1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 #ifndef data_race 33 #define data_race(expr) \ 34 ({ \ 35 expr; \ 36 }) 37 #endif 38 #ifndef ASSERT_EXCLUSIVE_WRITER 39 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0) 40 #endif 41 #ifndef ASSERT_EXCLUSIVE_ACCESS 42 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0) 43 #endif 44 45 /* Holdoff in nanoseconds for auto-expediting. */ 46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 48 module_param(exp_holdoff, ulong, 0444); 49 50 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 51 static ulong counter_wrap_check = (ULONG_MAX >> 2); 52 module_param(counter_wrap_check, ulong, 0444); 53 54 /* Early-boot callback-management, so early that no lock is required! */ 55 static LIST_HEAD(srcu_boot_list); 56 static bool __read_mostly srcu_init_done; 57 58 static void srcu_invoke_callbacks(struct work_struct *work); 59 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 60 static void process_srcu(struct work_struct *work); 61 static void srcu_delay_timer(struct timer_list *t); 62 63 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 64 #define spin_lock_rcu_node(p) \ 65 do { \ 66 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 67 smp_mb__after_unlock_lock(); \ 68 } while (0) 69 70 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 71 72 #define spin_lock_irq_rcu_node(p) \ 73 do { \ 74 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 75 smp_mb__after_unlock_lock(); \ 76 } while (0) 77 78 #define spin_unlock_irq_rcu_node(p) \ 79 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 80 81 #define spin_lock_irqsave_rcu_node(p, flags) \ 82 do { \ 83 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 88 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 89 90 /* 91 * Initialize SRCU combining tree. Note that statically allocated 92 * srcu_struct structures might already have srcu_read_lock() and 93 * srcu_read_unlock() running against them. So if the is_static parameter 94 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 95 */ 96 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static) 97 { 98 int cpu; 99 int i; 100 int level = 0; 101 int levelspread[RCU_NUM_LVLS]; 102 struct srcu_data *sdp; 103 struct srcu_node *snp; 104 struct srcu_node *snp_first; 105 106 /* Work out the overall tree geometry. */ 107 ssp->level[0] = &ssp->node[0]; 108 for (i = 1; i < rcu_num_lvls; i++) 109 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 110 rcu_init_levelspread(levelspread, num_rcu_lvl); 111 112 /* Each pass through this loop initializes one srcu_node structure. */ 113 srcu_for_each_node_breadth_first(ssp, snp) { 114 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 115 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 116 ARRAY_SIZE(snp->srcu_data_have_cbs)); 117 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 118 snp->srcu_have_cbs[i] = 0; 119 snp->srcu_data_have_cbs[i] = 0; 120 } 121 snp->srcu_gp_seq_needed_exp = 0; 122 snp->grplo = -1; 123 snp->grphi = -1; 124 if (snp == &ssp->node[0]) { 125 /* Root node, special case. */ 126 snp->srcu_parent = NULL; 127 continue; 128 } 129 130 /* Non-root node. */ 131 if (snp == ssp->level[level + 1]) 132 level++; 133 snp->srcu_parent = ssp->level[level - 1] + 134 (snp - ssp->level[level]) / 135 levelspread[level - 1]; 136 } 137 138 /* 139 * Initialize the per-CPU srcu_data array, which feeds into the 140 * leaves of the srcu_node tree. 141 */ 142 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 143 ARRAY_SIZE(sdp->srcu_unlock_count)); 144 level = rcu_num_lvls - 1; 145 snp_first = ssp->level[level]; 146 for_each_possible_cpu(cpu) { 147 sdp = per_cpu_ptr(ssp->sda, cpu); 148 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 149 rcu_segcblist_init(&sdp->srcu_cblist); 150 sdp->srcu_cblist_invoking = false; 151 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 152 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 153 sdp->mynode = &snp_first[cpu / levelspread[level]]; 154 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 155 if (snp->grplo < 0) 156 snp->grplo = cpu; 157 snp->grphi = cpu; 158 } 159 sdp->cpu = cpu; 160 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 161 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 162 sdp->ssp = ssp; 163 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 164 if (is_static) 165 continue; 166 167 /* Dynamically allocated, better be no srcu_read_locks()! */ 168 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 169 sdp->srcu_lock_count[i] = 0; 170 sdp->srcu_unlock_count[i] = 0; 171 } 172 } 173 } 174 175 /* 176 * Initialize non-compile-time initialized fields, including the 177 * associated srcu_node and srcu_data structures. The is_static 178 * parameter is passed through to init_srcu_struct_nodes(), and 179 * also tells us that ->sda has already been wired up to srcu_data. 180 */ 181 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 182 { 183 mutex_init(&ssp->srcu_cb_mutex); 184 mutex_init(&ssp->srcu_gp_mutex); 185 ssp->srcu_idx = 0; 186 ssp->srcu_gp_seq = 0; 187 ssp->srcu_barrier_seq = 0; 188 mutex_init(&ssp->srcu_barrier_mutex); 189 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 190 INIT_DELAYED_WORK(&ssp->work, process_srcu); 191 if (!is_static) 192 ssp->sda = alloc_percpu(struct srcu_data); 193 init_srcu_struct_nodes(ssp, is_static); 194 ssp->srcu_gp_seq_needed_exp = 0; 195 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 196 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 197 return ssp->sda ? 0 : -ENOMEM; 198 } 199 200 #ifdef CONFIG_DEBUG_LOCK_ALLOC 201 202 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 203 struct lock_class_key *key) 204 { 205 /* Don't re-initialize a lock while it is held. */ 206 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 207 lockdep_init_map(&ssp->dep_map, name, key, 0); 208 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 209 return init_srcu_struct_fields(ssp, false); 210 } 211 EXPORT_SYMBOL_GPL(__init_srcu_struct); 212 213 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 214 215 /** 216 * init_srcu_struct - initialize a sleep-RCU structure 217 * @ssp: structure to initialize. 