xref: /openbmc/linux/kernel/rcu/srcutree.c (revision f17f06a0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Author: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 /* Holdoff in nanoseconds for auto-expediting. */
33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
35 module_param(exp_holdoff, ulong, 0444);
36 
37 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
38 static ulong counter_wrap_check = (ULONG_MAX >> 2);
39 module_param(counter_wrap_check, ulong, 0444);
40 
41 /* Early-boot callback-management, so early that no lock is required! */
42 static LIST_HEAD(srcu_boot_list);
43 static bool __read_mostly srcu_init_done;
44 
45 static void srcu_invoke_callbacks(struct work_struct *work);
46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
47 static void process_srcu(struct work_struct *work);
48 static void srcu_delay_timer(struct timer_list *t);
49 
50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51 #define spin_lock_rcu_node(p)					\
52 do {									\
53 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
54 	smp_mb__after_unlock_lock();					\
55 } while (0)
56 
57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58 
59 #define spin_lock_irq_rcu_node(p)					\
60 do {									\
61 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
62 	smp_mb__after_unlock_lock();					\
63 } while (0)
64 
65 #define spin_unlock_irq_rcu_node(p)					\
66 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67 
68 #define spin_lock_irqsave_rcu_node(p, flags)			\
69 do {									\
70 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
71 	smp_mb__after_unlock_lock();					\
72 } while (0)
73 
74 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
75 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
76 
77 /*
78  * Initialize SRCU combining tree.  Note that statically allocated
79  * srcu_struct structures might already have srcu_read_lock() and
80  * srcu_read_unlock() running against them.  So if the is_static parameter
81  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82  */
83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
84 {
85 	int cpu;
86 	int i;
87 	int level = 0;
88 	int levelspread[RCU_NUM_LVLS];
89 	struct srcu_data *sdp;
90 	struct srcu_node *snp;
91 	struct srcu_node *snp_first;
92 
93 	/* Work out the overall tree geometry. */
94 	ssp->level[0] = &ssp->node[0];
95 	for (i = 1; i < rcu_num_lvls; i++)
96 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
97 	rcu_init_levelspread(levelspread, num_rcu_lvl);
98 
99 	/* Each pass through this loop initializes one srcu_node structure. */
100 	srcu_for_each_node_breadth_first(ssp, snp) {
101 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
102 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
103 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
104 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
105 			snp->srcu_have_cbs[i] = 0;
106 			snp->srcu_data_have_cbs[i] = 0;
107 		}
108 		snp->srcu_gp_seq_needed_exp = 0;
109 		snp->grplo = -1;
110 		snp->grphi = -1;
111 		if (snp == &ssp->node[0]) {
112 			/* Root node, special case. */
113 			snp->srcu_parent = NULL;
114 			continue;
115 		}
116 
117 		/* Non-root node. */
118 		if (snp == ssp->level[level + 1])
119 			level++;
120 		snp->srcu_parent = ssp->level[level - 1] +
121 				   (snp - ssp->level[level]) /
122 				   levelspread[level - 1];
123 	}
124 
125 	/*
126 	 * Initialize the per-CPU srcu_data array, which feeds into the
127 	 * leaves of the srcu_node tree.
128 	 */
129 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
130 		     ARRAY_SIZE(sdp->srcu_unlock_count));
131 	level = rcu_num_lvls - 1;
132 	snp_first = ssp->level[level];
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 		sdp->mynode = &snp_first[cpu / levelspread[level]];
141 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
142 			if (snp->grplo < 0)
143 				snp->grplo = cpu;
144 			snp->grphi = cpu;
145 		}
146 		sdp->cpu = cpu;
147 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
148 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
149 		sdp->ssp = ssp;
150 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
151 		if (is_static)
152 			continue;
153 
154 		/* Dynamically allocated, better be no srcu_read_locks()! */
155 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
156 			sdp->srcu_lock_count[i] = 0;
157 			sdp->srcu_unlock_count[i] = 0;
158 		}
159 	}
160 }
161 
162 /*
163  * Initialize non-compile-time initialized fields, including the
164  * associated srcu_node and srcu_data structures.  The is_static
165  * parameter is passed through to init_srcu_struct_nodes(), and
166  * also tells us that ->sda has already been wired up to srcu_data.
167  */
168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
169 {
170 	mutex_init(&ssp->srcu_cb_mutex);
171 	mutex_init(&ssp->srcu_gp_mutex);
172 	ssp->srcu_idx = 0;
173 	ssp->srcu_gp_seq = 0;
174 	ssp->srcu_barrier_seq = 0;
175 	mutex_init(&ssp->srcu_barrier_mutex);
176 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
177 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
178 	if (!is_static)
179 		ssp->sda = alloc_percpu(struct srcu_data);
180 	init_srcu_struct_nodes(ssp, is_static);
181 	ssp->srcu_gp_seq_needed_exp = 0;
182 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
183 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
184 	return ssp->sda ? 0 : -ENOMEM;
185 }
186 
187 #ifdef CONFIG_DEBUG_LOCK_ALLOC
188 
189 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
190 		       struct lock_class_key *key)
191 {
192 	/* Don't re-initialize a lock while it is held. */
193 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
194 	lockdep_init_map(&ssp->dep_map, name, key, 0);
195 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
196 	return init_srcu_struct_fields(ssp, false);
197 }
198 EXPORT_SYMBOL_GPL(__init_srcu_struct);
199 
200 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
201 
202 /**
203  * init_srcu_struct - initialize a sleep-RCU structure
204  * @ssp: structure to initialize.
205  *
206  * Must invoke this on a given srcu_struct before passing that srcu_struct
207  * to any other function.  Each srcu_struct represents a separate domain
208  * of SRCU protection.
