xref: /openbmc/linux/kernel/rcu/srcutree.c (revision e3a6ab25)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 
30 #include "rcu.h"
31 #include "rcu_segcblist.h"
32 
33 /* Holdoff in nanoseconds for auto-expediting. */
34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
36 module_param(exp_holdoff, ulong, 0444);
37 
38 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
39 static ulong counter_wrap_check = (ULONG_MAX >> 2);
40 module_param(counter_wrap_check, ulong, 0444);
41 
42 /*
43  * Control conversion to SRCU_SIZE_BIG:
44  *    0: Don't convert at all.
45  *    1: Convert at init_srcu_struct() time.
46  *    2: Convert when rcutorture invokes srcu_torture_stats_print().
47  *    3: Decide at boot time based on system shape (default).
48  * 0x1x: Convert when excessive contention encountered.
49  */
50 #define SRCU_SIZING_NONE	0
51 #define SRCU_SIZING_INIT	1
52 #define SRCU_SIZING_TORTURE	2
53 #define SRCU_SIZING_AUTO	3
54 #define SRCU_SIZING_CONTEND	0x10
55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x)
56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE))
57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT))
58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE))
59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND)
60 static int convert_to_big = SRCU_SIZING_AUTO;
61 module_param(convert_to_big, int, 0444);
62 
63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */
64 static int big_cpu_lim __read_mostly = 128;
65 module_param(big_cpu_lim, int, 0444);
66 
67 /* Contention events per jiffy to initiate transition to big. */
68 static int small_contention_lim __read_mostly = 100;
69 module_param(small_contention_lim, int, 0444);
70 
71 /* Early-boot callback-management, so early that no lock is required! */
72 static LIST_HEAD(srcu_boot_list);
73 static bool __read_mostly srcu_init_done;
74 
75 static void srcu_invoke_callbacks(struct work_struct *work);
76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
77 static void process_srcu(struct work_struct *work);
78 static void srcu_delay_timer(struct timer_list *t);
79 
80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
81 #define spin_lock_rcu_node(p)							\
82 do {										\
83 	spin_lock(&ACCESS_PRIVATE(p, lock));					\
84 	smp_mb__after_unlock_lock();						\
85 } while (0)
86 
87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
88 
89 #define spin_lock_irq_rcu_node(p)						\
90 do {										\
91 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));				\
92 	smp_mb__after_unlock_lock();						\
93 } while (0)
94 
95 #define spin_unlock_irq_rcu_node(p)						\
96 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
97 
98 #define spin_lock_irqsave_rcu_node(p, flags)					\
99 do {										\
100 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);			\
101 	smp_mb__after_unlock_lock();						\
102 } while (0)
103 
104 #define spin_trylock_irqsave_rcu_node(p, flags)					\
105 ({										\
106 	bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
107 										\
108 	if (___locked)								\
109 		smp_mb__after_unlock_lock();					\
110 	___locked;								\
111 })
112 
113 #define spin_unlock_irqrestore_rcu_node(p, flags)				\
114 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)			\
115 
116 /*
117  * Initialize SRCU per-CPU data.  Note that statically allocated
118  * srcu_struct structures might already have srcu_read_lock() and
119  * srcu_read_unlock() running against them.  So if the is_static parameter
120  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
121  */
122 static void init_srcu_struct_data(struct srcu_struct *ssp)
123 {
124 	int cpu;
125 	struct srcu_data *sdp;
126 
127 	/*
128 	 * Initialize the per-CPU srcu_data array, which feeds into the
129 	 * leaves of the srcu_node tree.
130 	 */
131 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
132 		     ARRAY_SIZE(sdp->srcu_unlock_count));
133 	for_each_possible_cpu(cpu) {
134 		sdp = per_cpu_ptr(ssp->sda, cpu);
135 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
136 		rcu_segcblist_init(&sdp->srcu_cblist);
137 		sdp->srcu_cblist_invoking = false;
138 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
140 		sdp->mynode = NULL;
141 		sdp->cpu = cpu;
142 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
143 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
144 		sdp->ssp = ssp;
145 	}
146 }
147 
148 /* Invalid seq state, used during snp node initialization */
149 #define SRCU_SNP_INIT_SEQ		0x2
150 
151 /*
152  * Check whether sequence number corresponding to snp node,
153  * is invalid.
154  */
155 static inline bool srcu_invl_snp_seq(unsigned long s)
156 {
157 	return s == SRCU_SNP_INIT_SEQ;
158 }
159 
160 /*
161  * Allocated and initialize SRCU combining tree.  Returns @true if
162  * allocation succeeded and @false otherwise.
163  */
164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags)
165 {
166 	int cpu;
167 	int i;
168 	int level = 0;
169 	int levelspread[RCU_NUM_LVLS];
170 	struct srcu_data *sdp;
171 	struct srcu_node *snp;
172 	struct srcu_node *snp_first;
173 
174 	/* Initialize geometry if it has not already been initialized. */
175 	rcu_init_geometry();
176 	ssp->srcu_sup->node = kcalloc(rcu_num_nodes, sizeof(*ssp->srcu_sup->node), gfp_flags);
177 	if (!ssp->srcu_sup->node)
178 		return false;
179 
180 	/* Work out the overall tree geometry. */
181 	ssp->srcu_sup->level[0] = &ssp->srcu_sup->node[0];
182 	for (i = 1; i < rcu_num_lvls; i++)
183 		ssp->srcu_sup->level[i] = ssp->srcu_sup->level[i - 1] + num_rcu_lvl[i - 1];
184 	rcu_init_levelspread(levelspread, num_rcu_lvl);
185 
186 	/* Each pass through this loop initializes one srcu_node structure. */
187 	srcu_for_each_node_breadth_first(ssp, snp) {
188 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
189 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
190 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
191 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
192 			snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ;
193 			snp->srcu_data_have_cbs[i] = 0;
194 		}
195 		snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ;
196 		snp->grplo = -1;
197 		snp->grphi = -1;
198 		if (snp == &ssp->srcu_sup->node[0]) {
199 			/* Root node, special case. */
200 			snp->srcu_parent = NULL;
201 			continue;
202 		}
203 
204 		/* Non-root node. */
205 		if (snp == ssp->srcu_sup->level[level + 1])
206 			level++;
207 		snp->srcu_parent = ssp->srcu_sup->level[level - 1] +
208 				   (snp - ssp->srcu_sup->level[level]) /
209 				   levelspread[level - 1];
210 	}
211 
212 	/*
213 	 * Initialize the per-CPU srcu_data array, which feeds into the
214 	 * leaves of the srcu_node tree.
215 	 */
216 	level = rcu_num_lvls - 1;
217 	snp_first = ssp->srcu_sup->level[level];
218 	for_each_possible_cpu(cpu) {
219 		sdp = per_cpu_ptr(ssp->sda, cpu);
220 		sdp->mynode = &snp_first[cpu / levelspread[level]];
221 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
222 			if (snp->grplo < 0)
223 				snp->grplo = cpu;
224 			snp->grphi = cpu;
225 		}
226 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
227 	}
228 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_WAIT_BARRIER);
229 	return true;
230 }
231 
232 /*
233  * Initialize non-compile-time initialized fields, including the
234  * associated srcu_node and srcu_data structures.  The is_static parameter
235  * tells us that ->sda has already been wired up to srcu_data.
236  */
237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
238 {
239 	if (!is_static)
240 		ssp->srcu_sup = kzalloc(sizeof(*ssp->srcu_sup), GFP_KERNEL);
241 	if (!ssp->srcu_sup)
242 		return -ENOMEM;
243 	if (!is_static)
244 		spin_lock_init(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
245 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
246 	ssp->srcu_sup->node = NULL;
247 	mutex_init(&ssp->srcu_sup->srcu_cb_mutex);
248 	mutex_init(&ssp->srcu_sup->srcu_gp_mutex);
249 	ssp->srcu_idx = 0;
250 	ssp->srcu_gp_seq = 0;
251 	ssp->srcu_barrier_seq = 0;
252 	mutex_init(&ssp->srcu_barrier_mutex);
253 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
254 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
255 	ssp->sda_is_static = is_static;
256 	if (!is_static)
257 		ssp->sda = alloc_percpu(struct srcu_data);
258 	if (!ssp->sda) {
259 		if (!is_static)
260 			kfree(ssp->srcu_sup);
261 		return -ENOMEM;
262 	}
263 	init_srcu_struct_data(ssp);
264 	ssp->srcu_gp_seq_needed_exp = 0;
265 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
266 	if (READ_ONCE(ssp->srcu_sup->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) {
267 		if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) {
268 			if (!ssp->sda_is_static) {
269 				free_percpu(ssp->sda);
270 				ssp->sda = NULL;
271 				kfree(ssp->srcu_sup);
272 				return -ENOMEM;
273 			}
274 		} else {
275 			WRITE_ONCE(ssp->srcu_sup->srcu_size_state, SRCU_SIZE_BIG);
276 		}
277 	}
278 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
279 	return 0;
280 }
281 
282 #ifdef CONFIG_DEBUG_LOCK_ALLOC
283 
284 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
285 		       struct lock_class_key *key)
286 {
287 	/* Don't re-initialize a lock while it is held. */
288 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
289 	lockdep_init_map(&ssp->dep_map, name, key, 0);
290 	return init_srcu_struct_fields(ssp, false);
291 }
292 EXPORT_SYMBOL_GPL(__init_srcu_struct);
293 
294 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
295 
296 /**
297  * init_srcu_struct - initialize a sleep-RCU structure
298  * @ssp: structure to initialize.
