xref: /openbmc/linux/kernel/rcu/srcutree.c (revision e0f6d1a5)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
39 
40 #include "rcu.h"
41 #include "rcu_segcblist.h"
42 
43 /* Holdoff in nanoseconds for auto-expediting. */
44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
46 module_param(exp_holdoff, ulong, 0444);
47 
48 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
49 static ulong counter_wrap_check = (ULONG_MAX >> 2);
50 module_param(counter_wrap_check, ulong, 0444);
51 
52 static void srcu_invoke_callbacks(struct work_struct *work);
53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
54 static void process_srcu(struct work_struct *work);
55 
56 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
57 #define spin_lock_rcu_node(p)					\
58 do {									\
59 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
60 	smp_mb__after_unlock_lock();					\
61 } while (0)
62 
63 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
64 
65 #define spin_lock_irq_rcu_node(p)					\
66 do {									\
67 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
68 	smp_mb__after_unlock_lock();					\
69 } while (0)
70 
71 #define spin_unlock_irq_rcu_node(p)					\
72 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
73 
74 #define spin_lock_irqsave_rcu_node(p, flags)			\
75 do {									\
76 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
77 	smp_mb__after_unlock_lock();					\
78 } while (0)
79 
80 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
81 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
82 
83 /*
84  * Initialize SRCU combining tree.  Note that statically allocated
85  * srcu_struct structures might already have srcu_read_lock() and
86  * srcu_read_unlock() running against them.  So if the is_static parameter
87  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
88  */
89 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
90 {
91 	int cpu;
92 	int i;
93 	int level = 0;
94 	int levelspread[RCU_NUM_LVLS];
95 	struct srcu_data *sdp;
96 	struct srcu_node *snp;
97 	struct srcu_node *snp_first;
98 
99 	/* Work out the overall tree geometry. */
100 	sp->level[0] = &sp->node[0];
101 	for (i = 1; i < rcu_num_lvls; i++)
102 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
103 	rcu_init_levelspread(levelspread, num_rcu_lvl);
104 
105 	/* Each pass through this loop initializes one srcu_node structure. */
106 	rcu_for_each_node_breadth_first(sp, snp) {
107 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
108 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
109 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
110 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
111 			snp->srcu_have_cbs[i] = 0;
112 			snp->srcu_data_have_cbs[i] = 0;
113 		}
114 		snp->srcu_gp_seq_needed_exp = 0;
115 		snp->grplo = -1;
116 		snp->grphi = -1;
117 		if (snp == &sp->node[0]) {
118 			/* Root node, special case. */
119 			snp->srcu_parent = NULL;
120 			continue;
121 		}
122 
123 		/* Non-root node. */
124 		if (snp == sp->level[level + 1])
125 			level++;
126 		snp->srcu_parent = sp->level[level - 1] +
127 				   (snp - sp->level[level]) /
128 				   levelspread[level - 1];
129 	}
130 
131 	/*
132 	 * Initialize the per-CPU srcu_data array, which feeds into the
133 	 * leaves of the srcu_node tree.
134 	 */
135 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
136 		     ARRAY_SIZE(sdp->srcu_unlock_count));
137 	level = rcu_num_lvls - 1;
138 	snp_first = sp->level[level];
139 	for_each_possible_cpu(cpu) {
140 		sdp = per_cpu_ptr(sp->sda, cpu);
141 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
142 		rcu_segcblist_init(&sdp->srcu_cblist);
143 		sdp->srcu_cblist_invoking = false;
144 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
145 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
146 		sdp->mynode = &snp_first[cpu / levelspread[level]];
147 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
148 			if (snp->grplo < 0)
149 				snp->grplo = cpu;
150 			snp->grphi = cpu;
151 		}
152 		sdp->cpu = cpu;
153 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
154 		sdp->sp = sp;
155 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
156 		if (is_static)
157 			continue;
158 
159 		/* Dynamically allocated, better be no srcu_read_locks()! */
160 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
161 			sdp->srcu_lock_count[i] = 0;
162 			sdp->srcu_unlock_count[i] = 0;
163 		}
164 	}
165 }
166 
167 /*
168  * Initialize non-compile-time initialized fields, including the
169  * associated srcu_node and srcu_data structures.  The is_static
170  * parameter is passed through to init_srcu_struct_nodes(), and
171  * also tells us that ->sda has already been wired up to srcu_data.
172  */
173 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
174 {
175 	mutex_init(&sp->srcu_cb_mutex);
176 	mutex_init(&sp->srcu_gp_mutex);
177 	sp->srcu_idx = 0;
178 	sp->srcu_gp_seq = 0;
179 	sp->srcu_barrier_seq = 0;
180 	mutex_init(&sp->srcu_barrier_mutex);
181 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
182 	INIT_DELAYED_WORK(&sp->work, process_srcu);
183 	if (!is_static)
184 		sp->sda = alloc_percpu(struct srcu_data);
185 	init_srcu_struct_nodes(sp, is_static);
186 	sp->srcu_gp_seq_needed_exp = 0;
187 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
188 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
189 	return sp->sda ? 0 : -ENOMEM;
190 }
191 
192 #ifdef CONFIG_DEBUG_LOCK_ALLOC
193 
194 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
195 		       struct lock_class_key *key)
196 {
197 	/* Don't re-initialize a lock while it is held. */
198 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
199 	lockdep_init_map(&sp->dep_map, name, key, 0);
200 	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
201 	return init_srcu_struct_fields(sp, false);
202 }
203 EXPORT_SYMBOL_GPL(__init_srcu_struct);
204 
205 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
206 
207 /**
208  * init_srcu_struct - initialize a sleep-RCU structure
209  * @sp: structure to initialize.