218 * 219 * Must invoke this on a given srcu_struct before passing that srcu_struct 220 * to any other function. Each srcu_struct represents a separate domain 221 * of SRCU protection. 222 */ 223 int init_srcu_struct(struct srcu_struct *ssp) 224 { 225 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 226 return init_srcu_struct_fields(ssp, false); 227 } 228 EXPORT_SYMBOL_GPL(init_srcu_struct); 229 230 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 231 232 /* 233 * First-use initialization of statically allocated srcu_struct 234 * structure. Wiring up the combining tree is more than can be 235 * done with compile-time initialization, so this check is added 236 * to each update-side SRCU primitive. Use ssp->lock, which -is- 237 * compile-time initialized, to resolve races involving multiple 238 * CPUs trying to garner first-use privileges. 239 */ 240 static void check_init_srcu_struct(struct srcu_struct *ssp) 241 { 242 unsigned long flags; 243 244 /* The smp_load_acquire() pairs with the smp_store_release(). */ 245 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 246 return; /* Already initialized. */ 247 spin_lock_irqsave_rcu_node(ssp, flags); 248 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 249 spin_unlock_irqrestore_rcu_node(ssp, flags); 250 return; 251 } 252 init_srcu_struct_fields(ssp, true); 253 spin_unlock_irqrestore_rcu_node(ssp, flags); 254 } 255 256 /* 257 * Returns approximate total of the readers' ->srcu_lock_count[] values 258 * for the rank of per-CPU counters specified by idx. 259 */ 260 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 261 { 262 int cpu; 263 unsigned long sum = 0; 264 265 for_each_possible_cpu(cpu) { 266 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 267 268 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 269 } 270 return sum; 271 } 272 273 /* 274 * Returns approximate total of the readers' ->srcu_unlock_count[] values 275 * for the rank of per-CPU counters specified by idx. 276 */ 277 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 278 { 279 int cpu; 280 unsigned long sum = 0; 281 282 for_each_possible_cpu(cpu) { 283 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 284 285 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 286 } 287 return sum; 288 } 289 290 /* 291 * Return true if the number of pre-existing readers is determined to 292 * be zero. 293 */ 294 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 295 { 296 unsigned long unlocks; 297 298 unlocks = srcu_readers_unlock_idx(ssp, idx); 299 300 /* 301 * Make sure that a lock is always counted if the corresponding 302 * unlock is counted. Needs to be a smp_mb() as the read side may 303 * contain a read from a variable that is written to before the 304 * synchronize_srcu() in the write side. In this case smp_mb()s 305 * A and B act like the store buffering pattern. 306 * 307 * This smp_mb() also pairs with smp_mb() C to prevent accesses 308 * after the synchronize_srcu() from being executed before the 309 * grace period ends. 310 */ 311 smp_mb(); /* A */ 312 313 /* 314 * If the locks are the same as the unlocks, then there must have 315 * been no readers on this index at some time in between. This does 316 * not mean that there are no more readers, as one could have read 317 * the current index but not have incremented the lock counter yet. 318 * 319 * So suppose that the updater is preempted here for so long 320 * that more than ULONG_MAX non-nested readers come and go in 321 * the meantime. It turns out that this cannot result in overflow 322 * because if a reader modifies its unlock count after we read it 323 * above, then that reader's next load of ->srcu_idx is guaranteed 324 * to get the new value, which will cause it to operate on the 325 * other bank of counters, where it cannot contribute to the 326 * overflow of these counters. This means that there is a maximum 327 * of 2*NR_CPUS increments, which cannot overflow given current 328 * systems, especially not on 64-bit systems. 329 * 330 * OK, how about nesting? This does impose a limit on nesting 331 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 332 * especially on 64-bit systems. 333 */ 334 return srcu_readers_lock_idx(ssp, idx) == unlocks; 335 } 336 337 /** 338 * srcu_readers_active - returns true if there are readers. and false 339 * otherwise 340 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 341 * 342 * Note that this is not an atomic primitive, and can therefore suffer 343 * severe errors when invoked on an active srcu_struct. That said, it 344 * can be useful as an error check at cleanup time. 345 */ 346 static bool srcu_readers_active(struct srcu_struct *ssp) 347 { 348 int cpu; 349 unsigned long sum = 0; 350 351 for_each_possible_cpu(cpu) { 352 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 353 354 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 355 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 356 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 357 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 358 } 359 return sum; 360 } 361 362 #define SRCU_INTERVAL 1 363 364 /* 365 * Return grace-period delay, zero if there are expedited grace 366 * periods pending, SRCU_INTERVAL otherwise. 367 */ 368 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 369 { 370 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 371 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 372 return 0; 373 return SRCU_INTERVAL; 374 } 375 376 /** 377 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 378 * @ssp: structure to clean up. 379 * 380 * Must invoke this after you are finished using a given srcu_struct that 381 * was initialized via init_srcu_struct(), else you leak memory. 