1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @rtp_n_lock_retries: Rough lock-contention statistic. 29 * @rtp_work: Work queue for invoking callbacks. 30 * @rtp_irq_work: IRQ work queue for deferred wakeups. 31 * @barrier_q_head: RCU callback for barrier operation. 32 * @rtp_blkd_tasks: List of tasks blocked as readers. 33 * @cpu: CPU number corresponding to this entry. 34 * @rtpp: Pointer to the rcu_tasks structure. 35 */ 36 struct rcu_tasks_percpu { 37 struct rcu_segcblist cblist; 38 raw_spinlock_t __private lock; 39 unsigned long rtp_jiffies; 40 unsigned long rtp_n_lock_retries; 41 struct work_struct rtp_work; 42 struct irq_work rtp_irq_work; 43 struct rcu_head barrier_q_head; 44 struct list_head rtp_blkd_tasks; 45 int cpu; 46 struct rcu_tasks *rtpp; 47 }; 48 49 /** 50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 52 * @cbs_gbl_lock: Lock protecting callback list. 53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 55 * @gp_func: This flavor's grace-period-wait function. 56 * @gp_state: Grace period's most recent state transition (debugging). 57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 58 * @init_fract: Initial backoff sleep interval. 59 * @gp_jiffies: Time of last @gp_state transition. 60 * @gp_start: Most recent grace-period start in jiffies. 61 * @tasks_gp_seq: Number of grace periods completed since boot. 62 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 63 * @n_ipis_fails: Number of IPI-send failures. 64 * @pregp_func: This flavor's pre-grace-period function (optional). 65 * @pertask_func: This flavor's per-task scan function (optional). 66 * @postscan_func: This flavor's post-task scan function (optional). 67 * @holdouts_func: This flavor's holdout-list scan function (optional). 68 * @postgp_func: This flavor's post-grace-period function (optional). 69 * @call_func: This flavor's call_rcu()-equivalent function. 70 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 75 * @barrier_q_mutex: Serialize barrier operations. 76 * @barrier_q_count: Number of queues being waited on. 77 * @barrier_q_completion: Barrier wait/wakeup mechanism. 78 * @barrier_q_seq: Sequence number for barrier operations. 79 * @name: This flavor's textual name. 80 * @kname: This flavor's kthread name. 81 */ 82 struct rcu_tasks { 83 struct rcuwait cbs_wait; 84 raw_spinlock_t cbs_gbl_lock; 85 struct mutex tasks_gp_mutex; 86 int gp_state; 87 int gp_sleep; 88 int init_fract; 89 unsigned long gp_jiffies; 90 unsigned long gp_start; 91 unsigned long tasks_gp_seq; 92 unsigned long n_ipis; 93 unsigned long n_ipis_fails; 94 struct task_struct *kthread_ptr; 95 rcu_tasks_gp_func_t gp_func; 96 pregp_func_t pregp_func; 97 pertask_func_t pertask_func; 98 postscan_func_t postscan_func; 99 holdouts_func_t holdouts_func; 100 postgp_func_t postgp_func; 101 call_rcu_func_t call_func; 102 struct rcu_tasks_percpu __percpu *rtpcpu; 103 int percpu_enqueue_shift; 104 int percpu_enqueue_lim; 105 int percpu_dequeue_lim; 106 unsigned long percpu_dequeue_gpseq; 107 struct mutex barrier_q_mutex; 108 atomic_t barrier_q_count; 109 struct completion barrier_q_completion; 110 unsigned long barrier_q_seq; 111 char *name; 112 char *kname; 113 }; 114 115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 116 117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 121 }; \ 122 static struct rcu_tasks rt_name = \ 123 { \ 124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 127 .gp_func = gp, \ 128 .call_func = call, \ 129 .rtpcpu = &rt_name ## __percpu, \ 130 .name = n, \ 131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 132 .percpu_enqueue_lim = 1, \ 133 .percpu_dequeue_lim = 1, \ 134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 136 .kname = #rt_name, \ 137 } 138 139 /* Track exiting tasks in order to allow them to be waited for. */ 140 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 141 142 /* Avoid IPIing CPUs early in the grace period. */ 143 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 144 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 145 module_param(rcu_task_ipi_delay, int, 0644); 146 147 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 148 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 149 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 150 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 151 module_param(rcu_task_stall_timeout, int, 0644); 152 #define RCU_TASK_STALL_INFO (HZ * 10) 153 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 154 module_param(rcu_task_stall_info, int, 0644); 155 static int rcu_task_stall_info_mult __read_mostly = 3; 156 module_param(rcu_task_stall_info_mult, int, 0444); 157 158 static int rcu_task_enqueue_lim __read_mostly = -1; 159 module_param(rcu_task_enqueue_lim, int, 0444); 160 161 static bool rcu_task_cb_adjust; 162 static int rcu_task_contend_lim __read_mostly = 100; 163 module_param(rcu_task_contend_lim, int, 0444); 164 static int rcu_task_collapse_lim __read_mostly = 10; 165 module_param(rcu_task_collapse_lim, int, 0444); 166 167 /* RCU tasks grace-period state for debugging. */ 168 #define RTGS_INIT 0 169 #define RTGS_WAIT_WAIT_CBS 1 170 #define RTGS_WAIT_GP 2 171 #define RTGS_PRE_WAIT_GP 3 172 #define RTGS_SCAN_TASKLIST 4 173 #define RTGS_POST_SCAN_TASKLIST 5 174 #define RTGS_WAIT_SCAN_HOLDOUTS 6 175 #define RTGS_SCAN_HOLDOUTS 7 176 #define RTGS_POST_GP 8 177 #define RTGS_WAIT_READERS 9 178 #define RTGS_INVOKE_CBS 10 179 #define RTGS_WAIT_CBS 11 180 #ifndef CONFIG_TINY_RCU 181 static const char * const rcu_tasks_gp_state_names[] = { 182 "RTGS_INIT", 183 "RTGS_WAIT_WAIT_CBS", 184 "RTGS_WAIT_GP", 185 "RTGS_PRE_WAIT_GP", 186 "RTGS_SCAN_TASKLIST", 187 "RTGS_POST_SCAN_TASKLIST", 188 "RTGS_WAIT_SCAN_HOLDOUTS", 189 "RTGS_SCAN_HOLDOUTS", 190 "RTGS_POST_GP", 191 "RTGS_WAIT_READERS", 192 "RTGS_INVOKE_CBS", 193 "RTGS_WAIT_CBS", 194 }; 195 #endif /* #ifndef CONFIG_TINY_RCU */ 196 197 //////////////////////////////////////////////////////////////////////// 198 // 199 // Generic code. 200 201 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 202 203 /* Record grace-period phase and time. */ 204 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 205 { 206 rtp->gp_state = newstate; 207 rtp->gp_jiffies = jiffies; 208 } 209 210 #ifndef CONFIG_TINY_RCU 211 /* Return state name. */ 212 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 213 { 214 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 215 int j = READ_ONCE(i); // Prevent the compiler from reading twice 216 217 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 218 return "???"; 219 return rcu_tasks_gp_state_names[j]; 220 } 221 #endif /* #ifndef CONFIG_TINY_RCU */ 222 223 // Initialize per-CPU callback lists for the specified flavor of 224 // Tasks RCU. 225 static void cblist_init_generic(struct rcu_tasks *rtp) 226 { 227 int cpu; 228 unsigned long flags; 229 int lim; 230 int shift; 231 232 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 233 if (rcu_task_enqueue_lim < 0) { 234 rcu_task_enqueue_lim = 1; 235 rcu_task_cb_adjust = true; 236 pr_info("%s: Setting adjustable number of callback queues.\n", __func__); 237 } else if (rcu_task_enqueue_lim == 0) { 238 rcu_task_enqueue_lim = 1; 239 } 240 lim = rcu_task_enqueue_lim; 241 242 if (lim > nr_cpu_ids) 243 lim = nr_cpu_ids; 244 shift = ilog2(nr_cpu_ids / lim); 245 if (((nr_cpu_ids - 1) >> shift) >= lim) 246 shift++; 247 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 248 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 249 smp_store_release(&rtp->percpu_enqueue_lim, lim); 250 for_each_possible_cpu(cpu) { 251 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 252 253 WARN_ON_ONCE(!rtpcp); 254 if (cpu) 255 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 256 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 257 if (rcu_segcblist_empty(&rtpcp->cblist)) 258 rcu_segcblist_init(&rtpcp->cblist); 259 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 260 rtpcp->cpu = cpu; 261 rtpcp->rtpp = rtp; 262 if (!rtpcp->rtp_blkd_tasks.next) 263 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 264 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 265 } 266 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 267 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim)); 268 } 269 270 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 271 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 272 { 273 struct rcu_tasks *rtp; 274 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 275 276 rtp = rtpcp->rtpp; 277 rcuwait_wake_up(&rtp->cbs_wait); 278 } 279 280 // Enqueue a callback for the specified flavor of Tasks RCU. 281 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 282 struct rcu_tasks *rtp) 283 { 284 int chosen_cpu; 285 unsigned long flags; 286 int ideal_cpu; 287 unsigned long j; 288 bool needadjust = false; 289 bool needwake; 290 struct rcu_tasks_percpu *rtpcp; 291 292 rhp->next = NULL; 293 rhp->func = func; 294 local_irq_save(flags); 295 rcu_read_lock(); 296 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 297 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 298 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 299 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 300 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 301 j = jiffies; 302 if (rtpcp->rtp_jiffies != j) { 303 rtpcp->rtp_jiffies = j; 304 rtpcp->rtp_n_lock_retries = 0; 305 } 306 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 307 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 308 needadjust = true; // Defer adjustment to avoid deadlock. 