xref: /openbmc/linux/kernel/rcu/tasks.h (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @rtp_n_lock_retries: Rough lock-contention statistic.
29  * @rtp_work: Work queue for invoking callbacks.
30  * @rtp_irq_work: IRQ work queue for deferred wakeups.
31  * @barrier_q_head: RCU callback for barrier operation.
32  * @rtp_blkd_tasks: List of tasks blocked as readers.
33  * @cpu: CPU number corresponding to this entry.
34  * @rtpp: Pointer to the rcu_tasks structure.
35  */
36 struct rcu_tasks_percpu {
37 	struct rcu_segcblist cblist;
38 	raw_spinlock_t __private lock;
39 	unsigned long rtp_jiffies;
40 	unsigned long rtp_n_lock_retries;
41 	struct work_struct rtp_work;
42 	struct irq_work rtp_irq_work;
43 	struct rcu_head barrier_q_head;
44 	struct list_head rtp_blkd_tasks;
45 	int cpu;
46 	struct rcu_tasks *rtpp;
47 };
48 
49 /**
50  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
51  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
52  * @cbs_gbl_lock: Lock protecting callback list.
53  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
54  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
55  * @gp_func: This flavor's grace-period-wait function.
56  * @gp_state: Grace period's most recent state transition (debugging).
57  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
58  * @init_fract: Initial backoff sleep interval.
59  * @gp_jiffies: Time of last @gp_state transition.
60  * @gp_start: Most recent grace-period start in jiffies.
61  * @tasks_gp_seq: Number of grace periods completed since boot.
62  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
63  * @n_ipis_fails: Number of IPI-send failures.
64  * @pregp_func: This flavor's pre-grace-period function (optional).
65  * @pertask_func: This flavor's per-task scan function (optional).
66  * @postscan_func: This flavor's post-task scan function (optional).
67  * @holdouts_func: This flavor's holdout-list scan function (optional).
68  * @postgp_func: This flavor's post-grace-period function (optional).
69  * @call_func: This flavor's call_rcu()-equivalent function.
70  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
71  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
72  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
73  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
74  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
75  * @barrier_q_mutex: Serialize barrier operations.
76  * @barrier_q_count: Number of queues being waited on.
77  * @barrier_q_completion: Barrier wait/wakeup mechanism.
78  * @barrier_q_seq: Sequence number for barrier operations.
79  * @name: This flavor's textual name.
80  * @kname: This flavor's kthread name.
81  */
82 struct rcu_tasks {
83 	struct rcuwait cbs_wait;
84 	raw_spinlock_t cbs_gbl_lock;
85 	struct mutex tasks_gp_mutex;
86 	int gp_state;
87 	int gp_sleep;
88 	int init_fract;
89 	unsigned long gp_jiffies;
90 	unsigned long gp_start;
91 	unsigned long tasks_gp_seq;
92 	unsigned long n_ipis;
93 	unsigned long n_ipis_fails;
94 	struct task_struct *kthread_ptr;
95 	rcu_tasks_gp_func_t gp_func;
96 	pregp_func_t pregp_func;
97 	pertask_func_t pertask_func;
98 	postscan_func_t postscan_func;
99 	holdouts_func_t holdouts_func;
100 	postgp_func_t postgp_func;
101 	call_rcu_func_t call_func;
102 	struct rcu_tasks_percpu __percpu *rtpcpu;
103 	int percpu_enqueue_shift;
104 	int percpu_enqueue_lim;
105 	int percpu_dequeue_lim;
106 	unsigned long percpu_dequeue_gpseq;
107 	struct mutex barrier_q_mutex;
108 	atomic_t barrier_q_count;
109 	struct completion barrier_q_completion;
110 	unsigned long barrier_q_seq;
111 	char *name;
112 	char *kname;
113 };
114 
115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
116 
117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
119 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
120 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
121 };											\
122 static struct rcu_tasks rt_name =							\
123 {											\
124 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
125 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
126 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
127 	.gp_func = gp,									\
128 	.call_func = call,								\
129 	.rtpcpu = &rt_name ## __percpu,							\
130 	.name = n,									\
131 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
132 	.percpu_enqueue_lim = 1,							\
133 	.percpu_dequeue_lim = 1,							\
134 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
135 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
136 	.kname = #rt_name,								\
137 }
138 
139 #ifdef CONFIG_TASKS_RCU
140 /* Track exiting tasks in order to allow them to be waited for. */
141 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
142 #endif
143 
144 #ifdef CONFIG_TASKS_RCU
145 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
146 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
147 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
148 #endif
149 
150 /* Avoid IPIing CPUs early in the grace period. */
151 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
152 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
153 module_param(rcu_task_ipi_delay, int, 0644);
154 
155 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
156 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
157 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
158 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
159 module_param(rcu_task_stall_timeout, int, 0644);
160 #define RCU_TASK_STALL_INFO (HZ * 10)
161 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
162 module_param(rcu_task_stall_info, int, 0644);
163 static int rcu_task_stall_info_mult __read_mostly = 3;
164 module_param(rcu_task_stall_info_mult, int, 0444);
165 
166 static int rcu_task_enqueue_lim __read_mostly = -1;
167 module_param(rcu_task_enqueue_lim, int, 0444);
168 
169 static bool rcu_task_cb_adjust;
170 static int rcu_task_contend_lim __read_mostly = 100;
171 module_param(rcu_task_contend_lim, int, 0444);
172 static int rcu_task_collapse_lim __read_mostly = 10;
173 module_param(rcu_task_collapse_lim, int, 0444);
174 
175 /* RCU tasks grace-period state for debugging. */
176 #define RTGS_INIT		 0
177 #define RTGS_WAIT_WAIT_CBS	 1
178 #define RTGS_WAIT_GP		 2
179 #define RTGS_PRE_WAIT_GP	 3
180 #define RTGS_SCAN_TASKLIST	 4
181 #define RTGS_POST_SCAN_TASKLIST	 5
182 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
183 #define RTGS_SCAN_HOLDOUTS	 7
184 #define RTGS_POST_GP		 8
185 #define RTGS_WAIT_READERS	 9
186 #define RTGS_INVOKE_CBS		10
187 #define RTGS_WAIT_CBS		11
188 #ifndef CONFIG_TINY_RCU
189 static const char * const rcu_tasks_gp_state_names[] = {
190 	"RTGS_INIT",
191 	"RTGS_WAIT_WAIT_CBS",
192 	"RTGS_WAIT_GP",
193 	"RTGS_PRE_WAIT_GP",
194 	"RTGS_SCAN_TASKLIST",
195 	"RTGS_POST_SCAN_TASKLIST",
196 	"RTGS_WAIT_SCAN_HOLDOUTS",
197 	"RTGS_SCAN_HOLDOUTS",
198 	"RTGS_POST_GP",
199 	"RTGS_WAIT_READERS",
200 	"RTGS_INVOKE_CBS",
201 	"RTGS_WAIT_CBS",
202 };
203 #endif /* #ifndef CONFIG_TINY_RCU */
204 
205 ////////////////////////////////////////////////////////////////////////
206 //
207 // Generic code.
208 
209 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
210 
211 /* Record grace-period phase and time. */
212 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
213 {
214 	rtp->gp_state = newstate;
215 	rtp->gp_jiffies = jiffies;
216 }
217 
218 #ifndef CONFIG_TINY_RCU
219 /* Return state name. */
220 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
221 {
222 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
223 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
224 
225 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
226 		return "???";
227 	return rcu_tasks_gp_state_names[j];
228 }
229 #endif /* #ifndef CONFIG_TINY_RCU */
230 
231 // Initialize per-CPU callback lists for the specified flavor of
232 // Tasks RCU.