382 */ 383 void cleanup_srcu_struct(struct srcu_struct *ssp) 384 { 385 int cpu; 386 387 if (WARN_ON(!srcu_get_delay(ssp))) 388 return; /* Just leak it! */ 389 if (WARN_ON(srcu_readers_active(ssp))) 390 return; /* Just leak it! */ 391 flush_delayed_work(&ssp->work); 392 for_each_possible_cpu(cpu) { 393 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 394 395 del_timer_sync(&sdp->delay_work); 396 flush_work(&sdp->work); 397 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 398 return; /* Forgot srcu_barrier(), so just leak it! */ 399 } 400 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 401 WARN_ON(srcu_readers_active(ssp))) { 402 pr_info("%s: Active srcu_struct %p state: %d\n", 403 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 404 return; /* Caller forgot to stop doing call_srcu()? */ 405 } 406 free_percpu(ssp->sda); 407 ssp->sda = NULL; 408 } 409 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 410 411 /* 412 * Counts the new reader in the appropriate per-CPU element of the 413 * srcu_struct. 414 * Returns an index that must be passed to the matching srcu_read_unlock(). 415 */ 416 int __srcu_read_lock(struct srcu_struct *ssp) 417 { 418 int idx; 419 420 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 421 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 422 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 423 return idx; 424 } 425 EXPORT_SYMBOL_GPL(__srcu_read_lock); 426 427 /* 428 * Removes the count for the old reader from the appropriate per-CPU 429 * element of the srcu_struct. Note that this may well be a different 430 * CPU than that which was incremented by the corresponding srcu_read_lock(). 431 */ 432 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 433 { 434 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 435 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 436 } 437 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 438 439 /* 440 * We use an adaptive strategy for synchronize_srcu() and especially for 441 * synchronize_srcu_expedited(). We spin for a fixed time period 442 * (defined below) to allow SRCU readers to exit their read-side critical 443 * sections. If there are still some readers after a few microseconds, 444 * we repeatedly block for 1-millisecond time periods. 445 */ 446 #define SRCU_RETRY_CHECK_DELAY 5 447 448 /* 449 * Start an SRCU grace period. 450 */ 451 static void srcu_gp_start(struct srcu_struct *ssp) 452 { 453 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 454 int state; 455 456 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 457 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 458 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 459 rcu_segcblist_advance(&sdp->srcu_cblist, 460 rcu_seq_current(&ssp->srcu_gp_seq)); 461 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 462 rcu_seq_snap(&ssp->srcu_gp_seq)); 463 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 464 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 465 rcu_seq_start(&ssp->srcu_gp_seq); 466 state = rcu_seq_state(ssp->srcu_gp_seq); 467 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 468 } 469 470 471 static void srcu_delay_timer(struct timer_list *t) 472 { 473 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 474 475 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 476 } 477 478 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 479 unsigned long delay) 480 { 481 if (!delay) { 482 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 483 return; 484 } 485 486 timer_reduce(&sdp->delay_work, jiffies + delay); 487 } 488 489 /* 490 * Schedule callback invocation for the specified srcu_data structure, 491 * if possible, on the corresponding CPU. 492 */ 493 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 494 { 495 srcu_queue_delayed_work_on(sdp, delay); 496 } 497 498 /* 499 * Schedule callback invocation for all srcu_data structures associated 500 * with the specified srcu_node structure that have callbacks for the 501 * just-completed grace period, the one corresponding to idx. If possible, 502 * schedule this invocation on the corresponding CPUs. 503 */ 504 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 505 unsigned long mask, unsigned long delay) 506 { 507 int cpu; 508 509 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 510 if (!(mask & (1 << (cpu - snp->grplo)))) 511 continue; 512 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 513 } 514 } 515 516 /* 517 * Note the end of an SRCU grace period. Initiates callback invocation 518 * and starts a new grace period if needed. 519 * 520 * The ->srcu_cb_mutex acquisition does not protect any data, but 521 * instead prevents more than one grace period from starting while we 522 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 523 * array to have a finite number of elements. 524 */ 525 static void srcu_gp_end(struct srcu_struct *ssp) 526 { 527 unsigned long cbdelay; 528 bool cbs; 529 bool last_lvl; 530 int cpu; 531 unsigned long flags; 532 unsigned long gpseq; 533 int idx; 534 unsigned long mask; 535 struct srcu_data *sdp; 536 struct srcu_node *snp; 537 538 /* Prevent more than one additional grace period. */ 539 mutex_lock(&ssp->srcu_cb_mutex); 540 541 /* End the current grace period. */ 542 spin_lock_irq_rcu_node(ssp); 543 idx = rcu_seq_state(ssp->srcu_gp_seq); 544 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 545 cbdelay = srcu_get_delay(ssp); 546 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 547 rcu_seq_end(&ssp->srcu_gp_seq); 548 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 549 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 550 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 551 spin_unlock_irq_rcu_node(ssp); 552 mutex_unlock(&ssp->srcu_gp_mutex); 553 /* A new grace period can start at this point. But only one. */ 554 555 /* Initiate callback invocation as needed. */ 556 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 557 srcu_for_each_node_breadth_first(ssp, snp) { 558 spin_lock_irq_rcu_node(snp); 559 cbs = false; 560 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 561 if (last_lvl) 562 cbs = snp->srcu_have_cbs[idx] == gpseq; 563 snp->srcu_have_cbs[idx] = gpseq; 564 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 565 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 566 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 567 mask = snp->srcu_data_have_cbs[idx]; 568 snp->srcu_data_have_cbs[idx] = 0; 569 spin_unlock_irq_rcu_node(snp); 570 if (cbs) 571 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 572 573 /* Occasionally prevent srcu_data counter wrap. */ 574 if (!