309 } 310 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) { 311 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled. 312 cblist_init_generic(rtp); 313 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 314 } 315 needwake = rcu_segcblist_empty(&rtpcp->cblist); 316 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 317 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 318 if (unlikely(needadjust)) { 319 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 320 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 321 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 322 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 323 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 324 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 325 } 326 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 327 } 328 rcu_read_unlock(); 329 /* We can't create the thread unless interrupts are enabled. */ 330 if (needwake && READ_ONCE(rtp->kthread_ptr)) 331 irq_work_queue(&rtpcp->rtp_irq_work); 332 } 333 334 // RCU callback function for rcu_barrier_tasks_generic(). 335 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 336 { 337 struct rcu_tasks *rtp; 338 struct rcu_tasks_percpu *rtpcp; 339 340 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 341 rtp = rtpcp->rtpp; 342 if (atomic_dec_and_test(&rtp->barrier_q_count)) 343 complete(&rtp->barrier_q_completion); 344 } 345 346 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 347 // Operates in a manner similar to rcu_barrier(). 348 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 349 { 350 int cpu; 351 unsigned long flags; 352 struct rcu_tasks_percpu *rtpcp; 353 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 354 355 mutex_lock(&rtp->barrier_q_mutex); 356 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 357 smp_mb(); 358 mutex_unlock(&rtp->barrier_q_mutex); 359 return; 360 } 361 rcu_seq_start(&rtp->barrier_q_seq); 362 init_completion(&rtp->barrier_q_completion); 363 atomic_set(&rtp->barrier_q_count, 2); 364 for_each_possible_cpu(cpu) { 365 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 366 break; 367 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 368 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 369 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 370 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 371 atomic_inc(&rtp->barrier_q_count); 372 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 373 } 374 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 375 complete(&rtp->barrier_q_completion); 376 wait_for_completion(&rtp->barrier_q_completion); 377 rcu_seq_end(&rtp->barrier_q_seq); 378 mutex_unlock(&rtp->barrier_q_mutex); 379 } 380 381 // Advance callbacks and indicate whether either a grace period or 382 // callback invocation is needed. 383 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 384 { 385 int cpu; 386 unsigned long flags; 387 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 388 long n; 389 long ncbs = 0; 390 long ncbsnz = 0; 391 int needgpcb = 0; 392 393 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 394 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 395 396 /* Advance and accelerate any new callbacks. */ 397 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 398 continue; 399 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 400 // Should we shrink down to a single callback queue? 401 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 402 if (n) { 403 ncbs += n; 404 if (cpu > 0) 405 ncbsnz += n; 406 } 407 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 408 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 409 if (rcu_segcblist_pend_cbs(&rtpcp->cblist)) 410 needgpcb |= 0x3; 411 if (!rcu_segcblist_empty(&rtpcp->cblist)) 412 needgpcb |= 0x1; 413 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 414 } 415 416 // Shrink down to a single callback queue if appropriate. 417 // This is done in two stages: (1) If there are no more than 418 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 419 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 420 // if there has not been an increase in callbacks, limit dequeuing 421 // to CPU 0. Note the matching RCU read-side critical section in 422 // call_rcu_tasks_generic(). 423 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 424 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 425 if (rtp->percpu_enqueue_lim > 1) { 426 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 427 smp_store_release(&rtp->percpu_enqueue_lim, 1); 428 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 429 gpdone = false; 430 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 431 } 432 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 433 } 434 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 435 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 436 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 437 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 438 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 439 } 440 if (rtp->percpu_dequeue_lim == 1) { 441 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 442 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 443 444 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 445 } 446 } 447 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 448 } 449 450 return needgpcb; 451 } 452 453 // Advance callbacks and invoke any that are ready. 454 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 455 { 456 int cpu; 457 int cpunext; 458 unsigned long flags; 459 int len; 460 struct rcu_head *rhp; 461 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 462 struct rcu_tasks_percpu *rtpcp_next; 463 464 cpu = rtpcp->cpu; 465 cpunext = cpu * 2 + 1; 466 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 467 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 468 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 469 cpunext++; 470 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 471 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 472 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work); 473 } 474 } 475 476 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 477 return; 478 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 479 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 480 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 481 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 482 len = rcl.len; 483 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 484 local_bh_disable(); 485 rhp->func(rhp); 486 local_bh_enable(); 487 cond_resched(); 488 } 489 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 490 rcu_segcblist_add_len(&rtpcp->cblist, -len); 491 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 492 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 493 } 494 495 // Workqueue flood to advance callbacks and invoke any that are ready. 496 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 497 { 498 struct rcu_tasks *rtp; 499 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 500 501 rtp = rtpcp->rtpp; 502 rcu_tasks_invoke_cbs(rtp, rtpcp); 503 } 504 505 // Wait for one grace period. 506 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 507 { 508 int needgpcb; 509 510 mutex_lock(&rtp->tasks_gp_mutex); 511 512 // If there were none, wait a bit and start over. 513 if (unlikely(midboot)) { 514 needgpcb = 0x2; 515 } else { 516 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 517 rcuwait_wait_event(&rtp->cbs_wait, 518 (needgpcb = rcu_tasks_need_gpcb(rtp)), 519 TASK_IDLE); 520 } 521 522 if (needgpcb & 0x2) { 523 // Wait for one grace period. 