at least partially remedied. 724 // 725 // Perhaps most important, this variant of RCU does not affect the vanilla 726 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 727 // readers can operate from idle, offline, and exception entry/exit in no 728 // way allows rcu_preempt and rcu_sched readers to also do so. 729 730 // The lockdep state must be outside of #ifdef to be useful. 731 #ifdef CONFIG_DEBUG_LOCK_ALLOC 732 static struct lock_class_key rcu_lock_trace_key; 733 struct lockdep_map rcu_trace_lock_map = 734 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 735 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 736 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 737 738 #ifdef CONFIG_TASKS_TRACE_RCU 739 740 static atomic_t trc_n_readers_need_end; // Number of waited-for readers. 741 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks. 742 743 // Record outstanding IPIs to each CPU. No point in sending two... 744 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 745 746 // The number of detections of task quiescent state relying on 747 // heavyweight readers executing explicit memory barriers. 748 static unsigned long n_heavy_reader_attempts; 749 static unsigned long n_heavy_reader_updates; 750 static unsigned long n_heavy_reader_ofl_updates; 751 752 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 753 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 754 "RCU Tasks Trace"); 755 756 /* 757 * This irq_work handler allows rcu_read_unlock_trace() to be invoked 758 * while the scheduler locks are held. 759 */ 760 static void rcu_read_unlock_iw(struct irq_work *iwp) 761 { 762 wake_up(&trc_wait); 763 } 764 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw); 765 766 /* If we are the last reader, wake up the grace-period kthread. */ 767 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting) 768 { 769 int nq = t->trc_reader_special.b.need_qs; 770 771 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && 772 t->trc_reader_special.b.need_mb) 773 smp_mb(); // Pairs with update-side barriers. 774 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 775 if (nq) 776 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 777 WRITE_ONCE(t->trc_reader_nesting, nesting); 778 if (nq && atomic_dec_and_test(&trc_n_readers_need_end)) 779 irq_work_queue(&rcu_tasks_trace_iw); 780 } 781 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 782 783 /* Add a task to the holdout list, if it is not already on the list. */ 784 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 785 { 786 if (list_empty(&t->trc_holdout_list)) { 787 get_task_struct(t); 788 list_add(&t->trc_holdout_list, bhp); 789 } 790 } 791 792 /* Remove a task from the holdout list, if it is in fact present. */ 793 static void trc_del_holdout(struct task_struct *t) 794 { 795 if (!list_empty(&t->trc_holdout_list)) { 796 list_del_init(&t->trc_holdout_list); 797 put_task_struct(t); 798 } 799 } 800 801 /* IPI handler to check task state. */ 802 static void trc_read_check_handler(void *t_in) 803 { 804 struct task_struct *t = current; 805 struct task_struct *texp = t_in; 806 807 // If the task is no longer running on this CPU, leave. 808 if (unlikely(texp != t)) { 809 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 810 wake_up(&trc_wait); 811 goto reset_ipi; // Already on holdout list, so will check later. 812 } 813 814 // If the task is not in a read-side critical section, and 815 // if this is the last reader, awaken the grace-period kthread. 816 if (likely(!t->trc_reader_nesting)) { 817 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 818 wake_up(&trc_wait); 819 // Mark as checked after decrement to avoid false 820 // positives on the above WARN_ON_ONCE(). 821 WRITE_ONCE(t->trc_reader_checked, true); 822 goto reset_ipi; 823 } 824 // If we are racing with an rcu_read_unlock_trace(), try again later. 825 if (unlikely(t->trc_reader_nesting < 0)) { 826 if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end))) 827 wake_up(&trc_wait); 828 goto reset_ipi; 829 } 830 WRITE_ONCE(t->trc_reader_checked, true); 831 832 // Get here if the task is in a read-side critical section. Set 833 // its state so that it will awaken the grace-period kthread upon 834 // exit from that critical section. 