(gpseq & counter_wrap_check) && last_lvl) 575 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 576 sdp = per_cpu_ptr(ssp->sda, cpu); 577 spin_lock_irqsave_rcu_node(sdp, flags); 578 if (ULONG_CMP_GE(gpseq, 579 sdp->srcu_gp_seq_needed + 100)) 580 sdp->srcu_gp_seq_needed = gpseq; 581 if (ULONG_CMP_GE(gpseq, 582 sdp->srcu_gp_seq_needed_exp + 100)) 583 sdp->srcu_gp_seq_needed_exp = gpseq; 584 spin_unlock_irqrestore_rcu_node(sdp, flags); 585 } 586 } 587 588 /* Callback initiation done, allow grace periods after next. */ 589 mutex_unlock(&ssp->srcu_cb_mutex); 590 591 /* Start a new grace period if needed. */ 592 spin_lock_irq_rcu_node(ssp); 593 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 594 if (!rcu_seq_state(gpseq) && 595 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 596 srcu_gp_start(ssp); 597 spin_unlock_irq_rcu_node(ssp); 598 srcu_reschedule(ssp, 0); 599 } else { 600 spin_unlock_irq_rcu_node(ssp); 601 } 602 } 603 604 /* 605 * Funnel-locking scheme to scalably mediate many concurrent expedited 606 * grace-period requests. This function is invoked for the first known 607 * expedited request for a grace period that has already been requested, 608 * but without expediting. To start a completely new grace period, 609 * whether expedited or not, use srcu_funnel_gp_start() instead. 610 */ 611 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 612 unsigned long s) 613 { 614 unsigned long flags; 615 616 for (; snp != NULL; snp = snp->srcu_parent) { 617 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 618 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 619 return; 620 spin_lock_irqsave_rcu_node(snp, flags); 621 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 622 spin_unlock_irqrestore_rcu_node(snp, flags); 623 return; 624 } 625 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 626 spin_unlock_irqrestore_rcu_node(snp, flags); 627 } 628 spin_lock_irqsave_rcu_node(ssp, flags); 629 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 630 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 631 spin_unlock_irqrestore_rcu_node(ssp, flags); 632 } 633 634 /* 635 * Funnel-locking scheme to scalably mediate many concurrent grace-period 636 * requests. The winner has to do the work of actually starting grace 637 * period s. Losers must either ensure that their desired grace-period 638 * number is recorded on at least their leaf srcu_node structure, or they 639 * must take steps to invoke their own callbacks. 640 * 641 * Note that this function also does the work of srcu_funnel_exp_start(), 642 * in some cases by directly invoking it. 643 */ 644 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 645 unsigned long s, bool do_norm) 646 { 647 unsigned long flags; 648 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 649 struct srcu_node *snp = sdp->mynode; 650 unsigned long snp_seq; 651 652 /* Each pass through the loop does one level of the srcu_node tree. */ 653 for (; snp != NULL; snp = snp->srcu_parent) { 654 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 655 return; /* GP already done and CBs recorded. */ 656 spin_lock_irqsave_rcu_node(snp, flags); 657 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 658 snp_seq = snp->srcu_have_cbs[idx]; 659 if (snp == sdp->mynode && snp_seq == s) 660 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 661 spin_unlock_irqrestore_rcu_node(snp, flags); 662 if (snp == sdp->mynode && snp_seq != s) { 663 srcu_schedule_cbs_sdp(sdp, do_norm 664 ? SRCU_INTERVAL 665 : 0); 666 return; 667 } 668 if (!do_norm) 669 srcu_funnel_exp_start(ssp, snp, s); 670 return; 671 } 672 snp->srcu_have_cbs[idx] = s; 673 if (snp == sdp->mynode) 674 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 675 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 676 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 677 spin_unlock_irqrestore_rcu_node(snp, flags); 678 } 679 680 /* Top of tree, must ensure the grace period will be started. */ 681 spin_lock_irqsave_rcu_node(ssp, flags); 682 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 683 /* 684 * Record need for grace period s. Pair with load 685 * acquire setting up for initialization. 686 */ 687 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 688 } 689 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 690 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 691 692 /* If grace period not already done and none in progress, start it. */ 693 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 694 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 695 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 696 srcu_gp_start(ssp); 697 if (likely(srcu_init_done)) 698 queue_delayed_work(rcu_gp_wq, &ssp->work, 699 srcu_get_delay(ssp)); 700 else if (list_empty(&ssp->work.work.entry)) 701 list_add(&ssp->work.work.entry, &srcu_boot_list); 702 } 703 spin_unlock_irqrestore_rcu_node(ssp, flags); 704 } 705 706 /* 707 * Wait until all readers counted by array index idx complete, but 708 * loop an additional time if there is an expedited grace period pending. 709 * The caller must ensure that ->srcu_idx is not changed while checking. 710 */ 711 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 712 { 713 for (;;) { 714 if (srcu_readers_active_idx_check(ssp, idx)) 715 return true; 716 if (--trycount + !srcu_get_delay(ssp) <= 0) 717 return false; 718 udelay(SRCU_RETRY_CHECK_DELAY); 719 } 720 } 721 722 /* 723 * Increment the ->srcu_idx counter so that future SRCU readers will 724 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 725 * us to wait for pre-existing readers in a starvation-free manner. 