1 /* 2 * Sleepable Read-Copy Update mechanism for mutual exclusion. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright (C) IBM Corporation, 2006 19 * Copyright (C) Fujitsu, 2012 20 * 21 * Author: Paul McKenney <paulmck@us.ibm.com> 22 * Lai Jiangshan <laijs@cn.fujitsu.com> 23 * 24 * For detailed explanation of Read-Copy Update mechanism see - 25 * Documentation/RCU/ *.txt 26 * 27 */ 28 29 #define pr_fmt(fmt) "rcu: " fmt 30 31 #include <linux/export.h> 32 #include <linux/mutex.h> 33 #include <linux/percpu.h> 34 #include <linux/preempt.h> 35 #include <linux/rcupdate_wait.h> 36 #include <linux/sched.h> 37 #include <linux/smp.h> 38 #include <linux/delay.h> 39 #include <linux/module.h> 40 #include <linux/srcu.h> 41 42 #include "rcu.h" 43 #include "rcu_segcblist.h" 44 45 /* Holdoff in nanoseconds for auto-expediting. */ 46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 48 module_param(exp_holdoff, ulong, 0444); 49 50 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 51 static ulong counter_wrap_check = (ULONG_MAX >> 2); 52 module_param(counter_wrap_check, ulong, 0444); 53 54 /* Early-boot callback-management, so early that no lock is required! */ 55 static LIST_HEAD(srcu_boot_list); 56 static bool __read_mostly srcu_init_done; 57 58 static void srcu_invoke_callbacks(struct work_struct *work); 59 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); 60 static void process_srcu(struct work_struct *work); 61 62 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 63 #define spin_lock_rcu_node(p) \ 64 do { \ 65 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 66 smp_mb__after_unlock_lock(); \ 67 } while (0) 68 69 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 70 71 #define spin_lock_irq_rcu_node(p) \ 72 do { \ 73 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 74 smp_mb__after_unlock_lock(); \ 75 } while (0) 76 77 #define spin_unlock_irq_rcu_node(p) \ 78 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 79 80 #define spin_lock_irqsave_rcu_node(p, flags) \ 81 do { \ 82 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 83 smp_mb__after_unlock_lock(); \ 84 } while (0) 85 86 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 87 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 88 89 /* 90 * Initialize SRCU combining tree. Note that statically allocated 91 * srcu_struct structures might already have srcu_read_lock() and 92 * srcu_read_unlock() running against them. So if the is_static parameter 93 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 94 */ 95 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) 96 { 97 int cpu; 98 int i; 99 int level = 0; 100 int levelspread[RCU_NUM_LVLS]; 101 struct srcu_data *sdp; 102 struct srcu_node *snp; 103 struct srcu_node *snp_first; 104 105 /* Work out the overall tree geometry. */ 106 sp->level[0] = &sp->node[0]; 107 for (i = 1; i < rcu_num_lvls; i++) 108 sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; 109 rcu_init_levelspread(levelspread, num_rcu_lvl); 110 111 /* Each pass through this loop initializes one srcu_node structure. */ 112 srcu_for_each_node_breadth_first(sp, snp) { 113 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 114 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 115 ARRAY_SIZE(snp->srcu_data_have_cbs)); 116 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 117 snp->srcu_have_cbs[i] = 0; 118 snp->srcu_data_have_cbs[i] = 0; 119 } 120 snp->srcu_gp_seq_needed_exp = 0; 121 snp->grplo = -1; 122 snp->grphi = -1; 123 if (snp == &sp->node[0]) { 124 /* Root node, special case. */ 125 snp->srcu_parent = NULL; 126 continue; 127 } 128 129 /* Non-root node. */ 130 if (snp == sp->level[level + 1]) 131 level++; 132 snp->srcu_parent = sp->level[level - 1] + 133 (snp - sp->level[level]) / 134 levelspread[level - 1]; 135 } 136 137 /* 138 * Initialize the per-CPU srcu_data array, which feeds into the 139 * leaves of the srcu_node tree. 140 */ 141 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 142 ARRAY_SIZE(sdp->srcu_unlock_count)); 143 level = rcu_num_lvls - 1; 144 snp_first = sp->level[level]; 145 for_each_possible_cpu(cpu) { 146 sdp = per_cpu_ptr(sp->sda, cpu); 147 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 148 rcu_segcblist_init(&sdp->srcu_cblist); 149 sdp->srcu_cblist_invoking = false; 150 sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; 151 sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; 152 sdp->mynode = &snp_first[cpu / levelspread[level]]; 153 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 154 if (snp->grplo < 0) 155 snp->grplo = cpu; 156 snp->grphi = cpu; 157 } 158 sdp->cpu = cpu; 159 INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); 160 sdp->sp = sp; 161 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 162 if (is_static) 163 continue; 164 165 /* Dynamically allocated, better be no srcu_read_locks()! */ 166 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 167 sdp->srcu_lock_count[i] = 0; 168 sdp->srcu_unlock_count[i] = 0; 169 } 170 } 171 } 172 173 /* 174 * Initialize non-compile-time initialized fields, including the 175 * associated srcu_node and srcu_data structures. The is_static 176 * parameter is passed through to init_srcu_struct_nodes(), and 177 * also tells us that ->sda has already been wired up to srcu_data. 178 */ 179 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) 180 { 181 mutex_init(&sp->srcu_cb_mutex); 182 mutex_init(&sp->srcu_gp_mutex); 183 sp->srcu_idx = 0; 184 sp->srcu_gp_seq = 0; 185 sp->srcu_barrier_seq = 0; 186 mutex_init(&sp->srcu_barrier_mutex); 187 atomic_set(&sp->srcu_barrier_cpu_cnt, 0); 188 INIT_DELAYED_WORK(&sp->work, process_srcu); 189 if (!is_static) 190 sp->sda = alloc_percpu(struct srcu_data); 191 init_srcu_struct_nodes(sp, is_static); 192 sp->srcu_gp_seq_needed_exp = 0; 193 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 194 smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ 195 return sp->sda ? 