1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Sleepable Read-Copy Update mechanism for mutual exclusion. 4 * 5 * Copyright (C) IBM Corporation, 2006 6 * Copyright (C) Fujitsu, 2012 7 * 8 * Authors: Paul McKenney <paulmck@linux.ibm.com> 9 * Lai Jiangshan <laijs@cn.fujitsu.com> 10 * 11 * For detailed explanation of Read-Copy Update mechanism see - 12 * Documentation/RCU/ *.txt 13 * 14 */ 15 16 #define pr_fmt(fmt) "rcu: " fmt 17 18 #include <linux/export.h> 19 #include <linux/mutex.h> 20 #include <linux/percpu.h> 21 #include <linux/preempt.h> 22 #include <linux/rcupdate_wait.h> 23 #include <linux/sched.h> 24 #include <linux/smp.h> 25 #include <linux/delay.h> 26 #include <linux/module.h> 27 #include <linux/srcu.h> 28 29 #include "rcu.h" 30 #include "rcu_segcblist.h" 31 32 /* Holdoff in nanoseconds for auto-expediting. */ 33 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 34 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 35 module_param(exp_holdoff, ulong, 0444); 36 37 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 38 static ulong counter_wrap_check = (ULONG_MAX >> 2); 39 module_param(counter_wrap_check, ulong, 0444); 40 41 /* Early-boot callback-management, so early that no lock is required! */ 42 static LIST_HEAD(srcu_boot_list); 43 static bool __read_mostly srcu_init_done; 44 45 static void srcu_invoke_callbacks(struct work_struct *work); 46 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay); 47 static void process_srcu(struct work_struct *work); 48 static void srcu_delay_timer(struct timer_list *t); 49 50 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 51 #define spin_lock_rcu_node(p) \ 52 do { \ 53 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 54 smp_mb__after_unlock_lock(); \ 55 } while (0) 56 57 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 58 59 #define spin_lock_irq_rcu_node(p) \ 60 do { \ 61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 62 smp_mb__after_unlock_lock(); \ 63 } while (0) 64 65 #define spin_unlock_irq_rcu_node(p) \ 66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 67 68 #define spin_lock_irqsave_rcu_node(p, flags) \ 69 do { \ 70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 71 smp_mb__after_unlock_lock(); \ 72 } while (0) 73 74 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 76 77 /* 78 * Initialize SRCU combining tree. Note that statically allocated 79 * srcu_struct structures might already have srcu_read_lock() and 80 * srcu_read_unlock() running against them. So if the is_static parameter 81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 82 */ 83 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static) 84 { 85 int cpu; 86 int i; 87 int level = 0; 88 int levelspread[RCU_NUM_LVLS]; 89 struct srcu_data *sdp; 90 struct srcu_node *snp; 91 struct srcu_node *snp_first; 92 93 /* Work out the overall tree geometry. */ 94 ssp->level[0] = &ssp->node[0]; 95 for (i = 1; i < rcu_num_lvls; i++) 96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1]; 97 rcu_init_levelspread(levelspread, num_rcu_lvl); 98 99 /* Each pass through this loop initializes one srcu_node structure. */ 100 srcu_for_each_node_breadth_first(ssp, snp) { 101 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 103 ARRAY_SIZE(snp->srcu_data_have_cbs)); 104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 105 snp->srcu_have_cbs[i] = 0; 106 snp->srcu_data_have_cbs[i] = 0; 107 } 108 snp->srcu_gp_seq_needed_exp = 0; 109 snp->grplo = -1; 110 snp->grphi = -1; 111 if (snp == &ssp->node[0]) { 112 /* Root node, special case. */ 113 snp->srcu_parent = NULL; 114 continue; 115 } 116 117 /* Non-root node. */ 118 if (snp == ssp->level[level + 1]) 119 level++; 120 snp->srcu_parent = ssp->level[level - 1] + 121 (snp - ssp->level[level]) / 122 levelspread[level - 1]; 123 } 124 125 /* 126 * Initialize the per-CPU srcu_data array, which feeds into the 127 * leaves of the srcu_node tree. 128 */ 129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 130 ARRAY_SIZE(sdp->srcu_unlock_count)); 131 level = rcu_num_lvls - 1; 132 snp_first = ssp->level[level]; 133 for_each_possible_cpu(cpu) { 134 sdp = per_cpu_ptr(ssp->sda, cpu); 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 136 rcu_segcblist_init(&sdp->srcu_cblist); 137 sdp->srcu_cblist_invoking = false; 138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq; 139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq; 140 sdp->mynode = &snp_first[cpu / levelspread[level]]; 141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 142 if (snp->grplo < 0) 143 snp->grplo = cpu; 144 snp->grphi = cpu; 145 } 146 sdp->cpu = cpu; 147 INIT_WORK(&sdp->work, srcu_invoke_callbacks); 148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0); 149 sdp->ssp = ssp; 150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 151 if (is_static) 152 continue; 153 154 /* Dynamically allocated, better be no srcu_read_locks()! */ 155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 156 sdp->srcu_lock_count[i] = 0; 157 sdp->srcu_unlock_count[i] = 0; 158 } 159 } 160 } 161 162 /* 163 * Initialize non-compile-time initialized fields, including the 164 * associated srcu_node and srcu_data structures. The is_static 165 * parameter is passed through to init_srcu_struct_nodes(), and 166 * also tells us that ->sda has already been wired up to srcu_data. 167 */ 168 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static) 169 { 170 mutex_init(&ssp->srcu_cb_mutex); 171 mutex_init(&ssp->srcu_gp_mutex); 172 ssp->srcu_idx = 0; 173 ssp->srcu_gp_seq = 0; 174 ssp->srcu_barrier_seq = 0; 175 mutex_init(&ssp->srcu_barrier_mutex); 176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0); 177 INIT_DELAYED_WORK(&ssp->work, process_srcu); 178 if (!is_static) 179 ssp->sda = alloc_percpu(struct srcu_data); 180 if (!ssp->sda) 181 return -ENOMEM; 182 init_srcu_struct_nodes(ssp, is_static); 183 ssp->srcu_gp_seq_needed_exp = 0; 184 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 185 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */ 186 return 0; 187 } 188 189 #ifdef CONFIG_DEBUG_LOCK_ALLOC 190 191 int __init_srcu_struct(struct srcu_struct *ssp, const char *name, 192 struct lock_class_key *key) 193 { 194 /* Don't re-initialize a lock while it is held. */ 195 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp)); 196 lockdep_init_map(&ssp->dep_map, name, key, 0); 197 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 198 return init_srcu_struct_fields(ssp, false); 199 } 200 EXPORT_SYMBOL_GPL(__init_srcu_struct); 201 202 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 203 204 /** 205 * init_srcu_struct - initialize a sleep-RCU structure 206 * @ssp: structure to initialize. 