xref: /openbmc/linux/kernel/rcu/srcutree.c (revision bb0eb050)
1 /*
2  * Sleepable Read-Copy Update mechanism for mutual exclusion.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright (C) IBM Corporation, 2006
19  * Copyright (C) Fujitsu, 2012
20  *
21  * Author: Paul McKenney <paulmck@us.ibm.com>
22  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
23  *
24  * For detailed explanation of Read-Copy Update mechanism see -
25  *		Documentation/RCU/ *.txt
26  *
27  */
28 
29 #include <linux/export.h>
30 #include <linux/mutex.h>
31 #include <linux/percpu.h>
32 #include <linux/preempt.h>
33 #include <linux/rcupdate_wait.h>
34 #include <linux/sched.h>
35 #include <linux/smp.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/srcu.h>
39 
40 #include "rcu.h"
41 #include "rcu_segcblist.h"
42 
43 ulong exp_holdoff = 25 * 1000; /* Holdoff (ns) for auto-expediting. */
44 module_param(exp_holdoff, ulong, 0444);
45 
46 static void srcu_invoke_callbacks(struct work_struct *work);
47 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay);
48 
49 /*
50  * Initialize SRCU combining tree.  Note that statically allocated
51  * srcu_struct structures might already have srcu_read_lock() and
52  * srcu_read_unlock() running against them.  So if the is_static parameter
53  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
54  */
55 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static)
56 {
57 	int cpu;
58 	int i;
59 	int level = 0;
60 	int levelspread[RCU_NUM_LVLS];
61 	struct srcu_data *sdp;
62 	struct srcu_node *snp;
63 	struct srcu_node *snp_first;
64 
65 	/* Work out the overall tree geometry. */
66 	sp->level[0] = &sp->node[0];
67 	for (i = 1; i < rcu_num_lvls; i++)
68 		sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1];
69 	rcu_init_levelspread(levelspread, num_rcu_lvl);
70 
71 	/* Each pass through this loop initializes one srcu_node structure. */
72 	rcu_for_each_node_breadth_first(sp, snp) {
73 		spin_lock_init(&snp->lock);
74 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
75 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
76 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
77 			snp->srcu_have_cbs[i] = 0;
78 			snp->srcu_data_have_cbs[i] = 0;
79 		}
80 		snp->srcu_gp_seq_needed_exp = 0;
81 		snp->grplo = -1;
82 		snp->grphi = -1;
83 		if (snp == &sp->node[0]) {
84 			/* Root node, special case. */
85 			snp->srcu_parent = NULL;
86 			continue;
87 		}
88 
89 		/* Non-root node. */
90 		if (snp == sp->level[level + 1])
91 			level++;
92 		snp->srcu_parent = sp->level[level - 1] +
93 				   (snp - sp->level[level]) /
94 				   levelspread[level - 1];
95 	}
96 
97 	/*
98 	 * Initialize the per-CPU srcu_data array, which feeds into the
99 	 * leaves of the srcu_node tree.
100 	 */
101 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
102 		     ARRAY_SIZE(sdp->srcu_unlock_count));
103 	level = rcu_num_lvls - 1;
104 	snp_first = sp->level[level];
105 	for_each_possible_cpu(cpu) {
106 		sdp = per_cpu_ptr(sp->sda, cpu);
107 		spin_lock_init(&sdp->lock);
108 		rcu_segcblist_init(&sdp->srcu_cblist);
109 		sdp->srcu_cblist_invoking = false;
110 		sdp->srcu_gp_seq_needed = sp->srcu_gp_seq;
111 		sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq;
112 		sdp->mynode = &snp_first[cpu / levelspread[level]];
113 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
114 			if (snp->grplo < 0)
115 				snp->grplo = cpu;
116 			snp->grphi = cpu;
117 		}
118 		sdp->cpu = cpu;
119 		INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks);
120 		sdp->sp = sp;
121 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
122 		if (is_static)
123 			continue;
124 
125 		/* Dynamically allocated, better be no srcu_read_locks()! */
126 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
127 			sdp->srcu_lock_count[i] = 0;
128 			sdp->srcu_unlock_count[i] = 0;
129 		}
130 	}
131 }
132 
133 /*
134  * Initialize non-compile-time initialized fields, including the
135  * associated srcu_node and srcu_data structures.  The is_static
136  * parameter is passed through to init_srcu_struct_nodes(), and
137  * also tells us that ->sda has already been wired up to srcu_data.
138  */
139 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static)
140 {
141 	mutex_init(&sp->srcu_cb_mutex);
142 	mutex_init(&sp->srcu_gp_mutex);
143 	sp->srcu_idx = 0;
144 	sp->srcu_gp_seq = 0;
145 	sp->srcu_barrier_seq = 0;
146 	mutex_init(&sp->srcu_barrier_mutex);
147 	atomic_set(&sp->srcu_barrier_cpu_cnt, 0);
148 	INIT_DELAYED_WORK(&sp->work, process_srcu);
149 	if (!is_static)
150 		sp->sda = alloc_percpu(struct srcu_data);
151 	init_srcu_struct_nodes(sp, is_static);
152 	sp->srcu_gp_seq_needed_exp = 0;
153 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
154 	smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */
155 	return sp->sda ? 0 : -ENOMEM;
156 }
157 
158 #ifdef CONFIG_DEBUG_LOCK_ALLOC
159 
160 int __init_srcu_struct(struct srcu_struct *sp, const char *name,
161 		       struct lock_class_key *key)
162 {
163 	/* Don't re-initialize a lock while it is held. */
164 	debug_check_no_locks_freed((void *)sp, sizeof(*sp));
165 	lockdep_init_map(&sp->dep_map, name, key, 0);
166 	spin_lock_init(&sp->gp_lock);
167 	return init_srcu_struct_fields(sp, false);
168 }
169 EXPORT_SYMBOL_GPL(__init_srcu_struct);
170 
171 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
172 
173 /**
174  * init_srcu_struct - initialize a sleep-RCU structure
175  * @sp: structure to initialize.
