xref: /openbmc/linux/kernel/rcu/srcutree.c (revision b1a3e75e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Sleepable Read-Copy Update mechanism for mutual exclusion.
4  *
5  * Copyright (C) IBM Corporation, 2006
6  * Copyright (C) Fujitsu, 2012
7  *
8  * Authors: Paul McKenney <paulmck@linux.ibm.com>
9  *	   Lai Jiangshan <laijs@cn.fujitsu.com>
10  *
11  * For detailed explanation of Read-Copy Update mechanism see -
12  *		Documentation/RCU/ *.txt
13  *
14  */
15 
16 #define pr_fmt(fmt) "rcu: " fmt
17 
18 #include <linux/export.h>
19 #include <linux/mutex.h>
20 #include <linux/percpu.h>
21 #include <linux/preempt.h>
22 #include <linux/rcupdate_wait.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/delay.h>
26 #include <linux/module.h>
27 #include <linux/srcu.h>
28 
29 #include "rcu.h"
30 #include "rcu_segcblist.h"
31 
32 #ifndef data_race
33 #define data_race(expr)							\
34 	({								\
35 		expr;							\
36 	})
37 #endif
38 #ifndef ASSERT_EXCLUSIVE_WRITER
39 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
40 #endif
41 #ifndef ASSERT_EXCLUSIVE_ACCESS
42 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
43 #endif
44 
45 /* Holdoff in nanoseconds for auto-expediting. */
46 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
47 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
48 module_param(exp_holdoff, ulong, 0444);
49 
50 /* Overflow-check frequency.  N bits roughly says every 2**N grace periods. */
51 static ulong counter_wrap_check = (ULONG_MAX >> 2);
52 module_param(counter_wrap_check, ulong, 0444);
53 
54 /* Early-boot callback-management, so early that no lock is required! */
55 static LIST_HEAD(srcu_boot_list);
56 static bool __read_mostly srcu_init_done;
57 
58 static void srcu_invoke_callbacks(struct work_struct *work);
59 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
60 static void process_srcu(struct work_struct *work);
61 static void srcu_delay_timer(struct timer_list *t);
62 
63 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
64 #define spin_lock_rcu_node(p)					\
65 do {									\
66 	spin_lock(&ACCESS_PRIVATE(p, lock));			\
67 	smp_mb__after_unlock_lock();					\
68 } while (0)
69 
70 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
71 
72 #define spin_lock_irq_rcu_node(p)					\
73 do {									\
74 	spin_lock_irq(&ACCESS_PRIVATE(p, lock));			\
75 	smp_mb__after_unlock_lock();					\
76 } while (0)
77 
78 #define spin_unlock_irq_rcu_node(p)					\
79 	spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
80 
81 #define spin_lock_irqsave_rcu_node(p, flags)			\
82 do {									\
83 	spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags);	\
84 	smp_mb__after_unlock_lock();					\
85 } while (0)
86 
87 #define spin_unlock_irqrestore_rcu_node(p, flags)			\
88 	spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags)	\
89 
90 /*
91  * Initialize SRCU combining tree.  Note that statically allocated
92  * srcu_struct structures might already have srcu_read_lock() and
93  * srcu_read_unlock() running against them.  So if the is_static parameter
94  * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
95  */
96 static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
97 {
98 	int cpu;
99 	int i;
100 	int level = 0;
101 	int levelspread[RCU_NUM_LVLS];
102 	struct srcu_data *sdp;
103 	struct srcu_node *snp;
104 	struct srcu_node *snp_first;
105 
106 	/* Work out the overall tree geometry. */
107 	ssp->level[0] = &ssp->node[0];
108 	for (i = 1; i < rcu_num_lvls; i++)
109 		ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
110 	rcu_init_levelspread(levelspread, num_rcu_lvl);
111 
112 	/* Each pass through this loop initializes one srcu_node structure. */
113 	srcu_for_each_node_breadth_first(ssp, snp) {
114 		spin_lock_init(&ACCESS_PRIVATE(snp, lock));
115 		WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
116 			     ARRAY_SIZE(snp->srcu_data_have_cbs));
117 		for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
118 			snp->srcu_have_cbs[i] = 0;
119 			snp->srcu_data_have_cbs[i] = 0;
120 		}
121 		snp->srcu_gp_seq_needed_exp = 0;
122 		snp->grplo = -1;
123 		snp->grphi = -1;
124 		if (snp == &ssp->node[0]) {
125 			/* Root node, special case. */
126 			snp->srcu_parent = NULL;
127 			continue;
128 		}
129 
130 		/* Non-root node. */
131 		if (snp == ssp->level[level + 1])
132 			level++;
133 		snp->srcu_parent = ssp->level[level - 1] +
134 				   (snp - ssp->level[level]) /
135 				   levelspread[level - 1];
136 	}
137 
138 	/*
139 	 * Initialize the per-CPU srcu_data array, which feeds into the
140 	 * leaves of the srcu_node tree.
141 	 */
142 	WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
143 		     ARRAY_SIZE(sdp->srcu_unlock_count));
144 	level = rcu_num_lvls - 1;
145 	snp_first = ssp->level[level];
146 	for_each_possible_cpu(cpu) {
147 		sdp = per_cpu_ptr(ssp->sda, cpu);
148 		spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
149 		rcu_segcblist_init(&sdp->srcu_cblist);
150 		sdp->srcu_cblist_invoking = false;
151 		sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
152 		sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
153 		sdp->mynode = &snp_first[cpu / levelspread[level]];
154 		for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
155 			if (snp->grplo < 0)
156 				snp->grplo = cpu;
157 			snp->grphi = cpu;
158 		}
159 		sdp->cpu = cpu;
160 		INIT_WORK(&sdp->work, srcu_invoke_callbacks);
161 		timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
162 		sdp->ssp = ssp;
163 		sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
164 		if (is_static)
165 			continue;
166 
167 		/* Dynamically allocated, better be no srcu_read_locks()! */
168 		for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
169 			sdp->srcu_lock_count[i] = 0;
170 			sdp->srcu_unlock_count[i] = 0;
171 		}
172 	}
173 }
174 
175 /*
176  * Initialize non-compile-time initialized fields, including the
177  * associated srcu_node and srcu_data structures.  The is_static
178  * parameter is passed through to init_srcu_struct_nodes(), and
179  * also tells us that ->sda has already been wired up to srcu_data.