299  *
300  * Must invoke this on a given srcu_struct before passing that srcu_struct
301  * to any other function.  Each srcu_struct represents a separate domain
302  * of SRCU protection.
303  */
304 int init_srcu_struct(struct srcu_struct *ssp)
305 {
306 	return init_srcu_struct_fields(ssp, false);
307 }
308 EXPORT_SYMBOL_GPL(init_srcu_struct);
309 
310 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
311 
312 /*
313  * Initiate a transition to SRCU_SIZE_BIG with lock held.
314  */
315 static void __srcu_transition_to_big(struct srcu_struct *ssp)
316 {
317 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
318 	smp_store_release(&ssp->srcu_sup->srcu_size_state, SRCU_SIZE_ALLOC);
319 }
320 
321 /*
322  * Initiate an idempotent transition to SRCU_SIZE_BIG.
323  */
324 static void srcu_transition_to_big(struct srcu_struct *ssp)
325 {
326 	unsigned long flags;
327 
328 	/* Double-checked locking on ->srcu_size-state. */
329 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL)
330 		return;
331 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
332 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) != SRCU_SIZE_SMALL) {
333 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
334 		return;
335 	}
336 	__srcu_transition_to_big(ssp);
337 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
338 }
339 
340 /*
341  * Check to see if the just-encountered contention event justifies
342  * a transition to SRCU_SIZE_BIG.
343  */
344 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp)
345 {
346 	unsigned long j;
347 
348 	if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_sup->srcu_size_state)
349 		return;
350 	j = jiffies;
351 	if (ssp->srcu_size_jiffies != j) {
352 		ssp->srcu_size_jiffies = j;
353 		ssp->srcu_n_lock_retries = 0;
354 	}
355 	if (++ssp->srcu_n_lock_retries <= small_contention_lim)
356 		return;
357 	__srcu_transition_to_big(ssp);
358 }
359 
360 /*
361  * Acquire the specified srcu_data structure's ->lock, but check for
362  * excessive contention, which results in initiation of a transition
363  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
364  * parameter permits this.
365  */
366 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags)
367 {
368 	struct srcu_struct *ssp = sdp->ssp;
369 
370 	if (spin_trylock_irqsave_rcu_node(sdp, *flags))
371 		return;
372 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
373 	spin_lock_irqsave_check_contention(ssp);
374 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, *flags);
375 	spin_lock_irqsave_rcu_node(sdp, *flags);
376 }
377 
378 /*
379  * Acquire the specified srcu_struct structure's ->lock, but check for
380  * excessive contention, which results in initiation of a transition
381  * to SRCU_SIZE_BIG.  But only if the srcutree.convert_to_big module
382  * parameter permits this.
383  */
384 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags)
385 {
386 	if (spin_trylock_irqsave_rcu_node(ssp->srcu_sup, *flags))
387 		return;
388 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, *flags);
389 	spin_lock_irqsave_check_contention(ssp);
390 }
391 
392 /*
393  * First-use initialization of statically allocated srcu_struct
394  * structure.  Wiring up the combining tree is more than can be
395  * done with compile-time initialization, so this check is added
396  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
397  * compile-time initialized, to resolve races involving multiple
398  * CPUs trying to garner first-use privileges.
399  */
400 static void check_init_srcu_struct(struct srcu_struct *ssp)
401 {
402 	unsigned long flags;
403 
404 	/* The smp_load_acquire() pairs with the smp_store_release(). */
405 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
406 		return; /* Already initialized. */
407 	spin_lock_irqsave_rcu_node(ssp->srcu_sup, flags);
408 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
409 		spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
410 		return;
411 	}
412 	init_srcu_struct_fields(ssp, true);
413 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
414 }
415 
416 /*
417  * Returns approximate total of the readers' ->srcu_lock_count[] values
418  * for the rank of per-CPU counters specified by idx.
419  */
420 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
421 {
422 	int cpu;
423 	unsigned long sum = 0;
424 
425 	for_each_possible_cpu(cpu) {
426 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
427 
428 		sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
429 	}
430 	return sum;
431 }
432 
433 /*
434  * Returns approximate total of the readers' ->srcu_unlock_count[] values
435  * for the rank of per-CPU counters specified by idx.
436  */
437 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
438 {
439 	int cpu;
440 	unsigned long mask = 0;
441 	unsigned long sum = 0;
442 
443 	for_each_possible_cpu(cpu) {
444 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
445 
446 		sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
447 		if (IS_ENABLED(CONFIG_PROVE_RCU))
448 			mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
449 	}
450 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
451 		  "Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
452 	return sum;
453 }
454 
455 /*
456  * Return true if the number of pre-existing readers is determined to
457  * be zero.
458  */
459 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
460 {
461 	unsigned long unlocks;
462 
463 	unlocks = srcu_readers_unlock_idx(ssp, idx);
464 
465 	/*
466 	 * Make sure that a lock is always counted if the corresponding
467 	 * unlock is counted. Needs to be a smp_mb() as the read side may
468 	 * contain a read from a variable that is written to before the
469 	 * synchronize_srcu() in the write side. In this case smp_mb()s
470 	 * A and B act like the store buffering pattern.
471 	 *
472 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
473 	 * after the synchronize_srcu() from being executed before the
474 	 * grace period ends.
475 	 */
476 	smp_mb(); /* A */
477 
478 	/*
479 	 * If the locks are the same as the unlocks, then there must have
480 	 * been no readers on this index at some point in this function.
481 	 * But there might be more readers, as a task might have read
482 	 * the current ->srcu_idx but not yet have incremented its CPU's
483 	 * ->srcu_lock_count[idx] counter.  In fact, it is possible
484 	 * that most of the tasks have been preempted between fetching
485 	 * ->srcu_idx and incrementing ->srcu_lock_count[idx].  And there
486 	 * could be almost (ULONG_MAX / sizeof(struct task_struct)) tasks
487 	 * in a system whose address space was fully populated with memory.
488 	 * Call this quantity Nt.
489 	 *
490 	 * So suppose that the updater is preempted at this point in the
491 	 * code for a long time.  That now-preempted updater has already
492 	 * flipped ->srcu_idx (possibly during the preceding grace period),
493 	 * done an smp_mb() (again, possibly during the preceding grace
494 	 * period), and summed up the ->srcu_unlock_count[idx] counters.
495 	 * How many times can a given one of the aforementioned Nt tasks
496 	 * increment the old ->srcu_idx value's ->srcu_lock_count[idx]
497 	 * counter, in the absence of nesting?
498 	 *
499 	 * It can clearly do so once, given that it has already fetched
500 	 * the old value of ->srcu_idx and is just about to use that value
501 	 * to index its increment of ->srcu_lock_count[idx].  But as soon as
502 	 * it leaves that SRCU read-side critical section, it will increment
503 	 * ->srcu_unlock_count[idx], which must follow the updater's above
504 	 * read from that same value.  Thus, as soon the reading task does
505 	 * an smp_mb() and a later fetch from ->srcu_idx, that task will be
506 	 * guaranteed to get the new index.  Except that the increment of
507 	 * ->srcu_unlock_count[idx] in __srcu_read_unlock() is after the
508 	 * smp_mb(), and the fetch from ->srcu_idx in __srcu_read_lock()
509 	 * is before the smp_mb().  Thus, that task might not see the new
510 	 * value of ->srcu_idx until the -second- __srcu_read_lock(),
511 	 * which in turn means that this task might well increment
512 	 * ->srcu_lock_count[idx] for the old value of ->srcu_idx twice,
513 	 * not just once.
514 	 *
515 	 * However, it is important to note that a given smp_mb() takes
516 	 * effect not just for the task executing it, but also for any
517 	 * later task running on that same CPU.
518 	 *
519 	 * That is, there can be almost Nt + Nc further increments of
520 	 * ->srcu_lock_count[idx] for the old index, where Nc is the number
521 	 * of CPUs.  But this is OK because the size of the task_struct
522 	 * structure limits the value of Nt and current systems limit Nc
523 	 * to a few thousand.
