xref: /openbmc/linux/kernel/rcu/tasks.h (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13 
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21 
22 /**
23  * Definition for a Tasks-RCU-like mechanism.
24  * @cbs_head: Head of callback list.
25  * @cbs_tail: Tail pointer for callback list.
26  * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27  * @cbs_lock: Lock protecting callback list.
28  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29  * @gp_func: This flavor's grace-period-wait function.
30  * @gp_state: Grace period's most recent state transition (debugging).
31  * @gp_jiffies: Time of last @gp_state transition.
32  * @gp_start: Most recent grace-period start in jiffies.
33  * @n_gps: Number of grace periods completed since boot.
34  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
35  * @n_ipis_fails: Number of IPI-send failures.
36  * @pregp_func: This flavor's pre-grace-period function (optional).
37  * @pertask_func: This flavor's per-task scan function (optional).
38  * @postscan_func: This flavor's post-task scan function (optional).
39  * @holdout_func: This flavor's holdout-list scan function (optional).
40  * @postgp_func: This flavor's post-grace-period function (optional).
41  * @call_func: This flavor's call_rcu()-equivalent function.
42  * @name: This flavor's textual name.
43  * @kname: This flavor's kthread name.
44  */
45 struct rcu_tasks {
46 	struct rcu_head *cbs_head;
47 	struct rcu_head **cbs_tail;
48 	struct wait_queue_head cbs_wq;
49 	raw_spinlock_t cbs_lock;
50 	int gp_state;
51 	unsigned long gp_jiffies;
52 	unsigned long gp_start;
53 	unsigned long n_gps;
54 	unsigned long n_ipis;
55 	unsigned long n_ipis_fails;
56 	struct task_struct *kthread_ptr;
57 	rcu_tasks_gp_func_t gp_func;
58 	pregp_func_t pregp_func;
59 	pertask_func_t pertask_func;
60 	postscan_func_t postscan_func;
61 	holdouts_func_t holdouts_func;
62 	postgp_func_t postgp_func;
63 	call_rcu_func_t call_func;
64 	char *name;
65 	char *kname;
66 };
67 
68 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)				\
69 static struct rcu_tasks rt_name =					\
70 {									\
71 	.cbs_tail = &rt_name.cbs_head,					\
72 	.cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq),	\
73 	.cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock),		\
74 	.gp_func = gp,							\
75 	.call_func = call,						\
76 	.name = n,							\
77 	.kname = #rt_name,						\
78 }
79 
80 /* Track exiting tasks in order to allow them to be waited for. */
81 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
82 
83 /* Avoid IPIing CPUs early in the grace period. */
84 #define RCU_TASK_IPI_DELAY (HZ / 2)
85 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
86 module_param(rcu_task_ipi_delay, int, 0644);
87 
88 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
89 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
90 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
91 module_param(rcu_task_stall_timeout, int, 0644);
92 
93 /* RCU tasks grace-period state for debugging. */
94 #define RTGS_INIT		 0
95 #define RTGS_WAIT_WAIT_CBS	 1
96 #define RTGS_WAIT_GP		 2
97 #define RTGS_PRE_WAIT_GP	 3
98 #define RTGS_SCAN_TASKLIST	 4
99 #define RTGS_POST_SCAN_TASKLIST	 5
100 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
101 #define RTGS_SCAN_HOLDOUTS	 7
102 #define RTGS_POST_GP		 8
103 #define RTGS_WAIT_READERS	 9
104 #define RTGS_INVOKE_CBS		10
105 #define RTGS_WAIT_CBS		11
106 #ifndef CONFIG_TINY_RCU
107 static const char * const rcu_tasks_gp_state_names[] = {
108 	"RTGS_INIT",
109 	"RTGS_WAIT_WAIT_CBS",
110 	"RTGS_WAIT_GP",
111 	"RTGS_PRE_WAIT_GP",
112 	"RTGS_SCAN_TASKLIST",
113 	"RTGS_POST_SCAN_TASKLIST",
114 	"RTGS_WAIT_SCAN_HOLDOUTS",
115 	"RTGS_SCAN_HOLDOUTS",
116 	"RTGS_POST_GP",
117 	"RTGS_WAIT_READERS",
118 	"RTGS_INVOKE_CBS",
119 	"RTGS_WAIT_CBS",
120 };
121 #endif /* #ifndef CONFIG_TINY_RCU */
122 
123 ////////////////////////////////////////////////////////////////////////
124 //
125 // Generic code.
126 
127 /* Record grace-period phase and time. */
128 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
129 {
130 	rtp->gp_state = newstate;
131 	rtp->gp_jiffies = jiffies;
132 }
133 
134 #ifndef CONFIG_TINY_RCU
135 /* Return state name. */
136 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
137 {
138 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
139 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
140 
141 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
142 		return "???";
143 	return rcu_tasks_gp_state_names[j];
144 }
145 #endif /* #ifndef CONFIG_TINY_RCU */
146 
147 // Enqueue a callback for the specified flavor of Tasks RCU.