726 */ 727 static void srcu_flip(struct srcu_struct *ssp) 728 { 729 /* 730 * Ensure that if this updater saw a given reader's increment 731 * from __srcu_read_lock(), that reader was using an old value 732 * of ->srcu_idx. Also ensure that if a given reader sees the 733 * new value of ->srcu_idx, this updater's earlier scans cannot 734 * have seen that reader's increments (which is OK, because this 735 * grace period need not wait on that reader). 736 */ 737 smp_mb(); /* E */ /* Pairs with B and C. */ 738 739 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 740 741 /* 742 * Ensure that if the updater misses an __srcu_read_unlock() 743 * increment, that task's next __srcu_read_lock() will see the 744 * above counter update. Note that both this memory barrier 745 * and the one in srcu_readers_active_idx_check() provide the 746 * guarantee for __srcu_read_lock(). 747 */ 748 smp_mb(); /* D */ /* Pairs with C. */ 749 } 750 751 /* 752 * If SRCU is likely idle, return true, otherwise return false. 753 * 754 * Note that it is OK for several current from-idle requests for a new 755 * grace period from idle to specify expediting because they will all end 756 * up requesting the same grace period anyhow. So no loss. 757 * 758 * Note also that if any CPU (including the current one) is still invoking 759 * callbacks, this function will nevertheless say "idle". This is not 760 * ideal, but the overhead of checking all CPUs' callback lists is even 761 * less ideal, especially on large systems. Furthermore, the wakeup 762 * can happen before the callback is fully removed, so we have no choice 763 * but to accept this type of error. 764 * 765 * This function is also subject to counter-wrap errors, but let's face 766 * it, if this function was preempted for enough time for the counters 767 * to wrap, it really doesn't matter whether or not we expedite the grace 768 * period. The extra overhead of a needlessly expedited grace period is 769 * negligible when amoritized over that time period, and the extra latency 770 * of a needlessly non-expedited grace period is similarly negligible. 771 */ 772 static bool srcu_might_be_idle(struct srcu_struct *ssp) 773 { 774 unsigned long curseq; 775 unsigned long flags; 776 struct srcu_data *sdp; 777 unsigned long t; 778 unsigned long tlast; 779 780 /* If the local srcu_data structure has callbacks, not idle. */ 781 local_irq_save(flags); 782 sdp = this_cpu_ptr(ssp->sda); 783 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 784 local_irq_restore(flags); 785 return false; /* Callbacks already present, so not idle. */ 786 } 787 local_irq_restore(flags); 788 789 /* 790 * No local callbacks, so probabalistically probe global state. 791 * Exact information would require acquiring locks, which would 792 * kill scalability, hence the probabalistic nature of the probe. 793 */ 794 795 /* First, see if enough time has passed since the last GP. */ 796 t = ktime_get_mono_fast_ns(); 797 tlast = READ_ONCE(ssp->srcu_last_gp_end); 798 if (exp_holdoff == 0 || 799 time_in_range_open(t, tlast, tlast + exp_holdoff)) 800 return false; /* Too soon after last GP. */ 801 802 /* Next, check for probable idleness. */ 803 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 804 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 805 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 806 return false; /* Grace period in progress, so not idle. */ 807 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 808 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 809 return false; /* GP # changed, so not idle. */ 810 return true; /* With reasonable probability, idle! */ 811 } 812 813 /* 814 * SRCU callback function to leak a callback. 815 */ 816 static void srcu_leak_callback(struct rcu_head *rhp) 817 { 818 } 819 820 /* 821 * Enqueue an SRCU callback on the srcu_data structure associated with 822 * the current CPU and the specified srcu_struct structure, initiating 823 * grace-period processing if it is not already running. 824 * 825 * Note that all CPUs must agree that the grace period extended beyond 826 * all pre-existing SRCU read-side critical section. On systems with 827 * more than one CPU, this means that when "func()" is invoked, each CPU 828 * is guaranteed to have executed a full memory barrier since the end of 829 * its last corresponding SRCU read-side critical section whose beginning 830 * preceded the call to call_srcu(). It also means that each CPU executing 831 * an SRCU read-side critical section that continues beyond the start of 832 * "func()" must have executed a memory barrier after the call_srcu() 833 * but before the beginning of that SRCU read-side critical section. 834 * Note that these guarantees include CPUs that are offline, idle, or 835 * executing in user mode, as well as CPUs that are executing in the kernel. 836 * 837 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 838 * resulting SRCU callback function "func()", then both CPU A and CPU 839 * B are guaranteed to execute a full memory barrier during the time 840 * interval between the call to call_srcu() and the invocation of "func()". 841 * This guarantee applies even if CPU A and CPU B are the same CPU (but 842 * again only if the system has more than one CPU). 843 * 844 * Of course, these guarantees apply only for invocations of call_srcu(), 845 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 846 * srcu_struct structure. 