524 	 *
525 	 * OK, but what about nesting?  This does impose a limit on
526 	 * nesting of half of the size of the task_struct structure
527 	 * (measured in bytes), which should be sufficient.  A late 2022
528 	 * TREE01 rcutorture run reported this size to be no less than
529 	 * 9408 bytes, allowing up to 4704 levels of nesting, which is
530 	 * comfortably beyond excessive.  Especially on 64-bit systems,
531 	 * which are unlikely to be configured with an address space fully
532 	 * populated with memory, at least not anytime soon.
533 	 */
534 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
535 }
536 
537 /**
538  * srcu_readers_active - returns true if there are readers. and false
539  *                       otherwise
540  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
541  *
542  * Note that this is not an atomic primitive, and can therefore suffer
543  * severe errors when invoked on an active srcu_struct.  That said, it
544  * can be useful as an error check at cleanup time.
545  */
546 static bool srcu_readers_active(struct srcu_struct *ssp)
547 {
548 	int cpu;
549 	unsigned long sum = 0;
550 
551 	for_each_possible_cpu(cpu) {
552 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
553 
554 		sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
555 		sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
556 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
557 		sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
558 	}
559 	return sum;
560 }
561 
562 /*
563  * We use an adaptive strategy for synchronize_srcu() and especially for
564  * synchronize_srcu_expedited().  We spin for a fixed time period
565  * (defined below, boot time configurable) to allow SRCU readers to exit
566  * their read-side critical sections.  If there are still some readers
567  * after one jiffy, we repeatedly block for one jiffy time periods.
568  * The blocking time is increased as the grace-period age increases,
569  * with max blocking time capped at 10 jiffies.
570  */
571 #define SRCU_DEFAULT_RETRY_CHECK_DELAY		5
572 
573 static ulong srcu_retry_check_delay = SRCU_DEFAULT_RETRY_CHECK_DELAY;
574 module_param(srcu_retry_check_delay, ulong, 0444);
575 
576 #define SRCU_INTERVAL		1		// Base delay if no expedited GPs pending.
577 #define SRCU_MAX_INTERVAL	10		// Maximum incremental delay from slow readers.
578 
579 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_LO	3UL	// Lowmark on default per-GP-phase
580 							// no-delay instances.
581 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_HI	1000UL	// Highmark on default per-GP-phase
582 							// no-delay instances.
583 
584 #define SRCU_UL_CLAMP_LO(val, low)	((val) > (low) ? (val) : (low))
585 #define SRCU_UL_CLAMP_HI(val, high)	((val) < (high) ? (val) : (high))
586 #define SRCU_UL_CLAMP(val, low, high)	SRCU_UL_CLAMP_HI(SRCU_UL_CLAMP_LO((val), (low)), (high))
587 // per-GP-phase no-delay instances adjusted to allow non-sleeping poll upto
588 // one jiffies time duration. Mult by 2 is done to factor in the srcu_get_delay()
589 // called from process_srcu().
590 #define SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED	\
591 	(2UL * USEC_PER_SEC / HZ / SRCU_DEFAULT_RETRY_CHECK_DELAY)
592 
593 // Maximum per-GP-phase consecutive no-delay instances.
594 #define SRCU_DEFAULT_MAX_NODELAY_PHASE	\
595 	SRCU_UL_CLAMP(SRCU_DEFAULT_MAX_NODELAY_PHASE_ADJUSTED,	\
596 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_LO,	\
597 		      SRCU_DEFAULT_MAX_NODELAY_PHASE_HI)
598 
599 static ulong srcu_max_nodelay_phase = SRCU_DEFAULT_MAX_NODELAY_PHASE;
600 module_param(srcu_max_nodelay_phase, ulong, 0444);
601 
602 // Maximum consecutive no-delay instances.
603 #define SRCU_DEFAULT_MAX_NODELAY	(SRCU_DEFAULT_MAX_NODELAY_PHASE > 100 ?	\
604 					 SRCU_DEFAULT_MAX_NODELAY_PHASE : 100)
605 
606 static ulong srcu_max_nodelay = SRCU_DEFAULT_MAX_NODELAY;
607 module_param(srcu_max_nodelay, ulong, 0444);
608 
609 /*
610  * Return grace-period delay, zero if there are expedited grace
611  * periods pending, SRCU_INTERVAL otherwise.
612  */
613 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
614 {
615 	unsigned long gpstart;
616 	unsigned long j;
617 	unsigned long jbase = SRCU_INTERVAL;
618 
619 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
620 		jbase = 0;
621 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) {
622 		j = jiffies - 1;
623 		gpstart = READ_ONCE(ssp->srcu_gp_start);
624 		if (time_after(j, gpstart))
625 			jbase += j - gpstart;
626 		if (!jbase) {
627 			WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1);
628 			if (READ_ONCE(ssp->srcu_n_exp_nodelay) > srcu_max_nodelay_phase)
629 				jbase = 1;
630 		}
631 	}
632 	return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase;
633 }
634 
635 /**
636  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
637  * @ssp: structure to clean up.
638  *
639  * Must invoke this after you are finished using a given srcu_struct that
640  * was initialized via init_srcu_struct(), else you leak memory.
641  */
642 void cleanup_srcu_struct(struct srcu_struct *ssp)
643 {
644 	int cpu;
645 
646 	if (WARN_ON(!srcu_get_delay(ssp)))
647 		return; /* Just leak it! */
648 	if (WARN_ON(srcu_readers_active(ssp)))
649 		return; /* Just leak it! */
650 	flush_delayed_work(&ssp->work);
651 	for_each_possible_cpu(cpu) {
652 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
653 
654 		del_timer_sync(&sdp->delay_work);
655 		flush_work(&sdp->work);
656 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
657 			return; /* Forgot srcu_barrier(), so just leak it! */
658 	}
659 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
660 	    WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) ||
661 	    WARN_ON(srcu_readers_active(ssp))) {
662 		pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n",
663 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)),
664 			rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed);
665 		return; /* Caller forgot to stop doing call_srcu()? */
666 	}
667 	kfree(ssp->srcu_sup->node);
668 	ssp->srcu_sup->node = NULL;
669 	ssp->srcu_sup->srcu_size_state = SRCU_SIZE_SMALL;
670 	if (!ssp->sda_is_static) {
671 		free_percpu(ssp->sda);
672 		ssp->sda = NULL;
673 		kfree(ssp->srcu_sup);
674 		ssp->srcu_sup = NULL;
675 	}
676 }
677 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
678 
679 #ifdef CONFIG_PROVE_RCU
680 /*
681  * Check for consistent NMI safety.
682  */
683 void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
684 {
685 	int nmi_safe_mask = 1 << nmi_safe;
686 	int old_nmi_safe_mask;
687 	struct srcu_data *sdp;
688 
689 	/* NMI-unsafe use in NMI is a bad sign */
690 	WARN_ON_ONCE(!nmi_safe && in_nmi());
691 	sdp = raw_cpu_ptr(ssp->sda);
692 	old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
693 	if (!old_nmi_safe_mask) {
694 		WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
695 		return;
696 	}
697 	WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
698 }
699 EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
700 #endif /* CONFIG_PROVE_RCU */
701 
702 /*
703  * Counts the new reader in the appropriate per-CPU element of the
704  * srcu_struct.
705  * Returns an index that must be passed to the matching srcu_read_unlock().
706  */
707 int __srcu_read_lock(struct srcu_struct *ssp)
708 {
709 	int idx;
710 
711 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
712 	this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
713 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
714 	return idx;
715 }
716 EXPORT_SYMBOL_GPL(__srcu_read_lock);
717 
718 /*
719  * Removes the count for the old reader from the appropriate per-CPU
720  * element of the srcu_struct.  Note that this may well be a different
721  * CPU than that which was incremented by the corresponding srcu_read_lock().
722  */
723 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
724 {
725 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
726 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
727 }
728 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
729 
730 #ifdef CONFIG_NEED_SRCU_NMI_SAFE
731 
732 /*
733  * Counts the new reader in the appropriate per-CPU element of the
734  * srcu_struct, but in an NMI-safe manner using RMW atomics.
735  * Returns an index that must be passed to the matching srcu_read_unlock().
736  */
737 int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
738 {
739 	int idx;
740 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
741 
742 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
743 	atomic_long_inc(&sdp->srcu_lock_count[idx]);
744 	smp_mb__after_atomic(); /* B */  /* Avoid leaking the critical section. */
745 	return idx;
746 }
747 EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
748 
749 /*
750  * Removes the count for the old reader from the appropriate per-CPU
751  * element of the srcu_struct.  Note that this may well be a different
752  * CPU than that which was incremented by the corresponding srcu_read_lock().
753  */
754 void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
755 {
756 	struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
757 
758 	smp_mb__before_atomic(); /* C */  /* Avoid leaking the critical section. */
759 	atomic_long_inc(&sdp->srcu_unlock_count[idx]);
760 }
761 EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
762 
763 #endif // CONFIG_NEED_SRCU_NMI_SAFE
764 
765 /*
766  * Start an SRCU grace period.