207 * 208 * Must invoke this on a given srcu_struct before passing that srcu_struct 209 * to any other function. Each srcu_struct represents a separate domain 210 * of SRCU protection. 211 */ 212 int init_srcu_struct(struct srcu_struct *ssp) 213 { 214 spin_lock_init(&ACCESS_PRIVATE(ssp, lock)); 215 return init_srcu_struct_fields(ssp, false); 216 } 217 EXPORT_SYMBOL_GPL(init_srcu_struct); 218 219 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 220 221 /* 222 * First-use initialization of statically allocated srcu_struct 223 * structure. Wiring up the combining tree is more than can be 224 * done with compile-time initialization, so this check is added 225 * to each update-side SRCU primitive. Use ssp->lock, which -is- 226 * compile-time initialized, to resolve races involving multiple 227 * CPUs trying to garner first-use privileges. 228 */ 229 static void check_init_srcu_struct(struct srcu_struct *ssp) 230 { 231 unsigned long flags; 232 233 /* The smp_load_acquire() pairs with the smp_store_release(). */ 234 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/ 235 return; /* Already initialized. */ 236 spin_lock_irqsave_rcu_node(ssp, flags); 237 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) { 238 spin_unlock_irqrestore_rcu_node(ssp, flags); 239 return; 240 } 241 init_srcu_struct_fields(ssp, true); 242 spin_unlock_irqrestore_rcu_node(ssp, flags); 243 } 244 245 /* 246 * Returns approximate total of the readers' ->srcu_lock_count[] values 247 * for the rank of per-CPU counters specified by idx. 248 */ 249 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx) 250 { 251 int cpu; 252 unsigned long sum = 0; 253 254 for_each_possible_cpu(cpu) { 255 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 256 257 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 258 } 259 return sum; 260 } 261 262 /* 263 * Returns approximate total of the readers' ->srcu_unlock_count[] values 264 * for the rank of per-CPU counters specified by idx. 265 */ 266 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx) 267 { 268 int cpu; 269 unsigned long sum = 0; 270 271 for_each_possible_cpu(cpu) { 272 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 273 274 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 275 } 276 return sum; 277 } 278 279 /* 280 * Return true if the number of pre-existing readers is determined to 281 * be zero. 282 */ 283 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx) 284 { 285 unsigned long unlocks; 286 287 unlocks = srcu_readers_unlock_idx(ssp, idx); 288 289 /* 290 * Make sure that a lock is always counted if the corresponding 291 * unlock is counted. Needs to be a smp_mb() as the read side may 292 * contain a read from a variable that is written to before the 293 * synchronize_srcu() in the write side. In this case smp_mb()s 294 * A and B act like the store buffering pattern. 295 * 296 * This smp_mb() also pairs with smp_mb() C to prevent accesses 297 * after the synchronize_srcu() from being executed before the 298 * grace period ends. 299 */ 300 smp_mb(); /* A */ 301 302 /* 303 * If the locks are the same as the unlocks, then there must have 304 * been no readers on this index at some time in between. This does 305 * not mean that there are no more readers, as one could have read 306 * the current index but not have incremented the lock counter yet. 307 * 308 * So suppose that the updater is preempted here for so long 309 * that more than ULONG_MAX non-nested readers come and go in 310 * the meantime. It turns out that this cannot result in overflow 311 * because if a reader modifies its unlock count after we read it 312 * above, then that reader's next load of ->srcu_idx is guaranteed 313 * to get the new value, which will cause it to operate on the 314 * other bank of counters, where it cannot contribute to the 315 * overflow of these counters. This means that there is a maximum 316 * of 2*NR_CPUS increments, which cannot overflow given current 317 * systems, especially not on 64-bit systems. 318 * 319 * OK, how about nesting? This does impose a limit on nesting 320 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 321 * especially on 64-bit systems. 322 */ 323 return srcu_readers_lock_idx(ssp, idx) == unlocks; 324 } 325 326 /** 327 * srcu_readers_active - returns true if there are readers. and false 328 * otherwise 329 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock). 330 * 331 * Note that this is not an atomic primitive, and can therefore suffer 332 * severe errors when invoked on an active srcu_struct. That said, it 333 * can be useful as an error check at cleanup time. 334 */ 335 static bool srcu_readers_active(struct srcu_struct *ssp) 336 { 337 int cpu; 338 unsigned long sum = 0; 339 340 for_each_possible_cpu(cpu) { 341 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu); 342 343 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 344 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 345 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 346 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 347 } 348 return sum; 349 } 350 351 #define SRCU_INTERVAL 1 352 353 /* 354 * Return grace-period delay, zero if there are expedited grace 355 * periods pending, SRCU_INTERVAL otherwise. 356 */ 357 static unsigned long srcu_get_delay(struct srcu_struct *ssp) 358 { 359 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq), 360 READ_ONCE(ssp->srcu_gp_seq_needed_exp))) 361 return 0; 362 return SRCU_INTERVAL; 363 } 364 365 /** 366 * cleanup_srcu_struct - deconstruct a sleep-RCU structure 367 * @ssp: structure to clean up. 368 * 369 * Must invoke this after you are finished using a given srcu_struct that 370 * was initialized via init_srcu_struct(), else you leak memory. 371 */ 372 void cleanup_srcu_struct(struct srcu_struct *ssp) 373 { 374 int cpu; 375 376 if (WARN_ON(!srcu_get_delay(ssp))) 377 return; /* Just leak it! */ 378 if (WARN_ON(srcu_readers_active(ssp))) 379 return; /* Just leak it! */ 380 flush_delayed_work(&ssp->work); 381 for_each_possible_cpu(cpu) { 382 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu); 383 384 del_timer_sync(&sdp->delay_work); 385 flush_work(&sdp->work); 386 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist))) 387 return; /* Forgot srcu_barrier(), so just leak it! */ 388 } 389 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 390 WARN_ON(srcu_readers_active(ssp))) { 391 pr_info("%s: Active srcu_struct %p state: %d\n", 392 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq))); 393 return; /* Caller forgot to stop doing call_srcu()? */ 394 } 395 free_percpu(ssp->sda); 396 ssp->sda = NULL; 397 } 398 EXPORT_SYMBOL_GPL(cleanup_srcu_struct); 399 400 /* 401 * Counts the new reader in the appropriate per-CPU element of the 402 * srcu_struct. 