524 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 525 rtp->gp_start = jiffies; 526 rcu_seq_start(&rtp->tasks_gp_seq); 527 rtp->gp_func(rtp); 528 rcu_seq_end(&rtp->tasks_gp_seq); 529 } 530 531 // Invoke callbacks. 532 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 533 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 534 mutex_unlock(&rtp->tasks_gp_mutex); 535 } 536 537 // RCU-tasks kthread that detects grace periods and invokes callbacks. 538 static int __noreturn rcu_tasks_kthread(void *arg) 539 { 540 struct rcu_tasks *rtp = arg; 541 542 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 543 housekeeping_affine(current, HK_TYPE_RCU); 544 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start! 545 546 /* 547 * Each pass through the following loop makes one check for 548 * newly arrived callbacks, and, if there are some, waits for 549 * one RCU-tasks grace period and then invokes the callbacks. 550 * This loop is terminated by the system going down. ;-) 551 */ 552 for (;;) { 553 // Wait for one grace period and invoke any callbacks 554 // that are ready. 555 rcu_tasks_one_gp(rtp, false); 556 557 // Paranoid sleep to keep this from entering a tight loop. 558 schedule_timeout_idle(rtp->gp_sleep); 559 } 560 } 561 562 // Wait for a grace period for the specified flavor of Tasks RCU. 563 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 564 { 565 /* Complain if the scheduler has not started. */ 566 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 567 "synchronize_%s() called too soon", rtp->name)) 568 return; 569 570 // If the grace-period kthread is running, use it. 571 if (READ_ONCE(rtp->kthread_ptr)) { 572 wait_rcu_gp(rtp->call_func); 573 return; 574 } 575 rcu_tasks_one_gp(rtp, true); 576 } 577 578 /* Spawn RCU-tasks grace-period kthread. */ 579 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 580 { 581 struct task_struct *t; 582 583 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 584 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 585 return; 586 smp_mb(); /* Ensure others see full kthread. */ 587 } 588 589 #ifndef CONFIG_TINY_RCU 590 591 /* 592 * Print any non-default Tasks RCU settings. 593 */ 594 static void __init rcu_tasks_bootup_oddness(void) 595 { 596 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 597 int rtsimc; 598 599 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 600 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 601 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 602 if (rtsimc != rcu_task_stall_info_mult) { 603 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 604 rcu_task_stall_info_mult = rtsimc; 605 } 606 #endif /* #ifdef CONFIG_TASKS_RCU */ 607 #ifdef CONFIG_TASKS_RCU 608 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 609 #endif /* #ifdef CONFIG_TASKS_RCU */ 610 #ifdef CONFIG_TASKS_RUDE_RCU 611 pr_info("\tRude variant of Tasks RCU enabled.\n"); 612 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 613 #ifdef CONFIG_TASKS_TRACE_RCU 614 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 615 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 616 } 617 618 #endif /* #ifndef CONFIG_TINY_RCU */ 619 620 #ifndef CONFIG_TINY_RCU 621 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 622 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 623 { 624 int cpu; 625 bool havecbs = false; 626 627 for_each_possible_cpu(cpu) { 628 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 629 630 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) { 631 havecbs = true; 632 break; 633 } 634 } 635 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n", 636 rtp->kname, 637 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 638 jiffies - data_race(rtp->gp_jiffies), 639 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 640 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 641 ".k"[!!data_race(rtp->kthread_ptr)], 642 ".C"[havecbs], 643 s); 644 } 645 #endif // #ifndef CONFIG_TINY_RCU 646 647 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 648 649 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 650 651 //////////////////////////////////////////////////////////////////////// 652 // 653 // Shared code between task-list-scanning variants of Tasks RCU. 654 655 /* Wait for one RCU-tasks grace period. */ 656 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 657 { 658 struct task_struct *g; 659 int fract; 660 LIST_HEAD(holdouts); 661 unsigned long j; 662 unsigned long lastinfo; 663 unsigned long lastreport; 664 bool reported = false; 665 int rtsi; 666 struct task_struct *t; 667 668 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 669 rtp->pregp_func(&holdouts); 670 671 /* 672 * There were callbacks, so we need to wait for an RCU-tasks 673 * grace period. Start off by scanning the task list for tasks 674 * that are not already voluntarily blocked. Mark these tasks 675 * and make a list of them in holdouts. 676 */ 677 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 678 if (rtp->pertask_func) { 679 rcu_read_lock(); 680 for_each_process_thread(g, t) 681 rtp->pertask_func(t, &holdouts); 682 rcu_read_unlock(); 683 } 684 685 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 686 rtp->postscan_func(&holdouts); 687 688 /* 689 * Each pass through the following loop scans the list of holdout 690 * tasks, removing any that are no longer holdouts. When the list 691 * is empty, we are done. 692 */ 693 lastreport = jiffies; 694 lastinfo = lastreport; 695 rtsi = READ_ONCE(rcu_task_stall_info); 696 697 // Start off with initial wait and slowly back off to 1 HZ wait. 698 fract = rtp->init_fract; 699 700 while (!list_empty(&holdouts)) { 701 ktime_t exp; 702 bool firstreport; 703 bool needreport; 704 int rtst; 705 706 // Slowly back off waiting for holdouts 707 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 708 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 709 schedule_timeout_idle(fract); 710 } else { 711 exp = jiffies_to_nsecs(fract); 712 __set_current_state(TASK_IDLE); 713 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 714 } 715 716 if (fract < HZ) 717 fract++; 718 719 rtst = READ_ONCE(rcu_task_stall_timeout); 720 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 721 if (needreport) { 722 lastreport = jiffies; 723 reported = true; 724 } 725 firstreport = true; 726 WARN_ON(signal_pending(current)); 727 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 728 rtp->holdouts_func(&holdouts, needreport, &firstreport); 729 730 // Print pre-stall informational messages if needed. 731 j = jiffies; 732 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 733 lastinfo = j; 734 rtsi = rtsi * rcu_task_stall_info_mult; 735 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 736 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 737 } 738 } 739 740 set_tasks_gp_state(rtp, RTGS_POST_GP); 741 rtp->postgp_func(rtp); 742 } 743 744 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 745 746 #ifdef CONFIG_TASKS_RCU 747 748 //////////////////////////////////////////////////////////////////////// 749 // 750 // Simple variant of RCU whose quiescent states are voluntary context 751 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 752 // As such, grace periods can take one good long time. There are no 753 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 754 // because this implementation is intended to get the system into a safe 755 // state for some of the manipulations involved in tracing and the like. 756 // Finally, this implementation does not support high call_rcu_tasks() 757 // rates from multiple CPUs. If this is required, per-CPU callback lists 758 // will be needed. 759 // 760 // The implementation uses rcu_tasks_wait_gp(), which relies on function 761 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 762 // function sets these function pointers up so that rcu_tasks_wait_gp() 763 // invokes these functions in this order: 764 // 765 // rcu_tasks_pregp_step(): 766 // Invokes synchronize_rcu() in order to wait for all in-flight 767 // t->on_rq and t->nvcsw transitions to complete. This works because 768 // all such transitions are carried out with interrupts disabled. 769 // rcu_tasks_pertask(), invoked on every non-idle task: 770 // For every runnable non-idle task other than the current one, use 771 // get_task_struct() to pin down that task, snapshot that task's 772 // number of voluntary context switches, and add that task to the 773 // holdout list. 774 // rcu_tasks_postscan(): 775 // Invoke synchronize_srcu() to ensure that all tasks that were 776 // in the process of exiting (and which thus might not know to 777 // synchronize with this RCU Tasks grace period) have completed 778 // exiting. 