210  *
211  * Must invoke this on a given srcu_struct before passing that srcu_struct
212  * to any other function.  Each srcu_struct represents a separate domain
213  * of SRCU protection.
214  */
215 int init_srcu_struct(struct srcu_struct *sp)
216 {
217 	spin_lock_init(&ACCESS_PRIVATE(sp, lock));
218 	return init_srcu_struct_fields(sp, false);
219 }
220 EXPORT_SYMBOL_GPL(init_srcu_struct);
221 
222 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
223 
224 /*
225  * First-use initialization of statically allocated srcu_struct
226  * structure.  Wiring up the combining tree is more than can be
227  * done with compile-time initialization, so this check is added
228  * to each update-side SRCU primitive.  Use sp->lock, which -is-
229  * compile-time initialized, to resolve races involving multiple
230  * CPUs trying to garner first-use privileges.
231  */
232 static void check_init_srcu_struct(struct srcu_struct *sp)
233 {
234 	unsigned long flags;
235 
236 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
237 	/* The smp_load_acquire() pairs with the smp_store_release(). */
238 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
239 		return; /* Already initialized. */
240 	spin_lock_irqsave_rcu_node(sp, flags);
241 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
242 		spin_unlock_irqrestore_rcu_node(sp, flags);
243 		return;
244 	}
245 	init_srcu_struct_fields(sp, true);
246 	spin_unlock_irqrestore_rcu_node(sp, flags);
247 }
248 
249 /*
250  * Returns approximate total of the readers' ->srcu_lock_count[] values
251  * for the rank of per-CPU counters specified by idx.
252  */
253 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
254 {
255 	int cpu;
256 	unsigned long sum = 0;
257 
258 	for_each_possible_cpu(cpu) {
259 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
260 
261 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
262 	}
263 	return sum;
264 }
265 
266 /*
267  * Returns approximate total of the readers' ->srcu_unlock_count[] values
268  * for the rank of per-CPU counters specified by idx.
269  */
270 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
271 {
272 	int cpu;
273 	unsigned long sum = 0;
274 
275 	for_each_possible_cpu(cpu) {
276 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
277 
278 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
279 	}
280 	return sum;
281 }
282 
283 /*
284  * Return true if the number of pre-existing readers is determined to
285  * be zero.
286  */
287 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
288 {
289 	unsigned long unlocks;
290 
291 	unlocks = srcu_readers_unlock_idx(sp, idx);
292 
293 	/*
294 	 * Make sure that a lock is always counted if the corresponding
295 	 * unlock is counted. Needs to be a smp_mb() as the read side may
296 	 * contain a read from a variable that is written to before the
297 	 * synchronize_srcu() in the write side. In this case smp_mb()s
298 	 * A and B act like the store buffering pattern.
299 	 *
300 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
301 	 * after the synchronize_srcu() from being executed before the
302 	 * grace period ends.
303 	 */
304 	smp_mb(); /* A */
305 
306 	/*
307 	 * If the locks are the same as the unlocks, then there must have
308 	 * been no readers on this index at some time in between. This does
309 	 * not mean that there are no more readers, as one could have read
310 	 * the current index but not have incremented the lock counter yet.
311 	 *
312 	 * So suppose that the updater is preempted here for so long
313 	 * that more than ULONG_MAX non-nested readers come and go in
314 	 * the meantime.  It turns out that this cannot result in overflow
315 	 * because if a reader modifies its unlock count after we read it
316 	 * above, then that reader's next load of ->srcu_idx is guaranteed
317 	 * to get the new value, which will cause it to operate on the
318 	 * other bank of counters, where it cannot contribute to the
319 	 * overflow of these counters.  This means that there is a maximum
320 	 * of 2*NR_CPUS increments, which cannot overflow given current
321 	 * systems, especially not on 64-bit systems.
322 	 *
323 	 * OK, how about nesting?  This does impose a limit on nesting
324 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
325 	 * especially on 64-bit systems.
326 	 */
327 	return srcu_readers_lock_idx(sp, idx) == unlocks;
328 }
329 
330 /**
331  * srcu_readers_active - returns true if there are readers. and false
332  *                       otherwise
333  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
334  *
335  * Note that this is not an atomic primitive, and can therefore suffer
336  * severe errors when invoked on an active srcu_struct.  That said, it
337  * can be useful as an error check at cleanup time.
338  */
339 static bool srcu_readers_active(struct srcu_struct *sp)
340 {
341 	int cpu;
342 	unsigned long sum = 0;
343 
344 	for_each_possible_cpu(cpu) {
345 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
346 
347 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
348 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
349 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
350 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
351 	}
352 	return sum;
353 }
354 
355 #define SRCU_INTERVAL		1
356 
357 /*
358  * Return grace-period delay, zero if there are expedited grace
359  * periods pending, SRCU_INTERVAL otherwise.
360  */
361 static unsigned long srcu_get_delay(struct srcu_struct *sp)
362 {
363 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
364 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
365 		return 0;
366 	return SRCU_INTERVAL;
367 }
368 
369 /**
370  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
371  * @sp: structure to clean up.
372  *
373  * Must invoke this after you are finished using a given srcu_struct that
374  * was initialized via init_srcu_struct(), else you leak memory.
