xref: /openbmc/linux/kernel/rcu/tasks.h (revision 10d9f8ed)
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Task-based RCU implementations.
4  *
5  * Copyright (C) 2020 Paul E. McKenney
6  */
7 
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10 
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14 
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22 
23 /**
24  * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25  * @cblist: Callback list.
26  * @lock: Lock protecting per-CPU callback list.
27  * @rtp_jiffies: Jiffies counter value for statistics.
28  * @lazy_timer: Timer to unlazify callbacks.
29  * @urgent_gp: Number of additional non-lazy grace periods.
30  * @rtp_n_lock_retries: Rough lock-contention statistic.
31  * @rtp_work: Work queue for invoking callbacks.
32  * @rtp_irq_work: IRQ work queue for deferred wakeups.
33  * @barrier_q_head: RCU callback for barrier operation.
34  * @rtp_blkd_tasks: List of tasks blocked as readers.
35  * @cpu: CPU number corresponding to this entry.
36  * @rtpp: Pointer to the rcu_tasks structure.
37  */
38 struct rcu_tasks_percpu {
39 	struct rcu_segcblist cblist;
40 	raw_spinlock_t __private lock;
41 	unsigned long rtp_jiffies;
42 	unsigned long rtp_n_lock_retries;
43 	struct timer_list lazy_timer;
44 	unsigned int urgent_gp;
45 	struct work_struct rtp_work;
46 	struct irq_work rtp_irq_work;
47 	struct rcu_head barrier_q_head;
48 	struct list_head rtp_blkd_tasks;
49 	int cpu;
50 	struct rcu_tasks *rtpp;
51 };
52 
53 /**
54  * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
55  * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
56  * @cbs_gbl_lock: Lock protecting callback list.
57  * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
58  * @gp_func: This flavor's grace-period-wait function.
59  * @gp_state: Grace period's most recent state transition (debugging).
60  * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
61  * @init_fract: Initial backoff sleep interval.
62  * @gp_jiffies: Time of last @gp_state transition.
63  * @gp_start: Most recent grace-period start in jiffies.
64  * @tasks_gp_seq: Number of grace periods completed since boot.
65  * @n_ipis: Number of IPIs sent to encourage grace periods to end.
66  * @n_ipis_fails: Number of IPI-send failures.
67  * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
68  * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
69  * @pregp_func: This flavor's pre-grace-period function (optional).
70  * @pertask_func: This flavor's per-task scan function (optional).
71  * @postscan_func: This flavor's post-task scan function (optional).
72  * @holdouts_func: This flavor's holdout-list scan function (optional).
73  * @postgp_func: This flavor's post-grace-period function (optional).
74  * @call_func: This flavor's call_rcu()-equivalent function.
75  * @rtpcpu: This flavor's rcu_tasks_percpu structure.
76  * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
77  * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
78  * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
79  * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
80  * @barrier_q_mutex: Serialize barrier operations.
81  * @barrier_q_count: Number of queues being waited on.
82  * @barrier_q_completion: Barrier wait/wakeup mechanism.
83  * @barrier_q_seq: Sequence number for barrier operations.
84  * @name: This flavor's textual name.
85  * @kname: This flavor's kthread name.
86  */
87 struct rcu_tasks {
88 	struct rcuwait cbs_wait;
89 	raw_spinlock_t cbs_gbl_lock;
90 	struct mutex tasks_gp_mutex;
91 	int gp_state;
92 	int gp_sleep;
93 	int init_fract;
94 	unsigned long gp_jiffies;
95 	unsigned long gp_start;
96 	unsigned long tasks_gp_seq;
97 	unsigned long n_ipis;
98 	unsigned long n_ipis_fails;
99 	struct task_struct *kthread_ptr;
100 	unsigned long lazy_jiffies;
101 	rcu_tasks_gp_func_t gp_func;
102 	pregp_func_t pregp_func;
103 	pertask_func_t pertask_func;
104 	postscan_func_t postscan_func;
105 	holdouts_func_t holdouts_func;
106 	postgp_func_t postgp_func;
107 	call_rcu_func_t call_func;
108 	struct rcu_tasks_percpu __percpu *rtpcpu;
109 	int percpu_enqueue_shift;
110 	int percpu_enqueue_lim;
111 	int percpu_dequeue_lim;
112 	unsigned long percpu_dequeue_gpseq;
113 	struct mutex barrier_q_mutex;
114 	atomic_t barrier_q_count;
115 	struct completion barrier_q_completion;
116 	unsigned long barrier_q_seq;
117 	char *name;
118 	char *kname;
119 };
120 
121 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
122 
123 #define DEFINE_RCU_TASKS(rt_name, gp, call, n)						\
124 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = {			\
125 	.lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock),		\
126 	.rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup),			\
127 };											\
128 static struct rcu_tasks rt_name =							\
129 {											\
130 	.cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait),				\
131 	.cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock),			\
132 	.tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex),			\
133 	.gp_func = gp,									\
134 	.call_func = call,								\
135 	.rtpcpu = &rt_name ## __percpu,							\
136 	.lazy_jiffies = DIV_ROUND_UP(HZ, 4),						\
137 	.name = n,									\
138 	.percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS),				\
139 	.percpu_enqueue_lim = 1,							\
140 	.percpu_dequeue_lim = 1,							\
141 	.barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex),		\
142 	.barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT,				\
143 	.kname = #rt_name,								\
144 }
145 
146 #ifdef CONFIG_TASKS_RCU
147 /* Track exiting tasks in order to allow them to be waited for. */
148 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
149 
150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
153 #endif
154 
155 /* Avoid IPIing CPUs early in the grace period. */
156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
158 module_param(rcu_task_ipi_delay, int, 0644);
159 
160 /* Control stall timeouts.  Disable with <= 0, otherwise jiffies till stall. */
161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
164 module_param(rcu_task_stall_timeout, int, 0644);
165 #define RCU_TASK_STALL_INFO (HZ * 10)
166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
167 module_param(rcu_task_stall_info, int, 0644);
168 static int rcu_task_stall_info_mult __read_mostly = 3;
169 module_param(rcu_task_stall_info_mult, int, 0444);
170 
171 static int rcu_task_enqueue_lim __read_mostly = -1;
172 module_param(rcu_task_enqueue_lim, int, 0444);
173 
174 static bool rcu_task_cb_adjust;
175 static int rcu_task_contend_lim __read_mostly = 100;
176 module_param(rcu_task_contend_lim, int, 0444);
177 static int rcu_task_collapse_lim __read_mostly = 10;
178 module_param(rcu_task_collapse_lim, int, 0444);
179 static int rcu_task_lazy_lim __read_mostly = 32;
180 module_param(rcu_task_lazy_lim, int, 0444);
181 
182 /* RCU tasks grace-period state for debugging. */
183 #define RTGS_INIT		 0
184 #define RTGS_WAIT_WAIT_CBS	 1
185 #define RTGS_WAIT_GP		 2
186 #define RTGS_PRE_WAIT_GP	 3
187 #define RTGS_SCAN_TASKLIST	 4
188 #define RTGS_POST_SCAN_TASKLIST	 5
189 #define RTGS_WAIT_SCAN_HOLDOUTS	 6
190 #define RTGS_SCAN_HOLDOUTS	 7
191 #define RTGS_POST_GP		 8
192 #define RTGS_WAIT_READERS	 9
193 #define RTGS_INVOKE_CBS		10
194 #define RTGS_WAIT_CBS		11
195 #ifndef CONFIG_TINY_RCU
196 static const char * const rcu_tasks_gp_state_names[] = {
197 	"RTGS_INIT",
198 	"RTGS_WAIT_WAIT_CBS",
199 	"RTGS_WAIT_GP",
200 	"RTGS_PRE_WAIT_GP",
201 	"RTGS_SCAN_TASKLIST",
202 	"RTGS_POST_SCAN_TASKLIST",
203 	"RTGS_WAIT_SCAN_HOLDOUTS",
204 	"RTGS_SCAN_HOLDOUTS",
205 	"RTGS_POST_GP",
206 	"RTGS_WAIT_READERS",
207 	"RTGS_INVOKE_CBS",
208 	"RTGS_WAIT_CBS",
209 };
210 #endif /* #ifndef CONFIG_TINY_RCU */
211 
212 ////////////////////////////////////////////////////////////////////////
213 //
214 // Generic code.
215 
216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
217 
218 /* Record grace-period phase and time. */
219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
220 {
221 	rtp->gp_state = newstate;
222 	rtp->gp_jiffies = jiffies;
223 }
224 
225 #ifndef CONFIG_TINY_RCU
226 /* Return state name. */
227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
228 {
229 	int i = data_race(rtp->gp_state); // Let KCSAN detect update races
230 	int j = READ_ONCE(i); // Prevent the compiler from reading twice
231 
232 	if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
233 		return "???";
234 	return rcu_tasks_gp_state_names[j];
235 }
236 #endif /* #ifndef CONFIG_TINY_RCU */
237 
238 // Initialize per-CPU callback lists for the specified flavor of
239 // Tasks RCU.  Do not enqueue callbacks before this function is invoked.
