1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/srcu.h> 29 30 #include "rcu.h" 31 #include "rcu_segcblist.h" 32 33 /* Holdoff in nanoseconds for auto-expediting. */ 34 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 35 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 36 module_param(exp_holdoff, ulong, 0444); 37 38 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 39 static ulong counter_wrap_check = (ULONG_MAX >> 2); 40 module_param(counter_wrap_check, ulong, 0444); 41 42 /* 43 * Control conversion to SRCU_SIZE_BIG: 44 * 0: Don't convert at all. 45 * 1: Convert at init_srcu_struct() time. 46 * 2: Convert when rcutorture invokes srcu_torture_stats_print(). 47 * 3: Decide at boot time based on system shape (default). 48 * 0x1x: Convert when excessive contention encountered. 49 */ 50 #define SRCU_SIZING_NONE 0 51 #define SRCU_SIZING_INIT 1 52 #define SRCU_SIZING_TORTURE 2 53 #define SRCU_SIZING_AUTO 3 54 #define SRCU_SIZING_CONTEND 0x10 55 #define SRCU_SIZING_IS(x) ((convert_to_big & ~SRCU_SIZING_CONTEND) == x) 56 #define SRCU_SIZING_IS_NONE() (SRCU_SIZING_IS(SRCU_SIZING_NONE)) 57 #define SRCU_SIZING_IS_INIT() (SRCU_SIZING_IS(SRCU_SIZING_INIT)) 58 #define SRCU_SIZING_IS_TORTURE() (SRCU_SIZING_IS(SRCU_SIZING_TORTURE)) 59 #define SRCU_SIZING_IS_CONTEND() (convert_to_big & SRCU_SIZING_CONTEND) 60 static int convert_to_big = SRCU_SIZING_AUTO; 61 module_param(convert_to_big, int, 0444); 62 63 /* Number of CPUs to trigger init_srcu_struct()-time transition to big. */ 64 static int big_cpu_lim __read_mostly = 128; 65 module_param(big_cpu_lim, int, 0444); 66 67 /* Contention events per jiffy to initiate transition to big. */ 68 static int small_contention_lim __read_mostly = 100; 69 module_param(small_contention_lim, int, 0444); 70 71 /* Early-boot callback-management, so early that no lock is required! */ 72 static LIST_HEAD(srcu_boot_list); 73 static bool __read_mostly srcu_init_done; 74 75 static void srcu_invoke_callbacks(struct work_struct *work); 76 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 77 static void process_srcu(struct work_struct *work); 78 static void srcu_delay_timer(struct timer_list *t); 79 80 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 81 #define spin_lock_rcu_node(p) \ 82 do { \ 83 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 84 smp_mb__after_unlock_lock(); \ 85 } while (0) 86 87 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 88 89 #define spin_lock_irq_rcu_node(p) \ 90 do { \ 91 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 92 smp_mb__after_unlock_lock(); \ 93 } while (0) 94 95 #define spin_unlock_irq_rcu_node(p) \ 96 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 97 98 #define spin_lock_irqsave_rcu_node(p, flags) \ 99 do { \ 100 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 101 smp_mb__after_unlock_lock(); \ 102 } while (0) 103 104 #define spin_trylock_irqsave_rcu_node(p, flags) \ 105 ({ \ 106 bool ___locked = spin_trylock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 107 \ 108 if (___locked) \ 109 smp_mb__after_unlock_lock(); \ 110 ___locked; \ 111 }) 112 113 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 114 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 115 116 /* 117 * Initialize SRCU per-CPU data. Note that statically allocated 118 * srcu_struct structures might already have srcu_read_lock() and 119 * srcu_read_unlock() running against them. So if the is_static parameter 120 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 121 */ 122 static void init_srcu_struct_data(struct srcu_struct *ssp) 123 { 124 int cpu; 125 struct srcu_data *sdp; 126 127 /* 128 * Initialize the per-CPU srcu_data array, which feeds into the 129 * leaves of the srcu_node tree. 130 */ 131 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 132 ARRAY_SIZE(sdp->srcu_unlock_count)); 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = NULL; 141 sdp->cpu = cpu; 142 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 143 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 144 sdp->ssp = ssp; 145 } 146 } 147 148 /* Invalid seq state, used during snp node initialization */ 149 #define SRCU_SNP_INIT_SEQ 0x2 150 151 /* 152 * Check whether sequence number corresponding to snp node, 153 * is invalid. 154 */ 155 static inline bool srcu_invl_snp_seq(unsigned long s) 156 { 157 return rcu_seq_state(s) == SRCU_SNP_INIT_SEQ; 158 } 159 160 /* 161 * Allocated and initialize SRCU combining tree. Returns @true if 162 * allocation succeeded and @false otherwise. 163 */ 164 static bool init_srcu_struct_nodes(struct srcu_struct *ssp, gfp_t gfp_flags) 165 { 166 int cpu; 167 int i; 168 int level = 0; 169 int levelspread[RCU_NUM_LVLS]; 170 struct srcu_data *sdp; 171 struct srcu_node *snp; 172 struct srcu_node *snp_first; 173 174 /* Initialize geometry if it has not already been initialized. */ 175 rcu_init_geometry(); 176 ssp->node = kcalloc(rcu_num_nodes, sizeof(*ssp->node), gfp_flags); 177 if (!ssp->node) 178 return false; 179 180 /* Work out the overall tree geometry. */ 181 ssp->level[0] = &ssp->node[0]; 182 for (i = 1; i < rcu_num_lvls; i++) 183 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 184 rcu_init_levelspread(levelspread, num_rcu_lvl); 185 186 /* Each pass through this loop initializes one srcu_node structure. */ 187 srcu_for_each_node_breadth_first(ssp, snp) { 188 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 189 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 190 ARRAY_SIZE(snp->srcu_data_have_cbs)); 191 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 192 snp->srcu_have_cbs[i] = SRCU_SNP_INIT_SEQ; 193 snp->srcu_data_have_cbs[i] = 0; 194 } 195 snp->srcu_gp_seq_needed_exp = SRCU_SNP_INIT_SEQ; 196 snp->grplo = -1; 197 snp->grphi = -1; 198 if (snp == &ssp->node[0]) { 199 /* Root node, special case. */ 200 snp->srcu_parent = NULL; 201 continue; 202 } 203 204 /* Non-root node. */ 205 if (snp == ssp->level[level + 1]) 206 level++; 207 snp->srcu_parent = ssp->level[level - 1] + 208 (snp - ssp->level[level]) / 209 levelspread[level - 1]; 210 } 211 212 /* 213 * Initialize the per-CPU srcu_data array, which feeds into the 214 * leaves of the srcu_node tree. 215 */ 216 level = rcu_num_lvls - 1; 217 snp_first = ssp->level[level]; 218 for_each_possible_cpu(cpu) { 219 sdp = per_cpu_ptr(ssp->sda, cpu); 220 sdp->mynode = &snp_first[cpu / levelspread[level]]; 221 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 222 if (snp->grplo < 0) 223 snp->grplo = cpu; 224 snp->grphi = cpu; 225 } 226 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 227 } 228 smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_WAIT_BARRIER); 229 return true; 230 } 231 232 /* 233 * Initialize non-compile-time initialized fields, including the 234 * associated srcu_node and srcu_data structures. The is_static parameter 235 * tells us that ->sda has already been wired up to srcu_data. 236 */ 237 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 238 { 239 ssp->srcu_size_state = SRCU_SIZE_SMALL; 240 ssp->node = NULL; 241 mutex_init(&ssp->srcu_cb_mutex); 242 mutex_init(&ssp->srcu_gp_mutex); 243 ssp->srcu_idx = 0; 244 ssp->srcu_gp_seq = 0; 245 ssp->srcu_barrier_seq = 0; 246 mutex_init(&ssp->srcu_barrier_mutex); 247 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 248 INIT_DELAYED_WORK(&ssp->work, process_srcu); 249 ssp->sda_is_static = is_static; 250 if (!is_static) 251 ssp->sda = alloc_percpu(struct srcu_data); 252 if (!ssp->sda) 253 return -ENOMEM; 254 init_srcu_struct_data(ssp); 255 ssp->srcu_gp_seq_needed_exp = 0; 256 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 257 if (READ_ONCE(ssp->srcu_size_state) == SRCU_SIZE_SMALL && SRCU_SIZING_IS_INIT()) { 258 if (!init_srcu_struct_nodes(ssp, GFP_ATOMIC)) { 259 if (!ssp->sda_is_static) { 260 free_percpu(ssp->sda); 261 ssp->sda = NULL; 262 return -ENOMEM; 263 } 264 } else { 265 WRITE_ONCE(ssp->srcu_size_state, SRCU_SIZE_BIG); 266 } 267 } 268 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 269 return 0; 270 } 271 272 #ifdef CONFIG_DEBUG_LOCK_ALLOC 273 274 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 275 struct lock_class_key *key) 276 { 277 /* Don't re-initialize a lock while it is held. */ 278 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 279 lockdep_init_map(&ssp->dep_map, name, key, 0); 280 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 281 return init_srcu_struct_fields(ssp, false); 282 } 283 EXPORT_SYMBOL_GPL(__init_srcu_struct); 284 285 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 286 287 /** 288 * init_srcu_struct - initialize a sleep-RCU structure 289 * @ssp: structure to initialize. 