176  *
177  * Must invoke this on a given srcu_struct before passing that srcu_struct
178  * to any other function.  Each srcu_struct represents a separate domain
179  * of SRCU protection.
180  */
181 int init_srcu_struct(struct srcu_struct *sp)
182 {
183 	spin_lock_init(&sp->gp_lock);
184 	return init_srcu_struct_fields(sp, false);
185 }
186 EXPORT_SYMBOL_GPL(init_srcu_struct);
187 
188 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
189 
190 /*
191  * First-use initialization of statically allocated srcu_struct
192  * structure.  Wiring up the combining tree is more than can be
193  * done with compile-time initialization, so this check is added
194  * to each update-side SRCU primitive.  Use ->gp_lock, which -is-
195  * compile-time initialized, to resolve races involving multiple
196  * CPUs trying to garner first-use privileges.
197  */
198 static void check_init_srcu_struct(struct srcu_struct *sp)
199 {
200 	unsigned long flags;
201 
202 	WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT);
203 	/* The smp_load_acquire() pairs with the smp_store_release(). */
204 	if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/
205 		return; /* Already initialized. */
206 	spin_lock_irqsave(&sp->gp_lock, flags);
207 	if (!rcu_seq_state(sp->srcu_gp_seq_needed)) {
208 		spin_unlock_irqrestore(&sp->gp_lock, flags);
209 		return;
210 	}
211 	init_srcu_struct_fields(sp, true);
212 	spin_unlock_irqrestore(&sp->gp_lock, flags);
213 }
214 
215 /*
216  * Returns approximate total of the readers' ->srcu_lock_count[] values
217  * for the rank of per-CPU counters specified by idx.
218  */
219 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx)
220 {
221 	int cpu;
222 	unsigned long sum = 0;
223 
224 	for_each_possible_cpu(cpu) {
225 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
226 
227 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
228 	}
229 	return sum;
230 }
231 
232 /*
233  * Returns approximate total of the readers' ->srcu_unlock_count[] values
234  * for the rank of per-CPU counters specified by idx.
235  */
236 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx)
237 {
238 	int cpu;
239 	unsigned long sum = 0;
240 
241 	for_each_possible_cpu(cpu) {
242 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
243 
244 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
245 	}
246 	return sum;
247 }
248 
249 /*
250  * Return true if the number of pre-existing readers is determined to
251  * be zero.
252  */
253 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx)
254 {
255 	unsigned long unlocks;
256 
257 	unlocks = srcu_readers_unlock_idx(sp, idx);
258 
259 	/*
260 	 * Make sure that a lock is always counted if the corresponding
261 	 * unlock is counted. Needs to be a smp_mb() as the read side may
262 	 * contain a read from a variable that is written to before the
263 	 * synchronize_srcu() in the write side. In this case smp_mb()s
264 	 * A and B act like the store buffering pattern.
265 	 *
266 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
267 	 * after the synchronize_srcu() from being executed before the
268 	 * grace period ends.
269 	 */
270 	smp_mb(); /* A */
271 
272 	/*
273 	 * If the locks are the same as the unlocks, then there must have
274 	 * been no readers on this index at some time in between. This does
275 	 * not mean that there are no more readers, as one could have read
276 	 * the current index but not have incremented the lock counter yet.
277 	 *
278 	 * Possible bug: There is no guarantee that there haven't been
279 	 * ULONG_MAX increments of ->srcu_lock_count[] since the unlocks were
280 	 * counted, meaning that this could return true even if there are
281 	 * still active readers.  Since there are no memory barriers around
282 	 * srcu_flip(), the CPU is not required to increment ->srcu_idx
283 	 * before running srcu_readers_unlock_idx(), which means that there
284 	 * could be an arbitrarily large number of critical sections that
285 	 * execute after srcu_readers_unlock_idx() but use the old value
286 	 * of ->srcu_idx.
287 	 */
288 	return srcu_readers_lock_idx(sp, idx) == unlocks;
289 }
290 
291 /**
292  * srcu_readers_active - returns true if there are readers. and false
293  *                       otherwise
294  * @sp: which srcu_struct to count active readers (holding srcu_read_lock).
295  *
296  * Note that this is not an atomic primitive, and can therefore suffer
297  * severe errors when invoked on an active srcu_struct.  That said, it
298  * can be useful as an error check at cleanup time.
299  */
300 static bool srcu_readers_active(struct srcu_struct *sp)
301 {
302 	int cpu;
303 	unsigned long sum = 0;
304 
305 	for_each_possible_cpu(cpu) {
306 		struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu);
307 
308 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
309 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
310 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
311 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
312 	}
313 	return sum;
314 }
315 
316 #define SRCU_INTERVAL		1
317 
318 /*
319  * Return grace-period delay, zero if there are expedited grace
320  * periods pending, SRCU_INTERVAL otherwise.