0 : -ENOMEM; 196 } 197 198 #ifdef CONFIG_DEBUG_LOCK_ALLOC 199 200 int __init_srcu_struct(struct srcu_struct *sp, const char *name, 201 struct lock_class_key *key) 202 { 203 /* Don't re-initialize a lock while it is held. */ 204 debug_check_no_locks_freed((void *)sp, sizeof(*sp)); 205 lockdep_init_map(&sp->dep_map, name, key, 0); 206 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 207 return init_srcu_struct_fields(sp, false); 208 } 209 EXPORT_SYMBOL_GPL(__init_srcu_struct); 210 211 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 212 213 /** 214 * init_srcu_struct - initialize a sleep-RCU structure 215 * @sp: structure to initialize. 216 * 217 * Must invoke this on a given srcu_struct before passing that srcu_struct 218 * to any other function. Each srcu_struct represents a separate domain 219 * of SRCU protection. 220 */ 221 int init_srcu_struct(struct srcu_struct *sp) 222 { 223 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 224 return init_srcu_struct_fields(sp, false); 225 } 226 EXPORT_SYMBOL_GPL(init_srcu_struct); 227 228 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 229 230 /* 231 * First-use initialization of statically allocated srcu_struct 232 * structure. Wiring up the combining tree is more than can be 233 * done with compile-time initialization, so this check is added 234 * to each update-side SRCU primitive. Use sp->lock, which -is- 235 * compile-time initialized, to resolve races involving multiple 236 * CPUs trying to garner first-use privileges. 237 */ 238 static void check_init_srcu_struct(struct srcu_struct *sp) 239 { 240 unsigned long flags; 241 242 /* The smp_load_acquire() pairs with the smp_store_release(). */ 243 if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ 244 return; /* Already initialized. */ 245 spin_lock_irqsave_rcu_node(sp, flags); 246 if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { 247 spin_unlock_irqrestore_rcu_node(sp, flags); 248 return; 249 } 250 init_srcu_struct_fields(sp, true); 251 spin_unlock_irqrestore_rcu_node(sp, flags); 252 } 253 254 /* 255 * Returns approximate total of the readers' ->srcu_lock_count[] values 256 * for the rank of per-CPU counters specified by idx. 257 */ 258 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) 259 { 260 int cpu; 261 unsigned long sum = 0; 262 263 for_each_possible_cpu(cpu) { 264 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 265 266 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 267 } 268 return sum; 269 } 270 271 /* 272 * Returns approximate total of the readers' ->srcu_unlock_count[] values 273 * for the rank of per-CPU counters specified by idx. 274 */ 275 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) 276 { 277 int cpu; 278 unsigned long sum = 0; 279 280 for_each_possible_cpu(cpu) { 281 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 282 283 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 284 } 285 return sum; 286 } 287 288 /* 289 * Return true if the number of pre-existing readers is determined to 290 * be zero. 291 */ 292 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) 293 { 294 unsigned long unlocks; 295 296 unlocks = srcu_readers_unlock_idx(sp, idx); 297 298 /* 299 * Make sure that a lock is always counted if the corresponding 300 * unlock is counted. Needs to be a smp_mb() as the read side may 301 * contain a read from a variable that is written to before the 302 * synchronize_srcu() in the write side. In this case smp_mb()s 303 * A and B act like the store buffering pattern. 304 * 305 * This smp_mb() also pairs with smp_mb() C to prevent accesses 306 * after the synchronize_srcu() from being executed before the 307 * grace period ends. 308 */ 309 smp_mb(); /* A */ 310 311 /* 312 * If the locks are the same as the unlocks, then there must have 313 * been no readers on this index at some time in between. This does 314 * not mean that there are no more readers, as one could have read 315 * the current index but not have incremented the lock counter yet. 316 * 317 * So suppose that the updater is preempted here for so long 318 * that more than ULONG_MAX non-nested readers come and go in 319 * the meantime. It turns out that this cannot result in overflow 320 * because if a reader modifies its unlock count after we read it 321 * above, then that reader's next load of ->srcu_idx is guaranteed 322 * to get the new value, which will cause it to operate on the 323 * other bank of counters, where it cannot contribute to the 324 * overflow of these counters. This means that there is a maximum 325 * of 2*NR_CPUS increments, which cannot overflow given current 326 * systems, especially not on 64-bit systems. 327 * 328 * OK, how about nesting? This does impose a limit on nesting 329 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 330 * especially on 64-bit systems. 331 */ 332 return srcu_readers_lock_idx(sp, idx) == unlocks; 333 } 334 335 /** 336 * srcu_readers_active - returns true if there are readers. and false 337 * otherwise 338 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 339 * 340 * Note that this is not an atomic primitive, and can therefore suffer 341 * severe errors when invoked on an active srcu_struct. That said, it 342 * can be useful as an error check at cleanup time. 343 */ 344 static bool srcu_readers_active(struct srcu_struct *sp) 345 { 346 int cpu; 347 unsigned long sum = 0; 348 349 for_each_possible_cpu(cpu) { 350 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 351 352 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 353 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 354 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 355 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 356 } 357 return sum; 358 } 359 360 #define SRCU_INTERVAL 1 361 362 /* 363 * Return grace-period delay, zero if there are expedited grace 364 * periods pending, SRCU_INTERVAL otherwise. 