240 static void cblist_init_generic(struct rcu_tasks *rtp)
241 {
242 	int cpu;
243 	unsigned long flags;
244 	int lim;
245 	int shift;
246 
247 	if (rcu_task_enqueue_lim < 0) {
248 		rcu_task_enqueue_lim = 1;
249 		rcu_task_cb_adjust = true;
250 	} else if (rcu_task_enqueue_lim == 0) {
251 		rcu_task_enqueue_lim = 1;
252 	}
253 	lim = rcu_task_enqueue_lim;
254 
255 	if (lim > nr_cpu_ids)
256 		lim = nr_cpu_ids;
257 	shift = ilog2(nr_cpu_ids / lim);
258 	if (((nr_cpu_ids - 1) >> shift) >= lim)
259 		shift++;
260 	WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
261 	WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
262 	smp_store_release(&rtp->percpu_enqueue_lim, lim);
263 	for_each_possible_cpu(cpu) {
264 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
265 
266 		WARN_ON_ONCE(!rtpcp);
267 		if (cpu)
268 			raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
269 		local_irq_save(flags);  // serialize initialization
270 		if (rcu_segcblist_empty(&rtpcp->cblist))
271 			rcu_segcblist_init(&rtpcp->cblist);
272 		local_irq_restore(flags);
273 		INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
274 		rtpcp->cpu = cpu;
275 		rtpcp->rtpp = rtp;
276 		if (!rtpcp->rtp_blkd_tasks.next)
277 			INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
278 	}
279 
280 	pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
281 			data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust);
282 }
283 
284 // Compute wakeup time for lazy callback timer.
285 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
286 {
287 	return jiffies + rtp->lazy_jiffies;
288 }
289 
290 // Timer handler that unlazifies lazy callbacks.
291 static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
292 {
293 	unsigned long flags;
294 	bool needwake = false;
295 	struct rcu_tasks *rtp;
296 	struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
297 
298 	rtp = rtpcp->rtpp;
299 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
300 	if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
301 		if (!rtpcp->urgent_gp)
302 			rtpcp->urgent_gp = 1;
303 		needwake = true;
304 		mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
305 	}
306 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
307 	if (needwake)
308 		rcuwait_wake_up(&rtp->cbs_wait);
309 }
310 
311 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
312 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
313 {
314 	struct rcu_tasks *rtp;
315 	struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
316 
317 	rtp = rtpcp->rtpp;
318 	rcuwait_wake_up(&rtp->cbs_wait);
319 }
320 
321 // Enqueue a callback for the specified flavor of Tasks RCU.
322 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
323 				   struct rcu_tasks *rtp)
324 {
325 	int chosen_cpu;
326 	unsigned long flags;
327 	bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
328 	int ideal_cpu;
329 	unsigned long j;
330 	bool needadjust = false;
331 	bool needwake;
332 	struct rcu_tasks_percpu *rtpcp;
333 
334 	rhp->next = NULL;
335 	rhp->func = func;
336 	local_irq_save(flags);
337 	rcu_read_lock();
338 	ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
339 	chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
340 	rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
341 	if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
342 		raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
343 		j = jiffies;
344 		if (rtpcp->rtp_jiffies != j) {
345 			rtpcp->rtp_jiffies = j;
346 			rtpcp->rtp_n_lock_retries = 0;
347 		}
348 		if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
349 		    READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
350 			needadjust = true;  // Defer adjustment to avoid deadlock.
351 	}
352 	// Queuing callbacks before initialization not yet supported.
353 	if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
354 		rcu_segcblist_init(&rtpcp->cblist);
355 	needwake = (func == wakeme_after_rcu) ||
356 		   (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
357 	if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
358 		if (rtp->lazy_jiffies)
359 			mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
360 		else
361 			needwake = rcu_segcblist_empty(&rtpcp->cblist);
362 	}
363 	if (needwake)
364 		rtpcp->urgent_gp = 3;
365 	rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
366 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
367 	if (unlikely(needadjust)) {
368 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
369 		if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
370 			WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
371 			WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
372 			smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
373 			pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
374 		}
375 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
376 	}
377 	rcu_read_unlock();
378 	/* We can't create the thread unless interrupts are enabled. */
379 	if (needwake && READ_ONCE(rtp->kthread_ptr))
380 		irq_work_queue(&rtpcp->rtp_irq_work);
381 }
382 
383 // RCU callback function for rcu_barrier_tasks_generic().
384 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
385 {
386 	struct rcu_tasks *rtp;
387 	struct rcu_tasks_percpu *rtpcp;
388 
389 	rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
390 	rtp = rtpcp->rtpp;
391 	if (atomic_dec_and_test(&rtp->barrier_q_count))
392 		complete(&rtp->barrier_q_completion);
393 }
394 
395 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
396 // Operates in a manner similar to rcu_barrier().
397 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
398 {
399 	int cpu;
400 	unsigned long flags;
401 	struct rcu_tasks_percpu *rtpcp;
402 	unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
403 
404 	mutex_lock(&rtp->barrier_q_mutex);
405 	if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
406 		smp_mb();
407 		mutex_unlock(&rtp->barrier_q_mutex);
408 		return;
409 	}
410 	rcu_seq_start(&rtp->barrier_q_seq);
411 	init_completion(&rtp->barrier_q_completion);
412 	atomic_set(&rtp->barrier_q_count, 2);
413 	for_each_possible_cpu(cpu) {
414 		if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
415 			break;
416 		rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
417 		rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
418 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
419 		if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
420 			atomic_inc(&rtp->barrier_q_count);
421 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
422 	}
423 	if (atomic_sub_and_test(2, &rtp->barrier_q_count))
424 		complete(&rtp->barrier_q_completion);
425 	wait_for_completion(&rtp->barrier_q_completion);
426 	rcu_seq_end(&rtp->barrier_q_seq);
427 	mutex_unlock(&rtp->barrier_q_mutex);
428 }
429 
430 // Advance callbacks and indicate whether either a grace period or
431 // callback invocation is needed.
432 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
433 {
434 	int cpu;
435 	unsigned long flags;
436 	bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
437 	long n;
438 	long ncbs = 0;
439 	long ncbsnz = 0;
440 	int needgpcb = 0;
441 
442 	for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
443 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
444 
445 		/* Advance and accelerate any new callbacks. */
446 		if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
447 			continue;
448 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
449 		// Should we shrink down to a single callback queue?
450 		n = rcu_segcblist_n_cbs(&rtpcp->cblist);
451 		if (n) {
452 			ncbs += n;
453 			if (cpu > 0)
454 				ncbsnz += n;
455 		}
456 		rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
457 		(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
458 		if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
459 			if (rtp->lazy_jiffies)
460 				rtpcp->urgent_gp--;
461 			needgpcb |= 0x3;
462 		} else if (rcu_segcblist_empty(&rtpcp->cblist)) {
463 			rtpcp->urgent_gp = 0;
464 		}
465 		if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
466 			needgpcb |= 0x1;
467 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
468 	}
469 
470 	// Shrink down to a single callback queue if appropriate.
471 	// This is done in two stages: (1) If there are no more than
472 	// rcu_task_collapse_lim callbacks on CPU 0 and none on any other
473 	// CPU, limit enqueueing to CPU 0.  (2) After an RCU grace period,
474 	// if there has not been an increase in callbacks, limit dequeuing
475 	// to CPU 0.  Note the matching RCU read-side critical section in
476 	// call_rcu_tasks_generic().
477 	if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
478 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
479 		if (rtp->percpu_enqueue_lim > 1) {
480 			WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
481 			smp_store_release(&rtp->percpu_enqueue_lim, 1);
482 			rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
483 			gpdone = false;
484 			pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
485 		}
486 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
487 	}
488 	if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
489 		raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
490 		if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
491 			WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
492 			pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
493 		}
494 		if (rtp->percpu_dequeue_lim == 1) {
495 			for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
496 				struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
497 
498 				WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
499 			}
500 		}
501 		raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
502 	}
503 
504 	return needgpcb;
505 }
506 
507 // Advance callbacks and invoke any that are ready.
508 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
509 {
510 	int cpu;
511 	int cpunext;
512 	int cpuwq;
513 	unsigned long flags;
514 	int len;
515 	struct rcu_head *rhp;
516 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
517 	struct rcu_tasks_percpu *rtpcp_next;
518 
519 	cpu = rtpcp->cpu;
520 	cpunext = cpu * 2 + 1;
521 	if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
522 		rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
523 		cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
524 		queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
525 		cpunext++;
526 		if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
527 			rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
528 			cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
529 			queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
530 		}
531 	}
532 
533 	if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
534 		return;
535 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
536 	rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
537 	rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
538 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
539 	len = rcl.len;
540 	for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
541 		local_bh_disable();
542 		rhp->func(rhp);
543 		local_bh_enable();
544 		cond_resched();
545 	}
546 	raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
547 	rcu_segcblist_add_len(&rtpcp->cblist, -len);
548 	(void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
549 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
550 }
551 
552 // Workqueue flood to advance callbacks and invoke any that are ready.