403 * Returns an index that must be passed to the matching srcu_read_unlock(). 404 */ 405 int __srcu_read_lock(struct srcu_struct *ssp) 406 { 407 int idx; 408 409 idx = READ_ONCE(ssp->srcu_idx) & 0x1; 410 this_cpu_inc(ssp->sda->srcu_lock_count[idx]); 411 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 412 return idx; 413 } 414 EXPORT_SYMBOL_GPL(__srcu_read_lock); 415 416 /* 417 * Removes the count for the old reader from the appropriate per-CPU 418 * element of the srcu_struct. Note that this may well be a different 419 * CPU than that which was incremented by the corresponding srcu_read_lock(). 420 */ 421 void __srcu_read_unlock(struct srcu_struct *ssp, int idx) 422 { 423 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 424 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]); 425 } 426 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 427 428 /* 429 * We use an adaptive strategy for synchronize_srcu() and especially for 430 * synchronize_srcu_expedited(). We spin for a fixed time period 431 * (defined below) to allow SRCU readers to exit their read-side critical 432 * sections. If there are still some readers after a few microseconds, 433 * we repeatedly block for 1-millisecond time periods. 434 */ 435 #define SRCU_RETRY_CHECK_DELAY 5 436 437 /* 438 * Start an SRCU grace period. 439 */ 440 static void srcu_gp_start(struct srcu_struct *ssp) 441 { 442 struct srcu_data *sdp = this_cpu_ptr(ssp->sda); 443 int state; 444 445 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock)); 446 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 447 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */ 448 rcu_segcblist_advance(&sdp->srcu_cblist, 449 rcu_seq_current(&ssp->srcu_gp_seq)); 450 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 451 rcu_seq_snap(&ssp->srcu_gp_seq)); 452 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */ 453 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 454 rcu_seq_start(&ssp->srcu_gp_seq); 455 state = rcu_seq_state(ssp->srcu_gp_seq); 456 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 457 } 458 459 460 static void srcu_delay_timer(struct timer_list *t) 461 { 462 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work); 463 464 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 465 } 466 467 static void srcu_queue_delayed_work_on(struct srcu_data *sdp, 468 unsigned long delay) 469 { 470 if (!delay) { 471 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work); 472 return; 473 } 474 475 timer_reduce(&sdp->delay_work, jiffies + delay); 476 } 477 478 /* 479 * Schedule callback invocation for the specified srcu_data structure, 480 * if possible, on the corresponding CPU. 481 */ 482 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 483 { 484 srcu_queue_delayed_work_on(sdp, delay); 485 } 486 487 /* 488 * Schedule callback invocation for all srcu_data structures associated 489 * with the specified srcu_node structure that have callbacks for the 490 * just-completed grace period, the one corresponding to idx. If possible, 491 * schedule this invocation on the corresponding CPUs. 492 */ 493 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp, 494 unsigned long mask, unsigned long delay) 495 { 496 int cpu; 497 498 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 499 if (!(mask & (1 << (cpu - snp->grplo)))) 500 continue; 501 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay); 502 } 503 } 504 505 /* 506 * Note the end of an SRCU grace period. Initiates callback invocation 507 * and starts a new grace period if needed. 508 * 509 * The ->srcu_cb_mutex acquisition does not protect any data, but 510 * instead prevents more than one grace period from starting while we 511 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 512 * array to have a finite number of elements. 513 */ 514 static void srcu_gp_end(struct srcu_struct *ssp) 515 { 516 unsigned long cbdelay; 517 bool cbs; 518 bool last_lvl; 519 int cpu; 520 unsigned long flags; 521 unsigned long gpseq; 522 int idx; 523 unsigned long mask; 524 struct srcu_data *sdp; 525 struct srcu_node *snp; 526 527 /* Prevent more than one additional grace period. */ 528 mutex_lock(&ssp->srcu_cb_mutex); 529 530 /* End the current grace period. */ 531 spin_lock_irq_rcu_node(ssp); 532 idx = rcu_seq_state(ssp->srcu_gp_seq); 533 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 534 cbdelay = srcu_get_delay(ssp); 535 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns()); 536 rcu_seq_end(&ssp->srcu_gp_seq); 537 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 538 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq)) 539 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq); 540 spin_unlock_irq_rcu_node(ssp); 541 mutex_unlock(&ssp->srcu_gp_mutex); 542 /* A new grace period can start at this point. But only one. */ 543 544 /* Initiate callback invocation as needed. */ 545 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 546 srcu_for_each_node_breadth_first(ssp, snp) { 547 spin_lock_irq_rcu_node(snp); 548 cbs = false; 549 last_lvl = snp >= ssp->level[rcu_num_lvls - 1]; 550 if (last_lvl) 551 cbs = snp->srcu_have_cbs[idx] == gpseq; 552 snp->srcu_have_cbs[idx] = gpseq; 553 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 554 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 555 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq); 556 mask = snp->srcu_data_have_cbs[idx]; 557 snp->srcu_data_have_cbs[idx] = 0; 558 spin_unlock_irq_rcu_node(snp); 559 if (cbs) 560 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay); 561 562 /* Occasionally prevent srcu_data counter wrap. */ 563 if (!(gpseq & counter_wrap_check) && last_lvl) 564 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 565 sdp = per_cpu_ptr(ssp->sda, cpu); 566 spin_lock_irqsave_rcu_node(sdp, flags); 567 if (ULONG_CMP_GE(gpseq, 568 sdp->srcu_gp_seq_needed + 100)) 569 sdp->srcu_gp_seq_needed = gpseq; 570 if (ULONG_CMP_GE(gpseq, 571 sdp->srcu_gp_seq_needed_exp + 100)) 572 sdp->srcu_gp_seq_needed_exp = gpseq; 573 spin_unlock_irqrestore_rcu_node(sdp, flags); 574 } 575 } 576 577 /* Callback initiation done, allow grace periods after next. */ 578 mutex_unlock(&ssp->srcu_cb_mutex); 579 580 /* Start a new grace period if needed. */ 581 spin_lock_irq_rcu_node(ssp); 582 gpseq = rcu_seq_current(&ssp->srcu_gp_seq); 583 if (!rcu_seq_state(gpseq) && 584 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) { 585 srcu_gp_start(ssp); 586 spin_unlock_irq_rcu_node(ssp); 587 srcu_reschedule(ssp, 0); 588 } else { 589 spin_unlock_irq_rcu_node(ssp); 590 } 591 } 592 593 /* 594 * Funnel-locking scheme to scalably mediate many concurrent expedited 595 * grace-period requests. This function is invoked for the first known 596 * expedited request for a grace period that has already been requested, 597 * but without expediting. To start a completely new grace period, 598 * whether expedited or not, use srcu_funnel_gp_start() instead. 