209  */
210 int init_srcu_struct(struct srcu_struct *ssp)
211 {
212 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
213 	return init_srcu_struct_fields(ssp, false);
214 }
215 EXPORT_SYMBOL_GPL(init_srcu_struct);
216 
217 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
218 
219 /*
220  * First-use initialization of statically allocated srcu_struct
221  * structure.  Wiring up the combining tree is more than can be
222  * done with compile-time initialization, so this check is added
223  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
224  * compile-time initialized, to resolve races involving multiple
225  * CPUs trying to garner first-use privileges.
226  */
227 static void check_init_srcu_struct(struct srcu_struct *ssp)
228 {
229 	unsigned long flags;
230 
231 	/* The smp_load_acquire() pairs with the smp_store_release(). */
232 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
233 		return; /* Already initialized. */
234 	spin_lock_irqsave_rcu_node(ssp, flags);
235 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
236 		spin_unlock_irqrestore_rcu_node(ssp, flags);
237 		return;
238 	}
239 	init_srcu_struct_fields(ssp, true);
240 	spin_unlock_irqrestore_rcu_node(ssp, flags);
241 }
242 
243 /*
244  * Returns approximate total of the readers' ->srcu_lock_count[] values
245  * for the rank of per-CPU counters specified by idx.
246  */
247 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
248 {
249 	int cpu;
250 	unsigned long sum = 0;
251 
252 	for_each_possible_cpu(cpu) {
253 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
254 
255 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
256 	}
257 	return sum;
258 }
259 
260 /*
261  * Returns approximate total of the readers' ->srcu_unlock_count[] values
262  * for the rank of per-CPU counters specified by idx.
263  */
264 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
265 {
266 	int cpu;
267 	unsigned long sum = 0;
268 
269 	for_each_possible_cpu(cpu) {
270 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
271 
272 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
273 	}
274 	return sum;
275 }
276 
277 /*
278  * Return true if the number of pre-existing readers is determined to
279  * be zero.
280  */
281 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
282 {
283 	unsigned long unlocks;
284 
285 	unlocks = srcu_readers_unlock_idx(ssp, idx);
286 
287 	/*
288 	 * Make sure that a lock is always counted if the corresponding
289 	 * unlock is counted. Needs to be a smp_mb() as the read side may
290 	 * contain a read from a variable that is written to before the
291 	 * synchronize_srcu() in the write side. In this case smp_mb()s
292 	 * A and B act like the store buffering pattern.
293 	 *
294 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
295 	 * after the synchronize_srcu() from being executed before the
296 	 * grace period ends.
297 	 */
298 	smp_mb(); /* A */
299 
300 	/*
301 	 * If the locks are the same as the unlocks, then there must have
302 	 * been no readers on this index at some time in between. This does
303 	 * not mean that there are no more readers, as one could have read
304 	 * the current index but not have incremented the lock counter yet.
305 	 *
306 	 * So suppose that the updater is preempted here for so long
307 	 * that more than ULONG_MAX non-nested readers come and go in
308 	 * the meantime.  It turns out that this cannot result in overflow
309 	 * because if a reader modifies its unlock count after we read it
310 	 * above, then that reader's next load of ->srcu_idx is guaranteed
311 	 * to get the new value, which will cause it to operate on the
312 	 * other bank of counters, where it cannot contribute to the
313 	 * overflow of these counters.  This means that there is a maximum
314 	 * of 2*NR_CPUS increments, which cannot overflow given current
315 	 * systems, especially not on 64-bit systems.
316 	 *
317 	 * OK, how about nesting?  This does impose a limit on nesting
318 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
319 	 * especially on 64-bit systems.
320 	 */
321 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
322 }
323 
324 /**
325  * srcu_readers_active - returns true if there are readers. and false
326  *                       otherwise
327  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
328  *
329  * Note that this is not an atomic primitive, and can therefore suffer
330  * severe errors when invoked on an active srcu_struct.  That said, it
331  * can be useful as an error check at cleanup time.
332  */
333 static bool srcu_readers_active(struct srcu_struct *ssp)
334 {
335 	int cpu;
336 	unsigned long sum = 0;
337 
338 	for_each_possible_cpu(cpu) {
339 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
340 
341 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
342 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
343 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
344 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
345 	}
346 	return sum;
347 }
348 
349 #define SRCU_INTERVAL		1
350 
351 /*
352  * Return grace-period delay, zero if there are expedited grace
353  * periods pending, SRCU_INTERVAL otherwise.
354  */
355 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
356 {
357 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
358 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
359 		return 0;
360 	return SRCU_INTERVAL;
361 }
362 
363 /**
364  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
365  * @ssp: structure to clean up.
366  *
367  * Must invoke this after you are finished using a given srcu_struct that
368  * was initialized via init_srcu_struct(), else you leak memory.
369  */
370 void cleanup_srcu_struct(struct srcu_struct *ssp)
371 {
372 	int cpu;
373 
374 	if (WARN_ON(!srcu_get_delay(ssp)))
375 		return; /* Just leak it! */
376 	if (WARN_ON(srcu_readers_active(ssp)))
377 		return; /* Just leak it! */
378 	flush_delayed_work(&ssp->work);
379 	for_each_possible_cpu(cpu) {
380 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
381 
382 		del_timer_sync(&sdp->delay_work);
383 		flush_work(&sdp->work);
384 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
385 			return; /* Forgot srcu_barrier(), so just leak it! */
386 	}
387 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
388 	    WARN_ON(srcu_readers_active(ssp))) {
389 		pr_info("%s: Active srcu_struct %p state: %d\n",
390 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
391 		return; /* Caller forgot to stop doing call_srcu()? */
392 	}
393 	free_percpu(ssp->sda);
394 	ssp->sda = NULL;
395 }
396 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
397 
398 /*
399  * Counts the new reader in the appropriate per-CPU element of the
400  * srcu_struct.