779 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 780 // Scans the holdout list, attempting to identify a quiescent state 781 // for each task on the list. If there is a quiescent state, the 782 // corresponding task is removed from the holdout list. 783 // rcu_tasks_postgp(): 784 // Invokes synchronize_rcu() in order to ensure that all prior 785 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 786 // to have happened before the end of this RCU Tasks grace period. 787 // Again, this works because all such transitions are carried out 788 // with interrupts disabled. 789 // 790 // For each exiting task, the exit_tasks_rcu_start() and 791 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 792 // read-side critical sections waited for by rcu_tasks_postscan(). 793 // 794 // Pre-grace-period update-side code is ordered before the grace 795 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 796 // is ordered before the grace period via synchronize_rcu() call in 797 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 798 // disabling. 799 800 /* Pre-grace-period preparation. */ 801 static void rcu_tasks_pregp_step(struct list_head *hop) 802 { 803 /* 804 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 805 * to complete. Invoking synchronize_rcu() suffices because all 806 * these transitions occur with interrupts disabled. Without this 807 * synchronize_rcu(), a read-side critical section that started 808 * before the grace period might be incorrectly seen as having 809 * started after the grace period. 810 * 811 * This synchronize_rcu() also dispenses with the need for a 812 * memory barrier on the first store to t->rcu_tasks_holdout, 813 * as it forces the store to happen after the beginning of the 814 * grace period. 815 */ 816 synchronize_rcu(); 817 } 818 819 /* Per-task initial processing. */ 820 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 821 { 822 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) { 823 get_task_struct(t); 824 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 825 WRITE_ONCE(t->rcu_tasks_holdout, true); 826 list_add(&t->rcu_tasks_holdout_list, hop); 827 } 828 } 829 830 /* Processing between scanning taskslist and draining the holdout list. */ 831 static void rcu_tasks_postscan(struct list_head *hop) 832 { 833 /* 834 * Exiting tasks may escape the tasklist scan. Those are vulnerable 835 * until their final schedule() with TASK_DEAD state. To cope with 836 * this, divide the fragile exit path part in two intersecting 837 * read side critical sections: 838 * 839 * 1) An _SRCU_ read side starting before calling exit_notify(), 840 * which may remove the task from the tasklist, and ending after 841 * the final preempt_disable() call in do_exit(). 842 * 843 * 2) An _RCU_ read side starting with the final preempt_disable() 844 * call in do_exit() and ending with the final call to schedule() 845 * with TASK_DEAD state. 846 * 847 * This handles the part 1). And postgp will handle part 2) with a 848 * call to synchronize_rcu(). 849 */ 850 synchronize_srcu(&tasks_rcu_exit_srcu); 851 } 852 853 /* See if tasks are still holding out, complain if so. */ 854 static void check_holdout_task(struct task_struct *t, 855 bool needreport, bool *firstreport) 856 { 857 int cpu; 858 859 if (!READ_ONCE(t->rcu_tasks_holdout) || 860 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 861 !READ_ONCE(t->on_rq) || 862 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 863 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 864 WRITE_ONCE(t->rcu_tasks_holdout, false); 865 list_del_init(&t->rcu_tasks_holdout_list); 866 put_task_struct(t); 867 return; 868 } 869 rcu_request_urgent_qs_task(t); 870 if (!needreport) 871 return; 872 if (*firstreport) { 873 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 874 *firstreport = false; 875 } 876 cpu = task_cpu(t); 877 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 878 t, ".I"[is_idle_task(t)], 879 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 880 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 881 t->rcu_tasks_idle_cpu, cpu); 882 sched_show_task(t); 883 } 884 885 /* Scan the holdout lists for tasks no longer holding out. */ 886 static void check_all_holdout_tasks(struct list_head *hop, 887 bool needreport, bool *firstreport) 888 { 889 struct task_struct *t, *t1; 890 891 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 892 check_holdout_task(t, needreport, firstreport); 893 cond_resched(); 894 } 895 } 896 897 /* Finish off the Tasks-RCU grace period. */ 898 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 899 { 900 /* 901 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 902 * memory barriers prior to them in the schedule() path, memory 903 * reordering on other CPUs could cause their RCU-tasks read-side 904 * critical sections to extend past the end of the grace period. 905 * However, because these ->nvcsw updates are carried out with 906 * interrupts disabled, we can use synchronize_rcu() to force the 907 * needed ordering on all such CPUs. 908 * 909 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 910 * accesses to be within the grace period, avoiding the need for 911 * memory barriers for ->rcu_tasks_holdout accesses. 912 * 913 * In addition, this synchronize_rcu() waits for exiting tasks 914 * to complete their final preempt_disable() region of execution, 915 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 916 * enforcing the whole region before tasklist removal until 917 * the final schedule() with TASK_DEAD state to be an RCU TASKS 918 * read side critical section. 919 */ 920 synchronize_rcu(); 921 } 922 923 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 924 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 925 926 /** 927 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 928 * @rhp: structure to be used for queueing the RCU updates. 929 * @func: actual callback function to be invoked after the grace period 930 * 931 * The callback function will be invoked some time after a full grace 932 * period elapses, in other words after all currently executing RCU 933 * read-side critical sections have completed. call_rcu_tasks() assumes 934 * that the read-side critical sections end at a voluntary context 935 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 936 * or transition to usermode execution. As such, there are no read-side 937 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 938 * this primitive is intended to determine that all tasks have passed 939 * through a safe state, not so much for data-structure synchronization. 940 * 941 * See the description of call_rcu() for more detailed information on 942 * memory ordering guarantees. 943 */ 944 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 945 { 946 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 947 } 948 EXPORT_SYMBOL_GPL(call_rcu_tasks); 949 950 /** 951 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 952 * 953 * Control will return to the caller some time after a full rcu-tasks 954 * grace period has elapsed, in other words after all currently 955 * executing rcu-tasks read-side critical sections have elapsed. These 956 * read-side critical sections are delimited by calls to schedule(), 957 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 958 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 959 * 960 * This is a very specialized primitive, intended only for a few uses in 961 * tracing and other situations requiring manipulation of function 962 * preambles and profiling hooks. The synchronize_rcu_tasks() function 963 * is not (yet) intended for heavy use from multiple CPUs. 964 * 965 * See the description of synchronize_rcu() for more detailed information 966 * on memory ordering guarantees. 967 */ 968 void synchronize_rcu_tasks(void) 969 { 970 synchronize_rcu_tasks_generic(&rcu_tasks); 971 } 972 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 973 974 /** 975 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 976 * 977 * Although the current implementation is guaranteed to wait, it is not 978 * obligated to, for example, if there are no pending callbacks. 