1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * Task-based RCU implementations. 4 * 5 * Copyright (C) 2020 Paul E. McKenney 6 */ 7 8 #ifdef CONFIG_TASKS_RCU_GENERIC 9 #include "rcu_segcblist.h" 10 11 //////////////////////////////////////////////////////////////////////// 12 // 13 // Generic data structures. 14 15 struct rcu_tasks; 16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp); 17 typedef void (*pregp_func_t)(struct list_head *hop); 18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop); 19 typedef void (*postscan_func_t)(struct list_head *hop); 20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp); 21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp); 22 23 /** 24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism. 25 * @cblist: Callback list. 26 * @lock: Lock protecting per-CPU callback list. 27 * @rtp_jiffies: Jiffies counter value for statistics. 28 * @lazy_timer: Timer to unlazify callbacks. 29 * @urgent_gp: Number of additional non-lazy grace periods. 30 * @rtp_n_lock_retries: Rough lock-contention statistic. 31 * @rtp_work: Work queue for invoking callbacks. 32 * @rtp_irq_work: IRQ work queue for deferred wakeups. 33 * @barrier_q_head: RCU callback for barrier operation. 34 * @rtp_blkd_tasks: List of tasks blocked as readers. 35 * @cpu: CPU number corresponding to this entry. 36 * @rtpp: Pointer to the rcu_tasks structure. 37 */ 38 struct rcu_tasks_percpu { 39 struct rcu_segcblist cblist; 40 raw_spinlock_t __private lock; 41 unsigned long rtp_jiffies; 42 unsigned long rtp_n_lock_retries; 43 struct timer_list lazy_timer; 44 unsigned int urgent_gp; 45 struct work_struct rtp_work; 46 struct irq_work rtp_irq_work; 47 struct rcu_head barrier_q_head; 48 struct list_head rtp_blkd_tasks; 49 int cpu; 50 struct rcu_tasks *rtpp; 51 }; 52 53 /** 54 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism. 55 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention. 56 * @cbs_gbl_lock: Lock protecting callback list. 57 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone. 58 * @gp_func: This flavor's grace-period-wait function. 59 * @gp_state: Grace period's most recent state transition (debugging). 60 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping. 61 * @init_fract: Initial backoff sleep interval. 62 * @gp_jiffies: Time of last @gp_state transition. 63 * @gp_start: Most recent grace-period start in jiffies. 64 * @tasks_gp_seq: Number of grace periods completed since boot. 65 * @n_ipis: Number of IPIs sent to encourage grace periods to end. 66 * @n_ipis_fails: Number of IPI-send failures. 67 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread. 68 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy. 69 * @pregp_func: This flavor's pre-grace-period function (optional). 70 * @pertask_func: This flavor's per-task scan function (optional). 71 * @postscan_func: This flavor's post-task scan function (optional). 72 * @holdouts_func: This flavor's holdout-list scan function (optional). 73 * @postgp_func: This flavor's post-grace-period function (optional). 74 * @call_func: This flavor's call_rcu()-equivalent function. 75 * @rtpcpu: This flavor's rcu_tasks_percpu structure. 76 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks. 77 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing. 78 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing. 79 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers. 80 * @barrier_q_mutex: Serialize barrier operations. 81 * @barrier_q_count: Number of queues being waited on. 82 * @barrier_q_completion: Barrier wait/wakeup mechanism. 83 * @barrier_q_seq: Sequence number for barrier operations. 84 * @name: This flavor's textual name. 85 * @kname: This flavor's kthread name. 86 */ 87 struct rcu_tasks { 88 struct rcuwait cbs_wait; 89 raw_spinlock_t cbs_gbl_lock; 90 struct mutex tasks_gp_mutex; 91 int gp_state; 92 int gp_sleep; 93 int init_fract; 94 unsigned long gp_jiffies; 95 unsigned long gp_start; 96 unsigned long tasks_gp_seq; 97 unsigned long n_ipis; 98 unsigned long n_ipis_fails; 99 struct task_struct *kthread_ptr; 100 unsigned long lazy_jiffies; 101 rcu_tasks_gp_func_t gp_func; 102 pregp_func_t pregp_func; 103 pertask_func_t pertask_func; 104 postscan_func_t postscan_func; 105 holdouts_func_t holdouts_func; 106 postgp_func_t postgp_func; 107 call_rcu_func_t call_func; 108 struct rcu_tasks_percpu __percpu *rtpcpu; 109 int percpu_enqueue_shift; 110 int percpu_enqueue_lim; 111 int percpu_dequeue_lim; 112 unsigned long percpu_dequeue_gpseq; 113 struct mutex barrier_q_mutex; 114 atomic_t barrier_q_count; 115 struct completion barrier_q_completion; 116 unsigned long barrier_q_seq; 117 char *name; 118 char *kname; 119 }; 120 121 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp); 122 123 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \ 124 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \ 125 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \ 126 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \ 127 }; \ 128 static struct rcu_tasks rt_name = \ 129 { \ 130 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \ 131 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \ 132 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \ 133 .gp_func = gp, \ 134 .call_func = call, \ 135 .rtpcpu = &rt_name ## __percpu, \ 136 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \ 137 .name = n, \ 138 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \ 139 .percpu_enqueue_lim = 1, \ 140 .percpu_dequeue_lim = 1, \ 141 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \ 142 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \ 143 .kname = #rt_name, \ 144 } 145 146 #ifdef CONFIG_TASKS_RCU 147 /* Track exiting tasks in order to allow them to be waited for. */ 148 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu); 149 150 /* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */ 151 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused); 152 static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall); 153 #endif 154 155 /* Avoid IPIing CPUs early in the grace period. */ 156 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0) 157 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY; 158 module_param(rcu_task_ipi_delay, int, 0644); 159 160 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ 161 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30) 162 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10) 163 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT; 164 module_param(rcu_task_stall_timeout, int, 0644); 165 #define RCU_TASK_STALL_INFO (HZ * 10) 166 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO; 167 module_param(rcu_task_stall_info, int, 0644); 168 static int rcu_task_stall_info_mult __read_mostly = 3; 169 module_param(rcu_task_stall_info_mult, int, 0444); 170 171 static int rcu_task_enqueue_lim __read_mostly = -1; 172 module_param(rcu_task_enqueue_lim, int, 0444); 173 174 static bool rcu_task_cb_adjust; 175 static int rcu_task_contend_lim __read_mostly = 100; 176 module_param(rcu_task_contend_lim, int, 0444); 177 static int rcu_task_collapse_lim __read_mostly = 10; 178 module_param(rcu_task_collapse_lim, int, 0444); 179 static int rcu_task_lazy_lim __read_mostly = 32; 180 module_param(rcu_task_lazy_lim, int, 0444); 181 182 /* RCU tasks grace-period state for debugging. */ 183 #define RTGS_INIT 0 184 #define RTGS_WAIT_WAIT_CBS 1 185 #define RTGS_WAIT_GP 2 186 #define RTGS_PRE_WAIT_GP 3 187 #define RTGS_SCAN_TASKLIST 4 188 #define RTGS_POST_SCAN_TASKLIST 5 189 #define RTGS_WAIT_SCAN_HOLDOUTS 6 190 #define RTGS_SCAN_HOLDOUTS 7 191 #define RTGS_POST_GP 8 192 #define RTGS_WAIT_READERS 9 193 #define RTGS_INVOKE_CBS 10 194 #define RTGS_WAIT_CBS 11 195 #ifndef CONFIG_TINY_RCU 196 static const char * const rcu_tasks_gp_state_names[] = { 197 "RTGS_INIT", 198 "RTGS_WAIT_WAIT_CBS", 199 "RTGS_WAIT_GP", 200 "RTGS_PRE_WAIT_GP", 201 "RTGS_SCAN_TASKLIST", 202 "RTGS_POST_SCAN_TASKLIST", 203 "RTGS_WAIT_SCAN_HOLDOUTS", 204 "RTGS_SCAN_HOLDOUTS", 205 "RTGS_POST_GP", 206 "RTGS_WAIT_READERS", 207 "RTGS_INVOKE_CBS", 208 "RTGS_WAIT_CBS", 209 }; 210 #endif /* #ifndef CONFIG_TINY_RCU */ 211 212 //////////////////////////////////////////////////////////////////////// 213 // 214 // Generic code. 215 216 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp); 217 218 /* Record grace-period phase and time. */ 219 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate) 220 { 221 rtp->gp_state = newstate; 222 rtp->gp_jiffies = jiffies; 223 } 224 225 #ifndef CONFIG_TINY_RCU 226 /* Return state name. */ 227 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp) 228 { 229 int i = data_race(rtp->gp_state); // Let KCSAN detect update races 230 int j = READ_ONCE(i); // Prevent the compiler from reading twice 231 232 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names)) 233 return "???"; 234 return rcu_tasks_gp_state_names[j]; 235 } 236 #endif /* #ifndef CONFIG_TINY_RCU */ 237 238 // Initialize per-CPU callback lists for the specified flavor of 239 // Tasks RCU. Do not enqueue callbacks before this function is invoked. 