401  * Returns an index that must be passed to the matching srcu_read_unlock().
402  */
403 int __srcu_read_lock(struct srcu_struct *ssp)
404 {
405 	int idx;
406 
407 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
408 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
409 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
410 	return idx;
411 }
412 EXPORT_SYMBOL_GPL(__srcu_read_lock);
413 
414 /*
415  * Removes the count for the old reader from the appropriate per-CPU
416  * element of the srcu_struct.  Note that this may well be a different
417  * CPU than that which was incremented by the corresponding srcu_read_lock().
418  */
419 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
420 {
421 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
422 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
423 }
424 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
425 
426 /*
427  * We use an adaptive strategy for synchronize_srcu() and especially for
428  * synchronize_srcu_expedited().  We spin for a fixed time period
429  * (defined below) to allow SRCU readers to exit their read-side critical
430  * sections.  If there are still some readers after a few microseconds,
431  * we repeatedly block for 1-millisecond time periods.
432  */
433 #define SRCU_RETRY_CHECK_DELAY		5
434 
435 /*
436  * Start an SRCU grace period.
437  */
438 static void srcu_gp_start(struct srcu_struct *ssp)
439 {
440 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
441 	int state;
442 
443 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
444 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
445 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
446 	rcu_segcblist_advance(&sdp->srcu_cblist,
447 			      rcu_seq_current(&ssp->srcu_gp_seq));
448 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
449 				       rcu_seq_snap(&ssp->srcu_gp_seq));
450 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
451 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
452 	rcu_seq_start(&ssp->srcu_gp_seq);
453 	state = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
454 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
455 }
456 
457 
458 static void srcu_delay_timer(struct timer_list *t)
459 {
460 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
461 
462 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
463 }
464 
465 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
466 				       unsigned long delay)
467 {
468 	if (!delay) {
469 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
470 		return;
471 	}
472 
473 	timer_reduce(&sdp->delay_work, jiffies + delay);
474 }
475 
476 /*
477  * Schedule callback invocation for the specified srcu_data structure,
478  * if possible, on the corresponding CPU.
479  */
480 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
481 {
482 	srcu_queue_delayed_work_on(sdp, delay);
483 }
484 
485 /*
486  * Schedule callback invocation for all srcu_data structures associated
487  * with the specified srcu_node structure that have callbacks for the
488  * just-completed grace period, the one corresponding to idx.  If possible,
489  * schedule this invocation on the corresponding CPUs.
490  */
491 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
492 				  unsigned long mask, unsigned long delay)
493 {
494 	int cpu;
495 
496 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
497 		if (!(mask & (1 << (cpu - snp->grplo))))
498 			continue;
499 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
500 	}
501 }
502 
503 /*
504  * Note the end of an SRCU grace period.  Initiates callback invocation
505  * and starts a new grace period if needed.
506  *
507  * The ->srcu_cb_mutex acquisition does not protect any data, but
508  * instead prevents more than one grace period from starting while we
509  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
510  * array to have a finite number of elements.
511  */
512 static void srcu_gp_end(struct srcu_struct *ssp)
513 {
514 	unsigned long cbdelay;
515 	bool cbs;
516 	bool last_lvl;
517 	int cpu;
518 	unsigned long flags;
519 	unsigned long gpseq;
520 	int idx;
521 	unsigned long mask;
522 	struct srcu_data *sdp;
523 	struct srcu_node *snp;
524 
525 	/* Prevent more than one additional grace period. */
526 	mutex_lock(&ssp->srcu_cb_mutex);
527 
528 	/* End the current grace period. */
529 	spin_lock_irq_rcu_node(ssp);
530 	idx = rcu_seq_state(ssp->srcu_gp_seq);
531 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
532 	cbdelay = srcu_get_delay(ssp);
533 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
534 	rcu_seq_end(&ssp->srcu_gp_seq);
535 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
536 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
537 		ssp->srcu_gp_seq_needed_exp = gpseq;
538 	spin_unlock_irq_rcu_node(ssp);
539 	mutex_unlock(&ssp->srcu_gp_mutex);
540 	/* A new grace period can start at this point.  But only one. */
541 
542 	/* Initiate callback invocation as needed. */
543 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
544 	srcu_for_each_node_breadth_first(ssp, snp) {
545 		spin_lock_irq_rcu_node(snp);
546 		cbs = false;
547 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
548 		if (last_lvl)
549 			cbs = snp->srcu_have_cbs[idx] == gpseq;
550 		snp->srcu_have_cbs[idx] = gpseq;
551 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
552 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
553 			snp->srcu_gp_seq_needed_exp = gpseq;
554 		mask = snp->srcu_data_have_cbs[idx];
555 		snp->srcu_data_have_cbs[idx] = 0;
556 		spin_unlock_irq_rcu_node(snp);
557 		if (cbs)
558 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
559 
560 		/* Occasionally prevent srcu_data counter wrap. */
561 		if (!(gpseq & counter_wrap_check) && last_lvl)
562 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
563 				sdp = per_cpu_ptr(ssp->sda, cpu);
564 				spin_lock_irqsave_rcu_node(sdp, flags);
565 				if (ULONG_CMP_GE(gpseq,
566 						 sdp->srcu_gp_seq_needed + 100))
567 					sdp->srcu_gp_seq_needed = gpseq;
568 				if (ULONG_CMP_GE(gpseq,
569 						 sdp->srcu_gp_seq_needed_exp + 100))
570 					sdp->srcu_gp_seq_needed_exp = gpseq;
571 				spin_unlock_irqrestore_rcu_node(sdp, flags);
572 			}
573 	}
574 
575 	/* Callback initiation done, allow grace periods after next. */
576 	mutex_unlock(&ssp->srcu_cb_mutex);
577 
578 	/* Start a new grace period if needed. */
579 	spin_lock_irq_rcu_node(ssp);
580 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
581 	if (!rcu_seq_state(gpseq) &&
582 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
583 		srcu_gp_start(ssp);
584 		spin_unlock_irq_rcu_node(ssp);
585 		srcu_reschedule(ssp, 0);
586 	} else {
587 		spin_unlock_irq_rcu_node(ssp);
588 	}
589 }
590 
591 /*
592  * Funnel-locking scheme to scalably mediate many concurrent expedited
593  * grace-period requests.  This function is invoked for the first known
594  * expedited request for a grace period that has already been requested,
595  * but without expediting.  To start a completely new grace period,
596  * whether expedited or not, use srcu_funnel_gp_start() instead.