290 * 291 * Must invoke this on a given srcu_struct before passing that srcu_struct 292 * to any other function. Each srcu_struct represents a separate domain 293 * of SRCU protection. 294 */ 295 int init_srcu_struct(struct srcu_struct *ssp) 296 { 297 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 298 return init_srcu_struct_fields(ssp, false); 299 } 300 EXPORT_SYMBOL_GPL(init_srcu_struct); 301 302 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 303 304 /* 305 * Initiate a transition to SRCU_SIZE_BIG with lock held. 306 */ 307 static void __srcu_transition_to_big(struct srcu_struct *ssp) 308 { 309 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 310 smp_store_release(&ssp->srcu_size_state, SRCU_SIZE_ALLOC); 311 } 312 313 /* 314 * Initiate an idempotent transition to SRCU_SIZE_BIG. 315 */ 316 static void srcu_transition_to_big(struct srcu_struct *ssp) 317 { 318 unsigned long flags; 319 320 /* Double-checked locking on ->srcu_size-state. */ 321 if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) 322 return; 323 spin_lock_irqsave_rcu_node(ssp, flags); 324 if (smp_load_acquire(&ssp->srcu_size_state) != SRCU_SIZE_SMALL) { 325 spin_unlock_irqrestore_rcu_node(ssp, flags); 326 return; 327 } 328 __srcu_transition_to_big(ssp); 329 spin_unlock_irqrestore_rcu_node(ssp, flags); 330 } 331 332 /* 333 * Check to see if the just-encountered contention event justifies 334 * a transition to SRCU_SIZE_BIG. 335 */ 336 static void spin_lock_irqsave_check_contention(struct srcu_struct *ssp) 337 { 338 unsigned long j; 339 340 if (!SRCU_SIZING_IS_CONTEND() || ssp->srcu_size_state) 341 return; 342 j = jiffies; 343 if (ssp->srcu_size_jiffies != j) { 344 ssp->srcu_size_jiffies = j; 345 ssp->srcu_n_lock_retries = 0; 346 } 347 if (++ssp->srcu_n_lock_retries <= small_contention_lim) 348 return; 349 __srcu_transition_to_big(ssp); 350 } 351 352 /* 353 * Acquire the specified srcu_data structure's ->lock, but check for 354 * excessive contention, which results in initiation of a transition 355 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 356 * parameter permits this. 357 */ 358 static void spin_lock_irqsave_sdp_contention(struct srcu_data *sdp, unsigned long *flags) 359 { 360 struct srcu_struct *ssp = sdp->ssp; 361 362 if (spin_trylock_irqsave_rcu_node(sdp, *flags)) 363 return; 364 spin_lock_irqsave_rcu_node(ssp, *flags); 365 spin_lock_irqsave_check_contention(ssp); 366 spin_unlock_irqrestore_rcu_node(ssp, *flags); 367 spin_lock_irqsave_rcu_node(sdp, *flags); 368 } 369 370 /* 371 * Acquire the specified srcu_struct structure's ->lock, but check for 372 * excessive contention, which results in initiation of a transition 373 * to SRCU_SIZE_BIG. But only if the srcutree.convert_to_big module 374 * parameter permits this. 375 */ 376 static void spin_lock_irqsave_ssp_contention(struct srcu_struct *ssp, unsigned long *flags) 377 { 378 if (spin_trylock_irqsave_rcu_node(ssp, *flags)) 379 return; 380 spin_lock_irqsave_rcu_node(ssp, *flags); 381 spin_lock_irqsave_check_contention(ssp); 382 } 383 384 /* 385 * First-use initialization of statically allocated srcu_struct 386 * structure. Wiring up the combining tree is more than can be 387 * done with compile-time initialization, so this check is added 388 * to each update-side SRCU primitive. Use ssp->lock, which -is- 389 * compile-time initialized, to resolve races involving multiple 390 * CPUs trying to garner first-use privileges. 391 */ 392 static void check_init_srcu_struct(struct srcu_struct *ssp) 393 { 394 unsigned long flags; 395 396 /* The smp_load_acquire() pairs with the smp_store_release(). */ 397 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 398 return; /* Already initialized. */ 399 spin_lock_irqsave_rcu_node(ssp, flags); 400 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 401 spin_unlock_irqrestore_rcu_node(ssp, flags); 402 return; 403 } 404 init_srcu_struct_fields(ssp, true); 405 spin_unlock_irqrestore_rcu_node(ssp, flags); 406 } 407 408 /* 409 * Returns approximate total of the readers' ->srcu_lock_count[] values 410 * for the rank of per-CPU counters specified by idx. 411 */ 412 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 413 { 414 int cpu; 415 unsigned long sum = 0; 416 417 for_each_possible_cpu(cpu) { 418 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 419 420 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 421 } 422 return sum; 423 } 424 425 /* 426 * Returns approximate total of the readers' ->srcu_unlock_count[] values 427 * for the rank of per-CPU counters specified by idx. 428 */ 429 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 430 { 431 int cpu; 432 unsigned long sum = 0; 433 434 for_each_possible_cpu(cpu) { 435 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 436 437 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 438 } 439 return sum; 440 } 441 442 /* 443 * Return true if the number of pre-existing readers is determined to 444 * be zero. 445 */ 446 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 447 { 448 unsigned long unlocks; 449 450 unlocks = srcu_readers_unlock_idx(ssp, idx); 451 452 /* 453 * Make sure that a lock is always counted if the corresponding 454 * unlock is counted. Needs to be a smp_mb() as the read side may 455 * contain a read from a variable that is written to before the 456 * synchronize_srcu() in the write side. In this case smp_mb()s 457 * A and B act like the store buffering pattern. 458 * 459 * This smp_mb() also pairs with smp_mb() C to prevent accesses 460 * after the synchronize_srcu() from being executed before the 461 * grace period ends. 462 */ 463 smp_mb(); /* A */ 464 465 /* 466 * If the locks are the same as the unlocks, then there must have 467 * been no readers on this index at some time in between. This does 468 * not mean that there are no more readers, as one could have read 469 * the current index but not have incremented the lock counter yet. 470 * 471 * So suppose that the updater is preempted here for so long 472 * that more than ULONG_MAX non-nested readers come and go in 473 * the meantime. It turns out that this cannot result in overflow 474 * because if a reader modifies its unlock count after we read it 475 * above, then that reader's next load of ->srcu_idx is guaranteed 476 * to get the new value, which will cause it to operate on the 477 * other bank of counters, where it cannot contribute to the 478 * overflow of these counters. This means that there is a maximum 479 * of 2*NR_CPUS increments, which cannot overflow given current 480 * systems, especially not on 64-bit systems. 481 * 482 * OK, how about nesting? This does impose a limit on nesting 483 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 484 * especially on 64-bit systems. 