979 */ 980 void rcu_barrier_tasks(void) 981 { 982 rcu_barrier_tasks_generic(&rcu_tasks); 983 } 984 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 985 986 static int __init rcu_spawn_tasks_kthread(void) 987 { 988 cblist_init_generic(&rcu_tasks); 989 rcu_tasks.gp_sleep = HZ / 10; 990 rcu_tasks.init_fract = HZ / 10; 991 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 992 rcu_tasks.pertask_func = rcu_tasks_pertask; 993 rcu_tasks.postscan_func = rcu_tasks_postscan; 994 rcu_tasks.holdouts_func = check_all_holdout_tasks; 995 rcu_tasks.postgp_func = rcu_tasks_postgp; 996 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 997 return 0; 998 } 999 1000 #if !defined(CONFIG_TINY_RCU) 1001 void show_rcu_tasks_classic_gp_kthread(void) 1002 { 1003 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1004 } 1005 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1006 #endif // !defined(CONFIG_TINY_RCU) 1007 1008 /* 1009 * Contribute to protect against tasklist scan blind spot while the 1010 * task is exiting and may be removed from the tasklist. See 1011 * corresponding synchronize_srcu() for further details. 1012 */ 1013 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1014 { 1015 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1016 } 1017 1018 /* 1019 * Contribute to protect against tasklist scan blind spot while the 1020 * task is exiting and may be removed from the tasklist. See 1021 * corresponding synchronize_srcu() for further details. 1022 */ 1023 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1024 { 1025 struct task_struct *t = current; 1026 1027 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1028 } 1029 1030 /* 1031 * Contribute to protect against tasklist scan blind spot while the 1032 * task is exiting and may be removed from the tasklist. See 1033 * corresponding synchronize_srcu() for further details. 1034 */ 1035 void exit_tasks_rcu_finish(void) 1036 { 1037 exit_tasks_rcu_stop(); 1038 exit_tasks_rcu_finish_trace(current); 1039 } 1040 1041 #else /* #ifdef CONFIG_TASKS_RCU */ 1042 void exit_tasks_rcu_start(void) { } 1043 void exit_tasks_rcu_stop(void) { } 1044 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1045 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1046 1047 #ifdef CONFIG_TASKS_RUDE_RCU 1048 1049 //////////////////////////////////////////////////////////////////////// 1050 // 1051 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1052 // passing an empty function to schedule_on_each_cpu(). This approach 1053 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1054 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1055 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1056 // and induces otherwise unnecessary context switches on all online CPUs, 1057 // whether idle or not. 1058 // 1059 // Callback handling is provided by the rcu_tasks_kthread() function. 1060 // 1061 // Ordering is provided by the scheduler's context-switch code. 1062 1063 // Empty function to allow workqueues to force a context switch. 1064 static void rcu_tasks_be_rude(struct work_struct *work) 1065 { 1066 } 1067 1068 // Wait for one rude RCU-tasks grace period. 1069 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1070 { 1071 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1072 schedule_on_each_cpu(rcu_tasks_be_rude); 1073 } 1074 1075 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1076 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1077 "RCU Tasks Rude"); 1078 1079 /** 1080 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1081 * @rhp: structure to be used for queueing the RCU updates. 1082 * @func: actual callback function to be invoked after the grace period 1083 * 1084 * The callback function will be invoked some time after a full grace 1085 * period elapses, in other words after all currently executing RCU 1086 * read-side critical sections have completed. call_rcu_tasks_rude() 1087 * assumes that the read-side critical sections end at context switch, 1088 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1089 * usermode execution is schedulable). As such, there are no read-side 1090 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1091 * this primitive is intended to determine that all tasks have passed 1092 * through a safe state, not so much for data-structure synchronization. 1093 * 1094 * See the description of call_rcu() for more detailed information on 1095 * memory ordering guarantees. 1096 */ 1097 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1098 { 1099 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1100 } 1101 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1102 1103 /** 1104 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1105 * 1106 * Control will return to the caller some time after a rude rcu-tasks 1107 * grace period has elapsed, in other words after all currently 1108 * executing rcu-tasks read-side critical sections have elapsed. These 1109 * read-side critical sections are delimited by calls to schedule(), 1110 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1111 * context), and (in theory, anyway) cond_resched(). 1112 * 1113 * This is a very specialized primitive, intended only for a few uses in 1114 * tracing and other situations requiring manipulation of function preambles 1115 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1116 * (yet) intended for heavy use from multiple CPUs. 1117 * 1118 * See the description of synchronize_rcu() for more detailed information 1119 * on memory ordering guarantees. 1120 */ 1121 void synchronize_rcu_tasks_rude(void) 1122 { 1123 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1124 } 1125 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1126 1127 /** 1128 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1129 * 1130 * Although the current implementation is guaranteed to wait, it is not 1131 * obligated to, for example, if there are no pending callbacks. 1132 */ 1133 void rcu_barrier_tasks_rude(void) 1134 { 1135 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1136 } 1137 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1138 1139 static int __init rcu_spawn_tasks_rude_kthread(void) 1140 { 1141 cblist_init_generic(&rcu_tasks_rude); 1142 rcu_tasks_rude.gp_sleep = HZ / 10; 1143 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1144 return 0; 1145 } 1146 1147 #if !defined(CONFIG_TINY_RCU) 1148 void show_rcu_tasks_rude_gp_kthread(void) 1149 { 1150 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1151 } 1152 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1153 #endif // !defined(CONFIG_TINY_RCU) 1154 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1155 1156 //////////////////////////////////////////////////////////////////////// 1157 // 1158 // Tracing variant of Tasks RCU. This variant is designed to be used 1159 // to protect tracing hooks, including those of BPF. This variant 1160 // therefore: 1161 // 1162 // 1. Has explicit read-side markers to allow finite grace periods 1163 // in the face of in-kernel loops for PREEMPT=n builds. 1164 // 1165 // 2. Protects code in the idle loop, exception entry/exit, and 1166 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1167 // 1168 // 3. Avoids expensive read-side instructions, having overhead similar 1169 // to that of Preemptible RCU. 1170 // 1171 // There are of course downsides. For example, the grace-period code 1172 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1173 // in nohz_full userspace. If needed, these downsides can be at least 1174 // partially remedied. 1175 // 1176 // Perhaps most important, this variant of RCU does not affect the vanilla 1177 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1178 // readers can operate from idle, offline, and exception entry/exit in no 1179 // way allows rcu_preempt and rcu_sched readers to also do so. 1180 // 1181 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1182 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1183 // function sets these function pointers up so that rcu_tasks_wait_gp() 1184 // invokes these functions in this order: 1185 // 1186 // rcu_tasks_trace_pregp_step(): 1187 // Disables CPU hotplug, adds all currently executing tasks to the 1188 // holdout list, then checks the state of all tasks that blocked 1189 // or were preempted within their current RCU Tasks Trace read-side 1190 // critical section, adding them to the holdout list if appropriate. 1191 // Finally, this function re-enables CPU hotplug. 1192 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1193 // rcu_tasks_trace_postscan(): 1194 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1195 // to finish exiting. 1196 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1197 // Scans the holdout list, attempting to identify a quiescent state 1198 // for each task on the list. If there is a quiescent state, the 1199 // corresponding task is removed from the holdout list. Once this 1200 // list is empty, the grace period has completed. 