1 /* 2 * Sleepable Read-Copy Update mechanism for mutual exclusion. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright (C) IBM Corporation, 2006 19 * Copyright (C) Fujitsu, 2012 20 * 21 * Author: Paul McKenney <paulmck@us.ibm.com> 22 * Lai Jiangshan <laijs@cn.fujitsu.com> 23 * 24 * For detailed explanation of Read-Copy Update mechanism see - 25 * Documentation/RCU/ *.txt 26 * 27 */ 28 29 #include <linux/export.h> 30 #include <linux/mutex.h> 31 #include <linux/percpu.h> 32 #include <linux/preempt.h> 33 #include <linux/rcupdate_wait.h> 34 #include <linux/sched.h> 35 #include <linux/smp.h> 36 #include <linux/delay.h> 37 #include <linux/module.h> 38 #include <linux/srcu.h> 39 40 #include "rcu.h" 41 #include "rcu_segcblist.h" 42 43 /* Holdoff in nanoseconds for auto-expediting. */ 44 #define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000) 45 static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF; 46 module_param(exp_holdoff, ulong, 0444); 47 48 /* Overflow-check frequency. N bits roughly says every 2**N grace periods. */ 49 static ulong counter_wrap_check = (ULONG_MAX >> 2); 50 module_param(counter_wrap_check, ulong, 0444); 51 52 static void srcu_invoke_callbacks(struct work_struct *work); 53 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay); 54 static void process_srcu(struct work_struct *work); 55 56 /* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */ 57 #define spin_lock_rcu_node(p) \ 58 do { \ 59 spin_lock(&ACCESS_PRIVATE(p, lock)); \ 60 smp_mb__after_unlock_lock(); \ 61 } while (0) 62 63 #define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock)) 64 65 #define spin_lock_irq_rcu_node(p) \ 66 do { \ 67 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \ 68 smp_mb__after_unlock_lock(); \ 69 } while (0) 70 71 #define spin_unlock_irq_rcu_node(p) \ 72 spin_unlock_irq(&ACCESS_PRIVATE(p, lock)) 73 74 #define spin_lock_irqsave_rcu_node(p, flags) \ 75 do { \ 76 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \ 77 smp_mb__after_unlock_lock(); \ 78 } while (0) 79 80 #define spin_unlock_irqrestore_rcu_node(p, flags) \ 81 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \ 82 83 /* 84 * Initialize SRCU combining tree. Note that statically allocated 85 * srcu_struct structures might already have srcu_read_lock() and 86 * srcu_read_unlock() running against them. So if the is_static parameter 87 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[]. 88 */ 89 static void init_srcu_struct_nodes(struct srcu_struct *sp, bool is_static) 90 { 91 int cpu; 92 int i; 93 int level = 0; 94 int levelspread[RCU_NUM_LVLS]; 95 struct srcu_data *sdp; 96 struct srcu_node *snp; 97 struct srcu_node *snp_first; 98 99 /* Work out the overall tree geometry. */ 100 sp->level[0] = &sp->node[0]; 101 for (i = 1; i < rcu_num_lvls; i++) 102 sp->level[i] = sp->level[i - 1] + num_rcu_lvl[i - 1]; 103 rcu_init_levelspread(levelspread, num_rcu_lvl); 104 105 /* Each pass through this loop initializes one srcu_node structure. */ 106 rcu_for_each_node_breadth_first(sp, snp) { 107 spin_lock_init(&ACCESS_PRIVATE(snp, lock)); 108 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) != 109 ARRAY_SIZE(snp->srcu_data_have_cbs)); 110 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) { 111 snp->srcu_have_cbs[i] = 0; 112 snp->srcu_data_have_cbs[i] = 0; 113 } 114 snp->srcu_gp_seq_needed_exp = 0; 115 snp->grplo = -1; 116 snp->grphi = -1; 117 if (snp == &sp->node[0]) { 118 /* Root node, special case. */ 119 snp->srcu_parent = NULL; 120 continue; 121 } 122 123 /* Non-root node. */ 124 if (snp == sp->level[level + 1]) 125 level++; 126 snp->srcu_parent = sp->level[level - 1] + 127 (snp - sp->level[level]) / 128 levelspread[level - 1]; 129 } 130 131 /* 132 * Initialize the per-CPU srcu_data array, which feeds into the 133 * leaves of the srcu_node tree. 134 */ 135 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) != 