485 */ 486 return srcu_readers_lock_idx(ssp, idx) == unlocks; 487 } 488 489 /** 490 * srcu_readers_active - returns true if there are readers. and false 491 * otherwise 492 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 493 * 494 * Note that this is not an atomic primitive, and can therefore suffer 495 * severe errors when invoked on an active srcu_struct. That said, it 496 * can be useful as an error check at cleanup time. 497 */ 498 static bool srcu_readers_active(struct srcu_struct *ssp) 499 { 500 int cpu; 501 unsigned long sum = 0; 502 503 for_each_possible_cpu(cpu) { 504 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 505 506 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 507 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 508 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 509 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 510 } 511 return sum; 512 } 513 514 #define SRCU_INTERVAL 1 // Base delay if no expedited GPs pending. 515 #define SRCU_MAX_INTERVAL 10 // Maximum incremental delay from slow readers. 516 #define SRCU_MAX_NODELAY_PHASE 1 // Maximum per-GP-phase consecutive no-delay instances. 517 #define SRCU_MAX_NODELAY 100 // Maximum consecutive no-delay instances. 518 519 /* 520 * Return grace-period delay, zero if there are expedited grace 521 * periods pending, SRCU_INTERVAL otherwise. 522 */ 523 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 524 { 525 unsigned long jbase = SRCU_INTERVAL; 526 527 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 528 jbase = 0; 529 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))) 530 jbase += jiffies - READ_ONCE(ssp->srcu_gp_start); 531 if (!jbase) { 532 WRITE_ONCE(ssp->srcu_n_exp_nodelay, READ_ONCE(ssp->srcu_n_exp_nodelay) + 1); 533 if (READ_ONCE(ssp->srcu_n_exp_nodelay) > SRCU_MAX_NODELAY_PHASE) 534 jbase = 1; 535 } 536 return jbase > SRCU_MAX_INTERVAL ? SRCU_MAX_INTERVAL : jbase; 537 } 538 539 /** 540 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 541 * @ssp: structure to clean up. 542 * 543 * Must invoke this after you are finished using a given srcu_struct that 544 * was initialized via init_srcu_struct(), else you leak memory. 545 */ 546 void cleanup_srcu_struct(struct srcu_struct *ssp) 547 { 548 int cpu; 549 550 if (WARN_ON(!srcu_get_delay(ssp))) 551 return; /* Just leak it! */ 552 if (WARN_ON(srcu_readers_active(ssp))) 553 return; /* Just leak it! */ 554 flush_delayed_work(&ssp->work); 555 for_each_possible_cpu(cpu) { 556 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 557 558 del_timer_sync(&sdp->delay_work); 559 flush_work(&sdp->work); 560 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 561 return; /* Forgot srcu_barrier(), so just leak it! */ 562 } 563 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 564 WARN_ON(rcu_seq_current(&ssp->srcu_gp_seq) != ssp->srcu_gp_seq_needed) || 565 WARN_ON(srcu_readers_active(ssp))) { 566 pr_info("%s: Active srcu_struct %p read state: %d gp state: %lu/%lu\n", 567 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)), 568 rcu_seq_current(&ssp->srcu_gp_seq), ssp->srcu_gp_seq_needed); 569 return; /* Caller forgot to stop doing call_srcu()? */ 570 } 571 if (!ssp->sda_is_static) { 572 free_percpu(ssp->sda); 573 ssp->sda = NULL; 574 } 575 kfree(ssp->node); 576 ssp->node = NULL; 577 ssp->srcu_size_state = SRCU_SIZE_SMALL; 578 } 579 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 580 581 /* 582 * Counts the new reader in the appropriate per-CPU element of the 583 * srcu_struct. 584 * Returns an index that must be passed to the matching srcu_read_unlock(). 585 */ 586 int __srcu_read_lock(struct srcu_struct *ssp) 587 { 588 int idx; 589 590 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 591 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 592 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 593 return idx; 594 } 595 EXPORT_SYMBOL_GPL(__srcu_read_lock); 596 597 /* 598 * Removes the count for the old reader from the appropriate per-CPU 599 * element of the srcu_struct. Note that this may well be a different 600 * CPU than that which was incremented by the corresponding srcu_read_lock(). 601 */ 602 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 603 { 604 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 605 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 606 } 607 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 608 609 /* 610 * We use an adaptive strategy for synchronize_srcu() and especially for 611 * synchronize_srcu_expedited(). We spin for a fixed time period 612 * (defined below) to allow SRCU readers to exit their read-side critical 613 * sections. If there are still some readers after a few microseconds, 614 * we repeatedly block for 1-millisecond time periods. 615 */ 616 #define SRCU_RETRY_CHECK_DELAY 5 617 618 /* 619 * Start an SRCU grace period. 620 */ 621 static void srcu_gp_start(struct srcu_struct *ssp) 622 { 623 struct srcu_data *sdp; 624 int state; 625 626 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 627 sdp = per_cpu_ptr(ssp->sda, 0); 628 else 629 sdp = this_cpu_ptr(ssp->sda); 630 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 631 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 632 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 633 rcu_segcblist_advance(&sdp->srcu_cblist, 634 rcu_seq_current(&ssp->srcu_gp_seq)); 635 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 636 rcu_seq_snap(&ssp->srcu_gp_seq)); 637 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 638 WRITE_ONCE(ssp->srcu_gp_start, jiffies); 639 WRITE_ONCE(ssp->srcu_n_exp_nodelay, 0); 640 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 641 rcu_seq_start(&ssp->srcu_gp_seq); 642 state = rcu_seq_state(ssp->srcu_gp_seq); 643 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 644 } 645 646 647 static void srcu_delay_timer(struct timer_list *t) 648 { 649 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 650 651 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 652 } 653 654 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 655 unsigned long delay) 656 { 657 if (!delay) { 658 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 659 return; 660 } 661 662 timer_reduce(&sdp->delay_work, jiffies + delay); 663 } 664 665 /* 666 * Schedule callback invocation for the specified srcu_data structure, 667 * if possible, on the corresponding CPU. 668 */ 669 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 670 { 671 srcu_queue_delayed_work_on(sdp, delay); 672 } 673 674 /* 675 * Schedule callback invocation for all srcu_data structures associated 676 * with the specified srcu_node structure that have callbacks for the 677 * just-completed grace period, the one corresponding to idx. If possible, 678 * schedule this invocation on the corresponding CPUs. 679 */ 680 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 681 unsigned long mask, unsigned long delay) 682 { 683 int cpu; 684 685 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 686 if (!(mask & (1 << (cpu - snp->grplo)))) 687 continue; 688 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 689 } 690 } 691 692 /* 693 * Note the end of an SRCU grace period. Initiates callback invocation 694 * and starts a new grace period if needed. 695 * 696 * The ->srcu_cb_mutex acquisition does not protect any data, but 697 * instead prevents more than one grace period from starting while we 698 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 699 * array to have a finite number of elements. 