599 */ 600 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp, 601 unsigned long s) 602 { 603 unsigned long flags; 604 605 for (; snp != NULL; snp = snp->srcu_parent) { 606 if (rcu_seq_done(&ssp->srcu_gp_seq, s) || 607 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 608 return; 609 spin_lock_irqsave_rcu_node(snp, flags); 610 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 611 spin_unlock_irqrestore_rcu_node(snp, flags); 612 return; 613 } 614 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 615 spin_unlock_irqrestore_rcu_node(snp, flags); 616 } 617 spin_lock_irqsave_rcu_node(ssp, flags); 618 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 619 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 620 spin_unlock_irqrestore_rcu_node(ssp, flags); 621 } 622 623 /* 624 * Funnel-locking scheme to scalably mediate many concurrent grace-period 625 * requests. The winner has to do the work of actually starting grace 626 * period s. Losers must either ensure that their desired grace-period 627 * number is recorded on at least their leaf srcu_node structure, or they 628 * must take steps to invoke their own callbacks. 629 * 630 * Note that this function also does the work of srcu_funnel_exp_start(), 631 * in some cases by directly invoking it. 632 */ 633 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp, 634 unsigned long s, bool do_norm) 635 { 636 unsigned long flags; 637 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 638 struct srcu_node *snp = sdp->mynode; 639 unsigned long snp_seq; 640 641 /* Each pass through the loop does one level of the srcu_node tree. */ 642 for (; snp != NULL; snp = snp->srcu_parent) { 643 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode) 644 return; /* GP already done and CBs recorded. */ 645 spin_lock_irqsave_rcu_node(snp, flags); 646 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 647 snp_seq = snp->srcu_have_cbs[idx]; 648 if (snp == sdp->mynode && snp_seq == s) 649 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 650 spin_unlock_irqrestore_rcu_node(snp, flags); 651 if (snp == sdp->mynode && snp_seq != s) { 652 srcu_schedule_cbs_sdp(sdp, do_norm 653 ? SRCU_INTERVAL 654 : 0); 655 return; 656 } 657 if (!do_norm) 658 srcu_funnel_exp_start(ssp, snp, s); 659 return; 660 } 661 snp->srcu_have_cbs[idx] = s; 662 if (snp == sdp->mynode) 663 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 664 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 665 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 666 spin_unlock_irqrestore_rcu_node(snp, flags); 667 } 668 669 /* Top of tree, must ensure the grace period will be started. */ 670 spin_lock_irqsave_rcu_node(ssp, flags); 671 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) { 672 /* 673 * Record need for grace period s. Pair with load 674 * acquire setting up for initialization. 675 */ 676 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/ 677 } 678 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s)) 679 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s); 680 681 /* If grace period not already done and none in progress, start it. */ 682 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) && 683 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) { 684 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)); 685 srcu_gp_start(ssp); 686 if (likely(srcu_init_done)) 687 queue_delayed_work(rcu_gp_wq, &ssp->work, 688 srcu_get_delay(ssp)); 689 else if (list_empty(&ssp->work.work.entry)) 690 list_add(&ssp->work.work.entry, &srcu_boot_list); 691 } 692 spin_unlock_irqrestore_rcu_node(ssp, flags); 693 } 694 695 /* 696 * Wait until all readers counted by array index idx complete, but 697 * loop an additional time if there is an expedited grace period pending. 698 * The caller must ensure that ->srcu_idx is not changed while checking. 699 */ 700 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount) 701 { 702 for (;;) { 703 if (srcu_readers_active_idx_check(ssp, idx)) 704 return true; 705 if (--trycount + !srcu_get_delay(ssp) <= 0) 706 return false; 707 udelay(SRCU_RETRY_CHECK_DELAY); 708 } 709 } 710 711 /* 712 * Increment the ->srcu_idx counter so that future SRCU readers will 713 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 714 * us to wait for pre-existing readers in a starvation-free manner. 715 */ 716 static void srcu_flip(struct srcu_struct *ssp) 717 { 718 /* 719 * Ensure that if this updater saw a given reader's increment 720 * from __srcu_read_lock(), that reader was using an old value 721 * of ->srcu_idx. Also ensure that if a given reader sees the 722 * new value of ->srcu_idx, this updater's earlier scans cannot 723 * have seen that reader's increments (which is OK, because this 724 * grace period need not wait on that reader). 725 */ 726 smp_mb(); /* E */ /* Pairs with B and C. */ 727 728 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1); 729 730 /* 731 * Ensure that if the updater misses an __srcu_read_unlock() 732 * increment, that task's next __srcu_read_lock() will see the 733 * above counter update. Note that both this memory barrier 734 * and the one in srcu_readers_active_idx_check() provide the 735 * guarantee for __srcu_read_lock(). 736 */ 737 smp_mb(); /* D */ /* Pairs with C. */ 738 } 739 740 /* 741 * If SRCU is likely idle, return true, otherwise return false. 742 * 743 * Note that it is OK for several current from-idle requests for a new 744 * grace period from idle to specify expediting because they will all end 745 * up requesting the same grace period anyhow. So no loss. 746 * 747 * Note also that if any CPU (including the current one) is still invoking 748 * callbacks, this function will nevertheless say "idle". This is not 749 * ideal, but the overhead of checking all CPUs' callback lists is even 750 * less ideal, especially on large systems. Furthermore, the wakeup 751 * can happen before the callback is fully removed, so we have no choice 752 * but to accept this type of error. 