148 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
149 				   struct rcu_tasks *rtp)
150 {
151 	unsigned long flags;
152 	bool needwake;
153 
154 	rhp->next = NULL;
155 	rhp->func = func;
156 	raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
157 	needwake = !rtp->cbs_head;
158 	WRITE_ONCE(*rtp->cbs_tail, rhp);
159 	rtp->cbs_tail = &rhp->next;
160 	raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
161 	/* We can't create the thread unless interrupts are enabled. */
162 	if (needwake && READ_ONCE(rtp->kthread_ptr))
163 		wake_up(&rtp->cbs_wq);
164 }
165 
166 // Wait for a grace period for the specified flavor of Tasks RCU.
167 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
168 {
169 	/* Complain if the scheduler has not started.  */
170 	RCU_LOCKDEP_WARN(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
171 			 "synchronize_rcu_tasks called too soon");
172 
173 	/* Wait for the grace period. */
174 	wait_rcu_gp(rtp->call_func);
175 }
176 
177 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
178 static int __noreturn rcu_tasks_kthread(void *arg)
179 {
180 	unsigned long flags;
181 	struct rcu_head *list;
182 	struct rcu_head *next;
183 	struct rcu_tasks *rtp = arg;
184 
185 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
186 	housekeeping_affine(current, HK_FLAG_RCU);
187 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
188 
189 	/*
190 	 * Each pass through the following loop makes one check for
191 	 * newly arrived callbacks, and, if there are some, waits for
192 	 * one RCU-tasks grace period and then invokes the callbacks.
193 	 * This loop is terminated by the system going down.  ;-)
194 	 */
195 	for (;;) {
196 
197 		/* Pick up any new callbacks. */
198 		raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
199 		smp_mb__after_spinlock(); // Order updates vs. GP.
200 		list = rtp->cbs_head;
201 		rtp->cbs_head = NULL;
202 		rtp->cbs_tail = &rtp->cbs_head;
203 		raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
204 
205 		/* If there were none, wait a bit and start over. */
206 		if (!list) {
207 			wait_event_interruptible(rtp->cbs_wq,
208 						 READ_ONCE(rtp->cbs_head));
209 			if (!rtp->cbs_head) {
210 				WARN_ON(signal_pending(current));
211 				set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
212 				schedule_timeout_idle(HZ/10);
213 			}
214 			continue;
215 		}
216 
217 		// Wait for one grace period.
218 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
219 		rtp->gp_start = jiffies;
220 		rtp->gp_func(rtp);
221 		rtp->n_gps++;
222 
223 		/* Invoke the callbacks. */
224 		set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
225 		while (list) {
226 			next = list->next;
227 			local_bh_disable();
228 			list->func(list);
229 			local_bh_enable();
230 			list = next;
231 			cond_resched();
232 		}
233 		/* Paranoid sleep to keep this from entering a tight loop */
234 		schedule_timeout_idle(HZ/10);
235 
236 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
237 	}
238 }
239 
240 /* Spawn RCU-tasks grace-period kthread, e.g., at core_initcall() time. */
241 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
242 {
243 	struct task_struct *t;
244 
245 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
246 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
247 		return;
248 	smp_mb(); /* Ensure others see full kthread. */
249 }
250 
251 #ifndef CONFIG_TINY_RCU
252 
253 /*
254  * Print any non-default Tasks RCU settings.
255  */
256 static void __init rcu_tasks_bootup_oddness(void)
257 {
258 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
259 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
260 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
261 #endif /* #ifdef CONFIG_TASKS_RCU */
262 #ifdef CONFIG_TASKS_RCU
263 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
264 #endif /* #ifdef CONFIG_TASKS_RCU */
265 #ifdef CONFIG_TASKS_RUDE_RCU
266 	pr_info("\tRude variant of Tasks RCU enabled.\n");
267 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
268 #ifdef CONFIG_TASKS_TRACE_RCU
269 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
270 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
271 }
272 
273 #endif /* #ifndef CONFIG_TINY_RCU */
274 
275 #ifndef CONFIG_TINY_RCU
276 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
277 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
278 {
279 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
280 		rtp->kname,
281 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
282 		jiffies - data_race(rtp->gp_jiffies),
283 		data_race(rtp->n_gps),
284 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
285 		".k"[!!data_race(rtp->kthread_ptr)],
286 		".C"[!!data_race(rtp->cbs_head)],
287 		s);
288 }
289 #endif /* #ifndef CONFIG_TINY_RCU */
290 
291 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
292 
293 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
294 
295 ////////////////////////////////////////////////////////////////////////
296 //
297 // Shared code between task-list-scanning variants of Tasks RCU.
298 
299 /* Wait for one RCU-tasks grace period. */
300 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
301 {
302 	struct task_struct *g, *t;
303 	unsigned long lastreport;
304 	LIST_HEAD(holdouts);
305 	int fract;
306 
307 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
308 	rtp->pregp_func();
309 
310 	/*
311 	 * There were callbacks, so we need to wait for an RCU-tasks
312 	 * grace period.  Start off by scanning the task list for tasks
313 	 * that are not already voluntarily blocked.  Mark these tasks
314 	 * and make a list of them in holdouts.