700 */ 701 static void srcu_gp_end(struct srcu_struct *ssp) 702 { 703 unsigned long cbdelay; 704 bool cbs; 705 bool last_lvl; 706 int cpu; 707 unsigned long flags; 708 unsigned long gpseq; 709 int idx; 710 unsigned long mask; 711 struct srcu_data *sdp; 712 unsigned long sgsne; 713 struct srcu_node *snp; 714 int ss_state; 715 716 /* Prevent more than one additional grace period. */ 717 mutex_lock(&ssp->srcu_cb_mutex); 718 719 /* End the current grace period. */ 720 spin_lock_irq_rcu_node(ssp); 721 idx = rcu_seq_state(ssp->srcu_gp_seq); 722 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 723 cbdelay = !!srcu_get_delay(ssp); 724 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 725 rcu_seq_end(&ssp->srcu_gp_seq); 726 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 727 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 728 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 729 spin_unlock_irq_rcu_node(ssp); 730 mutex_unlock(&ssp->srcu_gp_mutex); 731 /* A new grace period can start at this point. But only one. */ 732 733 /* Initiate callback invocation as needed. */ 734 ss_state = smp_load_acquire(&ssp->srcu_size_state); 735 if (ss_state < SRCU_SIZE_WAIT_BARRIER) { 736 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, 0), cbdelay); 737 } else { 738 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 739 srcu_for_each_node_breadth_first(ssp, snp) { 740 spin_lock_irq_rcu_node(snp); 741 cbs = false; 742 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 743 if (last_lvl) 744 cbs = ss_state < SRCU_SIZE_BIG || snp->srcu_have_cbs[idx] == gpseq; 745 snp->srcu_have_cbs[idx] = gpseq; 746 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 747 sgsne = snp->srcu_gp_seq_needed_exp; 748 if (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, gpseq)) 749 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 750 if (ss_state < SRCU_SIZE_BIG) 751 mask = ~0; 752 else 753 mask = snp->srcu_data_have_cbs[idx]; 754 snp->srcu_data_have_cbs[idx] = 0; 755 spin_unlock_irq_rcu_node(snp); 756 if (cbs) 757 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 758 } 759 } 760 761 /* Occasionally prevent srcu_data counter wrap. */ 762 if (!(gpseq & counter_wrap_check)) 763 for_each_possible_cpu(cpu) { 764 sdp = per_cpu_ptr(ssp->sda, cpu); 765 spin_lock_irqsave_rcu_node(sdp, flags); 766 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed + 100)) 767 sdp->srcu_gp_seq_needed = gpseq; 768 if (ULONG_CMP_GE(gpseq, sdp->srcu_gp_seq_needed_exp + 100)) 769 sdp->srcu_gp_seq_needed_exp = gpseq; 770 spin_unlock_irqrestore_rcu_node(sdp, flags); 771 } 772 773 /* Callback initiation done, allow grace periods after next. */ 774 mutex_unlock(&ssp->srcu_cb_mutex); 775 776 /* Start a new grace period if needed. */ 777 spin_lock_irq_rcu_node(ssp); 778 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 779 if (!rcu_seq_state(gpseq) && 780 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 781 srcu_gp_start(ssp); 782 spin_unlock_irq_rcu_node(ssp); 783 srcu_reschedule(ssp, 0); 784 } else { 785 spin_unlock_irq_rcu_node(ssp); 786 } 787 788 /* Transition to big if needed. */ 789 if (ss_state != SRCU_SIZE_SMALL && ss_state != SRCU_SIZE_BIG) { 790 if (ss_state == SRCU_SIZE_ALLOC) 791 init_srcu_struct_nodes(ssp, GFP_KERNEL); 792 else 793 smp_store_release(&ssp->srcu_size_state, ss_state + 1); 794 } 795 } 796 797 /* 798 * Funnel-locking scheme to scalably mediate many concurrent expedited 799 * grace-period requests. This function is invoked for the first known 800 * expedited request for a grace period that has already been requested, 801 * but without expediting. To start a completely new grace period, 802 * whether expedited or not, use srcu_funnel_gp_start() instead. 803 */ 804 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 805 unsigned long s) 806 { 807 unsigned long flags; 808 unsigned long sgsne; 809 810 if (snp) 811 for (; snp != NULL; snp = snp->srcu_parent) { 812 sgsne = READ_ONCE(snp->srcu_gp_seq_needed_exp); 813 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 814 (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s))) 815 return; 816 spin_lock_irqsave_rcu_node(snp, flags); 817 sgsne = snp->srcu_gp_seq_needed_exp; 818 if (!srcu_invl_snp_seq(sgsne) && ULONG_CMP_GE(sgsne, s)) { 819 spin_unlock_irqrestore_rcu_node(snp, flags); 820 return; 821 } 822 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 823 spin_unlock_irqrestore_rcu_node(snp, flags); 824 } 825 spin_lock_irqsave_ssp_contention(ssp, &flags); 826 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 827 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 828 spin_unlock_irqrestore_rcu_node(ssp, flags); 829 } 830 831 /* 832 * Funnel-locking scheme to scalably mediate many concurrent grace-period 833 * requests. The winner has to do the work of actually starting grace 834 * period s. Losers must either ensure that their desired grace-period 835 * number is recorded on at least their leaf srcu_node structure, or they 836 * must take steps to invoke their own callbacks. 837 * 838 * Note that this function also does the work of srcu_funnel_exp_start(), 839 * in some cases by directly invoking it. 840 */ 841 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 842 unsigned long s, bool do_norm) 843 { 844 unsigned long flags; 845 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 846 unsigned long sgsne; 847 struct srcu_node *snp; 848 struct srcu_node *snp_leaf; 849 unsigned long snp_seq; 850 851 /* Ensure that snp node tree is fully initialized before traversing it */ 852 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 853 snp_leaf = NULL; 854 else 855 snp_leaf = sdp->mynode; 856 857 if (snp_leaf) 858 /* Each pass through the loop does one level of the srcu_node tree. */ 859 for (snp = snp_leaf; snp != NULL; snp = snp->srcu_parent) { 860 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != snp_leaf) 861 return; /* GP already done and CBs recorded. */ 862 spin_lock_irqsave_rcu_node(snp, flags); 863 snp_seq = snp->srcu_have_cbs[idx]; 864 if (!srcu_invl_snp_seq(snp_seq) && ULONG_CMP_GE(snp_seq, s)) { 865 if (snp == snp_leaf && snp_seq == s) 866 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 867 spin_unlock_irqrestore_rcu_node(snp, flags); 868 if (snp == snp_leaf && snp_seq != s) { 869 srcu_schedule_cbs_sdp(sdp, do_norm ? SRCU_INTERVAL : 0); 870 return; 871 } 872 if (!do_norm) 873 srcu_funnel_exp_start(ssp, snp, s); 874 return; 875 } 876 snp->srcu_have_cbs[idx] = s; 877 if (snp == snp_leaf) 878 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 879 sgsne = snp->srcu_gp_seq_needed_exp; 880 if (!do_norm && (srcu_invl_snp_seq(sgsne) || ULONG_CMP_LT(sgsne, s))) 881 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 882 spin_unlock_irqrestore_rcu_node(snp, flags); 883 } 884 885 /* Top of tree, must ensure the grace period will be started. */ 886 spin_lock_irqsave_ssp_contention(ssp, &flags); 887 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 888 /* 889 * Record need for grace period s. Pair with load 890 * acquire setting up for initialization. 891 */ 892 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 893 } 894 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 895 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 896 897 /* If grace period not already done and none in progress, start it. */ 898 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 899 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 900 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 901 srcu_gp_start(ssp); 902 903 // And how can that list_add() in the "else" clause 904 // possibly be safe for concurrent execution? Well, 905 // it isn't. And it does not have to be. After all, it 906 // can only be executed during early boot when there is only 907 // the one boot CPU running with interrupts still disabled. 908 if (likely(srcu_init_done)) 909 queue_delayed_work(rcu_gp_wq, &ssp->work, 910 !!srcu_get_delay(ssp)); 911 else if (list_empty(&ssp->work.work.entry)) 912 list_add(&ssp->work.work.entry, &srcu_boot_list); 913 } 914 spin_unlock_irqrestore_rcu_node(ssp, flags); 915 } 916 917 /* 918 * Wait until all readers counted by array index idx complete, but 919 * loop an additional time if there is an expedited grace period pending. 920 * The caller must ensure that ->srcu_idx is not changed while checking. 