753 * 754 * This function is also subject to counter-wrap errors, but let's face 755 * it, if this function was preempted for enough time for the counters 756 * to wrap, it really doesn't matter whether or not we expedite the grace 757 * period. The extra overhead of a needlessly expedited grace period is 758 * negligible when amortized over that time period, and the extra latency 759 * of a needlessly non-expedited grace period is similarly negligible. 760 */ 761 static bool srcu_might_be_idle(struct srcu_struct *ssp) 762 { 763 unsigned long curseq; 764 unsigned long flags; 765 struct srcu_data *sdp; 766 unsigned long t; 767 unsigned long tlast; 768 769 check_init_srcu_struct(ssp); 770 /* If the local srcu_data structure has callbacks, not idle. */ 771 sdp = raw_cpu_ptr(ssp->sda); 772 spin_lock_irqsave_rcu_node(sdp, flags); 773 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 774 spin_unlock_irqrestore_rcu_node(sdp, flags); 775 return false; /* Callbacks already present, so not idle. */ 776 } 777 spin_unlock_irqrestore_rcu_node(sdp, flags); 778 779 /* 780 * No local callbacks, so probabalistically probe global state. 781 * Exact information would require acquiring locks, which would 782 * kill scalability, hence the probabalistic nature of the probe. 783 */ 784 785 /* First, see if enough time has passed since the last GP. */ 786 t = ktime_get_mono_fast_ns(); 787 tlast = READ_ONCE(ssp->srcu_last_gp_end); 788 if (exp_holdoff == 0 || 789 time_in_range_open(t, tlast, tlast + exp_holdoff)) 790 return false; /* Too soon after last GP. */ 791 792 /* Next, check for probable idleness. */ 793 curseq = rcu_seq_current(&ssp->srcu_gp_seq); 794 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 795 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed))) 796 return false; /* Grace period in progress, so not idle. */ 797 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 798 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq)) 799 return false; /* GP # changed, so not idle. */ 800 return true; /* With reasonable probability, idle! */ 801 } 802 803 /* 804 * SRCU callback function to leak a callback. 805 */ 806 static void srcu_leak_callback(struct rcu_head *rhp) 807 { 808 } 809 810 /* 811 * Start an SRCU grace period, and also queue the callback if non-NULL. 812 */ 813 static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp, 814 struct rcu_head *rhp, bool do_norm) 815 { 816 unsigned long flags; 817 int idx; 818 bool needexp = false; 819 bool needgp = false; 820 unsigned long s; 821 struct srcu_data *sdp; 822 823 check_init_srcu_struct(ssp); 824 idx = srcu_read_lock(ssp); 825 sdp = raw_cpu_ptr(ssp->sda); 826 spin_lock_irqsave_rcu_node(sdp, flags); 827 if (rhp) 828 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp); 829 rcu_segcblist_advance(&sdp->srcu_cblist, 830 rcu_seq_current(&ssp->srcu_gp_seq)); 831 s = rcu_seq_snap(&ssp->srcu_gp_seq); 832 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 833 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 834 sdp->srcu_gp_seq_needed = s; 835 needgp = true; 836 } 837 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 838 sdp->srcu_gp_seq_needed_exp = s; 839 needexp = true; 840 } 841 spin_unlock_irqrestore_rcu_node(sdp, flags); 842 if (needgp) 843 srcu_funnel_gp_start(ssp, sdp, s, do_norm); 844 else if (needexp) 845 srcu_funnel_exp_start(ssp, sdp->mynode, s); 846 srcu_read_unlock(ssp, idx); 847 return s; 848 } 849 850 /* 851 * Enqueue an SRCU callback on the srcu_data structure associated with 852 * the current CPU and the specified srcu_struct structure, initiating 853 * grace-period processing if it is not already running. 854 * 855 * Note that all CPUs must agree that the grace period extended beyond 856 * all pre-existing SRCU read-side critical section. On systems with 857 * more than one CPU, this means that when "func()" is invoked, each CPU 858 * is guaranteed to have executed a full memory barrier since the end of 859 * its last corresponding SRCU read-side critical section whose beginning 860 * preceded the call to call_srcu(). It also means that each CPU executing 861 * an SRCU read-side critical section that continues beyond the start of 862 * "func()" must have executed a memory barrier after the call_srcu() 863 * but before the beginning of that SRCU read-side critical section. 864 * Note that these guarantees include CPUs that are offline, idle, or 865 * executing in user mode, as well as CPUs that are executing in the kernel. 866 * 867 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the 868 * resulting SRCU callback function "func()", then both CPU A and CPU 869 * B are guaranteed to execute a full memory barrier during the time 870 * interval between the call to call_srcu() and the invocation of "func()". 871 * This guarantee applies even if CPU A and CPU B are the same CPU (but 872 * again only if the system has more than one CPU). 873 * 874 * Of course, these guarantees apply only for invocations of call_srcu(), 875 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 876 * srcu_struct structure. 877 */ 878 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 879 rcu_callback_t func, bool do_norm) 880 { 881 if (debug_rcu_head_queue(rhp)) { 882 /* Probable double call_srcu(), so leak the callback. */ 883 WRITE_ONCE(rhp->func, srcu_leak_callback); 884 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 885 return; 886 } 887 rhp->func = func; 888 (void)srcu_gp_start_if_needed(ssp, rhp, do_norm); 889 } 890 891 /** 892 * call_srcu() - Queue a callback for invocation after an SRCU grace period 893 * @ssp: srcu_struct in queue the callback 894 * @rhp: structure to be used for queueing the SRCU callback. 895 * @func: function to be invoked after the SRCU grace period 896 * 897 * The callback function will be invoked some time after a full SRCU 898 * grace period elapses, in other words after all pre-existing SRCU 899 * read-side critical sections have completed. However, the callback 900 * function might well execute concurrently with other SRCU read-side 901 * critical sections that started after call_srcu() was invoked. SRCU 902 * read-side critical sections are delimited by srcu_read_lock() and 903 * srcu_read_unlock(), and may be nested. 904 * 905 * The callback will be invoked from process context, but must nevertheless 906 * be fast and must not block. 