847 */ 848 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 849 rcu_callback_t func, bool do_norm) 850 { 851 unsigned long flags; 852 int idx; 853 bool needexp = false; 854 bool needgp = false; 855 unsigned long s; 856 struct srcu_data *sdp; 857 858 check_init_srcu_struct(ssp); 859 if (debug_rcu_head_queue(rhp)) { 860 /* Probable double call_srcu(), so leak the callback. */ 861 WRITE_ONCE(rhp->func, srcu_leak_callback); 862 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 863 return; 864 } 865 rhp->func = func; 866 idx = srcu_read_lock(ssp); 867 local_irq_save(flags); 868 sdp = this_cpu_ptr(ssp->sda); 869 spin_lock_rcu_node(sdp); 870 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 871 rcu_segcblist_advance(&sdp->srcu_cblist, 872 rcu_seq_current(&ssp->srcu_gp_seq)); 873 s = rcu_seq_snap(&ssp->srcu_gp_seq); 874 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 875 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 876 sdp->srcu_gp_seq_needed = s; 877 needgp = true; 878 } 879 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 880 sdp->srcu_gp_seq_needed_exp = s; 881 needexp = true; 882 } 883 spin_unlock_irqrestore_rcu_node(sdp, flags); 884 if (needgp) 885 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 886 else if (needexp) 887 srcu_funnel_exp_start(ssp, sdp->mynode, s); 888 srcu_read_unlock(ssp, idx); 889 } 890 891 /** 892 * call_srcu() - Queue a callback for invocation after an SRCU grace period 893 * @ssp: srcu_struct in queue the callback 894 * @rhp: structure to be used for queueing the SRCU callback. 895 * @func: function to be invoked after the SRCU grace period 896 * 897 * The callback function will be invoked some time after a full SRCU 898 * grace period elapses, in other words after all pre-existing SRCU 899 * read-side critical sections have completed. However, the callback 900 * function might well execute concurrently with other SRCU read-side 901 * critical sections that started after call_srcu() was invoked. SRCU 902 * read-side critical sections are delimited by srcu_read_lock() and 903 * srcu_read_unlock(), and may be nested. 904 * 905 * The callback will be invoked from process context, but must nevertheless 906 * be fast and must not block. 907 */ 908 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 909 rcu_callback_t func) 910 { 911 __call_srcu(ssp, rhp, func, true); 912 } 913 EXPORT_SYMBOL_GPL(call_srcu); 914 915 /* 916 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 917 */ 918 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 919 { 920 struct rcu_synchronize rcu; 921 922 RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) || 923 lock_is_held(&rcu_bh_lock_map) || 924 lock_is_held(&rcu_lock_map) || 925 lock_is_held(&rcu_sched_lock_map), 926 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 927 928 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 929 return; 930 might_sleep(); 931 check_init_srcu_struct(ssp); 932 init_completion(&rcu.completion); 933 init_rcu_head_on_stack(&rcu.head); 934 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 935 wait_for_completion(&rcu.completion); 936 destroy_rcu_head_on_stack(&rcu.head); 937 938 /* 939 * Make sure that later code is ordered after the SRCU grace 940 * period. This pairs with the spin_lock_irq_rcu_node() 941 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 942 * because the current CPU might have been totally uninvolved with 943 * (and thus unordered against) that grace period. 944 */ 945 smp_mb(); 946 } 947 948 /** 949 * synchronize_srcu_expedited - Brute-force SRCU grace period 950 * @ssp: srcu_struct with which to synchronize. 951 * 952 * Wait for an SRCU grace period to elapse, but be more aggressive about 953 * spinning rather than blocking when waiting. 954 * 955 * Note that synchronize_srcu_expedited() has the same deadlock and 956 * memory-ordering properties as does synchronize_srcu(). 957 */ 958 void synchronize_srcu_expedited(struct srcu_struct *ssp) 959 { 960 __synchronize_srcu(ssp, rcu_gp_is_normal()); 961 } 962 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 963 964 /** 965 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 966 * @ssp: srcu_struct with which to synchronize. 967 * 968 * Wait for the count to drain to zero of both indexes. To avoid the 969 * possible starvation of synchronize_srcu(), it waits for the count of 970 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 971 * and then flip the srcu_idx and wait for the count of the other index. 972 * 973 * Can block; must be called from process context. 974 * 975 * Note that it is illegal to call synchronize_srcu() from the corresponding 976 * SRCU read-side critical section; doing so will result in deadlock. 977 * However, it is perfectly legal to call synchronize_srcu() on one 978 * srcu_struct from some other srcu_struct's read-side critical section, 979 * as long as the resulting graph of srcu_structs is acyclic. 980 * 981 * There are memory-ordering constraints implied by synchronize_srcu(). 982 * On systems with more than one CPU, when synchronize_srcu() returns, 983 * each CPU is guaranteed to have executed a full memory barrier since 984 * the end of its last corresponding SRCU read-side critical section 985 * whose beginning preceded the call to synchronize_srcu(). In addition, 986 * each CPU having an SRCU read-side critical section that extends beyond 987 * the return from synchronize_srcu() is guaranteed to have executed a 988 * full memory barrier after the beginning of synchronize_srcu() and before 989 * the beginning of that SRCU read-side critical section. Note that these 990 * guarantees include CPUs that are offline, idle, or executing in user mode, 991 * as well as CPUs that are executing in the kernel. 992 * 993 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 994 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 995 * to have executed a full memory barrier during the execution of 996 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 997 * are the same CPU, but again only if the system has more than one CPU. 998 * 999 * Of course, these memory-ordering guarantees apply only when 1000 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1001 * passed the same srcu_struct structure. 1002 * 1003 * If SRCU is likely idle, expedite the first request. This semantic 1004 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1005 * SRCU must also provide it. Note that detecting idleness is heuristic 1006 * and subject to both false positives and negatives. 