835 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 836 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 837 838 reset_ipi: 839 // Allow future IPIs to be sent on CPU and for task. 840 // Also order this IPI handler against any later manipulations of 841 // the intended task. 842 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 843 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 844 } 845 846 /* Callback function for scheduler to check locked-down task. */ 847 static bool trc_inspect_reader(struct task_struct *t, void *arg) 848 { 849 int cpu = task_cpu(t); 850 bool in_qs = false; 851 bool ofl = cpu_is_offline(cpu); 852 853 if (task_curr(t)) { 854 WARN_ON_ONCE(ofl && !is_idle_task(t)); 855 856 // If no chance of heavyweight readers, do it the hard way. 857 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 858 return false; 859 860 // If heavyweight readers are enabled on the remote task, 861 // we can inspect its state despite its currently running. 862 // However, we cannot safely change its state. 863 n_heavy_reader_attempts++; 864 if (!ofl && // Check for "running" idle tasks on offline CPUs. 865 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 866 return false; // No quiescent state, do it the hard way. 867 n_heavy_reader_updates++; 868 if (ofl) 869 n_heavy_reader_ofl_updates++; 870 in_qs = true; 871 } else { 872 in_qs = likely(!t->trc_reader_nesting); 873 } 874 875 // Mark as checked. Because this is called from the grace-period 876 // kthread, also remove the task from the holdout list. 877 t->trc_reader_checked = true; 878 trc_del_holdout(t); 879 880 if (in_qs) 881 return true; // Already in quiescent state, done!!! 882 883 // The task is in a read-side critical section, so set up its 884 // state so that it will awaken the grace-period kthread upon exit 885 // from that critical section. 886 atomic_inc(&trc_n_readers_need_end); // One more to wait on. 887 WARN_ON_ONCE(t->trc_reader_special.b.need_qs); 888 WRITE_ONCE(t->trc_reader_special.b.need_qs, true); 889 return true; 890 } 891 892 /* Attempt to extract the state for the specified task. */ 893 static void trc_wait_for_one_reader(struct task_struct *t, 894 struct list_head *bhp) 895 { 896 int cpu; 897 898 // If a previous IPI is still in flight, let it complete. 899 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 900 return; 901 902 // The current task had better be in a quiescent state. 903 if (t == current) { 904 t->trc_reader_checked = true; 905 trc_del_holdout(t); 906 WARN_ON_ONCE(t->trc_reader_nesting); 907 return; 908 } 909 910 // Attempt to nail down the task for inspection. 911 get_task_struct(t); 912 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) { 913 put_task_struct(t); 914 return; 915 } 916 put_task_struct(t); 917 918 // If currently running, send an IPI, either way, add to list. 919 trc_add_holdout(t, bhp); 920 if (task_curr(t) && 921 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 922 // The task is currently running, so try IPIing it. 923 cpu = task_cpu(t); 924 925 // If there is already an IPI outstanding, let it happen. 926 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 927 return; 928 929 atomic_inc(&trc_n_readers_need_end); 930 per_cpu(trc_ipi_to_cpu, cpu) = true; 931 t->trc_ipi_to_cpu = cpu; 932 rcu_tasks_trace.n_ipis++; 933 if (smp_call_function_single(cpu, 934 trc_read_check_handler, t, 0)) { 935 // Just in case there is some other reason for 936 // failure than the target CPU being offline. 937 rcu_tasks_trace.n_ipis_fails++; 938 per_cpu(trc_ipi_to_cpu, cpu) = false; 939 t->trc_ipi_to_cpu = cpu; 940 if (atomic_dec_and_test(&trc_n_readers_need_end)) { 941 WARN_ON_ONCE(1); 942 wake_up(&trc_wait); 943 } 944 } 945 } 946 } 947 948 /* Initialize for a new RCU-tasks-trace grace period. */ 949 static void rcu_tasks_trace_pregp_step(void) 950 { 951 int cpu; 952 953 // Allow for fast-acting IPIs. 954 atomic_set(&trc_n_readers_need_end, 1); 955 956 // There shouldn't be any old IPIs, but... 957 for_each_possible_cpu(cpu) 958 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 959 960 // Disable CPU hotplug across the tasklist scan. 961 // This also waits for all readers in CPU-hotplug code paths. 