553 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
554 {
555 	struct rcu_tasks *rtp;
556 	struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
557 
558 	rtp = rtpcp->rtpp;
559 	rcu_tasks_invoke_cbs(rtp, rtpcp);
560 }
561 
562 // Wait for one grace period.
563 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
564 {
565 	int needgpcb;
566 
567 	mutex_lock(&rtp->tasks_gp_mutex);
568 
569 	// If there were none, wait a bit and start over.
570 	if (unlikely(midboot)) {
571 		needgpcb = 0x2;
572 	} else {
573 		mutex_unlock(&rtp->tasks_gp_mutex);
574 		set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
575 		rcuwait_wait_event(&rtp->cbs_wait,
576 				   (needgpcb = rcu_tasks_need_gpcb(rtp)),
577 				   TASK_IDLE);
578 		mutex_lock(&rtp->tasks_gp_mutex);
579 	}
580 
581 	if (needgpcb & 0x2) {
582 		// Wait for one grace period.
583 		set_tasks_gp_state(rtp, RTGS_WAIT_GP);
584 		rtp->gp_start = jiffies;
585 		rcu_seq_start(&rtp->tasks_gp_seq);
586 		rtp->gp_func(rtp);
587 		rcu_seq_end(&rtp->tasks_gp_seq);
588 	}
589 
590 	// Invoke callbacks.
591 	set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
592 	rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
593 	mutex_unlock(&rtp->tasks_gp_mutex);
594 }
595 
596 // RCU-tasks kthread that detects grace periods and invokes callbacks.
597 static int __noreturn rcu_tasks_kthread(void *arg)
598 {
599 	int cpu;
600 	struct rcu_tasks *rtp = arg;
601 
602 	for_each_possible_cpu(cpu) {
603 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
604 
605 		timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
606 		rtpcp->urgent_gp = 1;
607 	}
608 
609 	/* Run on housekeeping CPUs by default.  Sysadm can move if desired. */
610 	housekeeping_affine(current, HK_TYPE_RCU);
611 	smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
612 
613 	/*
614 	 * Each pass through the following loop makes one check for
615 	 * newly arrived callbacks, and, if there are some, waits for
616 	 * one RCU-tasks grace period and then invokes the callbacks.
617 	 * This loop is terminated by the system going down.  ;-)
618 	 */
619 	for (;;) {
620 		// Wait for one grace period and invoke any callbacks
621 		// that are ready.
622 		rcu_tasks_one_gp(rtp, false);
623 
624 		// Paranoid sleep to keep this from entering a tight loop.
625 		schedule_timeout_idle(rtp->gp_sleep);
626 	}
627 }
628 
629 // Wait for a grace period for the specified flavor of Tasks RCU.
630 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
631 {
632 	/* Complain if the scheduler has not started.  */
633 	if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
634 			 "synchronize_%s() called too soon", rtp->name))
635 		return;
636 
637 	// If the grace-period kthread is running, use it.
638 	if (READ_ONCE(rtp->kthread_ptr)) {
639 		wait_rcu_gp(rtp->call_func);
640 		return;
641 	}
642 	rcu_tasks_one_gp(rtp, true);
643 }
644 
645 /* Spawn RCU-tasks grace-period kthread. */
646 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
647 {
648 	struct task_struct *t;
649 
650 	t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
651 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
652 		return;
653 	smp_mb(); /* Ensure others see full kthread. */
654 }
655 
656 #ifndef CONFIG_TINY_RCU
657 
658 /*
659  * Print any non-default Tasks RCU settings.
660  */
661 static void __init rcu_tasks_bootup_oddness(void)
662 {
663 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
664 	int rtsimc;
665 
666 	if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
667 		pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
668 	rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
669 	if (rtsimc != rcu_task_stall_info_mult) {
670 		pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
671 		rcu_task_stall_info_mult = rtsimc;
672 	}
673 #endif /* #ifdef CONFIG_TASKS_RCU */
674 #ifdef CONFIG_TASKS_RCU
675 	pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
676 #endif /* #ifdef CONFIG_TASKS_RCU */
677 #ifdef CONFIG_TASKS_RUDE_RCU
678 	pr_info("\tRude variant of Tasks RCU enabled.\n");
679 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
680 #ifdef CONFIG_TASKS_TRACE_RCU
681 	pr_info("\tTracing variant of Tasks RCU enabled.\n");
682 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
683 }
684 
685 #endif /* #ifndef CONFIG_TINY_RCU */
686 
687 #ifndef CONFIG_TINY_RCU
688 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
689 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
690 {
691 	int cpu;
692 	bool havecbs = false;
693 	bool haveurgent = false;
694 	bool haveurgentcbs = false;
695 
696 	for_each_possible_cpu(cpu) {
697 		struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
698 
699 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
700 			havecbs = true;
701 		if (data_race(rtpcp->urgent_gp))
702 			haveurgent = true;
703 		if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
704 			haveurgentcbs = true;
705 		if (havecbs && haveurgent && haveurgentcbs)
706 			break;
707 	}
708 	pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
709 		rtp->kname,
710 		tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
711 		jiffies - data_race(rtp->gp_jiffies),
712 		data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
713 		data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
714 		".k"[!!data_race(rtp->kthread_ptr)],
715 		".C"[havecbs],
716 		".u"[haveurgent],
717 		".U"[haveurgentcbs],
718 		rtp->lazy_jiffies,
719 		s);
720 }
721 #endif // #ifndef CONFIG_TINY_RCU
722 
723 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
724 
725 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
726 
727 ////////////////////////////////////////////////////////////////////////
728 //
729 // Shared code between task-list-scanning variants of Tasks RCU.
730 
731 /* Wait for one RCU-tasks grace period. */
732 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
733 {
734 	struct task_struct *g;
735 	int fract;
736 	LIST_HEAD(holdouts);
737 	unsigned long j;
738 	unsigned long lastinfo;
739 	unsigned long lastreport;
740 	bool reported = false;
741 	int rtsi;
742 	struct task_struct *t;
743 
744 	set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
745 	rtp->pregp_func(&holdouts);
746 
747 	/*
748 	 * There were callbacks, so we need to wait for an RCU-tasks
749 	 * grace period.  Start off by scanning the task list for tasks
750 	 * that are not already voluntarily blocked.  Mark these tasks
751 	 * and make a list of them in holdouts.
752 	 */
753 	set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
754 	if (rtp->pertask_func) {
755 		rcu_read_lock();
756 		for_each_process_thread(g, t)
757 			rtp->pertask_func(t, &holdouts);
758 		rcu_read_unlock();
759 	}
760 
761 	set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
762 	rtp->postscan_func(&holdouts);
763 
764 	/*
765 	 * Each pass through the following loop scans the list of holdout
766 	 * tasks, removing any that are no longer holdouts.  When the list
767 	 * is empty, we are done.
768 	 */
769 	lastreport = jiffies;
770 	lastinfo = lastreport;
771 	rtsi = READ_ONCE(rcu_task_stall_info);
772 
773 	// Start off with initial wait and slowly back off to 1 HZ wait.
774 	fract = rtp->init_fract;
775 
776 	while (!list_empty(&holdouts)) {
777 		ktime_t exp;
778 		bool firstreport;
779 		bool needreport;
780 		int rtst;
781 
782 		// Slowly back off waiting for holdouts
783 		set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
784 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
785 			schedule_timeout_idle(fract);
786 		} else {
787 			exp = jiffies_to_nsecs(fract);
788 			__set_current_state(TASK_IDLE);
789 			schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
790 		}
791 
792 		if (fract < HZ)
793 			fract++;
794 
795 		rtst = READ_ONCE(rcu_task_stall_timeout);
796 		needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
797 		if (needreport) {
798 			lastreport = jiffies;
799 			reported = true;
800 		}
801 		firstreport = true;
802 		WARN_ON(signal_pending(current));
803 		set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
804 		rtp->holdouts_func(&holdouts, needreport, &firstreport);
805 
806 		// Print pre-stall informational messages if needed.
807 		j = jiffies;
808 		if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
809 			lastinfo = j;
810 			rtsi = rtsi * rcu_task_stall_info_mult;
811 			pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
812 				__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
813 		}
814 	}
815 
816 	set_tasks_gp_state(rtp, RTGS_POST_GP);
817 	rtp->postgp_func(rtp);
818 }
819 
820 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
821 
822 #ifdef CONFIG_TASKS_RCU
823 
824 ////////////////////////////////////////////////////////////////////////
825 //
826 // Simple variant of RCU whose quiescent states are voluntary context
827 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
828 // As such, grace periods can take one good long time.  There are no
829 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
830 // because this implementation is intended to get the system into a safe
831 // state for some of the manipulations involved in tracing and the like.