180  */
181 static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
182 {
183 	mutex_init(&ssp->srcu_cb_mutex);
184 	mutex_init(&ssp->srcu_gp_mutex);
185 	ssp->srcu_idx = 0;
186 	ssp->srcu_gp_seq = 0;
187 	ssp->srcu_barrier_seq = 0;
188 	mutex_init(&ssp->srcu_barrier_mutex);
189 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
190 	INIT_DELAYED_WORK(&ssp->work, process_srcu);
191 	if (!is_static)
192 		ssp->sda = alloc_percpu(struct srcu_data);
193 	init_srcu_struct_nodes(ssp, is_static);
194 	ssp->srcu_gp_seq_needed_exp = 0;
195 	ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
196 	smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
197 	return ssp->sda ? 0 : -ENOMEM;
198 }
199 
200 #ifdef CONFIG_DEBUG_LOCK_ALLOC
201 
202 int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
203 		       struct lock_class_key *key)
204 {
205 	/* Don't re-initialize a lock while it is held. */
206 	debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
207 	lockdep_init_map(&ssp->dep_map, name, key, 0);
208 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
209 	return init_srcu_struct_fields(ssp, false);
210 }
211 EXPORT_SYMBOL_GPL(__init_srcu_struct);
212 
213 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
214 
215 /**
216  * init_srcu_struct - initialize a sleep-RCU structure
217  * @ssp: structure to initialize.
218  *
219  * Must invoke this on a given srcu_struct before passing that srcu_struct
220  * to any other function.  Each srcu_struct represents a separate domain
221  * of SRCU protection.
222  */
223 int init_srcu_struct(struct srcu_struct *ssp)
224 {
225 	spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
226 	return init_srcu_struct_fields(ssp, false);
227 }
228 EXPORT_SYMBOL_GPL(init_srcu_struct);
229 
230 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
231 
232 /*
233  * First-use initialization of statically allocated srcu_struct
234  * structure.  Wiring up the combining tree is more than can be
235  * done with compile-time initialization, so this check is added
236  * to each update-side SRCU primitive.  Use ssp->lock, which -is-
237  * compile-time initialized, to resolve races involving multiple
238  * CPUs trying to garner first-use privileges.
239  */
240 static void check_init_srcu_struct(struct srcu_struct *ssp)
241 {
242 	unsigned long flags;
243 
244 	/* The smp_load_acquire() pairs with the smp_store_release(). */
245 	if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
246 		return; /* Already initialized. */
247 	spin_lock_irqsave_rcu_node(ssp, flags);
248 	if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
249 		spin_unlock_irqrestore_rcu_node(ssp, flags);
250 		return;
251 	}
252 	init_srcu_struct_fields(ssp, true);
253 	spin_unlock_irqrestore_rcu_node(ssp, flags);
254 }
255 
256 /*
257  * Returns approximate total of the readers' ->srcu_lock_count[] values
258  * for the rank of per-CPU counters specified by idx.
259  */
260 static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
261 {
262 	int cpu;
263 	unsigned long sum = 0;
264 
265 	for_each_possible_cpu(cpu) {
266 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
267 
268 		sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
269 	}
270 	return sum;
271 }
272 
273 /*
274  * Returns approximate total of the readers' ->srcu_unlock_count[] values
275  * for the rank of per-CPU counters specified by idx.
276  */
277 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
278 {
279 	int cpu;
280 	unsigned long sum = 0;
281 
282 	for_each_possible_cpu(cpu) {
283 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
284 
285 		sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
286 	}
287 	return sum;
288 }
289 
290 /*
291  * Return true if the number of pre-existing readers is determined to
292  * be zero.
293  */
294 static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
295 {
296 	unsigned long unlocks;
297 
298 	unlocks = srcu_readers_unlock_idx(ssp, idx);
299 
300 	/*
301 	 * Make sure that a lock is always counted if the corresponding
302 	 * unlock is counted. Needs to be a smp_mb() as the read side may
303 	 * contain a read from a variable that is written to before the
304 	 * synchronize_srcu() in the write side. In this case smp_mb()s
305 	 * A and B act like the store buffering pattern.
306 	 *
307 	 * This smp_mb() also pairs with smp_mb() C to prevent accesses
308 	 * after the synchronize_srcu() from being executed before the
309 	 * grace period ends.
310 	 */
311 	smp_mb(); /* A */
312 
313 	/*
314 	 * If the locks are the same as the unlocks, then there must have
315 	 * been no readers on this index at some time in between. This does
316 	 * not mean that there are no more readers, as one could have read
317 	 * the current index but not have incremented the lock counter yet.
318 	 *
319 	 * So suppose that the updater is preempted here for so long
320 	 * that more than ULONG_MAX non-nested readers come and go in
321 	 * the meantime.  It turns out that this cannot result in overflow
322 	 * because if a reader modifies its unlock count after we read it
323 	 * above, then that reader's next load of ->srcu_idx is guaranteed
324 	 * to get the new value, which will cause it to operate on the
325 	 * other bank of counters, where it cannot contribute to the
326 	 * overflow of these counters.  This means that there is a maximum
327 	 * of 2*NR_CPUS increments, which cannot overflow given current
328 	 * systems, especially not on 64-bit systems.
329 	 *
330 	 * OK, how about nesting?  This does impose a limit on nesting
331 	 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
332 	 * especially on 64-bit systems.
333 	 */
334 	return srcu_readers_lock_idx(ssp, idx) == unlocks;
335 }
336 
337 /**
338  * srcu_readers_active - returns true if there are readers. and false
339  *                       otherwise
340  * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
341  *
342  * Note that this is not an atomic primitive, and can therefore suffer
343  * severe errors when invoked on an active srcu_struct.  That said, it
344  * can be useful as an error check at cleanup time.
345  */
346 static bool srcu_readers_active(struct srcu_struct *ssp)
347 {
348 	int cpu;
349 	unsigned long sum = 0;
350 
351 	for_each_possible_cpu(cpu) {
352 		struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
353 
354 		sum += READ_ONCE(cpuc->srcu_lock_count[0]);
355 		sum += READ_ONCE(cpuc->srcu_lock_count[1]);
356 		sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
357 		sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
358 	}
359 	return sum;
360 }
361 
362 #define SRCU_INTERVAL		1
363 
364 /*
365  * Return grace-period delay, zero if there are expedited grace
366  * periods pending, SRCU_INTERVAL otherwise.