597  */
598 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
599 				  unsigned long s)
600 {
601 	unsigned long flags;
602 
603 	for (; snp != NULL; snp = snp->srcu_parent) {
604 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
605 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
606 			return;
607 		spin_lock_irqsave_rcu_node(snp, flags);
608 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
609 			spin_unlock_irqrestore_rcu_node(snp, flags);
610 			return;
611 		}
612 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
613 		spin_unlock_irqrestore_rcu_node(snp, flags);
614 	}
615 	spin_lock_irqsave_rcu_node(ssp, flags);
616 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
617 		ssp->srcu_gp_seq_needed_exp = s;
618 	spin_unlock_irqrestore_rcu_node(ssp, flags);
619 }
620 
621 /*
622  * Funnel-locking scheme to scalably mediate many concurrent grace-period
623  * requests.  The winner has to do the work of actually starting grace
624  * period s.  Losers must either ensure that their desired grace-period
625  * number is recorded on at least their leaf srcu_node structure, or they
626  * must take steps to invoke their own callbacks.
627  *
628  * Note that this function also does the work of srcu_funnel_exp_start(),
629  * in some cases by directly invoking it.
630  */
631 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
632 				 unsigned long s, bool do_norm)
633 {
634 	unsigned long flags;
635 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
636 	struct srcu_node *snp = sdp->mynode;
637 	unsigned long snp_seq;
638 
639 	/* Each pass through the loop does one level of the srcu_node tree. */
640 	for (; snp != NULL; snp = snp->srcu_parent) {
641 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
642 			return; /* GP already done and CBs recorded. */
643 		spin_lock_irqsave_rcu_node(snp, flags);
644 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
645 			snp_seq = snp->srcu_have_cbs[idx];
646 			if (snp == sdp->mynode && snp_seq == s)
647 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
648 			spin_unlock_irqrestore_rcu_node(snp, flags);
649 			if (snp == sdp->mynode && snp_seq != s) {
650 				srcu_schedule_cbs_sdp(sdp, do_norm
651 							   ? SRCU_INTERVAL
652 							   : 0);
653 				return;
654 			}
655 			if (!do_norm)
656 				srcu_funnel_exp_start(ssp, snp, s);
657 			return;
658 		}
659 		snp->srcu_have_cbs[idx] = s;
660 		if (snp == sdp->mynode)
661 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
662 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
663 			snp->srcu_gp_seq_needed_exp = s;
664 		spin_unlock_irqrestore_rcu_node(snp, flags);
665 	}
666 
667 	/* Top of tree, must ensure the grace period will be started. */
668 	spin_lock_irqsave_rcu_node(ssp, flags);
669 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
670 		/*
671 		 * Record need for grace period s.  Pair with load
672 		 * acquire setting up for initialization.
673 		 */
674 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
675 	}
676 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
677 		ssp->srcu_gp_seq_needed_exp = s;
678 
679 	/* If grace period not already done and none in progress, start it. */
680 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
681 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
682 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
683 		srcu_gp_start(ssp);
684 		if (likely(srcu_init_done))
685 			queue_delayed_work(rcu_gp_wq, &ssp->work,
686 					   srcu_get_delay(ssp));
687 		else if (list_empty(&ssp->work.work.entry))
688 			list_add(&ssp->work.work.entry, &srcu_boot_list);
689 	}
690 	spin_unlock_irqrestore_rcu_node(ssp, flags);
691 }
692 
693 /*
694  * Wait until all readers counted by array index idx complete, but
695  * loop an additional time if there is an expedited grace period pending.
696  * The caller must ensure that ->srcu_idx is not changed while checking.
697  */
698 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
699 {
700 	for (;;) {
701 		if (srcu_readers_active_idx_check(ssp, idx))
702 			return true;
703 		if (--trycount + !srcu_get_delay(ssp) <= 0)
704 			return false;
705 		udelay(SRCU_RETRY_CHECK_DELAY);
706 	}
707 }
708 
709 /*
710  * Increment the ->srcu_idx counter so that future SRCU readers will
711  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
712  * us to wait for pre-existing readers in a starvation-free manner.
713  */
714 static void srcu_flip(struct srcu_struct *ssp)
715 {
716 	/*
717 	 * Ensure that if this updater saw a given reader's increment
718 	 * from __srcu_read_lock(), that reader was using an old value
719 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
720 	 * new value of ->srcu_idx, this updater's earlier scans cannot
721 	 * have seen that reader's increments (which is OK, because this
722 	 * grace period need not wait on that reader).
723 	 */
724 	smp_mb(); /* E */  /* Pairs with B and C. */
725 
726 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
727 
728 	/*
729 	 * Ensure that if the updater misses an __srcu_read_unlock()
730 	 * increment, that task's next __srcu_read_lock() will see the
731 	 * above counter update.  Note that both this memory barrier
732 	 * and the one in srcu_readers_active_idx_check() provide the
733 	 * guarantee for __srcu_read_lock().