375  */
376 void cleanup_srcu_struct(struct srcu_struct *sp)
377 {
378 	int cpu;
379 
380 	if (WARN_ON(!srcu_get_delay(sp)))
381 		return; /* Leakage unless caller handles error. */
382 	if (WARN_ON(srcu_readers_active(sp)))
383 		return; /* Leakage unless caller handles error. */
384 	flush_delayed_work(&sp->work);
385 	for_each_possible_cpu(cpu)
386 		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
387 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
388 	    WARN_ON(srcu_readers_active(sp))) {
389 		pr_info("%s: Active srcu_struct %p state: %d\n", __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
390 		return; /* Caller forgot to stop doing call_srcu()? */
391 	}
392 	free_percpu(sp->sda);
393 	sp->sda = NULL;
394 }
395 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
396 
397 /*
398  * Counts the new reader in the appropriate per-CPU element of the
399  * srcu_struct.
400  * Returns an index that must be passed to the matching srcu_read_unlock().
401  */
402 int __srcu_read_lock(struct srcu_struct *sp)
403 {
404 	int idx;
405 
406 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
407 	this_cpu_inc(sp->sda->srcu_lock_count[idx]);
408 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
409 	return idx;
410 }
411 EXPORT_SYMBOL_GPL(__srcu_read_lock);
412 
413 /*
414  * Removes the count for the old reader from the appropriate per-CPU
415  * element of the srcu_struct.  Note that this may well be a different
416  * CPU than that which was incremented by the corresponding srcu_read_lock().
417  */
418 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
419 {
420 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
421 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
422 }
423 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
424 
425 /*
426  * We use an adaptive strategy for synchronize_srcu() and especially for
427  * synchronize_srcu_expedited().  We spin for a fixed time period
428  * (defined below) to allow SRCU readers to exit their read-side critical
429  * sections.  If there are still some readers after a few microseconds,
430  * we repeatedly block for 1-millisecond time periods.
431  */
432 #define SRCU_RETRY_CHECK_DELAY		5
433 
434 /*
435  * Start an SRCU grace period.
436  */
437 static void srcu_gp_start(struct srcu_struct *sp)
438 {
439 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
440 	int state;
441 
442 	lockdep_assert_held(&ACCESS_PRIVATE(sp, lock));
443 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
444 	rcu_segcblist_advance(&sdp->srcu_cblist,
445 			      rcu_seq_current(&sp->srcu_gp_seq));
446 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
447 				       rcu_seq_snap(&sp->srcu_gp_seq));
448 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
449 	rcu_seq_start(&sp->srcu_gp_seq);
450 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
451 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
452 }
453 
454 /*
455  * Track online CPUs to guide callback workqueue placement.
456  */
457 DEFINE_PER_CPU(bool, srcu_online);
458 
459 void srcu_online_cpu(unsigned int cpu)
460 {
461 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
462 }
463 
464 void srcu_offline_cpu(unsigned int cpu)
465 {
466 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
467 }
468 
469 /*
470  * Place the workqueue handler on the specified CPU if online, otherwise
471  * just run it whereever.  This is useful for placing workqueue handlers
472  * that are to invoke the specified CPU's callbacks.
473  */
474 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
475 				       struct delayed_work *dwork,
476 				       unsigned long delay)
477 {
478 	bool ret;
479 
480 	preempt_disable();
481 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
482 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
483 	else
484 		ret = queue_delayed_work(wq, dwork, delay);
485 	preempt_enable();
486 	return ret;
487 }
488 
489 /*
490  * Schedule callback invocation for the specified srcu_data structure,
491  * if possible, on the corresponding CPU.
492  */
493 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
494 {
495 	srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay);
496 }
497 
498 /*
499  * Schedule callback invocation for all srcu_data structures associated
500  * with the specified srcu_node structure that have callbacks for the
501  * just-completed grace period, the one corresponding to idx.  If possible,
502  * schedule this invocation on the corresponding CPUs.
503  */
504 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
505 				  unsigned long mask, unsigned long delay)
506 {
507 	int cpu;
508 
509 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
510 		if (!(mask & (1 << (cpu - snp->grplo))))
511 			continue;
512 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
513 	}
514 }
515 
516 /*
517  * Note the end of an SRCU grace period.  Initiates callback invocation
518  * and starts a new grace period if needed.
519  *
520  * The ->srcu_cb_mutex acquisition does not protect any data, but
521  * instead prevents more than one grace period from starting while we
522  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
523  * array to have a finite number of elements.