315 	 */
316 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
317 	rcu_read_lock();
318 	for_each_process_thread(g, t)
319 		rtp->pertask_func(t, &holdouts);
320 	rcu_read_unlock();
321 
322 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
323 	rtp->postscan_func(&holdouts);
324 
325 	/*
326 	 * Each pass through the following loop scans the list of holdout
327 	 * tasks, removing any that are no longer holdouts.  When the list
328 	 * is empty, we are done.
329 	 */
330 	lastreport = jiffies;
331 
332 	/* Start off with HZ/10 wait and slowly back off to 1 HZ wait. */
333 	fract = 10;
334 
335 	for (;;) {
336 		bool firstreport;
337 		bool needreport;
338 		int rtst;
339 
340 		if (list_empty(&holdouts))
341 			break;
342 
343 		/* Slowly back off waiting for holdouts */
344 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
345 		schedule_timeout_idle(HZ/fract);
346 
347 		if (fract > 1)
348 			fract--;
349 
350 		rtst = READ_ONCE(rcu_task_stall_timeout);
351 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
352 		if (needreport)
353 			lastreport = jiffies;
354 		firstreport = true;
355 		WARN_ON(signal_pending(current));
356 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
357 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
358 	}
359 
360 	set_tasks_gp_state(rtp, RTGS_POST_GP);
361 	rtp->postgp_func(rtp);
362 }
363 
364 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
365 
366 #ifdef CONFIG_TASKS_RCU
367 
368 ////////////////////////////////////////////////////////////////////////
369 //
370 // Simple variant of RCU whose quiescent states are voluntary context
371 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
372 // As such, grace periods can take one good long time.  There are no
373 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
374 // because this implementation is intended to get the system into a safe
375 // state for some of the manipulations involved in tracing and the like.
376 // Finally, this implementation does not support high call_rcu_tasks()
377 // rates from multiple CPUs.  If this is required, per-CPU callback lists
378 // will be needed.
379 
380 /* Pre-grace-period preparation. */
381 static void rcu_tasks_pregp_step(void)
382 {
383 	/*
384 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
385 	 * to complete.  Invoking synchronize_rcu() suffices because all
386 	 * these transitions occur with interrupts disabled.  Without this
387 	 * synchronize_rcu(), a read-side critical section that started
388 	 * before the grace period might be incorrectly seen as having
389 	 * started after the grace period.
390 	 *
391 	 * This synchronize_rcu() also dispenses with the need for a
392 	 * memory barrier on the first store to t->rcu_tasks_holdout,
393 	 * as it forces the store to happen after the beginning of the
394 	 * grace period.
395 	 */
396 	synchronize_rcu();
397 }
398 
399 /* Per-task initial processing. */
400 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
401 {
402 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
403 		get_task_struct(t);
404 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
405 		WRITE_ONCE(t->rcu_tasks_holdout, true);
406 		list_add(&t->rcu_tasks_holdout_list, hop);
407 	}
408 }
409 
410 /* Processing between scanning taskslist and draining the holdout list. */
411 static void rcu_tasks_postscan(struct list_head *hop)
412 {
413 	/*
414 	 * Wait for tasks that are in the process of exiting.  This
415 	 * does only part of the job, ensuring that all tasks that were
416 	 * previously exiting reach the point where they have disabled
417 	 * preemption, allowing the later synchronize_rcu() to finish
418 	 * the job.
419 	 */
420 	synchronize_srcu(&tasks_rcu_exit_srcu);
421 }
422 
423 /* See if tasks are still holding out, complain if so. */
424 static void check_holdout_task(struct task_struct *t,
425 			       bool needreport, bool *firstreport)
426 {
427 	int cpu;
428 
429 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
430 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
431 	    !READ_ONCE(t->on_rq) ||
432 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
433 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
434 		WRITE_ONCE(t->rcu_tasks_holdout, false);
435 		list_del_init(&t->rcu_tasks_holdout_list);
436 		put_task_struct(t);
437 		return;
438 	}
439 	rcu_request_urgent_qs_task(t);
440 	if (!needreport)
441 		return;
442 	if (*firstreport) {
443 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
444 		*firstreport = false;
445 	}
446 	cpu = task_cpu(t);
447 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
448 		 t, ".I"[is_idle_task(t)],
449 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
450 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
451 		 t->rcu_tasks_idle_cpu, cpu);
452 	sched_show_task(t);
453 }
454 
455 /* Scan the holdout lists for tasks no longer holding out. */
456 static void check_all_holdout_tasks(struct list_head *hop,
457 				    bool needreport, bool *firstreport)
458 {
459 	struct task_struct *t, *t1;
460 
461 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
462 		check_holdout_task(t, needreport, firstreport);
463 		cond_resched();
464 	}
465 }
466 
467 /* Finish off the Tasks-RCU grace period. */
468 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
469 {
470 	/*
471 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
472 	 * memory barriers prior to them in the schedule() path, memory
473 	 * reordering on other CPUs could cause their RCU-tasks read-side
474 	 * critical sections to extend past the end of the grace period.