921 */ 922 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 923 { 924 for (;;) { 925 if (srcu_readers_active_idx_check(ssp, idx)) 926 return true; 927 if (--trycount + !srcu_get_delay(ssp) <= 0) 928 return false; 929 udelay(SRCU_RETRY_CHECK_DELAY); 930 } 931 } 932 933 /* 934 * Increment the ->srcu_idx counter so that future SRCU readers will 935 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 936 * us to wait for pre-existing readers in a starvation-free manner. 937 */ 938 static void srcu_flip(struct srcu_struct *ssp) 939 { 940 /* 941 * Ensure that if this updater saw a given reader's increment 942 * from __srcu_read_lock(), that reader was using an old value 943 * of ->srcu_idx. Also ensure that if a given reader sees the 944 * new value of ->srcu_idx, this updater's earlier scans cannot 945 * have seen that reader's increments (which is OK, because this 946 * grace period need not wait on that reader). 947 */ 948 smp_mb(); /* E */ /* Pairs with B and C. */ 949 950 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 951 952 /* 953 * Ensure that if the updater misses an __srcu_read_unlock() 954 * increment, that task's next __srcu_read_lock() will see the 955 * above counter update. Note that both this memory barrier 956 * and the one in srcu_readers_active_idx_check() provide the 957 * guarantee for __srcu_read_lock(). 958 */ 959 smp_mb(); /* D */ /* Pairs with C. */ 960 } 961 962 /* 963 * If SRCU is likely idle, return true, otherwise return false. 964 * 965 * Note that it is OK for several current from-idle requests for a new 966 * grace period from idle to specify expediting because they will all end 967 * up requesting the same grace period anyhow. So no loss. 968 * 969 * Note also that if any CPU (including the current one) is still invoking 970 * callbacks, this function will nevertheless say "idle". This is not 971 * ideal, but the overhead of checking all CPUs' callback lists is even 972 * less ideal, especially on large systems. Furthermore, the wakeup 973 * can happen before the callback is fully removed, so we have no choice 974 * but to accept this type of error. 975 * 976 * This function is also subject to counter-wrap errors, but let's face 977 * it, if this function was preempted for enough time for the counters 978 * to wrap, it really doesn't matter whether or not we expedite the grace 979 * period. The extra overhead of a needlessly expedited grace period is 980 * negligible when amortized over that time period, and the extra latency 981 * of a needlessly non-expedited grace period is similarly negligible. 982 */ 983 static bool srcu_might_be_idle(struct srcu_struct *ssp) 984 { 985 unsigned long curseq; 986 unsigned long flags; 987 struct srcu_data *sdp; 988 unsigned long t; 989 unsigned long tlast; 990 991 check_init_srcu_struct(ssp); 992 /* If the local srcu_data structure has callbacks, not idle. */ 993 sdp = raw_cpu_ptr(ssp->sda); 994 spin_lock_irqsave_rcu_node(sdp, flags); 995 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 996 spin_unlock_irqrestore_rcu_node(sdp, flags); 997 return false; /* Callbacks already present, so not idle. */ 998 } 999 spin_unlock_irqrestore_rcu_node(sdp, flags); 1000 1001 /* 1002 * No local callbacks, so probabilistically probe global state. 1003 * Exact information would require acquiring locks, which would 1004 * kill scalability, hence the probabilistic nature of the probe. 1005 */ 1006 1007 /* First, see if enough time has passed since the last GP. */ 1008 t = ktime_get_mono_fast_ns(); 1009 tlast = READ_ONCE(ssp->srcu_last_gp_end); 1010 if (exp_holdoff == 0 || 1011 time_in_range_open(t, tlast, tlast + exp_holdoff)) 1012 return false; /* Too soon after last GP. */ 1013 1014 /* Next, check for probable idleness. */ 1015 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 1016 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 1017 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 1018 return false; /* Grace period in progress, so not idle. */ 1019 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 1020 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 1021 return false; /* GP # changed, so not idle. */ 1022 return true; /* With reasonable probability, idle! */ 1023 } 1024 1025 /* 1026 * SRCU callback function to leak a callback. 1027 */ 1028 static void srcu_leak_callback(struct rcu_head *rhp) 1029 { 1030 } 1031 1032 /* 1033 * Start an SRCU grace period, and also queue the callback if non-NULL. 1034 */ 1035 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 1036 struct rcu_head *rhp, bool do_norm) 1037 { 1038 unsigned long flags; 1039 int idx; 1040 bool needexp = false; 1041 bool needgp = false; 1042 unsigned long s; 1043 struct srcu_data *sdp; 1044 struct srcu_node *sdp_mynode; 1045 int ss_state; 1046 1047 check_init_srcu_struct(ssp); 1048 idx = srcu_read_lock(ssp); 1049 ss_state = smp_load_acquire(&ssp->srcu_size_state); 1050 if (ss_state < SRCU_SIZE_WAIT_CALL) 1051 sdp = per_cpu_ptr(ssp->sda, 0); 1052 else 1053 sdp = raw_cpu_ptr(ssp->sda); 1054 spin_lock_irqsave_sdp_contention(sdp, &flags); 1055 if (rhp) 1056 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 1057 rcu_segcblist_advance(&sdp->srcu_cblist, 1058 rcu_seq_current(&ssp->srcu_gp_seq)); 1059 s = rcu_seq_snap(&ssp->srcu_gp_seq); 1060 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 1061 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 1062 sdp->srcu_gp_seq_needed = s; 1063 needgp = true; 1064 } 1065 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 1066 sdp->srcu_gp_seq_needed_exp = s; 1067 needexp = true; 1068 } 1069 spin_unlock_irqrestore_rcu_node(sdp, flags); 1070 1071 /* Ensure that snp node tree is fully initialized before traversing it */ 1072 if (ss_state < SRCU_SIZE_WAIT_BARRIER) 1073 sdp_mynode = NULL; 1074 else 1075 sdp_mynode = sdp->mynode; 1076 1077 if (needgp) 1078 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 1079 else if (needexp) 1080 srcu_funnel_exp_start(ssp, sdp_mynode, s); 1081 srcu_read_unlock(ssp, idx); 1082 return s; 1083 } 1084 1085 /* 1086 * Enqueue an SRCU callback on the srcu_data structure associated with 1087 * the current CPU and the specified srcu_struct structure, initiating 1088 * grace-period processing if it is not already running. 1089 * 1090 * Note that all CPUs must agree that the grace period extended beyond 1091 * all pre-existing SRCU read-side critical section. On systems with 1092 * more than one CPU, this means that when "func()" is invoked, each CPU 1093 * is guaranteed to have executed a full memory barrier since the end of 1094 * its last corresponding SRCU read-side critical section whose beginning 1095 * preceded the call to call_srcu(). It also means that each CPU executing 1096 * an SRCU read-side critical section that continues beyond the start of 1097 * "func()" must have executed a memory barrier after the call_srcu() 1098 * but before the beginning of that SRCU read-side critical section. 1099 * Note that these guarantees include CPUs that are offline, idle, or 1100 * executing in user mode, as well as CPUs that are executing in the kernel. 1101 * 1102 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 1103 * resulting SRCU callback function "func()", then both CPU A and CPU 1104 * B are guaranteed to execute a full memory barrier during the time 1105 * interval between the call to call_srcu() and the invocation of "func()". 1106 * This guarantee applies even if CPU A and CPU B are the same CPU (but 1107 * again only if the system has more than one CPU). 1108 * 1109 * Of course, these guarantees apply only for invocations of call_srcu(), 1110 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 1111 * srcu_struct structure. 