832 // Finally, this implementation does not support high call_rcu_tasks()
833 // rates from multiple CPUs.  If this is required, per-CPU callback lists
834 // will be needed.
835 //
836 // The implementation uses rcu_tasks_wait_gp(), which relies on function
837 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_kthread()
838 // function sets these function pointers up so that rcu_tasks_wait_gp()
839 // invokes these functions in this order:
840 //
841 // rcu_tasks_pregp_step():
842 //	Invokes synchronize_rcu() in order to wait for all in-flight
843 //	t->on_rq and t->nvcsw transitions to complete.	This works because
844 //	all such transitions are carried out with interrupts disabled.
845 // rcu_tasks_pertask(), invoked on every non-idle task:
846 //	For every runnable non-idle task other than the current one, use
847 //	get_task_struct() to pin down that task, snapshot that task's
848 //	number of voluntary context switches, and add that task to the
849 //	holdout list.
850 // rcu_tasks_postscan():
851 //	Invoke synchronize_srcu() to ensure that all tasks that were
852 //	in the process of exiting (and which thus might not know to
853 //	synchronize with this RCU Tasks grace period) have completed
854 //	exiting.
855 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
856 //	Scans the holdout list, attempting to identify a quiescent state
857 //	for each task on the list.  If there is a quiescent state, the
858 //	corresponding task is removed from the holdout list.
859 // rcu_tasks_postgp():
860 //	Invokes synchronize_rcu() in order to ensure that all prior
861 //	t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
862 //	to have happened before the end of this RCU Tasks grace period.
863 //	Again, this works because all such transitions are carried out
864 //	with interrupts disabled.
865 //
866 // For each exiting task, the exit_tasks_rcu_start() and
867 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
868 // read-side critical sections waited for by rcu_tasks_postscan().
869 //
870 // Pre-grace-period update-side code is ordered before the grace
871 // via the raw_spin_lock.*rcu_node().  Pre-grace-period read-side code
872 // is ordered before the grace period via synchronize_rcu() call in
873 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
874 // disabling.
875 
876 /* Pre-grace-period preparation. */
877 static void rcu_tasks_pregp_step(struct list_head *hop)
878 {
879 	/*
880 	 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
881 	 * to complete.  Invoking synchronize_rcu() suffices because all
882 	 * these transitions occur with interrupts disabled.  Without this
883 	 * synchronize_rcu(), a read-side critical section that started
884 	 * before the grace period might be incorrectly seen as having
885 	 * started after the grace period.
886 	 *
887 	 * This synchronize_rcu() also dispenses with the need for a
888 	 * memory barrier on the first store to t->rcu_tasks_holdout,
889 	 * as it forces the store to happen after the beginning of the
890 	 * grace period.
891 	 */
892 	synchronize_rcu();
893 }
894 
895 /* Check for quiescent states since the pregp's synchronize_rcu() */
896 static bool rcu_tasks_is_holdout(struct task_struct *t)
897 {
898 	int cpu;
899 
900 	/* Has the task been seen voluntarily sleeping? */
901 	if (!READ_ONCE(t->on_rq))
902 		return false;
903 
904 	/*
905 	 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
906 	 * quiescent states. But CPU boot code performed by the idle task
907 	 * isn't a quiescent state.
908 	 */
909 	if (is_idle_task(t))
910 		return false;
911 
912 	cpu = task_cpu(t);
913 
914 	/* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
915 	if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
916 		return false;
917 
918 	return true;
919 }
920 
921 /* Per-task initial processing. */
922 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
923 {
924 	if (t != current && rcu_tasks_is_holdout(t)) {
925 		get_task_struct(t);
926 		t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
927 		WRITE_ONCE(t->rcu_tasks_holdout, true);
928 		list_add(&t->rcu_tasks_holdout_list, hop);
929 	}
930 }
931 
932 /* Processing between scanning taskslist and draining the holdout list. */
933 static void rcu_tasks_postscan(struct list_head *hop)
934 {
935 	int rtsi = READ_ONCE(rcu_task_stall_info);
936 
937 	if (!IS_ENABLED(CONFIG_TINY_RCU)) {
938 		tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
939 		add_timer(&tasks_rcu_exit_srcu_stall_timer);
940 	}
941 
942 	/*
943 	 * Exiting tasks may escape the tasklist scan. Those are vulnerable
944 	 * until their final schedule() with TASK_DEAD state. To cope with
945 	 * this, divide the fragile exit path part in two intersecting
946 	 * read side critical sections:
947 	 *
948 	 * 1) An _SRCU_ read side starting before calling exit_notify(),
949 	 *    which may remove the task from the tasklist, and ending after
950 	 *    the final preempt_disable() call in do_exit().
951 	 *
952 	 * 2) An _RCU_ read side starting with the final preempt_disable()
953 	 *    call in do_exit() and ending with the final call to schedule()
954 	 *    with TASK_DEAD state.
955 	 *
956 	 * This handles the part 1). And postgp will handle part 2) with a
957 	 * call to synchronize_rcu().
958 	 */
959 	synchronize_srcu(&tasks_rcu_exit_srcu);
960 
961 	if (!IS_ENABLED(CONFIG_TINY_RCU))
962 		del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
963 }
964 
965 /* See if tasks are still holding out, complain if so. */
966 static void check_holdout_task(struct task_struct *t,
967 			       bool needreport, bool *firstreport)
968 {
969 	int cpu;
970 
971 	if (!READ_ONCE(t->rcu_tasks_holdout) ||
972 	    t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
973 	    !rcu_tasks_is_holdout(t) ||
974 	    (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
975 	     !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
976 		WRITE_ONCE(t->rcu_tasks_holdout, false);
977 		list_del_init(&t->rcu_tasks_holdout_list);
978 		put_task_struct(t);
979 		return;
980 	}
981 	rcu_request_urgent_qs_task(t);
982 	if (!needreport)
983 		return;
984 	if (*firstreport) {
985 		pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
986 		*firstreport = false;
987 	}
988 	cpu = task_cpu(t);
989 	pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
990 		 t, ".I"[is_idle_task(t)],
991 		 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
992 		 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
993 		 t->rcu_tasks_idle_cpu, cpu);
994 	sched_show_task(t);
995 }
996 
997 /* Scan the holdout lists for tasks no longer holding out. */
998 static void check_all_holdout_tasks(struct list_head *hop,
999 				    bool needreport, bool *firstreport)
1000 {
1001 	struct task_struct *t, *t1;
1002 
1003 	list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1004 		check_holdout_task(t, needreport, firstreport);
1005 		cond_resched();
1006 	}
1007 }
1008 
1009 /* Finish off the Tasks-RCU grace period. */
1010 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1011 {
1012 	/*
1013 	 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1014 	 * memory barriers prior to them in the schedule() path, memory
1015 	 * reordering on other CPUs could cause their RCU-tasks read-side
1016 	 * critical sections to extend past the end of the grace period.
1017 	 * However, because these ->nvcsw updates are carried out with
1018 	 * interrupts disabled, we can use synchronize_rcu() to force the
1019 	 * needed ordering on all such CPUs.
1020 	 *
1021 	 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1022 	 * accesses to be within the grace period, avoiding the need for
1023 	 * memory barriers for ->rcu_tasks_holdout accesses.
1024 	 *
1025 	 * In addition, this synchronize_rcu() waits for exiting tasks
1026 	 * to complete their final preempt_disable() region of execution,
1027 	 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
1028 	 * enforcing the whole region before tasklist removal until
1029 	 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1030 	 * read side critical section.
1031 	 */
1032 	synchronize_rcu();
1033 }
1034 
1035 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
1036 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
1037 
1038 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1039 {
1040 #ifndef CONFIG_TINY_RCU
1041 	int rtsi;
1042 
1043 	rtsi = READ_ONCE(rcu_task_stall_info);
1044 	pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1045 		__func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1046 		tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1047 	pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1048 	tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1049 	add_timer(&tasks_rcu_exit_srcu_stall_timer);
1050 #endif // #ifndef CONFIG_TINY_RCU
1051 }
1052 
1053 /**
1054  * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1055  * @rhp: structure to be used for queueing the RCU updates.
1056  * @func: actual callback function to be invoked after the grace period
1057  *
1058  * The callback function will be invoked some time after a full grace
1059  * period elapses, in other words after all currently executing RCU
1060  * read-side critical sections have completed. call_rcu_tasks() assumes
1061  * that the read-side critical sections end at a voluntary context
1062  * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1063  * or transition to usermode execution.  As such, there are no read-side
1064  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1065  * this primitive is intended to determine that all tasks have passed
1066  * through a safe state, not so much for data-structure synchronization.
1067  *
1068  * See the description of call_rcu() for more detailed information on
1069  * memory ordering guarantees.