907 */ 908 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp, 909 rcu_callback_t func) 910 { 911 __call_srcu(ssp, rhp, func, true); 912 } 913 EXPORT_SYMBOL_GPL(call_srcu); 914 915 /* 916 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 917 */ 918 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm) 919 { 920 struct rcu_synchronize rcu; 921 922 RCU_LOCKDEP_WARN(lockdep_is_held(ssp) || 923 lock_is_held(&rcu_bh_lock_map) || 924 lock_is_held(&rcu_lock_map) || 925 lock_is_held(&rcu_sched_lock_map), 926 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 927 928 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 929 return; 930 might_sleep(); 931 check_init_srcu_struct(ssp); 932 init_completion(&rcu.completion); 933 init_rcu_head_on_stack(&rcu.head); 934 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm); 935 wait_for_completion(&rcu.completion); 936 destroy_rcu_head_on_stack(&rcu.head); 937 938 /* 939 * Make sure that later code is ordered after the SRCU grace 940 * period. This pairs with the spin_lock_irq_rcu_node() 941 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 942 * because the current CPU might have been totally uninvolved with 943 * (and thus unordered against) that grace period. 944 */ 945 smp_mb(); 946 } 947 948 /** 949 * synchronize_srcu_expedited - Brute-force SRCU grace period 950 * @ssp: srcu_struct with which to synchronize. 951 * 952 * Wait for an SRCU grace period to elapse, but be more aggressive about 953 * spinning rather than blocking when waiting. 954 * 955 * Note that synchronize_srcu_expedited() has the same deadlock and 956 * memory-ordering properties as does synchronize_srcu(). 957 */ 958 void synchronize_srcu_expedited(struct srcu_struct *ssp) 959 { 960 __synchronize_srcu(ssp, rcu_gp_is_normal()); 961 } 962 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 963 964 /** 965 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 966 * @ssp: srcu_struct with which to synchronize. 967 * 968 * Wait for the count to drain to zero of both indexes. To avoid the 969 * possible starvation of synchronize_srcu(), it waits for the count of 970 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 971 * and then flip the srcu_idx and wait for the count of the other index. 972 * 973 * Can block; must be called from process context. 974 * 975 * Note that it is illegal to call synchronize_srcu() from the corresponding 976 * SRCU read-side critical section; doing so will result in deadlock. 977 * However, it is perfectly legal to call synchronize_srcu() on one 978 * srcu_struct from some other srcu_struct's read-side critical section, 979 * as long as the resulting graph of srcu_structs is acyclic. 980 * 981 * There are memory-ordering constraints implied by synchronize_srcu(). 982 * On systems with more than one CPU, when synchronize_srcu() returns, 983 * each CPU is guaranteed to have executed a full memory barrier since 984 * the end of its last corresponding SRCU read-side critical section 985 * whose beginning preceded the call to synchronize_srcu(). In addition, 986 * each CPU having an SRCU read-side critical section that extends beyond 987 * the return from synchronize_srcu() is guaranteed to have executed a 988 * full memory barrier after the beginning of synchronize_srcu() and before 989 * the beginning of that SRCU read-side critical section. Note that these 990 * guarantees include CPUs that are offline, idle, or executing in user mode, 991 * as well as CPUs that are executing in the kernel. 992 * 993 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 994 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 995 * to have executed a full memory barrier during the execution of 996 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 997 * are the same CPU, but again only if the system has more than one CPU. 998 * 999 * Of course, these memory-ordering guarantees apply only when 1000 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 1001 * passed the same srcu_struct structure. 1002 * 1003 * If SRCU is likely idle, expedite the first request. This semantic 1004 * was provided by Classic SRCU, and is relied upon by its users, so TREE 1005 * SRCU must also provide it. Note that detecting idleness is heuristic 1006 * and subject to both false positives and negatives. 1007 */ 1008 void synchronize_srcu(struct srcu_struct *ssp) 1009 { 1010 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited()) 1011 synchronize_srcu_expedited(ssp); 1012 else 1013 __synchronize_srcu(ssp, true); 1014 } 1015 EXPORT_SYMBOL_GPL(synchronize_srcu); 1016 1017 /** 1018 * get_state_synchronize_srcu - Provide an end-of-grace-period cookie 1019 * @ssp: srcu_struct to provide cookie for. 1020 * 1021 * This function returns a cookie that can be passed to 1022 * poll_state_synchronize_srcu(), which will return true if a full grace 1023 * period has elapsed in the meantime. It is the caller's responsibility 1024 * to make sure that grace period happens, for example, by invoking 1025 * call_srcu() after return from get_state_synchronize_srcu(). 1026 */ 1027 unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp) 1028 { 1029 // Any prior manipulation of SRCU-protected data must happen 1030 // before the load from ->srcu_gp_seq. 1031 smp_mb(); 1032 return rcu_seq_snap(&ssp->srcu_gp_seq); 1033 } 1034 EXPORT_SYMBOL_GPL(get_state_synchronize_srcu); 1035 1036 /** 1037 * start_poll_synchronize_srcu - Provide cookie and start grace period 1038 * @ssp: srcu_struct to provide cookie for. 1039 * 1040 * This function returns a cookie that can be passed to 1041 * poll_state_synchronize_srcu(), which will return true if a full grace 1042 * period has elapsed in the meantime. Unlike get_state_synchronize_srcu(), 1043 * this function also ensures that any needed SRCU grace period will be 1044 * started. This convenience does come at a cost in terms of CPU overhead. 1045 */ 1046 unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp) 1047 { 1048 return srcu_gp_start_if_needed(ssp, NULL, true); 1049 } 1050 EXPORT_SYMBOL_GPL(start_poll_synchronize_srcu); 1051 1052 /** 1053 * poll_state_synchronize_srcu - Has cookie's grace period ended? 1054 * @ssp: srcu_struct to provide cookie for. 1055 * @cookie: Return value from get_state_synchronize_srcu() or start_poll_synchronize_srcu(). 1056 * 1057 * This function takes the cookie that was returned from either 1058 * get_state_synchronize_srcu() or start_poll_synchronize_srcu(), and 1059 * returns @true if an SRCU grace period elapsed since the time that the 1060 * cookie was created. 1061 * 1062 * Because cookies are finite in size, wrapping/overflow is possible. 