321  */
322 static unsigned long srcu_get_delay(struct srcu_struct *sp)
323 {
324 	if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq),
325 			 READ_ONCE(sp->srcu_gp_seq_needed_exp)))
326 		return 0;
327 	return SRCU_INTERVAL;
328 }
329 
330 /**
331  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
332  * @sp: structure to clean up.
333  *
334  * Must invoke this after you are finished using a given srcu_struct that
335  * was initialized via init_srcu_struct(), else you leak memory.
336  */
337 void cleanup_srcu_struct(struct srcu_struct *sp)
338 {
339 	int cpu;
340 
341 	if (WARN_ON(!srcu_get_delay(sp)))
342 		return; /* Leakage unless caller handles error. */
343 	if (WARN_ON(srcu_readers_active(sp)))
344 		return; /* Leakage unless caller handles error. */
345 	flush_delayed_work(&sp->work);
346 	for_each_possible_cpu(cpu)
347 		flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work);
348 	if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
349 	    WARN_ON(srcu_readers_active(sp))) {
350 		pr_info("cleanup_srcu_struct: Active srcu_struct %p state: %d\n", sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)));
351 		return; /* Caller forgot to stop doing call_srcu()? */
352 	}
353 	free_percpu(sp->sda);
354 	sp->sda = NULL;
355 }
356 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
357 
358 /*
359  * Counts the new reader in the appropriate per-CPU element of the
360  * srcu_struct.  Must be called from process context.
361  * Returns an index that must be passed to the matching srcu_read_unlock().
362  */
363 int __srcu_read_lock(struct srcu_struct *sp)
364 {
365 	int idx;
366 
367 	idx = READ_ONCE(sp->srcu_idx) & 0x1;
368 	__this_cpu_inc(sp->sda->srcu_lock_count[idx]);
369 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
370 	return idx;
371 }
372 EXPORT_SYMBOL_GPL(__srcu_read_lock);
373 
374 /*
375  * Removes the count for the old reader from the appropriate per-CPU
376  * element of the srcu_struct.  Note that this may well be a different
377  * CPU than that which was incremented by the corresponding srcu_read_lock().
378  * Must be called from process context.
379  */
380 void __srcu_read_unlock(struct srcu_struct *sp, int idx)
381 {
382 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
383 	this_cpu_inc(sp->sda->srcu_unlock_count[idx]);
384 }
385 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
386 
387 /*
388  * We use an adaptive strategy for synchronize_srcu() and especially for
389  * synchronize_srcu_expedited().  We spin for a fixed time period
390  * (defined below) to allow SRCU readers to exit their read-side critical
391  * sections.  If there are still some readers after a few microseconds,
392  * we repeatedly block for 1-millisecond time periods.
393  */
394 #define SRCU_RETRY_CHECK_DELAY		5
395 
396 /*
397  * Start an SRCU grace period.
398  */
399 static void srcu_gp_start(struct srcu_struct *sp)
400 {
401 	struct srcu_data *sdp = this_cpu_ptr(sp->sda);
402 	int state;
403 
404 	RCU_LOCKDEP_WARN(!lockdep_is_held(&sp->gp_lock),
405 			 "Invoked srcu_gp_start() without ->gp_lock!");
406 	WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
407 	rcu_segcblist_advance(&sdp->srcu_cblist,
408 			      rcu_seq_current(&sp->srcu_gp_seq));
409 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
410 				       rcu_seq_snap(&sp->srcu_gp_seq));
411 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
412 	rcu_seq_start(&sp->srcu_gp_seq);
413 	state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
414 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
415 }
416 
417 /*
418  * Track online CPUs to guide callback workqueue placement.
419  */
420 DEFINE_PER_CPU(bool, srcu_online);
421 
422 void srcu_online_cpu(unsigned int cpu)
423 {
424 	WRITE_ONCE(per_cpu(srcu_online, cpu), true);
425 }
426 
427 void srcu_offline_cpu(unsigned int cpu)
428 {
429 	WRITE_ONCE(per_cpu(srcu_online, cpu), false);
430 }
431 
432 /*
433  * Place the workqueue handler on the specified CPU if online, otherwise
434  * just run it whereever.  This is useful for placing workqueue handlers
435  * that are to invoke the specified CPU's callbacks.
436  */
437 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
438 				       struct delayed_work *dwork,
439 				       unsigned long delay)
440 {
441 	bool ret;
442 
443 	preempt_disable();
444 	if (READ_ONCE(per_cpu(srcu_online, cpu)))
445 		ret = queue_delayed_work_on(cpu, wq, dwork, delay);
446 	else
447 		ret = queue_delayed_work(wq, dwork, delay);
448 	preempt_enable();
449 	return ret;
450 }
451 
452 /*
453  * Schedule callback invocation for the specified srcu_data structure,
454  * if possible, on the corresponding CPU.
455  */
456 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
457 {
458 	srcu_queue_delayed_work_on(sdp->cpu, system_power_efficient_wq,
459 				   &sdp->work, delay);
460 }
461 
462 /*
463  * Schedule callback invocation for all srcu_data structures associated
464  * with the specified srcu_node structure that have callbacks for the
465  * just-completed grace period, the one corresponding to idx.  If possible,
466  * schedule this invocation on the corresponding CPUs.