734 	 */
735 	smp_mb(); /* D */  /* Pairs with C. */
736 }
737 
738 /*
739  * If SRCU is likely idle, return true, otherwise return false.
740  *
741  * Note that it is OK for several current from-idle requests for a new
742  * grace period from idle to specify expediting because they will all end
743  * up requesting the same grace period anyhow.  So no loss.
744  *
745  * Note also that if any CPU (including the current one) is still invoking
746  * callbacks, this function will nevertheless say "idle".  This is not
747  * ideal, but the overhead of checking all CPUs' callback lists is even
748  * less ideal, especially on large systems.  Furthermore, the wakeup
749  * can happen before the callback is fully removed, so we have no choice
750  * but to accept this type of error.
751  *
752  * This function is also subject to counter-wrap errors, but let's face
753  * it, if this function was preempted for enough time for the counters
754  * to wrap, it really doesn't matter whether or not we expedite the grace
755  * period.  The extra overhead of a needlessly expedited grace period is
756  * negligible when amoritized over that time period, and the extra latency
757  * of a needlessly non-expedited grace period is similarly negligible.
758  */
759 static bool srcu_might_be_idle(struct srcu_struct *ssp)
760 {
761 	unsigned long curseq;
762 	unsigned long flags;
763 	struct srcu_data *sdp;
764 	unsigned long t;
765 	unsigned long tlast;
766 
767 	/* If the local srcu_data structure has callbacks, not idle.  */
768 	local_irq_save(flags);
769 	sdp = this_cpu_ptr(ssp->sda);
770 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
771 		local_irq_restore(flags);
772 		return false; /* Callbacks already present, so not idle. */
773 	}
774 	local_irq_restore(flags);
775 
776 	/*
777 	 * No local callbacks, so probabalistically probe global state.
778 	 * Exact information would require acquiring locks, which would
779 	 * kill scalability, hence the probabalistic nature of the probe.
780 	 */
781 
782 	/* First, see if enough time has passed since the last GP. */
783 	t = ktime_get_mono_fast_ns();
784 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
785 	if (exp_holdoff == 0 ||
786 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
787 		return false; /* Too soon after last GP. */
788 
789 	/* Next, check for probable idleness. */
790 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
791 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
792 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
793 		return false; /* Grace period in progress, so not idle. */
794 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
795 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
796 		return false; /* GP # changed, so not idle. */
797 	return true; /* With reasonable probability, idle! */
798 }
799 
800 /*
801  * SRCU callback function to leak a callback.
802  */
803 static void srcu_leak_callback(struct rcu_head *rhp)
804 {
805 }
806 
807 /*
808  * Enqueue an SRCU callback on the srcu_data structure associated with
809  * the current CPU and the specified srcu_struct structure, initiating
810  * grace-period processing if it is not already running.
811  *
812  * Note that all CPUs must agree that the grace period extended beyond
813  * all pre-existing SRCU read-side critical section.  On systems with
814  * more than one CPU, this means that when "func()" is invoked, each CPU
815  * is guaranteed to have executed a full memory barrier since the end of
816  * its last corresponding SRCU read-side critical section whose beginning
817  * preceded the call to call_srcu().  It also means that each CPU executing
818  * an SRCU read-side critical section that continues beyond the start of
819  * "func()" must have executed a memory barrier after the call_srcu()
820  * but before the beginning of that SRCU read-side critical section.
821  * Note that these guarantees include CPUs that are offline, idle, or
822  * executing in user mode, as well as CPUs that are executing in the kernel.
823  *
824  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
825  * resulting SRCU callback function "func()", then both CPU A and CPU
826  * B are guaranteed to execute a full memory barrier during the time
827  * interval between the call to call_srcu() and the invocation of "func()".
828  * This guarantee applies even if CPU A and CPU B are the same CPU (but
829  * again only if the system has more than one CPU).
830  *
831  * Of course, these guarantees apply only for invocations of call_srcu(),
832  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
833  * srcu_struct structure.
834  */
835 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
836 			rcu_callback_t func, bool do_norm)
837 {
838 	unsigned long flags;
839 	int idx;
840 	bool needexp = false;
841 	bool needgp = false;
842 	unsigned long s;
843 	struct srcu_data *sdp;
844 
845 	check_init_srcu_struct(ssp);
846 	if (debug_rcu_head_queue(rhp)) {
847 		/* Probable double call_srcu(), so leak the callback. */
848 		WRITE_ONCE(rhp->func, srcu_leak_callback);
849 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
850 		return;
851 	}
852 	rhp->func = func;
853 	idx = srcu_read_lock(ssp);
854 	local_irq_save(flags);
855 	sdp = this_cpu_ptr(ssp->sda);
856 	spin_lock_rcu_node(sdp);
857 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
858 	rcu_segcblist_advance(&sdp->srcu_cblist,
859 			      rcu_seq_current(&ssp->srcu_gp_seq));
860 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
861 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
862 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
863 		sdp->srcu_gp_seq_needed = s;
864 		needgp = true;
865 	}
866 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
867 		sdp->srcu_gp_seq_needed_exp = s;
868 		needexp = true;
869 	}
870 	spin_unlock_irqrestore_rcu_node(sdp, flags);
871 	if (needgp)
872 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
873 	else if (needexp)
874 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
875 	srcu_read_unlock(ssp, idx);
876 }
877 
878 /**
879  * call_srcu() - Queue a callback for invocation after an SRCU grace period
880  * @ssp: srcu_struct in queue the callback
881  * @rhp: structure to be used for queueing the SRCU callback.