1063 * This is more pronounced on 32-bit systems where cookies are 32 bits, 1064 * where in theory wrapping could happen in about 14 hours assuming 1065 * 25-microsecond expedited SRCU grace periods. However, a more likely 1066 * overflow lower bound is on the order of 24 days in the case of 1067 * one-millisecond SRCU grace periods. Of course, wrapping in a 64-bit 1068 * system requires geologic timespans, as in more than seven million years 1069 * even for expedited SRCU grace periods. 1070 * 1071 * Wrapping/overflow is much more of an issue for CONFIG_SMP=n systems 1072 * that also have CONFIG_PREEMPTION=n, which selects Tiny SRCU. This uses 1073 * a 16-bit cookie, which rcutorture routinely wraps in a matter of a 1074 * few minutes. If this proves to be a problem, this counter will be 1075 * expanded to the same size as for Tree SRCU. 1076 */ 1077 bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie) 1078 { 1079 if (!rcu_seq_done(&ssp->srcu_gp_seq, cookie)) 1080 return false; 1081 // Ensure that the end of the SRCU grace period happens before 1082 // any subsequent code that the caller might execute. 1083 smp_mb(); // ^^^ 1084 return true; 1085 } 1086 EXPORT_SYMBOL_GPL(poll_state_synchronize_srcu); 1087 1088 /* 1089 * Callback function for srcu_barrier() use. 1090 */ 1091 static void srcu_barrier_cb(struct rcu_head *rhp) 1092 { 1093 struct srcu_data *sdp; 1094 struct srcu_struct *ssp; 1095 1096 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1097 ssp = sdp->ssp; 1098 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1099 complete(&ssp->srcu_barrier_completion); 1100 } 1101 1102 /** 1103 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1104 * @ssp: srcu_struct on which to wait for in-flight callbacks. 1105 */ 1106 void srcu_barrier(struct srcu_struct *ssp) 1107 { 1108 int cpu; 1109 struct srcu_data *sdp; 1110 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq); 1111 1112 check_init_srcu_struct(ssp); 1113 mutex_lock(&ssp->srcu_barrier_mutex); 1114 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) { 1115 smp_mb(); /* Force ordering following return. */ 1116 mutex_unlock(&ssp->srcu_barrier_mutex); 1117 return; /* Someone else did our work for us. */ 1118 } 1119 rcu_seq_start(&ssp->srcu_barrier_seq); 1120 init_completion(&ssp->srcu_barrier_completion); 1121 1122 /* Initial count prevents reaching zero until all CBs are posted. */ 1123 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1); 1124 1125 /* 1126 * Each pass through this loop enqueues a callback, but only 1127 * on CPUs already having callbacks enqueued. Note that if 1128 * a CPU already has callbacks enqueue, it must have already 1129 * registered the need for a future grace period, so all we 1130 * need do is enqueue a callback that will use the same 1131 * grace period as the last callback already in the queue. 1132 */ 1133 for_each_possible_cpu(cpu) { 1134 sdp = per_cpu_ptr(ssp->sda, cpu); 1135 spin_lock_irq_rcu_node(sdp); 1136 atomic_inc(&ssp->srcu_barrier_cpu_cnt); 1137 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1138 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1139 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1140 &sdp->srcu_barrier_head)) { 1141 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1142 atomic_dec(&ssp->srcu_barrier_cpu_cnt); 1143 } 1144 spin_unlock_irq_rcu_node(sdp); 1145 } 1146 1147 /* Remove the initial count, at which point reaching zero can happen. */ 1148 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt)) 1149 complete(&ssp->srcu_barrier_completion); 1150 wait_for_completion(&ssp->srcu_barrier_completion); 1151 1152 rcu_seq_end(&ssp->srcu_barrier_seq); 1153 mutex_unlock(&ssp->srcu_barrier_mutex); 1154 } 1155 EXPORT_SYMBOL_GPL(srcu_barrier); 1156 1157 /** 1158 * srcu_batches_completed - return batches completed. 1159 * @ssp: srcu_struct on which to report batch completion. 1160 * 1161 * Report the number of batches, correlated with, but not necessarily 1162 * precisely the same as, the number of grace periods that have elapsed. 1163 */ 1164 unsigned long srcu_batches_completed(struct srcu_struct *ssp) 1165 { 1166 return READ_ONCE(ssp->srcu_idx); 1167 } 1168 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1169 1170 /* 1171 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1172 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1173 * completed in that state. 1174 */ 1175 static void srcu_advance_state(struct srcu_struct *ssp) 1176 { 1177 int idx; 1178 1179 mutex_lock(&ssp->srcu_gp_mutex); 1180 1181 /* 1182 * Because readers might be delayed for an extended period after 1183 * fetching ->srcu_idx for their index, at any point in time there 1184 * might well be readers using both idx=0 and idx=1. We therefore 1185 * need to wait for readers to clear from both index values before 1186 * invoking a callback. 1187 * 1188 * The load-acquire ensures that we see the accesses performed 1189 * by the prior grace period. 1190 */ 1191 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */ 1192 if (idx == SRCU_STATE_IDLE) { 1193 spin_lock_irq_rcu_node(ssp); 1194 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1195 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq)); 1196 spin_unlock_irq_rcu_node(ssp); 1197 mutex_unlock(&ssp->srcu_gp_mutex); 1198 return; 1199 } 1200 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)); 1201 if (idx == SRCU_STATE_IDLE) 1202 srcu_gp_start(ssp); 1203 spin_unlock_irq_rcu_node(ssp); 1204 if (idx != SRCU_STATE_IDLE) { 1205 mutex_unlock(&ssp->srcu_gp_mutex); 1206 return; /* Someone else started the grace period. */ 1207 } 1208 } 1209 1210 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1211 idx = 1 ^ (ssp->srcu_idx & 1); 1212 if (!try_check_zero(ssp, idx, 1)) { 1213 mutex_unlock(&ssp->srcu_gp_mutex); 1214 return; /* readers present, retry later. */ 1215 } 1216 srcu_flip(ssp); 1217 spin_lock_irq_rcu_node(ssp); 1218 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2); 1219 spin_unlock_irq_rcu_node(ssp); 1220 } 1221 1222 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1223 1224 /* 1225 * SRCU read-side critical sections are normally short, 1226 * so check at least twice in quick succession after a flip. 1227 */ 1228 idx = 1 ^ (ssp->srcu_idx & 1); 1229 if (!try_check_zero(ssp, idx, 2)) { 1230 mutex_unlock(&ssp->srcu_gp_mutex); 1231 return; /* readers present, retry later. */ 1232 } 1233 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */ 1234 } 1235 } 1236 1237 /* 1238 * Invoke a limited number of SRCU callbacks that have passed through 1239 * their grace period. If there are more to do, SRCU will reschedule 1240 * the workqueue. Note that needed memory barriers have been executed 1241 * in this task's context by srcu_readers_active_idx_check(). 