365 */ 366 static unsigned long srcu_get_delay(struct srcu_struct *sp) 367 { 368 if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), 369 READ_ONCE(sp->srcu_gp_seq_needed_exp))) 370 return 0; 371 return SRCU_INTERVAL; 372 } 373 374 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */ 375 void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced) 376 { 377 int cpu; 378 379 if (WARN_ON(!srcu_get_delay(sp))) 380 return; /* Just leak it! */ 381 if (WARN_ON(srcu_readers_active(sp))) 382 return; /* Just leak it! */ 383 if (quiesced) { 384 if (WARN_ON(delayed_work_pending(&sp->work))) 385 return; /* Just leak it! */ 386 } else { 387 flush_delayed_work(&sp->work); 388 } 389 for_each_possible_cpu(cpu) 390 if (quiesced) { 391 if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work))) 392 return; /* Just leak it! */ 393 } else { 394 flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); 395 } 396 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 397 WARN_ON(srcu_readers_active(sp))) { 398 pr_info("%s: Active srcu_struct %p state: %d\n", 399 __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); 400 return; /* Caller forgot to stop doing call_srcu()? */ 401 } 402 free_percpu(sp->sda); 403 sp->sda = NULL; 404 } 405 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct); 406 407 /* 408 * Counts the new reader in the appropriate per-CPU element of the 409 * srcu_struct. 410 * Returns an index that must be passed to the matching srcu_read_unlock(). 411 */ 412 int __srcu_read_lock(struct srcu_struct *sp) 413 { 414 int idx; 415 416 idx = READ_ONCE(sp->srcu_idx) & 0x1; 417 this_cpu_inc(sp->sda->srcu_lock_count[idx]); 418 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 419 return idx; 420 } 421 EXPORT_SYMBOL_GPL(__srcu_read_lock); 422 423 /* 424 * Removes the count for the old reader from the appropriate per-CPU 425 * element of the srcu_struct. Note that this may well be a different 426 * CPU than that which was incremented by the corresponding srcu_read_lock(). 427 */ 428 void __srcu_read_unlock(struct srcu_struct *sp, int idx) 429 { 430 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 431 this_cpu_inc(sp->sda->srcu_unlock_count[idx]); 432 } 433 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 434 435 /* 436 * We use an adaptive strategy for synchronize_srcu() and especially for 437 * synchronize_srcu_expedited(). We spin for a fixed time period 438 * (defined below) to allow SRCU readers to exit their read-side critical 439 * sections. If there are still some readers after a few microseconds, 440 * we repeatedly block for 1-millisecond time periods. 441 */ 442 #define SRCU_RETRY_CHECK_DELAY 5 443 444 /* 445 * Start an SRCU grace period. 446 */ 447 static void srcu_gp_start(struct srcu_struct *sp) 448 { 449 struct srcu_data *sdp = this_cpu_ptr(sp->sda); 450 int state; 451 452 lockdep_assert_held(&ACCESS_PRIVATE(sp, lock)); 453 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 454 rcu_segcblist_advance(&sdp->srcu_cblist, 455 rcu_seq_current(&sp->srcu_gp_seq)); 456 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 457 rcu_seq_snap(&sp->srcu_gp_seq)); 458 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 459 rcu_seq_start(&sp->srcu_gp_seq); 460 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 461 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 462 } 463 464 /* 465 * Track online CPUs to guide callback workqueue placement. 466 */ 467 DEFINE_PER_CPU(bool, srcu_online); 468 469 void srcu_online_cpu(unsigned int cpu) 470 { 471 WRITE_ONCE(per_cpu(srcu_online, cpu), true); 472 } 473 474 void srcu_offline_cpu(unsigned int cpu) 475 { 476 WRITE_ONCE(per_cpu(srcu_online, cpu), false); 477 } 478 479 /* 480 * Place the workqueue handler on the specified CPU if online, otherwise 481 * just run it whereever. This is useful for placing workqueue handlers 482 * that are to invoke the specified CPU's callbacks. 483 */ 484 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 485 struct delayed_work *dwork, 486 unsigned long delay) 487 { 488 bool ret; 489 490 preempt_disable(); 491 if (READ_ONCE(per_cpu(srcu_online, cpu))) 492 ret = queue_delayed_work_on(cpu, wq, dwork, delay); 493 else 494 ret = queue_delayed_work(wq, dwork, delay); 495 preempt_enable(); 496 return ret; 497 } 498 499 /* 500 * Schedule callback invocation for the specified srcu_data structure, 501 * if possible, on the corresponding CPU. 502 */ 503 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 504 { 505 srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay); 506 } 507 508 /* 509 * Schedule callback invocation for all srcu_data structures associated 510 * with the specified srcu_node structure that have callbacks for the 511 * just-completed grace period, the one corresponding to idx. If possible, 512 * schedule this invocation on the corresponding CPUs. 513 */ 514 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, 515 unsigned long mask, unsigned long delay) 516 { 517 int cpu; 518 519 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 520 if (!(mask & (1 << (cpu - snp->grplo)))) 521 continue; 522 srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); 523 } 524 } 525 526 /* 527 * Note the end of an SRCU grace period. Initiates callback invocation 528 * and starts a new grace period if needed. 529 * 530 * The ->srcu_cb_mutex acquisition does not protect any data, but 531 * instead prevents more than one grace period from starting while we 532 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 533 * array to have a finite number of elements. 