962 cpus_read_lock(); 963 } 964 965 /* Do first-round processing for the specified task. */ 966 static void rcu_tasks_trace_pertask(struct task_struct *t, 967 struct list_head *hop) 968 { 969 // During early boot when there is only the one boot CPU, there 970 // is no idle task for the other CPUs. Just return. 971 if (unlikely(t == NULL)) 972 return; 973 974 WRITE_ONCE(t->trc_reader_special.b.need_qs, false); 975 WRITE_ONCE(t->trc_reader_checked, false); 976 t->trc_ipi_to_cpu = -1; 977 trc_wait_for_one_reader(t, hop); 978 } 979 980 /* 981 * Do intermediate processing between task and holdout scans and 982 * pick up the idle tasks. 983 */ 984 static void rcu_tasks_trace_postscan(struct list_head *hop) 985 { 986 int cpu; 987 988 for_each_possible_cpu(cpu) 989 rcu_tasks_trace_pertask(idle_task(cpu), hop); 990 991 // Re-enable CPU hotplug now that the tasklist scan has completed. 992 cpus_read_unlock(); 993 994 // Wait for late-stage exiting tasks to finish exiting. 995 // These might have passed the call to exit_tasks_rcu_finish(). 996 synchronize_rcu(); 997 // Any tasks that exit after this point will set ->trc_reader_checked. 998 } 999 1000 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1001 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1002 { 1003 int cpu; 1004 1005 if (*firstreport) { 1006 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1007 *firstreport = false; 1008 } 1009 // FIXME: This should attempt to use try_invoke_on_nonrunning_task(). 1010 cpu = task_cpu(t); 1011 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n", 1012 t->pid, 1013 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0], 1014 ".i"[is_idle_task(t)], 1015 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)], 1016 t->trc_reader_nesting, 1017 " N"[!!t->trc_reader_special.b.need_qs], 1018 cpu); 1019 sched_show_task(t); 1020 } 1021 1022 /* List stalled IPIs for RCU tasks trace. */ 1023 static void show_stalled_ipi_trace(void) 1024 { 1025 int cpu; 1026 1027 for_each_possible_cpu(cpu) 1028 if (per_cpu(trc_ipi_to_cpu, cpu)) 1029 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1030 } 1031 1032 /* Do one scan of the holdout list. */ 1033 static void check_all_holdout_tasks_trace(struct list_head *hop, 1034 bool needreport, bool *firstreport) 1035 { 1036 struct task_struct *g, *t; 1037 1038 // Disable CPU hotplug across the holdout list scan. 1039 cpus_read_lock(); 1040 1041 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1042 // If safe and needed, try to check the current task. 1043 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1044 !READ_ONCE(t->trc_reader_checked)) 1045 trc_wait_for_one_reader(t, hop); 1046 1047 // If check succeeded, remove this task from the list. 1048 if (READ_ONCE(t->trc_reader_checked)) 1049 trc_del_holdout(t); 1050 else if (needreport) 1051 show_stalled_task_trace(t, firstreport); 1052 } 1053 1054 // Re-enable CPU hotplug now that the holdout list scan has completed. 1055 cpus_read_unlock(); 1056 1057 if (needreport) { 1058 if (firstreport) 1059 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1060 show_stalled_ipi_trace(); 1061 } 1062 } 1063 1064 /* Wait for grace period to complete and provide ordering. */ 1065 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1066 { 1067 bool firstreport; 1068 struct task_struct *g, *t; 1069 LIST_HEAD(holdouts); 1070 long ret; 1071 1072 // Remove the safety count. 1073 smp_mb__before_atomic(); // Order vs. earlier atomics 1074 atomic_dec(&trc_n_readers_need_end); 1075 smp_mb__after_atomic(); // Order vs. later atomics 1076 1077 // Wait for readers. 1078 set_tasks_gp_state(rtp, RTGS_WAIT_READERS); 1079 for (;;) { 1080 ret = wait_event_idle_exclusive_timeout( 1081 trc_wait, 1082 atomic_read(&trc_n_readers_need_end) == 0, 1083 READ_ONCE(rcu_task_stall_timeout)); 1084 if (ret) 1085 break; // Count reached zero. 1086 // Stall warning time, so make a list of the offenders. 