1201 // rcu_tasks_trace_postgp(): 1202 // Provides the needed full memory barrier and does debug checks. 1203 // 1204 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1205 // 1206 // Pre-grace-period update-side code is ordered before the grace period 1207 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1208 // read-side code is ordered before the grace period by atomic operations 1209 // on .b.need_qs flag of each task involved in this process, or by scheduler 1210 // context-switch ordering (for locked-down non-running readers). 1211 1212 // The lockdep state must be outside of #ifdef to be useful. 1213 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1214 static struct lock_class_key rcu_lock_trace_key; 1215 struct lockdep_map rcu_trace_lock_map = 1216 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1217 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1218 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1219 1220 #ifdef CONFIG_TASKS_TRACE_RCU 1221 1222 // Record outstanding IPIs to each CPU. No point in sending two... 1223 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1224 1225 // The number of detections of task quiescent state relying on 1226 // heavyweight readers executing explicit memory barriers. 1227 static unsigned long n_heavy_reader_attempts; 1228 static unsigned long n_heavy_reader_updates; 1229 static unsigned long n_heavy_reader_ofl_updates; 1230 static unsigned long n_trc_holdouts; 1231 1232 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1233 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1234 "RCU Tasks Trace"); 1235 1236 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1237 static u8 rcu_ld_need_qs(struct task_struct *t) 1238 { 1239 smp_mb(); // Enforce full grace-period ordering. 1240 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1241 } 1242 1243 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1244 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1245 { 1246 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1247 smp_mb(); // Enforce full grace-period ordering. 1248 } 1249 1250 /* 1251 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1252 * the four-byte operand-size restriction of some platforms. 1253 * Returns the old value, which is often ignored. 1254 */ 1255 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1256 { 1257 union rcu_special ret; 1258 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1259 union rcu_special trs_new = trs_old; 1260 1261 if (trs_old.b.need_qs != old) 1262 return trs_old.b.need_qs; 1263 trs_new.b.need_qs = new; 1264 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1265 return ret.b.need_qs; 1266 } 1267 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1268 1269 /* 1270 * If we are the last reader, signal the grace-period kthread. 1271 * Also remove from the per-CPU list of blocked tasks. 1272 */ 1273 void rcu_read_unlock_trace_special(struct task_struct *t) 1274 { 1275 unsigned long flags; 1276 struct rcu_tasks_percpu *rtpcp; 1277 union rcu_special trs; 1278 1279 // Open-coded full-word version of rcu_ld_need_qs(). 1280 smp_mb(); // Enforce full grace-period ordering. 1281 trs = smp_load_acquire(&t->trc_reader_special); 1282 1283 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1284 smp_mb(); // Pairs with update-side barriers. 1285 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1286 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1287 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1288 TRC_NEED_QS_CHECKED); 1289 1290 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1291 } 1292 if (trs.b.blocked) { 1293 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1294 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1295 list_del_init(&t->trc_blkd_node); 1296 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1297 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1298 } 1299 WRITE_ONCE(t->trc_reader_nesting, 0); 1300 } 1301 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1302 1303 /* Add a newly blocked reader task to its CPU's list. */ 1304 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1305 { 1306 unsigned long flags; 1307 struct rcu_tasks_percpu *rtpcp; 1308 1309 local_irq_save(flags); 1310 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1311 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1312 t->trc_blkd_cpu = smp_processor_id(); 1313 if (!rtpcp->rtp_blkd_tasks.next) 1314 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1315 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1316 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1317 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1318 } 1319 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1320 1321 /* Add a task to the holdout list, if it is not already on the list. */ 1322 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1323 { 1324 if (list_empty(&t->trc_holdout_list)) { 1325 get_task_struct(t); 1326 list_add(&t->trc_holdout_list, bhp); 1327 n_trc_holdouts++; 1328 } 1329 } 1330 1331 /* Remove a task from the holdout list, if it is in fact present. */ 1332 static void trc_del_holdout(struct task_struct *t) 1333 { 1334 if (!list_empty(&t->trc_holdout_list)) { 1335 list_del_init(&t->trc_holdout_list); 1336 put_task_struct(t); 1337 n_trc_holdouts--; 1338 } 1339 } 1340 1341 /* IPI handler to check task state. */ 1342 static void trc_read_check_handler(void *t_in) 1343 { 1344 int nesting; 1345 struct task_struct *t = current; 1346 struct task_struct *texp = t_in; 1347 1348 // If the task is no longer running on this CPU, leave. 1349 if (unlikely(texp != t)) 1350 goto reset_ipi; // Already on holdout list, so will check later. 1351 1352 // If the task is not in a read-side critical section, and 1353 // if this is the last reader, awaken the grace-period kthread. 1354 nesting = READ_ONCE(t->trc_reader_nesting); 1355 if (likely(!nesting)) { 1356 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1357 goto reset_ipi; 1358 } 1359 // If we are racing with an rcu_read_unlock_trace(), try again later. 1360 if (unlikely(nesting < 0)) 1361 goto reset_ipi; 1362 1363 // Get here if the task is in a read-side critical section. 1364 // Set its state so that it will update state for the grace-period 1365 // kthread upon exit from that critical section. 1366 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1367 1368 reset_ipi: 1369 // Allow future IPIs to be sent on CPU and for task. 1370 // Also order this IPI handler against any later manipulations of 1371 // the intended task. 1372 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1373 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1374 } 1375 1376 /* Callback function for scheduler to check locked-down task. */ 1377 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1378 { 1379 struct list_head *bhp = bhp_in; 1380 int cpu = task_cpu(t); 1381 int nesting; 1382 bool ofl = cpu_is_offline(cpu); 1383 1384 if (task_curr(t) && !ofl) { 1385 // If no chance of heavyweight readers, do it the hard way. 1386 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1387 return -EINVAL; 1388 1389 // If heavyweight readers are enabled on the remote task, 1390 // we can inspect its state despite its currently running. 1391 // However, we cannot safely change its state. 1392 n_heavy_reader_attempts++; 1393 // Check for "running" idle tasks on offline CPUs. 1394 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1395 return -EINVAL; // No quiescent state, do it the hard way. 1396 n_heavy_reader_updates++; 1397 nesting = 0; 1398 } else { 1399 // The task is not running, so C-language access is safe. 1400 nesting = t->trc_reader_nesting; 1401 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t)); 1402 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1403 n_heavy_reader_ofl_updates++; 1404 } 1405 1406 // If not exiting a read-side critical section, mark as checked 1407 // so that the grace-period kthread will remove it from the 1408 // holdout list. 1409 if (!nesting) { 1410 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1411 return 0; // In QS, so done. 1412 } 1413 if (nesting < 0) 1414 return -EINVAL; // Reader transitioning, try again later. 1415 1416 // The task is in a read-side critical section, so set up its 1417 // state so that it will update state upon exit from that critical 1418 // section. 1419 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1420 trc_add_holdout(t, bhp); 1421 return 0; 1422 } 1423 1424 /* Attempt to extract the state for the specified task. */ 1425 static void trc_wait_for_one_reader(struct task_struct *t, 1426 struct list_head *bhp) 1427 { 1428 int cpu; 1429 1430 // If a previous IPI is still in flight, let it complete. 