1007 */ 1008 void synchronize_srcu(struct srcu_struct *ssp) 1009 { 1010 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1011 synchronize_srcu_expedited(ssp); 1012 else 1013 __synchronize_srcu(ssp, true); 1014 } 1015 EXPORT_SYMBOL_GPL(synchronize_srcu); 1016 1017 /* 1018 * Callback function for srcu_barrier() use. 1019 */ 1020 static void srcu_barrier_cb(struct rcu_head *rhp) 1021 { 1022 struct srcu_data *sdp; 1023 struct srcu_struct *ssp; 1024 1025 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1026 ssp = sdp->ssp; 1027 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1028 complete(&ssp->srcu_barrier_completion); 1029 } 1030 1031 /** 1032 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1033 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1034 */ 1035 void srcu_barrier(struct srcu_struct *ssp) 1036 { 1037 int cpu; 1038 struct srcu_data *sdp; 1039 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1040 1041 check_init_srcu_struct(ssp); 1042 mutex_lock(&ssp->srcu_barrier_mutex); 1043 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1044 smp_mb(); /* Force ordering following return. */ 1045 mutex_unlock(&ssp->srcu_barrier_mutex); 1046 return; /* Someone else did our work for us. */ 1047 } 1048 rcu_seq_start(&ssp->srcu_barrier_seq); 1049 init_completion(&ssp->srcu_barrier_completion); 1050 1051 /* Initial count prevents reaching zero until all CBs are posted. */ 1052 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1053 1054 /* 1055 * Each pass through this loop enqueues a callback, but only 1056 * on CPUs already having callbacks enqueued. Note that if 1057 * a CPU already has callbacks enqueue, it must have already 1058 * registered the need for a future grace period, so all we 1059 * need do is enqueue a callback that will use the same 1060 * grace period as the last callback already in the queue. 1061 */ 1062 for_each_possible_cpu(cpu) { 1063 sdp = per_cpu_ptr(ssp->sda, cpu); 1064 spin_lock_irq_rcu_node(sdp); 1065 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1066 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1067 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1068 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1069 &sdp->srcu_barrier_head)) { 1070 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1071 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1072 } 1073 spin_unlock_irq_rcu_node(sdp); 1074 } 1075 1076 /* Remove the initial count, at which point reaching zero can happen. */ 1077 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1078 complete(&ssp->srcu_barrier_completion); 1079 wait_for_completion(&ssp->srcu_barrier_completion); 1080 1081 rcu_seq_end(&ssp->srcu_barrier_seq); 1082 mutex_unlock(&ssp->srcu_barrier_mutex); 1083 } 1084 EXPORT_SYMBOL_GPL(srcu_barrier); 1085 1086 /** 1087 * srcu_batches_completed - return batches completed. 1088 * @ssp: srcu_struct on which to report batch completion. 1089 * 1090 * Report the number of batches, correlated with, but not necessarily 1091 * precisely the same as, the number of grace periods that have elapsed. 1092 */ 1093 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1094 { 1095 return READ_ONCE(ssp->srcu_idx); 1096 } 1097 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1098 1099 /* 1100 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1101 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1102 * completed in that state. 1103 */ 1104 static void srcu_advance_state(struct srcu_struct *ssp) 1105 { 1106 int idx; 1107 1108 mutex_lock(&ssp->srcu_gp_mutex); 1109 1110 /* 1111 * Because readers might be delayed for an extended period after 1112 * fetching ->srcu_idx for their index, at any point in time there 1113 * might well be readers using both idx=0 and idx=1. We therefore 1114 * need to wait for readers to clear from both index values before 1115 * invoking a callback. 1116 * 1117 * The load-acquire ensures that we see the accesses performed 1118 * by the prior grace period. 1119 */ 1120 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1121 if (idx == SRCU_STATE_IDLE) { 1122 spin_lock_irq_rcu_node(ssp); 1123 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1124 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1125 spin_unlock_irq_rcu_node(ssp); 1126 mutex_unlock(&ssp->srcu_gp_mutex); 1127 return; 1128 } 1129 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1130 if (idx == SRCU_STATE_IDLE) 1131 srcu_gp_start(ssp); 1132 spin_unlock_irq_rcu_node(ssp); 1133 if (idx != SRCU_STATE_IDLE) { 1134 mutex_unlock(&ssp->srcu_gp_mutex); 1135 return; /* Someone else started the grace period. */ 1136 } 1137 } 1138 1139 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1140 idx = 1 ^ (ssp->srcu_idx & 1); 1141 if (!try_check_zero(ssp, idx, 1)) { 1142 mutex_unlock(&ssp->srcu_gp_mutex); 1143 return; /* readers present, retry later. */ 1144 } 1145 srcu_flip(ssp); 1146 spin_lock_irq_rcu_node(ssp); 1147 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1148 spin_unlock_irq_rcu_node(ssp); 1149 } 1150 1151 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1152 1153 /* 1154 * SRCU read-side critical sections are normally short, 1155 * so check at least twice in quick succession after a flip. 1156 */ 1157 idx = 1 ^ (ssp->srcu_idx & 1); 1158 if (!try_check_zero(ssp, idx, 2)) { 1159 mutex_unlock(&ssp->srcu_gp_mutex); 1160 return; /* readers present, retry later. */ 1161 } 1162 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1163 } 1164 } 1165 1166 /* 1167 * Invoke a limited number of SRCU callbacks that have passed through 1168 * their grace period. If there are more to do, SRCU will reschedule 1169 * the workqueue. Note that needed memory barriers have been executed 1170 * in this task's context by srcu_readers_active_idx_check(). 