1112 */ 1113 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1114 rcu_callback_t func, bool do_norm) 1115 { 1116 if (debug_rcu_head_queue(rhp)) { 1117 /* Probable double call_srcu(), so leak the callback. */ 1118 WRITE_ONCE(rhp->func, srcu_leak_callback); 1119 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 1120 return; 1121 } 1122 rhp->func = func; 1123 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 1124 } 1125 1126 /** 1127 * call_srcu() - Queue a callback for invocation after an SRCU grace period 1128 * @ssp: srcu_struct in queue the callback 1129 * @rhp: structure to be used for queueing the SRCU callback. 1130 * @func: function to be invoked after the SRCU grace period 1131 * 1132 * The callback function will be invoked some time after a full SRCU 1133 * grace period elapses, in other words after all pre-existing SRCU 1134 * read-side critical sections have completed. However, the callback 1135 * function might well execute concurrently with other SRCU read-side 1136 * critical sections that started after call_srcu() was invoked. SRCU 1137 * read-side critical sections are delimited by srcu_read_lock() and 1138 * srcu_read_unlock(), and may be nested. 1139 * 1140 * The callback will be invoked from process context, but must nevertheless 1141 * be fast and must not block. 1142 */ 1143 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 1144 rcu_callback_t func) 1145 { 1146 __call_srcu(ssp, rhp, func, true); 1147 } 1148 EXPORT_SYMBOL_GPL(call_srcu); 1149 1150 /* 1151 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 1152 */ 1153 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 1154 { 1155 struct rcu_synchronize rcu; 1156 1157 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 1158 lock_is_held(&rcu_bh_lock_map) || 1159 lock_is_held(&rcu_lock_map) || 1160 lock_is_held(&rcu_sched_lock_map), 1161 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 1162 1163 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 1164 return; 1165 might_sleep(); 1166 check_init_srcu_struct(ssp); 1167 init_completion(&rcu.completion); 1168 init_rcu_head_on_stack(&rcu.head); 1169 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 1170 wait_for_completion(&rcu.completion); 1171 destroy_rcu_head_on_stack(&rcu.head); 1172 1173 /* 1174 * Make sure that later code is ordered after the SRCU grace 1175 * period. This pairs with the spin_lock_irq_rcu_node() 1176 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 1177 * because the current CPU might have been totally uninvolved with 1178 * (and thus unordered against) that grace period. 1179 */ 1180 smp_mb(); 1181 } 1182 1183 /** 1184 * synchronize_srcu_expedited - Brute-force SRCU grace period 1185 * @ssp: srcu_struct with which to synchronize. 1186 * 1187 * Wait for an SRCU grace period to elapse, but be more aggressive about 1188 * spinning rather than blocking when waiting. 1189 * 1190 * Note that synchronize_srcu_expedited() has the same deadlock and 1191 * memory-ordering properties as does synchronize_srcu(). 1192 */ 1193 void synchronize_srcu_expedited(struct srcu_struct *ssp) 1194 { 1195 __synchronize_srcu(ssp, rcu_gp_is_normal()); 1196 } 1197 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 1198 1199 /** 1200 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 1201 * @ssp: srcu_struct with which to synchronize. 1202 * 1203 * Wait for the count to drain to zero of both indexes. To avoid the 1204 * possible starvation of synchronize_srcu(), it waits for the count of 1205 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 1206 * and then flip the srcu_idx and wait for the count of the other index. 1207 * 1208 * Can block; must be called from process context. 1209 * 1210 * Note that it is illegal to call synchronize_srcu() from the corresponding 1211 * SRCU read-side critical section; doing so will result in deadlock. 1212 * However, it is perfectly legal to call synchronize_srcu() on one 1213 * srcu_struct from some other srcu_struct's read-side critical section, 1214 * as long as the resulting graph of srcu_structs is acyclic. 1215 * 1216 * There are memory-ordering constraints implied by synchronize_srcu(). 1217 * On systems with more than one CPU, when synchronize_srcu() returns, 1218 * each CPU is guaranteed to have executed a full memory barrier since 1219 * the end of its last corresponding SRCU read-side critical section 1220 * whose beginning preceded the call to synchronize_srcu(). In addition, 1221 * each CPU having an SRCU read-side critical section that extends beyond 1222 * the return from synchronize_srcu() is guaranteed to have executed a 1223 * full memory barrier after the beginning of synchronize_srcu() and before 1224 * the beginning of that SRCU read-side critical section. Note that these 1225 * guarantees include CPUs that are offline, idle, or executing in user mode, 1226 * as well as CPUs that are executing in the kernel. 1227 * 1228 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 1229 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 1230 * to have executed a full memory barrier during the execution of 1231 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 1232 * are the same CPU, but again only if the system has more than one CPU. 1233 * 1234 * Of course, these memory-ordering guarantees apply only when 1235 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1236 * passed the same srcu_struct structure. 1237 * 1238 * Implementation of these memory-ordering guarantees is similar to 1239 * that of synchronize_rcu(). 1240 * 1241 * If SRCU is likely idle, expedite the first request. This semantic 1242 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1243 * SRCU must also provide it. Note that detecting idleness is heuristic 1244 * and subject to both false positives and negatives. 1245 */ 1246 void synchronize_srcu(struct srcu_struct *ssp) 1247 { 1248 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1249 synchronize_srcu_expedited(ssp); 1250 else 1251 __synchronize_srcu(ssp, true); 1252 } 1253 EXPORT_SYMBOL_GPL(synchronize_srcu); 1254 1255 /** 1256 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1257 * @ssp: srcu_struct to provide cookie for. 1258 * 1259 * This function returns a cookie that can be passed to 1260 * poll_state_synchronize_srcu(), which will return true if a full grace 1261 * period has elapsed in the meantime. It is the caller's responsibility 1262 * to make sure that grace period happens, for example, by invoking 1263 * call_srcu() after return from get_state_synchronize_srcu(). 1264 */ 1265 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1266 { 1267 // Any prior manipulation of SRCU-protected data must happen 1268 // before the load from ->srcu_gp_seq. 1269 smp_mb(); 1270 return rcu_seq_snap(&ssp->srcu_gp_seq); 1271 } 1272 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1273 1274 /** 1275 * start_poll_synchronize_srcu - Provide cookie and start grace period 1276 * @ssp: srcu_struct to provide cookie for. 1277 * 1278 * This function returns a cookie that can be passed to 1279 * poll_state_synchronize_srcu(), which will return true if a full grace 1280 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1281 * this function also ensures that any needed SRCU grace period will be 1282 * started. This convenience does come at a cost in terms of CPU overhead. 1283 */ 1284 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1285 { 1286 return srcu_gp_start_if_needed(ssp, NULL, true); 1287 } 1288 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1289 1290 /** 1291 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1292 * @ssp: srcu_struct to provide cookie for. 1293 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1294 * 1295 * This function takes the cookie that was returned from either 1296 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1297 * returns @true if an SRCU grace period elapsed since the time that the 1298 * cookie was created. 1299 * 1300 * Because cookies are finite in size, wrapping/overflow is possible. 