240 static void cblist_init_generic(struct rcu_tasks *rtp) 241 { 242 int cpu; 243 unsigned long flags; 244 int lim; 245 int shift; 246 247 if (rcu_task_enqueue_lim < 0) { 248 rcu_task_enqueue_lim = 1; 249 rcu_task_cb_adjust = true; 250 } else if (rcu_task_enqueue_lim == 0) { 251 rcu_task_enqueue_lim = 1; 252 } 253 lim = rcu_task_enqueue_lim; 254 255 if (lim > nr_cpu_ids) 256 lim = nr_cpu_ids; 257 shift = ilog2(nr_cpu_ids / lim); 258 if (((nr_cpu_ids - 1) >> shift) >= lim) 259 shift++; 260 WRITE_ONCE(rtp->percpu_enqueue_shift, shift); 261 WRITE_ONCE(rtp->percpu_dequeue_lim, lim); 262 smp_store_release(&rtp->percpu_enqueue_lim, lim); 263 for_each_possible_cpu(cpu) { 264 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 265 266 WARN_ON_ONCE(!rtpcp); 267 if (cpu) 268 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock)); 269 local_irq_save(flags); // serialize initialization 270 if (rcu_segcblist_empty(&rtpcp->cblist)) 271 rcu_segcblist_init(&rtpcp->cblist); 272 local_irq_restore(flags); 273 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq); 274 rtpcp->cpu = cpu; 275 rtpcp->rtpp = rtp; 276 if (!rtpcp->rtp_blkd_tasks.next) 277 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 278 } 279 280 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name, 281 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust); 282 } 283 284 // Compute wakeup time for lazy callback timer. 285 static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp) 286 { 287 return jiffies + rtp->lazy_jiffies; 288 } 289 290 // Timer handler that unlazifies lazy callbacks. 291 static void call_rcu_tasks_generic_timer(struct timer_list *tlp) 292 { 293 unsigned long flags; 294 bool needwake = false; 295 struct rcu_tasks *rtp; 296 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer); 297 298 rtp = rtpcp->rtpp; 299 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 300 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) { 301 if (!rtpcp->urgent_gp) 302 rtpcp->urgent_gp = 1; 303 needwake = true; 304 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 305 } 306 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 307 if (needwake) 308 rcuwait_wake_up(&rtp->cbs_wait); 309 } 310 311 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic(). 312 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp) 313 { 314 struct rcu_tasks *rtp; 315 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work); 316 317 rtp = rtpcp->rtpp; 318 rcuwait_wake_up(&rtp->cbs_wait); 319 } 320 321 // Enqueue a callback for the specified flavor of Tasks RCU. 322 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func, 323 struct rcu_tasks *rtp) 324 { 325 int chosen_cpu; 326 unsigned long flags; 327 bool havekthread = smp_load_acquire(&rtp->kthread_ptr); 328 int ideal_cpu; 329 unsigned long j; 330 bool needadjust = false; 331 bool needwake; 332 struct rcu_tasks_percpu *rtpcp; 333 334 rhp->next = NULL; 335 rhp->func = func; 336 local_irq_save(flags); 337 rcu_read_lock(); 338 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift); 339 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask); 340 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu); 341 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled. 342 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled. 343 j = jiffies; 344 if (rtpcp->rtp_jiffies != j) { 345 rtpcp->rtp_jiffies = j; 346 rtpcp->rtp_n_lock_retries = 0; 347 } 348 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim && 349 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids) 350 needadjust = true; // Defer adjustment to avoid deadlock. 351 } 352 // Queuing callbacks before initialization not yet supported. 353 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist))) 354 rcu_segcblist_init(&rtpcp->cblist); 355 needwake = (func == wakeme_after_rcu) || 356 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim); 357 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) { 358 if (rtp->lazy_jiffies) 359 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp)); 360 else 361 needwake = rcu_segcblist_empty(&rtpcp->cblist); 362 } 363 if (needwake) 364 rtpcp->urgent_gp = 3; 365 rcu_segcblist_enqueue(&rtpcp->cblist, rhp); 366 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 367 if (unlikely(needadjust)) { 368 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 369 if (rtp->percpu_enqueue_lim != nr_cpu_ids) { 370 WRITE_ONCE(rtp->percpu_enqueue_shift, 0); 371 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids); 372 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids); 373 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name); 374 } 375 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 376 } 377 rcu_read_unlock(); 378 /* We can't create the thread unless interrupts are enabled. */ 379 if (needwake && READ_ONCE(rtp->kthread_ptr)) 380 irq_work_queue(&rtpcp->rtp_irq_work); 381 } 382 383 // RCU callback function for rcu_barrier_tasks_generic(). 384 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp) 385 { 386 struct rcu_tasks *rtp; 387 struct rcu_tasks_percpu *rtpcp; 388 389 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head); 390 rtp = rtpcp->rtpp; 391 if (atomic_dec_and_test(&rtp->barrier_q_count)) 392 complete(&rtp->barrier_q_completion); 393 } 394 395 // Wait for all in-flight callbacks for the specified RCU Tasks flavor. 396 // Operates in a manner similar to rcu_barrier(). 397 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp) 398 { 399 int cpu; 400 unsigned long flags; 401 struct rcu_tasks_percpu *rtpcp; 402 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq); 403 404 mutex_lock(&rtp->barrier_q_mutex); 405 if (rcu_seq_done(&rtp->barrier_q_seq, s)) { 406 smp_mb(); 407 mutex_unlock(&rtp->barrier_q_mutex); 408 return; 409 } 410 rcu_seq_start(&rtp->barrier_q_seq); 411 init_completion(&rtp->barrier_q_completion); 412 atomic_set(&rtp->barrier_q_count, 2); 413 for_each_possible_cpu(cpu) { 414 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim)) 415 break; 416 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 417 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb; 418 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 419 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head)) 420 atomic_inc(&rtp->barrier_q_count); 421 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 422 } 423 if (atomic_sub_and_test(2, &rtp->barrier_q_count)) 424 complete(&rtp->barrier_q_completion); 425 wait_for_completion(&rtp->barrier_q_completion); 426 rcu_seq_end(&rtp->barrier_q_seq); 427 mutex_unlock(&rtp->barrier_q_mutex); 428 } 429 430 // Advance callbacks and indicate whether either a grace period or 431 // callback invocation is needed. 432 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp) 433 { 434 int cpu; 435 unsigned long flags; 436 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq); 437 long n; 438 long ncbs = 0; 439 long ncbsnz = 0; 440 int needgpcb = 0; 441 442 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) { 443 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 444 445 /* Advance and accelerate any new callbacks. */ 446 if (!rcu_segcblist_n_cbs(&rtpcp->cblist)) 447 continue; 448 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 449 // Should we shrink down to a single callback queue? 450 n = rcu_segcblist_n_cbs(&rtpcp->cblist); 451 if (n) { 452 ncbs += n; 453 if (cpu > 0) 454 ncbsnz += n; 455 } 456 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 457 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 458 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) { 459 if (rtp->lazy_jiffies) 460 rtpcp->urgent_gp--; 461 needgpcb |= 0x3; 462 } else if (rcu_segcblist_empty(&rtpcp->cblist)) { 463 rtpcp->urgent_gp = 0; 464 } 465 if (rcu_segcblist_ready_cbs(&rtpcp->cblist)) 466 needgpcb |= 0x1; 467 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 468 } 469 470 // Shrink down to a single callback queue if appropriate. 471 // This is done in two stages: (1) If there are no more than 472 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other 473 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period, 474 // if there has not been an increase in callbacks, limit dequeuing 475 // to CPU 0. Note the matching RCU read-side critical section in 476 // call_rcu_tasks_generic(). 477 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) { 478 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 479 if (rtp->percpu_enqueue_lim > 1) { 480 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids)); 481 smp_store_release(&rtp->percpu_enqueue_lim, 1); 482 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu(); 483 gpdone = false; 484 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name); 485 } 486 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 487 } 488 if (rcu_task_cb_adjust && !ncbsnz && gpdone) { 489 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags); 490 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) { 491 WRITE_ONCE(rtp->percpu_dequeue_lim, 1); 492 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name); 493 } 494 if (rtp->percpu_dequeue_lim == 1) { 495 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) { 496 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 497 498 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist)); 499 } 500 } 501 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags); 502 } 503 504 return needgpcb; 505 } 506 507 // Advance callbacks and invoke any that are ready. 