136 ARRAY_SIZE(sdp->srcu_unlock_count)); 137 level = rcu_num_lvls - 1; 138 snp_first = sp->level[level]; 139 for_each_possible_cpu(cpu) { 140 sdp = per_cpu_ptr(sp->sda, cpu); 141 spin_lock_init(&ACCESS_PRIVATE(sdp, lock)); 142 rcu_segcblist_init(&sdp->srcu_cblist); 143 sdp->srcu_cblist_invoking = false; 144 sdp->srcu_gp_seq_needed = sp->srcu_gp_seq; 145 sdp->srcu_gp_seq_needed_exp = sp->srcu_gp_seq; 146 sdp->mynode = &snp_first[cpu / levelspread[level]]; 147 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) { 148 if (snp->grplo < 0) 149 snp->grplo = cpu; 150 snp->grphi = cpu; 151 } 152 sdp->cpu = cpu; 153 INIT_DELAYED_WORK(&sdp->work, srcu_invoke_callbacks); 154 sdp->sp = sp; 155 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo); 156 if (is_static) 157 continue; 158 159 /* Dynamically allocated, better be no srcu_read_locks()! */ 160 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) { 161 sdp->srcu_lock_count[i] = 0; 162 sdp->srcu_unlock_count[i] = 0; 163 } 164 } 165 } 166 167 /* 168 * Initialize non-compile-time initialized fields, including the 169 * associated srcu_node and srcu_data structures. The is_static 170 * parameter is passed through to init_srcu_struct_nodes(), and 171 * also tells us that ->sda has already been wired up to srcu_data. 172 */ 173 static int init_srcu_struct_fields(struct srcu_struct *sp, bool is_static) 174 { 175 mutex_init(&sp->srcu_cb_mutex); 176 mutex_init(&sp->srcu_gp_mutex); 177 sp->srcu_idx = 0; 178 sp->srcu_gp_seq = 0; 179 sp->srcu_barrier_seq = 0; 180 mutex_init(&sp->srcu_barrier_mutex); 181 atomic_set(&sp->srcu_barrier_cpu_cnt, 0); 182 INIT_DELAYED_WORK(&sp->work, process_srcu); 183 if (!is_static) 184 sp->sda = alloc_percpu(struct srcu_data); 185 init_srcu_struct_nodes(sp, is_static); 186 sp->srcu_gp_seq_needed_exp = 0; 187 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 188 smp_store_release(&sp->srcu_gp_seq_needed, 0); /* Init done. */ 189 return sp->sda ? 0 : -ENOMEM; 190 } 191 192 #ifdef CONFIG_DEBUG_LOCK_ALLOC 193 194 int __init_srcu_struct(struct srcu_struct *sp, const char *name, 195 struct lock_class_key *key) 196 { 197 /* Don't re-initialize a lock while it is held. */ 198 debug_check_no_locks_freed((void *)sp, sizeof(*sp)); 199 lockdep_init_map(&sp->dep_map, name, key, 0); 200 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 201 return init_srcu_struct_fields(sp, false); 202 } 203 EXPORT_SYMBOL_GPL(__init_srcu_struct); 204 205 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 206 207 /** 208 * init_srcu_struct - initialize a sleep-RCU structure 209 * @sp: structure to initialize. 210 * 211 * Must invoke this on a given srcu_struct before passing that srcu_struct 212 * to any other function. Each srcu_struct represents a separate domain 213 * of SRCU protection. 214 */ 215 int init_srcu_struct(struct srcu_struct *sp) 216 { 217 spin_lock_init(&ACCESS_PRIVATE(sp, lock)); 218 return init_srcu_struct_fields(sp, false); 219 } 220 EXPORT_SYMBOL_GPL(init_srcu_struct); 221 222 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 223 224 /* 225 * First-use initialization of statically allocated srcu_struct 226 * structure. Wiring up the combining tree is more than can be 227 * done with compile-time initialization, so this check is added 228 * to each update-side SRCU primitive. Use sp->lock, which -is- 229 * compile-time initialized, to resolve races involving multiple 230 * CPUs trying to garner first-use privileges. 