534 */ 535 static void srcu_gp_end(struct srcu_struct *sp) 536 { 537 unsigned long cbdelay; 538 bool cbs; 539 bool last_lvl; 540 int cpu; 541 unsigned long flags; 542 unsigned long gpseq; 543 int idx; 544 unsigned long mask; 545 struct srcu_data *sdp; 546 struct srcu_node *snp; 547 548 /* Prevent more than one additional grace period. */ 549 mutex_lock(&sp->srcu_cb_mutex); 550 551 /* End the current grace period. */ 552 spin_lock_irq_rcu_node(sp); 553 idx = rcu_seq_state(sp->srcu_gp_seq); 554 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 555 cbdelay = srcu_get_delay(sp); 556 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 557 rcu_seq_end(&sp->srcu_gp_seq); 558 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 559 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) 560 sp->srcu_gp_seq_needed_exp = gpseq; 561 spin_unlock_irq_rcu_node(sp); 562 mutex_unlock(&sp->srcu_gp_mutex); 563 /* A new grace period can start at this point. But only one. */ 564 565 /* Initiate callback invocation as needed. */ 566 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 567 srcu_for_each_node_breadth_first(sp, snp) { 568 spin_lock_irq_rcu_node(snp); 569 cbs = false; 570 last_lvl = snp >= sp->level[rcu_num_lvls - 1]; 571 if (last_lvl) 572 cbs = snp->srcu_have_cbs[idx] == gpseq; 573 snp->srcu_have_cbs[idx] = gpseq; 574 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 575 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 576 snp->srcu_gp_seq_needed_exp = gpseq; 577 mask = snp->srcu_data_have_cbs[idx]; 578 snp->srcu_data_have_cbs[idx] = 0; 579 spin_unlock_irq_rcu_node(snp); 580 if (cbs) 581 srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); 582 583 /* Occasionally prevent srcu_data counter wrap. */ 584 if (!(gpseq & counter_wrap_check) && last_lvl) 585 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 586 sdp = per_cpu_ptr(sp->sda, cpu); 587 spin_lock_irqsave_rcu_node(sdp, flags); 588 if (ULONG_CMP_GE(gpseq, 589 sdp->srcu_gp_seq_needed + 100)) 590 sdp->srcu_gp_seq_needed = gpseq; 591 if (ULONG_CMP_GE(gpseq, 592 sdp->srcu_gp_seq_needed_exp + 100)) 593 sdp->srcu_gp_seq_needed_exp = gpseq; 594 spin_unlock_irqrestore_rcu_node(sdp, flags); 595 } 596 } 597 598 /* Callback initiation done, allow grace periods after next. */ 599 mutex_unlock(&sp->srcu_cb_mutex); 600 601 /* Start a new grace period if needed. */ 602 spin_lock_irq_rcu_node(sp); 603 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 604 if (!rcu_seq_state(gpseq) && 605 ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { 606 srcu_gp_start(sp); 607 spin_unlock_irq_rcu_node(sp); 608 srcu_reschedule(sp, 0); 609 } else { 610 spin_unlock_irq_rcu_node(sp); 611 } 612 } 613 614 /* 615 * Funnel-locking scheme to scalably mediate many concurrent expedited 616 * grace-period requests. This function is invoked for the first known 617 * expedited request for a grace period that has already been requested, 618 * but without expediting. To start a completely new grace period, 619 * whether expedited or not, use srcu_funnel_gp_start() instead. 620 */ 621 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, 622 unsigned long s) 623 { 624 unsigned long flags; 625 626 for (; snp != NULL; snp = snp->srcu_parent) { 627 if (rcu_seq_done(&sp->srcu_gp_seq, s) || 628 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 629 return; 630 spin_lock_irqsave_rcu_node(snp, flags); 631 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 632 spin_unlock_irqrestore_rcu_node(snp, flags); 633 return; 634 } 635 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 636 spin_unlock_irqrestore_rcu_node(snp, flags); 637 } 638 spin_lock_irqsave_rcu_node(sp, flags); 639 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 640 sp->srcu_gp_seq_needed_exp = s; 641 spin_unlock_irqrestore_rcu_node(sp, flags); 642 } 643 644 /* 645 * Funnel-locking scheme to scalably mediate many concurrent grace-period 646 * requests. The winner has to do the work of actually starting grace 647 * period s. Losers must either ensure that their desired grace-period 648 * number is recorded on at least their leaf srcu_node structure, or they 649 * must take steps to invoke their own callbacks. 650 * 651 * Note that this function also does the work of srcu_funnel_exp_start(), 652 * in some cases by directly invoking it. 653 */ 654 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, 655 unsigned long s, bool do_norm) 656 { 657 unsigned long flags; 658 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 659 struct srcu_node *snp = sdp->mynode; 660 unsigned long snp_seq; 661 662 /* Each pass through the loop does one level of the srcu_node tree. */ 663 for (; snp != NULL; snp = snp->srcu_parent) { 664 if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) 665 return; /* GP already done and CBs recorded. */ 666 spin_lock_irqsave_rcu_node(snp, flags); 667 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 668 snp_seq = snp->srcu_have_cbs[idx]; 669 if (snp == sdp->mynode && snp_seq == s) 670 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 671 spin_unlock_irqrestore_rcu_node(snp, flags); 672 if (snp == sdp->mynode && snp_seq != s) { 673 srcu_schedule_cbs_sdp(sdp, do_norm 674 ? SRCU_INTERVAL 675 : 0); 676 return; 677 } 678 if (!do_norm) 679 srcu_funnel_exp_start(sp, snp, s); 680 return; 681 } 682 snp->srcu_have_cbs[idx] = s; 683 if (snp == sdp->mynode) 684 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 685 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 686 snp->srcu_gp_seq_needed_exp = s; 687 spin_unlock_irqrestore_rcu_node(snp, flags); 688 } 689 690 /* Top of tree, must ensure the grace period will be started. */ 691 spin_lock_irqsave_rcu_node(sp, flags); 692 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { 693 /* 694 * Record need for grace period s. Pair with load 695 * acquire setting up for initialization. 