508 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp) 509 { 510 int cpu; 511 int cpunext; 512 int cpuwq; 513 unsigned long flags; 514 int len; 515 struct rcu_head *rhp; 516 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); 517 struct rcu_tasks_percpu *rtpcp_next; 518 519 cpu = rtpcp->cpu; 520 cpunext = cpu * 2 + 1; 521 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 522 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 523 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 524 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 525 cpunext++; 526 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) { 527 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext); 528 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND; 529 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work); 530 } 531 } 532 533 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu)) 534 return; 535 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 536 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq)); 537 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl); 538 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 539 len = rcl.len; 540 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) { 541 debug_rcu_head_callback(rhp); 542 local_bh_disable(); 543 rhp->func(rhp); 544 local_bh_enable(); 545 cond_resched(); 546 } 547 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 548 rcu_segcblist_add_len(&rtpcp->cblist, -len); 549 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq)); 550 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 551 } 552 553 // Workqueue flood to advance callbacks and invoke any that are ready. 554 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp) 555 { 556 struct rcu_tasks *rtp; 557 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work); 558 559 rtp = rtpcp->rtpp; 560 rcu_tasks_invoke_cbs(rtp, rtpcp); 561 } 562 563 // Wait for one grace period. 564 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot) 565 { 566 int needgpcb; 567 568 mutex_lock(&rtp->tasks_gp_mutex); 569 570 // If there were none, wait a bit and start over. 571 if (unlikely(midboot)) { 572 needgpcb = 0x2; 573 } else { 574 mutex_unlock(&rtp->tasks_gp_mutex); 575 set_tasks_gp_state(rtp, RTGS_WAIT_CBS); 576 rcuwait_wait_event(&rtp->cbs_wait, 577 (needgpcb = rcu_tasks_need_gpcb(rtp)), 578 TASK_IDLE); 579 mutex_lock(&rtp->tasks_gp_mutex); 580 } 581 582 if (needgpcb & 0x2) { 583 // Wait for one grace period. 584 set_tasks_gp_state(rtp, RTGS_WAIT_GP); 585 rtp->gp_start = jiffies; 586 rcu_seq_start(&rtp->tasks_gp_seq); 587 rtp->gp_func(rtp); 588 rcu_seq_end(&rtp->tasks_gp_seq); 589 } 590 591 // Invoke callbacks. 592 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS); 593 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0)); 594 mutex_unlock(&rtp->tasks_gp_mutex); 595 } 596 597 // RCU-tasks kthread that detects grace periods and invokes callbacks. 598 static int __noreturn rcu_tasks_kthread(void *arg) 599 { 600 int cpu; 601 struct rcu_tasks *rtp = arg; 602 603 for_each_possible_cpu(cpu) { 604 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 605 606 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0); 607 rtpcp->urgent_gp = 1; 608 } 609 610 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ 611 housekeeping_affine(current, HK_TYPE_RCU); 612 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start! 613 614 /* 615 * Each pass through the following loop makes one check for 616 * newly arrived callbacks, and, if there are some, waits for 617 * one RCU-tasks grace period and then invokes the callbacks. 618 * This loop is terminated by the system going down. ;-) 619 */ 620 for (;;) { 621 // Wait for one grace period and invoke any callbacks 622 // that are ready. 623 rcu_tasks_one_gp(rtp, false); 624 625 // Paranoid sleep to keep this from entering a tight loop. 626 schedule_timeout_idle(rtp->gp_sleep); 627 } 628 } 629 630 // Wait for a grace period for the specified flavor of Tasks RCU. 631 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp) 632 { 633 /* Complain if the scheduler has not started. */ 634 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE, 635 "synchronize_%s() called too soon", rtp->name)) 636 return; 637 638 // If the grace-period kthread is running, use it. 639 if (READ_ONCE(rtp->kthread_ptr)) { 640 wait_rcu_gp(rtp->call_func); 641 return; 642 } 643 rcu_tasks_one_gp(rtp, true); 644 } 645 646 /* Spawn RCU-tasks grace-period kthread. */ 647 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp) 648 { 649 struct task_struct *t; 650 651 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname); 652 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name)) 653 return; 654 smp_mb(); /* Ensure others see full kthread. */ 655 } 656 657 #ifndef CONFIG_TINY_RCU 658 659 /* 660 * Print any non-default Tasks RCU settings. 661 */ 662 static void __init rcu_tasks_bootup_oddness(void) 663 { 664 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 665 int rtsimc; 666 667 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT) 668 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout); 669 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10); 670 if (rtsimc != rcu_task_stall_info_mult) { 671 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc); 672 rcu_task_stall_info_mult = rtsimc; 673 } 674 #endif /* #ifdef CONFIG_TASKS_RCU */ 675 #ifdef CONFIG_TASKS_RCU 676 pr_info("\tTrampoline variant of Tasks RCU enabled.\n"); 677 #endif /* #ifdef CONFIG_TASKS_RCU */ 678 #ifdef CONFIG_TASKS_RUDE_RCU 679 pr_info("\tRude variant of Tasks RCU enabled.\n"); 680 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 681 #ifdef CONFIG_TASKS_TRACE_RCU 682 pr_info("\tTracing variant of Tasks RCU enabled.\n"); 683 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 684 } 685 686 #endif /* #ifndef CONFIG_TINY_RCU */ 687 688 #ifndef CONFIG_TINY_RCU 689 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */ 690 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s) 691 { 692 int cpu; 693 bool havecbs = false; 694 bool haveurgent = false; 695 bool haveurgentcbs = false; 696 697 for_each_possible_cpu(cpu) { 698 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu); 699 700 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) 701 havecbs = true; 702 if (data_race(rtpcp->urgent_gp)) 703 haveurgent = true; 704 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp)) 705 haveurgentcbs = true; 706 if (havecbs && haveurgent && haveurgentcbs) 707 break; 708 } 709 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n", 710 rtp->kname, 711 tasks_gp_state_getname(rtp), data_race(rtp->gp_state), 712 jiffies - data_race(rtp->gp_jiffies), 713 data_race(rcu_seq_current(&rtp->tasks_gp_seq)), 714 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis), 715 ".k"[!!data_race(rtp->kthread_ptr)], 716 ".C"[havecbs], 717 ".u"[haveurgent], 718 ".U"[haveurgentcbs], 719 rtp->lazy_jiffies, 720 s); 721 } 722 #endif // #ifndef CONFIG_TINY_RCU 723 724 static void exit_tasks_rcu_finish_trace(struct task_struct *t); 725 726 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) 727 728 //////////////////////////////////////////////////////////////////////// 729 // 730 // Shared code between task-list-scanning variants of Tasks RCU. 731 732 /* Wait for one RCU-tasks grace period. */ 733 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp) 734 { 735 struct task_struct *g; 736 int fract; 737 LIST_HEAD(holdouts); 738 unsigned long j; 739 unsigned long lastinfo; 740 unsigned long lastreport; 741 bool reported = false; 742 int rtsi; 743 struct task_struct *t; 744 745 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP); 746 rtp->pregp_func(&holdouts); 747 748 /* 749 * There were callbacks, so we need to wait for an RCU-tasks 750 * grace period. Start off by scanning the task list for tasks 751 * that are not already voluntarily blocked. Mark these tasks 752 * and make a list of them in holdouts. 753 */ 754 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST); 755 if (rtp->pertask_func) { 756 rcu_read_lock(); 757 for_each_process_thread(g, t) 758 rtp->pertask_func(t, &holdouts); 759 rcu_read_unlock(); 760 } 761 762 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST); 763 rtp->postscan_func(&holdouts); 764 765 /* 766 * Each pass through the following loop scans the list of holdout 767 * tasks, removing any that are no longer holdouts. When the list 768 * is empty, we are done. 769 */ 770 lastreport = jiffies; 771 lastinfo = lastreport; 772 rtsi = READ_ONCE(rcu_task_stall_info); 773 774 // Start off with initial wait and slowly back off to 1 HZ wait. 775 fract = rtp->init_fract; 776 777 while (!list_empty(&holdouts)) { 778 ktime_t exp; 779 bool firstreport; 780 bool needreport; 781 int rtst; 782 783 // Slowly back off waiting for holdouts 784 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS); 785 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 786 schedule_timeout_idle(fract); 787 } else { 788 exp = jiffies_to_nsecs(fract); 789 __set_current_state(TASK_IDLE); 790 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD); 791 } 792 793 if (fract < HZ) 794 fract++; 795 796 rtst = READ_ONCE(rcu_task_stall_timeout); 797 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst); 798 if (needreport) { 799 lastreport = jiffies; 800 reported = true; 801 } 802 firstreport = true; 803 WARN_ON(signal_pending(current)); 804 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS); 805 rtp->holdouts_func(&holdouts, needreport, &firstreport); 806 807 // Print pre-stall informational messages if needed. 808 j = jiffies; 809 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) { 810 lastinfo = j; 811 rtsi = rtsi * rcu_task_stall_info_mult; 812 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n", 813 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start); 814 } 815 } 816 817 set_tasks_gp_state(rtp, RTGS_POST_GP); 818 rtp->postgp_func(rtp); 819 } 820 821 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */ 822 823 #ifdef CONFIG_TASKS_RCU 824 825 //////////////////////////////////////////////////////////////////////// 826 // 827 // Simple variant of RCU whose quiescent states are voluntary context 828 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle. 829 // As such, grace periods can take one good long time. There are no 830 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock() 831 // because this implementation is intended to get the system into a safe 832 // state for some of the manipulations involved in tracing and the like. 833 // Finally, this implementation does not support high call_rcu_tasks() 834 // rates from multiple CPUs. If this is required, per-CPU callback lists 835 // will be needed. 