1070  */
1071 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1072 {
1073 	call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1074 }
1075 EXPORT_SYMBOL_GPL(call_rcu_tasks);
1076 
1077 /**
1078  * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1079  *
1080  * Control will return to the caller some time after a full rcu-tasks
1081  * grace period has elapsed, in other words after all currently
1082  * executing rcu-tasks read-side critical sections have elapsed.  These
1083  * read-side critical sections are delimited by calls to schedule(),
1084  * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1085  * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1086  *
1087  * This is a very specialized primitive, intended only for a few uses in
1088  * tracing and other situations requiring manipulation of function
1089  * preambles and profiling hooks.  The synchronize_rcu_tasks() function
1090  * is not (yet) intended for heavy use from multiple CPUs.
1091  *
1092  * See the description of synchronize_rcu() for more detailed information
1093  * on memory ordering guarantees.
1094  */
1095 void synchronize_rcu_tasks(void)
1096 {
1097 	synchronize_rcu_tasks_generic(&rcu_tasks);
1098 }
1099 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1100 
1101 /**
1102  * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1103  *
1104  * Although the current implementation is guaranteed to wait, it is not
1105  * obligated to, for example, if there are no pending callbacks.
1106  */
1107 void rcu_barrier_tasks(void)
1108 {
1109 	rcu_barrier_tasks_generic(&rcu_tasks);
1110 }
1111 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1112 
1113 int rcu_tasks_lazy_ms = -1;
1114 module_param(rcu_tasks_lazy_ms, int, 0444);
1115 
1116 static int __init rcu_spawn_tasks_kthread(void)
1117 {
1118 	cblist_init_generic(&rcu_tasks);
1119 	rcu_tasks.gp_sleep = HZ / 10;
1120 	rcu_tasks.init_fract = HZ / 10;
1121 	if (rcu_tasks_lazy_ms >= 0)
1122 		rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1123 	rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1124 	rcu_tasks.pertask_func = rcu_tasks_pertask;
1125 	rcu_tasks.postscan_func = rcu_tasks_postscan;
1126 	rcu_tasks.holdouts_func = check_all_holdout_tasks;
1127 	rcu_tasks.postgp_func = rcu_tasks_postgp;
1128 	rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1129 	return 0;
1130 }
1131 
1132 #if !defined(CONFIG_TINY_RCU)
1133 void show_rcu_tasks_classic_gp_kthread(void)
1134 {
1135 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1136 }
1137 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1138 #endif // !defined(CONFIG_TINY_RCU)
1139 
1140 struct task_struct *get_rcu_tasks_gp_kthread(void)
1141 {
1142 	return rcu_tasks.kthread_ptr;
1143 }
1144 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1145 
1146 /*
1147  * Contribute to protect against tasklist scan blind spot while the
1148  * task is exiting and may be removed from the tasklist. See
1149  * corresponding synchronize_srcu() for further details.
1150  */
1151 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
1152 {
1153 	current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
1154 }
1155 
1156 /*
1157  * Contribute to protect against tasklist scan blind spot while the
1158  * task is exiting and may be removed from the tasklist. See
1159  * corresponding synchronize_srcu() for further details.
1160  */
1161 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
1162 {
1163 	struct task_struct *t = current;
1164 
1165 	__srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1166 }
1167 
1168 /*
1169  * Contribute to protect against tasklist scan blind spot while the
1170  * task is exiting and may be removed from the tasklist. See
1171  * corresponding synchronize_srcu() for further details.
1172  */
1173 void exit_tasks_rcu_finish(void)
1174 {
1175 	exit_tasks_rcu_stop();
1176 	exit_tasks_rcu_finish_trace(current);
1177 }
1178 
1179 #else /* #ifdef CONFIG_TASKS_RCU */
1180 void exit_tasks_rcu_start(void) { }
1181 void exit_tasks_rcu_stop(void) { }
1182 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1183 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1184 
1185 #ifdef CONFIG_TASKS_RUDE_RCU
1186 
1187 ////////////////////////////////////////////////////////////////////////
1188 //
1189 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1190 // passing an empty function to schedule_on_each_cpu().  This approach
1191 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1192 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1193 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1194 // and induces otherwise unnecessary context switches on all online CPUs,
1195 // whether idle or not.
1196 //
1197 // Callback handling is provided by the rcu_tasks_kthread() function.
1198 //
1199 // Ordering is provided by the scheduler's context-switch code.
1200 
1201 // Empty function to allow workqueues to force a context switch.
1202 static void rcu_tasks_be_rude(struct work_struct *work)
1203 {
1204 }
1205 
1206 // Wait for one rude RCU-tasks grace period.
1207 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1208 {
1209 	rtp->n_ipis += cpumask_weight(cpu_online_mask);
1210 	schedule_on_each_cpu(rcu_tasks_be_rude);
1211 }
1212 
1213 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1214 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1215 		 "RCU Tasks Rude");
1216 
1217 /**
1218  * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1219  * @rhp: structure to be used for queueing the RCU updates.
1220  * @func: actual callback function to be invoked after the grace period
1221  *
1222  * The callback function will be invoked some time after a full grace
1223  * period elapses, in other words after all currently executing RCU
1224  * read-side critical sections have completed. call_rcu_tasks_rude()
1225  * assumes that the read-side critical sections end at context switch,
1226  * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1227  * usermode execution is schedulable). As such, there are no read-side
1228  * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1229  * this primitive is intended to determine that all tasks have passed
1230  * through a safe state, not so much for data-structure synchronization.
1231  *
1232  * See the description of call_rcu() for more detailed information on
1233  * memory ordering guarantees.
1234  */
1235 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1236 {
1237 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1238 }
1239 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1240 
1241 /**
1242  * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1243  *
1244  * Control will return to the caller some time after a rude rcu-tasks
1245  * grace period has elapsed, in other words after all currently
1246  * executing rcu-tasks read-side critical sections have elapsed.  These
1247  * read-side critical sections are delimited by calls to schedule(),
1248  * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1249  * context), and (in theory, anyway) cond_resched().
1250  *
1251  * This is a very specialized primitive, intended only for a few uses in
1252  * tracing and other situations requiring manipulation of function preambles
1253  * and profiling hooks.  The synchronize_rcu_tasks_rude() function is not
1254  * (yet) intended for heavy use from multiple CPUs.
1255  *
1256  * See the description of synchronize_rcu() for more detailed information
1257  * on memory ordering guarantees.
1258  */
1259 void synchronize_rcu_tasks_rude(void)
1260 {
1261 	synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1262 }
1263 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1264 
1265 /**
1266  * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1267  *
1268  * Although the current implementation is guaranteed to wait, it is not
1269  * obligated to, for example, if there are no pending callbacks.
1270  */
1271 void rcu_barrier_tasks_rude(void)
1272 {
1273 	rcu_barrier_tasks_generic(&rcu_tasks_rude);
1274 }
1275 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1276 
1277 int rcu_tasks_rude_lazy_ms = -1;
1278 module_param(rcu_tasks_rude_lazy_ms, int, 0444);
1279 
1280 static int __init rcu_spawn_tasks_rude_kthread(void)
1281 {
1282 	cblist_init_generic(&rcu_tasks_rude);
1283 	rcu_tasks_rude.gp_sleep = HZ / 10;
1284 	if (rcu_tasks_rude_lazy_ms >= 0)
1285 		rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
1286 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1287 	return 0;
1288 }
1289 
1290 #if !defined(CONFIG_TINY_RCU)
1291 void show_rcu_tasks_rude_gp_kthread(void)
1292 {
1293 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1294 }
1295 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1296 #endif // !defined(CONFIG_TINY_RCU)
1297 
1298 struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1299 {
1300 	return rcu_tasks_rude.kthread_ptr;
1301 }
1302 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1303 
1304 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1305 
1306 ////////////////////////////////////////////////////////////////////////
1307 //
1308 // Tracing variant of Tasks RCU.  This variant is designed to be used
1309 // to protect tracing hooks, including those of BPF.  This variant
1310 // therefore:
1311 //
1312 // 1.	Has explicit read-side markers to allow finite grace periods
1313 //	in the face of in-kernel loops for PREEMPT=n builds.
1314 //
1315 // 2.	Protects code in the idle loop, exception entry/exit, and
1316 //	CPU-hotplug code paths, similar to the capabilities of SRCU.
1317 //
1318 // 3.	Avoids expensive read-side instructions, having overhead similar
1319 //	to that of Preemptible RCU.
1320 //
1321 // There are of course downsides.  For example, the grace-period code
1322 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1323 // in nohz_full userspace.  If needed, these downsides can be at least
1324 // partially remedied.
1325 //
1326 // Perhaps most important, this variant of RCU does not affect the vanilla
1327 // flavors, rcu_preempt and rcu_sched.  The fact that RCU Tasks Trace
1328 // readers can operate from idle, offline, and exception entry/exit in no
1329 // way allows rcu_preempt and rcu_sched readers to also do so.