1431 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1432 return; 1433 1434 // The current task had better be in a quiescent state. 1435 if (t == current) { 1436 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1437 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1438 return; 1439 } 1440 1441 // Attempt to nail down the task for inspection. 1442 get_task_struct(t); 1443 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1444 put_task_struct(t); 1445 return; 1446 } 1447 put_task_struct(t); 1448 1449 // If this task is not yet on the holdout list, then we are in 1450 // an RCU read-side critical section. Otherwise, the invocation of 1451 // trc_add_holdout() that added it to the list did the necessary 1452 // get_task_struct(). Either way, the task cannot be freed out 1453 // from under this code. 1454 1455 // If currently running, send an IPI, either way, add to list. 1456 trc_add_holdout(t, bhp); 1457 if (task_curr(t) && 1458 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1459 // The task is currently running, so try IPIing it. 1460 cpu = task_cpu(t); 1461 1462 // If there is already an IPI outstanding, let it happen. 1463 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1464 return; 1465 1466 per_cpu(trc_ipi_to_cpu, cpu) = true; 1467 t->trc_ipi_to_cpu = cpu; 1468 rcu_tasks_trace.n_ipis++; 1469 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1470 // Just in case there is some other reason for 1471 // failure than the target CPU being offline. 1472 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1473 __func__, cpu); 1474 rcu_tasks_trace.n_ipis_fails++; 1475 per_cpu(trc_ipi_to_cpu, cpu) = false; 1476 t->trc_ipi_to_cpu = -1; 1477 } 1478 } 1479 } 1480 1481 /* 1482 * Initialize for first-round processing for the specified task. 1483 * Return false if task is NULL or already taken care of, true otherwise. 1484 */ 1485 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1486 { 1487 // During early boot when there is only the one boot CPU, there 1488 // is no idle task for the other CPUs. Also, the grace-period 1489 // kthread is always in a quiescent state. In addition, just return 1490 // if this task is already on the list. 1491 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1492 return false; 1493 1494 rcu_st_need_qs(t, 0); 1495 t->trc_ipi_to_cpu = -1; 1496 return true; 1497 } 1498 1499 /* Do first-round processing for the specified task. */ 1500 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1501 { 1502 if (rcu_tasks_trace_pertask_prep(t, true)) 1503 trc_wait_for_one_reader(t, hop); 1504 } 1505 1506 /* Initialize for a new RCU-tasks-trace grace period. */ 1507 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1508 { 1509 LIST_HEAD(blkd_tasks); 1510 int cpu; 1511 unsigned long flags; 1512 struct rcu_tasks_percpu *rtpcp; 1513 struct task_struct *t; 1514 1515 // There shouldn't be any old IPIs, but... 1516 for_each_possible_cpu(cpu) 1517 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1518 1519 // Disable CPU hotplug across the CPU scan for the benefit of 1520 // any IPIs that might be needed. This also waits for all readers 1521 // in CPU-hotplug code paths. 1522 cpus_read_lock(); 1523 1524 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1525 // allow safe access to the hop list. 1526 for_each_online_cpu(cpu) { 1527 rcu_read_lock(); 1528 t = cpu_curr_snapshot(cpu); 1529 if (rcu_tasks_trace_pertask_prep(t, true)) 1530 trc_add_holdout(t, hop); 1531 rcu_read_unlock(); 1532 cond_resched_tasks_rcu_qs(); 1533 } 1534 1535 // Only after all running tasks have been accounted for is it 1536 // safe to take care of the tasks that have blocked within their 1537 // current RCU tasks trace read-side critical section. 1538 for_each_possible_cpu(cpu) { 1539 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1540 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1541 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1542 while (!list_empty(&blkd_tasks)) { 1543 rcu_read_lock(); 1544 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1545 list_del_init(&t->trc_blkd_node); 1546 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1547 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1548 rcu_tasks_trace_pertask(t, hop); 1549 rcu_read_unlock(); 1550 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1551 } 1552 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1553 cond_resched_tasks_rcu_qs(); 1554 } 1555 1556 // Re-enable CPU hotplug now that the holdout list is populated. 1557 cpus_read_unlock(); 1558 } 1559 1560 /* 1561 * Do intermediate processing between task and holdout scans. 1562 */ 1563 static void rcu_tasks_trace_postscan(struct list_head *hop) 1564 { 1565 // Wait for late-stage exiting tasks to finish exiting. 1566 // These might have passed the call to exit_tasks_rcu_finish(). 1567 1568 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1569 synchronize_rcu(); 1570 // Any tasks that exit after this point will set 1571 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1572 } 1573 1574 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1575 struct trc_stall_chk_rdr { 1576 int nesting; 1577 int ipi_to_cpu; 1578 u8 needqs; 1579 }; 1580 1581 static int trc_check_slow_task(struct task_struct *t, void *arg) 1582 { 1583 struct trc_stall_chk_rdr *trc_rdrp = arg; 1584 1585 if (task_curr(t) && cpu_online(task_cpu(t))) 1586 return false; // It is running, so decline to inspect it. 1587 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1588 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1589 trc_rdrp->needqs = rcu_ld_need_qs(t); 1590 return true; 1591 } 1592 1593 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1594 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1595 { 1596 int cpu; 1597 struct trc_stall_chk_rdr trc_rdr; 1598 bool is_idle_tsk = is_idle_task(t); 1599 1600 if (*firstreport) { 1601 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1602 *firstreport = false; 1603 } 1604 cpu = task_cpu(t); 1605 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1606 pr_alert("P%d: %c%c\n", 1607 t->pid, 1608 ".I"[t->trc_ipi_to_cpu >= 0], 1609 ".i"[is_idle_tsk]); 1610 else 1611 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1612 t->pid, 1613 ".I"[trc_rdr.ipi_to_cpu >= 0], 1614 ".i"[is_idle_tsk], 1615 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1616 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1617 trc_rdr.nesting, 1618 " !CN"[trc_rdr.needqs & 0x3], 1619 " ?"[trc_rdr.needqs > 0x3], 1620 cpu, cpu_online(cpu) ? "" : "(offline)"); 1621 sched_show_task(t); 1622 } 1623 1624 /* List stalled IPIs for RCU tasks trace. */ 1625 static void show_stalled_ipi_trace(void) 1626 { 1627 int cpu; 1628 1629 for_each_possible_cpu(cpu) 1630 if (per_cpu(trc_ipi_to_cpu, cpu)) 1631 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1632 } 1633 1634 /* Do one scan of the holdout list. */ 1635 static void check_all_holdout_tasks_trace(struct list_head *hop, 1636 bool needreport, bool *firstreport) 1637 { 1638 struct task_struct *g, *t; 1639 1640 // Disable CPU hotplug across the holdout list scan for IPIs. 1641 cpus_read_lock(); 1642 1643 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1644 // If safe and needed, try to check the current task. 1645 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1646 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1647 trc_wait_for_one_reader(t, hop); 1648 1649 // If check succeeded, remove this task from the list. 1650 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1651 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1652 trc_del_holdout(t); 1653 else if (needreport) 1654 show_stalled_task_trace(t, firstreport); 1655 cond_resched_tasks_rcu_qs(); 1656 } 1657 1658 // Re-enable CPU hotplug now that the holdout list scan has completed. 1659 cpus_read_unlock(); 1660 1661 if (needreport) { 1662 if (*firstreport) 1663 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1664 show_stalled_ipi_trace(); 1665 } 1666 } 1667 1668 static void rcu_tasks_trace_empty_fn(void *unused) 1669 { 1670 } 1671 1672 /* Wait for grace period to complete and provide ordering. */ 1673 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1674 { 1675 int cpu; 1676 1677 // Wait for any lingering IPI handlers to complete. Note that 1678 // if a CPU has gone offline or transitioned to userspace in the 1679 // meantime, all IPI handlers should have been drained beforehand. 