231 */ 232 static void check_init_srcu_struct(struct srcu_struct *sp) 233 { 234 unsigned long flags; 235 236 WARN_ON_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INIT); 237 /* The smp_load_acquire() pairs with the smp_store_release(). */ 238 if (!rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq_needed))) /*^^^*/ 239 return; /* Already initialized. */ 240 spin_lock_irqsave_rcu_node(sp, flags); 241 if (!rcu_seq_state(sp->srcu_gp_seq_needed)) { 242 spin_unlock_irqrestore_rcu_node(sp, flags); 243 return; 244 } 245 init_srcu_struct_fields(sp, true); 246 spin_unlock_irqrestore_rcu_node(sp, flags); 247 } 248 249 /* 250 * Returns approximate total of the readers' ->srcu_lock_count[] values 251 * for the rank of per-CPU counters specified by idx. 252 */ 253 static unsigned long srcu_readers_lock_idx(struct srcu_struct *sp, int idx) 254 { 255 int cpu; 256 unsigned long sum = 0; 257 258 for_each_possible_cpu(cpu) { 259 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 260 261 sum += READ_ONCE(cpuc->srcu_lock_count[idx]); 262 } 263 return sum; 264 } 265 266 /* 267 * Returns approximate total of the readers' ->srcu_unlock_count[] values 268 * for the rank of per-CPU counters specified by idx. 269 */ 270 static unsigned long srcu_readers_unlock_idx(struct srcu_struct *sp, int idx) 271 { 272 int cpu; 273 unsigned long sum = 0; 274 275 for_each_possible_cpu(cpu) { 276 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 277 278 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]); 279 } 280 return sum; 281 } 282 283 /* 284 * Return true if the number of pre-existing readers is determined to 285 * be zero. 286 */ 287 static bool srcu_readers_active_idx_check(struct srcu_struct *sp, int idx) 288 { 289 unsigned long unlocks; 290 291 unlocks = srcu_readers_unlock_idx(sp, idx); 292 293 /* 294 * Make sure that a lock is always counted if the corresponding 295 * unlock is counted. Needs to be a smp_mb() as the read side may 296 * contain a read from a variable that is written to before the 297 * synchronize_srcu() in the write side. In this case smp_mb()s 298 * A and B act like the store buffering pattern. 299 * 300 * This smp_mb() also pairs with smp_mb() C to prevent accesses 301 * after the synchronize_srcu() from being executed before the 302 * grace period ends. 303 */ 304 smp_mb(); /* A */ 305 306 /* 307 * If the locks are the same as the unlocks, then there must have 308 * been no readers on this index at some time in between. This does 309 * not mean that there are no more readers, as one could have read 310 * the current index but not have incremented the lock counter yet. 311 * 312 * So suppose that the updater is preempted here for so long 313 * that more than ULONG_MAX non-nested readers come and go in 314 * the meantime. It turns out that this cannot result in overflow 315 * because if a reader modifies its unlock count after we read it 316 * above, then that reader's next load of ->srcu_idx is guaranteed 317 * to get the new value, which will cause it to operate on the 318 * other bank of counters, where it cannot contribute to the 319 * overflow of these counters. This means that there is a maximum 320 * of 2*NR_CPUS increments, which cannot overflow given current 321 * systems, especially not on 64-bit systems. 322 * 323 * OK, how about nesting? This does impose a limit on nesting 324 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient, 325 * especially on 64-bit systems. 326 */ 327 return srcu_readers_lock_idx(sp, idx) == unlocks; 328 } 329 330 /** 331 * srcu_readers_active - returns true if there are readers. and false 332 * otherwise 333 * @sp: which srcu_struct to count active readers (holding srcu_read_lock). 334 * 335 * Note that this is not an atomic primitive, and can therefore suffer 336 * severe errors when invoked on an active srcu_struct. That said, it 337 * can be useful as an error check at cleanup time. 338 */ 339 static bool srcu_readers_active(struct srcu_struct *sp) 340 { 341 int cpu; 342 unsigned long sum = 0; 343 344 for_each_possible_cpu(cpu) { 345 struct srcu_data *cpuc = per_cpu_ptr(sp->sda, cpu); 346 347 sum += READ_ONCE(cpuc->srcu_lock_count[0]); 348 sum += READ_ONCE(cpuc->srcu_lock_count[1]); 349 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]); 350 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]); 351 } 352 return sum; 353 } 354 355 #define SRCU_INTERVAL 1 356 357 /* 358 * Return grace-period delay, zero if there are expedited grace 359 * periods pending, SRCU_INTERVAL otherwise. 