767  */
768 static void srcu_gp_start(struct srcu_struct *ssp)
769 {
770 	struct srcu_data *sdp;
771 	int state;
772 
773 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
774 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
775 	else
776 		sdp = this_cpu_ptr(ssp->sda);
777 	lockdep_assert_held(&ACCESS_PRIVATE(ssp->srcu_sup, lock));
778 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
779 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
780 	rcu_segcblist_advance(&sdp->srcu_cblist,
781 			      rcu_seq_current(&ssp->srcu_gp_seq));
782 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
783 				       rcu_seq_snap(&ssp->srcu_gp_seq));
784 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
785 	WRITE_ONCE(ssp->srcu_gp_start, jiffies);
786 	WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0);
787 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
788 	rcu_seq_start(&ssp->srcu_gp_seq);
789 	state = rcu_seq_state(ssp->srcu_gp_seq);
790 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
791 }
792 
793 
794 static void srcu_delay_timer(struct timer_list *t)
795 {
796 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
797 
798 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
799 }
800 
801 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
802 				       unsigned long delay)
803 {
804 	if (!delay) {
805 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
806 		return;
807 	}
808 
809 	timer_reduce(&sdp->delay_work, jiffies + delay);
810 }
811 
812 /*
813  * Schedule callback invocation for the specified srcu_data structure,
814  * if possible, on the corresponding CPU.
815  */
816 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
817 {
818 	srcu_queue_delayed_work_on(sdp, delay);
819 }
820 
821 /*
822  * Schedule callback invocation for all srcu_data structures associated
823  * with the specified srcu_node structure that have callbacks for the
824  * just-completed grace period, the one corresponding to idx.  If possible,
825  * schedule this invocation on the corresponding CPUs.
826  */
827 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
828 				  unsigned long mask, unsigned long delay)
829 {
830 	int cpu;
831 
832 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
833 		if (!(mask & (1 << (cpu - snp->grplo))))
834 			continue;
835 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
836 	}
837 }
838 
839 /*
840  * Note the end of an SRCU grace period.  Initiates callback invocation
841  * and starts a new grace period if needed.
842  *
843  * The ->srcu_cb_mutex acquisition does not protect any data, but
844  * instead prevents more than one grace period from starting while we
845  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
846  * array to have a finite number of elements.
847  */
848 static void srcu_gp_end(struct srcu_struct *ssp)
849 {
850 	unsigned long cbdelay = 1;
851 	bool cbs;
852 	bool last_lvl;
853 	int cpu;
854 	unsigned long flags;
855 	unsigned long gpseq;
856 	int idx;
857 	unsigned long mask;
858 	struct srcu_data *sdp;
859 	unsigned long sgsne;
860 	struct srcu_node *snp;
861 	int ss_state;
862 
863 	/* Prevent more than one additional grace period. */
864 	mutex_lock(&ssp->srcu_sup->srcu_cb_mutex);
865 
866 	/* End the current grace period. */
867 	spin_lock_irq_rcu_node(ssp->srcu_sup);
868 	idx = rcu_seq_state(ssp->srcu_gp_seq);
869 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
870 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
871 		cbdelay = 0;
872 
873 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
874 	rcu_seq_end(&ssp->srcu_gp_seq);
875 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
876 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
877 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
878 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
879 	mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
880 	/* A new grace period can start at this point.  But only one. */
881 
882 	/* Initiate callback invocation as needed. */
883 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
884 	if (ss_state < SRCU_SIZE_WAIT_BARRIER) {
885 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, get_boot_cpu_id()),
886 					cbdelay);
887 	} else {
888 		idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
889 		srcu_for_each_node_breadth_first(ssp, snp) {
890 			spin_lock_irq_rcu_node(snp);
891 			cbs = false;
892 			last_lvl = snp >= ssp->srcu_sup->level[rcu_num_lvls - 1];
893 			if (last_lvl)
894 				cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq;
895 			snp->srcu_have_cbs[idx] = gpseq;
896 			rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
897 			sgsne = snp->srcu_gp_seq_needed_exp;
898 			if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq))
899 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
900 			if (ss_state < SRCU_SIZE_BIG)
901 				mask = ~0;
902 			else
903 				mask = snp->srcu_data_have_cbs[idx];
904 			snp->srcu_data_have_cbs[idx] = 0;
905 			spin_unlock_irq_rcu_node(snp);
906 			if (cbs)
907 				srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
908 		}
909 	}
910 
911 	/* Occasionally prevent srcu_data counter wrap. */
912 	if (!(gpseq & counter_wrap_check))
913 		for_each_possible_cpu(cpu) {
914 			sdp = per_cpu_ptr(ssp->sda, cpu);
915 			spin_lock_irqsave_rcu_node(sdp, flags);
916 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100))
917 				sdp->srcu_gp_seq_needed = gpseq;
918 			if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100))
919 				sdp->srcu_gp_seq_needed_exp = gpseq;
920 			spin_unlock_irqrestore_rcu_node(sdp, flags);
921 		}
922 
923 	/* Callback initiation done, allow grace periods after next. */
924 	mutex_unlock(&ssp->srcu_sup->srcu_cb_mutex);
925 
926 	/* Start a new grace period if needed. */
927 	spin_lock_irq_rcu_node(ssp->srcu_sup);
928 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
929 	if (!rcu_seq_state(gpseq) &&
930 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
931 		srcu_gp_start(ssp);
932 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
933 		srcu_reschedule(ssp, 0);
934 	} else {
935 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
936 	}
937 
938 	/* Transition to big if needed. */
939 	if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) {
940 		if (ss_state == SRCU_SIZE_ALLOC)
941 			init_srcu_struct_nodes(ssp, GFP_KERNEL);
942 		else
943 			smp_store_release(&ssp->srcu_sup->srcu_size_state, ss_state + 1);
944 	}
945 }
946 
947 /*
948  * Funnel-locking scheme to scalably mediate many concurrent expedited
949  * grace-period requests.  This function is invoked for the first known
950  * expedited request for a grace period that has already been requested,
951  * but without expediting.  To start a completely new grace period,
952  * whether expedited or not, use srcu_funnel_gp_start() instead.
953  */
954 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
955 				  unsigned long s)
956 {
957 	unsigned long flags;
958 	unsigned long sgsne;
959 
960 	if (snp)
961 		for (; snp != NULL; snp = snp->srcu_parent) {
962 			sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp);
963 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) ||
964 			    (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)))
965 				return;
966 			spin_lock_irqsave_rcu_node(snp, flags);
967 			sgsne = snp->srcu_gp_seq_needed_exp;
968 			if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) {
969 				spin_unlock_irqrestore_rcu_node(snp, flags);
970 				return;
971 			}
972 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
973 			spin_unlock_irqrestore_rcu_node(snp, flags);
974 		}
975 	spin_lock_irqsave_ssp_contention(ssp, &flags);
976 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
977 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
978 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
979 }
980 
981 /*
982  * Funnel-locking scheme to scalably mediate many concurrent grace-period
983  * requests.  The winner has to do the work of actually starting grace
984  * period s.  Losers must either ensure that their desired grace-period
985  * number is recorded on at least their leaf srcu_node structure, or they
986  * must take steps to invoke their own callbacks.
987  *
988  * Note that this function also does the work of srcu_funnel_exp_start(),
989  * in some cases by directly invoking it.
990  *
991  * The srcu read lock should be hold around this function. And s is a seq snap
992  * after holding that lock.
993  */
994 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
995 				 unsigned long s, bool do_norm)
996 {
997 	unsigned long flags;
998 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
999 	unsigned long sgsne;
1000 	struct srcu_node *snp;
1001 	struct srcu_node *snp_leaf;
1002 	unsigned long snp_seq;
1003 
1004 	/* Ensure that snp node tree is fully initialized before traversing it */
1005 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1006 		snp_leaf = NULL;
1007 	else
1008 		snp_leaf = sdp->mynode;
1009 
1010 	if (snp_leaf)
1011 		/* Each pass through the loop does one level of the srcu_node tree. */
1012 		for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) {
1013 			if (WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) && snp != snp_leaf)
1014 				return; /* GP already done and CBs recorded. */
1015 			spin_lock_irqsave_rcu_node(snp, flags);
1016 			snp_seq = snp->srcu_have_cbs[idx];
1017 			if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) {
1018 				if (snp == snp_leaf && snp_seq == s)
1019 					snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1020 				spin_unlock_irqrestore_rcu_node(snp, flags);
1021 				if (snp == snp_leaf && snp_seq != s) {
1022 					srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0);
1023 					return;
1024 				}
1025 				if (!do_norm)
1026 					srcu_funnel_exp_start(ssp, snp, s);
1027 				return;
1028 			}
1029 			snp->srcu_have_cbs[idx] = s;
1030 			if (snp == snp_leaf)
1031 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1032 			sgsne = snp->srcu_gp_seq_needed_exp;
1033 			if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s)))
1034 				WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
1035 			spin_unlock_irqrestore_rcu_node(snp, flags);
1036 		}
1037 
1038 	/* Top of tree, must ensure the grace period will be started. */
1039 	spin_lock_irqsave_ssp_contention(ssp, &flags);
1040 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
1041 		/*
1042 		 * Record need for grace period s.  Pair with load
1043 		 * acquire setting up for initialization.