836 // 837 // The implementation uses rcu_tasks_wait_gp(), which relies on function 838 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread() 839 // function sets these function pointers up so that rcu_tasks_wait_gp() 840 // invokes these functions in this order: 841 // 842 // rcu_tasks_pregp_step(): 843 // Invokes synchronize_rcu() in order to wait for all in-flight 844 // t->on_rq and t->nvcsw transitions to complete. This works because 845 // all such transitions are carried out with interrupts disabled. 846 // rcu_tasks_pertask(), invoked on every non-idle task: 847 // For every runnable non-idle task other than the current one, use 848 // get_task_struct() to pin down that task, snapshot that task's 849 // number of voluntary context switches, and add that task to the 850 // holdout list. 851 // rcu_tasks_postscan(): 852 // Invoke synchronize_srcu() to ensure that all tasks that were 853 // in the process of exiting (and which thus might not know to 854 // synchronize with this RCU Tasks grace period) have completed 855 // exiting. 856 // check_all_holdout_tasks(), repeatedly until holdout list is empty: 857 // Scans the holdout list, attempting to identify a quiescent state 858 // for each task on the list. If there is a quiescent state, the 859 // corresponding task is removed from the holdout list. 860 // rcu_tasks_postgp(): 861 // Invokes synchronize_rcu() in order to ensure that all prior 862 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks 863 // to have happened before the end of this RCU Tasks grace period. 864 // Again, this works because all such transitions are carried out 865 // with interrupts disabled. 866 // 867 // For each exiting task, the exit_tasks_rcu_start() and 868 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU 869 // read-side critical sections waited for by rcu_tasks_postscan(). 870 // 871 // Pre-grace-period update-side code is ordered before the grace 872 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code 873 // is ordered before the grace period via synchronize_rcu() call in 874 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt 875 // disabling. 876 877 /* Pre-grace-period preparation. */ 878 static void rcu_tasks_pregp_step(struct list_head *hop) 879 { 880 /* 881 * Wait for all pre-existing t->on_rq and t->nvcsw transitions 882 * to complete. Invoking synchronize_rcu() suffices because all 883 * these transitions occur with interrupts disabled. Without this 884 * synchronize_rcu(), a read-side critical section that started 885 * before the grace period might be incorrectly seen as having 886 * started after the grace period. 887 * 888 * This synchronize_rcu() also dispenses with the need for a 889 * memory barrier on the first store to t->rcu_tasks_holdout, 890 * as it forces the store to happen after the beginning of the 891 * grace period. 892 */ 893 synchronize_rcu(); 894 } 895 896 /* Check for quiescent states since the pregp's synchronize_rcu() */ 897 static bool rcu_tasks_is_holdout(struct task_struct *t) 898 { 899 int cpu; 900 901 /* Has the task been seen voluntarily sleeping? */ 902 if (!READ_ONCE(t->on_rq)) 903 return false; 904 905 /* 906 * Idle tasks (or idle injection) within the idle loop are RCU-tasks 907 * quiescent states. But CPU boot code performed by the idle task 908 * isn't a quiescent state. 909 */ 910 if (is_idle_task(t)) 911 return false; 912 913 cpu = task_cpu(t); 914 915 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */ 916 if (t == idle_task(cpu) && !rcu_cpu_online(cpu)) 917 return false; 918 919 return true; 920 } 921 922 /* Per-task initial processing. */ 923 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop) 924 { 925 if (t != current && rcu_tasks_is_holdout(t)) { 926 get_task_struct(t); 927 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw); 928 WRITE_ONCE(t->rcu_tasks_holdout, true); 929 list_add(&t->rcu_tasks_holdout_list, hop); 930 } 931 } 932 933 /* Processing between scanning taskslist and draining the holdout list. */ 934 static void rcu_tasks_postscan(struct list_head *hop) 935 { 936 int rtsi = READ_ONCE(rcu_task_stall_info); 937 938 if (!IS_ENABLED(CONFIG_TINY_RCU)) { 939 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 940 add_timer(&tasks_rcu_exit_srcu_stall_timer); 941 } 942 943 /* 944 * Exiting tasks may escape the tasklist scan. Those are vulnerable 945 * until their final schedule() with TASK_DEAD state. To cope with 946 * this, divide the fragile exit path part in two intersecting 947 * read side critical sections: 948 * 949 * 1) An _SRCU_ read side starting before calling exit_notify(), 950 * which may remove the task from the tasklist, and ending after 951 * the final preempt_disable() call in do_exit(). 952 * 953 * 2) An _RCU_ read side starting with the final preempt_disable() 954 * call in do_exit() and ending with the final call to schedule() 955 * with TASK_DEAD state. 956 * 957 * This handles the part 1). And postgp will handle part 2) with a 958 * call to synchronize_rcu(). 959 */ 960 synchronize_srcu(&tasks_rcu_exit_srcu); 961 962 if (!IS_ENABLED(CONFIG_TINY_RCU)) 963 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer); 964 } 965 966 /* See if tasks are still holding out, complain if so. */ 967 static void check_holdout_task(struct task_struct *t, 968 bool needreport, bool *firstreport) 969 { 970 int cpu; 971 972 if (!READ_ONCE(t->rcu_tasks_holdout) || 973 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) || 974 !rcu_tasks_is_holdout(t) || 975 (IS_ENABLED(CONFIG_NO_HZ_FULL) && 976 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { 977 WRITE_ONCE(t->rcu_tasks_holdout, false); 978 list_del_init(&t->rcu_tasks_holdout_list); 979 put_task_struct(t); 980 return; 981 } 982 rcu_request_urgent_qs_task(t); 983 if (!needreport) 984 return; 985 if (*firstreport) { 986 pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); 987 *firstreport = false; 988 } 989 cpu = task_cpu(t); 990 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", 991 t, ".I"[is_idle_task(t)], 992 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], 993 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, 994 t->rcu_tasks_idle_cpu, cpu); 995 sched_show_task(t); 996 } 997 998 /* Scan the holdout lists for tasks no longer holding out. */ 999 static void check_all_holdout_tasks(struct list_head *hop, 1000 bool needreport, bool *firstreport) 1001 { 1002 struct task_struct *t, *t1; 1003 1004 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) { 1005 check_holdout_task(t, needreport, firstreport); 1006 cond_resched(); 1007 } 1008 } 1009 1010 /* Finish off the Tasks-RCU grace period. */ 1011 static void rcu_tasks_postgp(struct rcu_tasks *rtp) 1012 { 1013 /* 1014 * Because ->on_rq and ->nvcsw are not guaranteed to have a full 1015 * memory barriers prior to them in the schedule() path, memory 1016 * reordering on other CPUs could cause their RCU-tasks read-side 1017 * critical sections to extend past the end of the grace period. 1018 * However, because these ->nvcsw updates are carried out with 1019 * interrupts disabled, we can use synchronize_rcu() to force the 1020 * needed ordering on all such CPUs. 1021 * 1022 * This synchronize_rcu() also confines all ->rcu_tasks_holdout 1023 * accesses to be within the grace period, avoiding the need for 1024 * memory barriers for ->rcu_tasks_holdout accesses. 1025 * 1026 * In addition, this synchronize_rcu() waits for exiting tasks 1027 * to complete their final preempt_disable() region of execution, 1028 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu), 1029 * enforcing the whole region before tasklist removal until 1030 * the final schedule() with TASK_DEAD state to be an RCU TASKS 1031 * read side critical section. 1032 */ 1033 synchronize_rcu(); 1034 } 1035 1036 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func); 1037 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks"); 1038 1039 static void tasks_rcu_exit_srcu_stall(struct timer_list *unused) 1040 { 1041 #ifndef CONFIG_TINY_RCU 1042 int rtsi; 1043 1044 rtsi = READ_ONCE(rcu_task_stall_info); 1045 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n", 1046 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq, 1047 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies); 1048 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n"); 1049 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi; 1050 add_timer(&tasks_rcu_exit_srcu_stall_timer); 1051 #endif // #ifndef CONFIG_TINY_RCU 1052 } 1053 1054 /** 1055 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 1056 * @rhp: structure to be used for queueing the RCU updates. 1057 * @func: actual callback function to be invoked after the grace period 1058 * 1059 * The callback function will be invoked some time after a full grace 1060 * period elapses, in other words after all currently executing RCU 1061 * read-side critical sections have completed. call_rcu_tasks() assumes 1062 * that the read-side critical sections end at a voluntary context 1063 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle, 1064 * or transition to usermode execution. As such, there are no read-side 1065 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1066 * this primitive is intended to determine that all tasks have passed 1067 * through a safe state, not so much for data-structure synchronization. 1068 * 1069 * See the description of call_rcu() for more detailed information on 1070 * memory ordering guarantees. 