367  */
368 static unsigned long srcu_get_delay(struct srcu_struct *ssp)
369 {
370 	if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
371 			 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
372 		return 0;
373 	return SRCU_INTERVAL;
374 }
375 
376 /**
377  * cleanup_srcu_struct - deconstruct a sleep-RCU structure
378  * @ssp: structure to clean up.
379  *
380  * Must invoke this after you are finished using a given srcu_struct that
381  * was initialized via init_srcu_struct(), else you leak memory.
382  */
383 void cleanup_srcu_struct(struct srcu_struct *ssp)
384 {
385 	int cpu;
386 
387 	if (WARN_ON(!srcu_get_delay(ssp)))
388 		return; /* Just leak it! */
389 	if (WARN_ON(srcu_readers_active(ssp)))
390 		return; /* Just leak it! */
391 	flush_delayed_work(&ssp->work);
392 	for_each_possible_cpu(cpu) {
393 		struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
394 
395 		del_timer_sync(&sdp->delay_work);
396 		flush_work(&sdp->work);
397 		if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
398 			return; /* Forgot srcu_barrier(), so just leak it! */
399 	}
400 	if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
401 	    WARN_ON(srcu_readers_active(ssp))) {
402 		pr_info("%s: Active srcu_struct %p state: %d\n",
403 			__func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
404 		return; /* Caller forgot to stop doing call_srcu()? */
405 	}
406 	free_percpu(ssp->sda);
407 	ssp->sda = NULL;
408 }
409 EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
410 
411 /*
412  * Counts the new reader in the appropriate per-CPU element of the
413  * srcu_struct.
414  * Returns an index that must be passed to the matching srcu_read_unlock().
415  */
416 int __srcu_read_lock(struct srcu_struct *ssp)
417 {
418 	int idx;
419 
420 	idx = READ_ONCE(ssp->srcu_idx) & 0x1;
421 	this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
422 	smp_mb(); /* B */  /* Avoid leaking the critical section. */
423 	return idx;
424 }
425 EXPORT_SYMBOL_GPL(__srcu_read_lock);
426 
427 /*
428  * Removes the count for the old reader from the appropriate per-CPU
429  * element of the srcu_struct.  Note that this may well be a different
430  * CPU than that which was incremented by the corresponding srcu_read_lock().
431  */
432 void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
433 {
434 	smp_mb(); /* C */  /* Avoid leaking the critical section. */
435 	this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
436 }
437 EXPORT_SYMBOL_GPL(__srcu_read_unlock);
438 
439 /*
440  * We use an adaptive strategy for synchronize_srcu() and especially for
441  * synchronize_srcu_expedited().  We spin for a fixed time period
442  * (defined below) to allow SRCU readers to exit their read-side critical
443  * sections.  If there are still some readers after a few microseconds,
444  * we repeatedly block for 1-millisecond time periods.
445  */
446 #define SRCU_RETRY_CHECK_DELAY		5
447 
448 /*
449  * Start an SRCU grace period.
450  */
451 static void srcu_gp_start(struct srcu_struct *ssp)
452 {
453 	struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
454 	int state;
455 
456 	lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
457 	WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
458 	spin_lock_rcu_node(sdp);  /* Interrupts already disabled. */
459 	rcu_segcblist_advance(&sdp->srcu_cblist,
460 			      rcu_seq_current(&ssp->srcu_gp_seq));
461 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
462 				       rcu_seq_snap(&ssp->srcu_gp_seq));
463 	spin_unlock_rcu_node(sdp);  /* Interrupts remain disabled. */
464 	smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
465 	rcu_seq_start(&ssp->srcu_gp_seq);
466 	state = rcu_seq_state(ssp->srcu_gp_seq);
467 	WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
468 }
469 
470 
471 static void srcu_delay_timer(struct timer_list *t)
472 {
473 	struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
474 
475 	queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
476 }
477 
478 static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
479 				       unsigned long delay)
480 {
481 	if (!delay) {
482 		queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
483 		return;
484 	}
485 
486 	timer_reduce(&sdp->delay_work, jiffies + delay);
487 }
488 
489 /*
490  * Schedule callback invocation for the specified srcu_data structure,
491  * if possible, on the corresponding CPU.
492  */
493 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
494 {
495 	srcu_queue_delayed_work_on(sdp, delay);
496 }
497 
498 /*
499  * Schedule callback invocation for all srcu_data structures associated
500  * with the specified srcu_node structure that have callbacks for the
501  * just-completed grace period, the one corresponding to idx.  If possible,
502  * schedule this invocation on the corresponding CPUs.
503  */
504 static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
505 				  unsigned long mask, unsigned long delay)
506 {
507 	int cpu;
508 
509 	for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
510 		if (!(mask & (1 << (cpu - snp->grplo))))
511 			continue;
512 		srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
513 	}
514 }
515 
516 /*
517  * Note the end of an SRCU grace period.  Initiates callback invocation
518  * and starts a new grace period if needed.
519  *
520  * The ->srcu_cb_mutex acquisition does not protect any data, but
521  * instead prevents more than one grace period from starting while we
522  * are initiating callback invocation.  This allows the ->srcu_have_cbs[]
523  * array to have a finite number of elements.