467  */
468 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp,
469 				  unsigned long mask, unsigned long delay)
470 {
471 	int cpu;
472 
473 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
474 		if (!(mask & (1 << (cpu - snp->grplo))))
475 			continue;
476 		srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay);
477 	}
478 }
479 
480 /*
481  * Note the end of an SRCU grace period.  Initiates callback invocation
482  * and starts a new grace period if needed.
483  *
484  * The ->srcu_cb_mutex acquisition does not protect any data, but
485  * instead prevents more than one grace period from starting while we
486  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
487  * array to have a finite number of elements.
488  */
489 static void srcu_gp_end(struct srcu_struct *sp)
490 {
491 	unsigned long cbdelay;
492 	bool cbs;
493 	unsigned long gpseq;
494 	int idx;
495 	int idxnext;
496 	unsigned long mask;
497 	struct srcu_node *snp;
498 
499 	/* Prevent more than one additional grace period. */
500 	mutex_lock(&sp->srcu_cb_mutex);
501 
502 	/* End the current grace period. */
503 	spin_lock_irq(&sp->gp_lock);
504 	idx = rcu_seq_state(sp->srcu_gp_seq);
505 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
506 	cbdelay = srcu_get_delay(sp);
507 	sp->srcu_last_gp_end = ktime_get_mono_fast_ns();
508 	rcu_seq_end(&sp->srcu_gp_seq);
509 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
510 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq))
511 		sp->srcu_gp_seq_needed_exp = gpseq;
512 	spin_unlock_irq(&sp->gp_lock);
513 	mutex_unlock(&sp->srcu_gp_mutex);
514 	/* A new grace period can start at this point.  But only one. */
515 
516 	/* Initiate callback invocation as needed. */
517 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
518 	idxnext = (idx + 1) % ARRAY_SIZE(snp->srcu_have_cbs);
519 	rcu_for_each_node_breadth_first(sp, snp) {
520 		spin_lock_irq(&snp->lock);
521 		cbs = false;
522 		if (snp >= sp->level[rcu_num_lvls - 1])
523 			cbs = snp->srcu_have_cbs[idx] == gpseq;
524 		snp->srcu_have_cbs[idx] = gpseq;
525 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
526 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
527 			snp->srcu_gp_seq_needed_exp = gpseq;
528 		mask = snp->srcu_data_have_cbs[idx];
529 		snp->srcu_data_have_cbs[idx] = 0;
530 		spin_unlock_irq(&snp->lock);
531 		if (cbs) {
532 			smp_mb(); /* GP end before CB invocation. */
533 			srcu_schedule_cbs_snp(sp, snp, mask, cbdelay);
534 		}
535 	}
536 
537 	/* Callback initiation done, allow grace periods after next. */
538 	mutex_unlock(&sp->srcu_cb_mutex);
539 
540 	/* Start a new grace period if needed. */
541 	spin_lock_irq(&sp->gp_lock);
542 	gpseq = rcu_seq_current(&sp->srcu_gp_seq);
543 	if (!rcu_seq_state(gpseq) &&
544 	    ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) {
545 		srcu_gp_start(sp);
546 		spin_unlock_irq(&sp->gp_lock);
547 		/* Throttle expedited grace periods: Should be rare! */
548 		srcu_reschedule(sp, rcu_seq_ctr(gpseq) & 0x3ff
549 				    ? 0 : SRCU_INTERVAL);
550 	} else {
551 		spin_unlock_irq(&sp->gp_lock);
552 	}
553 }
554 
555 /*
556  * Funnel-locking scheme to scalably mediate many concurrent expedited
557  * grace-period requests.  This function is invoked for the first known
558  * expedited request for a grace period that has already been requested,
559  * but without expediting.  To start a completely new grace period,
560  * whether expedited or not, use srcu_funnel_gp_start() instead.
561  */
562 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp,
563 				  unsigned long s)
564 {
565 	unsigned long flags;
566 
567 	for (; snp != NULL; snp = snp->srcu_parent) {
568 		if (rcu_seq_done(&sp->srcu_gp_seq, s) ||
569 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
570 			return;
571 		spin_lock_irqsave(&snp->lock, flags);
572 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
573 			spin_unlock_irqrestore(&snp->lock, flags);
574 			return;
575 		}
576 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
577 		spin_unlock_irqrestore(&snp->lock, flags);
578 	}
579 	spin_lock_irqsave(&sp->gp_lock, flags);
580 	if (!ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
581 		sp->srcu_gp_seq_needed_exp = s;
582 	spin_unlock_irqrestore(&sp->gp_lock, flags);
583 }
584 
585 /*
586  * Funnel-locking scheme to scalably mediate many concurrent grace-period
587  * requests.  The winner has to do the work of actually starting grace
588  * period s.  Losers must either ensure that their desired grace-period
589  * number is recorded on at least their leaf srcu_node structure, or they
590  * must take steps to invoke their own callbacks.