524  */
525 static void srcu_gp_end(struct srcu_struct *sp)
526 {
527 	unsigned long cbdelay;
528 	bool cbs;
529 	bool last_lvl;
530 	int cpu;
531 	unsigned long flags;
532 	unsigned long gpseq;
533 	int idx;
534 	unsigned long mask;
535 	struct srcu_data *sdp;
536 	struct srcu_node *snp;
537 
538 	/* Prevent more than one additional grace period. */
539 	mutex_lock(&sp->srcu_cb_mutex);
540 
541 	/* End the current grace period. */
542 	spin_lock_irq_rcu_node(sp);
543 	idx = rcu_seq_state(sp->srcu_gp_seq);
544 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
545 	cbdelay = srcu_get_delay(sp);
546 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
547 	rcu_seq_end(&sp->srcu_gp_seq);
548 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
549 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
550 		sp->srcu_gp_seq_needed_exp = gpseq;
551 	spin_unlock_irq_rcu_node(sp);
552 	mutex_unlock(&sp->srcu_gp_mutex);
553 	/* A new grace period can start at this point.  But only one. */
554 
555 	/* Initiate callback invocation as needed. */
556 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
557 	rcu_for_each_node_breadth_first(sp, snp) {
558 		spin_lock_irq_rcu_node(snp);
559 		cbs = false;
560 		last_lvl = snp >= sp->level[rcu_num_lvls - 1];
561 		if (last_lvl)
562 			cbs = snp->srcu_have_cbs[idx] == gpseq;
563 		snp->srcu_have_cbs[idx] = gpseq;
564 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
565 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
566 			snp->srcu_gp_seq_needed_exp = gpseq;
567 		mask = snp->srcu_data_have_cbs[idx];
568 		snp->srcu_data_have_cbs[idx] = 0;
569 		spin_unlock_irq_rcu_node(snp);
570 		if (cbs)
571 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
572 
573 		/* Occasionally prevent srcu_data counter wrap. */
574 		if (!(gpseq & counter_wrap_check) && last_lvl)
575 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
576 				sdp = per_cpu_ptr(sp->sda, cpu);
577 				spin_lock_irqsave_rcu_node(sdp, flags);
578 				if (ULONG_CMP_GE(gpseq,
579 						 sdp->srcu_gp_seq_needed + 100))
580 					sdp->srcu_gp_seq_needed = gpseq;
581 				if (ULONG_CMP_GE(gpseq,
582 						 sdp->srcu_gp_seq_needed_exp + 100))
583 					sdp->srcu_gp_seq_needed_exp = gpseq;
584 				spin_unlock_irqrestore_rcu_node(sdp, flags);
585 			}
586 	}
587 
588 	/* Callback initiation done, allow grace periods after next. */
589 	mutex_unlock(&sp->srcu_cb_mutex);
590 
591 	/* Start a new grace period if needed. */
592 	spin_lock_irq_rcu_node(sp);
593 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
594 	if (!rcu_seq_state(gpseq) &&
595 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
596 		srcu_gp_start(sp);
597 		spin_unlock_irq_rcu_node(sp);
598 		srcu_reschedule(sp, 0);
599 	} else {
600 		spin_unlock_irq_rcu_node(sp);
601 	}
602 }
603 
604 /*
605  * Funnel-locking scheme to scalably mediate many concurrent expedited
606  * grace-period requests.  This function is invoked for the first known
607  * expedited request for a grace period that has already been requested,
608  * but without expediting.  To start a completely new grace period,
609  * whether expedited or not, use srcu_funnel_gp_start() instead.
610  */
611 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
612 				  unsigned long s)
613 {
614 	unsigned long flags;
615 
616 	for (; snp != NULL; snp = snp->srcu_parent) {
617 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
618 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
619 			return;
620 		spin_lock_irqsave_rcu_node(snp, flags);
621 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
622 			spin_unlock_irqrestore_rcu_node(snp, flags);
623 			return;
624 		}
625 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
626 		spin_unlock_irqrestore_rcu_node(snp, flags);
627 	}
628 	spin_lock_irqsave_rcu_node(sp, flags);
629 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
630 		sp->srcu_gp_seq_needed_exp = s;
631 	spin_unlock_irqrestore_rcu_node(sp, flags);
632 }
633 
634 /*
635  * Funnel-locking scheme to scalably mediate many concurrent grace-period
636  * requests.  The winner has to do the work of actually starting grace
637  * period s.  Losers must either ensure that their desired grace-period
638  * number is recorded on at least their leaf srcu_node structure, or they
639  * must take steps to invoke their own callbacks.
640  */
641 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
642 				 unsigned long s, bool do_norm)
643 {
644 	unsigned long flags;
645 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
646 	struct srcu_node *snp = sdp->mynode;
647 	unsigned long snp_seq;
648 
649 	/* Each pass through the loop does one level of the srcu_node tree. */
650 	for (; snp != NULL; snp = snp->srcu_parent) {
651 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
652 			return; /* GP already done and CBs recorded. */
653 		spin_lock_irqsave_rcu_node(snp, flags);
654 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
655 			snp_seq = snp->srcu_have_cbs[idx];
656 			if (snp == sdp->mynode && snp_seq == s)
657 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
658 			spin_unlock_irqrestore_rcu_node(snp, flags);
659 			if (snp == sdp->mynode && snp_seq != s) {
660 				srcu_schedule_cbs_sdp(sdp, do_norm
661 							   ? SRCU_INTERVAL
662 							   : 0);
663 				return;
664 			}
665 			if (!do_norm)
666 				srcu_funnel_exp_start(sp, snp, s);
667 			return;
668 		}
669 		snp->srcu_have_cbs[idx] = s;
670 		if (snp == sdp->mynode)
671 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
672 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
673 			snp->srcu_gp_seq_needed_exp = s;
674 		spin_unlock_irqrestore_rcu_node(snp, flags);
675 	}
676 
677 	/* Top of tree, must ensure the grace period will be started. */
678 	spin_lock_irqsave_rcu_node(sp, flags);
679 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
680 		/*
681 		 * Record need for grace period s.  Pair with load
682 		 * acquire setting up for initialization.
683 		 */
684 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
685 	}
686 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
687 		sp->srcu_gp_seq_needed_exp = s;
688 
689 	/* If grace period not already done and none in progress, start it. */
690 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
691 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
692 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
693 		srcu_gp_start(sp);
694 		queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp));
695 	}
696 	spin_unlock_irqrestore_rcu_node(sp, flags);
697 }
698 
699 /*
700  * Wait until all readers counted by array index idx complete, but
701  * loop an additional time if there is an expedited grace period pending.