1330 //
1331 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1332 // pointers in the rcu_tasks structure.  The rcu_spawn_tasks_trace_kthread()
1333 // function sets these function pointers up so that rcu_tasks_wait_gp()
1334 // invokes these functions in this order:
1335 //
1336 // rcu_tasks_trace_pregp_step():
1337 //	Disables CPU hotplug, adds all currently executing tasks to the
1338 //	holdout list, then checks the state of all tasks that blocked
1339 //	or were preempted within their current RCU Tasks Trace read-side
1340 //	critical section, adding them to the holdout list if appropriate.
1341 //	Finally, this function re-enables CPU hotplug.
1342 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1343 // rcu_tasks_trace_postscan():
1344 //	Invokes synchronize_rcu() to wait for late-stage exiting tasks
1345 //	to finish exiting.
1346 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1347 //	Scans the holdout list, attempting to identify a quiescent state
1348 //	for each task on the list.  If there is a quiescent state, the
1349 //	corresponding task is removed from the holdout list.  Once this
1350 //	list is empty, the grace period has completed.
1351 // rcu_tasks_trace_postgp():
1352 //	Provides the needed full memory barrier and does debug checks.
1353 //
1354 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1355 //
1356 // Pre-grace-period update-side code is ordered before the grace period
1357 // via the ->cbs_lock and barriers in rcu_tasks_kthread().  Pre-grace-period
1358 // read-side code is ordered before the grace period by atomic operations
1359 // on .b.need_qs flag of each task involved in this process, or by scheduler
1360 // context-switch ordering (for locked-down non-running readers).
1361 
1362 // The lockdep state must be outside of #ifdef to be useful.
1363 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1364 static struct lock_class_key rcu_lock_trace_key;
1365 struct lockdep_map rcu_trace_lock_map =
1366 	STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1367 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1368 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1369 
1370 #ifdef CONFIG_TASKS_TRACE_RCU
1371 
1372 // Record outstanding IPIs to each CPU.  No point in sending two...
1373 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1374 
1375 // The number of detections of task quiescent state relying on
1376 // heavyweight readers executing explicit memory barriers.
1377 static unsigned long n_heavy_reader_attempts;
1378 static unsigned long n_heavy_reader_updates;
1379 static unsigned long n_heavy_reader_ofl_updates;
1380 static unsigned long n_trc_holdouts;
1381 
1382 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1383 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1384 		 "RCU Tasks Trace");
1385 
1386 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1387 static u8 rcu_ld_need_qs(struct task_struct *t)
1388 {
1389 	smp_mb(); // Enforce full grace-period ordering.
1390 	return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1391 }
1392 
1393 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1394 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1395 {
1396 	smp_store_release(&t->trc_reader_special.b.need_qs, v);
1397 	smp_mb(); // Enforce full grace-period ordering.
1398 }
1399 
1400 /*
1401  * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1402  * the four-byte operand-size restriction of some platforms.
1403  * Returns the old value, which is often ignored.
1404  */
1405 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1406 {
1407 	union rcu_special ret;
1408 	union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1409 	union rcu_special trs_new = trs_old;
1410 
1411 	if (trs_old.b.need_qs != old)
1412 		return trs_old.b.need_qs;
1413 	trs_new.b.need_qs = new;
1414 	ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1415 	return ret.b.need_qs;
1416 }
1417 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1418 
1419 /*
1420  * If we are the last reader, signal the grace-period kthread.
1421  * Also remove from the per-CPU list of blocked tasks.
1422  */
1423 void rcu_read_unlock_trace_special(struct task_struct *t)
1424 {
1425 	unsigned long flags;
1426 	struct rcu_tasks_percpu *rtpcp;
1427 	union rcu_special trs;
1428 
1429 	// Open-coded full-word version of rcu_ld_need_qs().
1430 	smp_mb(); // Enforce full grace-period ordering.
1431 	trs = smp_load_acquire(&t->trc_reader_special);
1432 
1433 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1434 		smp_mb(); // Pairs with update-side barriers.
1435 	// Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1436 	if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1437 		u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1438 						       TRC_NEED_QS_CHECKED);
1439 
1440 		WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1441 	}
1442 	if (trs.b.blocked) {
1443 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1444 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1445 		list_del_init(&t->trc_blkd_node);
1446 		WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1447 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1448 	}
1449 	WRITE_ONCE(t->trc_reader_nesting, 0);
1450 }
1451 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1452 
1453 /* Add a newly blocked reader task to its CPU's list. */
1454 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1455 {
1456 	unsigned long flags;
1457 	struct rcu_tasks_percpu *rtpcp;
1458 
1459 	local_irq_save(flags);
1460 	rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1461 	raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1462 	t->trc_blkd_cpu = smp_processor_id();
1463 	if (!rtpcp->rtp_blkd_tasks.next)
1464 		INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1465 	list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1466 	WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1467 	raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1468 }
1469 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1470 
1471 /* Add a task to the holdout list, if it is not already on the list. */
1472 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1473 {
1474 	if (list_empty(&t->trc_holdout_list)) {
1475 		get_task_struct(t);
1476 		list_add(&t->trc_holdout_list, bhp);
1477 		n_trc_holdouts++;
1478 	}
1479 }
1480 
1481 /* Remove a task from the holdout list, if it is in fact present. */
1482 static void trc_del_holdout(struct task_struct *t)
1483 {
1484 	if (!list_empty(&t->trc_holdout_list)) {
1485 		list_del_init(&t->trc_holdout_list);
1486 		put_task_struct(t);
1487 		n_trc_holdouts--;
1488 	}
1489 }
1490 
1491 /* IPI handler to check task state. */
1492 static void trc_read_check_handler(void *t_in)
1493 {
1494 	int nesting;
1495 	struct task_struct *t = current;
1496 	struct task_struct *texp = t_in;
1497 
1498 	// If the task is no longer running on this CPU, leave.
1499 	if (unlikely(texp != t))
1500 		goto reset_ipi; // Already on holdout list, so will check later.
1501 
1502 	// If the task is not in a read-side critical section, and
1503 	// if this is the last reader, awaken the grace-period kthread.
1504 	nesting = READ_ONCE(t->trc_reader_nesting);
1505 	if (likely(!nesting)) {
1506 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1507 		goto reset_ipi;
1508 	}
1509 	// If we are racing with an rcu_read_unlock_trace(), try again later.
1510 	if (unlikely(nesting < 0))
1511 		goto reset_ipi;
1512 
1513 	// Get here if the task is in a read-side critical section.
1514 	// Set its state so that it will update state for the grace-period
1515 	// kthread upon exit from that critical section.
1516 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1517 
1518 reset_ipi:
1519 	// Allow future IPIs to be sent on CPU and for task.
1520 	// Also order this IPI handler against any later manipulations of
1521 	// the intended task.
1522 	smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1523 	smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1524 }
1525 
1526 /* Callback function for scheduler to check locked-down task.  */
1527 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1528 {
1529 	struct list_head *bhp = bhp_in;
1530 	int cpu = task_cpu(t);
1531 	int nesting;
1532 	bool ofl = cpu_is_offline(cpu);
1533 
1534 	if (task_curr(t) && !ofl) {
1535 		// If no chance of heavyweight readers, do it the hard way.
1536 		if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1537 			return -EINVAL;
1538 
1539 		// If heavyweight readers are enabled on the remote task,
1540 		// we can inspect its state despite its currently running.
1541 		// However, we cannot safely change its state.
1542 		n_heavy_reader_attempts++;
1543 		// Check for "running" idle tasks on offline CPUs.
1544 		if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1545 			return -EINVAL; // No quiescent state, do it the hard way.
1546 		n_heavy_reader_updates++;
1547 		nesting = 0;
1548 	} else {
1549 		// The task is not running, so C-language access is safe.
1550 		nesting = t->trc_reader_nesting;
1551 		WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1552 		if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1553 			n_heavy_reader_ofl_updates++;
1554 	}
1555 
1556 	// If not exiting a read-side critical section, mark as checked
1557 	// so that the grace-period kthread will remove it from the
1558 	// holdout list.
1559 	if (!nesting) {
1560 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1561 		return 0;  // In QS, so done.
1562 	}
1563 	if (nesting < 0)
1564 		return -EINVAL; // Reader transitioning, try again later.
1565 
1566 	// The task is in a read-side critical section, so set up its
1567 	// state so that it will update state upon exit from that critical
1568 	// section.
1569 	if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1570 		trc_add_holdout(t, bhp);
1571 	return 0;
1572 }
1573 
1574 /* Attempt to extract the state for the specified task. */
1575 static void trc_wait_for_one_reader(struct task_struct *t,
1576 				    struct list_head *bhp)
1577 {
1578 	int cpu;
1579 
1580 	// If a previous IPI is still in flight, let it complete.
1581 	if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1582 		return;
1583 
1584 	// The current task had better be in a quiescent state.