591  */
592 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp,
593 				 unsigned long s, bool do_norm)
594 {
595 	unsigned long flags;
596 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
597 	struct srcu_node *snp = sdp->mynode;
598 	unsigned long snp_seq;
599 
600 	/* Each pass through the loop does one level of the srcu_node tree. */
601 	for (; snp != NULL; snp = snp->srcu_parent) {
602 		if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode)
603 			return; /* GP already done and CBs recorded. */
604 		spin_lock_irqsave(&snp->lock, flags);
605 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
606 			snp_seq = snp->srcu_have_cbs[idx];
607 			if (snp == sdp->mynode && snp_seq == s)
608 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
609 			spin_unlock_irqrestore(&snp->lock, flags);
610 			if (snp == sdp->mynode && snp_seq != s) {
611 				smp_mb(); /* CBs after GP! */
612 				srcu_schedule_cbs_sdp(sdp, do_norm
613 							   ? SRCU_INTERVAL
614 							   : 0);
615 				return;
616 			}
617 			if (!do_norm)
618 				srcu_funnel_exp_start(sp, snp, s);
619 			return;
620 		}
621 		snp->srcu_have_cbs[idx] = s;
622 		if (snp == sdp->mynode)
623 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
624 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
625 			snp->srcu_gp_seq_needed_exp = s;
626 		spin_unlock_irqrestore(&snp->lock, flags);
627 	}
628 
629 	/* Top of tree, must ensure the grace period will be started. */
630 	spin_lock_irqsave(&sp->gp_lock, flags);
631 	if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) {
632 		/*
633 		 * Record need for grace period s.  Pair with load
634 		 * acquire setting up for initialization.
635 		 */
636 		smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/
637 	}
638 	if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s))
639 		sp->srcu_gp_seq_needed_exp = s;
640 
641 	/* If grace period not already done and none in progress, start it. */
642 	if (!rcu_seq_done(&sp->srcu_gp_seq, s) &&
643 	    rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) {
644 		WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed));
645 		srcu_gp_start(sp);
646 		queue_delayed_work(system_power_efficient_wq, &sp->work,
647 				   srcu_get_delay(sp));
648 	}
649 	spin_unlock_irqrestore(&sp->gp_lock, flags);
650 }
651 
652 /*
653  * Wait until all readers counted by array index idx complete, but
654  * loop an additional time if there is an expedited grace period pending.
655  * The caller must ensure that ->srcu_idx is not changed while checking.
656  */
657 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount)
658 {
659 	for (;;) {
660 		if (srcu_readers_active_idx_check(sp, idx))
661 			return true;
662 		if (--trycount + !srcu_get_delay(sp) <= 0)
663 			return false;
664 		udelay(SRCU_RETRY_CHECK_DELAY);
665 	}
666 }
667 
668 /*
669  * Increment the ->srcu_idx counter so that future SRCU readers will
670  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
671  * us to wait for pre-existing readers in a starvation-free manner.
672  */
673 static void srcu_flip(struct srcu_struct *sp)
674 {
675 	WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1);
676 
677 	/*
678 	 * Ensure that if the updater misses an __srcu_read_unlock()
679 	 * increment, that task's next __srcu_read_lock() will see the
680 	 * above counter update.  Note that both this memory barrier
681 	 * and the one in srcu_readers_active_idx_check() provide the
682 	 * guarantee for __srcu_read_lock().
683 	 */
684 	smp_mb(); /* D */  /* Pairs with C. */
685 }
686 
687 /*
688  * If SRCU is likely idle, return true, otherwise return false.
689  *
690  * Note that it is OK for several current from-idle requests for a new
691  * grace period from idle to specify expediting because they will all end
692  * up requesting the same grace period anyhow.  So no loss.
693  *
694  * Note also that if any CPU (including the current one) is still invoking
695  * callbacks, this function will nevertheless say "idle".  This is not
696  * ideal, but the overhead of checking all CPUs' callback lists is even
697  * less ideal, especially on large systems.  Furthermore, the wakeup
698  * can happen before the callback is fully removed, so we have no choice
699  * but to accept this type of error.
700  *
701  * This function is also subject to counter-wrap errors, but let's face
702  * it, if this function was preempted for enough time for the counters
703  * to wrap, it really doesn't matter whether or not we expedite the grace
704  * period.  The extra overhead of a needlessly expedited grace period is
705  * negligible when amoritized over that time period, and the extra latency
706  * of a needlessly non-expedited grace period is similarly negligible.
707  */
708 static bool srcu_might_be_idle(struct srcu_struct *sp)
709 {
710 	unsigned long curseq;
711 	unsigned long flags;
712 	struct srcu_data *sdp;
713 	unsigned long t;
714 
715 	/* If the local srcu_data structure has callbacks, not idle.  */
716 	local_irq_save(flags);
717 	sdp = this_cpu_ptr(sp->sda);
718 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
719 		local_irq_restore(flags);
720 		return false; /* Callbacks already present, so not idle. */
721 	}
722 	local_irq_restore(flags);
723 
724 	/*
725 	 * No local callbacks, so probabalistically probe global state.
726 	 * Exact information would require acquiring locks, which would
727 	 * kill scalability, hence the probabalistic nature of the probe.
728 	 */
729 
730 	/* First, see if enough time has passed since the last GP. */
731 	t = ktime_get_mono_fast_ns();
732 	if (exp_holdoff == 0 ||
733 	    time_in_range_open(t, sp->srcu_last_gp_end,
734 			       sp->srcu_last_gp_end + exp_holdoff))
735 		return false; /* Too soon after last GP. */
736 
737 	/* Next, check for probable idleness. */
738 	curseq = rcu_seq_current(&sp->srcu_gp_seq);
739 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
740 	if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed)))
741 		return false; /* Grace period in progress, so not idle. */
742 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
743 	if (curseq != rcu_seq_current(&sp->srcu_gp_seq))
744 		return false; /* GP # changed, so not idle. */
745 	return true; /* With reasonable probability, idle! */
746 }
747 
748 /*
749  * Enqueue an SRCU callback on the srcu_data structure associated with
750  * the current CPU and the specified srcu_struct structure, initiating
751  * grace-period processing if it is not already running.