1301 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1302 * where in theory wrapping could happen in about 14 hours assuming 1303 * 25-microsecond expedited SRCU grace periods. However, a more likely 1304 * overflow lower bound is on the order of 24 days in the case of 1305 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1306 * system requires geologic timespans, as in more than seven million years 1307 * even for expedited SRCU grace periods. 1308 * 1309 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1310 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1311 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1312 * few minutes. If this proves to be a problem, this counter will be 1313 * expanded to the same size as for Tree SRCU. 1314 */ 1315 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1316 { 1317 if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie)) 1318 return false; 1319 // Ensure that the end of the SRCU grace period happens before 1320 // any subsequent code that the caller might execute. 1321 smp_mb(); // ^^^ 1322 return true; 1323 } 1324 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1325 1326 /* 1327 * Callback function for srcu_barrier() use. 1328 */ 1329 static void srcu_barrier_cb(struct rcu_head *rhp) 1330 { 1331 struct srcu_data *sdp; 1332 struct srcu_struct *ssp; 1333 1334 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1335 ssp = sdp->ssp; 1336 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1337 complete(&ssp->srcu_barrier_completion); 1338 } 1339 1340 /* 1341 * Enqueue an srcu_barrier() callback on the specified srcu_data 1342 * structure's ->cblist. but only if that ->cblist already has at least one 1343 * callback enqueued. Note that if a CPU already has callbacks enqueue, 1344 * it must have already registered the need for a future grace period, 1345 * so all we need do is enqueue a callback that will use the same grace 1346 * period as the last callback already in the queue. 1347 */ 1348 static void srcu_barrier_one_cpu(struct srcu_struct *ssp, struct srcu_data *sdp) 1349 { 1350 spin_lock_irq_rcu_node(sdp); 1351 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1352 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1353 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1354 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1355 &sdp->srcu_barrier_head)) { 1356 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1357 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1358 } 1359 spin_unlock_irq_rcu_node(sdp); 1360 } 1361 1362 /** 1363 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1364 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1365 */ 1366 void srcu_barrier(struct srcu_struct *ssp) 1367 { 1368 int cpu; 1369 int idx; 1370 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1371 1372 check_init_srcu_struct(ssp); 1373 mutex_lock(&ssp->srcu_barrier_mutex); 1374 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1375 smp_mb(); /* Force ordering following return. */ 1376 mutex_unlock(&ssp->srcu_barrier_mutex); 1377 return; /* Someone else did our work for us. */ 1378 } 1379 rcu_seq_start(&ssp->srcu_barrier_seq); 1380 init_completion(&ssp->srcu_barrier_completion); 1381 1382 /* Initial count prevents reaching zero until all CBs are posted. */ 1383 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1384 1385 idx = srcu_read_lock(ssp); 1386 if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER) 1387 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0)); 1388 else 1389 for_each_possible_cpu(cpu) 1390 srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu)); 1391 srcu_read_unlock(ssp, idx); 1392 1393 /* Remove the initial count, at which point reaching zero can happen. */ 1394 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1395 complete(&ssp->srcu_barrier_completion); 1396 wait_for_completion(&ssp->srcu_barrier_completion); 1397 1398 rcu_seq_end(&ssp->srcu_barrier_seq); 1399 mutex_unlock(&ssp->srcu_barrier_mutex); 1400 } 1401 EXPORT_SYMBOL_GPL(srcu_barrier); 1402 1403 /** 1404 * srcu_batches_completed - return batches completed. 1405 * @ssp: srcu_struct on which to report batch completion. 1406 * 1407 * Report the number of batches, correlated with, but not necessarily 1408 * precisely the same as, the number of grace periods that have elapsed. 1409 */ 1410 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1411 { 1412 return READ_ONCE(ssp->srcu_idx); 1413 } 1414 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1415 1416 /* 1417 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1418 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1419 * completed in that state. 1420 */ 1421 static void srcu_advance_state(struct srcu_struct *ssp) 1422 { 1423 int idx; 1424 1425 mutex_lock(&ssp->srcu_gp_mutex); 1426 1427 /* 1428 * Because readers might be delayed for an extended period after 1429 * fetching ->srcu_idx for their index, at any point in time there 1430 * might well be readers using both idx=0 and idx=1. We therefore 1431 * need to wait for readers to clear from both index values before 1432 * invoking a callback. 1433 * 1434 * The load-acquire ensures that we see the accesses performed 1435 * by the prior grace period. 1436 */ 1437 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1438 if (idx == SRCU_STATE_IDLE) { 1439 spin_lock_irq_rcu_node(ssp); 1440 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1441 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1442 spin_unlock_irq_rcu_node(ssp); 1443 mutex_unlock(&ssp->srcu_gp_mutex); 1444 return; 1445 } 1446 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1447 if (idx == SRCU_STATE_IDLE) 1448 srcu_gp_start(ssp); 1449 spin_unlock_irq_rcu_node(ssp); 1450 if (idx != SRCU_STATE_IDLE) { 1451 mutex_unlock(&ssp->srcu_gp_mutex); 1452 return; /* Someone else started the grace period. */ 1453 } 1454 } 1455 1456 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1457 idx = 1 ^ (ssp->srcu_idx & 1); 1458 if (!try_check_zero(ssp, idx, 1)) { 1459 mutex_unlock(&ssp->srcu_gp_mutex); 1460 return; /* readers present, retry later. */ 1461 } 1462 srcu_flip(ssp); 1463 spin_lock_irq_rcu_node(ssp); 1464 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1465 ssp->srcu_n_exp_nodelay = 0; 1466 spin_unlock_irq_rcu_node(ssp); 1467 } 1468 1469 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1470 1471 /* 1472 * SRCU read-side critical sections are normally short, 1473 * so check at least twice in quick succession after a flip. 1474 */ 1475 idx = 1 ^ (ssp->srcu_idx & 1); 1476 if (!try_check_zero(ssp, idx, 2)) { 1477 mutex_unlock(&ssp->srcu_gp_mutex); 1478 return; /* readers present, retry later. */ 1479 } 1480 ssp->srcu_n_exp_nodelay = 0; 1481 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1482 } 1483 } 1484 1485 /* 1486 * Invoke a limited number of SRCU callbacks that have passed through 1487 * their grace period. If there are more to do, SRCU will reschedule 1488 * the workqueue. Note that needed memory barriers have been executed 1489 * in this task's context by srcu_readers_active_idx_check(). 1490 */ 1491 static void srcu_invoke_callbacks(struct work_struct *work) 1492 { 1493 long len; 1494 bool more; 1495 struct rcu_cblist ready_cbs; 1496 struct rcu_head *rhp; 1497 struct srcu_data *sdp; 1498 struct srcu_struct *ssp; 1499 1500 sdp = container_of(work, struct srcu_data, work); 1501 1502 ssp = sdp->ssp; 1503 rcu_cblist_init(&ready_cbs); 1504 spin_lock_irq_rcu_node(sdp); 1505 rcu_segcblist_advance(&sdp->srcu_cblist, 1506 rcu_seq_current(&ssp->srcu_gp_seq)); 1507 if (sdp->srcu_cblist_invoking || 1508 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1509 spin_unlock_irq_rcu_node(sdp); 1510 return; /* Someone else on the job or nothing to do. */ 1511 } 1512 1513 /* We are on the job! Extract and invoke ready callbacks. */ 1514 sdp->srcu_cblist_invoking = true; 1515 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1516 len = ready_cbs.len; 1517 spin_unlock_irq_rcu_node(sdp); 1518 rhp = rcu_cblist_dequeue(&ready_cbs); 1519 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1520 debug_rcu_head_unqueue(rhp); 1521 local_bh_disable(); 1522 rhp->func(rhp); 1523 local_bh_enable(); 1524 } 1525 WARN_ON_ONCE(ready_cbs.len); 1526 1527 /* 1528 * Update counts, accelerate new callbacks, and if needed, 1529 * schedule another round of callback invocation. 