233 static void cblist_init_generic(struct rcu_tasks *rtp)
234 {
235 	int cpu;
236 	unsigned long flags;
237 	int lim;
238 	int shift;
239 
240 	raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
241 	if (rcu_task_enqueue_lim < 0) {
242 		rcu_task_enqueue_lim = 1;
243 		rcu_task_cb_adjust = true;
244 		pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
245 	} else if (rcu_task_enqueue_lim == 0) {
246 		rcu_task_enqueue_lim = 1;
247 	}
248 	lim = rcu_task_enqueue_lim;
249 
250 	if (lim > nr_cpu_ids)
251 		lim = nr_cpu_ids;
252 	shift = ilog2(nr_cpu_ids / lim);
253 	if (((nr_cpu_ids - 1) >> shift) >= lim)
254 		shift++;
255 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
256 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
257 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
258 	for_each_possible_cpu(cpu) {
259 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
260 
261 		WARN_ON_ONCE(!rtpcp);
262 		if (cpu)
263 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
264 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
265 		if (rcu_segcblist_empty(&rtpcp->cblist))
266 			rcu_segcblist_init(&rtpcp->cblist);
267 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
268 		rtpcp->cpu = cpu;
269 		rtpcp->rtpp = rtp;
270 		if (!rtpcp->rtp_blkd_tasks.next)
271 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
272 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
273 	}
274 	raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
275 	pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
276 }
277 
278 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
279 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
280 {
281 	struct rcu_tasks *rtp;
282 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
283 
284 	rtp = rtpcp->rtpp;
285 	rcuwait_wake_up(&rtp->cbs_wait);
286 }
287 
288 // Enqueue a callback for the specified flavor of Tasks RCU.
289 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
290 				   struct rcu_tasks *rtp)
291 {
292 	int chosen_cpu;
293 	unsigned long flags;
294 	int ideal_cpu;
295 	unsigned long j;
296 	bool needadjust = false;
297 	bool needwake;
298 	struct rcu_tasks_percpu *rtpcp;
299 
300 	rhp->next = NULL;
301 	rhp->func = func;
302 	local_irq_save(flags);
303 	rcu_read_lock();
304 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
305 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
306 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
307 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
308 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
309 		j = jiffies;
310 		if (rtpcp->rtp_jiffies != j) {
311 			rtpcp->rtp_jiffies = j;
312 			rtpcp->rtp_n_lock_retries = 0;
313 		}
314 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
315 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
316 			needadjust = true;  // Defer adjustment to avoid deadlock.
317 	}
318 	if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
319 		raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
320 		cblist_init_generic(rtp);
321 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
322 	}
323 	needwake = rcu_segcblist_empty(&rtpcp->cblist);
324 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
325 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
326 	if (unlikely(needadjust)) {
327 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
328 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
329 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
330 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
331 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
332 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
333 		}
334 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
335 	}
336 	rcu_read_unlock();
337 	/* We can't create the thread unless interrupts are enabled. */
338 	if (needwake && READ_ONCE(rtp->kthread_ptr))
339 		irq_work_queue(&rtpcp->rtp_irq_work);
340 }
341 
342 // RCU callback function for rcu_barrier_tasks_generic().
343 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
344 {
345 	struct rcu_tasks *rtp;
346 	struct rcu_tasks_percpu *rtpcp;
347 
348 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
349 	rtp = rtpcp->rtpp;
350 	if (atomic_dec_and_test(&rtp->barrier_q_count))
351 		complete(&rtp->barrier_q_completion);
352 }
353 
354 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
355 // Operates in a manner similar to rcu_barrier().
356 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
357 {
358 	int cpu;
359 	unsigned long flags;
360 	struct rcu_tasks_percpu *rtpcp;
361 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
362 
363 	mutex_lock(&rtp->barrier_q_mutex);
364 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
365 		smp_mb();
366 		mutex_unlock(&rtp->barrier_q_mutex);
367 		return;
368 	}
369 	rcu_seq_start(&rtp->barrier_q_seq);
370 	init_completion(&rtp->barrier_q_completion);
371 	atomic_set(&rtp->barrier_q_count, 2);
372 	for_each_possible_cpu(cpu) {
373 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
374 			break;
375 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
376 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
377 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
378 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
379 			atomic_inc(&rtp->barrier_q_count);
380 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
381 	}
382 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
383 		complete(&rtp->barrier_q_completion);
384 	wait_for_completion(&rtp->barrier_q_completion);
385 	rcu_seq_end(&rtp->barrier_q_seq);
386 	mutex_unlock(&rtp->barrier_q_mutex);
387 }
388 
389 // Advance callbacks and indicate whether either a grace period or
390 // callback invocation is needed.
391 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
392 {
393 	int cpu;
394 	unsigned long flags;
395 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
396 	long n;
397 	long ncbs = 0;
398 	long ncbsnz = 0;
399 	int needgpcb = 0;
400 
401 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
402 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
403 
404 		/* Advance and accelerate any new callbacks. */
405 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
406 			continue;
407 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
408 		// Should we shrink down to a single callback queue?
409 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
410 		if (n) {
411 			ncbs += n;
412 			if (cpu > 0)
413 				ncbsnz += n;
414 		}
415 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
416 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
417 		if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
418 			needgpcb |= 0x3;
419 		if (!rcu_segcblist_empty(&rtpcp->cblist))
420 			needgpcb |= 0x1;
421 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
422 	}
423 
424 	// Shrink down to a single callback queue if appropriate.
425 	// This is done in two stages: (1) If there are no more than
426 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
427 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
428 	// if there has not been an increase in callbacks, limit dequeuing
429 	// to CPU 0.  Note the matching RCU read-side critical section in
430 	// call_rcu_tasks_generic().
431 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
432 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
433 		if (rtp->percpu_enqueue_lim > 1) {
434 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
435 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
436 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
437 			gpdone = false;
438 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
439 		}
440 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
441 	}
442 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
443 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
444 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
445 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
446 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
447 		}
448 		if (rtp->percpu_dequeue_lim == 1) {
449 			for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
450 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
451 
452 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
453 			}
454 		}
455 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
456 	}
457 
458 	return needgpcb;
459 }
460 
461 // Advance callbacks and invoke any that are ready.
462 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
463 {
464 	int cpu;
465 	int cpunext;
466 	unsigned long flags;
467 	int len;
468 	struct rcu_head *rhp;
469 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
470 	struct rcu_tasks_percpu *rtpcp_next;
471 
472 	cpu = rtpcp->cpu;
473 	cpunext = cpu * 2 + 1;
474 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
475 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
476 		queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
477 		cpunext++;
478 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
479 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
480 			queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
481 		}
482 	}
483 
484 	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
485 		return;
486 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
487 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
488 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
489 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
490 	len = rcl.len;
491 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
492 		local_bh_disable();
493 		rhp->func(rhp);
494 		local_bh_enable();
495 		cond_resched();
496 	}
497 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
498 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
499 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
500 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
501 }
502 
503 // Workqueue flood to advance callbacks and invoke any that are ready.
504 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
505 {
506 	struct rcu_tasks *rtp;
507 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
508 
509 	rtp = rtpcp->rtpp;
510 	rcu_tasks_invoke_cbs(rtp, rtpcp);
511 }
512 
513 // Wait for one grace period.
514 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
515 {
516 	int needgpcb;
517 
518 	mutex_lock(&rtp->tasks_gp_mutex);
519 
520 	// If there were none, wait a bit and start over.
521 	if (unlikely(midboot)) {
522 		needgpcb = 0x2;
523 	} else {
524 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
525 		rcuwait_wait_event(&rtp->cbs_wait,
526 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
527 				   TASK_IDLE);
528 	}
529 
530 	if (needgpcb & 0x2) {
531 		// Wait for one grace period.