524  */
525 static void srcu_gp_end(struct srcu_struct *ssp)
526 {
527 	unsigned long cbdelay;
528 	bool cbs;
529 	bool last_lvl;
530 	int cpu;
531 	unsigned long flags;
532 	unsigned long gpseq;
533 	int idx;
534 	unsigned long mask;
535 	struct srcu_data *sdp;
536 	struct srcu_node *snp;
537 
538 	/* Prevent more than one additional grace period. */
539 	mutex_lock(&ssp->srcu_cb_mutex);
540 
541 	/* End the current grace period. */
542 	spin_lock_irq_rcu_node(ssp);
543 	idx = rcu_seq_state(ssp->srcu_gp_seq);
544 	WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
545 	cbdelay = srcu_get_delay(ssp);
546 	WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
547 	rcu_seq_end(&ssp->srcu_gp_seq);
548 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
549 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
550 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
551 	spin_unlock_irq_rcu_node(ssp);
552 	mutex_unlock(&ssp->srcu_gp_mutex);
553 	/* A new grace period can start at this point.  But only one. */
554 
555 	/* Initiate callback invocation as needed. */
556 	idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
557 	srcu_for_each_node_breadth_first(ssp, snp) {
558 		spin_lock_irq_rcu_node(snp);
559 		cbs = false;
560 		last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
561 		if (last_lvl)
562 			cbs = snp->srcu_have_cbs[idx] == gpseq;
563 		snp->srcu_have_cbs[idx] = gpseq;
564 		rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
565 		if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
566 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
567 		mask = snp->srcu_data_have_cbs[idx];
568 		snp->srcu_data_have_cbs[idx] = 0;
569 		spin_unlock_irq_rcu_node(snp);
570 		if (cbs)
571 			srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
572 
573 		/* Occasionally prevent srcu_data counter wrap. */
574 		if (!(gpseq & counter_wrap_check) && last_lvl)
575 			for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
576 				sdp = per_cpu_ptr(ssp->sda, cpu);
577 				spin_lock_irqsave_rcu_node(sdp, flags);
578 				if (ULONG_CMP_GE(gpseq,
579 						 sdp->srcu_gp_seq_needed + 100))
580 					sdp->srcu_gp_seq_needed = gpseq;
581 				if (ULONG_CMP_GE(gpseq,
582 						 sdp->srcu_gp_seq_needed_exp + 100))
583 					sdp->srcu_gp_seq_needed_exp = gpseq;
584 				spin_unlock_irqrestore_rcu_node(sdp, flags);
585 			}
586 	}
587 
588 	/* Callback initiation done, allow grace periods after next. */
589 	mutex_unlock(&ssp->srcu_cb_mutex);
590 
591 	/* Start a new grace period if needed. */
592 	spin_lock_irq_rcu_node(ssp);
593 	gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
594 	if (!rcu_seq_state(gpseq) &&
595 	    ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
596 		srcu_gp_start(ssp);
597 		spin_unlock_irq_rcu_node(ssp);
598 		srcu_reschedule(ssp, 0);
599 	} else {
600 		spin_unlock_irq_rcu_node(ssp);
601 	}
602 }
603 
604 /*
605  * Funnel-locking scheme to scalably mediate many concurrent expedited
606  * grace-period requests.  This function is invoked for the first known
607  * expedited request for a grace period that has already been requested,
608  * but without expediting.  To start a completely new grace period,
609  * whether expedited or not, use srcu_funnel_gp_start() instead.
610  */
611 static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
612 				  unsigned long s)
613 {
614 	unsigned long flags;
615 
616 	for (; snp != NULL; snp = snp->srcu_parent) {
617 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
618 		    ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
619 			return;
620 		spin_lock_irqsave_rcu_node(snp, flags);
621 		if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
622 			spin_unlock_irqrestore_rcu_node(snp, flags);
623 			return;
624 		}
625 		WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
626 		spin_unlock_irqrestore_rcu_node(snp, flags);
627 	}
628 	spin_lock_irqsave_rcu_node(ssp, flags);
629 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
630 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
631 	spin_unlock_irqrestore_rcu_node(ssp, flags);
632 }
633 
634 /*
635  * Funnel-locking scheme to scalably mediate many concurrent grace-period
636  * requests.  The winner has to do the work of actually starting grace
637  * period s.  Losers must either ensure that their desired grace-period
638  * number is recorded on at least their leaf srcu_node structure, or they
639  * must take steps to invoke their own callbacks.
640  *
641  * Note that this function also does the work of srcu_funnel_exp_start(),
642  * in some cases by directly invoking it.
643  */
644 static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
645 				 unsigned long s, bool do_norm)
646 {
647 	unsigned long flags;
648 	int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
649 	struct srcu_node *snp = sdp->mynode;
650 	unsigned long snp_seq;
651 
652 	/* Each pass through the loop does one level of the srcu_node tree. */
653 	for (; snp != NULL; snp = snp->srcu_parent) {
654 		if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
655 			return; /* GP already done and CBs recorded. */
656 		spin_lock_irqsave_rcu_node(snp, flags);
657 		if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
658 			snp_seq = snp->srcu_have_cbs[idx];
659 			if (snp == sdp->mynode && snp_seq == s)
660 				snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
661 			spin_unlock_irqrestore_rcu_node(snp, flags);
662 			if (snp == sdp->mynode && snp_seq != s) {
663 				srcu_schedule_cbs_sdp(sdp, do_norm
664 							   ? SRCU_INTERVAL
665 							   : 0);
666 				return;
667 			}
668 			if (!do_norm)
669 				srcu_funnel_exp_start(ssp, snp, s);
670 			return;
671 		}
672 		snp->srcu_have_cbs[idx] = s;
673 		if (snp == sdp->mynode)
674 			snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
675 		if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
676 			WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
677 		spin_unlock_irqrestore_rcu_node(snp, flags);
678 	}
679 
680 	/* Top of tree, must ensure the grace period will be started. */
681 	spin_lock_irqsave_rcu_node(ssp, flags);
682 	if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
683 		/*
684 		 * Record need for grace period s.  Pair with load
685 		 * acquire setting up for initialization.
686 		 */
687 		smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
688 	}
689 	if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
690 		WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
691 
692 	/* If grace period not already done and none in progress, start it. */
693 	if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
694 	    rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
695 		WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
696 		srcu_gp_start(ssp);
697 		if (likely(srcu_init_done))
698 			queue_delayed_work(rcu_gp_wq, &ssp->work,
699 					   srcu_get_delay(ssp));
700 		else if (list_empty(&ssp->work.work.entry))
701 			list_add(&ssp->work.work.entry, &srcu_boot_list);
702 	}
703 	spin_unlock_irqrestore_rcu_node(ssp, flags);
704 }
705 
706 /*
707  * Wait until all readers counted by array index idx complete, but
708  * loop an additional time if there is an expedited grace period pending.
709  * The caller must ensure that ->srcu_idx is not changed while checking.
710  */
711 static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
712 {
713 	for (;;) {
714 		if (srcu_readers_active_idx_check(ssp, idx))
715 			return true;
716 		if (--trycount + !srcu_get_delay(ssp) <= 0)
717 			return false;
718 		udelay(SRCU_RETRY_CHECK_DELAY);
719 	}
720 }
721 
722 /*
723  * Increment the ->srcu_idx counter so that future SRCU readers will
724  * use the other rank of the ->srcu_(un)lock_count[] arrays.  This allows
725  * us to wait for pre-existing readers in a starvation-free manner.
726  */
727 static void srcu_flip(struct srcu_struct *ssp)
728 {
729 	/*
730 	 * Ensure that if this updater saw a given reader's increment
731 	 * from __srcu_read_lock(), that reader was using an old value
732 	 * of ->srcu_idx.  Also ensure that if a given reader sees the
733 	 * new value of ->srcu_idx, this updater's earlier scans cannot
734 	 * have seen that reader's increments (which is OK, because this
735 	 * grace period need not wait on that reader).