360 */ 361 static unsigned long srcu_get_delay(struct srcu_struct *sp) 362 { 363 if (ULONG_CMP_LT(READ_ONCE(sp->srcu_gp_seq), 364 READ_ONCE(sp->srcu_gp_seq_needed_exp))) 365 return 0; 366 return SRCU_INTERVAL; 367 } 368 369 /* Helper for cleanup_srcu_struct() and cleanup_srcu_struct_quiesced(). */ 370 void _cleanup_srcu_struct(struct srcu_struct *sp, bool quiesced) 371 { 372 int cpu; 373 374 if (WARN_ON(!srcu_get_delay(sp))) 375 return; /* Just leak it! */ 376 if (WARN_ON(srcu_readers_active(sp))) 377 return; /* Just leak it! */ 378 if (quiesced) { 379 if (WARN_ON(delayed_work_pending(&sp->work))) 380 return; /* Just leak it! */ 381 } else { 382 flush_delayed_work(&sp->work); 383 } 384 for_each_possible_cpu(cpu) 385 if (quiesced) { 386 if (WARN_ON(delayed_work_pending(&per_cpu_ptr(sp->sda, cpu)->work))) 387 return; /* Just leak it! */ 388 } else { 389 flush_delayed_work(&per_cpu_ptr(sp->sda, cpu)->work); 390 } 391 if (WARN_ON(rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) != SRCU_STATE_IDLE) || 392 WARN_ON(srcu_readers_active(sp))) { 393 pr_info("%s: Active srcu_struct %p state: %d\n", __func__, sp, rcu_seq_state(READ_ONCE(sp->srcu_gp_seq))); 394 return; /* Caller forgot to stop doing call_srcu()? */ 395 } 396 free_percpu(sp->sda); 397 sp->sda = NULL; 398 } 399 EXPORT_SYMBOL_GPL(_cleanup_srcu_struct); 400 401 /* 402 * Counts the new reader in the appropriate per-CPU element of the 403 * srcu_struct. 404 * Returns an index that must be passed to the matching srcu_read_unlock(). 405 */ 406 int __srcu_read_lock(struct srcu_struct *sp) 407 { 408 int idx; 409 410 idx = READ_ONCE(sp->srcu_idx) & 0x1; 411 this_cpu_inc(sp->sda->srcu_lock_count[idx]); 412 smp_mb(); /* B */ /* Avoid leaking the critical section. */ 413 return idx; 414 } 415 EXPORT_SYMBOL_GPL(__srcu_read_lock); 416 417 /* 418 * Removes the count for the old reader from the appropriate per-CPU 419 * element of the srcu_struct. Note that this may well be a different 420 * CPU than that which was incremented by the corresponding srcu_read_lock(). 421 */ 422 void __srcu_read_unlock(struct srcu_struct *sp, int idx) 423 { 424 smp_mb(); /* C */ /* Avoid leaking the critical section. */ 425 this_cpu_inc(sp->sda->srcu_unlock_count[idx]); 426 } 427 EXPORT_SYMBOL_GPL(__srcu_read_unlock); 428 429 /* 430 * We use an adaptive strategy for synchronize_srcu() and especially for 431 * synchronize_srcu_expedited(). We spin for a fixed time period 432 * (defined below) to allow SRCU readers to exit their read-side critical 433 * sections. If there are still some readers after a few microseconds, 434 * we repeatedly block for 1-millisecond time periods. 435 */ 436 #define SRCU_RETRY_CHECK_DELAY 5 437 438 /* 439 * Start an SRCU grace period. 440 */ 441 static void srcu_gp_start(struct srcu_struct *sp) 442 { 443 struct srcu_data *sdp = this_cpu_ptr(sp->sda); 444 int state; 445 446 lockdep_assert_held(&ACCESS_PRIVATE(sp, lock)); 447 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 448 rcu_segcblist_advance(&sdp->srcu_cblist, 449 rcu_seq_current(&sp->srcu_gp_seq)); 450 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 451 rcu_seq_snap(&sp->srcu_gp_seq)); 452 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */ 453 rcu_seq_start(&sp->srcu_gp_seq); 454 state = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 455 WARN_ON_ONCE(state != SRCU_STATE_SCAN1); 456 } 457 458 /* 459 * Track online CPUs to guide callback workqueue placement. 