532 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
533 		rtp->gp_start = jiffies;
534 		rcu_seq_start(&rtp->tasks_gp_seq);
535 		rtp->gp_func(rtp);
536 		rcu_seq_end(&rtp->tasks_gp_seq);
537 	}
538 
539 	// Invoke callbacks.
540 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
541 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
542 	mutex_unlock(&rtp->tasks_gp_mutex);
543 }
544 
545 // RCU-tasks kthread that detects grace periods and invokes callbacks.
546 static int __noreturn rcu_tasks_kthread(void *arg)
547 {
548 	struct rcu_tasks *rtp = arg;
549 
550 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
551 	housekeeping_affine(current, HK_TYPE_RCU);
552 	WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
553 
554 	/*
555 	 * Each pass through the following loop makes one check for
556 	 * newly arrived callbacks, and, if there are some, waits for
557 	 * one RCU-tasks grace period and then invokes the callbacks.
558 	 * This loop is terminated by the system going down.  ;-)
559 	 */
560 	for (;;) {
561 		// Wait for one grace period and invoke any callbacks
562 		// that are ready.
563 		rcu_tasks_one_gp(rtp, false);
564 
565 		// Paranoid sleep to keep this from entering a tight loop.
566 		schedule_timeout_idle(rtp->gp_sleep);
567 	}
568 }
569 
570 // Wait for a grace period for the specified flavor of Tasks RCU.
571 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
572 {
573 	/* Complain if the scheduler has not started.  */
574 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
575 			 "synchronize_%s() called too soon", rtp->name))
576 		return;
577 
578 	// If the grace-period kthread is running, use it.
579 	if (READ_ONCE(rtp->kthread_ptr)) {
580 		wait_rcu_gp(rtp->call_func);
581 		return;
582 	}
583 	rcu_tasks_one_gp(rtp, true);
584 }
585 
586 /* Spawn RCU-tasks grace-period kthread. */
587 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
588 {
589 	struct task_struct *t;
590 
591 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
592 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
593 		return;
594 	smp_mb(); /* Ensure others see full kthread. */
595 }
596 
597 #ifndef CONFIG_TINY_RCU
598 
599 /*
600  * Print any non-default Tasks RCU settings.
601  */
602 static void __init rcu_tasks_bootup_oddness(void)
603 {
604 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
605 	int rtsimc;
606 
607 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
608 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
609 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
610 	if (rtsimc != rcu_task_stall_info_mult) {
611 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
612 		rcu_task_stall_info_mult = rtsimc;
613 	}
614 #endif /* #ifdef CONFIG_TASKS_RCU */
615 #ifdef CONFIG_TASKS_RCU
616 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
617 #endif /* #ifdef CONFIG_TASKS_RCU */
618 #ifdef CONFIG_TASKS_RUDE_RCU
619 	pr_info("\tRude variant of Tasks RCU enabled.\n");
620 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
621 #ifdef CONFIG_TASKS_TRACE_RCU
622 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
623 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
624 }
625 
626 #endif /* #ifndef CONFIG_TINY_RCU */
627 
628 #ifndef CONFIG_TINY_RCU
629 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
630 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
631 {
632 	int cpu;
633 	bool havecbs = false;
634 
635 	for_each_possible_cpu(cpu) {
636 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
637 
638 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
639 			havecbs = true;
640 			break;
641 		}
642 	}
643 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
644 		rtp->kname,
645 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
646 		jiffies - data_race(rtp->gp_jiffies),
647 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
648 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
649 		".k"[!!data_race(rtp->kthread_ptr)],
650 		".C"[havecbs],
651 		s);
652 }
653 #endif // #ifndef CONFIG_TINY_RCU
654 
655 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
656 
657 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
658 
659 ////////////////////////////////////////////////////////////////////////
660 //
661 // Shared code between task-list-scanning variants of Tasks RCU.
662 
663 /* Wait for one RCU-tasks grace period. */
664 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
665 {
666 	struct task_struct *g;
667 	int fract;
668 	LIST_HEAD(holdouts);
669 	unsigned long j;
670 	unsigned long lastinfo;
671 	unsigned long lastreport;
672 	bool reported = false;
673 	int rtsi;
674 	struct task_struct *t;
675 
676 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
677 	rtp->pregp_func(&holdouts);
678 
679 	/*
680 	 * There were callbacks, so we need to wait for an RCU-tasks
681 	 * grace period.  Start off by scanning the task list for tasks
682 	 * that are not already voluntarily blocked.  Mark these tasks
683 	 * and make a list of them in holdouts.
684 	 */
685 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
686 	if (rtp->pertask_func) {
687 		rcu_read_lock();
688 		for_each_process_thread(g, t)
689 			rtp->pertask_func(t, &holdouts);
690 		rcu_read_unlock();
691 	}
692 
693 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
694 	rtp->postscan_func(&holdouts);
695 
696 	/*
697 	 * Each pass through the following loop scans the list of holdout
698 	 * tasks, removing any that are no longer holdouts.  When the list
699 	 * is empty, we are done.
700 	 */
701 	lastreport = jiffies;
702 	lastinfo = lastreport;
703 	rtsi = READ_ONCE(rcu_task_stall_info);
704 
705 	// Start off with initial wait and slowly back off to 1 HZ wait.
706 	fract = rtp->init_fract;
707 
708 	while (!list_empty(&holdouts)) {
709 		ktime_t exp;
710 		bool firstreport;
711 		bool needreport;
712 		int rtst;
713 
714 		// Slowly back off waiting for holdouts
715 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
716 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
717 			schedule_timeout_idle(fract);
718 		} else {
719 			exp = jiffies_to_nsecs(fract);
720 			__set_current_state(TASK_IDLE);
721 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
722 		}
723 
724 		if (fract < HZ)
725 			fract++;
726 
727 		rtst = READ_ONCE(rcu_task_stall_timeout);
728 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
729 		if (needreport) {
730 			lastreport = jiffies;
731 			reported = true;
732 		}
733 		firstreport = true;
734 		WARN_ON(signal_pending(current));
735 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
736 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
737 
738 		// Print pre-stall informational messages if needed.
739 		j = jiffies;
740 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
741 			lastinfo = j;
742 			rtsi = rtsi * rcu_task_stall_info_mult;
743 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
744 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
745 		}
746 	}
747 
748 	set_tasks_gp_state(rtp, RTGS_POST_GP);
749 	rtp->postgp_func(rtp);
750 }
751 
752 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
753 
754 #ifdef CONFIG_TASKS_RCU
755 
756 ////////////////////////////////////////////////////////////////////////
757 //
758 // Simple variant of RCU whose quiescent states are voluntary context
759 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
760 // As such, grace periods can take one good long time.  There are no
761 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
762 // because this implementation is intended to get the system into a safe
763 // state for some of the manipulations involved in tracing and the like.
764 // Finally, this implementation does not support high call_rcu_tasks()
765 // rates from multiple CPUs.  If this is required, per-CPU callback lists
766 // will be needed.
767 //
768 // The implementation uses rcu_tasks_wait_gp(), which relies on function
769 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
770 // function sets these function pointers up so that rcu_tasks_wait_gp()
771 // invokes these functions in this order:
772 //
773 // rcu_tasks_pregp_step():
774 //	Invokes synchronize_rcu() in order to wait for all in-flight
775 //	t->on_rq and t->nvcsw transitions to complete.	This works because
776 //	all such transitions are carried out with interrupts disabled.