736 	 */
737 	smp_mb(); /* E */  /* Pairs with B and C. */
738 
739 	WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
740 
741 	/*
742 	 * Ensure that if the updater misses an __srcu_read_unlock()
743 	 * increment, that task's next __srcu_read_lock() will see the
744 	 * above counter update.  Note that both this memory barrier
745 	 * and the one in srcu_readers_active_idx_check() provide the
746 	 * guarantee for __srcu_read_lock().
747 	 */
748 	smp_mb(); /* D */  /* Pairs with C. */
749 }
750 
751 /*
752  * If SRCU is likely idle, return true, otherwise return false.
753  *
754  * Note that it is OK for several current from-idle requests for a new
755  * grace period from idle to specify expediting because they will all end
756  * up requesting the same grace period anyhow.  So no loss.
757  *
758  * Note also that if any CPU (including the current one) is still invoking
759  * callbacks, this function will nevertheless say "idle".  This is not
760  * ideal, but the overhead of checking all CPUs' callback lists is even
761  * less ideal, especially on large systems.  Furthermore, the wakeup
762  * can happen before the callback is fully removed, so we have no choice
763  * but to accept this type of error.
764  *
765  * This function is also subject to counter-wrap errors, but let's face
766  * it, if this function was preempted for enough time for the counters
767  * to wrap, it really doesn't matter whether or not we expedite the grace
768  * period.  The extra overhead of a needlessly expedited grace period is
769  * negligible when amortized over that time period, and the extra latency
770  * of a needlessly non-expedited grace period is similarly negligible.
771  */
772 static bool srcu_might_be_idle(struct srcu_struct *ssp)
773 {
774 	unsigned long curseq;
775 	unsigned long flags;
776 	struct srcu_data *sdp;
777 	unsigned long t;
778 	unsigned long tlast;
779 
780 	check_init_srcu_struct(ssp);
781 	/* If the local srcu_data structure has callbacks, not idle.  */
782 	sdp = raw_cpu_ptr(ssp->sda);
783 	spin_lock_irqsave_rcu_node(sdp, flags);
784 	if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
785 		spin_unlock_irqrestore_rcu_node(sdp, flags);
786 		return false; /* Callbacks already present, so not idle. */
787 	}
788 	spin_unlock_irqrestore_rcu_node(sdp, flags);
789 
790 	/*
791 	 * No local callbacks, so probabalistically probe global state.
792 	 * Exact information would require acquiring locks, which would
793 	 * kill scalability, hence the probabalistic nature of the probe.
794 	 */
795 
796 	/* First, see if enough time has passed since the last GP. */
797 	t = ktime_get_mono_fast_ns();
798 	tlast = READ_ONCE(ssp->srcu_last_gp_end);
799 	if (exp_holdoff == 0 ||
800 	    time_in_range_open(t, tlast, tlast + exp_holdoff))
801 		return false; /* Too soon after last GP. */
802 
803 	/* Next, check for probable idleness. */
804 	curseq = rcu_seq_current(&ssp->srcu_gp_seq);
805 	smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
806 	if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
807 		return false; /* Grace period in progress, so not idle. */
808 	smp_mb(); /* Order ->srcu_gp_seq with prior access. */
809 	if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
810 		return false; /* GP # changed, so not idle. */
811 	return true; /* With reasonable probability, idle! */
812 }
813 
814 /*
815  * SRCU callback function to leak a callback.
816  */
817 static void srcu_leak_callback(struct rcu_head *rhp)
818 {
819 }
820 
821 /*
822  * Enqueue an SRCU callback on the srcu_data structure associated with
823  * the current CPU and the specified srcu_struct structure, initiating
824  * grace-period processing if it is not already running.
825  *
826  * Note that all CPUs must agree that the grace period extended beyond
827  * all pre-existing SRCU read-side critical section.  On systems with
828  * more than one CPU, this means that when "func()" is invoked, each CPU
829  * is guaranteed to have executed a full memory barrier since the end of
830  * its last corresponding SRCU read-side critical section whose beginning
831  * preceded the call to call_srcu().  It also means that each CPU executing
832  * an SRCU read-side critical section that continues beyond the start of
833  * "func()" must have executed a memory barrier after the call_srcu()
834  * but before the beginning of that SRCU read-side critical section.
835  * Note that these guarantees include CPUs that are offline, idle, or
836  * executing in user mode, as well as CPUs that are executing in the kernel.
837  *
838  * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
839  * resulting SRCU callback function "func()", then both CPU A and CPU
840  * B are guaranteed to execute a full memory barrier during the time
841  * interval between the call to call_srcu() and the invocation of "func()".
842  * This guarantee applies even if CPU A and CPU B are the same CPU (but
843  * again only if the system has more than one CPU).
844  *
845  * Of course, these guarantees apply only for invocations of call_srcu(),
846  * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
847  * srcu_struct structure.
848  */
849 static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
850 			rcu_callback_t func, bool do_norm)
851 {
852 	unsigned long flags;
853 	int idx;
854 	bool needexp = false;
855 	bool needgp = false;
856 	unsigned long s;
857 	struct srcu_data *sdp;
858 
859 	check_init_srcu_struct(ssp);
860 	if (debug_rcu_head_queue(rhp)) {
861 		/* Probable double call_srcu(), so leak the callback. */
862 		WRITE_ONCE(rhp->func, srcu_leak_callback);
863 		WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
864 		return;
865 	}
866 	rhp->func = func;
867 	idx = srcu_read_lock(ssp);
868 	sdp = raw_cpu_ptr(ssp->sda);
869 	spin_lock_irqsave_rcu_node(sdp, flags);
870 	rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
871 	rcu_segcblist_advance(&sdp->srcu_cblist,
872 			      rcu_seq_current(&ssp->srcu_gp_seq));
873 	s = rcu_seq_snap(&ssp->srcu_gp_seq);
874 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
875 	if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
876 		sdp->srcu_gp_seq_needed = s;
877 		needgp = true;
878 	}
879 	if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
880 		sdp->srcu_gp_seq_needed_exp = s;
881 		needexp = true;
882 	}
883 	spin_unlock_irqrestore_rcu_node(sdp, flags);
884 	if (needgp)
885 		srcu_funnel_gp_start(ssp, sdp, s, do_norm);
886 	else if (needexp)
887 		srcu_funnel_exp_start(ssp, sdp->mynode, s);
888 	srcu_read_unlock(ssp, idx);
889 }
890 
891 /**
892  * call_srcu() - Queue a callback for invocation after an SRCU grace period
893  * @ssp: srcu_struct in queue the callback
894  * @rhp: structure to be used for queueing the SRCU callback.