702  * The caller must ensure that ->srcu_idx is not changed while checking.
703  */
704 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
705 {
706 	for (;;) {
707 		if (srcu_readers_active_idx_check(sp, idx))
708 			return true;
709 		if (--trycount + !srcu_get_delay(sp) <= 0)
710 			return false;
711 		udelay(SRCU_RETRY_CHECK_DELAY);
712 	}
713 }
714 
715 /*
716  * Increment the ->srcu_idx counter so that future SRCU readers will
717  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
718  * us to wait for pre-existing readers in a starvation-free manner.
719  */
720 static void srcu_flip(struct srcu_struct *sp)
721 {
722 	/*
723 	 * Ensure that if this updater saw a given reader's increment
724 	 * from __srcu_read_lock(), that reader was using an old value
725 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
726 	 * new value of ->srcu_idx, this updater's earlier scans cannot
727 	 * have seen that reader's increments (which is OK, because this
728 	 * grace period need not wait on that reader).
729 	 */
730 	smp_mb(); /* E */  /* Pairs with B and C. */
731 
732 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
733 
734 	/*
735 	 * Ensure that if the updater misses an __srcu_read_unlock()
736 	 * increment, that task's next __srcu_read_lock() will see the
737 	 * above counter update.  Note that both this memory barrier
738 	 * and the one in srcu_readers_active_idx_check() provide the
739 	 * guarantee for __srcu_read_lock().
740 	 */
741 	smp_mb(); /* D */  /* Pairs with C. */
742 }
743 
744 /*
745  * If SRCU is likely idle, return true, otherwise return false.
746  *
747  * Note that it is OK for several current from-idle requests for a new
748  * grace period from idle to specify expediting because they will all end
749  * up requesting the same grace period anyhow.  So no loss.
750  *
751  * Note also that if any CPU (including the current one) is still invoking
752  * callbacks, this function will nevertheless say "idle".  This is not
753  * ideal, but the overhead of checking all CPUs' callback lists is even
754  * less ideal, especially on large systems.  Furthermore, the wakeup
755  * can happen before the callback is fully removed, so we have no choice
756  * but to accept this type of error.
757  *
758  * This function is also subject to counter-wrap errors, but let's face
759  * it, if this function was preempted for enough time for the counters
760  * to wrap, it really doesn't matter whether or not we expedite the grace
761  * period.  The extra overhead of a needlessly expedited grace period is
762  * negligible when amoritized over that time period, and the extra latency
763  * of a needlessly non-expedited grace period is similarly negligible.
764  */
765 static bool srcu_might_be_idle(struct srcu_struct *sp)
766 {
767 	unsigned long curseq;
768 	unsigned long flags;
769 	struct srcu_data *sdp;
770 	unsigned long t;
771 
772 	/* If the local srcu_data structure has callbacks, not idle.  */
773 	local_irq_save(flags);
774 	sdp = this_cpu_ptr(sp->sda);
775 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
776 		local_irq_restore(flags);
777 		return false; /* Callbacks already present, so not idle. */
778 	}
779 	local_irq_restore(flags);
780 
781 	/*
782 	 * No local callbacks, so probabalistically probe global state.
783 	 * Exact information would require acquiring locks, which would
784 	 * kill scalability, hence the probabalistic nature of the probe.
785 	 */
786 
787 	/* First, see if enough time has passed since the last GP. */
788 	t = ktime_get_mono_fast_ns();
789 	if (exp_holdoff == 0 ||
790 	    time_in_range_open(t, sp->srcu_last_gp_end,
791 			       sp->srcu_last_gp_end + exp_holdoff))
792 		return false; /* Too soon after last GP. */
793 
794 	/* Next, check for probable idleness. */
795 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
796 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
797 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
798 		return false; /* Grace period in progress, so not idle. */
799 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
800 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
801 		return false; /* GP # changed, so not idle. */
802 	return true; /* With reasonable probability, idle! */
803 }
804 
805 /*
806  * SRCU callback function to leak a callback.
807  */
808 static void srcu_leak_callback(struct rcu_head *rhp)
809 {
810 }
811 
812 /*
813  * Enqueue an SRCU callback on the srcu_data structure associated with
814  * the current CPU and the specified srcu_struct structure, initiating
815  * grace-period processing if it is not already running.
816  *
817  * Note that all CPUs must agree that the grace period extended beyond
818  * all pre-existing SRCU read-side critical section.  On systems with
819  * more than one CPU, this means that when "func()" is invoked, each CPU
820  * is guaranteed to have executed a full memory barrier since the end of
821  * its last corresponding SRCU read-side critical section whose beginning
822  * preceded the call to call_rcu().  It also means that each CPU executing
823  * an SRCU read-side critical section that continues beyond the start of
824  * "func()" must have executed a memory barrier after the call_rcu()
825  * but before the beginning of that SRCU read-side critical section.
826  * Note that these guarantees include CPUs that are offline, idle, or
827  * executing in user mode, as well as CPUs that are executing in the kernel.
828  *
829  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
830  * resulting SRCU callback function "func()", then both CPU A and CPU
831  * B are guaranteed to execute a full memory barrier during the time
832  * interval between the call to call_rcu() and the invocation of "func()".
833  * This guarantee applies even if CPU A and CPU B are the same CPU (but
834  * again only if the system has more than one CPU).
835  *
836  * Of course, these guarantees apply only for invocations of call_srcu(),
837  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
838  * srcu_struct structure.