460 */ 461 DEFINE_PER_CPU(bool, srcu_online); 462 463 void srcu_online_cpu(unsigned int cpu) 464 { 465 WRITE_ONCE(per_cpu(srcu_online, cpu), true); 466 } 467 468 void srcu_offline_cpu(unsigned int cpu) 469 { 470 WRITE_ONCE(per_cpu(srcu_online, cpu), false); 471 } 472 473 /* 474 * Place the workqueue handler on the specified CPU if online, otherwise 475 * just run it whereever. This is useful for placing workqueue handlers 476 * that are to invoke the specified CPU's callbacks. 477 */ 478 static bool srcu_queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 479 struct delayed_work *dwork, 480 unsigned long delay) 481 { 482 bool ret; 483 484 preempt_disable(); 485 if (READ_ONCE(per_cpu(srcu_online, cpu))) 486 ret = queue_delayed_work_on(cpu, wq, dwork, delay); 487 else 488 ret = queue_delayed_work(wq, dwork, delay); 489 preempt_enable(); 490 return ret; 491 } 492 493 /* 494 * Schedule callback invocation for the specified srcu_data structure, 495 * if possible, on the corresponding CPU. 496 */ 497 static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay) 498 { 499 srcu_queue_delayed_work_on(sdp->cpu, rcu_gp_wq, &sdp->work, delay); 500 } 501 502 /* 503 * Schedule callback invocation for all srcu_data structures associated 504 * with the specified srcu_node structure that have callbacks for the 505 * just-completed grace period, the one corresponding to idx. If possible, 506 * schedule this invocation on the corresponding CPUs. 507 */ 508 static void srcu_schedule_cbs_snp(struct srcu_struct *sp, struct srcu_node *snp, 509 unsigned long mask, unsigned long delay) 510 { 511 int cpu; 512 513 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 514 if (!(mask & (1 << (cpu - snp->grplo)))) 515 continue; 516 srcu_schedule_cbs_sdp(per_cpu_ptr(sp->sda, cpu), delay); 517 } 518 } 519 520 /* 521 * Note the end of an SRCU grace period. Initiates callback invocation 522 * and starts a new grace period if needed. 523 * 524 * The ->srcu_cb_mutex acquisition does not protect any data, but 525 * instead prevents more than one grace period from starting while we 526 * are initiating callback invocation. This allows the ->srcu_have_cbs[] 527 * array to have a finite number of elements. 528 */ 529 static void srcu_gp_end(struct srcu_struct *sp) 530 { 531 unsigned long cbdelay; 532 bool cbs; 533 bool last_lvl; 534 int cpu; 535 unsigned long flags; 536 unsigned long gpseq; 537 int idx; 538 unsigned long mask; 539 struct srcu_data *sdp; 540 struct srcu_node *snp; 541 542 /* Prevent more than one additional grace period. */ 543 mutex_lock(&sp->srcu_cb_mutex); 544 545 /* End the current grace period. */ 546 spin_lock_irq_rcu_node(sp); 547 idx = rcu_seq_state(sp->srcu_gp_seq); 548 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2); 549 cbdelay = srcu_get_delay(sp); 550 sp->srcu_last_gp_end = ktime_get_mono_fast_ns(); 551 rcu_seq_end(&sp->srcu_gp_seq); 552 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 553 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, gpseq)) 554 sp->srcu_gp_seq_needed_exp = gpseq; 555 spin_unlock_irq_rcu_node(sp); 556 mutex_unlock(&sp->srcu_gp_mutex); 557 /* A new grace period can start at this point. But only one. */ 558 559 /* Initiate callback invocation as needed. */ 560 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs); 561 rcu_for_each_node_breadth_first(sp, snp) { 562 spin_lock_irq_rcu_node(snp); 563 cbs = false; 564 last_lvl = snp >= sp->level[rcu_num_lvls - 1]; 565 if (last_lvl) 566 cbs = snp->srcu_have_cbs[idx] == gpseq; 567 snp->srcu_have_cbs[idx] = gpseq; 568 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1); 569 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq)) 570 snp->srcu_gp_seq_needed_exp = gpseq; 571 mask = snp->srcu_data_have_cbs[idx]; 572 snp->srcu_data_have_cbs[idx] = 0; 573 spin_unlock_irq_rcu_node(snp); 574 if (cbs) 575 srcu_schedule_cbs_snp(sp, snp, mask, cbdelay); 576 577 /* Occasionally prevent srcu_data counter wrap. */ 578 if (!