895  * @func: function to be invoked after the SRCU grace period
896  *
897  * The callback function will be invoked some time after a full SRCU
898  * grace period elapses, in other words after all pre-existing SRCU
899  * read-side critical sections have completed.  However, the callback
900  * function might well execute concurrently with other SRCU read-side
901  * critical sections that started after call_srcu() was invoked.  SRCU
902  * read-side critical sections are delimited by srcu_read_lock() and
903  * srcu_read_unlock(), and may be nested.
904  *
905  * The callback will be invoked from process context, but must nevertheless
906  * be fast and must not block.
907  */
908 void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
909 	       rcu_callback_t func)
910 {
911 	__call_srcu(ssp, rhp, func, true);
912 }
913 EXPORT_SYMBOL_GPL(call_srcu);
914 
915 /*
916  * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
917  */
918 static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
919 {
920 	struct rcu_synchronize rcu;
921 
922 	RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
923 			 lock_is_held(&rcu_bh_lock_map) ||
924 			 lock_is_held(&rcu_lock_map) ||
925 			 lock_is_held(&rcu_sched_lock_map),
926 			 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
927 
928 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
929 		return;
930 	might_sleep();
931 	check_init_srcu_struct(ssp);
932 	init_completion(&rcu.completion);
933 	init_rcu_head_on_stack(&rcu.head);
934 	__call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
935 	wait_for_completion(&rcu.completion);
936 	destroy_rcu_head_on_stack(&rcu.head);
937 
938 	/*
939 	 * Make sure that later code is ordered after the SRCU grace
940 	 * period.  This pairs with the spin_lock_irq_rcu_node()
941 	 * in srcu_invoke_callbacks().  Unlike Tree RCU, this is needed
942 	 * because the current CPU might have been totally uninvolved with
943 	 * (and thus unordered against) that grace period.
944 	 */
945 	smp_mb();
946 }
947 
948 /**
949  * synchronize_srcu_expedited - Brute-force SRCU grace period
950  * @ssp: srcu_struct with which to synchronize.
951  *
952  * Wait for an SRCU grace period to elapse, but be more aggressive about
953  * spinning rather than blocking when waiting.
954  *
955  * Note that synchronize_srcu_expedited() has the same deadlock and
956  * memory-ordering properties as does synchronize_srcu().
957  */
958 void synchronize_srcu_expedited(struct srcu_struct *ssp)
959 {
960 	__synchronize_srcu(ssp, rcu_gp_is_normal());
961 }
962 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
963 
964 /**
965  * synchronize_srcu - wait for prior SRCU read-side critical-section completion
966  * @ssp: srcu_struct with which to synchronize.
967  *
968  * Wait for the count to drain to zero of both indexes. To avoid the
969  * possible starvation of synchronize_srcu(), it waits for the count of
970  * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
971  * and then flip the srcu_idx and wait for the count of the other index.
972  *
973  * Can block; must be called from process context.
974  *
975  * Note that it is illegal to call synchronize_srcu() from the corresponding
976  * SRCU read-side critical section; doing so will result in deadlock.
977  * However, it is perfectly legal to call synchronize_srcu() on one
978  * srcu_struct from some other srcu_struct's read-side critical section,
979  * as long as the resulting graph of srcu_structs is acyclic.
980  *
981  * There are memory-ordering constraints implied by synchronize_srcu().
982  * On systems with more than one CPU, when synchronize_srcu() returns,
983  * each CPU is guaranteed to have executed a full memory barrier since
984  * the end of its last corresponding SRCU read-side critical section
985  * whose beginning preceded the call to synchronize_srcu().  In addition,
986  * each CPU having an SRCU read-side critical section that extends beyond
987  * the return from synchronize_srcu() is guaranteed to have executed a
988  * full memory barrier after the beginning of synchronize_srcu() and before
989  * the beginning of that SRCU read-side critical section.  Note that these
990  * guarantees include CPUs that are offline, idle, or executing in user mode,
991  * as well as CPUs that are executing in the kernel.
992  *
993  * Furthermore, if CPU A invoked synchronize_srcu(), which returned
994  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
995  * to have executed a full memory barrier during the execution of
996  * synchronize_srcu().  This guarantee applies even if CPU A and CPU B
997  * are the same CPU, but again only if the system has more than one CPU.
998  *
999  * Of course, these memory-ordering guarantees apply only when
1000  * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
1001  * passed the same srcu_struct structure.
1002  *
1003  * If SRCU is likely idle, expedite the first request.  This semantic
1004  * was provided by Classic SRCU, and is relied upon by its users, so TREE
1005  * SRCU must also provide it.  Note that detecting idleness is heuristic
1006  * and subject to both false positives and negatives.
1007  */
1008 void synchronize_srcu(struct srcu_struct *ssp)
1009 {
1010 	if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
1011 		synchronize_srcu_expedited(ssp);
1012 	else
1013 		__synchronize_srcu(ssp, true);
1014 }
1015 EXPORT_SYMBOL_GPL(synchronize_srcu);
1016 
1017 /*
1018  * Callback function for srcu_barrier() use.
1019  */
1020 static void srcu_barrier_cb(struct rcu_head *rhp)
1021 {
1022 	struct srcu_data *sdp;
1023 	struct srcu_struct *ssp;
1024 
1025 	sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
1026 	ssp = sdp->ssp;
1027 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1028 		complete(&ssp->srcu_barrier_completion);
1029 }
1030 
1031 /**
1032  * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
1033  * @ssp: srcu_struct on which to wait for in-flight callbacks.