752  *
753  * Note that all CPUs must agree that the grace period extended beyond
754  * all pre-existing SRCU read-side critical section.  On systems with
755  * more than one CPU, this means that when "func()" is invoked, each CPU
756  * is guaranteed to have executed a full memory barrier since the end of
757  * its last corresponding SRCU read-side critical section whose beginning
758  * preceded the call to call_rcu().  It also means that each CPU executing
759  * an SRCU read-side critical section that continues beyond the start of
760  * "func()" must have executed a memory barrier after the call_rcu()
761  * but before the beginning of that SRCU read-side critical section.
762  * Note that these guarantees include CPUs that are offline, idle, or
763  * executing in user mode, as well as CPUs that are executing in the kernel.
764  *
765  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
766  * resulting SRCU callback function "func()", then both CPU A and CPU
767  * B are guaranteed to execute a full memory barrier during the time
768  * interval between the call to call_rcu() and the invocation of "func()".
769  * This guarantee applies even if CPU A and CPU B are the same CPU (but
770  * again only if the system has more than one CPU).
771  *
772  * Of course, these guarantees apply only for invocations of call_srcu(),
773  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
774  * srcu_struct structure.
775  */
776 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
777 		 rcu_callback_t func, bool do_norm)
778 {
779 	unsigned long flags;
780 	bool needexp = false;
781 	bool needgp = false;
782 	unsigned long s;
783 	struct srcu_data *sdp;
784 
785 	check_init_srcu_struct(sp);
786 	rhp->func = func;
787 	local_irq_save(flags);
788 	sdp = this_cpu_ptr(sp->sda);
789 	spin_lock(&sdp->lock);
790 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false);
791 	rcu_segcblist_advance(&sdp->srcu_cblist,
792 			      rcu_seq_current(&sp->srcu_gp_seq));
793 	s = rcu_seq_snap(&sp->srcu_gp_seq);
794 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
795 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
796 		sdp->srcu_gp_seq_needed = s;
797 		needgp = true;
798 	}
799 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
800 		sdp->srcu_gp_seq_needed_exp = s;
801 		needexp = true;
802 	}
803 	spin_unlock_irqrestore(&sdp->lock, flags);
804 	if (needgp)
805 		srcu_funnel_gp_start(sp, sdp, s, do_norm);
806 	else if (needexp)
807 		srcu_funnel_exp_start(sp, sdp->mynode, s);
808 }
809 
810 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp,
811 	       rcu_callback_t func)
812 {
813 	__call_srcu(sp, rhp, func, true);
814 }
815 EXPORT_SYMBOL_GPL(call_srcu);
816 
817 /*
818  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
819  */
820 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm)
821 {
822 	struct rcu_synchronize rcu;
823 
824 	RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) ||
825 			 lock_is_held(&rcu_bh_lock_map) ||
826 			 lock_is_held(&rcu_lock_map) ||
827 			 lock_is_held(&rcu_sched_lock_map),
828 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
829 
830 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
831 		return;
832 	might_sleep();
833 	check_init_srcu_struct(sp);
834 	init_completion(&rcu.completion);
835 	init_rcu_head_on_stack(&rcu.head);
836 	__call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm);
837 	wait_for_completion(&rcu.completion);
838 	destroy_rcu_head_on_stack(&rcu.head);
839 }
840 
841 /**
842  * synchronize_srcu_expedited - Brute-force SRCU grace period
843  * @sp: srcu_struct with which to synchronize.
844  *
845  * Wait for an SRCU grace period to elapse, but be more aggressive about
846  * spinning rather than blocking when waiting.
847  *
848  * Note that synchronize_srcu_expedited() has the same deadlock and
849  * memory-ordering properties as does synchronize_srcu().
850  */
851 void synchronize_srcu_expedited(struct srcu_struct *sp)
852 {
853 	__synchronize_srcu(sp, rcu_gp_is_normal());
854 }
855 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
856 
857 /**
858  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
859  * @sp: srcu_struct with which to synchronize.
860  *
861  * Wait for the count to drain to zero of both indexes. To avoid the
862  * possible starvation of synchronize_srcu(), it waits for the count of
863  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
864  * and then flip the srcu_idx and wait for the count of the other index.
865  *
866  * Can block; must be called from process context.
867  *
868  * Note that it is illegal to call synchronize_srcu() from the corresponding
869  * SRCU read-side critical section; doing so will result in deadlock.
870  * However, it is perfectly legal to call synchronize_srcu() on one
871  * srcu_struct from some other srcu_struct's read-side critical section,
872  * as long as the resulting graph of srcu_structs is acyclic.
873  *
874  * There are memory-ordering constraints implied by synchronize_srcu().