1680 // Yes, this assumes that CPUs process IPIs in order. If that ever 1681 // changes, there will need to be a recheck and/or timed wait. 1682 for_each_online_cpu(cpu) 1683 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1684 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1685 1686 smp_mb(); // Caller's code must be ordered after wakeup. 1687 // Pairs with pretty much every ordering primitive. 1688 } 1689 1690 /* Report any needed quiescent state for this exiting task. */ 1691 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1692 { 1693 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1694 1695 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1696 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1697 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1698 rcu_read_unlock_trace_special(t); 1699 else 1700 WRITE_ONCE(t->trc_reader_nesting, 0); 1701 } 1702 1703 /** 1704 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1705 * @rhp: structure to be used for queueing the RCU updates. 1706 * @func: actual callback function to be invoked after the grace period 1707 * 1708 * The callback function will be invoked some time after a trace rcu-tasks 1709 * grace period elapses, in other words after all currently executing 1710 * trace rcu-tasks read-side critical sections have completed. These 1711 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1712 * and rcu_read_unlock_trace(). 1713 * 1714 * See the description of call_rcu() for more detailed information on 1715 * memory ordering guarantees. 1716 */ 1717 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1718 { 1719 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1720 } 1721 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1722 1723 /** 1724 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1725 * 1726 * Control will return to the caller some time after a trace rcu-tasks 1727 * grace period has elapsed, in other words after all currently executing 1728 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1729 * critical sections are delimited by calls to rcu_read_lock_trace() 1730 * and rcu_read_unlock_trace(). 1731 * 1732 * This is a very specialized primitive, intended only for a few uses in 1733 * tracing and other situations requiring manipulation of function preambles 1734 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1735 * (yet) intended for heavy use from multiple CPUs. 1736 * 1737 * See the description of synchronize_rcu() for more detailed information 1738 * on memory ordering guarantees. 1739 */ 1740 void synchronize_rcu_tasks_trace(void) 1741 { 1742 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1743 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1744 } 1745 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1746 1747 /** 1748 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1749 * 1750 * Although the current implementation is guaranteed to wait, it is not 1751 * obligated to, for example, if there are no pending callbacks. 1752 */ 1753 void rcu_barrier_tasks_trace(void) 1754 { 1755 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1756 } 1757 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1758 1759 static int __init rcu_spawn_tasks_trace_kthread(void) 1760 { 1761 cblist_init_generic(&rcu_tasks_trace); 1762 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1763 rcu_tasks_trace.gp_sleep = HZ / 10; 1764 rcu_tasks_trace.init_fract = HZ / 10; 1765 } else { 1766 rcu_tasks_trace.gp_sleep = HZ / 200; 1767 if (rcu_tasks_trace.gp_sleep <= 0) 1768 rcu_tasks_trace.gp_sleep = 1; 1769 rcu_tasks_trace.init_fract = HZ / 200; 1770 if (rcu_tasks_trace.init_fract <= 0) 1771 rcu_tasks_trace.init_fract = 1; 1772 } 1773 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1774 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1775 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1776 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1777 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1778 return 0; 1779 } 1780 1781 #if !defined(CONFIG_TINY_RCU) 1782 void show_rcu_tasks_trace_gp_kthread(void) 1783 { 1784 char buf[64]; 1785 1786 sprintf(buf, "N%lu h:%lu/%lu/%lu", 1787 data_race(n_trc_holdouts), 1788 data_race(n_heavy_reader_ofl_updates), 1789 data_race(n_heavy_reader_updates), 1790 data_race(n_heavy_reader_attempts)); 1791 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1792 } 1793 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1794 #endif // !defined(CONFIG_TINY_RCU) 1795 1796 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1797 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1798 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1799 1800 #ifndef CONFIG_TINY_RCU 1801 void show_rcu_tasks_gp_kthreads(void) 1802 { 1803 show_rcu_tasks_classic_gp_kthread(); 1804 show_rcu_tasks_rude_gp_kthread(); 1805 show_rcu_tasks_trace_gp_kthread(); 1806 } 1807 #endif /* #ifndef CONFIG_TINY_RCU */ 1808 1809 #ifdef CONFIG_PROVE_RCU 1810 struct rcu_tasks_test_desc { 1811 struct rcu_head rh; 1812 const char *name; 1813 bool notrun; 1814 unsigned long runstart; 1815 }; 1816 1817 static struct rcu_tasks_test_desc tests[] = { 1818 { 1819 .name = "call_rcu_tasks()", 1820 /* If not defined, the test is skipped. */ 1821 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1822 }, 1823 { 1824 .name = "call_rcu_tasks_rude()", 1825 /* If not defined, the test is skipped. */ 1826 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1827 }, 1828 { 1829 .name = "call_rcu_tasks_trace()", 1830 /* If not defined, the test is skipped. */ 1831 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 1832 } 1833 }; 1834 1835 static void test_rcu_tasks_callback(struct rcu_head *rhp) 1836 { 1837 struct rcu_tasks_test_desc *rttd = 1838 container_of(rhp, struct rcu_tasks_test_desc, rh); 1839 1840 pr_info("Callback from %s invoked.\n", rttd->name); 1841 1842 rttd->notrun = false; 1843 } 1844 1845 static void rcu_tasks_initiate_self_tests(void) 1846 { 1847 pr_info("Running RCU-tasks wait API self tests\n"); 1848 #ifdef CONFIG_TASKS_RCU 1849 tests[0].runstart = jiffies; 1850 synchronize_rcu_tasks(); 1851 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 1852 #endif 1853 1854 #ifdef CONFIG_TASKS_RUDE_RCU 1855 tests[1].runstart = jiffies; 1856 synchronize_rcu_tasks_rude(); 1857 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 1858 #endif 1859 1860 #ifdef CONFIG_TASKS_TRACE_RCU 1861 tests[2].runstart = jiffies; 1862 synchronize_rcu_tasks_trace(); 1863 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 1864 #endif 1865 } 1866 1867 /* 1868 * Return: 0 - test passed 1869 * 1 - test failed, but have not timed out yet 1870 * -1 - test failed and timed out 1871 */ 1872 static int rcu_tasks_verify_self_tests(void) 1873 { 1874 int ret = 0; 1875 int i; 1876 unsigned long bst = rcu_task_stall_timeout; 1877 1878 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 1879 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 1880 for (i = 0; i < ARRAY_SIZE(tests); i++) { 1881 while (tests[i].notrun) { // still hanging. 1882 if (time_after(jiffies, tests[i].runstart + bst)) { 1883 pr_err("%s has failed boot-time tests.\n", tests[i].name); 1884 ret = -1; 1885 break; 1886 } 1887 ret = 1; 1888 break; 1889 } 1890 } 1891 WARN_ON(ret < 0); 1892 1893 return ret; 1894 } 1895 1896 /* 1897 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 1898 * test passes or has timed out. 1899 */ 1900 static struct delayed_work rcu_tasks_verify_work; 1901 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 1902 { 1903 int ret = rcu_tasks_verify_self_tests(); 1904 1905 if (ret <= 0) 1906 return; 1907 1908 /* Test fails but not timed out yet, reschedule another check */ 1909 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 1910 } 1911 1912 static int rcu_tasks_verify_schedule_work(void) 1913 { 1914 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 1915 rcu_tasks_verify_work_fn(NULL); 1916 return 0; 1917 } 1918 late_initcall(rcu_tasks_verify_schedule_work); 1919 #else /* #ifdef CONFIG_PROVE_RCU */ 1920 static void rcu_tasks_initiate_self_tests(void) { } 1921 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 1922 1923 void __init rcu_init_tasks_generic(void) 1924 { 1925 #ifdef CONFIG_TASKS_RCU 1926 rcu_spawn_tasks_kthread(); 1927 #endif 1928 1929 #ifdef CONFIG_TASKS_RUDE_RCU 1930 rcu_spawn_tasks_rude_kthread(); 1931 #endif 1932 1933 #ifdef CONFIG_TASKS_TRACE_RCU 1934 rcu_spawn_tasks_trace_kthread(); 1935 #endif 1936 1937 // Run the self-tests. 1938 rcu_tasks_initiate_self_tests(); 1939 } 1940 1941 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 1942 static inline void rcu_tasks_bootup_oddness(void) {} 1943 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 1944