475 	 * However, because these ->nvcsw updates are carried out with
476 	 * interrupts disabled, we can use synchronize_rcu() to force the
477 	 * needed ordering on all such CPUs.
478 	 *
479 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
480 	 * accesses to be within the grace period, avoiding the need for
481 	 * memory barriers for ->rcu_tasks_holdout accesses.
482 	 *
483 	 * In addition, this synchronize_rcu() waits for exiting tasks
484 	 * to complete their final preempt_disable() region of execution,
485 	 * cleaning up after the synchronize_srcu() above.
486 	 */
487 	synchronize_rcu();
488 }
489 
490 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
491 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
492 
493 /**
494  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
495  * @rhp: structure to be used for queueing the RCU updates.
496  * @func: actual callback function to be invoked after the grace period
497  *
498  * The callback function will be invoked some time after a full grace
499  * period elapses, in other words after all currently executing RCU
500  * read-side critical sections have completed. call_rcu_tasks() assumes
501  * that the read-side critical sections end at a voluntary context
502  * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
503  * or transition to usermode execution.  As such, there are no read-side
504  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
505  * this primitive is intended to determine that all tasks have passed
506  * through a safe state, not so much for data-strcuture synchronization.
507  *
508  * See the description of call_rcu() for more detailed information on
509  * memory ordering guarantees.
510  */
511 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
512 {
513 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
514 }
515 EXPORT_SYMBOL_GPL(call_rcu_tasks);
516 
517 /**
518  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
519  *
520  * Control will return to the caller some time after a full rcu-tasks
521  * grace period has elapsed, in other words after all currently
522  * executing rcu-tasks read-side critical sections have elapsed.  These
523  * read-side critical sections are delimited by calls to schedule(),
524  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
525  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
526  *
527  * This is a very specialized primitive, intended only for a few uses in
528  * tracing and other situations requiring manipulation of function
529  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
530  * is not (yet) intended for heavy use from multiple CPUs.
531  *
532  * See the description of synchronize_rcu() for more detailed information
533  * on memory ordering guarantees.
534  */
535 void synchronize_rcu_tasks(void)
536 {
537 	synchronize_rcu_tasks_generic(&rcu_tasks);
538 }
539 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
540 
541 /**
542  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
543  *
544  * Although the current implementation is guaranteed to wait, it is not
545  * obligated to, for example, if there are no pending callbacks.
546  */
547 void rcu_barrier_tasks(void)
548 {
549 	/* There is only one callback queue, so this is easy.  ;-) */
550 	synchronize_rcu_tasks();
551 }
552 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
553 
554 static int __init rcu_spawn_tasks_kthread(void)
555 {
556 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
557 	rcu_tasks.pertask_func = rcu_tasks_pertask;
558 	rcu_tasks.postscan_func = rcu_tasks_postscan;
559 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
560 	rcu_tasks.postgp_func = rcu_tasks_postgp;
561 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
562 	return 0;
563 }
564 core_initcall(rcu_spawn_tasks_kthread);
565 
566 #ifndef CONFIG_TINY_RCU
567 static void show_rcu_tasks_classic_gp_kthread(void)
568 {
569 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
570 }
571 #endif /* #ifndef CONFIG_TINY_RCU */
572 
573 /* Do the srcu_read_lock() for the above synchronize_srcu().  */
574 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
575 {
576 	preempt_disable();
577 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
578 	preempt_enable();
579 }
580 
581 /* Do the srcu_read_unlock() for the above synchronize_srcu().  */
582 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
583 {
584 	struct task_struct *t = current;
585 
586 	preempt_disable();
587 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
588 	preempt_enable();
589 	exit_tasks_rcu_finish_trace(t);
590 }
591 
592 #else /* #ifdef CONFIG_TASKS_RCU */
593 static void show_rcu_tasks_classic_gp_kthread(void) { }
594 void exit_tasks_rcu_start(void) { }
595 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
596 #endif /* #else #ifdef CONFIG_TASKS_RCU */
597 
598 #ifdef CONFIG_TASKS_RUDE_RCU
599 
600 ////////////////////////////////////////////////////////////////////////
601 //
602 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
603 // passing an empty function to schedule_on_each_cpu().  This approach
604 // provides an asynchronous call_rcu_tasks_rude() API and batching
605 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
606 // This sends IPIs far and wide and induces otherwise unnecessary context
607 // switches on all online CPUs, whether idle or not.
608 
609 // Empty function to allow workqueues to force a context switch.
610 static void rcu_tasks_be_rude(struct work_struct *work)
611 {
612 }
613 
614 // Wait for one rude RCU-tasks grace period.
615 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
616 {
617 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
618 	schedule_on_each_cpu(rcu_tasks_be_rude);
619 }
620 
621 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
622 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
623 		 "RCU Tasks Rude");
624 
625 /**
626  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
627  * @rhp: structure to be used for queueing the RCU updates.