1530 */ 1531 spin_lock_irq_rcu_node(sdp); 1532 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1533 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1534 rcu_seq_snap(&ssp->srcu_gp_seq)); 1535 sdp->srcu_cblist_invoking = false; 1536 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1537 spin_unlock_irq_rcu_node(sdp); 1538 if (more) 1539 srcu_schedule_cbs_sdp(sdp, 0); 1540 } 1541 1542 /* 1543 * Finished one round of SRCU grace period. Start another if there are 1544 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1545 */ 1546 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1547 { 1548 bool pushgp = true; 1549 1550 spin_lock_irq_rcu_node(ssp); 1551 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1552 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1553 /* All requests fulfilled, time to go idle. */ 1554 pushgp = false; 1555 } 1556 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1557 /* Outstanding request and no GP. Start one. */ 1558 srcu_gp_start(ssp); 1559 } 1560 spin_unlock_irq_rcu_node(ssp); 1561 1562 if (pushgp) 1563 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1564 } 1565 1566 /* 1567 * This is the work-queue function that handles SRCU grace periods. 1568 */ 1569 static void process_srcu(struct work_struct *work) 1570 { 1571 unsigned long curdelay; 1572 unsigned long j; 1573 struct srcu_struct *ssp; 1574 1575 ssp = container_of(work, struct srcu_struct, work.work); 1576 1577 srcu_advance_state(ssp); 1578 curdelay = srcu_get_delay(ssp); 1579 if (curdelay) { 1580 WRITE_ONCE(ssp->reschedule_count, 0); 1581 } else { 1582 j = jiffies; 1583 if (READ_ONCE(ssp->reschedule_jiffies) == j) { 1584 WRITE_ONCE(ssp->reschedule_count, READ_ONCE(ssp->reschedule_count) + 1); 1585 if (READ_ONCE(ssp->reschedule_count) > SRCU_MAX_NODELAY) 1586 curdelay = 1; 1587 } else { 1588 WRITE_ONCE(ssp->reschedule_count, 1); 1589 WRITE_ONCE(ssp->reschedule_jiffies, j); 1590 } 1591 } 1592 srcu_reschedule(ssp, curdelay); 1593 } 1594 1595 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1596 struct srcu_struct *ssp, int *flags, 1597 unsigned long *gp_seq) 1598 { 1599 if (test_type != SRCU_FLAVOR) 1600 return; 1601 *flags = 0; 1602 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1603 } 1604 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1605 1606 static const char * const srcu_size_state_name[] = { 1607 "SRCU_SIZE_SMALL", 1608 "SRCU_SIZE_ALLOC", 1609 "SRCU_SIZE_WAIT_BARRIER", 1610 "SRCU_SIZE_WAIT_CALL", 1611 "SRCU_SIZE_WAIT_CBS1", 1612 "SRCU_SIZE_WAIT_CBS2", 1613 "SRCU_SIZE_WAIT_CBS3", 1614 "SRCU_SIZE_WAIT_CBS4", 1615 "SRCU_SIZE_BIG", 1616 "SRCU_SIZE_???", 1617 }; 1618 1619 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1620 { 1621 int cpu; 1622 int idx; 1623 unsigned long s0 = 0, s1 = 0; 1624 int ss_state = READ_ONCE(ssp->srcu_size_state); 1625 int ss_state_idx = ss_state; 1626 1627 idx = ssp->srcu_idx & 0x1; 1628 if (ss_state < 0 || ss_state >= ARRAY_SIZE(srcu_size_state_name)) 1629 ss_state_idx = ARRAY_SIZE(srcu_size_state_name) - 1; 1630 pr_alert("%s%s Tree SRCU g%ld state %d (%s)", 1631 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), ss_state, 1632 srcu_size_state_name[ss_state_idx]); 1633 if (!ssp->sda) { 1634 // Called after cleanup_srcu_struct(), perhaps. 1635 pr_cont(" No per-CPU srcu_data structures (->sda == NULL).\n"); 1636 } else { 1637 pr_cont(" per-CPU(idx=%d):", idx); 1638 for_each_possible_cpu(cpu) { 1639 unsigned long l0, l1; 1640 unsigned long u0, u1; 1641 long c0, c1; 1642 struct srcu_data *sdp; 1643 1644 sdp = per_cpu_ptr(ssp->sda, cpu); 1645 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1646 u1 = data_race(sdp->srcu_unlock_count[idx]); 1647 1648 /* 1649 * Make sure that a lock is always counted if the corresponding 1650 * unlock is counted. 1651 */ 1652 smp_rmb(); 1653 1654 l0 = data_race(sdp->srcu_lock_count[!idx]); 1655 l1 = data_race(sdp->srcu_lock_count[idx]); 1656 1657 c0 = l0 - u0; 1658 c1 = l1 - u1; 1659 pr_cont(" %d(%ld,%ld %c)", 1660 cpu, c0, c1, 1661 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1662 s0 += c0; 1663 s1 += c1; 1664 } 1665 pr_cont(" T(%ld,%ld)\n", s0, s1); 1666 } 1667 if (SRCU_SIZING_IS_TORTURE()) 1668 srcu_transition_to_big(ssp); 1669 } 1670 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1671 1672 static int __init srcu_bootup_announce(void) 1673 { 1674 pr_info("Hierarchical SRCU implementation.\n"); 1675 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1676 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1677 return 0; 1678 } 1679 early_initcall(srcu_bootup_announce); 1680 1681 void __init srcu_init(void) 1682 { 1683 struct srcu_struct *ssp; 1684 1685 /* Decide on srcu_struct-size strategy. */ 1686 if (SRCU_SIZING_IS(SRCU_SIZING_AUTO)) { 1687 if (nr_cpu_ids >= big_cpu_lim) { 1688 convert_to_big = SRCU_SIZING_INIT; // Don't bother waiting for contention. 1689 pr_info("%s: Setting srcu_struct sizes to big.\n", __func__); 1690 } else { 1691 convert_to_big = SRCU_SIZING_NONE | SRCU_SIZING_CONTEND; 1692 pr_info("%s: Setting srcu_struct sizes based on contention.\n", __func__); 1693 } 1694 } 1695 1696 /* 1697 * Once that is set, call_srcu() can follow the normal path and 1698 * queue delayed work. This must follow RCU workqueues creation 1699 * and timers initialization. 1700 */ 1701 srcu_init_done = true; 1702 while (!list_empty(&srcu_boot_list)) { 1703 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1704 work.work.entry); 1705 list_del_init(&ssp->work.work.entry); 1706 if (SRCU_SIZING_IS(SRCU_SIZING_INIT) && ssp->srcu_size_state == SRCU_SIZE_SMALL) 1707 ssp->srcu_size_state = SRCU_SIZE_ALLOC; 1708 queue_work(rcu_gp_wq, &ssp->work.work); 1709 } 1710 } 1711 1712 #ifdef CONFIG_MODULES 1713 1714 /* Initialize any global-scope srcu_struct structures used by this module. */ 1715 static int srcu_module_coming(struct module *mod) 1716 { 1717 int i; 1718 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1719 int ret; 1720 1721 for (i = 0; i < mod->num_srcu_structs; i++) { 1722 ret = init_srcu_struct(*(sspp++)); 1723 if (WARN_ON_ONCE(ret)) 1724 return ret; 1725 } 1726 return 0; 1727 } 1728 1729 /* Clean up any global-scope srcu_struct structures used by this module. */ 1730 static void srcu_module_going(struct module *mod) 1731 { 1732 int i; 1733 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1734 1735 for (i = 0; i < mod->num_srcu_structs; i++) 1736 cleanup_srcu_struct(*(sspp++)); 1737 } 1738 1739 /* Handle one module, either coming or going. */ 1740 static int srcu_module_notify(struct notifier_block *self, 1741 unsigned long val, void *data) 1742 { 1743 struct module *mod = data; 1744 int ret = 0; 1745 1746 switch (val) { 1747 case MODULE_STATE_COMING: 1748 ret = srcu_module_coming(mod); 1749 break; 1750 case MODULE_STATE_GOING: 1751 srcu_module_going(mod); 1752 break; 1753 default: 1754 break; 1755 } 1756 return ret; 1757 } 1758 1759 static struct notifier_block srcu_module_nb = { 1760 .notifier_call = srcu_module_notify, 1761 .priority = 0, 1762 }; 1763 1764 static __init int init_srcu_module_notifier(void) 1765 { 1766 int ret; 1767 1768 ret = register_module_notifier(&srcu_module_nb); 1769 if (ret) 1770 pr_warn("Failed to register srcu module notifier\n"); 1771 return ret; 1772 } 1773 late_initcall(init_srcu_module_notifier); 1774 1775 #endif /* #ifdef CONFIG_MODULES */ 1776