777 // rcu_tasks_pertask(), invoked on every non-idle task:
778 //	For every runnable non-idle task other than the current one, use
779 //	get_task_struct() to pin down that task, snapshot that task's
780 //	number of voluntary context switches, and add that task to the
781 //	holdout list.
782 // rcu_tasks_postscan():
783 //	Invoke synchronize_srcu() to ensure that all tasks that were
784 //	in the process of exiting (and which thus might not know to
785 //	synchronize with this RCU Tasks grace period) have completed
786 //	exiting.
787 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
788 //	Scans the holdout list, attempting to identify a quiescent state
789 //	for each task on the list.  If there is a quiescent state, the
790 //	corresponding task is removed from the holdout list.
791 // rcu_tasks_postgp():
792 //	Invokes synchronize_rcu() in order to ensure that all prior
793 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
794 //	to have happened before the end of this RCU Tasks grace period.
795 //	Again, this works because all such transitions are carried out
796 //	with interrupts disabled.
797 //
798 // For each exiting task, the exit_tasks_rcu_start() and
799 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
800 // read-side critical sections waited for by rcu_tasks_postscan().
801 //
802 // Pre-grace-period update-side code is ordered before the grace
803 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
804 // is ordered before the grace period via synchronize_rcu() call in
805 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
806 // disabling.
807 
808 /* Pre-grace-period preparation. */
809 static void rcu_tasks_pregp_step(struct list_head *hop)
810 {
811 	/*
812 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
813 	 * to complete.  Invoking synchronize_rcu() suffices because all
814 	 * these transitions occur with interrupts disabled.  Without this
815 	 * synchronize_rcu(), a read-side critical section that started
816 	 * before the grace period might be incorrectly seen as having
817 	 * started after the grace period.
818 	 *
819 	 * This synchronize_rcu() also dispenses with the need for a
820 	 * memory barrier on the first store to t->rcu_tasks_holdout,
821 	 * as it forces the store to happen after the beginning of the
822 	 * grace period.
823 	 */
824 	synchronize_rcu();
825 }
826 
827 /* Per-task initial processing. */
828 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
829 {
830 	if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
831 		get_task_struct(t);
832 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
833 		WRITE_ONCE(t->rcu_tasks_holdout, true);
834 		list_add(&t->rcu_tasks_holdout_list, hop);
835 	}
836 }
837 
838 /* Processing between scanning taskslist and draining the holdout list. */
839 static void rcu_tasks_postscan(struct list_head *hop)
840 {
841 	int rtsi = READ_ONCE(rcu_task_stall_info);
842 
843 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
844 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
845 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
846 	}
847 
848 	/*
849 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
850 	 * until their final schedule() with TASK_DEAD state. To cope with
851 	 * this, divide the fragile exit path part in two intersecting
852 	 * read side critical sections:
853 	 *
854 	 * 1) An _SRCU_ read side starting before calling exit_notify(),
855 	 *    which may remove the task from the tasklist, and ending after
856 	 *    the final preempt_disable() call in do_exit().
857 	 *
858 	 * 2) An _RCU_ read side starting with the final preempt_disable()
859 	 *    call in do_exit() and ending with the final call to schedule()
860 	 *    with TASK_DEAD state.
861 	 *
862 	 * This handles the part 1). And postgp will handle part 2) with a
863 	 * call to synchronize_rcu().
864 	 */
865 	synchronize_srcu(&tasks_rcu_exit_srcu);
866 
867 	if (!IS_ENABLED(CONFIG_TINY_RCU))
868 		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
869 }
870 
871 /* See if tasks are still holding out, complain if so. */
872 static void check_holdout_task(struct task_struct *t,
873 			       bool needreport, bool *firstreport)
874 {
875 	int cpu;
876 
877 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
878 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
879 	    !READ_ONCE(t->on_rq) ||
880 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
881 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
882 		WRITE_ONCE(t->rcu_tasks_holdout, false);
883 		list_del_init(&t->rcu_tasks_holdout_list);
884 		put_task_struct(t);
885 		return;
886 	}
887 	rcu_request_urgent_qs_task(t);
888 	if (!needreport)
889 		return;
890 	if (*firstreport) {
891 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
892 		*firstreport = false;
893 	}
894 	cpu = task_cpu(t);
895 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
896 		 t, ".I"[is_idle_task(t)],
897 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
898 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
899 		 t->rcu_tasks_idle_cpu, cpu);
900 	sched_show_task(t);
901 }
902 
903 /* Scan the holdout lists for tasks no longer holding out. */
904 static void check_all_holdout_tasks(struct list_head *hop,
905 				    bool needreport, bool *firstreport)
906 {
907 	struct task_struct *t, *t1;
908 
909 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
910 		check_holdout_task(t, needreport, firstreport);
911 		cond_resched();
912 	}
913 }
914 
915 /* Finish off the Tasks-RCU grace period. */
916 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
917 {
918 	/*
919 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
920 	 * memory barriers prior to them in the schedule() path, memory
921 	 * reordering on other CPUs could cause their RCU-tasks read-side
922 	 * critical sections to extend past the end of the grace period.
923 	 * However, because these ->nvcsw updates are carried out with
924 	 * interrupts disabled, we can use synchronize_rcu() to force the
925 	 * needed ordering on all such CPUs.
926 	 *
927 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
928 	 * accesses to be within the grace period, avoiding the need for
929 	 * memory barriers for ->rcu_tasks_holdout accesses.
930 	 *
931 	 * In addition, this synchronize_rcu() waits for exiting tasks
932 	 * to complete their final preempt_disable() region of execution,
933 	 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
934 	 * enforcing the whole region before tasklist removal until
935 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
936 	 * read side critical section.
937 	 */
938 	synchronize_rcu();
939 }
940 
941 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
942 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
943 
944 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
945 {
946 #ifndef CONFIG_TINY_RCU
947 	int rtsi;
948 
949 	rtsi = READ_ONCE(rcu_task_stall_info);
950 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
951 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
952 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
953 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
954 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
955 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
956 #endif // #ifndef CONFIG_TINY_RCU
957 }
958 
959 /**
960  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
961  * @rhp: structure to be used for queueing the RCU updates.
962  * @func: actual callback function to be invoked after the grace period
963  *
964  * The callback function will be invoked some time after a full grace
965  * period elapses, in other words after all currently executing RCU
966  * read-side critical sections have completed. call_rcu_tasks() assumes
967  * that the read-side critical sections end at a voluntary context
968  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
969  * or transition to usermode execution.  As such, there are no read-side
970  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
971  * this primitive is intended to determine that all tasks have passed
972  * through a safe state, not so much for data-structure synchronization.
973  *
974  * See the description of call_rcu() for more detailed information on
975  * memory ordering guarantees.
976  */
977 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
978 {
979 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
980 }
981 EXPORT_SYMBOL_GPL(call_rcu_tasks);
982 
983 /**
984  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
985  *
986  * Control will return to the caller some time after a full rcu-tasks
987  * grace period has elapsed, in other words after all currently
988  * executing rcu-tasks read-side critical sections have elapsed.  These
989  * read-side critical sections are delimited by calls to schedule(),
990  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
991  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
992  *
993  * This is a very specialized primitive, intended only for a few uses in
994  * tracing and other situations requiring manipulation of function
995  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
996  * is not (yet) intended for heavy use from multiple CPUs.
997  *
998  * See the description of synchronize_rcu() for more detailed information
999  * on memory ordering guarantees.
1000  */
1001 void synchronize_rcu_tasks(void)
1002 {
1003 	synchronize_rcu_tasks_generic(&rcu_tasks);
1004 }
1005 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1006 
1007 /**
1008  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1009  *
1010  * Although the current implementation is guaranteed to wait, it is not
1011  * obligated to, for example, if there are no pending callbacks.