628  * @func: actual callback function to be invoked after the grace period
629  *
630  * The callback function will be invoked some time after a full grace
631  * period elapses, in other words after all currently executing RCU
632  * read-side critical sections have completed. call_rcu_tasks_rude()
633  * assumes that the read-side critical sections end at context switch,
634  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
635  * there are no read-side primitives analogous to rcu_read_lock() and
636  * rcu_read_unlock() because this primitive is intended to determine
637  * that all tasks have passed through a safe state, not so much for
638  * data-strcuture synchronization.
639  *
640  * See the description of call_rcu() for more detailed information on
641  * memory ordering guarantees.
642  */
643 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
644 {
645 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
646 }
647 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
648 
649 /**
650  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
651  *
652  * Control will return to the caller some time after a rude rcu-tasks
653  * grace period has elapsed, in other words after all currently
654  * executing rcu-tasks read-side critical sections have elapsed.  These
655  * read-side critical sections are delimited by calls to schedule(),
656  * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
657  * anyway) cond_resched().
658  *
659  * This is a very specialized primitive, intended only for a few uses in
660  * tracing and other situations requiring manipulation of function preambles
661  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
662  * (yet) intended for heavy use from multiple CPUs.
663  *
664  * See the description of synchronize_rcu() for more detailed information
665  * on memory ordering guarantees.
666  */
667 void synchronize_rcu_tasks_rude(void)
668 {
669 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
670 }
671 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
672 
673 /**
674  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
675  *
676  * Although the current implementation is guaranteed to wait, it is not
677  * obligated to, for example, if there are no pending callbacks.
678  */
679 void rcu_barrier_tasks_rude(void)
680 {
681 	/* There is only one callback queue, so this is easy.  ;-) */
682 	synchronize_rcu_tasks_rude();
683 }
684 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
685 
686 static int __init rcu_spawn_tasks_rude_kthread(void)
687 {
688 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
689 	return 0;
690 }
691 core_initcall(rcu_spawn_tasks_rude_kthread);
692 
693 #ifndef CONFIG_TINY_RCU
694 static void show_rcu_tasks_rude_gp_kthread(void)
695 {
696 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
697 }
698 #endif /* #ifndef CONFIG_TINY_RCU */
699 
700 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */
701 static void show_rcu_tasks_rude_gp_kthread(void) {}
702 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
703 
704 ////////////////////////////////////////////////////////////////////////
705 //
706 // Tracing variant of Tasks RCU.  This variant is designed to be used
707 // to protect tracing hooks, including those of BPF.  This variant
708 // therefore:
709 //
710 // 1.	Has explicit read-side markers to allow finite grace periods
711 //	in the face of in-kernel loops for PREEMPT=n builds.
712 //
713 // 2.	Protects code in the idle loop, exception entry/exit, and
714 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
715 //
716 // 3.	Avoids expensive read-side instruction, having overhead similar
717 //	to that of Preemptible RCU.
718 //
719 // There are of course downsides.  The grace-period code can send IPIs to
720 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
721 // It is necessary to scan the full tasklist, much as for Tasks RCU.  There
722 // is a single callback queue guarded by a single lock, again, much as for
723 // Tasks RCU.  If needed, these downsides can be at least partially remedied.
724 //
725 // Perhaps most important, this variant of RCU does not affect the vanilla
726 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
727 // readers can operate from idle, offline, and exception entry/exit in no
728 // way allows rcu_preempt and rcu_sched readers to also do so.
729 
730 // The lockdep state must be outside of #ifdef to be useful.
731 #ifdef CONFIG_DEBUG_LOCK_ALLOC
732 static struct lock_class_key rcu_lock_trace_key;
733 struct lockdep_map rcu_trace_lock_map =
734 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
735 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
736 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
737 
738 #ifdef CONFIG_TASKS_TRACE_RCU
739 
740 static atomic_t trc_n_readers_need_end;		// Number of waited-for readers.
741 static DECLARE_WAIT_QUEUE_HEAD(trc_wait);	// List of holdout tasks.
742 
743 // Record outstanding IPIs to each CPU.  No point in sending two...
744 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
745 
746 // The number of detections of task quiescent state relying on
747 // heavyweight readers executing explicit memory barriers.
748 unsigned long n_heavy_reader_attempts;
749 unsigned long n_heavy_reader_updates;
750 unsigned long n_heavy_reader_ofl_updates;
751 
752 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
753 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
754 		 "RCU Tasks Trace");
755 
756 /*
757  * This irq_work handler allows rcu_read_unlock_trace() to be invoked
758  * while the scheduler locks are held.
759  */
760 static void rcu_read_unlock_iw(struct irq_work *iwp)
761 {
762 	wake_up(&trc_wait);
763 }
764 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
765 
766 /* If we are the last reader, wake up the grace-period kthread. */
767 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
768 {
769 	int nq = t->trc_reader_special.b.need_qs;
770 
771 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
772 	    t->trc_reader_special.b.need_mb)
773 		smp_mb(); // Pairs with update-side barriers.