1071 */ 1072 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func) 1073 { 1074 call_rcu_tasks_generic(rhp, func, &rcu_tasks); 1075 } 1076 EXPORT_SYMBOL_GPL(call_rcu_tasks); 1077 1078 /** 1079 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. 1080 * 1081 * Control will return to the caller some time after a full rcu-tasks 1082 * grace period has elapsed, in other words after all currently 1083 * executing rcu-tasks read-side critical sections have elapsed. These 1084 * read-side critical sections are delimited by calls to schedule(), 1085 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls 1086 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). 1087 * 1088 * This is a very specialized primitive, intended only for a few uses in 1089 * tracing and other situations requiring manipulation of function 1090 * preambles and profiling hooks. The synchronize_rcu_tasks() function 1091 * is not (yet) intended for heavy use from multiple CPUs. 1092 * 1093 * See the description of synchronize_rcu() for more detailed information 1094 * on memory ordering guarantees. 1095 */ 1096 void synchronize_rcu_tasks(void) 1097 { 1098 synchronize_rcu_tasks_generic(&rcu_tasks); 1099 } 1100 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); 1101 1102 /** 1103 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. 1104 * 1105 * Although the current implementation is guaranteed to wait, it is not 1106 * obligated to, for example, if there are no pending callbacks. 1107 */ 1108 void rcu_barrier_tasks(void) 1109 { 1110 rcu_barrier_tasks_generic(&rcu_tasks); 1111 } 1112 EXPORT_SYMBOL_GPL(rcu_barrier_tasks); 1113 1114 int rcu_tasks_lazy_ms = -1; 1115 module_param(rcu_tasks_lazy_ms, int, 0444); 1116 1117 static int __init rcu_spawn_tasks_kthread(void) 1118 { 1119 cblist_init_generic(&rcu_tasks); 1120 rcu_tasks.gp_sleep = HZ / 10; 1121 rcu_tasks.init_fract = HZ / 10; 1122 if (rcu_tasks_lazy_ms >= 0) 1123 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms); 1124 rcu_tasks.pregp_func = rcu_tasks_pregp_step; 1125 rcu_tasks.pertask_func = rcu_tasks_pertask; 1126 rcu_tasks.postscan_func = rcu_tasks_postscan; 1127 rcu_tasks.holdouts_func = check_all_holdout_tasks; 1128 rcu_tasks.postgp_func = rcu_tasks_postgp; 1129 rcu_spawn_tasks_kthread_generic(&rcu_tasks); 1130 return 0; 1131 } 1132 1133 #if !defined(CONFIG_TINY_RCU) 1134 void show_rcu_tasks_classic_gp_kthread(void) 1135 { 1136 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, ""); 1137 } 1138 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread); 1139 #endif // !defined(CONFIG_TINY_RCU) 1140 1141 struct task_struct *get_rcu_tasks_gp_kthread(void) 1142 { 1143 return rcu_tasks.kthread_ptr; 1144 } 1145 EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread); 1146 1147 /* 1148 * Contribute to protect against tasklist scan blind spot while the 1149 * task is exiting and may be removed from the tasklist. See 1150 * corresponding synchronize_srcu() for further details. 1151 */ 1152 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu) 1153 { 1154 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu); 1155 } 1156 1157 /* 1158 * Contribute to protect against tasklist scan blind spot while the 1159 * task is exiting and may be removed from the tasklist. See 1160 * corresponding synchronize_srcu() for further details. 1161 */ 1162 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu) 1163 { 1164 struct task_struct *t = current; 1165 1166 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx); 1167 } 1168 1169 /* 1170 * Contribute to protect against tasklist scan blind spot while the 1171 * task is exiting and may be removed from the tasklist. See 1172 * corresponding synchronize_srcu() for further details. 1173 */ 1174 void exit_tasks_rcu_finish(void) 1175 { 1176 exit_tasks_rcu_stop(); 1177 exit_tasks_rcu_finish_trace(current); 1178 } 1179 1180 #else /* #ifdef CONFIG_TASKS_RCU */ 1181 void exit_tasks_rcu_start(void) { } 1182 void exit_tasks_rcu_stop(void) { } 1183 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); } 1184 #endif /* #else #ifdef CONFIG_TASKS_RCU */ 1185 1186 #ifdef CONFIG_TASKS_RUDE_RCU 1187 1188 //////////////////////////////////////////////////////////////////////// 1189 // 1190 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of 1191 // passing an empty function to schedule_on_each_cpu(). This approach 1192 // provides an asynchronous call_rcu_tasks_rude() API and batching of 1193 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API. 1194 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide 1195 // and induces otherwise unnecessary context switches on all online CPUs, 1196 // whether idle or not. 1197 // 1198 // Callback handling is provided by the rcu_tasks_kthread() function. 1199 // 1200 // Ordering is provided by the scheduler's context-switch code. 1201 1202 // Empty function to allow workqueues to force a context switch. 1203 static void rcu_tasks_be_rude(struct work_struct *work) 1204 { 1205 } 1206 1207 // Wait for one rude RCU-tasks grace period. 1208 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp) 1209 { 1210 rtp->n_ipis += cpumask_weight(cpu_online_mask); 1211 schedule_on_each_cpu(rcu_tasks_be_rude); 1212 } 1213 1214 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func); 1215 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude, 1216 "RCU Tasks Rude"); 1217 1218 /** 1219 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period 1220 * @rhp: structure to be used for queueing the RCU updates. 1221 * @func: actual callback function to be invoked after the grace period 1222 * 1223 * The callback function will be invoked some time after a full grace 1224 * period elapses, in other words after all currently executing RCU 1225 * read-side critical sections have completed. call_rcu_tasks_rude() 1226 * assumes that the read-side critical sections end at context switch, 1227 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as 1228 * usermode execution is schedulable). As such, there are no read-side 1229 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because 1230 * this primitive is intended to determine that all tasks have passed 1231 * through a safe state, not so much for data-structure synchronization. 1232 * 1233 * See the description of call_rcu() for more detailed information on 1234 * memory ordering guarantees. 1235 */ 1236 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func) 1237 { 1238 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude); 1239 } 1240 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude); 1241 1242 /** 1243 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period 1244 * 1245 * Control will return to the caller some time after a rude rcu-tasks 1246 * grace period has elapsed, in other words after all currently 1247 * executing rcu-tasks read-side critical sections have elapsed. These 1248 * read-side critical sections are delimited by calls to schedule(), 1249 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable 1250 * context), and (in theory, anyway) cond_resched(). 1251 * 1252 * This is a very specialized primitive, intended only for a few uses in 1253 * tracing and other situations requiring manipulation of function preambles 1254 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not 1255 * (yet) intended for heavy use from multiple CPUs. 1256 * 1257 * See the description of synchronize_rcu() for more detailed information 1258 * on memory ordering guarantees. 1259 */ 1260 void synchronize_rcu_tasks_rude(void) 1261 { 1262 synchronize_rcu_tasks_generic(&rcu_tasks_rude); 1263 } 1264 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude); 1265 1266 /** 1267 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks. 1268 * 1269 * Although the current implementation is guaranteed to wait, it is not 1270 * obligated to, for example, if there are no pending callbacks. 1271 */ 1272 void rcu_barrier_tasks_rude(void) 1273 { 1274 rcu_barrier_tasks_generic(&rcu_tasks_rude); 1275 } 1276 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude); 1277 1278 int rcu_tasks_rude_lazy_ms = -1; 1279 module_param(rcu_tasks_rude_lazy_ms, int, 0444); 1280 1281 static int __init rcu_spawn_tasks_rude_kthread(void) 1282 { 1283 cblist_init_generic(&rcu_tasks_rude); 1284 rcu_tasks_rude.gp_sleep = HZ / 10; 1285 if (rcu_tasks_rude_lazy_ms >= 0) 1286 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms); 1287 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude); 1288 return 0; 1289 } 1290 1291 #if !defined(CONFIG_TINY_RCU) 1292 void show_rcu_tasks_rude_gp_kthread(void) 1293 { 1294 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, ""); 1295 } 1296 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread); 1297 #endif // !defined(CONFIG_TINY_RCU) 1298 1299 struct task_struct *get_rcu_tasks_rude_gp_kthread(void) 1300 { 1301 return rcu_tasks_rude.kthread_ptr; 1302 } 1303 EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread); 1304 1305 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */ 1306 1307 //////////////////////////////////////////////////////////////////////// 1308 // 1309 // Tracing variant of Tasks RCU. This variant is designed to be used 1310 // to protect tracing hooks, including those of BPF. This variant 1311 // therefore: 1312 // 1313 // 1. Has explicit read-side markers to allow finite grace periods 1314 // in the face of in-kernel loops for PREEMPT=n builds. 1315 // 1316 // 2. Protects code in the idle loop, exception entry/exit, and 1317 // CPU-hotplug code paths, similar to the capabilities of SRCU. 1318 // 1319 // 3. Avoids expensive read-side instructions, having overhead similar 1320 // to that of Preemptible RCU. 1321 // 1322 // There are of course downsides. For example, the grace-period code 1323 // can send IPIs to CPUs, even when those CPUs are in the idle loop or 1324 // in nohz_full userspace. If needed, these downsides can be at least 1325 // partially remedied. 