1012  */
1013 void rcu_barrier_tasks(void)
1014 {
1015 	rcu_barrier_tasks_generic(&rcu_tasks);
1016 }
1017 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1018 
1019 static int __init rcu_spawn_tasks_kthread(void)
1020 {
1021 	cblist_init_generic(&rcu_tasks);
1022 	rcu_tasks.gp_sleep = HZ / 10;
1023 	rcu_tasks.init_fract = HZ / 10;
1024 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1025 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1026 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1027 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1028 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1029 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1030 	return 0;
1031 }
1032 
1033 #if !defined(CONFIG_TINY_RCU)
1034 void show_rcu_tasks_classic_gp_kthread(void)
1035 {
1036 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1037 }
1038 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1039 #endif // !defined(CONFIG_TINY_RCU)
1040 
1041 /*
1042  * Contribute to protect against tasklist scan blind spot while the
1043  * task is exiting and may be removed from the tasklist. See
1044  * corresponding synchronize_srcu() for further details.
1045  */
1046 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
1047 {
1048 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
1049 }
1050 
1051 /*
1052  * Contribute to protect against tasklist scan blind spot while the
1053  * task is exiting and may be removed from the tasklist. See
1054  * corresponding synchronize_srcu() for further details.
1055  */
1056 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
1057 {
1058 	struct task_struct *t = current;
1059 
1060 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1061 }
1062 
1063 /*
1064  * Contribute to protect against tasklist scan blind spot while the
1065  * task is exiting and may be removed from the tasklist. See
1066  * corresponding synchronize_srcu() for further details.
1067  */
1068 void exit_tasks_rcu_finish(void)
1069 {
1070 	exit_tasks_rcu_stop();
1071 	exit_tasks_rcu_finish_trace(current);
1072 }
1073 
1074 #else /* #ifdef CONFIG_TASKS_RCU */
1075 void exit_tasks_rcu_start(void) { }
1076 void exit_tasks_rcu_stop(void) { }
1077 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1078 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1079 
1080 #ifdef CONFIG_TASKS_RUDE_RCU
1081 
1082 ////////////////////////////////////////////////////////////////////////
1083 //
1084 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1085 // passing an empty function to schedule_on_each_cpu().  This approach
1086 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1087 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1088 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1089 // and induces otherwise unnecessary context switches on all online CPUs,
1090 // whether idle or not.
1091 //
1092 // Callback handling is provided by the rcu_tasks_kthread() function.
1093 //
1094 // Ordering is provided by the scheduler's context-switch code.
1095 
1096 // Empty function to allow workqueues to force a context switch.
1097 static void rcu_tasks_be_rude(struct work_struct *work)
1098 {
1099 }
1100 
1101 // Wait for one rude RCU-tasks grace period.
1102 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1103 {
1104 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1105 	schedule_on_each_cpu(rcu_tasks_be_rude);
1106 }
1107 
1108 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1109 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1110 		 "RCU Tasks Rude");
1111 
1112 /**
1113  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1114  * @rhp: structure to be used for queueing the RCU updates.
1115  * @func: actual callback function to be invoked after the grace period
1116  *
1117  * The callback function will be invoked some time after a full grace
1118  * period elapses, in other words after all currently executing RCU
1119  * read-side critical sections have completed. call_rcu_tasks_rude()
1120  * assumes that the read-side critical sections end at context switch,
1121  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1122  * usermode execution is schedulable). As such, there are no read-side
1123  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1124  * this primitive is intended to determine that all tasks have passed
1125  * through a safe state, not so much for data-structure synchronization.
1126  *
1127  * See the description of call_rcu() for more detailed information on
1128  * memory ordering guarantees.
1129  */
1130 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1131 {
1132 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1133 }
1134 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1135 
1136 /**
1137  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1138  *
1139  * Control will return to the caller some time after a rude rcu-tasks
1140  * grace period has elapsed, in other words after all currently
1141  * executing rcu-tasks read-side critical sections have elapsed.  These
1142  * read-side critical sections are delimited by calls to schedule(),
1143  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1144  * context), and (in theory, anyway) cond_resched().
1145  *
1146  * This is a very specialized primitive, intended only for a few uses in
1147  * tracing and other situations requiring manipulation of function preambles
1148  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1149  * (yet) intended for heavy use from multiple CPUs.
1150  *
1151  * See the description of synchronize_rcu() for more detailed information
1152  * on memory ordering guarantees.
1153  */
1154 void synchronize_rcu_tasks_rude(void)
1155 {
1156 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1157 }
1158 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1159 
1160 /**
1161  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1162  *
1163  * Although the current implementation is guaranteed to wait, it is not
1164  * obligated to, for example, if there are no pending callbacks.
1165  */
1166 void rcu_barrier_tasks_rude(void)
1167 {
1168 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1169 }
1170 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1171 
1172 static int __init rcu_spawn_tasks_rude_kthread(void)
1173 {
1174 	cblist_init_generic(&rcu_tasks_rude);
1175 	rcu_tasks_rude.gp_sleep = HZ / 10;
1176 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1177 	return 0;
1178 }
1179 
1180 #if !defined(CONFIG_TINY_RCU)
1181 void show_rcu_tasks_rude_gp_kthread(void)
1182 {
1183 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1184 }
1185 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1186 #endif // !defined(CONFIG_TINY_RCU)
1187 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1188 
1189 ////////////////////////////////////////////////////////////////////////
1190 //
1191 // Tracing variant of Tasks RCU.  This variant is designed to be used
1192 // to protect tracing hooks, including those of BPF.  This variant
1193 // therefore:
1194 //
1195 // 1.	Has explicit read-side markers to allow finite grace periods
1196 //	in the face of in-kernel loops for PREEMPT=n builds.
1197 //
1198 // 2.	Protects code in the idle loop, exception entry/exit, and
1199 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1200 //
1201 // 3.	Avoids expensive read-side instructions, having overhead similar
1202 //	to that of Preemptible RCU.
1203 //
1204 // There are of course downsides.  For example, the grace-period code
1205 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1206 // in nohz_full userspace.  If needed, these downsides can be at least
1207 // partially remedied.
1208 //
1209 // Perhaps most important, this variant of RCU does not affect the vanilla
1210 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1211 // readers can operate from idle, offline, and exception entry/exit in no
1212 // way allows rcu_preempt and rcu_sched readers to also do so.
1213 //
1214 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1215 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1216 // function sets these function pointers up so that rcu_tasks_wait_gp()
1217 // invokes these functions in this order:
1218 //
1219 // rcu_tasks_trace_pregp_step():
1220 //	Disables CPU hotplug, adds all currently executing tasks to the
1221 //	holdout list, then checks the state of all tasks that blocked
1222 //	or were preempted within their current RCU Tasks Trace read-side
1223 //	critical section, adding them to the holdout list if appropriate.
1224 //	Finally, this function re-enables CPU hotplug.
1225 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1226 // rcu_tasks_trace_postscan():
1227 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1228 //	to finish exiting.
1229 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1230 //	Scans the holdout list, attempting to identify a quiescent state
1231 //	for each task on the list.  If there is a quiescent state, the
1232 //	corresponding task is removed from the holdout list.  Once this
1233 //	list is empty, the grace period has completed.
1234 // rcu_tasks_trace_postgp():
1235 //	Provides the needed full memory barrier and does debug checks.
1236 //
1237 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1238 //
1239 // Pre-grace-period update-side code is ordered before the grace period
1240 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1241 // read-side code is ordered before the grace period by atomic operations
1242 // on .b.need_qs flag of each task involved in this process, or by scheduler
1243 // context-switch ordering (for locked-down non-running readers).
1244 
1245 // The lockdep state must be outside of #ifdef to be useful.