1044 		 */
1045 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
1046 	}
1047 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
1048 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
1049 
1050 	/* If grace period not already in progress, start it. */
1051 	if (!WARN_ON_ONCE(rcu_seq_done(&ssp->srcu_gp_seq, s)) &&
1052 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
1053 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
1054 		srcu_gp_start(ssp);
1055 
1056 		// And how can that list_add() in the "else" clause
1057 		// possibly be safe for concurrent execution?  Well,
1058 		// it isn't.  And it does not have to be.  After all, it
1059 		// can only be executed during early boot when there is only
1060 		// the one boot CPU running with interrupts still disabled.
1061 		if (likely(srcu_init_done))
1062 			queue_delayed_work(rcu_gp_wq, &ssp->work,
1063 					   !!srcu_get_delay(ssp));
1064 		else if (list_empty(&ssp->work.work.entry))
1065 			list_add(&ssp->work.work.entry, &srcu_boot_list);
1066 	}
1067 	spin_unlock_irqrestore_rcu_node(ssp->srcu_sup, flags);
1068 }
1069 
1070 /*
1071  * Wait until all readers counted by array index idx complete, but
1072  * loop an additional time if there is an expedited grace period pending.
1073  * The caller must ensure that ->srcu_idx is not changed while checking.
1074  */
1075 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
1076 {
1077 	unsigned long curdelay;
1078 
1079 	curdelay = !srcu_get_delay(ssp);
1080 
1081 	for (;;) {
1082 		if (srcu_readers_active_idx_check(ssp, idx))
1083 			return true;
1084 		if ((--trycount + curdelay) <= 0)
1085 			return false;
1086 		udelay(srcu_retry_check_delay);
1087 	}
1088 }
1089 
1090 /*
1091  * Increment the ->srcu_idx counter so that future SRCU readers will
1092  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
1093  * us to wait for pre-existing readers in a starvation-free manner.
1094  */
1095 static void srcu_flip(struct srcu_struct *ssp)
1096 {
1097 	/*
1098 	 * Ensure that if this updater saw a given reader's increment
1099 	 * from __srcu_read_lock(), that reader was using an old value
1100 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
1101 	 * new value of ->srcu_idx, this updater's earlier scans cannot
1102 	 * have seen that reader's increments (which is OK, because this
1103 	 * grace period need not wait on that reader).
1104 	 */
1105 	smp_mb(); /* E */  /* Pairs with B and C. */
1106 
1107 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
1108 
1109 	/*
1110 	 * Ensure that if the updater misses an __srcu_read_unlock()
1111 	 * increment, that task's __srcu_read_lock() following its next
1112 	 * __srcu_read_lock() or __srcu_read_unlock() will see the above
1113 	 * counter update.  Note that both this memory barrier and the
1114 	 * one in srcu_readers_active_idx_check() provide the guarantee
1115 	 * for __srcu_read_lock().
1116 	 */
1117 	smp_mb(); /* D */  /* Pairs with C. */
1118 }
1119 
1120 /*
1121  * If SRCU is likely idle, return true, otherwise return false.
1122  *
1123  * Note that it is OK for several current from-idle requests for a new
1124  * grace period from idle to specify expediting because they will all end
1125  * up requesting the same grace period anyhow.  So no loss.
1126  *
1127  * Note also that if any CPU (including the current one) is still invoking
1128  * callbacks, this function will nevertheless say "idle".  This is not
1129  * ideal, but the overhead of checking all CPUs' callback lists is even
1130  * less ideal, especially on large systems.  Furthermore, the wakeup
1131  * can happen before the callback is fully removed, so we have no choice
1132  * but to accept this type of error.
1133  *
1134  * This function is also subject to counter-wrap errors, but let's face
1135  * it, if this function was preempted for enough time for the counters
1136  * to wrap, it really doesn't matter whether or not we expedite the grace
1137  * period.  The extra overhead of a needlessly expedited grace period is
1138  * negligible when amortized over that time period, and the extra latency
1139  * of a needlessly non-expedited grace period is similarly negligible.
1140  */
1141 static bool srcu_might_be_idle(struct srcu_struct *ssp)
1142 {
1143 	unsigned long curseq;
1144 	unsigned long flags;
1145 	struct srcu_data *sdp;
1146 	unsigned long t;
1147 	unsigned long tlast;
1148 
1149 	check_init_srcu_struct(ssp);
1150 	/* If the local srcu_data structure has callbacks, not idle.  */
1151 	sdp = raw_cpu_ptr(ssp->sda);
1152 	spin_lock_irqsave_rcu_node(sdp, flags);
1153 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
1154 		spin_unlock_irqrestore_rcu_node(sdp, flags);
1155 		return false; /* Callbacks already present, so not idle. */
1156 	}
1157 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1158 
1159 	/*
1160 	 * No local callbacks, so probabilistically probe global state.
1161 	 * Exact information would require acquiring locks, which would
1162 	 * kill scalability, hence the probabilistic nature of the probe.
1163 	 */
1164 
1165 	/* First, see if enough time has passed since the last GP. */
1166 	t = ktime_get_mono_fast_ns();
1167 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
1168 	if (exp_holdoff == 0 ||
1169 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
1170 		return false; /* Too soon after last GP. */
1171 
1172 	/* Next, check for probable idleness. */
1173 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
1174 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
1175 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
1176 		return false; /* Grace period in progress, so not idle. */
1177 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
1178 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
1179 		return false; /* GP # changed, so not idle. */
1180 	return true; /* With reasonable probability, idle! */
1181 }
1182 
1183 /*
1184  * SRCU callback function to leak a callback.
1185  */
1186 static void srcu_leak_callback(struct rcu_head *rhp)
1187 {
1188 }
1189 
1190 /*
1191  * Start an SRCU grace period, and also queue the callback if non-NULL.
1192  */
1193 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
1194 					     struct rcu_head *rhp, bool do_norm)
1195 {
1196 	unsigned long flags;
1197 	int idx;
1198 	bool needexp = false;
1199 	bool needgp = false;
1200 	unsigned long s;
1201 	struct srcu_data *sdp;
1202 	struct srcu_node *sdp_mynode;
1203 	int ss_state;
1204 
1205 	check_init_srcu_struct(ssp);
1206 	/*
1207 	 * While starting a new grace period, make sure we are in an
1208 	 * SRCU read-side critical section so that the grace-period
1209 	 * sequence number cannot wrap around in the meantime.
1210 	 */
1211 	idx = __srcu_read_lock_nmisafe(ssp);
1212 	ss_state = smp_load_acquire(&ssp->srcu_sup->srcu_size_state);
1213 	if (ss_state < SRCU_SIZE_WAIT_CALL)
1214 		sdp = per_cpu_ptr(ssp->sda, get_boot_cpu_id());
1215 	else
1216 		sdp = raw_cpu_ptr(ssp->sda);
1217 	spin_lock_irqsave_sdp_contention(sdp, &flags);
1218 	if (rhp)
1219 		rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
1220 	rcu_segcblist_advance(&sdp->srcu_cblist,
1221 			      rcu_seq_current(&ssp->srcu_gp_seq));
1222 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
1223 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
1224 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
1225 		sdp->srcu_gp_seq_needed = s;
1226 		needgp = true;
1227 	}
1228 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
1229 		sdp->srcu_gp_seq_needed_exp = s;
1230 		needexp = true;
1231 	}
1232 	spin_unlock_irqrestore_rcu_node(sdp, flags);
1233 
1234 	/* Ensure that snp node tree is fully initialized before traversing it */
1235 	if (ss_state < SRCU_SIZE_WAIT_BARRIER)
1236 		sdp_mynode = NULL;
1237 	else
1238 		sdp_mynode = sdp->mynode;
1239 
1240 	if (needgp)
1241 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1242 	else if (needexp)
1243 		srcu_funnel_exp_start(ssp, sdp_mynode, s);
1244 	__srcu_read_unlock_nmisafe(ssp, idx);
1245 	return s;
1246 }
1247 
1248 /*
1249  * Enqueue an SRCU callback on the srcu_data structure associated with
1250  * the current CPU and the specified srcu_struct structure, initiating
1251  * grace-period processing if it is not already running.