696 */ 697 smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ 698 } 699 if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 700 sp->srcu_gp_seq_needed_exp = s; 701 702 /* If grace period not already done and none in progress, start it. */ 703 if (!rcu_seq_done(&sp->srcu_gp_seq, s) && 704 rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { 705 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 706 srcu_gp_start(sp); 707 if (likely(srcu_init_done)) 708 queue_delayed_work(rcu_gp_wq, &sp->work, 709 srcu_get_delay(sp)); 710 else if (list_empty(&sp->work.work.entry)) 711 list_add(&sp->work.work.entry, &srcu_boot_list); 712 } 713 spin_unlock_irqrestore_rcu_node(sp, flags); 714 } 715 716 /* 717 * Wait until all readers counted by array index idx complete, but 718 * loop an additional time if there is an expedited grace period pending. 719 * The caller must ensure that ->srcu_idx is not changed while checking. 720 */ 721 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) 722 { 723 for (;;) { 724 if (srcu_readers_active_idx_check(sp, idx)) 725 return true; 726 if (--trycount + !srcu_get_delay(sp) <= 0) 727 return false; 728 udelay(SRCU_RETRY_CHECK_DELAY); 729 } 730 } 731 732 /* 733 * Increment the ->srcu_idx counter so that future SRCU readers will 734 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 735 * us to wait for pre-existing readers in a starvation-free manner. 736 */ 737 static void srcu_flip(struct srcu_struct *sp) 738 { 739 /* 740 * Ensure that if this updater saw a given reader's increment 741 * from __srcu_read_lock(), that reader was using an old value 742 * of ->srcu_idx. Also ensure that if a given reader sees the 743 * new value of ->srcu_idx, this updater's earlier scans cannot 744 * have seen that reader's increments (which is OK, because this 745 * grace period need not wait on that reader). 746 */ 747 smp_mb(); /* E */ /* Pairs with B and C. */ 748 749 WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); 750 751 /* 752 * Ensure that if the updater misses an __srcu_read_unlock() 753 * increment, that task's next __srcu_read_lock() will see the 754 * above counter update. Note that both this memory barrier 755 * and the one in srcu_readers_active_idx_check() provide the 756 * guarantee for __srcu_read_lock(). 757 */ 758 smp_mb(); /* D */ /* Pairs with C. */ 759 } 760 761 /* 762 * If SRCU is likely idle, return true, otherwise return false. 763 * 764 * Note that it is OK for several current from-idle requests for a new 765 * grace period from idle to specify expediting because they will all end 766 * up requesting the same grace period anyhow. So no loss. 767 * 768 * Note also that if any CPU (including the current one) is still invoking 769 * callbacks, this function will nevertheless say "idle". This is not 770 * ideal, but the overhead of checking all CPUs' callback lists is even 771 * less ideal, especially on large systems. Furthermore, the wakeup 772 * can happen before the callback is fully removed, so we have no choice 773 * but to accept this type of error. 774 * 775 * This function is also subject to counter-wrap errors, but let's face 776 * it, if this function was preempted for enough time for the counters 777 * to wrap, it really doesn't matter whether or not we expedite the grace 778 * period. The extra overhead of a needlessly expedited grace period is 779 * negligible when amoritized over that time period, and the extra latency 780 * of a needlessly non-expedited grace period is similarly negligible. 781 */ 782 static bool srcu_might_be_idle(struct srcu_struct *sp) 783 { 784 unsigned long curseq; 785 unsigned long flags; 786 struct srcu_data *sdp; 787 unsigned long t; 788 789 /* If the local srcu_data structure has callbacks, not idle. */ 790 local_irq_save(flags); 791 sdp = this_cpu_ptr(sp->sda); 792 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 793 local_irq_restore(flags); 794 return false; /* Callbacks already present, so not idle. */ 795 } 796 local_irq_restore(flags); 797 798 /* 799 * No local callbacks, so probabalistically probe global state. 800 * Exact information would require acquiring locks, which would 801 * kill scalability, hence the probabalistic nature of the probe. 802 */ 803 804 /* First, see if enough time has passed since the last GP. */ 805 t = ktime_get_mono_fast_ns(); 806 if (exp_holdoff == 0 || 807 time_in_range_open(t, sp->srcu_last_gp_end, 808 sp->srcu_last_gp_end + exp_holdoff)) 809 return false; /* Too soon after last GP. */ 810 811 /* Next, check for probable idleness. */ 812 curseq = rcu_seq_current(&sp->srcu_gp_seq); 813 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 814 if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) 815 return false; /* Grace period in progress, so not idle. */ 816 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 817 if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) 818 return false; /* GP # changed, so not idle. */ 819 return true; /* With reasonable probability, idle! */ 820 } 821 822 /* 823 * SRCU callback function to leak a callback. 824 */ 825 static void srcu_leak_callback(struct rcu_head *rhp) 826 { 827 } 828 829 /* 830 * Enqueue an SRCU callback on the srcu_data structure associated with 831 * the current CPU and the specified srcu_struct structure, initiating 832 * grace-period processing if it is not already running. 833 * 834 * Note that all CPUs must agree that the grace period extended beyond 835 * all pre-existing SRCU read-side critical section. On systems with 836 * more than one CPU, this means that when "func()" is invoked, each CPU 837 * is guaranteed to have executed a full memory barrier since the end of 838 * its last corresponding SRCU read-side critical section whose beginning 839 * preceded the call to call_srcu(). It also means that each CPU executing 840 * an SRCU read-side critical section that continues beyond the start of 841 * "func()" must have executed a memory barrier after the call_srcu() 842 * but before the beginning of that SRCU read-side critical section. 