(gpseq & counter_wrap_check) && last_lvl) 579 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) { 580 sdp = per_cpu_ptr(sp->sda, cpu); 581 spin_lock_irqsave_rcu_node(sdp, flags); 582 if (ULONG_CMP_GE(gpseq, 583 sdp->srcu_gp_seq_needed + 100)) 584 sdp->srcu_gp_seq_needed = gpseq; 585 if (ULONG_CMP_GE(gpseq, 586 sdp->srcu_gp_seq_needed_exp + 100)) 587 sdp->srcu_gp_seq_needed_exp = gpseq; 588 spin_unlock_irqrestore_rcu_node(sdp, flags); 589 } 590 } 591 592 /* Callback initiation done, allow grace periods after next. */ 593 mutex_unlock(&sp->srcu_cb_mutex); 594 595 /* Start a new grace period if needed. */ 596 spin_lock_irq_rcu_node(sp); 597 gpseq = rcu_seq_current(&sp->srcu_gp_seq); 598 if (!rcu_seq_state(gpseq) && 599 ULONG_CMP_LT(gpseq, sp->srcu_gp_seq_needed)) { 600 srcu_gp_start(sp); 601 spin_unlock_irq_rcu_node(sp); 602 srcu_reschedule(sp, 0); 603 } else { 604 spin_unlock_irq_rcu_node(sp); 605 } 606 } 607 608 /* 609 * Funnel-locking scheme to scalably mediate many concurrent expedited 610 * grace-period requests. This function is invoked for the first known 611 * expedited request for a grace period that has already been requested, 612 * but without expediting. To start a completely new grace period, 613 * whether expedited or not, use srcu_funnel_gp_start() instead. 614 */ 615 static void srcu_funnel_exp_start(struct srcu_struct *sp, struct srcu_node *snp, 616 unsigned long s) 617 { 618 unsigned long flags; 619 620 for (; snp != NULL; snp = snp->srcu_parent) { 621 if (rcu_seq_done(&sp->srcu_gp_seq, s) || 622 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s)) 623 return; 624 spin_lock_irqsave_rcu_node(snp, flags); 625 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) { 626 spin_unlock_irqrestore_rcu_node(snp, flags); 627 return; 628 } 629 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s); 630 spin_unlock_irqrestore_rcu_node(snp, flags); 631 } 632 spin_lock_irqsave_rcu_node(sp, flags); 633 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 634 sp->srcu_gp_seq_needed_exp = s; 635 spin_unlock_irqrestore_rcu_node(sp, flags); 636 } 637 638 /* 639 * Funnel-locking scheme to scalably mediate many concurrent grace-period 640 * requests. The winner has to do the work of actually starting grace 641 * period s. Losers must either ensure that their desired grace-period 642 * number is recorded on at least their leaf srcu_node structure, or they 643 * must take steps to invoke their own callbacks. 644 */ 645 static void srcu_funnel_gp_start(struct srcu_struct *sp, struct srcu_data *sdp, 646 unsigned long s, bool do_norm) 647 { 648 unsigned long flags; 649 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs); 650 struct srcu_node *snp = sdp->mynode; 651 unsigned long snp_seq; 652 653 /* Each pass through the loop does one level of the srcu_node tree. */ 654 for (; snp != NULL; snp = snp->srcu_parent) { 655 if (rcu_seq_done(&sp->srcu_gp_seq, s) && snp != sdp->mynode) 656 return; /* GP already done and CBs recorded. */ 657 spin_lock_irqsave_rcu_node(snp, flags); 658 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) { 659 snp_seq = snp->srcu_have_cbs[idx]; 660 if (snp == sdp->mynode && snp_seq == s) 661 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 662 spin_unlock_irqrestore_rcu_node(snp, flags); 663 if (snp == sdp->mynode && snp_seq != s) { 664 srcu_schedule_cbs_sdp(sdp, do_norm 665 ? SRCU_INTERVAL 666 : 0); 667 return; 668 } 669 if (!do_norm) 670 srcu_funnel_exp_start(sp, snp, s); 671 return; 672 } 673 snp->srcu_have_cbs[idx] = s; 674 if (snp == sdp->mynode) 675 snp->srcu_data_have_cbs[idx] |= sdp->grpmask; 676 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s)) 677 snp->srcu_gp_seq_needed_exp = s; 678 spin_unlock_irqrestore_rcu_node(snp, flags); 679 } 680 681 /* Top of tree, must ensure the grace period will be started. */ 682 spin_lock_irqsave_rcu_node(sp, flags); 683 if (ULONG_CMP_LT(sp->srcu_gp_seq_needed, s)) { 684 /* 685 * Record need for grace period s. Pair with load 686 * acquire setting up for initialization. 