1326 // 1327 // Perhaps most important, this variant of RCU does not affect the vanilla 1328 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace 1329 // readers can operate from idle, offline, and exception entry/exit in no 1330 // way allows rcu_preempt and rcu_sched readers to also do so. 1331 // 1332 // The implementation uses rcu_tasks_wait_gp(), which relies on function 1333 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread() 1334 // function sets these function pointers up so that rcu_tasks_wait_gp() 1335 // invokes these functions in this order: 1336 // 1337 // rcu_tasks_trace_pregp_step(): 1338 // Disables CPU hotplug, adds all currently executing tasks to the 1339 // holdout list, then checks the state of all tasks that blocked 1340 // or were preempted within their current RCU Tasks Trace read-side 1341 // critical section, adding them to the holdout list if appropriate. 1342 // Finally, this function re-enables CPU hotplug. 1343 // The ->pertask_func() pointer is NULL, so there is no per-task processing. 1344 // rcu_tasks_trace_postscan(): 1345 // Invokes synchronize_rcu() to wait for late-stage exiting tasks 1346 // to finish exiting. 1347 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty: 1348 // Scans the holdout list, attempting to identify a quiescent state 1349 // for each task on the list. If there is a quiescent state, the 1350 // corresponding task is removed from the holdout list. Once this 1351 // list is empty, the grace period has completed. 1352 // rcu_tasks_trace_postgp(): 1353 // Provides the needed full memory barrier and does debug checks. 1354 // 1355 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks. 1356 // 1357 // Pre-grace-period update-side code is ordered before the grace period 1358 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period 1359 // read-side code is ordered before the grace period by atomic operations 1360 // on .b.need_qs flag of each task involved in this process, or by scheduler 1361 // context-switch ordering (for locked-down non-running readers). 1362 1363 // The lockdep state must be outside of #ifdef to be useful. 1364 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1365 static struct lock_class_key rcu_lock_trace_key; 1366 struct lockdep_map rcu_trace_lock_map = 1367 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key); 1368 EXPORT_SYMBOL_GPL(rcu_trace_lock_map); 1369 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 1370 1371 #ifdef CONFIG_TASKS_TRACE_RCU 1372 1373 // Record outstanding IPIs to each CPU. No point in sending two... 1374 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu); 1375 1376 // The number of detections of task quiescent state relying on 1377 // heavyweight readers executing explicit memory barriers. 1378 static unsigned long n_heavy_reader_attempts; 1379 static unsigned long n_heavy_reader_updates; 1380 static unsigned long n_heavy_reader_ofl_updates; 1381 static unsigned long n_trc_holdouts; 1382 1383 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func); 1384 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace, 1385 "RCU Tasks Trace"); 1386 1387 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */ 1388 static u8 rcu_ld_need_qs(struct task_struct *t) 1389 { 1390 smp_mb(); // Enforce full grace-period ordering. 1391 return smp_load_acquire(&t->trc_reader_special.b.need_qs); 1392 } 1393 1394 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */ 1395 static void rcu_st_need_qs(struct task_struct *t, u8 v) 1396 { 1397 smp_store_release(&t->trc_reader_special.b.need_qs, v); 1398 smp_mb(); // Enforce full grace-period ordering. 1399 } 1400 1401 /* 1402 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for 1403 * the four-byte operand-size restriction of some platforms. 1404 * Returns the old value, which is often ignored. 1405 */ 1406 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new) 1407 { 1408 union rcu_special ret; 1409 union rcu_special trs_old = READ_ONCE(t->trc_reader_special); 1410 union rcu_special trs_new = trs_old; 1411 1412 if (trs_old.b.need_qs != old) 1413 return trs_old.b.need_qs; 1414 trs_new.b.need_qs = new; 1415 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s); 1416 return ret.b.need_qs; 1417 } 1418 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs); 1419 1420 /* 1421 * If we are the last reader, signal the grace-period kthread. 1422 * Also remove from the per-CPU list of blocked tasks. 1423 */ 1424 void rcu_read_unlock_trace_special(struct task_struct *t) 1425 { 1426 unsigned long flags; 1427 struct rcu_tasks_percpu *rtpcp; 1428 union rcu_special trs; 1429 1430 // Open-coded full-word version of rcu_ld_need_qs(). 1431 smp_mb(); // Enforce full grace-period ordering. 1432 trs = smp_load_acquire(&t->trc_reader_special); 1433 1434 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb) 1435 smp_mb(); // Pairs with update-side barriers. 1436 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers. 1437 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) { 1438 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS, 1439 TRC_NEED_QS_CHECKED); 1440 1441 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result); 1442 } 1443 if (trs.b.blocked) { 1444 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu); 1445 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1446 list_del_init(&t->trc_blkd_node); 1447 WRITE_ONCE(t->trc_reader_special.b.blocked, false); 1448 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1449 } 1450 WRITE_ONCE(t->trc_reader_nesting, 0); 1451 } 1452 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special); 1453 1454 /* Add a newly blocked reader task to its CPU's list. */ 1455 void rcu_tasks_trace_qs_blkd(struct task_struct *t) 1456 { 1457 unsigned long flags; 1458 struct rcu_tasks_percpu *rtpcp; 1459 1460 local_irq_save(flags); 1461 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu); 1462 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled 1463 t->trc_blkd_cpu = smp_processor_id(); 1464 if (!rtpcp->rtp_blkd_tasks.next) 1465 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks); 1466 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1467 WRITE_ONCE(t->trc_reader_special.b.blocked, true); 1468 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1469 } 1470 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd); 1471 1472 /* Add a task to the holdout list, if it is not already on the list. */ 1473 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp) 1474 { 1475 if (list_empty(&t->trc_holdout_list)) { 1476 get_task_struct(t); 1477 list_add(&t->trc_holdout_list, bhp); 1478 n_trc_holdouts++; 1479 } 1480 } 1481 1482 /* Remove a task from the holdout list, if it is in fact present. */ 1483 static void trc_del_holdout(struct task_struct *t) 1484 { 1485 if (!list_empty(&t->trc_holdout_list)) { 1486 list_del_init(&t->trc_holdout_list); 1487 put_task_struct(t); 1488 n_trc_holdouts--; 1489 } 1490 } 1491 1492 /* IPI handler to check task state. */ 1493 static void trc_read_check_handler(void *t_in) 1494 { 1495 int nesting; 1496 struct task_struct *t = current; 1497 struct task_struct *texp = t_in; 1498 1499 // If the task is no longer running on this CPU, leave. 1500 if (unlikely(texp != t)) 1501 goto reset_ipi; // Already on holdout list, so will check later. 1502 1503 // If the task is not in a read-side critical section, and 1504 // if this is the last reader, awaken the grace-period kthread. 1505 nesting = READ_ONCE(t->trc_reader_nesting); 1506 if (likely(!nesting)) { 1507 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1508 goto reset_ipi; 1509 } 1510 // If we are racing with an rcu_read_unlock_trace(), try again later. 1511 if (unlikely(nesting < 0)) 1512 goto reset_ipi; 1513 1514 // Get here if the task is in a read-side critical section. 1515 // Set its state so that it will update state for the grace-period 1516 // kthread upon exit from that critical section. 1517 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED); 1518 1519 reset_ipi: 1520 // Allow future IPIs to be sent on CPU and for task. 1521 // Also order this IPI handler against any later manipulations of 1522 // the intended task. 1523 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^ 1524 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^ 1525 } 1526 1527 /* Callback function for scheduler to check locked-down task. */ 1528 static int trc_inspect_reader(struct task_struct *t, void *bhp_in) 1529 { 1530 struct list_head *bhp = bhp_in; 1531 int cpu = task_cpu(t); 1532 int nesting; 1533 bool ofl = cpu_is_offline(cpu); 1534 1535 if (task_curr(t) && !ofl) { 1536 // If no chance of heavyweight readers, do it the hard way. 1537 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) 1538 return -EINVAL; 1539 1540 // If heavyweight readers are enabled on the remote task, 1541 // we can inspect its state despite its currently running. 1542 // However, we cannot safely change its state. 1543 n_heavy_reader_attempts++; 1544 // Check for "running" idle tasks on offline CPUs. 1545 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting)) 1546 return -EINVAL; // No quiescent state, do it the hard way. 1547 n_heavy_reader_updates++; 1548 nesting = 0; 1549 } else { 1550 // The task is not running, so C-language access is safe. 1551 nesting = t->trc_reader_nesting; 1552 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t)))); 1553 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl) 1554 n_heavy_reader_ofl_updates++; 1555 } 1556 1557 // If not exiting a read-side critical section, mark as checked 1558 // so that the grace-period kthread will remove it from the 1559 // holdout list. 1560 if (!nesting) { 1561 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1562 return 0; // In QS, so done. 1563 } 1564 if (nesting < 0) 1565 return -EINVAL; // Reader transitioning, try again later. 