1252  *
1253  * Note that all CPUs must agree that the grace period extended beyond
1254  * all pre-existing SRCU read-side critical section.  On systems with
1255  * more than one CPU, this means that when "func()" is invoked, each CPU
1256  * is guaranteed to have executed a full memory barrier since the end of
1257  * its last corresponding SRCU read-side critical section whose beginning
1258  * preceded the call to call_srcu().  It also means that each CPU executing
1259  * an SRCU read-side critical section that continues beyond the start of
1260  * "func()" must have executed a memory barrier after the call_srcu()
1261  * but before the beginning of that SRCU read-side critical section.
1262  * Note that these guarantees include CPUs that are offline, idle, or
1263  * executing in user mode, as well as CPUs that are executing in the kernel.
1264  *
1265  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
1266  * resulting SRCU callback function "func()", then both CPU A and CPU
1267  * B are guaranteed to execute a full memory barrier during the time
1268  * interval between the call to call_srcu() and the invocation of "func()".
1269  * This guarantee applies even if CPU A and CPU B are the same CPU (but
1270  * again only if the system has more than one CPU).
1271  *
1272  * Of course, these guarantees apply only for invocations of call_srcu(),
1273  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
1274  * srcu_struct structure.
1275  */
1276 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1277 			rcu_callback_t func, bool do_norm)
1278 {
1279 	if (debug_rcu_head_queue(rhp)) {
1280 		/* Probable double call_srcu(), so leak the callback. */
1281 		WRITE_ONCE(rhp->func, srcu_leak_callback);
1282 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
1283 		return;
1284 	}
1285 	rhp->func = func;
1286 	(void)srcu_gp_start_if_needed(ssp, rhp, do_norm);
1287 }
1288 
1289 /**
1290  * call_srcu() - Queue a callback for invocation after an SRCU grace period
1291  * @ssp: srcu_struct in queue the callback
1292  * @rhp: structure to be used for queueing the SRCU callback.
1293  * @func: function to be invoked after the SRCU grace period
1294  *
1295  * The callback function will be invoked some time after a full SRCU
1296  * grace period elapses, in other words after all pre-existing SRCU
1297  * read-side critical sections have completed.  However, the callback
1298  * function might well execute concurrently with other SRCU read-side
1299  * critical sections that started after call_srcu() was invoked.  SRCU
1300  * read-side critical sections are delimited by srcu_read_lock() and
1301  * srcu_read_unlock(), and may be nested.
1302  *
1303  * The callback will be invoked from process context, but must nevertheless
1304  * be fast and must not block.
1305  */
1306 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1307 	       rcu_callback_t func)
1308 {
1309 	__call_srcu(ssp, rhp, func, true);
1310 }
1311 EXPORT_SYMBOL_GPL(call_srcu);
1312 
1313 /*
1314  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
1315  */
1316 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
1317 {
1318 	struct rcu_synchronize rcu;
1319 
1320 	RCU_LOCKDEP_WARN(lockdep_is_held(ssp) ||
1321 			 lock_is_held(&rcu_bh_lock_map) ||
1322 			 lock_is_held(&rcu_lock_map) ||
1323 			 lock_is_held(&rcu_sched_lock_map),
1324 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
1325 
1326 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
1327 		return;
1328 	might_sleep();
1329 	check_init_srcu_struct(ssp);
1330 	init_completion(&rcu.completion);
1331 	init_rcu_head_on_stack(&rcu.head);
1332 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
1333 	wait_for_completion(&rcu.completion);
1334 	destroy_rcu_head_on_stack(&rcu.head);
1335 
1336 	/*
1337 	 * Make sure that later code is ordered after the SRCU grace
1338 	 * period.  This pairs with the spin_lock_irq_rcu_node()
1339 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
1340 	 * because the current CPU might have been totally uninvolved with
1341 	 * (and thus unordered against) that grace period.
1342 	 */
1343 	smp_mb();
1344 }
1345 
1346 /**
1347  * synchronize_srcu_expedited - Brute-force SRCU grace period
1348  * @ssp: srcu_struct with which to synchronize.
1349  *
1350  * Wait for an SRCU grace period to elapse, but be more aggressive about
1351  * spinning rather than blocking when waiting.
1352  *
1353  * Note that synchronize_srcu_expedited() has the same deadlock and
1354  * memory-ordering properties as does synchronize_srcu().
1355  */
1356 void synchronize_srcu_expedited(struct srcu_struct *ssp)
1357 {
1358 	__synchronize_srcu(ssp, rcu_gp_is_normal());
1359 }
1360 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
1361 
1362 /**
1363  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
1364  * @ssp: srcu_struct with which to synchronize.
1365  *
1366  * Wait for the count to drain to zero of both indexes. To avoid the
1367  * possible starvation of synchronize_srcu(), it waits for the count of
1368  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
1369  * and then flip the srcu_idx and wait for the count of the other index.
1370  *
1371  * Can block; must be called from process context.
1372  *
1373  * Note that it is illegal to call synchronize_srcu() from the corresponding
1374  * SRCU read-side critical section; doing so will result in deadlock.
1375  * However, it is perfectly legal to call synchronize_srcu() on one
1376  * srcu_struct from some other srcu_struct's read-side critical section,
1377  * as long as the resulting graph of srcu_structs is acyclic.
1378  *
1379  * There are memory-ordering constraints implied by synchronize_srcu().
1380  * On systems with more than one CPU, when synchronize_srcu() returns,
1381  * each CPU is guaranteed to have executed a full memory barrier since
1382  * the end of its last corresponding SRCU read-side critical section
1383  * whose beginning preceded the call to synchronize_srcu().  In addition,
1384  * each CPU having an SRCU read-side critical section that extends beyond
1385  * the return from synchronize_srcu() is guaranteed to have executed a
1386  * full memory barrier after the beginning of synchronize_srcu() and before
1387  * the beginning of that SRCU read-side critical section.  Note that these
1388  * guarantees include CPUs that are offline, idle, or executing in user mode,
1389  * as well as CPUs that are executing in the kernel.
1390  *
1391  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
1392  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
1393  * to have executed a full memory barrier during the execution of
1394  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
1395  * are the same CPU, but again only if the system has more than one CPU.
1396  *
1397  * Of course, these memory-ordering guarantees apply only when
1398  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1399  * passed the same srcu_struct structure.
1400  *
1401  * Implementation of these memory-ordering guarantees is similar to
1402  * that of synchronize_rcu().
1403  *
1404  * If SRCU is likely idle, expedite the first request.  This semantic
1405  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1406  * SRCU must also provide it.  Note that detecting idleness is heuristic
1407  * and subject to both false positives and negatives.
1408  */
1409 void synchronize_srcu(struct srcu_struct *ssp)
1410 {
1411 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1412 		synchronize_srcu_expedited(ssp);
1413 	else
1414 		__synchronize_srcu(ssp, true);
1415 }
1416 EXPORT_SYMBOL_GPL(synchronize_srcu);
1417 
1418 /**
1419  * get_state_synchronize_srcu - Provide an end-of-grace-period cookie
1420  * @ssp: srcu_struct to provide cookie for.
1421  *
1422  * This function returns a cookie that can be passed to
1423  * poll_state_synchronize_srcu(), which will return true if a full grace
1424  * period has elapsed in the meantime.  It is the caller's responsibility
1425  * to make sure that grace period happens, for example, by invoking
1426  * call_srcu() after return from get_state_synchronize_srcu().
1427  */
1428 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp)
1429 {
1430 	// Any prior manipulation of SRCU-protected data must happen
1431 	// before the load from ->srcu_gp_seq.
1432 	smp_mb();
1433 	return rcu_seq_snap(&ssp->srcu_gp_seq);
1434 }
1435 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu);
1436 
1437 /**
1438  * start_poll_synchronize_srcu - Provide cookie and start grace period
1439  * @ssp: srcu_struct to provide cookie for.
1440  *
1441  * This function returns a cookie that can be passed to
1442  * poll_state_synchronize_srcu(), which will return true if a full grace
1443  * period has elapsed in the meantime.  Unlike get_state_synchronize_srcu(),
1444  * this function also ensures that any needed SRCU grace period will be
1445  * started.  This convenience does come at a cost in terms of CPU overhead.
1446  */
1447 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp)
1448 {
1449 	return srcu_gp_start_if_needed(ssp, NULL, true);
1450 }
1451 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu);
1452 
1453 /**
1454  * poll_state_synchronize_srcu - Has cookie's grace period ended?
1455  * @ssp: srcu_struct to provide cookie for.
1456  * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu().
1457  *
1458  * This function takes the cookie that was returned from either
1459  * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and
1460  * returns @true if an SRCU grace period elapsed since the time that the
1461  * cookie was created.
1462  *
1463  * Because cookies are finite in size, wrapping/overflow is possible.