687 */ 688 smp_store_release(&sp->srcu_gp_seq_needed, s); /*^^^*/ 689 } 690 if (!do_norm && ULONG_CMP_LT(sp->srcu_gp_seq_needed_exp, s)) 691 sp->srcu_gp_seq_needed_exp = s; 692 693 /* If grace period not already done and none in progress, start it. */ 694 if (!rcu_seq_done(&sp->srcu_gp_seq, s) && 695 rcu_seq_state(sp->srcu_gp_seq) == SRCU_STATE_IDLE) { 696 WARN_ON_ONCE(ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)); 697 srcu_gp_start(sp); 698 queue_delayed_work(rcu_gp_wq, &sp->work, srcu_get_delay(sp)); 699 } 700 spin_unlock_irqrestore_rcu_node(sp, flags); 701 } 702 703 /* 704 * Wait until all readers counted by array index idx complete, but 705 * loop an additional time if there is an expedited grace period pending. 706 * The caller must ensure that ->srcu_idx is not changed while checking. 707 */ 708 static bool try_check_zero(struct srcu_struct *sp, int idx, int trycount) 709 { 710 for (;;) { 711 if (srcu_readers_active_idx_check(sp, idx)) 712 return true; 713 if (--trycount + !srcu_get_delay(sp) <= 0) 714 return false; 715 udelay(SRCU_RETRY_CHECK_DELAY); 716 } 717 } 718 719 /* 720 * Increment the ->srcu_idx counter so that future SRCU readers will 721 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows 722 * us to wait for pre-existing readers in a starvation-free manner. 723 */ 724 static void srcu_flip(struct srcu_struct *sp) 725 { 726 /* 727 * Ensure that if this updater saw a given reader's increment 728 * from __srcu_read_lock(), that reader was using an old value 729 * of ->srcu_idx. Also ensure that if a given reader sees the 730 * new value of ->srcu_idx, this updater's earlier scans cannot 731 * have seen that reader's increments (which is OK, because this 732 * grace period need not wait on that reader). 733 */ 734 smp_mb(); /* E */ /* Pairs with B and C. */ 735 736 WRITE_ONCE(sp->srcu_idx, sp->srcu_idx + 1); 737 738 /* 739 * Ensure that if the updater misses an __srcu_read_unlock() 740 * increment, that task's next __srcu_read_lock() will see the 741 * above counter update. Note that both this memory barrier 742 * and the one in srcu_readers_active_idx_check() provide the 743 * guarantee for __srcu_read_lock(). 744 */ 745 smp_mb(); /* D */ /* Pairs with C. */ 746 } 747 748 /* 749 * If SRCU is likely idle, return true, otherwise return false. 750 * 751 * Note that it is OK for several current from-idle requests for a new 752 * grace period from idle to specify expediting because they will all end 753 * up requesting the same grace period anyhow. So no loss. 754 * 755 * Note also that if any CPU (including the current one) is still invoking 756 * callbacks, this function will nevertheless say "idle". This is not 757 * ideal, but the overhead of checking all CPUs' callback lists is even 758 * less ideal, especially on large systems. Furthermore, the wakeup 759 * can happen before the callback is fully removed, so we have no choice 760 * but to accept this type of error. 761 * 762 * This function is also subject to counter-wrap errors, but let's face 763 * it, if this function was preempted for enough time for the counters 764 * to wrap, it really doesn't matter whether or not we expedite the grace 765 * period. The extra overhead of a needlessly expedited grace period is 766 * negligible when amoritized over that time period, and the extra latency 767 * of a needlessly non-expedited grace period is similarly negligible. 768 */ 769 static bool srcu_might_be_idle(struct srcu_struct *sp) 770 { 771 unsigned long curseq; 772 unsigned long flags; 773 struct srcu_data *sdp; 774 unsigned long t; 775 776 /* If the local srcu_data structure has callbacks, not idle. */ 777 local_irq_save(flags); 778 sdp = this_cpu_ptr(sp->sda); 779 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) { 780 local_irq_restore(flags); 781 return false; /* Callbacks already present, so not idle. */ 782 } 783 local_irq_restore(flags); 784 785 /* 786 * No local callbacks, so probabalistically probe global state. 