875  * On systems with more than one CPU, when synchronize_srcu() returns,
876  * each CPU is guaranteed to have executed a full memory barrier since
877  * the end of its last corresponding SRCU-sched read-side critical section
878  * whose beginning preceded the call to synchronize_srcu().  In addition,
879  * each CPU having an SRCU read-side critical section that extends beyond
880  * the return from synchronize_srcu() is guaranteed to have executed a
881  * full memory barrier after the beginning of synchronize_srcu() and before
882  * the beginning of that SRCU read-side critical section.  Note that these
883  * guarantees include CPUs that are offline, idle, or executing in user mode,
884  * as well as CPUs that are executing in the kernel.
885  *
886  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
887  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
888  * to have executed a full memory barrier during the execution of
889  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
890  * are the same CPU, but again only if the system has more than one CPU.
891  *
892  * Of course, these memory-ordering guarantees apply only when
893  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
894  * passed the same srcu_struct structure.
895  *
896  * If SRCU is likely idle, expedite the first request.  This semantic
897  * was provided by Classic SRCU, and is relied upon by its users, so TREE
898  * SRCU must also provide it.  Note that detecting idleness is heuristic
899  * and subject to both false positives and negatives.
900  */
901 void synchronize_srcu(struct srcu_struct *sp)
902 {
903 	if (srcu_might_be_idle(sp) || rcu_gp_is_expedited())
904 		synchronize_srcu_expedited(sp);
905 	else
906 		__synchronize_srcu(sp, true);
907 }
908 EXPORT_SYMBOL_GPL(synchronize_srcu);
909 
910 /*
911  * Callback function for srcu_barrier() use.
912  */
913 static void srcu_barrier_cb(struct rcu_head *rhp)
914 {
915 	struct srcu_data *sdp;
916 	struct srcu_struct *sp;
917 
918 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
919 	sp = sdp->sp;
920 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
921 		complete(&sp->srcu_barrier_completion);
922 }
923 
924 /**
925  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
926  * @sp: srcu_struct on which to wait for in-flight callbacks.
927  */
928 void srcu_barrier(struct srcu_struct *sp)
929 {
930 	int cpu;
931 	struct srcu_data *sdp;
932 	unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq);
933 
934 	check_init_srcu_struct(sp);
935 	mutex_lock(&sp->srcu_barrier_mutex);
936 	if (rcu_seq_done(&sp->srcu_barrier_seq, s)) {
937 		smp_mb(); /* Force ordering following return. */
938 		mutex_unlock(&sp->srcu_barrier_mutex);
939 		return; /* Someone else did our work for us. */
940 	}
941 	rcu_seq_start(&sp->srcu_barrier_seq);
942 	init_completion(&sp->srcu_barrier_completion);
943 
944 	/* Initial count prevents reaching zero until all CBs are posted. */
945 	atomic_set(&sp->srcu_barrier_cpu_cnt, 1);
946 
947 	/*
948 	 * Each pass through this loop enqueues a callback, but only
949 	 * on CPUs already having callbacks enqueued.  Note that if
950 	 * a CPU already has callbacks enqueue, it must have already
951 	 * registered the need for a future grace period, so all we
952 	 * need do is enqueue a callback that will use the same
953 	 * grace period as the last callback already in the queue.
954 	 */
955 	for_each_possible_cpu(cpu) {
956 		sdp = per_cpu_ptr(sp->sda, cpu);
957 		spin_lock_irq(&sdp->lock);
958 		atomic_inc(&sp->srcu_barrier_cpu_cnt);
959 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
960 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
961 					   &sdp->srcu_barrier_head, 0))
962 			atomic_dec(&sp->srcu_barrier_cpu_cnt);
963 		spin_unlock_irq(&sdp->lock);
964 	}
965 
966 	/* Remove the initial count, at which point reaching zero can happen. */
967 	if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt))
968 		complete(&sp->srcu_barrier_completion);
969 	wait_for_completion(&sp->srcu_barrier_completion);
970 
971 	rcu_seq_end(&sp->srcu_barrier_seq);
972 	mutex_unlock(&sp->srcu_barrier_mutex);
973 }
974 EXPORT_SYMBOL_GPL(srcu_barrier);
975 
976 /**
977  * srcu_batches_completed - return batches completed.
978  * @sp: srcu_struct on which to report batch completion.
979  *
980  * Report the number of batches, correlated with, but not necessarily
981  * precisely the same as, the number of grace periods that have elapsed.
982  */
983 unsigned long srcu_batches_completed(struct srcu_struct *sp)
984 {
985 	return sp->srcu_idx;
986 }
987 EXPORT_SYMBOL_GPL(srcu_batches_completed);
988 
989 /*
990  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
991  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
992  * completed in that state.
993  */
994 static void srcu_advance_state(struct srcu_struct *sp)
995 {
996 	int idx;
997 
998 	mutex_lock(&sp->srcu_gp_mutex);
999 
1000 	/*
1001 	 * Because readers might be delayed for an extended period after
1002 	 * fetching ->srcu_idx for their index, at any point in time there
1003 	 * might well be readers using both idx=0 and idx=1.  We therefore
1004 	 * need to wait for readers to clear from both index values before
1005 	 * invoking a callback.
1006 	 *
1007 	 * The load-acquire ensures that we see the accesses performed
1008 	 * by the prior grace period.