774 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
775 	if (nq)
776 		WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
777 	WRITE_ONCE(t->trc_reader_nesting, nesting);
778 	if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
779 		irq_work_queue(&rcu_tasks_trace_iw);
780 }
781 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
782 
783 /* Add a task to the holdout list, if it is not already on the list. */
784 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
785 {
786 	if (list_empty(&t->trc_holdout_list)) {
787 		get_task_struct(t);
788 		list_add(&t->trc_holdout_list, bhp);
789 	}
790 }
791 
792 /* Remove a task from the holdout list, if it is in fact present. */
793 static void trc_del_holdout(struct task_struct *t)
794 {
795 	if (!list_empty(&t->trc_holdout_list)) {
796 		list_del_init(&t->trc_holdout_list);
797 		put_task_struct(t);
798 	}
799 }
800 
801 /* IPI handler to check task state. */
802 static void trc_read_check_handler(void *t_in)
803 {
804 	struct task_struct *t = current;
805 	struct task_struct *texp = t_in;
806 
807 	// If the task is no longer running on this CPU, leave.
808 	if (unlikely(texp != t)) {
809 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
810 			wake_up(&trc_wait);
811 		goto reset_ipi; // Already on holdout list, so will check later.
812 	}
813 
814 	// If the task is not in a read-side critical section, and
815 	// if this is the last reader, awaken the grace-period kthread.
816 	if (likely(!t->trc_reader_nesting)) {
817 		if (WARN_ON_ONCE(atomic_dec_and_test(&trc_n_readers_need_end)))
818 			wake_up(&trc_wait);
819 		// Mark as checked after decrement to avoid false
820 		// positives on the above WARN_ON_ONCE().
821 		WRITE_ONCE(t->trc_reader_checked, true);
822 		goto reset_ipi;
823 	}
824 	WRITE_ONCE(t->trc_reader_checked, true);
825 
826 	// Get here if the task is in a read-side critical section.  Set
827 	// its state so that it will awaken the grace-period kthread upon
828 	// exit from that critical section.
829 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
830 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
831 
832 reset_ipi:
833 	// Allow future IPIs to be sent on CPU and for task.
834 	// Also order this IPI handler against any later manipulations of
835 	// the intended task.
836 	smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
837 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
838 }
839 
840 /* Callback function for scheduler to check locked-down task.  */
841 static bool trc_inspect_reader(struct task_struct *t, void *arg)
842 {
843 	int cpu = task_cpu(t);
844 	bool in_qs = false;
845 	bool ofl = cpu_is_offline(cpu);
846 
847 	if (task_curr(t)) {
848 		WARN_ON_ONCE(ofl && !is_idle_task(t));
849 
850 		// If no chance of heavyweight readers, do it the hard way.
851 		if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
852 			return false;
853 
854 		// If heavyweight readers are enabled on the remote task,
855 		// we can inspect its state despite its currently running.
856 		// However, we cannot safely change its state.
857 		n_heavy_reader_attempts++;
858 		if (!ofl && // Check for "running" idle tasks on offline CPUs.
859 		    !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
860 			return false; // No quiescent state, do it the hard way.
861 		n_heavy_reader_updates++;
862 		if (ofl)
863 			n_heavy_reader_ofl_updates++;
864 		in_qs = true;
865 	} else {
866 		in_qs = likely(!t->trc_reader_nesting);
867 	}
868 
869 	// Mark as checked.  Because this is called from the grace-period
870 	// kthread, also remove the task from the holdout list.
871 	t->trc_reader_checked = true;
872 	trc_del_holdout(t);
873 
874 	if (in_qs)
875 		return true;  // Already in quiescent state, done!!!
876 
877 	// The task is in a read-side critical section, so set up its
878 	// state so that it will awaken the grace-period kthread upon exit
879 	// from that critical section.
880 	atomic_inc(&trc_n_readers_need_end); // One more to wait on.
881 	WARN_ON_ONCE(t->trc_reader_special.b.need_qs);
882 	WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
883 	return true;
884 }
885 
886 /* Attempt to extract the state for the specified task. */
887 static void trc_wait_for_one_reader(struct task_struct *t,
888 				    struct list_head *bhp)
889 {
890 	int cpu;
891 
892 	// If a previous IPI is still in flight, let it complete.
893 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
894 		return;
895 
896 	// The current task had better be in a quiescent state.
897 	if (t == current) {
898 		t->trc_reader_checked = true;
899 		trc_del_holdout(t);
900 		WARN_ON_ONCE(t->trc_reader_nesting);
901 		return;
902 	}
903 
904 	// Attempt to nail down the task for inspection.
905 	get_task_struct(t);
906 	if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
907 		put_task_struct(t);
908 		return;
909 	}
910 	put_task_struct(t);
911 
912 	// If currently running, send an IPI, either way, add to list.
913 	trc_add_holdout(t, bhp);
914 	if (task_curr(t) && time_after(jiffies, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
915 		// The task is currently running, so try IPIing it.
916 		cpu = task_cpu(t);
917 
918 		// If there is already an IPI outstanding, let it happen.