1246 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1247 static struct lock_class_key rcu_lock_trace_key;
1248 struct lockdep_map rcu_trace_lock_map =
1249 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1250 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1251 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1252 
1253 #ifdef CONFIG_TASKS_TRACE_RCU
1254 
1255 // Record outstanding IPIs to each CPU.  No point in sending two...
1256 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1257 
1258 // The number of detections of task quiescent state relying on
1259 // heavyweight readers executing explicit memory barriers.
1260 static unsigned long n_heavy_reader_attempts;
1261 static unsigned long n_heavy_reader_updates;
1262 static unsigned long n_heavy_reader_ofl_updates;
1263 static unsigned long n_trc_holdouts;
1264 
1265 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1266 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1267 		 "RCU Tasks Trace");
1268 
1269 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1270 static u8 rcu_ld_need_qs(struct task_struct *t)
1271 {
1272 	smp_mb(); // Enforce full grace-period ordering.
1273 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1274 }
1275 
1276 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1277 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1278 {
1279 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1280 	smp_mb(); // Enforce full grace-period ordering.
1281 }
1282 
1283 /*
1284  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1285  * the four-byte operand-size restriction of some platforms.
1286  * Returns the old value, which is often ignored.
1287  */
1288 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1289 {
1290 	union rcu_special ret;
1291 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1292 	union rcu_special trs_new = trs_old;
1293 
1294 	if (trs_old.b.need_qs != old)
1295 		return trs_old.b.need_qs;
1296 	trs_new.b.need_qs = new;
1297 	ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1298 	return ret.b.need_qs;
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1301 
1302 /*
1303  * If we are the last reader, signal the grace-period kthread.
1304  * Also remove from the per-CPU list of blocked tasks.
1305  */
1306 void rcu_read_unlock_trace_special(struct task_struct *t)
1307 {
1308 	unsigned long flags;
1309 	struct rcu_tasks_percpu *rtpcp;
1310 	union rcu_special trs;
1311 
1312 	// Open-coded full-word version of rcu_ld_need_qs().
1313 	smp_mb(); // Enforce full grace-period ordering.
1314 	trs = smp_load_acquire(&t->trc_reader_special);
1315 
1316 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1317 		smp_mb(); // Pairs with update-side barriers.
1318 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1319 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1320 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1321 						       TRC_NEED_QS_CHECKED);
1322 
1323 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1324 	}
1325 	if (trs.b.blocked) {
1326 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1327 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1328 		list_del_init(&t->trc_blkd_node);
1329 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1330 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1331 	}
1332 	WRITE_ONCE(t->trc_reader_nesting, 0);
1333 }
1334 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1335 
1336 /* Add a newly blocked reader task to its CPU's list. */
1337 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1338 {
1339 	unsigned long flags;
1340 	struct rcu_tasks_percpu *rtpcp;
1341 
1342 	local_irq_save(flags);
1343 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1344 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1345 	t->trc_blkd_cpu = smp_processor_id();
1346 	if (!rtpcp->rtp_blkd_tasks.next)
1347 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1348 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1349 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1350 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1351 }
1352 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1353 
1354 /* Add a task to the holdout list, if it is not already on the list. */
1355 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1356 {
1357 	if (list_empty(&t->trc_holdout_list)) {
1358 		get_task_struct(t);
1359 		list_add(&t->trc_holdout_list, bhp);
1360 		n_trc_holdouts++;
1361 	}
1362 }
1363 
1364 /* Remove a task from the holdout list, if it is in fact present. */
1365 static void trc_del_holdout(struct task_struct *t)
1366 {
1367 	if (!list_empty(&t->trc_holdout_list)) {
1368 		list_del_init(&t->trc_holdout_list);
1369 		put_task_struct(t);
1370 		n_trc_holdouts--;
1371 	}
1372 }
1373 
1374 /* IPI handler to check task state. */
1375 static void trc_read_check_handler(void *t_in)
1376 {
1377 	int nesting;
1378 	struct task_struct *t = current;
1379 	struct task_struct *texp = t_in;
1380 
1381 	// If the task is no longer running on this CPU, leave.
1382 	if (unlikely(texp != t))
1383 		goto reset_ipi; // Already on holdout list, so will check later.
1384 
1385 	// If the task is not in a read-side critical section, and
1386 	// if this is the last reader, awaken the grace-period kthread.
1387 	nesting = READ_ONCE(t->trc_reader_nesting);
1388 	if (likely(!nesting)) {
1389 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1390 		goto reset_ipi;
1391 	}
1392 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1393 	if (unlikely(nesting < 0))
1394 		goto reset_ipi;
1395 
1396 	// Get here if the task is in a read-side critical section.
1397 	// Set its state so that it will update state for the grace-period
1398 	// kthread upon exit from that critical section.
1399 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1400 
1401 reset_ipi:
1402 	// Allow future IPIs to be sent on CPU and for task.
1403 	// Also order this IPI handler against any later manipulations of
1404 	// the intended task.
1405 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1406 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1407 }
1408 
1409 /* Callback function for scheduler to check locked-down task.  */
1410 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1411 {
1412 	struct list_head *bhp = bhp_in;
1413 	int cpu = task_cpu(t);
1414 	int nesting;
1415 	bool ofl = cpu_is_offline(cpu);
1416 
1417 	if (task_curr(t) && !ofl) {
1418 		// If no chance of heavyweight readers, do it the hard way.
1419 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1420 			return -EINVAL;
1421 
1422 		// If heavyweight readers are enabled on the remote task,
1423 		// we can inspect its state despite its currently running.
1424 		// However, we cannot safely change its state.
1425 		n_heavy_reader_attempts++;
1426 		// Check for "running" idle tasks on offline CPUs.
1427 		if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1428 			return -EINVAL; // No quiescent state, do it the hard way.
1429 		n_heavy_reader_updates++;
1430 		nesting = 0;
1431 	} else {
1432 		// The task is not running, so C-language access is safe.
1433 		nesting = t->trc_reader_nesting;
1434 		WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1435 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1436 			n_heavy_reader_ofl_updates++;
1437 	}
1438 
1439 	// If not exiting a read-side critical section, mark as checked
1440 	// so that the grace-period kthread will remove it from the
1441 	// holdout list.
1442 	if (!nesting) {
1443 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1444 		return 0;  // In QS, so done.
1445 	}
1446 	if (nesting < 0)
1447 		return -EINVAL; // Reader transitioning, try again later.
1448 
1449 	// The task is in a read-side critical section, so set up its
1450 	// state so that it will update state upon exit from that critical
1451 	// section.
1452 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1453 		trc_add_holdout(t, bhp);
1454 	return 0;
1455 }
1456 
1457 /* Attempt to extract the state for the specified task. */
1458 static void trc_wait_for_one_reader(struct task_struct *t,
1459 				    struct list_head *bhp)
1460 {
1461 	int cpu;
1462 
1463 	// If a previous IPI is still in flight, let it complete.
1464 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1465 		return;
1466 
1467 	// The current task had better be in a quiescent state.
1468 	if (t == current) {
1469 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1470 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1471 		return;
1472 	}
1473 
1474 	// Attempt to nail down the task for inspection.
1475 	get_task_struct(t);
1476 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1477 		put_task_struct(t);
1478 		return;
1479 	}
1480 	put_task_struct(t);
1481 
1482 	// If this task is not yet on the holdout list, then we are in
1483 	// an RCU read-side critical section.  Otherwise, the invocation of
1484 	// trc_add_holdout() that added it to the list did the necessary
1485 	// get_task_struct().  Either way, the task cannot be freed out
1486 	// from under this code.
1487 
1488 	// If currently running, send an IPI, either way, add to list.