1009 	 */
1010 	idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */
1011 	if (idx == SRCU_STATE_IDLE) {
1012 		spin_lock_irq(&sp->gp_lock);
1013 		if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1014 			WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq));
1015 			spin_unlock_irq(&sp->gp_lock);
1016 			mutex_unlock(&sp->srcu_gp_mutex);
1017 			return;
1018 		}
1019 		idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq));
1020 		if (idx == SRCU_STATE_IDLE)
1021 			srcu_gp_start(sp);
1022 		spin_unlock_irq(&sp->gp_lock);
1023 		if (idx != SRCU_STATE_IDLE) {
1024 			mutex_unlock(&sp->srcu_gp_mutex);
1025 			return; /* Someone else started the grace period. */
1026 		}
1027 	}
1028 
1029 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1030 		idx = 1 ^ (sp->srcu_idx & 1);
1031 		if (!try_check_zero(sp, idx, 1)) {
1032 			mutex_unlock(&sp->srcu_gp_mutex);
1033 			return; /* readers present, retry later. */
1034 		}
1035 		srcu_flip(sp);
1036 		rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2);
1037 	}
1038 
1039 	if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1040 
1041 		/*
1042 		 * SRCU read-side critical sections are normally short,
1043 		 * so check at least twice in quick succession after a flip.
1044 		 */
1045 		idx = 1 ^ (sp->srcu_idx & 1);
1046 		if (!try_check_zero(sp, idx, 2)) {
1047 			mutex_unlock(&sp->srcu_gp_mutex);
1048 			return; /* readers present, retry later. */
1049 		}
1050 		srcu_gp_end(sp);  /* Releases ->srcu_gp_mutex. */
1051 	}
1052 }
1053 
1054 /*
1055  * Invoke a limited number of SRCU callbacks that have passed through
1056  * their grace period.  If there are more to do, SRCU will reschedule
1057  * the workqueue.  Note that needed memory barriers have been executed
1058  * in this task's context by srcu_readers_active_idx_check().
1059  */
1060 static void srcu_invoke_callbacks(struct work_struct *work)
1061 {
1062 	bool more;
1063 	struct rcu_cblist ready_cbs;
1064 	struct rcu_head *rhp;
1065 	struct srcu_data *sdp;
1066 	struct srcu_struct *sp;
1067 
1068 	sdp = container_of(work, struct srcu_data, work.work);
1069 	sp = sdp->sp;
1070 	rcu_cblist_init(&ready_cbs);
1071 	spin_lock_irq(&sdp->lock);
1072 	smp_mb(); /* Old grace periods before callback invocation! */
1073 	rcu_segcblist_advance(&sdp->srcu_cblist,
1074 			      rcu_seq_current(&sp->srcu_gp_seq));
1075 	if (sdp->srcu_cblist_invoking ||
1076 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1077 		spin_unlock_irq(&sdp->lock);
1078 		return;  /* Someone else on the job or nothing to do. */
1079 	}
1080 
1081 	/* We are on the job!  Extract and invoke ready callbacks. */
1082 	sdp->srcu_cblist_invoking = true;
1083 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1084 	spin_unlock_irq(&sdp->lock);
1085 	rhp = rcu_cblist_dequeue(&ready_cbs);
1086 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1087 		local_bh_disable();
1088 		rhp->func(rhp);
1089 		local_bh_enable();
1090 	}
1091 
1092 	/*
1093 	 * Update counts, accelerate new callbacks, and if needed,
1094 	 * schedule another round of callback invocation.
1095 	 */
1096 	spin_lock_irq(&sdp->lock);
1097 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1098 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1099 				       rcu_seq_snap(&sp->srcu_gp_seq));
1100 	sdp->srcu_cblist_invoking = false;
1101 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1102 	spin_unlock_irq(&sdp->lock);
1103 	if (more)
1104 		srcu_schedule_cbs_sdp(sdp, 0);
1105 }
1106 
1107 /*
1108  * Finished one round of SRCU grace period.  Start another if there are
1109  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1110  */
1111 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay)
1112 {
1113 	bool pushgp = true;
1114 
1115 	spin_lock_irq(&sp->gp_lock);
1116 	if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) {
1117 		if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) {
1118 			/* All requests fulfilled, time to go idle. */
1119 			pushgp = false;
1120 		}
1121 	} else if (!rcu_seq_state(sp->srcu_gp_seq)) {
1122 		/* Outstanding request and no GP.  Start one. */
1123 		srcu_gp_start(sp);
1124 	}
1125 	spin_unlock_irq(&sp->gp_lock);
1126 
1127 	if (pushgp)
1128 		queue_delayed_work(system_power_efficient_wq, &sp->work, delay);
1129 }
1130 
1131 /*
1132  * This is the work-queue function that handles SRCU grace periods.
1133  */
1134 void process_srcu(struct work_struct *work)
1135 {
1136 	struct srcu_struct *sp;
1137 
1138 	sp = container_of(work, struct srcu_struct, work.work);
1139 
1140 	srcu_advance_state(sp);
1141 	srcu_reschedule(sp, srcu_get_delay(sp));
1142 }
1143 EXPORT_SYMBOL_GPL(process_srcu);
1144 
1145 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1146 			     struct srcu_struct *sp, int *flags,
1147 			     unsigned long *gpnum, unsigned long *completed)
1148 {
1149 	if (test_type != SRCU_FLAVOR)
1150 		return;
1151 	*flags = 0;
1152 	*completed = rcu_seq_ctr(sp->srcu_gp_seq);
1153 	*gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed);
1154 }
1155 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1156