1566 1567 // The task is in a read-side critical section, so set up its 1568 // state so that it will update state upon exit from that critical 1569 // section. 1570 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED)) 1571 trc_add_holdout(t, bhp); 1572 return 0; 1573 } 1574 1575 /* Attempt to extract the state for the specified task. */ 1576 static void trc_wait_for_one_reader(struct task_struct *t, 1577 struct list_head *bhp) 1578 { 1579 int cpu; 1580 1581 // If a previous IPI is still in flight, let it complete. 1582 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI 1583 return; 1584 1585 // The current task had better be in a quiescent state. 1586 if (t == current) { 1587 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1588 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1589 return; 1590 } 1591 1592 // Attempt to nail down the task for inspection. 1593 get_task_struct(t); 1594 if (!task_call_func(t, trc_inspect_reader, bhp)) { 1595 put_task_struct(t); 1596 return; 1597 } 1598 put_task_struct(t); 1599 1600 // If this task is not yet on the holdout list, then we are in 1601 // an RCU read-side critical section. Otherwise, the invocation of 1602 // trc_add_holdout() that added it to the list did the necessary 1603 // get_task_struct(). Either way, the task cannot be freed out 1604 // from under this code. 1605 1606 // If currently running, send an IPI, either way, add to list. 1607 trc_add_holdout(t, bhp); 1608 if (task_curr(t) && 1609 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) { 1610 // The task is currently running, so try IPIing it. 1611 cpu = task_cpu(t); 1612 1613 // If there is already an IPI outstanding, let it happen. 1614 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0) 1615 return; 1616 1617 per_cpu(trc_ipi_to_cpu, cpu) = true; 1618 t->trc_ipi_to_cpu = cpu; 1619 rcu_tasks_trace.n_ipis++; 1620 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) { 1621 // Just in case there is some other reason for 1622 // failure than the target CPU being offline. 1623 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n", 1624 __func__, cpu); 1625 rcu_tasks_trace.n_ipis_fails++; 1626 per_cpu(trc_ipi_to_cpu, cpu) = false; 1627 t->trc_ipi_to_cpu = -1; 1628 } 1629 } 1630 } 1631 1632 /* 1633 * Initialize for first-round processing for the specified task. 1634 * Return false if task is NULL or already taken care of, true otherwise. 1635 */ 1636 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself) 1637 { 1638 // During early boot when there is only the one boot CPU, there 1639 // is no idle task for the other CPUs. Also, the grace-period 1640 // kthread is always in a quiescent state. In addition, just return 1641 // if this task is already on the list. 1642 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list)) 1643 return false; 1644 1645 rcu_st_need_qs(t, 0); 1646 t->trc_ipi_to_cpu = -1; 1647 return true; 1648 } 1649 1650 /* Do first-round processing for the specified task. */ 1651 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop) 1652 { 1653 if (rcu_tasks_trace_pertask_prep(t, true)) 1654 trc_wait_for_one_reader(t, hop); 1655 } 1656 1657 /* Initialize for a new RCU-tasks-trace grace period. */ 1658 static void rcu_tasks_trace_pregp_step(struct list_head *hop) 1659 { 1660 LIST_HEAD(blkd_tasks); 1661 int cpu; 1662 unsigned long flags; 1663 struct rcu_tasks_percpu *rtpcp; 1664 struct task_struct *t; 1665 1666 // There shouldn't be any old IPIs, but... 1667 for_each_possible_cpu(cpu) 1668 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu)); 1669 1670 // Disable CPU hotplug across the CPU scan for the benefit of 1671 // any IPIs that might be needed. This also waits for all readers 1672 // in CPU-hotplug code paths. 1673 cpus_read_lock(); 1674 1675 // These rcu_tasks_trace_pertask_prep() calls are serialized to 1676 // allow safe access to the hop list. 1677 for_each_online_cpu(cpu) { 1678 rcu_read_lock(); 1679 // Note that cpu_curr_snapshot() picks up the target 1680 // CPU's current task while its runqueue is locked with 1681 // an smp_mb__after_spinlock(). This ensures that either 1682 // the grace-period kthread will see that task's read-side 1683 // critical section or the task will see the updater's pre-GP 1684 // accesses. The trailing smp_mb() in cpu_curr_snapshot() 1685 // does not currently play a role other than simplify 1686 // that function's ordering semantics. If these simplified 1687 // ordering semantics continue to be redundant, that smp_mb() 1688 // might be removed. 1689 t = cpu_curr_snapshot(cpu); 1690 if (rcu_tasks_trace_pertask_prep(t, true)) 1691 trc_add_holdout(t, hop); 1692 rcu_read_unlock(); 1693 cond_resched_tasks_rcu_qs(); 1694 } 1695 1696 // Only after all running tasks have been accounted for is it 1697 // safe to take care of the tasks that have blocked within their 1698 // current RCU tasks trace read-side critical section. 1699 for_each_possible_cpu(cpu) { 1700 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu); 1701 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1702 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks); 1703 while (!list_empty(&blkd_tasks)) { 1704 rcu_read_lock(); 1705 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node); 1706 list_del_init(&t->trc_blkd_node); 1707 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks); 1708 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1709 rcu_tasks_trace_pertask(t, hop); 1710 rcu_read_unlock(); 1711 raw_spin_lock_irqsave_rcu_node(rtpcp, flags); 1712 } 1713 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags); 1714 cond_resched_tasks_rcu_qs(); 1715 } 1716 1717 // Re-enable CPU hotplug now that the holdout list is populated. 1718 cpus_read_unlock(); 1719 } 1720 1721 /* 1722 * Do intermediate processing between task and holdout scans. 1723 */ 1724 static void rcu_tasks_trace_postscan(struct list_head *hop) 1725 { 1726 // Wait for late-stage exiting tasks to finish exiting. 1727 // These might have passed the call to exit_tasks_rcu_finish(). 1728 1729 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!! 1730 synchronize_rcu(); 1731 // Any tasks that exit after this point will set 1732 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs. 1733 } 1734 1735 /* Communicate task state back to the RCU tasks trace stall warning request. */ 1736 struct trc_stall_chk_rdr { 1737 int nesting; 1738 int ipi_to_cpu; 1739 u8 needqs; 1740 }; 1741 1742 static int trc_check_slow_task(struct task_struct *t, void *arg) 1743 { 1744 struct trc_stall_chk_rdr *trc_rdrp = arg; 1745 1746 if (task_curr(t) && cpu_online(task_cpu(t))) 1747 return false; // It is running, so decline to inspect it. 1748 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting); 1749 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu); 1750 trc_rdrp->needqs = rcu_ld_need_qs(t); 1751 return true; 1752 } 1753 1754 /* Show the state of a task stalling the current RCU tasks trace GP. */ 1755 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport) 1756 { 1757 int cpu; 1758 struct trc_stall_chk_rdr trc_rdr; 1759 bool is_idle_tsk = is_idle_task(t); 1760 1761 if (*firstreport) { 1762 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n"); 1763 *firstreport = false; 1764 } 1765 cpu = task_cpu(t); 1766 if (!task_call_func(t, trc_check_slow_task, &trc_rdr)) 1767 pr_alert("P%d: %c%c\n", 1768 t->pid, 1769 ".I"[t->trc_ipi_to_cpu >= 0], 1770 ".i"[is_idle_tsk]); 1771 else 1772 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n", 1773 t->pid, 1774 ".I"[trc_rdr.ipi_to_cpu >= 0], 1775 ".i"[is_idle_tsk], 1776 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)], 1777 ".B"[!!data_race(t->trc_reader_special.b.blocked)], 1778 trc_rdr.nesting, 1779 " !CN"[trc_rdr.needqs & 0x3], 1780 " ?"[trc_rdr.needqs > 0x3], 1781 cpu, cpu_online(cpu) ? "" : "(offline)"); 1782 sched_show_task(t); 1783 } 1784 1785 /* List stalled IPIs for RCU tasks trace. */ 1786 static void show_stalled_ipi_trace(void) 1787 { 1788 int cpu; 1789 1790 for_each_possible_cpu(cpu) 1791 if (per_cpu(trc_ipi_to_cpu, cpu)) 1792 pr_alert("\tIPI outstanding to CPU %d\n", cpu); 1793 } 1794 1795 /* Do one scan of the holdout list. */ 1796 static void check_all_holdout_tasks_trace(struct list_head *hop, 1797 bool needreport, bool *firstreport) 1798 { 1799 struct task_struct *g, *t; 1800 1801 // Disable CPU hotplug across the holdout list scan for IPIs. 1802 cpus_read_lock(); 1803 1804 list_for_each_entry_safe(t, g, hop, trc_holdout_list) { 1805 // If safe and needed, try to check the current task. 1806 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 && 1807 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED)) 1808 trc_wait_for_one_reader(t, hop); 1809 1810 // If check succeeded, remove this task from the list. 1811 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 && 1812 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED) 1813 trc_del_holdout(t); 1814 else if (needreport) 1815 show_stalled_task_trace(t, firstreport); 1816 cond_resched_tasks_rcu_qs(); 1817 } 1818 1819 // Re-enable CPU hotplug now that the holdout list scan has completed. 