839  */
840 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
841 		 rcu_callback_t func, bool do_norm)
842 {
843 	unsigned long flags;
844 	bool needexp = false;
845 	bool needgp = false;
846 	unsigned long s;
847 	struct srcu_data *sdp;
848 
849 	check_init_srcu_struct(sp);
850 	if (debug_rcu_head_queue(rhp)) {
851 		/* Probable double call_srcu(), so leak the callback. */
852 		WRITE_ONCE(rhp->func, srcu_leak_callback);
853 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
854 		return;
855 	}
856 	rhp->func = func;
857 	local_irq_save(flags);
858 	sdp = this_cpu_ptr(sp->sda);
859 	spin_lock_rcu_node(sdp);
860 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
861 	rcu_segcblist_advance(&sdp->srcu_cblist,
862 			      rcu_seq_current(&sp->srcu_gp_seq));
863 	s = rcu_seq_snap(&sp->srcu_gp_seq);
864 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
865 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
866 		sdp->srcu_gp_seq_needed = s;
867 		needgp = true;
868 	}
869 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
870 		sdp->srcu_gp_seq_needed_exp = s;
871 		needexp = true;
872 	}
873 	spin_unlock_irqrestore_rcu_node(sdp, flags);
874 	if (needgp)
875 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
876 	else if (needexp)
877 		srcu_funnel_exp_start(sp, sdp->mynode, s);
878 }
879 
880 /**
881  * call_srcu() - Queue a callback for invocation after an SRCU grace period
882  * @sp: srcu_struct in queue the callback
883  * @rhp: structure to be used for queueing the SRCU callback.
884  * @func: function to be invoked after the SRCU grace period
885  *
886  * The callback function will be invoked some time after a full SRCU
887  * grace period elapses, in other words after all pre-existing SRCU
888  * read-side critical sections have completed.  However, the callback
889  * function might well execute concurrently with other SRCU read-side
890  * critical sections that started after call_srcu() was invoked.  SRCU
891  * read-side critical sections are delimited by srcu_read_lock() and
892  * srcu_read_unlock(), and may be nested.
893  *
894  * The callback will be invoked from process context, but must nevertheless
895  * be fast and must not block.
896  */
897 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
898 	       rcu_callback_t func)
899 {
900 	__call_srcu(sp, rhp, func, true);
901 }
902 EXPORT_SYMBOL_GPL(call_srcu);
903 
904 /*
905  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
906  */
907 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
908 {
909 	struct rcu_synchronize rcu;
910 
911 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
912 			 lock_is_held(&rcu_bh_lock_map) ||
913 			 lock_is_held(&rcu_lock_map) ||
914 			 lock_is_held(&rcu_sched_lock_map),
915 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
916 
917 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
918 		return;
919 	might_sleep();
920 	check_init_srcu_struct(sp);
921 	init_completion(&rcu.completion);
922 	init_rcu_head_on_stack(&rcu.head);
923 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
924 	wait_for_completion(&rcu.completion);
925 	destroy_rcu_head_on_stack(&rcu.head);
926 
927 	/*
928 	 * Make sure that later code is ordered after the SRCU grace
929 	 * period.  This pairs with the spin_lock_irq_rcu_node()
930 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
931 	 * because the current CPU might have been totally uninvolved with
932 	 * (and thus unordered against) that grace period.
933 	 */
934 	smp_mb();
935 }
936 
937 /**
938  * synchronize_srcu_expedited - Brute-force SRCU grace period
939  * @sp: srcu_struct with which to synchronize.
940  *
941  * Wait for an SRCU grace period to elapse, but be more aggressive about
942  * spinning rather than blocking when waiting.
943  *
944  * Note that synchronize_srcu_expedited() has the same deadlock and
945  * memory-ordering properties as does synchronize_srcu().
946  */
947 void synchronize_srcu_expedited(struct srcu_struct *sp)
948 {
949 	__synchronize_srcu(sp, rcu_gp_is_normal());
950 }
951 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
952 
953 /**
954  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
955  * @sp: srcu_struct with which to synchronize.
956  *
957  * Wait for the count to drain to zero of both indexes. To avoid the
958  * possible starvation of synchronize_srcu(), it waits for the count of
959  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
960  * and then flip the srcu_idx and wait for the count of the other index.
961  *
962  * Can block; must be called from process context.
963  *
964  * Note that it is illegal to call synchronize_srcu() from the corresponding
965  * SRCU read-side critical section; doing so will result in deadlock.
966  * However, it is perfectly legal to call synchronize_srcu() on one
967  * srcu_struct from some other srcu_struct's read-side critical section,
968  * as long as the resulting graph of srcu_structs is acyclic.
969  *
970  * There are memory-ordering constraints implied by synchronize_srcu().
971  * On systems with more than one CPU, when synchronize_srcu() returns,
972  * each CPU is guaranteed to have executed a full memory barrier since
973  * the end of its last corresponding SRCU-sched read-side critical section
974  * whose beginning preceded the call to synchronize_srcu().  In addition,
975  * each CPU having an SRCU read-side critical section that extends beyond
976  * the return from synchronize_srcu() is guaranteed to have executed a
977  * full memory barrier after the beginning of synchronize_srcu() and before
978  * the beginning of that SRCU read-side critical section.  Note that these
979  * guarantees include CPUs that are offline, idle, or executing in user mode,
980  * as well as CPUs that are executing in the kernel.
981  *
982  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
983  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
984  * to have executed a full memory barrier during the execution of
985  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
986  * are the same CPU, but again only if the system has more than one CPU.