882  * @func: function to be invoked after the SRCU grace period
883  *
884  * The callback function will be invoked some time after a full SRCU
885  * grace period elapses, in other words after all pre-existing SRCU
886  * read-side critical sections have completed.  However, the callback
887  * function might well execute concurrently with other SRCU read-side
888  * critical sections that started after call_srcu() was invoked.  SRCU
889  * read-side critical sections are delimited by srcu_read_lock() and
890  * srcu_read_unlock(), and may be nested.
891  *
892  * The callback will be invoked from process context, but must nevertheless
893  * be fast and must not block.
894  */
895 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
896 	       rcu_callback_t func)
897 {
898 	__call_srcu(ssp, rhp, func, true);
899 }
900 EXPORT_SYMBOL_GPL(call_srcu);
901 
902 /*
903  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
904  */
905 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
906 {
907 	struct rcu_synchronize rcu;
908 
909 	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
910 			 lock_is_held(&rcu_bh_lock_map) ||
911 			 lock_is_held(&rcu_lock_map) ||
912 			 lock_is_held(&rcu_sched_lock_map),
913 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
914 
915 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
916 		return;
917 	might_sleep();
918 	check_init_srcu_struct(ssp);
919 	init_completion(&rcu.completion);
920 	init_rcu_head_on_stack(&rcu.head);
921 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
922 	wait_for_completion(&rcu.completion);
923 	destroy_rcu_head_on_stack(&rcu.head);
924 
925 	/*
926 	 * Make sure that later code is ordered after the SRCU grace
927 	 * period.  This pairs with the spin_lock_irq_rcu_node()
928 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
929 	 * because the current CPU might have been totally uninvolved with
930 	 * (and thus unordered against) that grace period.
931 	 */
932 	smp_mb();
933 }
934 
935 /**
936  * synchronize_srcu_expedited - Brute-force SRCU grace period
937  * @ssp: srcu_struct with which to synchronize.
938  *
939  * Wait for an SRCU grace period to elapse, but be more aggressive about
940  * spinning rather than blocking when waiting.
941  *
942  * Note that synchronize_srcu_expedited() has the same deadlock and
943  * memory-ordering properties as does synchronize_srcu().
944  */
945 void synchronize_srcu_expedited(struct srcu_struct *ssp)
946 {
947 	__synchronize_srcu(ssp, rcu_gp_is_normal());
948 }
949 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
950 
951 /**
952  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
953  * @ssp: srcu_struct with which to synchronize.
954  *
955  * Wait for the count to drain to zero of both indexes. To avoid the
956  * possible starvation of synchronize_srcu(), it waits for the count of
957  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
958  * and then flip the srcu_idx and wait for the count of the other index.
959  *
960  * Can block; must be called from process context.
961  *
962  * Note that it is illegal to call synchronize_srcu() from the corresponding
963  * SRCU read-side critical section; doing so will result in deadlock.
964  * However, it is perfectly legal to call synchronize_srcu() on one
965  * srcu_struct from some other srcu_struct's read-side critical section,
966  * as long as the resulting graph of srcu_structs is acyclic.
967  *
968  * There are memory-ordering constraints implied by synchronize_srcu().
969  * On systems with more than one CPU, when synchronize_srcu() returns,
970  * each CPU is guaranteed to have executed a full memory barrier since
971  * the end of its last corresponding SRCU read-side critical section
972  * whose beginning preceded the call to synchronize_srcu().  In addition,
973  * each CPU having an SRCU read-side critical section that extends beyond
974  * the return from synchronize_srcu() is guaranteed to have executed a
975  * full memory barrier after the beginning of synchronize_srcu() and before
976  * the beginning of that SRCU read-side critical section.  Note that these
977  * guarantees include CPUs that are offline, idle, or executing in user mode,
978  * as well as CPUs that are executing in the kernel.
979  *
980  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
981  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
982  * to have executed a full memory barrier during the execution of
983  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
984  * are the same CPU, but again only if the system has more than one CPU.
985  *
986  * Of course, these memory-ordering guarantees apply only when
987  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
988  * passed the same srcu_struct structure.
989  *
990  * If SRCU is likely idle, expedite the first request.  This semantic
991  * was provided by Classic SRCU, and is relied upon by its users, so TREE
992  * SRCU must also provide it.  Note that detecting idleness is heuristic
993  * and subject to both false positives and negatives.
994  */
995 void synchronize_srcu(struct srcu_struct *ssp)
996 {
997 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
998 		synchronize_srcu_expedited(ssp);
999 	else
1000 		__synchronize_srcu(ssp, true);
1001 }
1002 EXPORT_SYMBOL_GPL(synchronize_srcu);
1003 
1004 /*
1005  * Callback function for srcu_barrier() use.
1006  */
1007 static void srcu_barrier_cb(struct rcu_head *rhp)
1008 {
1009 	struct srcu_data *sdp;
1010 	struct srcu_struct *ssp;
1011 
1012 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1013 	ssp = sdp->ssp;
1014 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1015 		complete(&ssp->srcu_barrier_completion);
1016 }
1017 
1018 /**
1019  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1020  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1021  */
1022 void srcu_barrier(struct srcu_struct *ssp)
1023 {
1024 	int cpu;
1025 	struct srcu_data *sdp;
1026 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1027 
1028 	check_init_srcu_struct(ssp);
1029 	mutex_lock(&ssp->srcu_barrier_mutex);
1030 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1031 		smp_mb(); /* Force ordering following return. */
1032 		mutex_unlock(&ssp->srcu_barrier_mutex);
1033 		return; /* Someone else did our work for us. */
1034 	}
1035 	rcu_seq_start(&ssp->srcu_barrier_seq);
1036 	init_completion(&ssp->srcu_barrier_completion);
1037 
1038 	/* Initial count prevents reaching zero until all CBs are posted. */
1039 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1040 
1041 	/*
1042 	 * Each pass through this loop enqueues a callback, but only
1043 	 * on CPUs already having callbacks enqueued.  Note that if
1044 	 * a CPU already has callbacks enqueue, it must have already
1045 	 * registered the need for a future grace period, so all we
1046 	 * need do is enqueue a callback that will use the same
1047 	 * grace period as the last callback already in the queue.