1034  */
1035 void srcu_barrier(struct srcu_struct *ssp)
1036 {
1037 	int cpu;
1038 	struct srcu_data *sdp;
1039 	unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
1040 
1041 	check_init_srcu_struct(ssp);
1042 	mutex_lock(&ssp->srcu_barrier_mutex);
1043 	if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
1044 		smp_mb(); /* Force ordering following return. */
1045 		mutex_unlock(&ssp->srcu_barrier_mutex);
1046 		return; /* Someone else did our work for us. */
1047 	}
1048 	rcu_seq_start(&ssp->srcu_barrier_seq);
1049 	init_completion(&ssp->srcu_barrier_completion);
1050 
1051 	/* Initial count prevents reaching zero until all CBs are posted. */
1052 	atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
1053 
1054 	/*
1055 	 * Each pass through this loop enqueues a callback, but only
1056 	 * on CPUs already having callbacks enqueued.  Note that if
1057 	 * a CPU already has callbacks enqueue, it must have already
1058 	 * registered the need for a future grace period, so all we
1059 	 * need do is enqueue a callback that will use the same
1060 	 * grace period as the last callback already in the queue.
1061 	 */
1062 	for_each_possible_cpu(cpu) {
1063 		sdp = per_cpu_ptr(ssp->sda, cpu);
1064 		spin_lock_irq_rcu_node(sdp);
1065 		atomic_inc(&ssp->srcu_barrier_cpu_cnt);
1066 		sdp->srcu_barrier_head.func = srcu_barrier_cb;
1067 		debug_rcu_head_queue(&sdp->srcu_barrier_head);
1068 		if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
1069 					   &sdp->srcu_barrier_head)) {
1070 			debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
1071 			atomic_dec(&ssp->srcu_barrier_cpu_cnt);
1072 		}
1073 		spin_unlock_irq_rcu_node(sdp);
1074 	}
1075 
1076 	/* Remove the initial count, at which point reaching zero can happen. */
1077 	if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1078 		complete(&ssp->srcu_barrier_completion);
1079 	wait_for_completion(&ssp->srcu_barrier_completion);
1080 
1081 	rcu_seq_end(&ssp->srcu_barrier_seq);
1082 	mutex_unlock(&ssp->srcu_barrier_mutex);
1083 }
1084 EXPORT_SYMBOL_GPL(srcu_barrier);
1085 
1086 /**
1087  * srcu_batches_completed - return batches completed.
1088  * @ssp: srcu_struct on which to report batch completion.
1089  *
1090  * Report the number of batches, correlated with, but not necessarily
1091  * precisely the same as, the number of grace periods that have elapsed.
1092  */
1093 unsigned long srcu_batches_completed(struct srcu_struct *ssp)
1094 {
1095 	return READ_ONCE(ssp->srcu_idx);
1096 }
1097 EXPORT_SYMBOL_GPL(srcu_batches_completed);
1098 
1099 /*
1100  * Core SRCU state machine.  Push state bits of ->srcu_gp_seq
1101  * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1102  * completed in that state.
1103  */
1104 static void srcu_advance_state(struct srcu_struct *ssp)
1105 {
1106 	int idx;
1107 
1108 	mutex_lock(&ssp->srcu_gp_mutex);
1109 
1110 	/*
1111 	 * Because readers might be delayed for an extended period after
1112 	 * fetching ->srcu_idx for their index, at any point in time there
1113 	 * might well be readers using both idx=0 and idx=1.  We therefore
1114 	 * need to wait for readers to clear from both index values before
1115 	 * invoking a callback.
1116 	 *
1117 	 * The load-acquire ensures that we see the accesses performed
1118 	 * by the prior grace period.
1119 	 */
1120 	idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
1121 	if (idx == SRCU_STATE_IDLE) {
1122 		spin_lock_irq_rcu_node(ssp);
1123 		if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1124 			WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1125 			spin_unlock_irq_rcu_node(ssp);
1126 			mutex_unlock(&ssp->srcu_gp_mutex);
1127 			return;
1128 		}
1129 		idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
1130 		if (idx == SRCU_STATE_IDLE)
1131 			srcu_gp_start(ssp);
1132 		spin_unlock_irq_rcu_node(ssp);
1133 		if (idx != SRCU_STATE_IDLE) {
1134 			mutex_unlock(&ssp->srcu_gp_mutex);
1135 			return; /* Someone else started the grace period. */
1136 		}
1137 	}
1138 
1139 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1140 		idx = 1 ^ (ssp->srcu_idx & 1);
1141 		if (!try_check_zero(ssp, idx, 1)) {
1142 			mutex_unlock(&ssp->srcu_gp_mutex);
1143 			return; /* readers present, retry later. */
1144 		}
1145 		srcu_flip(ssp);
1146 		spin_lock_irq_rcu_node(ssp);
1147 		rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
1148 		spin_unlock_irq_rcu_node(ssp);
1149 	}
1150 
1151 	if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
1152 
1153 		/*
1154 		 * SRCU read-side critical sections are normally short,
1155 		 * so check at least twice in quick succession after a flip.
1156 		 */
1157 		idx = 1 ^ (ssp->srcu_idx & 1);
1158 		if (!try_check_zero(ssp, idx, 2)) {
1159 			mutex_unlock(&ssp->srcu_gp_mutex);
1160 			return; /* readers present, retry later. */
1161 		}
1162 		srcu_gp_end(ssp);  /* Releases ->srcu_gp_mutex. */
1163 	}
1164 }
1165 
1166 /*
1167  * Invoke a limited number of SRCU callbacks that have passed through
1168  * their grace period.  If there are more to do, SRCU will reschedule
1169  * the workqueue.  Note that needed memory barriers have been executed
1170  * in this task's context by srcu_readers_active_idx_check().
1171  */
1172 static void srcu_invoke_callbacks(struct work_struct *work)
1173 {
1174 	bool more;
1175 	struct rcu_cblist ready_cbs;
1176 	struct rcu_head *rhp;
1177 	struct srcu_data *sdp;
1178 	struct srcu_struct *ssp;
1179 
1180 	sdp = container_of(work, struct srcu_data, work);
1181 
1182 	ssp = sdp->ssp;
1183 	rcu_cblist_init(&ready_cbs);
1184 	spin_lock_irq_rcu_node(sdp);
1185 	rcu_segcblist_advance(&sdp->srcu_cblist,
1186 			      rcu_seq_current(&ssp->srcu_gp_seq));
1187 	if (sdp->srcu_cblist_invoking ||
1188 	    !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
1189 		spin_unlock_irq_rcu_node(sdp);
1190 		return;  /* Someone else on the job or nothing to do. */
1191 	}
1192 
1193 	/* We are on the job!  Extract and invoke ready callbacks. */
1194 	sdp->srcu_cblist_invoking = true;
1195 	rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
1196 	spin_unlock_irq_rcu_node(sdp);
1197 	rhp = rcu_cblist_dequeue(&ready_cbs);
1198 	for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
1199 		debug_rcu_head_unqueue(rhp);
1200 		local_bh_disable();
1201 		rhp->func(rhp);
1202 		local_bh_enable();
1203 	}
1204 
1205 	/*
1206 	 * Update counts, accelerate new callbacks, and if needed,
1207 	 * schedule another round of callback invocation.