1489 	trc_add_holdout(t, bhp);
1490 	if (task_curr(t) &&
1491 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1492 		// The task is currently running, so try IPIing it.
1493 		cpu = task_cpu(t);
1494 
1495 		// If there is already an IPI outstanding, let it happen.
1496 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1497 			return;
1498 
1499 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1500 		t->trc_ipi_to_cpu = cpu;
1501 		rcu_tasks_trace.n_ipis++;
1502 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1503 			// Just in case there is some other reason for
1504 			// failure than the target CPU being offline.
1505 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1506 				  __func__, cpu);
1507 			rcu_tasks_trace.n_ipis_fails++;
1508 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1509 			t->trc_ipi_to_cpu = -1;
1510 		}
1511 	}
1512 }
1513 
1514 /*
1515  * Initialize for first-round processing for the specified task.
1516  * Return false if task is NULL or already taken care of, true otherwise.
1517  */
1518 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1519 {
1520 	// During early boot when there is only the one boot CPU, there
1521 	// is no idle task for the other CPUs.	Also, the grace-period
1522 	// kthread is always in a quiescent state.  In addition, just return
1523 	// if this task is already on the list.
1524 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1525 		return false;
1526 
1527 	rcu_st_need_qs(t, 0);
1528 	t->trc_ipi_to_cpu = -1;
1529 	return true;
1530 }
1531 
1532 /* Do first-round processing for the specified task. */
1533 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1534 {
1535 	if (rcu_tasks_trace_pertask_prep(t, true))
1536 		trc_wait_for_one_reader(t, hop);
1537 }
1538 
1539 /* Initialize for a new RCU-tasks-trace grace period. */
1540 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1541 {
1542 	LIST_HEAD(blkd_tasks);
1543 	int cpu;
1544 	unsigned long flags;
1545 	struct rcu_tasks_percpu *rtpcp;
1546 	struct task_struct *t;
1547 
1548 	// There shouldn't be any old IPIs, but...
1549 	for_each_possible_cpu(cpu)
1550 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1551 
1552 	// Disable CPU hotplug across the CPU scan for the benefit of
1553 	// any IPIs that might be needed.  This also waits for all readers
1554 	// in CPU-hotplug code paths.
1555 	cpus_read_lock();
1556 
1557 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1558 	// allow safe access to the hop list.
1559 	for_each_online_cpu(cpu) {
1560 		rcu_read_lock();
1561 		t = cpu_curr_snapshot(cpu);
1562 		if (rcu_tasks_trace_pertask_prep(t, true))
1563 			trc_add_holdout(t, hop);
1564 		rcu_read_unlock();
1565 		cond_resched_tasks_rcu_qs();
1566 	}
1567 
1568 	// Only after all running tasks have been accounted for is it
1569 	// safe to take care of the tasks that have blocked within their
1570 	// current RCU tasks trace read-side critical section.
1571 	for_each_possible_cpu(cpu) {
1572 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1573 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1574 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1575 		while (!list_empty(&blkd_tasks)) {
1576 			rcu_read_lock();
1577 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1578 			list_del_init(&t->trc_blkd_node);
1579 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1580 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1581 			rcu_tasks_trace_pertask(t, hop);
1582 			rcu_read_unlock();
1583 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1584 		}
1585 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1586 		cond_resched_tasks_rcu_qs();
1587 	}
1588 
1589 	// Re-enable CPU hotplug now that the holdout list is populated.
1590 	cpus_read_unlock();
1591 }
1592 
1593 /*
1594  * Do intermediate processing between task and holdout scans.
1595  */
1596 static void rcu_tasks_trace_postscan(struct list_head *hop)
1597 {
1598 	// Wait for late-stage exiting tasks to finish exiting.
1599 	// These might have passed the call to exit_tasks_rcu_finish().
1600 
1601 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1602 	synchronize_rcu();
1603 	// Any tasks that exit after this point will set
1604 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1605 }
1606 
1607 /* Communicate task state back to the RCU tasks trace stall warning request. */
1608 struct trc_stall_chk_rdr {
1609 	int nesting;
1610 	int ipi_to_cpu;
1611 	u8 needqs;
1612 };
1613 
1614 static int trc_check_slow_task(struct task_struct *t, void *arg)
1615 {
1616 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1617 
1618 	if (task_curr(t) && cpu_online(task_cpu(t)))
1619 		return false; // It is running, so decline to inspect it.
1620 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1621 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1622 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1623 	return true;
1624 }
1625 
1626 /* Show the state of a task stalling the current RCU tasks trace GP. */
1627 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1628 {
1629 	int cpu;
1630 	struct trc_stall_chk_rdr trc_rdr;
1631 	bool is_idle_tsk = is_idle_task(t);
1632 
1633 	if (*firstreport) {
1634 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1635 		*firstreport = false;
1636 	}
1637 	cpu = task_cpu(t);
1638 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1639 		pr_alert("P%d: %c%c\n",
1640 			 t->pid,
1641 			 ".I"[t->trc_ipi_to_cpu >= 0],
1642 			 ".i"[is_idle_tsk]);
1643 	else
1644 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1645 			 t->pid,
1646 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1647 			 ".i"[is_idle_tsk],
1648 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1649 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1650 			 trc_rdr.nesting,
1651 			 " !CN"[trc_rdr.needqs & 0x3],
1652 			 " ?"[trc_rdr.needqs > 0x3],
1653 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1654 	sched_show_task(t);
1655 }
1656 
1657 /* List stalled IPIs for RCU tasks trace. */
1658 static void show_stalled_ipi_trace(void)
1659 {
1660 	int cpu;
1661 
1662 	for_each_possible_cpu(cpu)
1663 		if (per_cpu(trc_ipi_to_cpu, cpu))
1664 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1665 }
1666 
1667 /* Do one scan of the holdout list. */
1668 static void check_all_holdout_tasks_trace(struct list_head *hop,
1669 					  bool needreport, bool *firstreport)
1670 {
1671 	struct task_struct *g, *t;
1672 
1673 	// Disable CPU hotplug across the holdout list scan for IPIs.
1674 	cpus_read_lock();
1675 
1676 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1677 		// If safe and needed, try to check the current task.
1678 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1679 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1680 			trc_wait_for_one_reader(t, hop);
1681 
1682 		// If check succeeded, remove this task from the list.
1683 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1684 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1685 			trc_del_holdout(t);
1686 		else if (needreport)
1687 			show_stalled_task_trace(t, firstreport);
1688 		cond_resched_tasks_rcu_qs();
1689 	}
1690 
1691 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1692 	cpus_read_unlock();
1693 
1694 	if (needreport) {
1695 		if (*firstreport)
1696 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1697 		show_stalled_ipi_trace();
1698 	}
1699 }
1700 
1701 static void rcu_tasks_trace_empty_fn(void *unused)
1702 {
1703 }
1704 
1705 /* Wait for grace period to complete and provide ordering. */
1706 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1707 {
1708 	int cpu;
1709 
1710 	// Wait for any lingering IPI handlers to complete.  Note that
1711 	// if a CPU has gone offline or transitioned to userspace in the
1712 	// meantime, all IPI handlers should have been drained beforehand.
1713 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1714 	// changes, there will need to be a recheck and/or timed wait.
1715 	for_each_online_cpu(cpu)
1716 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1717 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1718 
1719 	smp_mb(); // Caller's code must be ordered after wakeup.
1720 		  // Pairs with pretty much every ordering primitive.
1721 }
1722 
1723 /* Report any needed quiescent state for this exiting task. */
1724 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1725 {
1726 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1727 
1728 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1729 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1730 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1731 		rcu_read_unlock_trace_special(t);
1732 	else
1733 		WRITE_ONCE(t->trc_reader_nesting, 0);
1734 }
1735 
1736 /**
1737  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1738  * @rhp: structure to be used for queueing the RCU updates.