1820 cpus_read_unlock(); 1821 1822 if (needreport) { 1823 if (*firstreport) 1824 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n"); 1825 show_stalled_ipi_trace(); 1826 } 1827 } 1828 1829 static void rcu_tasks_trace_empty_fn(void *unused) 1830 { 1831 } 1832 1833 /* Wait for grace period to complete and provide ordering. */ 1834 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp) 1835 { 1836 int cpu; 1837 1838 // Wait for any lingering IPI handlers to complete. Note that 1839 // if a CPU has gone offline or transitioned to userspace in the 1840 // meantime, all IPI handlers should have been drained beforehand. 1841 // Yes, this assumes that CPUs process IPIs in order. If that ever 1842 // changes, there will need to be a recheck and/or timed wait. 1843 for_each_online_cpu(cpu) 1844 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))) 1845 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1); 1846 1847 smp_mb(); // Caller's code must be ordered after wakeup. 1848 // Pairs with pretty much every ordering primitive. 1849 } 1850 1851 /* Report any needed quiescent state for this exiting task. */ 1852 static void exit_tasks_rcu_finish_trace(struct task_struct *t) 1853 { 1854 union rcu_special trs = READ_ONCE(t->trc_reader_special); 1855 1856 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED); 1857 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting)); 1858 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked)) 1859 rcu_read_unlock_trace_special(t); 1860 else 1861 WRITE_ONCE(t->trc_reader_nesting, 0); 1862 } 1863 1864 /** 1865 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period 1866 * @rhp: structure to be used for queueing the RCU updates. 1867 * @func: actual callback function to be invoked after the grace period 1868 * 1869 * The callback function will be invoked some time after a trace rcu-tasks 1870 * grace period elapses, in other words after all currently executing 1871 * trace rcu-tasks read-side critical sections have completed. These 1872 * read-side critical sections are delimited by calls to rcu_read_lock_trace() 1873 * and rcu_read_unlock_trace(). 1874 * 1875 * See the description of call_rcu() for more detailed information on 1876 * memory ordering guarantees. 1877 */ 1878 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func) 1879 { 1880 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace); 1881 } 1882 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace); 1883 1884 /** 1885 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period 1886 * 1887 * Control will return to the caller some time after a trace rcu-tasks 1888 * grace period has elapsed, in other words after all currently executing 1889 * trace rcu-tasks read-side critical sections have elapsed. These read-side 1890 * critical sections are delimited by calls to rcu_read_lock_trace() 1891 * and rcu_read_unlock_trace(). 1892 * 1893 * This is a very specialized primitive, intended only for a few uses in 1894 * tracing and other situations requiring manipulation of function preambles 1895 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not 1896 * (yet) intended for heavy use from multiple CPUs. 1897 * 1898 * See the description of synchronize_rcu() for more detailed information 1899 * on memory ordering guarantees. 1900 */ 1901 void synchronize_rcu_tasks_trace(void) 1902 { 1903 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section"); 1904 synchronize_rcu_tasks_generic(&rcu_tasks_trace); 1905 } 1906 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace); 1907 1908 /** 1909 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks. 1910 * 1911 * Although the current implementation is guaranteed to wait, it is not 1912 * obligated to, for example, if there are no pending callbacks. 1913 */ 1914 void rcu_barrier_tasks_trace(void) 1915 { 1916 rcu_barrier_tasks_generic(&rcu_tasks_trace); 1917 } 1918 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace); 1919 1920 int rcu_tasks_trace_lazy_ms = -1; 1921 module_param(rcu_tasks_trace_lazy_ms, int, 0444); 1922 1923 static int __init rcu_spawn_tasks_trace_kthread(void) 1924 { 1925 cblist_init_generic(&rcu_tasks_trace); 1926 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) { 1927 rcu_tasks_trace.gp_sleep = HZ / 10; 1928 rcu_tasks_trace.init_fract = HZ / 10; 1929 } else { 1930 rcu_tasks_trace.gp_sleep = HZ / 200; 1931 if (rcu_tasks_trace.gp_sleep <= 0) 1932 rcu_tasks_trace.gp_sleep = 1; 1933 rcu_tasks_trace.init_fract = HZ / 200; 1934 if (rcu_tasks_trace.init_fract <= 0) 1935 rcu_tasks_trace.init_fract = 1; 1936 } 1937 if (rcu_tasks_trace_lazy_ms >= 0) 1938 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms); 1939 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step; 1940 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan; 1941 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace; 1942 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp; 1943 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace); 1944 return 0; 1945 } 1946 1947 #if !defined(CONFIG_TINY_RCU) 1948 void show_rcu_tasks_trace_gp_kthread(void) 1949 { 1950 char buf[64]; 1951 1952 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu", 1953 data_race(n_trc_holdouts), 1954 data_race(n_heavy_reader_ofl_updates), 1955 data_race(n_heavy_reader_updates), 1956 data_race(n_heavy_reader_attempts)); 1957 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf); 1958 } 1959 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread); 1960 #endif // !defined(CONFIG_TINY_RCU) 1961 1962 struct task_struct *get_rcu_tasks_trace_gp_kthread(void) 1963 { 1964 return rcu_tasks_trace.kthread_ptr; 1965 } 1966 EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread); 1967 1968 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1969 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { } 1970 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */ 1971 1972 #ifndef CONFIG_TINY_RCU 1973 void show_rcu_tasks_gp_kthreads(void) 1974 { 1975 show_rcu_tasks_classic_gp_kthread(); 1976 show_rcu_tasks_rude_gp_kthread(); 1977 show_rcu_tasks_trace_gp_kthread(); 1978 } 1979 #endif /* #ifndef CONFIG_TINY_RCU */ 1980 1981 #ifdef CONFIG_PROVE_RCU 1982 struct rcu_tasks_test_desc { 1983 struct rcu_head rh; 1984 const char *name; 1985 bool notrun; 1986 unsigned long runstart; 1987 }; 1988 1989 static struct rcu_tasks_test_desc tests[] = { 1990 { 1991 .name = "call_rcu_tasks()", 1992 /* If not defined, the test is skipped. */ 1993 .notrun = IS_ENABLED(CONFIG_TASKS_RCU), 1994 }, 1995 { 1996 .name = "call_rcu_tasks_rude()", 1997 /* If not defined, the test is skipped. */ 1998 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU), 1999 }, 2000 { 2001 .name = "call_rcu_tasks_trace()", 2002 /* If not defined, the test is skipped. */ 2003 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU) 2004 } 2005 }; 2006 2007 static void test_rcu_tasks_callback(struct rcu_head *rhp) 2008 { 2009 struct rcu_tasks_test_desc *rttd = 2010 container_of(rhp, struct rcu_tasks_test_desc, rh); 2011 2012 pr_info("Callback from %s invoked.\n", rttd->name); 2013 2014 rttd->notrun = false; 2015 } 2016 2017 static void rcu_tasks_initiate_self_tests(void) 2018 { 2019 pr_info("Running RCU-tasks wait API self tests\n"); 2020 #ifdef CONFIG_TASKS_RCU 2021 tests[0].runstart = jiffies; 2022 synchronize_rcu_tasks(); 2023 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback); 2024 #endif 2025 2026 #ifdef CONFIG_TASKS_RUDE_RCU 2027 tests[1].runstart = jiffies; 2028 synchronize_rcu_tasks_rude(); 2029 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback); 2030 #endif 2031 2032 #ifdef CONFIG_TASKS_TRACE_RCU 2033 tests[2].runstart = jiffies; 2034 synchronize_rcu_tasks_trace(); 2035 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback); 2036 #endif 2037 } 2038 2039 /* 2040 * Return: 0 - test passed 2041 * 1 - test failed, but have not timed out yet 2042 * -1 - test failed and timed out 2043 */ 2044 static int rcu_tasks_verify_self_tests(void) 2045 { 2046 int ret = 0; 2047 int i; 2048 unsigned long bst = rcu_task_stall_timeout; 2049 2050 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT) 2051 bst = RCU_TASK_BOOT_STALL_TIMEOUT; 2052 for (i = 0; i < ARRAY_SIZE(tests); i++) { 2053 while (tests[i].notrun) { // still hanging. 2054 if (time_after(jiffies, tests[i].runstart + bst)) { 2055 pr_err("%s has failed boot-time tests.\n", tests[i].name); 2056 ret = -1; 2057 break; 2058 } 2059 ret = 1; 2060 break; 2061 } 2062 } 2063 WARN_ON(ret < 0); 2064 2065 return ret; 2066 } 2067 2068 /* 2069 * Repeat the rcu_tasks_verify_self_tests() call once every second until the 2070 * test passes or has timed out. 2071 */ 2072 static struct delayed_work rcu_tasks_verify_work; 2073 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused) 2074 { 2075 int ret = rcu_tasks_verify_self_tests(); 2076 2077 if (ret <= 0) 2078 return; 2079 2080 /* Test fails but not timed out yet, reschedule another check */ 2081 schedule_delayed_work(&rcu_tasks_verify_work, HZ); 2082 } 2083 2084 static int rcu_tasks_verify_schedule_work(void) 2085 { 2086 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn); 2087 rcu_tasks_verify_work_fn(NULL); 2088 return 0; 2089 } 2090 late_initcall(rcu_tasks_verify_schedule_work); 2091 #else /* #ifdef CONFIG_PROVE_RCU */ 2092 static void rcu_tasks_initiate_self_tests(void) { } 2093 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 2094 2095 void __init rcu_init_tasks_generic(void) 2096 { 2097 #ifdef CONFIG_TASKS_RCU 2098 rcu_spawn_tasks_kthread(); 2099 #endif 2100 2101 #ifdef CONFIG_TASKS_RUDE_RCU 2102 rcu_spawn_tasks_rude_kthread(); 2103 #endif 2104 2105 #ifdef CONFIG_TASKS_TRACE_RCU 2106 rcu_spawn_tasks_trace_kthread(); 2107 #endif 2108 2109 // Run the self-tests. 2110 rcu_tasks_initiate_self_tests(); 2111 } 2112 2113 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 2114 static inline void rcu_tasks_bootup_oddness(void) {} 2115 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 2116