1242 */ 1243 static void srcu_invoke_callbacks(struct work_struct *work) 1244 { 1245 long len; 1246 bool more; 1247 struct rcu_cblist ready_cbs; 1248 struct rcu_head *rhp; 1249 struct srcu_data *sdp; 1250 struct srcu_struct *ssp; 1251 1252 sdp = container_of(work, struct srcu_data, work); 1253 1254 ssp = sdp->ssp; 1255 rcu_cblist_init(&ready_cbs); 1256 spin_lock_irq_rcu_node(sdp); 1257 rcu_segcblist_advance(&sdp->srcu_cblist, 1258 rcu_seq_current(&ssp->srcu_gp_seq)); 1259 if (sdp->srcu_cblist_invoking || 1260 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1261 spin_unlock_irq_rcu_node(sdp); 1262 return; /* Someone else on the job or nothing to do. */ 1263 } 1264 1265 /* We are on the job! Extract and invoke ready callbacks. */ 1266 sdp->srcu_cblist_invoking = true; 1267 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1268 len = ready_cbs.len; 1269 spin_unlock_irq_rcu_node(sdp); 1270 rhp = rcu_cblist_dequeue(&ready_cbs); 1271 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1272 debug_rcu_head_unqueue(rhp); 1273 local_bh_disable(); 1274 rhp->func(rhp); 1275 local_bh_enable(); 1276 } 1277 WARN_ON_ONCE(ready_cbs.len); 1278 1279 /* 1280 * Update counts, accelerate new callbacks, and if needed, 1281 * schedule another round of callback invocation. 1282 */ 1283 spin_lock_irq_rcu_node(sdp); 1284 rcu_segcblist_add_len(&sdp->srcu_cblist, -len); 1285 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1286 rcu_seq_snap(&ssp->srcu_gp_seq)); 1287 sdp->srcu_cblist_invoking = false; 1288 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1289 spin_unlock_irq_rcu_node(sdp); 1290 if (more) 1291 srcu_schedule_cbs_sdp(sdp, 0); 1292 } 1293 1294 /* 1295 * Finished one round of SRCU grace period. Start another if there are 1296 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1297 */ 1298 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay) 1299 { 1300 bool pushgp = true; 1301 1302 spin_lock_irq_rcu_node(ssp); 1303 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) { 1304 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) { 1305 /* All requests fulfilled, time to go idle. */ 1306 pushgp = false; 1307 } 1308 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) { 1309 /* Outstanding request and no GP. Start one. */ 1310 srcu_gp_start(ssp); 1311 } 1312 spin_unlock_irq_rcu_node(ssp); 1313 1314 if (pushgp) 1315 queue_delayed_work(rcu_gp_wq, &ssp->work, delay); 1316 } 1317 1318 /* 1319 * This is the work-queue function that handles SRCU grace periods. 1320 */ 1321 static void process_srcu(struct work_struct *work) 1322 { 1323 struct srcu_struct *ssp; 1324 1325 ssp = container_of(work, struct srcu_struct, work.work); 1326 1327 srcu_advance_state(ssp); 1328 srcu_reschedule(ssp, srcu_get_delay(ssp)); 1329 } 1330 1331 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1332 struct srcu_struct *ssp, int *flags, 1333 unsigned long *gp_seq) 1334 { 1335 if (test_type != SRCU_FLAVOR) 1336 return; 1337 *flags = 0; 1338 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq); 1339 } 1340 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1341 1342 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf) 1343 { 1344 int cpu; 1345 int idx; 1346 unsigned long s0 = 0, s1 = 0; 1347 1348 idx = ssp->srcu_idx & 0x1; 1349 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):", 1350 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx); 1351 for_each_possible_cpu(cpu) { 1352 unsigned long l0, l1; 1353 unsigned long u0, u1; 1354 long c0, c1; 1355 struct srcu_data *sdp; 1356 1357 sdp = per_cpu_ptr(ssp->sda, cpu); 1358 u0 = data_race(sdp->srcu_unlock_count[!idx]); 1359 u1 = data_race(sdp->srcu_unlock_count[idx]); 1360 1361 /* 1362 * Make sure that a lock is always counted if the corresponding 1363 * unlock is counted. 1364 */ 1365 smp_rmb(); 1366 1367 l0 = data_race(sdp->srcu_lock_count[!idx]); 1368 l1 = data_race(sdp->srcu_lock_count[idx]); 1369 1370 c0 = l0 - u0; 1371 c1 = l1 - u1; 1372 pr_cont(" %d(%ld,%ld %c)", 1373 cpu, c0, c1, 1374 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]); 1375 s0 += c0; 1376 s1 += c1; 1377 } 1378 pr_cont(" T(%ld,%ld)\n", s0, s1); 1379 } 1380 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1381 1382 static int __init srcu_bootup_announce(void) 1383 { 1384 pr_info("Hierarchical SRCU implementation.\n"); 1385 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1386 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1387 return 0; 1388 } 1389 early_initcall(srcu_bootup_announce); 1390 1391 void __init srcu_init(void) 1392 { 1393 struct srcu_struct *ssp; 1394 1395 srcu_init_done = true; 1396 while (!list_empty(&srcu_boot_list)) { 1397 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct, 1398 work.work.entry); 1399 check_init_srcu_struct(ssp); 1400 list_del_init(&ssp->work.work.entry); 1401 queue_work(rcu_gp_wq, &ssp->work.work); 1402 } 1403 } 1404 1405 #ifdef CONFIG_MODULES 1406 1407 /* Initialize any global-scope srcu_struct structures used by this module. */ 1408 static int srcu_module_coming(struct module *mod) 1409 { 1410 int i; 1411 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1412 int ret; 1413 1414 for (i = 0; i < mod->num_srcu_structs; i++) { 1415 ret = init_srcu_struct(*(sspp++)); 1416 if (WARN_ON_ONCE(ret)) 1417 return ret; 1418 } 1419 return 0; 1420 } 1421 1422 /* Clean up any global-scope srcu_struct structures used by this module. */ 1423 static void srcu_module_going(struct module *mod) 1424 { 1425 int i; 1426 struct srcu_struct **sspp = mod->srcu_struct_ptrs; 1427 1428 for (i = 0; i < mod->num_srcu_structs; i++) 1429 cleanup_srcu_struct(*(sspp++)); 1430 } 1431 1432 /* Handle one module, either coming or going. */ 1433 static int srcu_module_notify(struct notifier_block *self, 1434 unsigned long val, void *data) 1435 { 1436 struct module *mod = data; 1437 int ret = 0; 1438 1439 switch (val) { 1440 case MODULE_STATE_COMING: 1441 ret = srcu_module_coming(mod); 1442 break; 1443 case MODULE_STATE_GOING: 1444 srcu_module_going(mod); 1445 break; 1446 default: 1447 break; 1448 } 1449 return ret; 1450 } 1451 1452 static struct notifier_block srcu_module_nb = { 1453 .notifier_call = srcu_module_notify, 1454 .priority = 0, 1455 }; 1456 1457 static __init int init_srcu_module_notifier(void) 1458 { 1459 int ret; 1460 1461 ret = register_module_notifier(&srcu_module_nb); 1462 if (ret) 1463 pr_warn("Failed to register srcu module notifier\n"); 1464 return ret; 1465 } 1466 late_initcall(init_srcu_module_notifier); 1467 1468 #endif /* #ifdef CONFIG_MODULES */ 1469