1087 rcu_read_lock(); 1088 for_each_process_thread(g, t) 1089 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1090 trc_add_holdout(t, &holdouts); 1091 rcu_read_unlock(); 1092 firstreport = true; 1093 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) { 1094 if (READ_ONCE(t->trc_reader_special.b.need_qs)) 1095 show_stalled_task_trace(t, &firstreport); 1096 trc_del_holdout(t); // Release task_struct reference. 1097 } 1098 if (firstreport) 1099 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n"); 1100 show_stalled_ipi_trace(); 1101 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end)); 1102 } 1103 smp_mb(); // Caller's code must be ordered after wakeup. 1104 // Pairs with pretty much every ordering primitive. 1105 } 1106 1107 /* Report any needed quiescent state for this exiting task. */ 1108 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1109 { 1110 WRITE_ONCE(t->trc_reader_checked, true); 1111 WARN_ON_ONCE(t->trc_reader_nesting); 1112 WRITE_ONCE(t->trc_reader_nesting, 0); 1113 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs))) 1114 rcu_read_unlock_trace_special(t, 0); 1115 } 1116 1117 /** 1118 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1119 * @rhp: structure to be used for queueing the RCU updates. 1120 * @func: actual callback function to be invoked after the grace period 1121 * 1122 * The callback function will be invoked some time after a full grace 1123 * period elapses, in other words after all currently executing RCU 1124 * read-side critical sections have completed. call_rcu_tasks_trace() 1125 * assumes that the read-side critical sections end at context switch, 1126 * cond_resched_rcu_qs(), or transition to usermode execution. As such, 1127 * there are no read-side primitives analogous to rcu_read_lock() and 1128 * rcu_read_unlock() because this primitive is intended to determine 1129 * that all tasks have passed through a safe state, not so much for 1130 * data-strcuture synchronization. 1131 * 1132 * See the description of call_rcu() for more detailed information on 1133 * memory ordering guarantees. 1134 */ 1135 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1136 { 1137 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1138 } 1139 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1140 1141 /** 1142 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1143 * 1144 * Control will return to the caller some time after a trace rcu-tasks 1145 * grace period has elapsed, in other words after all currently executing 1146 * rcu-tasks read-side critical sections have elapsed. These read-side 1147 * critical sections are delimited by calls to rcu_read_lock_trace() 1148 * and rcu_read_unlock_trace(). 1149 * 1150 * This is a very specialized primitive, intended only for a few uses in 1151 * tracing and other situations requiring manipulation of function preambles 1152 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1153 * (yet) intended for heavy use from multiple CPUs. 1154 * 1155 * See the description of synchronize_rcu() for more detailed information 1156 * on memory ordering guarantees. 1157 */ 1158 void synchronize_rcu_tasks_trace(void) 1159 { 1160 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1161 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1162 } 1163 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1164 1165 /** 1166 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1167 * 1168 * Although the current implementation is guaranteed to wait, it is not 1169 * obligated to, for example, if there are no pending callbacks. 