1585 	if (t == current) {
1586 		rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1587 		WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1588 		return;
1589 	}
1590 
1591 	// Attempt to nail down the task for inspection.
1592 	get_task_struct(t);
1593 	if (!task_call_func(t, trc_inspect_reader, bhp)) {
1594 		put_task_struct(t);
1595 		return;
1596 	}
1597 	put_task_struct(t);
1598 
1599 	// If this task is not yet on the holdout list, then we are in
1600 	// an RCU read-side critical section.  Otherwise, the invocation of
1601 	// trc_add_holdout() that added it to the list did the necessary
1602 	// get_task_struct().  Either way, the task cannot be freed out
1603 	// from under this code.
1604 
1605 	// If currently running, send an IPI, either way, add to list.
1606 	trc_add_holdout(t, bhp);
1607 	if (task_curr(t) &&
1608 	    time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1609 		// The task is currently running, so try IPIing it.
1610 		cpu = task_cpu(t);
1611 
1612 		// If there is already an IPI outstanding, let it happen.
1613 		if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1614 			return;
1615 
1616 		per_cpu(trc_ipi_to_cpu, cpu) = true;
1617 		t->trc_ipi_to_cpu = cpu;
1618 		rcu_tasks_trace.n_ipis++;
1619 		if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1620 			// Just in case there is some other reason for
1621 			// failure than the target CPU being offline.
1622 			WARN_ONCE(1, "%s():  smp_call_function_single() failed for CPU: %d\n",
1623 				  __func__, cpu);
1624 			rcu_tasks_trace.n_ipis_fails++;
1625 			per_cpu(trc_ipi_to_cpu, cpu) = false;
1626 			t->trc_ipi_to_cpu = -1;
1627 		}
1628 	}
1629 }
1630 
1631 /*
1632  * Initialize for first-round processing for the specified task.
1633  * Return false if task is NULL or already taken care of, true otherwise.
1634  */
1635 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1636 {
1637 	// During early boot when there is only the one boot CPU, there
1638 	// is no idle task for the other CPUs.	Also, the grace-period
1639 	// kthread is always in a quiescent state.  In addition, just return
1640 	// if this task is already on the list.
1641 	if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1642 		return false;
1643 
1644 	rcu_st_need_qs(t, 0);
1645 	t->trc_ipi_to_cpu = -1;
1646 	return true;
1647 }
1648 
1649 /* Do first-round processing for the specified task. */
1650 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1651 {
1652 	if (rcu_tasks_trace_pertask_prep(t, true))
1653 		trc_wait_for_one_reader(t, hop);
1654 }
1655 
1656 /* Initialize for a new RCU-tasks-trace grace period. */
1657 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1658 {
1659 	LIST_HEAD(blkd_tasks);
1660 	int cpu;
1661 	unsigned long flags;
1662 	struct rcu_tasks_percpu *rtpcp;
1663 	struct task_struct *t;
1664 
1665 	// There shouldn't be any old IPIs, but...
1666 	for_each_possible_cpu(cpu)
1667 		WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1668 
1669 	// Disable CPU hotplug across the CPU scan for the benefit of
1670 	// any IPIs that might be needed.  This also waits for all readers
1671 	// in CPU-hotplug code paths.
1672 	cpus_read_lock();
1673 
1674 	// These rcu_tasks_trace_pertask_prep() calls are serialized to
1675 	// allow safe access to the hop list.
1676 	for_each_online_cpu(cpu) {
1677 		rcu_read_lock();
1678 		t = cpu_curr_snapshot(cpu);
1679 		if (rcu_tasks_trace_pertask_prep(t, true))
1680 			trc_add_holdout(t, hop);
1681 		rcu_read_unlock();
1682 		cond_resched_tasks_rcu_qs();
1683 	}
1684 
1685 	// Only after all running tasks have been accounted for is it
1686 	// safe to take care of the tasks that have blocked within their
1687 	// current RCU tasks trace read-side critical section.
1688 	for_each_possible_cpu(cpu) {
1689 		rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1690 		raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1691 		list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1692 		while (!list_empty(&blkd_tasks)) {
1693 			rcu_read_lock();
1694 			t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1695 			list_del_init(&t->trc_blkd_node);
1696 			list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1697 			raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1698 			rcu_tasks_trace_pertask(t, hop);
1699 			rcu_read_unlock();
1700 			raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1701 		}
1702 		raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1703 		cond_resched_tasks_rcu_qs();
1704 	}
1705 
1706 	// Re-enable CPU hotplug now that the holdout list is populated.
1707 	cpus_read_unlock();
1708 }
1709 
1710 /*
1711  * Do intermediate processing between task and holdout scans.
1712  */
1713 static void rcu_tasks_trace_postscan(struct list_head *hop)
1714 {
1715 	// Wait for late-stage exiting tasks to finish exiting.
1716 	// These might have passed the call to exit_tasks_rcu_finish().
1717 
1718 	// If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1719 	synchronize_rcu();
1720 	// Any tasks that exit after this point will set
1721 	// TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1722 }
1723 
1724 /* Communicate task state back to the RCU tasks trace stall warning request. */
1725 struct trc_stall_chk_rdr {
1726 	int nesting;
1727 	int ipi_to_cpu;
1728 	u8 needqs;
1729 };
1730 
1731 static int trc_check_slow_task(struct task_struct *t, void *arg)
1732 {
1733 	struct trc_stall_chk_rdr *trc_rdrp = arg;
1734 
1735 	if (task_curr(t) && cpu_online(task_cpu(t)))
1736 		return false; // It is running, so decline to inspect it.
1737 	trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1738 	trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1739 	trc_rdrp->needqs = rcu_ld_need_qs(t);
1740 	return true;
1741 }
1742 
1743 /* Show the state of a task stalling the current RCU tasks trace GP. */
1744 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1745 {
1746 	int cpu;
1747 	struct trc_stall_chk_rdr trc_rdr;
1748 	bool is_idle_tsk = is_idle_task(t);
1749 
1750 	if (*firstreport) {
1751 		pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1752 		*firstreport = false;
1753 	}
1754 	cpu = task_cpu(t);
1755 	if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1756 		pr_alert("P%d: %c%c\n",
1757 			 t->pid,
1758 			 ".I"[t->trc_ipi_to_cpu >= 0],
1759 			 ".i"[is_idle_tsk]);
1760 	else
1761 		pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1762 			 t->pid,
1763 			 ".I"[trc_rdr.ipi_to_cpu >= 0],
1764 			 ".i"[is_idle_tsk],
1765 			 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1766 			 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1767 			 trc_rdr.nesting,
1768 			 " !CN"[trc_rdr.needqs & 0x3],
1769 			 " ?"[trc_rdr.needqs > 0x3],
1770 			 cpu, cpu_online(cpu) ? "" : "(offline)");
1771 	sched_show_task(t);
1772 }
1773 
1774 /* List stalled IPIs for RCU tasks trace. */
1775 static void show_stalled_ipi_trace(void)
1776 {
1777 	int cpu;
1778 
1779 	for_each_possible_cpu(cpu)
1780 		if (per_cpu(trc_ipi_to_cpu, cpu))
1781 			pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1782 }
1783 
1784 /* Do one scan of the holdout list. */
1785 static void check_all_holdout_tasks_trace(struct list_head *hop,
1786 					  bool needreport, bool *firstreport)
1787 {
1788 	struct task_struct *g, *t;
1789 
1790 	// Disable CPU hotplug across the holdout list scan for IPIs.
1791 	cpus_read_lock();
1792 
1793 	list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1794 		// If safe and needed, try to check the current task.
1795 		if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1796 		    !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1797 			trc_wait_for_one_reader(t, hop);
1798 
1799 		// If check succeeded, remove this task from the list.
1800 		if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1801 		    rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1802 			trc_del_holdout(t);
1803 		else if (needreport)
1804 			show_stalled_task_trace(t, firstreport);
1805 		cond_resched_tasks_rcu_qs();
1806 	}
1807 
1808 	// Re-enable CPU hotplug now that the holdout list scan has completed.
1809 	cpus_read_unlock();
1810 
1811 	if (needreport) {
1812 		if (*firstreport)
1813 			pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1814 		show_stalled_ipi_trace();
1815 	}
1816 }
1817 
1818 static void rcu_tasks_trace_empty_fn(void *unused)
1819 {
1820 }
1821 
1822 /* Wait for grace period to complete and provide ordering. */
1823 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1824 {
1825 	int cpu;
1826 
1827 	// Wait for any lingering IPI handlers to complete.  Note that
1828 	// if a CPU has gone offline or transitioned to userspace in the
1829 	// meantime, all IPI handlers should have been drained beforehand.
1830 	// Yes, this assumes that CPUs process IPIs in order.  If that ever
1831 	// changes, there will need to be a recheck and/or timed wait.
1832 	for_each_online_cpu(cpu)
1833 		if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1834 			smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1835 
1836 	smp_mb(); // Caller's code must be ordered after wakeup.