919 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
920 			return;
921 
922 		atomic_inc(&trc_n_readers_need_end);
923 		per_cpu(trc_ipi_to_cpu, cpu) = true;
924 		t->trc_ipi_to_cpu = cpu;
925 		rcu_tasks_trace.n_ipis++;
926 		if (smp_call_function_single(cpu,
927 					     trc_read_check_handler, t, 0)) {
928 			// Just in case there is some other reason for
929 			// failure than the target CPU being offline.
930 			rcu_tasks_trace.n_ipis_fails++;
931 			per_cpu(trc_ipi_to_cpu, cpu) = false;
932 			t->trc_ipi_to_cpu = cpu;
933 			if (atomic_dec_and_test(&trc_n_readers_need_end)) {
934 				WARN_ON_ONCE(1);
935 				wake_up(&trc_wait);
936 			}
937 		}
938 	}
939 }
940 
941 /* Initialize for a new RCU-tasks-trace grace period. */
942 static void rcu_tasks_trace_pregp_step(void)
943 {
944 	int cpu;
945 
946 	// Allow for fast-acting IPIs.
947 	atomic_set(&trc_n_readers_need_end, 1);
948 
949 	// There shouldn't be any old IPIs, but...
950 	for_each_possible_cpu(cpu)
951 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
952 
953 	// Disable CPU hotplug across the tasklist scan.
954 	// This also waits for all readers in CPU-hotplug code paths.
955 	cpus_read_lock();
956 }
957 
958 /* Do first-round processing for the specified task. */
959 static void rcu_tasks_trace_pertask(struct task_struct *t,
960 				    struct list_head *hop)
961 {
962 	WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
963 	WRITE_ONCE(t->trc_reader_checked, false);
964 	t->trc_ipi_to_cpu = -1;
965 	trc_wait_for_one_reader(t, hop);
966 }
967 
968 /*
969  * Do intermediate processing between task and holdout scans and
970  * pick up the idle tasks.
971  */
972 static void rcu_tasks_trace_postscan(struct list_head *hop)
973 {
974 	int cpu;
975 
976 	for_each_possible_cpu(cpu)
977 		rcu_tasks_trace_pertask(idle_task(cpu), hop);
978 
979 	// Re-enable CPU hotplug now that the tasklist scan has completed.
980 	cpus_read_unlock();
981 
982 	// Wait for late-stage exiting tasks to finish exiting.
983 	// These might have passed the call to exit_tasks_rcu_finish().
984 	synchronize_rcu();
985 	// Any tasks that exit after this point will set ->trc_reader_checked.
986 }
987 
988 /* Show the state of a task stalling the current RCU tasks trace GP. */
989 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
990 {
991 	int cpu;
992 
993 	if (*firstreport) {
994 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
995 		*firstreport = false;
996 	}
997 	// FIXME: This should attempt to use try_invoke_on_nonrunning_task().
998 	cpu = task_cpu(t);
999 	pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1000 		 t->pid,
1001 		 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1002 		 ".i"[is_idle_task(t)],
1003 		 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1004 		 t->trc_reader_nesting,
1005 		 " N"[!!t->trc_reader_special.b.need_qs],
1006 		 cpu);
1007 	sched_show_task(t);
1008 }
1009 
1010 /* List stalled IPIs for RCU tasks trace. */
1011 static void show_stalled_ipi_trace(void)
1012 {
1013 	int cpu;
1014 
1015 	for_each_possible_cpu(cpu)
1016 		if (per_cpu(trc_ipi_to_cpu, cpu))
1017 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1018 }
1019 
1020 /* Do one scan of the holdout list. */
1021 static void check_all_holdout_tasks_trace(struct list_head *hop,
1022 					  bool needreport, bool *firstreport)
1023 {
1024 	struct task_struct *g, *t;
1025 
1026 	// Disable CPU hotplug across the holdout list scan.
1027 	cpus_read_lock();
1028 
1029 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1030 		// If safe and needed, try to check the current task.
1031 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1032 		    !READ_ONCE(t->trc_reader_checked))
1033 			trc_wait_for_one_reader(t, hop);
1034 
1035 		// If check succeeded, remove this task from the list.
1036 		if (READ_ONCE(t->trc_reader_checked))
1037 			trc_del_holdout(t);
1038 		else if (needreport)
1039 			show_stalled_task_trace(t, firstreport);
1040 	}
1041 
1042 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1043 	cpus_read_unlock();
1044 
1045 	if (needreport) {
1046 		if (firstreport)
1047 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1048 		show_stalled_ipi_trace();
1049 	}
1050 }
1051 
1052 /* Wait for grace period to complete and provide ordering. */
1053 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1054 {
1055 	bool firstreport;
1056 	struct task_struct *g, *t;
1057 	LIST_HEAD(holdouts);
1058 	long ret;
1059 
1060 	// Remove the safety count.
1061 	smp_mb__before_atomic();  // Order vs. earlier atomics
1062 	atomic_dec(&trc_n_readers_need_end);
1063 	smp_mb__after_atomic();  // Order vs. later atomics
1064 
1065 	// Wait for readers.