1170 */ 1171 void rcu_barrier_tasks_trace(void) 1172 { 1173 /* There is only one callback queue, so this is easy. ;-) */ 1174 synchronize_rcu_tasks_trace(); 1175 } 1176 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1177 1178 static int __init rcu_spawn_tasks_trace_kthread(void) 1179 { 1180 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1181 rcu_tasks_trace.gp_sleep = HZ / 10; 1182 rcu_tasks_trace.init_fract = HZ / 10; 1183 } else { 1184 rcu_tasks_trace.gp_sleep = HZ / 200; 1185 if (rcu_tasks_trace.gp_sleep <= 0) 1186 rcu_tasks_trace.gp_sleep = 1; 1187 rcu_tasks_trace.init_fract = HZ / 200; 1188 if (rcu_tasks_trace.init_fract <= 0) 1189 rcu_tasks_trace.init_fract = 1; 1190 } 1191 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1192 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask; 1193 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1194 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1195 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1196 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1197 return 0; 1198 } 1199 1200 #if !defined(CONFIG_TINY_RCU) 1201 void show_rcu_tasks_trace_gp_kthread(void) 1202 { 1203 char buf[64]; 1204 1205 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end), 1206 data_race(n_heavy_reader_ofl_updates), 1207 data_race(n_heavy_reader_updates), 1208 data_race(n_heavy_reader_attempts)); 1209 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1210 } 1211 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1212 #endif // !defined(CONFIG_TINY_RCU) 1213 1214 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1215 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1216 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1217 1218 #ifndef CONFIG_TINY_RCU 1219 void show_rcu_tasks_gp_kthreads(void) 1220 { 1221 show_rcu_tasks_classic_gp_kthread(); 1222 show_rcu_tasks_rude_gp_kthread(); 1223 show_rcu_tasks_trace_gp_kthread(); 1224 } 1225 #endif /* #ifndef CONFIG_TINY_RCU */ 1226 1227 #ifdef CONFIG_PROVE_RCU 1228 struct rcu_tasks_test_desc { 1229 struct rcu_head rh; 1230 const char *name; 1231 bool notrun; 1232 }; 1233 1234 static struct rcu_tasks_test_desc tests[] = { 1235 { 1236 .name = "call_rcu_tasks()", 1237 /* If not defined, the test is skipped. */ 1238 .notrun = !IS_ENABLED(CONFIG_TASKS_RCU), 1239 }, 1240 { 1241 .name = "call_rcu_tasks_rude()", 1242 /* If not defined, the test is skipped. */ 1243 .notrun = !IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1244 }, 1245 { 1246 .name = "call_rcu_tasks_trace()", 1247 /* If not defined, the test is skipped. */ 1248 .notrun = !IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1249 } 1250 }; 1251 1252 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1253 { 1254 struct rcu_tasks_test_desc *rttd = 1255 container_of(rhp, struct rcu_tasks_test_desc, rh); 1256 1257 pr_info("Callback from %s invoked.\n", rttd->name); 1258 1259 rttd->notrun = true; 1260 } 1261 1262 static void rcu_tasks_initiate_self_tests(void) 1263 { 1264 pr_info("Running RCU-tasks wait API self tests\n"); 1265 #ifdef CONFIG_TASKS_RCU 1266 synchronize_rcu_tasks(); 1267 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1268 #endif 1269 1270 #ifdef CONFIG_TASKS_RUDE_RCU 1271 synchronize_rcu_tasks_rude(); 1272 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1273 #endif 1274 1275 #ifdef CONFIG_TASKS_TRACE_RCU 1276 synchronize_rcu_tasks_trace(); 1277 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1278 #endif 1279 } 1280 1281 static int rcu_tasks_verify_self_tests(void) 1282 { 1283 int ret = 0; 1284 int i; 1285 1286 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1287 if (!tests[i].notrun) { // still hanging. 1288 pr_err("%s has been failed.\n", tests[i].name); 1289 ret = -1; 1290 } 1291 } 1292 1293 if (ret) 1294 WARN_ON(1); 1295 1296 return ret; 1297 } 1298 late_initcall(rcu_tasks_verify_self_tests); 1299 #else /* #ifdef CONFIG_PROVE_RCU */ 1300 static void rcu_tasks_initiate_self_tests(void) { } 1301 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1302 1303 void __init rcu_init_tasks_generic(void) 1304 { 1305 #ifdef CONFIG_TASKS_RCU 1306 rcu_spawn_tasks_kthread(); 1307 #endif 1308 1309 #ifdef CONFIG_TASKS_RUDE_RCU 1310 rcu_spawn_tasks_rude_kthread(); 1311 #endif 1312 1313 #ifdef CONFIG_TASKS_TRACE_RCU 1314 rcu_spawn_tasks_trace_kthread(); 1315 #endif 1316 1317 // Run the self-tests. 1318 rcu_tasks_initiate_self_tests(); 1319 } 1320 1321 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1322 static inline void rcu_tasks_bootup_oddness(void) {} 1323 void show_rcu_tasks_gp_kthreads(void) {} 1324 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1325