987  *
988  * Of course, these memory-ordering guarantees apply only when
989  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
990  * passed the same srcu_struct structure.
991  *
992  * If SRCU is likely idle, expedite the first request.  This semantic
993  * was provided by Classic SRCU, and is relied upon by its users, so TREE
994  * SRCU must also provide it.  Note that detecting idleness is heuristic
995  * and subject to both false positives and negatives.
996  */
997 void synchronize_srcu(struct srcu_struct *sp)
998 {
999 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
1000 		synchronize_srcu_expedited(sp);
1001 	else
1002 		__synchronize_srcu(sp, true);
1003 }
1004 EXPORT_SYMBOL_GPL(synchronize_srcu);
1005 
1006 /*
1007  * Callback function for srcu_barrier() use.
1008  */
1009 static void srcu_barrier_cb(struct rcu_head *rhp)
1010 {
1011 	struct srcu_data *sdp;
1012 	struct srcu_struct *sp;
1013 
1014 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1015 	sp = sdp->sp;
1016 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1017 		complete(&sp->srcu_barrier_completion);
1018 }
1019 
1020 /**
1021  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1022  * @sp: srcu_struct on which to wait for in-flight callbacks.
1023  */
1024 void srcu_barrier(struct srcu_struct *sp)
1025 {
1026 	int cpu;
1027 	struct srcu_data *sdp;
1028 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
1029 
1030 	check_init_srcu_struct(sp);
1031 	mutex_lock(&sp->srcu_barrier_mutex);
1032 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
1033 		smp_mb(); /* Force ordering following return. */
1034 		mutex_unlock(&sp->srcu_barrier_mutex);
1035 		return; /* Someone else did our work for us. */
1036 	}
1037 	rcu_seq_start(&sp->srcu_barrier_seq);
1038 	init_completion(&sp->srcu_barrier_completion);
1039 
1040 	/* Initial count prevents reaching zero until all CBs are posted. */
1041 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
1042 
1043 	/*
1044 	 * Each pass through this loop enqueues a callback, but only
1045 	 * on CPUs already having callbacks enqueued.  Note that if
1046 	 * a CPU already has callbacks enqueue, it must have already
1047 	 * registered the need for a future grace period, so all we
1048 	 * need do is enqueue a callback that will use the same
1049 	 * grace period as the last callback already in the queue.
1050 	 */
1051 	for_each_possible_cpu(cpu) {
1052 		sdp = per_cpu_ptr(sp->sda, cpu);
1053 		spin_lock_irq_rcu_node(sdp);
1054 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
1055 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1056 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1057 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1058 					   &sdp->srcu_barrier_head, 0)) {
1059 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1060 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
1061 		}
1062 		spin_unlock_irq_rcu_node(sdp);
1063 	}
1064 
1065 	/* Remove the initial count, at which point reaching zero can happen. */
1066 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
1067 		complete(&sp->srcu_barrier_completion);
1068 	wait_for_completion(&sp->srcu_barrier_completion);
1069 
1070 	rcu_seq_end(&sp->srcu_barrier_seq);
1071 	mutex_unlock(&sp->srcu_barrier_mutex);
1072 }
1073 EXPORT_SYMBOL_GPL(srcu_barrier);
1074 
1075 /**
1076  * srcu_batches_completed - return batches completed.
1077  * @sp: srcu_struct on which to report batch completion.
1078  *
1079  * Report the number of batches, correlated with, but not necessarily
1080  * precisely the same as, the number of grace periods that have elapsed.
1081  */
1082 unsigned long srcu_batches_completed(struct srcu_struct *sp)
1083 {
1084 	return sp->srcu_idx;
1085 }
1086 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1087 
1088 /*
1089  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1090  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1091  * completed in that state.
1092  */
1093 static void srcu_advance_state(struct srcu_struct *sp)
1094 {
1095 	int idx;
1096 
1097 	mutex_lock(&sp->srcu_gp_mutex);
1098 
1099 	/*
1100 	 * Because readers might be delayed for an extended period after
1101 	 * fetching ->srcu_idx for their index, at any point in time there
1102 	 * might well be readers using both idx=0 and idx=1.  We therefore
1103 	 * need to wait for readers to clear from both index values before
1104 	 * invoking a callback.
1105 	 *
1106 	 * The load-acquire ensures that we see the accesses performed
1107 	 * by the prior grace period.
1108 	 */
1109 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1110 	if (idx == SRCU_STATE_IDLE) {
1111 		spin_lock_irq_rcu_node(sp);
1112 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1113 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1114 			spin_unlock_irq_rcu_node(sp);
1115 			mutex_unlock(&sp->srcu_gp_mutex);
1116 			return;
1117 		}
1118 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1119 		if (idx == SRCU_STATE_IDLE)
1120 			srcu_gp_start(sp);
1121 		spin_unlock_irq_rcu_node(sp);
1122 		if (idx != SRCU_STATE_IDLE) {
1123 			mutex_unlock(&sp->srcu_gp_mutex);
1124 			return; /* Someone else started the grace period. */
1125 		}
1126 	}
1127 
1128 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1129 		idx = 1 ^ (sp->srcu_idx & 1);
1130 		if (!try_check_zero(sp, idx, 1)) {
1131 			mutex_unlock(&sp->srcu_gp_mutex);
1132 			return; /* readers present, retry later. */
1133 		}
1134 		srcu_flip(sp);
1135 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1136 	}
1137 
1138 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1139 
1140 		/*
1141 		 * SRCU read-side critical sections are normally short,
1142 		 * so check at least twice in quick succession after a flip.