843 * Note that these guarantees include CPUs that are offline, idle, or 844 * executing in user mode, as well as CPUs that are executing in the kernel. 845 * 846 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 847 * resulting SRCU callback function "func()", then both CPU A and CPU 848 * B are guaranteed to execute a full memory barrier during the time 849 * interval between the call to call_srcu() and the invocation of "func()". 850 * This guarantee applies even if CPU A and CPU B are the same CPU (but 851 * again only if the system has more than one CPU). 852 * 853 * Of course, these guarantees apply only for invocations of call_srcu(), 854 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 855 * srcu_struct structure. 856 */ 857 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 858 rcu_callback_t func, bool do_norm) 859 { 860 unsigned long flags; 861 bool needexp = false; 862 bool needgp = false; 863 unsigned long s; 864 struct srcu_data *sdp; 865 866 check_init_srcu_struct(sp); 867 if (debug_rcu_head_queue(rhp)) { 868 /* Probable double call_srcu(), so leak the callback. */ 869 WRITE_ONCE(rhp->func, srcu_leak_callback); 870 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 871 return; 872 } 873 rhp->func = func; 874 local_irq_save(flags); 875 sdp = this_cpu_ptr(sp->sda); 876 spin_lock_rcu_node(sdp); 877 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 878 rcu_segcblist_advance(&sdp->srcu_cblist, 879 rcu_seq_current(&sp->srcu_gp_seq)); 880 s = rcu_seq_snap(&sp->srcu_gp_seq); 881 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 882 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 883 sdp->srcu_gp_seq_needed = s; 884 needgp = true; 885 } 886 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 887 sdp->srcu_gp_seq_needed_exp = s; 888 needexp = true; 889 } 890 spin_unlock_irqrestore_rcu_node(sdp, flags); 891 if (needgp) 892 srcu_funnel_gp_start(sp, sdp, s, do_norm); 893 else if (needexp) 894 srcu_funnel_exp_start(sp, sdp->mynode, s); 895 } 896 897 /** 898 * call_srcu() - Queue a callback for invocation after an SRCU grace period 899 * @sp: srcu_struct in queue the callback 900 * @rhp: structure to be used for queueing the SRCU callback. 901 * @func: function to be invoked after the SRCU grace period 902 * 903 * The callback function will be invoked some time after a full SRCU 904 * grace period elapses, in other words after all pre-existing SRCU 905 * read-side critical sections have completed. However, the callback 906 * function might well execute concurrently with other SRCU read-side 907 * critical sections that started after call_srcu() was invoked. SRCU 908 * read-side critical sections are delimited by srcu_read_lock() and 909 * srcu_read_unlock(), and may be nested. 910 * 911 * The callback will be invoked from process context, but must nevertheless 912 * be fast and must not block. 913 */ 914 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 915 rcu_callback_t func) 916 { 917 __call_srcu(sp, rhp, func, true); 918 } 919 EXPORT_SYMBOL_GPL(call_srcu); 920 921 /* 922 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 923 */ 924 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) 925 { 926 struct rcu_synchronize rcu; 927 928 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || 929 lock_is_held(&rcu_bh_lock_map) || 930 lock_is_held(&rcu_lock_map) || 931 lock_is_held(&rcu_sched_lock_map), 932 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 933 934 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 935 return; 936 might_sleep(); 937 check_init_srcu_struct(sp); 938 init_completion(&rcu.completion); 939 init_rcu_head_on_stack(&rcu.head); 940 __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); 941 wait_for_completion(&rcu.completion); 942 destroy_rcu_head_on_stack(&rcu.head); 943 944 /* 945 * Make sure that later code is ordered after the SRCU grace 946 * period. This pairs with the spin_lock_irq_rcu_node() 947 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 948 * because the current CPU might have been totally uninvolved with 949 * (and thus unordered against) that grace period. 950 */ 951 smp_mb(); 952 } 953 954 /** 955 * synchronize_srcu_expedited - Brute-force SRCU grace period 956 * @sp: srcu_struct with which to synchronize. 957 * 958 * Wait for an SRCU grace period to elapse, but be more aggressive about 959 * spinning rather than blocking when waiting. 960 * 961 * Note that synchronize_srcu_expedited() has the same deadlock and 962 * memory-ordering properties as does synchronize_srcu(). 963 */ 964 void synchronize_srcu_expedited(struct srcu_struct *sp) 965 { 966 __synchronize_srcu(sp, rcu_gp_is_normal()); 967 } 968 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 969 970 /** 971 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 972 * @sp: srcu_struct with which to synchronize. 973 * 974 * Wait for the count to drain to zero of both indexes. To avoid the 975 * possible starvation of synchronize_srcu(), it waits for the count of 976 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 977 * and then flip the srcu_idx and wait for the count of the other index. 978 * 979 * Can block; must be called from process context. 980 * 981 * Note that it is illegal to call synchronize_srcu() from the corresponding 982 * SRCU read-side critical section; doing so will result in deadlock. 983 * However, it is perfectly legal to call synchronize_srcu() on one 984 * srcu_struct from some other srcu_struct's read-side critical section, 985 * as long as the resulting graph of srcu_structs is acyclic. 986 * 987 * There are memory-ordering constraints implied by synchronize_srcu(). 