1048 	 */
1049 	for_each_possible_cpu(cpu) {
1050 		sdp = per_cpu_ptr(ssp->sda, cpu);
1051 		spin_lock_irq_rcu_node(sdp);
1052 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1053 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1054 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1055 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1056 					   &sdp->srcu_barrier_head)) {
1057 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1058 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1059 		}
1060 		spin_unlock_irq_rcu_node(sdp);
1061 	}
1062 
1063 	/* Remove the initial count, at which point reaching zero can happen. */
1064 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1065 		complete(&ssp->srcu_barrier_completion);
1066 	wait_for_completion(&ssp->srcu_barrier_completion);
1067 
1068 	rcu_seq_end(&ssp->srcu_barrier_seq);
1069 	mutex_unlock(&ssp->srcu_barrier_mutex);
1070 }
1071 EXPORT_SYMBOL_GPL(srcu_barrier);
1072 
1073 /**
1074  * srcu_batches_completed - return batches completed.
1075  * @ssp: srcu_struct on which to report batch completion.
1076  *
1077  * Report the number of batches, correlated with, but not necessarily
1078  * precisely the same as, the number of grace periods that have elapsed.
1079  */
1080 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1081 {
1082 	return ssp->srcu_idx;
1083 }
1084 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1085 
1086 /*
1087  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1088  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1089  * completed in that state.
1090  */
1091 static void srcu_advance_state(struct srcu_struct *ssp)
1092 {
1093 	int idx;
1094 
1095 	mutex_lock(&ssp->srcu_gp_mutex);
1096 
1097 	/*
1098 	 * Because readers might be delayed for an extended period after
1099 	 * fetching ->srcu_idx for their index, at any point in time there
1100 	 * might well be readers using both idx=0 and idx=1.  We therefore
1101 	 * need to wait for readers to clear from both index values before
1102 	 * invoking a callback.
1103 	 *
1104 	 * The load-acquire ensures that we see the accesses performed
1105 	 * by the prior grace period.
1106 	 */
1107 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1108 	if (idx == SRCU_STATE_IDLE) {
1109 		spin_lock_irq_rcu_node(ssp);
1110 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1111 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1112 			spin_unlock_irq_rcu_node(ssp);
1113 			mutex_unlock(&ssp->srcu_gp_mutex);
1114 			return;
1115 		}
1116 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1117 		if (idx == SRCU_STATE_IDLE)
1118 			srcu_gp_start(ssp);
1119 		spin_unlock_irq_rcu_node(ssp);
1120 		if (idx != SRCU_STATE_IDLE) {
1121 			mutex_unlock(&ssp->srcu_gp_mutex);
1122 			return; /* Someone else started the grace period. */
1123 		}
1124 	}
1125 
1126 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1127 		idx = 1 ^ (ssp->srcu_idx & 1);
1128 		if (!try_check_zero(ssp, idx, 1)) {
1129 			mutex_unlock(&ssp->srcu_gp_mutex);
1130 			return; /* readers present, retry later. */
1131 		}
1132 		srcu_flip(ssp);
1133 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1134 	}
1135 
1136 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1137 
1138 		/*
1139 		 * SRCU read-side critical sections are normally short,
1140 		 * so check at least twice in quick succession after a flip.
1141 		 */
1142 		idx = 1 ^ (ssp->srcu_idx & 1);
1143 		if (!try_check_zero(ssp, idx, 2)) {
1144 			mutex_unlock(&ssp->srcu_gp_mutex);
1145 			return; /* readers present, retry later. */
1146 		}
1147 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1148 	}
1149 }
1150 
1151 /*
1152  * Invoke a limited number of SRCU callbacks that have passed through
1153  * their grace period.  If there are more to do, SRCU will reschedule
1154  * the workqueue.  Note that needed memory barriers have been executed
1155  * in this task's context by srcu_readers_active_idx_check().
1156  */
1157 static void srcu_invoke_callbacks(struct work_struct *work)
1158 {
1159 	bool more;
1160 	struct rcu_cblist ready_cbs;
1161 	struct rcu_head *rhp;
1162 	struct srcu_data *sdp;
1163 	struct srcu_struct *ssp;
1164 
1165 	sdp = container_of(work, struct srcu_data, work);
1166 
1167 	ssp = sdp->ssp;
1168 	rcu_cblist_init(&ready_cbs);
1169 	spin_lock_irq_rcu_node(sdp);
1170 	rcu_segcblist_advance(&sdp->srcu_cblist,
1171 			      rcu_seq_current(&ssp->srcu_gp_seq));
1172 	if (sdp->srcu_cblist_invoking ||
1173 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1174 		spin_unlock_irq_rcu_node(sdp);
1175 		return;  /* Someone else on the job or nothing to do. */
1176 	}
1177 
1178 	/* We are on the job!  Extract and invoke ready callbacks. */
1179 	sdp->srcu_cblist_invoking = true;
1180 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1181 	spin_unlock_irq_rcu_node(sdp);
1182 	rhp = rcu_cblist_dequeue(&ready_cbs);
1183 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1184 		debug_rcu_head_unqueue(rhp);
1185 		local_bh_disable();
1186 		rhp->func(rhp);
1187 		local_bh_enable();
1188 	}
1189 
1190 	/*
1191 	 * Update counts, accelerate new callbacks, and if needed,
1192 	 * schedule another round of callback invocation.