1464  * This is more pronounced on 32-bit systems where cookies are 32 bits,
1465  * where in theory wrapping could happen in about 14 hours assuming
1466  * 25-microsecond expedited SRCU grace periods.  However, a more likely
1467  * overflow lower bound is on the order of 24 days in the case of
1468  * one-millisecond SRCU grace periods.  Of course, wrapping in a 64-bit
1469  * system requires geologic timespans, as in more than seven million years
1470  * even for expedited SRCU grace periods.
1471  *
1472  * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems
1473  * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU.  This uses
1474  * a 16-bit cookie, which rcutorture routinely wraps in a matter of a
1475  * few minutes.  If this proves to be a problem, this counter will be
1476  * expanded to the same size as for Tree SRCU.
1477  */
1478 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie)
1479 {
1480 	if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie))
1481 		return false;
1482 	// Ensure that the end of the SRCU grace period happens before
1483 	// any subsequent code that the caller might execute.
1484 	smp_mb(); // ^^^
1485 	return true;
1486 }
1487 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu);
1488 
1489 /*
1490  * Callback function for srcu_barrier() use.
1491  */
1492 static void srcu_barrier_cb(struct rcu_head *rhp)
1493 {
1494 	struct srcu_data *sdp;
1495 	struct srcu_struct *ssp;
1496 
1497 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1498 	ssp = sdp->ssp;
1499 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1500 		complete(&ssp->srcu_barrier_completion);
1501 }
1502 
1503 /*
1504  * Enqueue an srcu_barrier() callback on the specified srcu_data
1505  * structure's ->cblist.  but only if that ->cblist already has at least one
1506  * callback enqueued.  Note that if a CPU already has callbacks enqueue,
1507  * it must have already registered the need for a future grace period,
1508  * so all we need do is enqueue a callback that will use the same grace
1509  * period as the last callback already in the queue.
1510  */
1511 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp)
1512 {
1513 	spin_lock_irq_rcu_node(sdp);
1514 	atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1515 	sdp->srcu_barrier_head.func = srcu_barrier_cb;
1516 	debug_rcu_head_queue(&sdp->srcu_barrier_head);
1517 	if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1518 				   &sdp->srcu_barrier_head)) {
1519 		debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1520 		atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1521 	}
1522 	spin_unlock_irq_rcu_node(sdp);
1523 }
1524 
1525 /**
1526  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1527  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1528  */
1529 void srcu_barrier(struct srcu_struct *ssp)
1530 {
1531 	int cpu;
1532 	int idx;
1533 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1534 
1535 	check_init_srcu_struct(ssp);
1536 	mutex_lock(&ssp->srcu_barrier_mutex);
1537 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1538 		smp_mb(); /* Force ordering following return. */
1539 		mutex_unlock(&ssp->srcu_barrier_mutex);
1540 		return; /* Someone else did our work for us. */
1541 	}
1542 	rcu_seq_start(&ssp->srcu_barrier_seq);
1543 	init_completion(&ssp->srcu_barrier_completion);
1544 
1545 	/* Initial count prevents reaching zero until all CBs are posted. */
1546 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1547 
1548 	idx = __srcu_read_lock_nmisafe(ssp);
1549 	if (smp_load_acquire(&ssp->srcu_sup->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
1550 		srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda,	get_boot_cpu_id()));
1551 	else
1552 		for_each_possible_cpu(cpu)
1553 			srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
1554 	__srcu_read_unlock_nmisafe(ssp, idx);
1555 
1556 	/* Remove the initial count, at which point reaching zero can happen. */
1557 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1558 		complete(&ssp->srcu_barrier_completion);
1559 	wait_for_completion(&ssp->srcu_barrier_completion);
1560 
1561 	rcu_seq_end(&ssp->srcu_barrier_seq);
1562 	mutex_unlock(&ssp->srcu_barrier_mutex);
1563 }
1564 EXPORT_SYMBOL_GPL(srcu_barrier);
1565 
1566 /**
1567  * srcu_batches_completed - return batches completed.
1568  * @ssp: srcu_struct on which to report batch completion.
1569  *
1570  * Report the number of batches, correlated with, but not necessarily
1571  * precisely the same as, the number of grace periods that have elapsed.
1572  */
1573 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1574 {
1575 	return READ_ONCE(ssp->srcu_idx);
1576 }
1577 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1578 
1579 /*
1580  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1581  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1582  * completed in that state.
1583  */
1584 static void srcu_advance_state(struct srcu_struct *ssp)
1585 {
1586 	int idx;
1587 
1588 	mutex_lock(&ssp->srcu_sup->srcu_gp_mutex);
1589 
1590 	/*
1591 	 * Because readers might be delayed for an extended period after
1592 	 * fetching ->srcu_idx for their index, at any point in time there
1593 	 * might well be readers using both idx=0 and idx=1.  We therefore
1594 	 * need to wait for readers to clear from both index values before
1595 	 * invoking a callback.
1596 	 *
1597 	 * The load-acquire ensures that we see the accesses performed
1598 	 * by the prior grace period.
1599 	 */
1600 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1601 	if (idx == SRCU_STATE_IDLE) {
1602 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1603 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1604 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1605 			spin_unlock_irq_rcu_node(ssp->srcu_sup);
1606 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1607 			return;
1608 		}
1609 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1610 		if (idx == SRCU_STATE_IDLE)
1611 			srcu_gp_start(ssp);
1612 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1613 		if (idx != SRCU_STATE_IDLE) {
1614 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1615 			return; /* Someone else started the grace period. */
1616 		}
1617 	}
1618 
1619 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1620 		idx = 1 ^ (ssp->srcu_idx & 1);
1621 		if (!try_check_zero(ssp, idx, 1)) {
1622 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1623 			return; /* readers present, retry later. */
1624 		}
1625 		srcu_flip(ssp);
1626 		spin_lock_irq_rcu_node(ssp->srcu_sup);
1627 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1628 		ssp->srcu_n_exp_nodelay = 0;
1629 		spin_unlock_irq_rcu_node(ssp->srcu_sup);
1630 	}
1631 
1632 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1633 
1634 		/*
1635 		 * SRCU read-side critical sections are normally short,
1636 		 * so check at least twice in quick succession after a flip.
1637 		 */
1638 		idx = 1 ^ (ssp->srcu_idx & 1);
1639 		if (!try_check_zero(ssp, idx, 2)) {
1640 			mutex_unlock(&ssp->srcu_sup->srcu_gp_mutex);
1641 			return; /* readers present, retry later. */
1642 		}
1643 		ssp->srcu_n_exp_nodelay = 0;
1644 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1645 	}
1646 }
1647 
1648 /*
1649  * Invoke a limited number of SRCU callbacks that have passed through
1650  * their grace period.  If there are more to do, SRCU will reschedule
1651  * the workqueue.  Note that needed memory barriers have been executed
1652  * in this task's context by srcu_readers_active_idx_check().
1653  */
1654 static void srcu_invoke_callbacks(struct work_struct *work)
1655 {
1656 	long len;
1657 	bool more;
1658 	struct rcu_cblist ready_cbs;
1659 	struct rcu_head *rhp;
1660 	struct srcu_data *sdp;
1661 	struct srcu_struct *ssp;
1662 
1663 	sdp = container_of(work, struct srcu_data, work);
1664 
1665 	ssp = sdp->ssp;
1666 	rcu_cblist_init(&ready_cbs);
1667 	spin_lock_irq_rcu_node(sdp);
1668 	rcu_segcblist_advance(&sdp->srcu_cblist,
1669 			      rcu_seq_current(&ssp->srcu_gp_seq));
1670 	if (sdp->srcu_cblist_invoking ||
1671 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1672 		spin_unlock_irq_rcu_node(sdp);
1673 		return;  /* Someone else on the job or nothing to do. */
1674 	}
1675 
1676 	/* We are on the job!  Extract and invoke ready callbacks. */
1677 	sdp->srcu_cblist_invoking = true;
1678 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1679 	len = ready_cbs.len;
1680 	spin_unlock_irq_rcu_node(sdp);
1681 	rhp = rcu_cblist_dequeue(&ready_cbs);
1682 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1683 		debug_rcu_head_unqueue(rhp);
1684 		local_bh_disable();
1685 		rhp->func(rhp);
1686 		local_bh_enable();
1687 	}
1688 	WARN_ON_ONCE(ready_cbs.len);
1689 
1690 	/*
1691 	 * Update counts, accelerate new callbacks, and if needed,
1692 	 * schedule another round of callback invocation.