988 * On systems with more than one CPU, when synchronize_srcu() returns, 989 * each CPU is guaranteed to have executed a full memory barrier since 990 * the end of its last corresponding SRCU read-side critical section 991 * whose beginning preceded the call to synchronize_srcu(). In addition, 992 * each CPU having an SRCU read-side critical section that extends beyond 993 * the return from synchronize_srcu() is guaranteed to have executed a 994 * full memory barrier after the beginning of synchronize_srcu() and before 995 * the beginning of that SRCU read-side critical section. Note that these 996 * guarantees include CPUs that are offline, idle, or executing in user mode, 997 * as well as CPUs that are executing in the kernel. 998 * 999 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1000 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1001 * to have executed a full memory barrier during the execution of 1002 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1003 * are the same CPU, but again only if the system has more than one CPU. 1004 * 1005 * Of course, these memory-ordering guarantees apply only when 1006 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1007 * passed the same srcu_struct structure. 1008 * 1009 * If SRCU is likely idle, expedite the first request. This semantic 1010 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1011 * SRCU must also provide it. Note that detecting idleness is heuristic 1012 * and subject to both false positives and negatives. 1013 */ 1014 void synchronize_srcu(struct srcu_struct *sp) 1015 { 1016 if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) 1017 synchronize_srcu_expedited(sp); 1018 else 1019 __synchronize_srcu(sp, true); 1020 } 1021 EXPORT_SYMBOL_GPL(synchronize_srcu); 1022 1023 /* 1024 * Callback function for srcu_barrier() use. 1025 */ 1026 static void srcu_barrier_cb(struct rcu_head *rhp) 1027 { 1028 struct srcu_data *sdp; 1029 struct srcu_struct *sp; 1030 1031 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1032 sp = sdp->sp; 1033 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1034 complete(&sp->srcu_barrier_completion); 1035 } 1036 1037 /** 1038 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1039 * @sp: srcu_struct on which to wait for in-flight callbacks. 1040 */ 1041 void srcu_barrier(struct srcu_struct *sp) 1042 { 1043 int cpu; 1044 struct srcu_data *sdp; 1045 unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); 1046 1047 check_init_srcu_struct(sp); 1048 mutex_lock(&sp->srcu_barrier_mutex); 1049 if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { 1050 smp_mb(); /* Force ordering following return. */ 1051 mutex_unlock(&sp->srcu_barrier_mutex); 1052 return; /* Someone else did our work for us. */ 1053 } 1054 rcu_seq_start(&sp->srcu_barrier_seq); 1055 init_completion(&sp->srcu_barrier_completion); 1056 1057 /* Initial count prevents reaching zero until all CBs are posted. */ 1058 atomic_set(&sp->srcu_barrier_cpu_cnt, 1); 1059 1060 /* 1061 * Each pass through this loop enqueues a callback, but only 1062 * on CPUs already having callbacks enqueued. Note that if 1063 * a CPU already has callbacks enqueue, it must have already 1064 * registered the need for a future grace period, so all we 1065 * need do is enqueue a callback that will use the same 1066 * grace period as the last callback already in the queue. 1067 */ 1068 for_each_possible_cpu(cpu) { 1069 sdp = per_cpu_ptr(sp->sda, cpu); 1070 spin_lock_irq_rcu_node(sdp); 1071 atomic_inc(&sp->srcu_barrier_cpu_cnt); 1072 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1073 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1074 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1075 &sdp->srcu_barrier_head, 0)) { 1076 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1077 atomic_dec(&sp->srcu_barrier_cpu_cnt); 1078 } 1079 spin_unlock_irq_rcu_node(sdp); 1080 } 1081 1082 /* Remove the initial count, at which point reaching zero can happen. */ 1083 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1084 complete(&sp->srcu_barrier_completion); 1085 wait_for_completion(&sp->srcu_barrier_completion); 1086 1087 rcu_seq_end(&sp->srcu_barrier_seq); 1088 mutex_unlock(&sp->srcu_barrier_mutex); 1089 } 1090 EXPORT_SYMBOL_GPL(srcu_barrier); 1091 1092 /** 1093 * srcu_batches_completed - return batches completed. 1094 * @sp: srcu_struct on which to report batch completion. 1095 * 1096 * Report the number of batches, correlated with, but not necessarily 1097 * precisely the same as, the number of grace periods that have elapsed. 1098 */ 1099 unsigned long srcu_batches_completed(struct srcu_struct *sp) 1100 { 1101 return sp->srcu_idx; 1102 } 1103 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1104 1105 /* 1106 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1107 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1108 * completed in that state. 1109 */ 1110 static void srcu_advance_state(struct srcu_struct *sp) 1111 { 1112 int idx; 1113 1114 mutex_lock(&sp->srcu_gp_mutex); 1115 1116 /* 1117 * Because readers might be delayed for an extended period after 1118 * fetching ->srcu_idx for their index, at any point in time there 1119 * might well be readers using both idx=0 and idx=1. We therefore 1120 * need to wait for readers to clear from both index values before 1121 * invoking a callback. 1122 * 1123 * The load-acquire ensures that we see the accesses performed 1124 * by the prior grace period. 