1193 	 */
1194 	spin_lock_irq_rcu_node(sdp);
1195 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1196 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1197 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1198 	sdp->srcu_cblist_invoking = false;
1199 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1200 	spin_unlock_irq_rcu_node(sdp);
1201 	if (more)
1202 		srcu_schedule_cbs_sdp(sdp, 0);
1203 }
1204 
1205 /*
1206  * Finished one round of SRCU grace period.  Start another if there are
1207  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1208  */
1209 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1210 {
1211 	bool pushgp = true;
1212 
1213 	spin_lock_irq_rcu_node(ssp);
1214 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1215 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1216 			/* All requests fulfilled, time to go idle. */
1217 			pushgp = false;
1218 		}
1219 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1220 		/* Outstanding request and no GP.  Start one. */
1221 		srcu_gp_start(ssp);
1222 	}
1223 	spin_unlock_irq_rcu_node(ssp);
1224 
1225 	if (pushgp)
1226 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1227 }
1228 
1229 /*
1230  * This is the work-queue function that handles SRCU grace periods.
1231  */
1232 static void process_srcu(struct work_struct *work)
1233 {
1234 	struct srcu_struct *ssp;
1235 
1236 	ssp = container_of(work, struct srcu_struct, work.work);
1237 
1238 	srcu_advance_state(ssp);
1239 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1240 }
1241 
1242 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1243 			     struct srcu_struct *ssp, int *flags,
1244 			     unsigned long *gp_seq)
1245 {
1246 	if (test_type != SRCU_FLAVOR)
1247 		return;
1248 	*flags = 0;
1249 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1250 }
1251 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1252 
1253 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1254 {
1255 	int cpu;
1256 	int idx;
1257 	unsigned long s0 = 0, s1 = 0;
1258 
1259 	idx = ssp->srcu_idx & 0x1;
1260 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1261 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1262 	for_each_possible_cpu(cpu) {
1263 		unsigned long l0, l1;
1264 		unsigned long u0, u1;
1265 		long c0, c1;
1266 		struct srcu_data *sdp;
1267 
1268 		sdp = per_cpu_ptr(ssp->sda, cpu);
1269 		u0 = sdp->srcu_unlock_count[!idx];
1270 		u1 = sdp->srcu_unlock_count[idx];
1271 
1272 		/*
1273 		 * Make sure that a lock is always counted if the corresponding
1274 		 * unlock is counted.
1275 		 */
1276 		smp_rmb();
1277 
1278 		l0 = sdp->srcu_lock_count[!idx];
1279 		l1 = sdp->srcu_lock_count[idx];
1280 
1281 		c0 = l0 - u0;
1282 		c1 = l1 - u1;
1283 		pr_cont(" %d(%ld,%ld %c)",
1284 			cpu, c0, c1,
1285 			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1286 		s0 += c0;
1287 		s1 += c1;
1288 	}
1289 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1290 }
1291 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1292 
1293 static int __init srcu_bootup_announce(void)
1294 {
1295 	pr_info("Hierarchical SRCU implementation.\n");
1296 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1297 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1298 	return 0;
1299 }
1300 early_initcall(srcu_bootup_announce);
1301 
1302 void __init srcu_init(void)
1303 {
1304 	struct srcu_struct *ssp;
1305 
1306 	srcu_init_done = true;
1307 	while (!list_empty(&srcu_boot_list)) {
1308 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1309 				      work.work.entry);
1310 		check_init_srcu_struct(ssp);
1311 		list_del_init(&ssp->work.work.entry);
1312 		queue_work(rcu_gp_wq, &ssp->work.work);
1313 	}
1314 }
1315 
1316 #ifdef CONFIG_MODULES
1317 
1318 /* Initialize any global-scope srcu_struct structures used by this module. */
1319 static int srcu_module_coming(struct module *mod)
1320 {
1321 	int i;
1322 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1323 	int ret;
1324 
1325 	for (i = 0; i < mod->num_srcu_structs; i++) {
1326 		ret = init_srcu_struct(*(sspp++));
1327 		if (WARN_ON_ONCE(ret))
1328 			return ret;
1329 	}
1330 	return 0;
1331 }
1332 
1333 /* Clean up any global-scope srcu_struct structures used by this module. */
1334 static void srcu_module_going(struct module *mod)
1335 {
1336 	int i;
1337 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1338 
1339 	for (i = 0; i < mod->num_srcu_structs; i++)
1340 		cleanup_srcu_struct(*(sspp++));
1341 }
1342 
1343 /* Handle one module, either coming or going. */
1344 static int srcu_module_notify(struct notifier_block *self,
1345 			      unsigned long val, void *data)
1346 {
1347 	struct module *mod = data;
1348 	int ret = 0;
1349 
1350 	switch (val) {
1351 	case MODULE_STATE_COMING:
1352 		ret = srcu_module_coming(mod);
1353 		break;
1354 	case MODULE_STATE_GOING:
1355 		srcu_module_going(mod);
1356 		break;
1357 	default:
1358 		break;
1359 	}
1360 	return ret;
1361 }
1362 
1363 static struct notifier_block srcu_module_nb = {
1364 	.notifier_call = srcu_module_notify,
1365 	.priority = 0,
1366 };
1367 
1368 static __init int init_srcu_module_notifier(void)
1369 {
1370 	int ret;
1371 
1372 	ret = register_module_notifier(&srcu_module_nb);
1373 	if (ret)
1374 		pr_warn("Failed to register srcu module notifier\n");
1375 	return ret;
1376 }
1377 late_initcall(init_srcu_module_notifier);
1378 
1379 #endif /* #ifdef CONFIG_MODULES */
1380