1208 	 */
1209 	spin_lock_irq_rcu_node(sdp);
1210 	rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1211 	(void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
1212 				       rcu_seq_snap(&ssp->srcu_gp_seq));
1213 	sdp->srcu_cblist_invoking = false;
1214 	more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
1215 	spin_unlock_irq_rcu_node(sdp);
1216 	if (more)
1217 		srcu_schedule_cbs_sdp(sdp, 0);
1218 }
1219 
1220 /*
1221  * Finished one round of SRCU grace period.  Start another if there are
1222  * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1223  */
1224 static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
1225 {
1226 	bool pushgp = true;
1227 
1228 	spin_lock_irq_rcu_node(ssp);
1229 	if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1230 		if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
1231 			/* All requests fulfilled, time to go idle. */
1232 			pushgp = false;
1233 		}
1234 	} else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
1235 		/* Outstanding request and no GP.  Start one. */
1236 		srcu_gp_start(ssp);
1237 	}
1238 	spin_unlock_irq_rcu_node(ssp);
1239 
1240 	if (pushgp)
1241 		queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
1242 }
1243 
1244 /*
1245  * This is the work-queue function that handles SRCU grace periods.
1246  */
1247 static void process_srcu(struct work_struct *work)
1248 {
1249 	struct srcu_struct *ssp;
1250 
1251 	ssp = container_of(work, struct srcu_struct, work.work);
1252 
1253 	srcu_advance_state(ssp);
1254 	srcu_reschedule(ssp, srcu_get_delay(ssp));
1255 }
1256 
1257 void srcutorture_get_gp_data(enum rcutorture_type test_type,
1258 			     struct srcu_struct *ssp, int *flags,
1259 			     unsigned long *gp_seq)
1260 {
1261 	if (test_type != SRCU_FLAVOR)
1262 		return;
1263 	*flags = 0;
1264 	*gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
1265 }
1266 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1267 
1268 void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
1269 {
1270 	int cpu;
1271 	int idx;
1272 	unsigned long s0 = 0, s1 = 0;
1273 
1274 	idx = ssp->srcu_idx & 0x1;
1275 	pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
1276 		 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
1277 	for_each_possible_cpu(cpu) {
1278 		unsigned long l0, l1;
1279 		unsigned long u0, u1;
1280 		long c0, c1;
1281 		struct srcu_data *sdp;
1282 
1283 		sdp = per_cpu_ptr(ssp->sda, cpu);
1284 		u0 = data_race(sdp->srcu_unlock_count[!idx]);
1285 		u1 = data_race(sdp->srcu_unlock_count[idx]);
1286 
1287 		/*
1288 		 * Make sure that a lock is always counted if the corresponding
1289 		 * unlock is counted.
1290 		 */
1291 		smp_rmb();
1292 
1293 		l0 = data_race(sdp->srcu_lock_count[!idx]);
1294 		l1 = data_race(sdp->srcu_lock_count[idx]);
1295 
1296 		c0 = l0 - u0;
1297 		c1 = l1 - u1;
1298 		pr_cont(" %d(%ld,%ld %c)",
1299 			cpu, c0, c1,
1300 			"C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
1301 		s0 += c0;
1302 		s1 += c1;
1303 	}
1304 	pr_cont(" T(%ld,%ld)\n", s0, s1);
1305 }
1306 EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1307 
1308 static int __init srcu_bootup_announce(void)
1309 {
1310 	pr_info("Hierarchical SRCU implementation.\n");
1311 	if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1312 		pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1313 	return 0;
1314 }
1315 early_initcall(srcu_bootup_announce);
1316 
1317 void __init srcu_init(void)
1318 {
1319 	struct srcu_struct *ssp;
1320 
1321 	srcu_init_done = true;
1322 	while (!list_empty(&srcu_boot_list)) {
1323 		ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
1324 				      work.work.entry);
1325 		check_init_srcu_struct(ssp);
1326 		list_del_init(&ssp->work.work.entry);
1327 		queue_work(rcu_gp_wq, &ssp->work.work);
1328 	}
1329 }
1330 
1331 #ifdef CONFIG_MODULES
1332 
1333 /* Initialize any global-scope srcu_struct structures used by this module. */
1334 static int srcu_module_coming(struct module *mod)
1335 {
1336 	int i;
1337 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1338 	int ret;
1339 
1340 	for (i = 0; i < mod->num_srcu_structs; i++) {
1341 		ret = init_srcu_struct(*(sspp++));
1342 		if (WARN_ON_ONCE(ret))
1343 			return ret;
1344 	}
1345 	return 0;
1346 }
1347 
1348 /* Clean up any global-scope srcu_struct structures used by this module. */
1349 static void srcu_module_going(struct module *mod)
1350 {
1351 	int i;
1352 	struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1353 
1354 	for (i = 0; i < mod->num_srcu_structs; i++)
1355 		cleanup_srcu_struct(*(sspp++));
1356 }
1357 
1358 /* Handle one module, either coming or going. */
1359 static int srcu_module_notify(struct notifier_block *self,
1360 			      unsigned long val, void *data)
1361 {
1362 	struct module *mod = data;
1363 	int ret = 0;
1364 
1365 	switch (val) {
1366 	case MODULE_STATE_COMING:
1367 		ret = srcu_module_coming(mod);
1368 		break;
1369 	case MODULE_STATE_GOING:
1370 		srcu_module_going(mod);
1371 		break;
1372 	default:
1373 		break;
1374 	}
1375 	return ret;
1376 }
1377 
1378 static struct notifier_block srcu_module_nb = {
1379 	.notifier_call = srcu_module_notify,
1380 	.priority = 0,
1381 };
1382 
1383 static __init int init_srcu_module_notifier(void)
1384 {
1385 	int ret;
1386 
1387 	ret = register_module_notifier(&srcu_module_nb);
1388 	if (ret)
1389 		pr_warn("Failed to register srcu module notifier\n");
1390 	return ret;
1391 }
1392 late_initcall(init_srcu_module_notifier);
1393 
1394 #endif /* #ifdef CONFIG_MODULES */
1395