1739  * @func: actual callback function to be invoked after the grace period
1740  *
1741  * The callback function will be invoked some time after a trace rcu-tasks
1742  * grace period elapses, in other words after all currently executing
1743  * trace rcu-tasks read-side critical sections have completed. These
1744  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1745  * and rcu_read_unlock_trace().
1746  *
1747  * See the description of call_rcu() for more detailed information on
1748  * memory ordering guarantees.
1749  */
1750 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1751 {
1752 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1753 }
1754 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1755 
1756 /**
1757  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1758  *
1759  * Control will return to the caller some time after a trace rcu-tasks
1760  * grace period has elapsed, in other words after all currently executing
1761  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1762  * critical sections are delimited by calls to rcu_read_lock_trace()
1763  * and rcu_read_unlock_trace().
1764  *
1765  * This is a very specialized primitive, intended only for a few uses in
1766  * tracing and other situations requiring manipulation of function preambles
1767  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1768  * (yet) intended for heavy use from multiple CPUs.
1769  *
1770  * See the description of synchronize_rcu() for more detailed information
1771  * on memory ordering guarantees.
1772  */
1773 void synchronize_rcu_tasks_trace(void)
1774 {
1775 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1776 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1777 }
1778 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1779 
1780 /**
1781  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1782  *
1783  * Although the current implementation is guaranteed to wait, it is not
1784  * obligated to, for example, if there are no pending callbacks.
1785  */
1786 void rcu_barrier_tasks_trace(void)
1787 {
1788 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1789 }
1790 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1791 
1792 static int __init rcu_spawn_tasks_trace_kthread(void)
1793 {
1794 	cblist_init_generic(&rcu_tasks_trace);
1795 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1796 		rcu_tasks_trace.gp_sleep = HZ / 10;
1797 		rcu_tasks_trace.init_fract = HZ / 10;
1798 	} else {
1799 		rcu_tasks_trace.gp_sleep = HZ / 200;
1800 		if (rcu_tasks_trace.gp_sleep <= 0)
1801 			rcu_tasks_trace.gp_sleep = 1;
1802 		rcu_tasks_trace.init_fract = HZ / 200;
1803 		if (rcu_tasks_trace.init_fract <= 0)
1804 			rcu_tasks_trace.init_fract = 1;
1805 	}
1806 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1807 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1808 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1809 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1810 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1811 	return 0;
1812 }
1813 
1814 #if !defined(CONFIG_TINY_RCU)
1815 void show_rcu_tasks_trace_gp_kthread(void)
1816 {
1817 	char buf[64];
1818 
1819 	sprintf(buf, "N%lu h:%lu/%lu/%lu",
1820 		data_race(n_trc_holdouts),
1821 		data_race(n_heavy_reader_ofl_updates),
1822 		data_race(n_heavy_reader_updates),
1823 		data_race(n_heavy_reader_attempts));
1824 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1825 }
1826 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1827 #endif // !defined(CONFIG_TINY_RCU)
1828 
1829 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1830 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1831 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1832 
1833 #ifndef CONFIG_TINY_RCU
1834 void show_rcu_tasks_gp_kthreads(void)
1835 {
1836 	show_rcu_tasks_classic_gp_kthread();
1837 	show_rcu_tasks_rude_gp_kthread();
1838 	show_rcu_tasks_trace_gp_kthread();
1839 }
1840 #endif /* #ifndef CONFIG_TINY_RCU */
1841 
1842 #ifdef CONFIG_PROVE_RCU
1843 struct rcu_tasks_test_desc {
1844 	struct rcu_head rh;
1845 	const char *name;
1846 	bool notrun;
1847 	unsigned long runstart;
1848 };
1849 
1850 static struct rcu_tasks_test_desc tests[] = {
1851 	{
1852 		.name = "call_rcu_tasks()",
1853 		/* If not defined, the test is skipped. */
1854 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1855 	},
1856 	{
1857 		.name = "call_rcu_tasks_rude()",
1858 		/* If not defined, the test is skipped. */
1859 		.notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1860 	},
1861 	{
1862 		.name = "call_rcu_tasks_trace()",
1863 		/* If not defined, the test is skipped. */
1864 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1865 	}
1866 };
1867 
1868 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1869 {
1870 	struct rcu_tasks_test_desc *rttd =
1871 		container_of(rhp, struct rcu_tasks_test_desc, rh);
1872 
1873 	pr_info("Callback from %s invoked.\n", rttd->name);
1874 
1875 	rttd->notrun = false;
1876 }
1877 
1878 static void rcu_tasks_initiate_self_tests(void)
1879 {
1880 	pr_info("Running RCU-tasks wait API self tests\n");
1881 #ifdef CONFIG_TASKS_RCU
1882 	tests[0].runstart = jiffies;
1883 	synchronize_rcu_tasks();
1884 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1885 #endif
1886 
1887 #ifdef CONFIG_TASKS_RUDE_RCU
1888 	tests[1].runstart = jiffies;
1889 	synchronize_rcu_tasks_rude();
1890 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1891 #endif
1892 
1893 #ifdef CONFIG_TASKS_TRACE_RCU
1894 	tests[2].runstart = jiffies;
1895 	synchronize_rcu_tasks_trace();
1896 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1897 #endif
1898 }
1899 
1900 /*
1901  * Return:  0 - test passed
1902  *	    1 - test failed, but have not timed out yet
1903  *	   -1 - test failed and timed out
1904  */
1905 static int rcu_tasks_verify_self_tests(void)
1906 {
1907 	int ret = 0;
1908 	int i;
1909 	unsigned long bst = rcu_task_stall_timeout;
1910 
1911 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
1912 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
1913 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
1914 		while (tests[i].notrun) {		// still hanging.
1915 			if (time_after(jiffies, tests[i].runstart + bst)) {
1916 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
1917 				ret = -1;
1918 				break;
1919 			}
1920 			ret = 1;
1921 			break;
1922 		}
1923 	}
1924 	WARN_ON(ret < 0);
1925 
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
1931  * test passes or has timed out.
1932  */
1933 static struct delayed_work rcu_tasks_verify_work;
1934 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
1935 {
1936 	int ret = rcu_tasks_verify_self_tests();
1937 
1938 	if (ret <= 0)
1939 		return;
1940 
1941 	/* Test fails but not timed out yet, reschedule another check */
1942 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
1943 }
1944 
1945 static int rcu_tasks_verify_schedule_work(void)
1946 {
1947 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
1948 	rcu_tasks_verify_work_fn(NULL);
1949 	return 0;
1950 }
1951 late_initcall(rcu_tasks_verify_schedule_work);
1952 #else /* #ifdef CONFIG_PROVE_RCU */
1953 static void rcu_tasks_initiate_self_tests(void) { }
1954 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1955 
1956 void __init rcu_init_tasks_generic(void)
1957 {
1958 #ifdef CONFIG_TASKS_RCU
1959 	rcu_spawn_tasks_kthread();
1960 #endif
1961 
1962 #ifdef CONFIG_TASKS_RUDE_RCU
1963 	rcu_spawn_tasks_rude_kthread();
1964 #endif
1965 
1966 #ifdef CONFIG_TASKS_TRACE_RCU
1967 	rcu_spawn_tasks_trace_kthread();
1968 #endif
1969 
1970 	// Run the self-tests.
1971 	rcu_tasks_initiate_self_tests();
1972 }
1973 
1974 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1975 static inline void rcu_tasks_bootup_oddness(void) {}
1976 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1977