1837 		  // Pairs with pretty much every ordering primitive.
1838 }
1839 
1840 /* Report any needed quiescent state for this exiting task. */
1841 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1842 {
1843 	union rcu_special trs = READ_ONCE(t->trc_reader_special);
1844 
1845 	rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1846 	WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1847 	if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1848 		rcu_read_unlock_trace_special(t);
1849 	else
1850 		WRITE_ONCE(t->trc_reader_nesting, 0);
1851 }
1852 
1853 /**
1854  * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1855  * @rhp: structure to be used for queueing the RCU updates.
1856  * @func: actual callback function to be invoked after the grace period
1857  *
1858  * The callback function will be invoked some time after a trace rcu-tasks
1859  * grace period elapses, in other words after all currently executing
1860  * trace rcu-tasks read-side critical sections have completed. These
1861  * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1862  * and rcu_read_unlock_trace().
1863  *
1864  * See the description of call_rcu() for more detailed information on
1865  * memory ordering guarantees.
1866  */
1867 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1868 {
1869 	call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1870 }
1871 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1872 
1873 /**
1874  * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1875  *
1876  * Control will return to the caller some time after a trace rcu-tasks
1877  * grace period has elapsed, in other words after all currently executing
1878  * trace rcu-tasks read-side critical sections have elapsed. These read-side
1879  * critical sections are delimited by calls to rcu_read_lock_trace()
1880  * and rcu_read_unlock_trace().
1881  *
1882  * This is a very specialized primitive, intended only for a few uses in
1883  * tracing and other situations requiring manipulation of function preambles
1884  * and profiling hooks.  The synchronize_rcu_tasks_trace() function is not
1885  * (yet) intended for heavy use from multiple CPUs.
1886  *
1887  * See the description of synchronize_rcu() for more detailed information
1888  * on memory ordering guarantees.
1889  */
1890 void synchronize_rcu_tasks_trace(void)
1891 {
1892 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1893 	synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1894 }
1895 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1896 
1897 /**
1898  * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1899  *
1900  * Although the current implementation is guaranteed to wait, it is not
1901  * obligated to, for example, if there are no pending callbacks.
1902  */
1903 void rcu_barrier_tasks_trace(void)
1904 {
1905 	rcu_barrier_tasks_generic(&rcu_tasks_trace);
1906 }
1907 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1908 
1909 int rcu_tasks_trace_lazy_ms = -1;
1910 module_param(rcu_tasks_trace_lazy_ms, int, 0444);
1911 
1912 static int __init rcu_spawn_tasks_trace_kthread(void)
1913 {
1914 	cblist_init_generic(&rcu_tasks_trace);
1915 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1916 		rcu_tasks_trace.gp_sleep = HZ / 10;
1917 		rcu_tasks_trace.init_fract = HZ / 10;
1918 	} else {
1919 		rcu_tasks_trace.gp_sleep = HZ / 200;
1920 		if (rcu_tasks_trace.gp_sleep <= 0)
1921 			rcu_tasks_trace.gp_sleep = 1;
1922 		rcu_tasks_trace.init_fract = HZ / 200;
1923 		if (rcu_tasks_trace.init_fract <= 0)
1924 			rcu_tasks_trace.init_fract = 1;
1925 	}
1926 	if (rcu_tasks_trace_lazy_ms >= 0)
1927 		rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
1928 	rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1929 	rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1930 	rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1931 	rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1932 	rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1933 	return 0;
1934 }
1935 
1936 #if !defined(CONFIG_TINY_RCU)
1937 void show_rcu_tasks_trace_gp_kthread(void)
1938 {
1939 	char buf[64];
1940 
1941 	sprintf(buf, "N%lu h:%lu/%lu/%lu",
1942 		data_race(n_trc_holdouts),
1943 		data_race(n_heavy_reader_ofl_updates),
1944 		data_race(n_heavy_reader_updates),
1945 		data_race(n_heavy_reader_attempts));
1946 	show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1947 }
1948 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1949 #endif // !defined(CONFIG_TINY_RCU)
1950 
1951 struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
1952 {
1953 	return rcu_tasks_trace.kthread_ptr;
1954 }
1955 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
1956 
1957 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1958 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1959 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1960 
1961 #ifndef CONFIG_TINY_RCU
1962 void show_rcu_tasks_gp_kthreads(void)
1963 {
1964 	show_rcu_tasks_classic_gp_kthread();
1965 	show_rcu_tasks_rude_gp_kthread();
1966 	show_rcu_tasks_trace_gp_kthread();
1967 }
1968 #endif /* #ifndef CONFIG_TINY_RCU */
1969 
1970 #ifdef CONFIG_PROVE_RCU
1971 struct rcu_tasks_test_desc {
1972 	struct rcu_head rh;
1973 	const char *name;
1974 	bool notrun;
1975 	unsigned long runstart;
1976 };
1977 
1978 static struct rcu_tasks_test_desc tests[] = {
1979 	{
1980 		.name = "call_rcu_tasks()",
1981 		/* If not defined, the test is skipped. */
1982 		.notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1983 	},
1984 	{
1985 		.name = "call_rcu_tasks_rude()",
1986 		/* If not defined, the test is skipped. */
1987 		.notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1988 	},
1989 	{
1990 		.name = "call_rcu_tasks_trace()",
1991 		/* If not defined, the test is skipped. */
1992 		.notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1993 	}
1994 };
1995 
1996 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1997 {
1998 	struct rcu_tasks_test_desc *rttd =
1999 		container_of(rhp, struct rcu_tasks_test_desc, rh);
2000 
2001 	pr_info("Callback from %s invoked.\n", rttd->name);
2002 
2003 	rttd->notrun = false;
2004 }
2005 
2006 static void rcu_tasks_initiate_self_tests(void)
2007 {
2008 	pr_info("Running RCU-tasks wait API self tests\n");
2009 #ifdef CONFIG_TASKS_RCU
2010 	tests[0].runstart = jiffies;
2011 	synchronize_rcu_tasks();
2012 	call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2013 #endif
2014 
2015 #ifdef CONFIG_TASKS_RUDE_RCU
2016 	tests[1].runstart = jiffies;
2017 	synchronize_rcu_tasks_rude();
2018 	call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
2019 #endif
2020 
2021 #ifdef CONFIG_TASKS_TRACE_RCU
2022 	tests[2].runstart = jiffies;
2023 	synchronize_rcu_tasks_trace();
2024 	call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
2025 #endif
2026 }
2027 
2028 /*
2029  * Return:  0 - test passed
2030  *	    1 - test failed, but have not timed out yet
2031  *	   -1 - test failed and timed out
2032  */
2033 static int rcu_tasks_verify_self_tests(void)
2034 {
2035 	int ret = 0;
2036 	int i;
2037 	unsigned long bst = rcu_task_stall_timeout;
2038 
2039 	if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2040 		bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2041 	for (i = 0; i < ARRAY_SIZE(tests); i++) {
2042 		while (tests[i].notrun) {		// still hanging.
2043 			if (time_after(jiffies, tests[i].runstart + bst)) {
2044 				pr_err("%s has failed boot-time tests.\n", tests[i].name);
2045 				ret = -1;
2046 				break;
2047 			}
2048 			ret = 1;
2049 			break;
2050 		}
2051 	}
2052 	WARN_ON(ret < 0);
2053 
2054 	return ret;
2055 }
2056 
2057 /*
2058  * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2059  * test passes or has timed out.
2060  */
2061 static struct delayed_work rcu_tasks_verify_work;
2062 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2063 {
2064 	int ret = rcu_tasks_verify_self_tests();
2065 
2066 	if (ret <= 0)
2067 		return;
2068 
2069 	/* Test fails but not timed out yet, reschedule another check */
2070 	schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2071 }
2072 
2073 static int rcu_tasks_verify_schedule_work(void)
2074 {
2075 	INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2076 	rcu_tasks_verify_work_fn(NULL);
2077 	return 0;
2078 }
2079 late_initcall(rcu_tasks_verify_schedule_work);
2080 #else /* #ifdef CONFIG_PROVE_RCU */
2081 static void rcu_tasks_initiate_self_tests(void) { }
2082 #endif /* #else #ifdef CONFIG_PROVE_RCU */
2083 
2084 void __init rcu_init_tasks_generic(void)
2085 {
2086 #ifdef CONFIG_TASKS_RCU
2087 	rcu_spawn_tasks_kthread();
2088 #endif
2089 
2090 #ifdef CONFIG_TASKS_RUDE_RCU
2091 	rcu_spawn_tasks_rude_kthread();
2092 #endif
2093 
2094 #ifdef CONFIG_TASKS_TRACE_RCU
2095 	rcu_spawn_tasks_trace_kthread();
2096 #endif
2097 
2098 	// Run the self-tests.
2099 	rcu_tasks_initiate_self_tests();
2100 }
2101 
2102 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2103 static inline void rcu_tasks_bootup_oddness(void) {}
2104 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
2105