1171 */ 1172 static void srcu_invoke_callbacks(struct work_struct *work) 1173 { 1174 bool more; 1175 struct rcu_cblist ready_cbs; 1176 struct rcu_head *rhp; 1177 struct srcu_data *sdp; 1178 struct srcu_struct *ssp; 1179 1180 sdp = container_of(work, struct srcu_data, work); 1181 1182 ssp = sdp->ssp; 1183 rcu_cblist_init(&ready_cbs); 1184 spin_lock_irq_rcu_node(sdp); 1185 rcu_segcblist_advance(&sdp->srcu_cblist, 1186 rcu_seq_current(&ssp->srcu_gp_seq)); 1187 if (sdp->srcu_cblist_invoking || 1188 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1189 spin_unlock_irq_rcu_node(sdp); 1190 return; /* Someone else on the job or nothing to do. */ 1191 } 1192 1193 /* We are on the job! Extract and invoke ready callbacks. */ 1194 sdp->srcu_cblist_invoking = true; 1195 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1196 spin_unlock_irq_rcu_node(sdp); 1197 rhp = rcu_cblist_dequeue(&ready_cbs); 1198 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1199 debug_rcu_head_unqueue(rhp); 1200 local_bh_disable(); 1201 rhp->func(rhp); 1202 local_bh_enable(); 1203 } 1204 1205 /* 1206 * Update counts, accelerate new callbacks, and if needed, 1207 * schedule another round of callback invocation. 1208 */ 1209 spin_lock_irq_rcu_node(sdp); 1210 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1211 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1212 rcu_seq_snap(&ssp->srcu_gp_seq)); 1213 sdp->srcu_cblist_invoking = false; 1214 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1215 spin_unlock_irq_rcu_node(sdp); 1216 if (more) 1217 srcu_schedule_cbs_sdp(sdp, 0); 1218 } 1219 1220 /* 1221 * Finished one round of SRCU grace period. Start another if there are 1222 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1223 */ 1224 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1225 { 1226 bool pushgp = true; 1227 1228 spin_lock_irq_rcu_node(ssp); 1229 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1230 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1231 /* All requests fulfilled, time to go idle. */ 1232 pushgp = false; 1233 } 1234 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1235 /* Outstanding request and no GP. Start one. */ 1236 srcu_gp_start(ssp); 1237 } 1238 spin_unlock_irq_rcu_node(ssp); 1239 1240 if (pushgp) 1241 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1242 } 1243 1244 /* 1245 * This is the work-queue function that handles SRCU grace periods. 1246 */ 1247 static void process_srcu(struct work_struct *work) 1248 { 1249 struct srcu_struct *ssp; 1250 1251 ssp = container_of(work, struct srcu_struct, work.work); 1252 1253 srcu_advance_state(ssp); 1254 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1255 } 1256 1257 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1258 struct srcu_struct *ssp, int *flags, 1259 unsigned long *gp_seq) 1260 { 1261 if (test_type != SRCU_FLAVOR) 1262 return; 1263 *flags = 0; 1264 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1265 } 1266 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1267 1268 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1269 { 1270 int cpu; 1271 int idx; 1272 unsigned long s0 = 0, s1 = 0; 1273 1274 idx = ssp->srcu_idx & 0x1; 1275 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1276 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1277 for_each_possible_cpu(cpu) { 1278 unsigned long l0, l1; 1279 unsigned long u0, u1; 1280 long c0, c1; 1281 struct srcu_data *sdp; 1282 1283 sdp = per_cpu_ptr(ssp->sda, cpu); 1284 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1285 u1 = data_race(sdp->srcu_unlock_count[idx]); 1286 1287 /* 1288 * Make sure that a lock is always counted if the corresponding 1289 * unlock is counted. 1290 */ 1291 smp_rmb(); 1292 1293 l0 = data_race(sdp->srcu_lock_count[!idx]); 1294 l1 = data_race(sdp->srcu_lock_count[idx]); 1295 1296 c0 = l0 - u0; 1297 c1 = l1 - u1; 1298 pr_cont(" %d(%ld,%ld %c)", 1299 cpu, c0, c1, 1300 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1301 s0 += c0; 1302 s1 += c1; 1303 } 1304 pr_cont(" T(%ld,%ld)\n", s0, s1); 1305 } 1306 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1307 1308 static int __init srcu_bootup_announce(void) 1309 { 1310 pr_info("Hierarchical SRCU implementation.\n"); 1311 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1312 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1313 return 0; 1314 } 1315 early_initcall(srcu_bootup_announce); 1316 1317 void __init srcu_init(void) 1318 { 1319 struct srcu_struct *ssp; 1320 1321 srcu_init_done = true; 1322 while (!list_empty(&srcu_boot_list)) { 1323 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1324 work.work.entry); 1325 check_init_srcu_struct(ssp); 1326 list_del_init(&ssp->work.work.entry); 1327 queue_work(rcu_gp_wq, &ssp->work.work); 1328 } 1329 } 1330 1331 #ifdef CONFIG_MODULES 1332 1333 /* Initialize any global-scope srcu_struct structures used by this module. */ 1334 static int srcu_module_coming(struct module *mod) 1335 { 1336 int i; 1337 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1338 int ret; 1339 1340 for (i = 0; i < mod->num_srcu_structs; i++) { 1341 ret = init_srcu_struct(*(sspp++)); 1342 if (WARN_ON_ONCE(ret)) 1343 return ret; 1344 } 1345 return 0; 1346 } 1347 1348 /* Clean up any global-scope srcu_struct structures used by this module. */ 1349 static void srcu_module_going(struct module *mod) 1350 { 1351 int i; 1352 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1353 1354 for (i = 0; i < mod->num_srcu_structs; i++) 1355 cleanup_srcu_struct(*(sspp++)); 1356 } 1357 1358 /* Handle one module, either coming or going. */ 1359 static int srcu_module_notify(struct notifier_block *self, 1360 unsigned long val, void *data) 1361 { 1362 struct module *mod = data; 1363 int ret = 0; 1364 1365 switch (val) { 1366 case MODULE_STATE_COMING: 1367 ret = srcu_module_coming(mod); 1368 break; 1369 case MODULE_STATE_GOING: 1370 srcu_module_going(mod); 1371 break; 1372 default: 1373 break; 1374 } 1375 return ret; 1376 } 1377 1378 static struct notifier_block srcu_module_nb = { 1379 .notifier_call = srcu_module_notify, 1380 .priority = 0, 1381 }; 1382 1383 static __init int init_srcu_module_notifier(void) 1384 { 1385 int ret; 1386 1387 ret = register_module_notifier(&srcu_module_nb); 1388 if (ret) 1389 pr_warn("Failed to register srcu module notifier\n"); 1390 return ret; 1391 } 1392 late_initcall(init_srcu_module_notifier); 1393 1394 #endif /* #ifdef CONFIG_MODULES */ 1395