1125 */ 1126 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ 1127 if (idx == SRCU_STATE_IDLE) { 1128 spin_lock_irq_rcu_node(sp); 1129 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1130 WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); 1131 spin_unlock_irq_rcu_node(sp); 1132 mutex_unlock(&sp->srcu_gp_mutex); 1133 return; 1134 } 1135 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 1136 if (idx == SRCU_STATE_IDLE) 1137 srcu_gp_start(sp); 1138 spin_unlock_irq_rcu_node(sp); 1139 if (idx != SRCU_STATE_IDLE) { 1140 mutex_unlock(&sp->srcu_gp_mutex); 1141 return; /* Someone else started the grace period. */ 1142 } 1143 } 1144 1145 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1146 idx = 1 ^ (sp->srcu_idx & 1); 1147 if (!try_check_zero(sp, idx, 1)) { 1148 mutex_unlock(&sp->srcu_gp_mutex); 1149 return; /* readers present, retry later. */ 1150 } 1151 srcu_flip(sp); 1152 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); 1153 } 1154 1155 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1156 1157 /* 1158 * SRCU read-side critical sections are normally short, 1159 * so check at least twice in quick succession after a flip. 1160 */ 1161 idx = 1 ^ (sp->srcu_idx & 1); 1162 if (!try_check_zero(sp, idx, 2)) { 1163 mutex_unlock(&sp->srcu_gp_mutex); 1164 return; /* readers present, retry later. */ 1165 } 1166 srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ 1167 } 1168 } 1169 1170 /* 1171 * Invoke a limited number of SRCU callbacks that have passed through 1172 * their grace period. If there are more to do, SRCU will reschedule 1173 * the workqueue. Note that needed memory barriers have been executed 1174 * in this task's context by srcu_readers_active_idx_check(). 1175 */ 1176 static void srcu_invoke_callbacks(struct work_struct *work) 1177 { 1178 bool more; 1179 struct rcu_cblist ready_cbs; 1180 struct rcu_head *rhp; 1181 struct srcu_data *sdp; 1182 struct srcu_struct *sp; 1183 1184 sdp = container_of(work, struct srcu_data, work.work); 1185 sp = sdp->sp; 1186 rcu_cblist_init(&ready_cbs); 1187 spin_lock_irq_rcu_node(sdp); 1188 rcu_segcblist_advance(&sdp->srcu_cblist, 1189 rcu_seq_current(&sp->srcu_gp_seq)); 1190 if (sdp->srcu_cblist_invoking || 1191 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1192 spin_unlock_irq_rcu_node(sdp); 1193 return; /* Someone else on the job or nothing to do. */ 1194 } 1195 1196 /* We are on the job! Extract and invoke ready callbacks. */ 1197 sdp->srcu_cblist_invoking = true; 1198 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1199 spin_unlock_irq_rcu_node(sdp); 1200 rhp = rcu_cblist_dequeue(&ready_cbs); 1201 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1202 debug_rcu_head_unqueue(rhp); 1203 local_bh_disable(); 1204 rhp->func(rhp); 1205 local_bh_enable(); 1206 } 1207 1208 /* 1209 * Update counts, accelerate new callbacks, and if needed, 1210 * schedule another round of callback invocation. 1211 */ 1212 spin_lock_irq_rcu_node(sdp); 1213 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1214 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1215 rcu_seq_snap(&sp->srcu_gp_seq)); 1216 sdp->srcu_cblist_invoking = false; 1217 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1218 spin_unlock_irq_rcu_node(sdp); 1219 if (more) 1220 srcu_schedule_cbs_sdp(sdp, 0); 1221 } 1222 1223 /* 1224 * Finished one round of SRCU grace period. Start another if there are 1225 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1226 */ 1227 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) 1228 { 1229 bool pushgp = true; 1230 1231 spin_lock_irq_rcu_node(sp); 1232 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1233 if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { 1234 /* All requests fulfilled, time to go idle. */ 1235 pushgp = false; 1236 } 1237 } else if (!rcu_seq_state(sp->srcu_gp_seq)) { 1238 /* Outstanding request and no GP. Start one. */ 1239 srcu_gp_start(sp); 1240 } 1241 spin_unlock_irq_rcu_node(sp); 1242 1243 if (pushgp) 1244 queue_delayed_work(rcu_gp_wq, &sp->work, delay); 1245 } 1246 1247 /* 1248 * This is the work-queue function that handles SRCU grace periods. 1249 */ 1250 static void process_srcu(struct work_struct *work) 1251 { 1252 struct srcu_struct *sp; 1253 1254 sp = container_of(work, struct srcu_struct, work.work); 1255 1256 srcu_advance_state(sp); 1257 srcu_reschedule(sp, srcu_get_delay(sp)); 1258 } 1259 1260 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1261 struct srcu_struct *sp, int *flags, 1262 unsigned long *gp_seq) 1263 { 1264 if (test_type != SRCU_FLAVOR) 1265 return; 1266 *flags = 0; 1267 *gp_seq = rcu_seq_current(&sp->srcu_gp_seq); 1268 } 1269 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1270 1271 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) 1272 { 1273 int cpu; 1274 int idx; 1275 unsigned long s0 = 0, s1 = 0; 1276 1277 idx = sp->srcu_idx & 0x1; 1278 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1279 tt, tf, rcu_seq_current(&sp->srcu_gp_seq), idx); 1280 for_each_possible_cpu(cpu) { 1281 unsigned long l0, l1; 1282 unsigned long u0, u1; 1283 long c0, c1; 1284 struct srcu_data *sdp; 1285 1286 sdp = per_cpu_ptr(sp->sda, cpu); 1287 u0 = sdp->srcu_unlock_count[!idx]; 1288 u1 = sdp->srcu_unlock_count[idx]; 1289 1290 /* 1291 * Make sure that a lock is always counted if the corresponding 1292 * unlock is counted. 1293 */ 1294 smp_rmb(); 1295 1296 l0 = sdp->srcu_lock_count[!idx]; 1297 l1 = sdp->srcu_lock_count[idx]; 1298 1299 c0 = l0 - u0; 1300 c1 = l1 - u1; 1301 pr_cont(" %d(%ld,%ld %1p)", 1302 cpu, c0, c1, rcu_segcblist_head(&sdp->srcu_cblist)); 1303 s0 += c0; 1304 s1 += c1; 1305 } 1306 pr_cont(" T(%ld,%ld)\n", s0, s1); 1307 } 1308 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1309 1310 static int __init srcu_bootup_announce(void) 1311 { 1312 pr_info("Hierarchical SRCU implementation.\n"); 1313 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1314 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1315 return 0; 1316 } 1317 early_initcall(srcu_bootup_announce); 1318 1319 void __init srcu_init(void) 1320 { 1321 struct srcu_struct *sp; 1322 1323 srcu_init_done = true; 1324 while (!list_empty(&srcu_boot_list)) { 1325 sp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1326 work.work.entry); 1327 check_init_srcu_struct(sp); 1328 list_del_init(&sp->work.work.entry); 1329 queue_work(rcu_gp_wq, &sp->work.work); 1330 } 1331 } 1332