1066 	set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1067 	for (;;) {
1068 		ret = wait_event_idle_exclusive_timeout(
1069 				trc_wait,
1070 				atomic_read(&trc_n_readers_need_end) == 0,
1071 				READ_ONCE(rcu_task_stall_timeout));
1072 		if (ret)
1073 			break;  // Count reached zero.
1074 		// Stall warning time, so make a list of the offenders.
1075 		for_each_process_thread(g, t)
1076 			if (READ_ONCE(t->trc_reader_special.b.need_qs))
1077 				trc_add_holdout(t, &holdouts);
1078 		firstreport = true;
1079 		list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list)
1080 			if (READ_ONCE(t->trc_reader_special.b.need_qs)) {
1081 				show_stalled_task_trace(t, &firstreport);
1082 				trc_del_holdout(t);
1083 			}
1084 		if (firstreport)
1085 			pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1086 		show_stalled_ipi_trace();
1087 		pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1088 	}
1089 	smp_mb(); // Caller's code must be ordered after wakeup.
1090 		  // Pairs with pretty much every ordering primitive.
1091 }
1092 
1093 /* Report any needed quiescent state for this exiting task. */
1094 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1095 {
1096 	WRITE_ONCE(t->trc_reader_checked, true);
1097 	WARN_ON_ONCE(t->trc_reader_nesting);
1098 	WRITE_ONCE(t->trc_reader_nesting, 0);
1099 	if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1100 		rcu_read_unlock_trace_special(t, 0);
1101 }
1102 
1103 /**
1104  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1105  * @rhp: structure to be used for queueing the RCU updates.
1106  * @func: actual callback function to be invoked after the grace period
1107  *
1108  * The callback function will be invoked some time after a full grace
1109  * period elapses, in other words after all currently executing RCU
1110  * read-side critical sections have completed. call_rcu_tasks_trace()
1111  * assumes that the read-side critical sections end at context switch,
1112  * cond_resched_rcu_qs(), or transition to usermode execution.  As such,
1113  * there are no read-side primitives analogous to rcu_read_lock() and
1114  * rcu_read_unlock() because this primitive is intended to determine
1115  * that all tasks have passed through a safe state, not so much for
1116  * data-strcuture synchronization.
1117  *
1118  * See the description of call_rcu() for more detailed information on
1119  * memory ordering guarantees.
1120  */
1121 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1122 {
1123 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1124 }
1125 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1126 
1127 /**
1128  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1129  *
1130  * Control will return to the caller some time after a trace rcu-tasks
1131  * grace period has elapsed, in other words after all currently executing
1132  * rcu-tasks read-side critical sections have elapsed.  These read-side
1133  * critical sections are delimited by calls to rcu_read_lock_trace()
1134  * and rcu_read_unlock_trace().
1135  *
1136  * This is a very specialized primitive, intended only for a few uses in
1137  * tracing and other situations requiring manipulation of function preambles
1138  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1139  * (yet) intended for heavy use from multiple CPUs.
1140  *
1141  * See the description of synchronize_rcu() for more detailed information
1142  * on memory ordering guarantees.
1143  */
1144 void synchronize_rcu_tasks_trace(void)
1145 {
1146 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1147 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1148 }
1149 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1150 
1151 /**
1152  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1153  *
1154  * Although the current implementation is guaranteed to wait, it is not
1155  * obligated to, for example, if there are no pending callbacks.
1156  */
1157 void rcu_barrier_tasks_trace(void)
1158 {
1159 	/* There is only one callback queue, so this is easy.  ;-) */
1160 	synchronize_rcu_tasks_trace();
1161 }
1162 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1163 
1164 static int __init rcu_spawn_tasks_trace_kthread(void)
1165 {
1166 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1167 	rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1168 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1169 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1170 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1171 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1172 	return 0;
1173 }
1174 core_initcall(rcu_spawn_tasks_trace_kthread);
1175 
1176 #ifndef CONFIG_TINY_RCU
1177 static void show_rcu_tasks_trace_gp_kthread(void)
1178 {
1179 	char buf[64];
1180 
1181 	sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1182 		data_race(n_heavy_reader_ofl_updates),
1183 		data_race(n_heavy_reader_updates),
1184 		data_race(n_heavy_reader_attempts));
1185 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1186 }
1187 #endif /* #ifndef CONFIG_TINY_RCU */
1188 
1189 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1190 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1191 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
1192 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1193 
1194 #ifndef CONFIG_TINY_RCU
1195 void show_rcu_tasks_gp_kthreads(void)
1196 {
1197 	show_rcu_tasks_classic_gp_kthread();
1198 	show_rcu_tasks_rude_gp_kthread();
1199 	show_rcu_tasks_trace_gp_kthread();
1200 }
1201 #endif /* #ifndef CONFIG_TINY_RCU */
1202 
1203 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1204 static inline void rcu_tasks_bootup_oddness(void) {}
1205 void show_rcu_tasks_gp_kthreads(void) {}
1206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1207