1143 		 */
1144 		idx = 1 ^ (sp->srcu_idx & 1);
1145 		if (!try_check_zero(sp, idx, 2)) {
1146 			mutex_unlock(&sp->srcu_gp_mutex);
1147 			return; /* readers present, retry later. */
1148 		}
1149 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1150 	}
1151 }
1152 
1153 /*
1154  * Invoke a limited number of SRCU callbacks that have passed through
1155  * their grace period.  If there are more to do, SRCU will reschedule
1156  * the workqueue.  Note that needed memory barriers have been executed
1157  * in this task's context by srcu_readers_active_idx_check().
1158  */
1159 static void srcu_invoke_callbacks(struct work_struct *work)
1160 {
1161 	bool more;
1162 	struct rcu_cblist ready_cbs;
1163 	struct rcu_head *rhp;
1164 	struct srcu_data *sdp;
1165 	struct srcu_struct *sp;
1166 
1167 	sdp = container_of(work, struct srcu_data, work.work);
1168 	sp = sdp->sp;
1169 	rcu_cblist_init(&ready_cbs);
1170 	spin_lock_irq_rcu_node(sdp);
1171 	rcu_segcblist_advance(&sdp->srcu_cblist,
1172 			      rcu_seq_current(&sp->srcu_gp_seq));
1173 	if (sdp->srcu_cblist_invoking ||
1174 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1175 		spin_unlock_irq_rcu_node(sdp);
1176 		return;  /* Someone else on the job or nothing to do. */
1177 	}
1178 
1179 	/* We are on the job!  Extract and invoke ready callbacks. */
1180 	sdp->srcu_cblist_invoking = true;
1181 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1182 	spin_unlock_irq_rcu_node(sdp);
1183 	rhp = rcu_cblist_dequeue(&ready_cbs);
1184 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1185 		debug_rcu_head_unqueue(rhp);
1186 		local_bh_disable();
1187 		rhp->func(rhp);
1188 		local_bh_enable();
1189 	}
1190 
1191 	/*
1192 	 * Update counts, accelerate new callbacks, and if needed,
1193 	 * schedule another round of callback invocation.
1194 	 */
1195 	spin_lock_irq_rcu_node(sdp);
1196 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1197 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1198 				       rcu_seq_snap(&sp->srcu_gp_seq));
1199 	sdp->srcu_cblist_invoking = false;
1200 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1201 	spin_unlock_irq_rcu_node(sdp);
1202 	if (more)
1203 		srcu_schedule_cbs_sdp(sdp, 0);
1204 }
1205 
1206 /*
1207  * Finished one round of SRCU grace period.  Start another if there are
1208  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1209  */
1210 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1211 {
1212 	bool pushgp = true;
1213 
1214 	spin_lock_irq_rcu_node(sp);
1215 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1216 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1217 			/* All requests fulfilled, time to go idle. */
1218 			pushgp = false;
1219 		}
1220 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1221 		/* Outstanding request and no GP.  Start one. */
1222 		srcu_gp_start(sp);
1223 	}
1224 	spin_unlock_irq_rcu_node(sp);
1225 
1226 	if (pushgp)
1227 		queue_delayed_work(rcu_gp_wq, &sp->work, delay);
1228 }
1229 
1230 /*
1231  * This is the work-queue function that handles SRCU grace periods.
1232  */
1233 static void process_srcu(struct work_struct *work)
1234 {
1235 	struct srcu_struct *sp;
1236 
1237 	sp = container_of(work, struct srcu_struct, work.work);
1238 
1239 	srcu_advance_state(sp);
1240 	srcu_reschedule(sp, srcu_get_delay(sp));
1241 }
1242 
1243 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1244 			     struct srcu_struct *sp, int *flags,
1245 			     unsigned long *gpnum, unsigned long *completed)
1246 {
1247 	if (test_type != SRCU_FLAVOR)
1248 		return;
1249 	*flags = 0;
1250 	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1251 	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1252 }
1253 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1254 
1255 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf)
1256 {
1257 	int cpu;
1258 	int idx;
1259 	unsigned long s0 = 0, s1 = 0;
1260 
1261 	idx = sp->srcu_idx & 0x1;
1262 	pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx);
1263 	for_each_possible_cpu(cpu) {
1264 		unsigned long l0, l1;
1265 		unsigned long u0, u1;
1266 		long c0, c1;
1267 		struct srcu_data *counts;
1268 
1269 		counts = per_cpu_ptr(sp->sda, cpu);
1270 		u0 = counts->srcu_unlock_count[!idx];
1271 		u1 = counts->srcu_unlock_count[idx];
1272 
1273 		/*
1274 		 * Make sure that a lock is always counted if the corresponding
1275 		 * unlock is counted.
1276 		 */
1277 		smp_rmb();
1278 
1279 		l0 = counts->srcu_lock_count[!idx];
1280 		l1 = counts->srcu_lock_count[idx];
1281 
1282 		c0 = l0 - u0;
1283 		c1 = l1 - u1;
1284 		pr_cont(" %d(%ld,%ld)", cpu, c0, c1);
1285 		s0 += c0;
1286 		s1 += c1;
1287 	}
1288 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1289 }
1290 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1291 
1292 static int __init srcu_bootup_announce(void)
1293 {
1294 	pr_info("Hierarchical SRCU implementation.\n");
1295 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1296 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1297 	return 0;
1298 }
1299 early_initcall(srcu_bootup_announce);
1300