1693 	 */
1694 	spin_lock_irq_rcu_node(sdp);
1695 	rcu_segcblist_add_len(&sdp->srcu_cblist, -len);
1696 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1697 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1698 	sdp->srcu_cblist_invoking = false;
1699 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1700 	spin_unlock_irq_rcu_node(sdp);
1701 	if (more)
1702 		srcu_schedule_cbs_sdp(sdp, 0);
1703 }
1704 
1705 /*
1706  * Finished one round of SRCU grace period.  Start another if there are
1707  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1708  */
1709 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1710 {
1711 	bool pushgp = true;
1712 
1713 	spin_lock_irq_rcu_node(ssp->srcu_sup);
1714 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1715 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1716 			/* All requests fulfilled, time to go idle. */
1717 			pushgp = false;
1718 		}
1719 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1720 		/* Outstanding request and no GP.  Start one. */
1721 		srcu_gp_start(ssp);
1722 	}
1723 	spin_unlock_irq_rcu_node(ssp->srcu_sup);
1724 
1725 	if (pushgp)
1726 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1727 }
1728 
1729 /*
1730  * This is the work-queue function that handles SRCU grace periods.
1731  */
1732 static void process_srcu(struct work_struct *work)
1733 {
1734 	unsigned long curdelay;
1735 	unsigned long j;
1736 	struct srcu_struct *ssp;
1737 
1738 	ssp = container_of(work, struct srcu_struct, work.work);
1739 
1740 	srcu_advance_state(ssp);
1741 	curdelay = srcu_get_delay(ssp);
1742 	if (curdelay) {
1743 		WRITE_ONCE(ssp->reschedule_count, 0);
1744 	} else {
1745 		j = jiffies;
1746 		if (READ_ONCE(ssp->reschedule_jiffies) == j) {
1747 			WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1);
1748 			if (READ_ONCE(ssp->reschedule_count) > srcu_max_nodelay)
1749 				curdelay = 1;
1750 		} else {
1751 			WRITE_ONCE(ssp->reschedule_count, 1);
1752 			WRITE_ONCE(ssp->reschedule_jiffies, j);
1753 		}
1754 	}
1755 	srcu_reschedule(ssp, curdelay);
1756 }
1757 
1758 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1759 			     struct srcu_struct *ssp, int *flags,
1760 			     unsigned long *gp_seq)
1761 {
1762 	if (test_type != SRCU_FLAVOR)
1763 		return;
1764 	*flags = 0;
1765 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1766 }
1767 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1768 
1769 static const char * const srcu_size_state_name[] = {
1770 	"SRCU_SIZE_SMALL",
1771 	"SRCU_SIZE_ALLOC",
1772 	"SRCU_SIZE_WAIT_BARRIER",
1773 	"SRCU_SIZE_WAIT_CALL",
1774 	"SRCU_SIZE_WAIT_CBS1",
1775 	"SRCU_SIZE_WAIT_CBS2",
1776 	"SRCU_SIZE_WAIT_CBS3",
1777 	"SRCU_SIZE_WAIT_CBS4",
1778 	"SRCU_SIZE_BIG",
1779 	"SRCU_SIZE_???",
1780 };
1781 
1782 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1783 {
1784 	int cpu;
1785 	int idx;
1786 	unsigned long s0 = 0, s1 = 0;
1787 	int ss_state = READ_ONCE(ssp->srcu_sup->srcu_size_state);
1788 	int ss_state_idx = ss_state;
1789 
1790 	idx = ssp->srcu_idx & 0x1;
1791 	if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name))
1792 		ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1;
1793 	pr_alert("%s%s Tree SRCU g%ld state %d (%s)",
1794 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state,
1795 		 srcu_size_state_name[ss_state_idx]);
1796 	if (!ssp->sda) {
1797 		// Called after cleanup_srcu_struct(), perhaps.
1798 		pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n");
1799 	} else {
1800 		pr_cont(" per-CPU(idx=%d):", idx);
1801 		for_each_possible_cpu(cpu) {
1802 			unsigned long l0, l1;
1803 			unsigned long u0, u1;
1804 			long c0, c1;
1805 			struct srcu_data *sdp;
1806 
1807 			sdp = per_cpu_ptr(ssp->sda, cpu);
1808 			u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
1809 			u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
1810 
1811 			/*
1812 			 * Make sure that a lock is always counted if the corresponding
1813 			 * unlock is counted.
1814 			 */
1815 			smp_rmb();
1816 
1817 			l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
1818 			l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
1819 
1820 			c0 = l0 - u0;
1821 			c1 = l1 - u1;
1822 			pr_cont(" %d(%ld,%ld %c)",
1823 				cpu, c0, c1,
1824 				"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1825 			s0 += c0;
1826 			s1 += c1;
1827 		}
1828 		pr_cont(" T(%ld,%ld)\n", s0, s1);
1829 	}
1830 	if (SRCU_SIZING_IS_TORTURE())
1831 		srcu_transition_to_big(ssp);
1832 }
1833 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1834 
1835 static int __init srcu_bootup_announce(void)
1836 {
1837 	pr_info("Hierarchical SRCU implementation.\n");
1838 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1839 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1840 	if (srcu_retry_check_delay != SRCU_DEFAULT_RETRY_CHECK_DELAY)
1841 		pr_info("\tNon-default retry check delay of %lu us.\n", srcu_retry_check_delay);
1842 	if (srcu_max_nodelay != SRCU_DEFAULT_MAX_NODELAY)
1843 		pr_info("\tNon-default max no-delay of %lu.\n", srcu_max_nodelay);
1844 	pr_info("\tMax phase no-delay instances is %lu.\n", srcu_max_nodelay_phase);
1845 	return 0;
1846 }
1847 early_initcall(srcu_bootup_announce);
1848 
1849 void __init srcu_init(void)
1850 {
1851 	struct srcu_struct *ssp;
1852 
1853 	/* Decide on srcu_struct-size strategy. */
1854 	if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) {
1855 		if (nr_cpu_ids >= big_cpu_lim) {
1856 			convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention.
1857 			pr_info("%s: Setting srcu_struct sizes to big.\n", __func__);
1858 		} else {
1859 			convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND;
1860 			pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__);
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * Once that is set, call_srcu() can follow the normal path and
1866 	 * queue delayed work. This must follow RCU workqueues creation
1867 	 * and timers initialization.
1868 	 */
1869 	srcu_init_done = true;
1870 	while (!list_empty(&srcu_boot_list)) {
1871 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1872 				      work.work.entry);
1873 		list_del_init(&ssp->work.work.entry);
1874 		if (SRCU_SIZING_IS(SRCU_SIZING_INIT) &&
1875 		    ssp->srcu_sup->srcu_size_state == SRCU_SIZE_SMALL)
1876 			ssp->srcu_sup->srcu_size_state = SRCU_SIZE_ALLOC;
1877 		queue_work(rcu_gp_wq, &ssp->work.work);
1878 	}
1879 }
1880 
1881 #ifdef CONFIG_MODULES
1882 
1883 /* Initialize any global-scope srcu_struct structures used by this module. */
1884 static int srcu_module_coming(struct module *mod)
1885 {
1886 	int i;
1887 	struct srcu_struct *ssp;
1888 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1889 
1890 	for (i = 0; i < mod->num_srcu_structs; i++) {
1891 		ssp = *(sspp++);
1892 		ssp->sda = alloc_percpu(struct srcu_data);
1893 		if (WARN_ON_ONCE(!ssp->sda))
1894 			return -ENOMEM;
1895 	}
1896 	return 0;
1897 }
1898 
1899 /* Clean up any global-scope srcu_struct structures used by this module. */
1900 static void srcu_module_going(struct module *mod)
1901 {
1902 	int i;
1903 	struct srcu_struct *ssp;
1904 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1905 
1906 	for (i = 0; i < mod->num_srcu_structs; i++) {
1907 		ssp = *(sspp++);
1908 		if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed)) &&
1909 		    !WARN_ON_ONCE(!ssp->sda_is_static))
1910 			cleanup_srcu_struct(ssp);
1911 		free_percpu(ssp->sda);
1912 	}
1913 }
1914 
1915 /* Handle one module, either coming or going. */
1916 static int srcu_module_notify(struct notifier_block *self,
1917 			      unsigned long val, void *data)
1918 {
1919 	struct module *mod = data;
1920 	int ret = 0;
1921 
1922 	switch (val) {
1923 	case MODULE_STATE_COMING:
1924 		ret = srcu_module_coming(mod);
1925 		break;
1926 	case MODULE_STATE_GOING:
1927 		srcu_module_going(mod);
1928 		break;
1929 	default:
1930 		break;
1931 	}
1932 	return ret;
1933 }
1934 
1935 static struct notifier_block srcu_module_nb = {
1936 	.notifier_call = srcu_module_notify,
1937 	.priority = 0,
1938 };
1939 
1940 static __init int init_srcu_module_notifier(void)
1941 {
1942 	int ret;
1943 
1944 	ret = register_module_notifier(&srcu_module_nb);
1945 	if (ret)
1946 		pr_warn("Failed to register srcu module notifier\n");
1947 	return ret;
1948 }
1949 late_initcall(init_srcu_module_notifier);
1950 
1951 #endif /* #ifdef CONFIG_MODULES */
1952