787 * Exact information would require acquiring locks, which would 788 * kill scalability, hence the probabalistic nature of the probe. 789 */ 790 791 /* First, see if enough time has passed since the last GP. */ 792 t = ktime_get_mono_fast_ns(); 793 if (exp_holdoff == 0 || 794 time_in_range_open(t, sp->srcu_last_gp_end, 795 sp->srcu_last_gp_end + exp_holdoff)) 796 return false; /* Too soon after last GP. */ 797 798 /* Next, check for probable idleness. */ 799 curseq = rcu_seq_current(&sp->srcu_gp_seq); 800 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */ 801 if (ULONG_CMP_LT(curseq, READ_ONCE(sp->srcu_gp_seq_needed))) 802 return false; /* Grace period in progress, so not idle. */ 803 smp_mb(); /* Order ->srcu_gp_seq with prior access. */ 804 if (curseq != rcu_seq_current(&sp->srcu_gp_seq)) 805 return false; /* GP # changed, so not idle. */ 806 return true; /* With reasonable probability, idle! */ 807 } 808 809 /* 810 * SRCU callback function to leak a callback. 811 */ 812 static void srcu_leak_callback(struct rcu_head *rhp) 813 { 814 } 815 816 /* 817 * Enqueue an SRCU callback on the srcu_data structure associated with 818 * the current CPU and the specified srcu_struct structure, initiating 819 * grace-period processing if it is not already running. 820 * 821 * Note that all CPUs must agree that the grace period extended beyond 822 * all pre-existing SRCU read-side critical section. On systems with 823 * more than one CPU, this means that when "func()" is invoked, each CPU 824 * is guaranteed to have executed a full memory barrier since the end of 825 * its last corresponding SRCU read-side critical section whose beginning 826 * preceded the call to call_rcu(). It also means that each CPU executing 827 * an SRCU read-side critical section that continues beyond the start of 828 * "func()" must have executed a memory barrier after the call_rcu() 829 * but before the beginning of that SRCU read-side critical section. 830 * Note that these guarantees include CPUs that are offline, idle, or 831 * executing in user mode, as well as CPUs that are executing in the kernel. 832 * 833 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 834 * resulting SRCU callback function "func()", then both CPU A and CPU 835 * B are guaranteed to execute a full memory barrier during the time 836 * interval between the call to call_rcu() and the invocation of "func()". 837 * This guarantee applies even if CPU A and CPU B are the same CPU (but 838 * again only if the system has more than one CPU). 839 * 840 * Of course, these guarantees apply only for invocations of call_srcu(), 841 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same 842 * srcu_struct structure. 843 */ 844 void __call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 845 rcu_callback_t func, bool do_norm) 846 { 847 unsigned long flags; 848 bool needexp = false; 849 bool needgp = false; 850 unsigned long s; 851 struct srcu_data *sdp; 852 853 check_init_srcu_struct(sp); 854 if (debug_rcu_head_queue(rhp)) { 855 /* Probable double call_srcu(), so leak the callback. */ 856 WRITE_ONCE(rhp->func, srcu_leak_callback); 857 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n"); 858 return; 859 } 860 rhp->func = func; 861 local_irq_save(flags); 862 sdp = this_cpu_ptr(sp->sda); 863 spin_lock_rcu_node(sdp); 864 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp, false); 865 rcu_segcblist_advance(&sdp->srcu_cblist, 866 rcu_seq_current(&sp->srcu_gp_seq)); 867 s = rcu_seq_snap(&sp->srcu_gp_seq); 868 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s); 869 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) { 870 sdp->srcu_gp_seq_needed = s; 871 needgp = true; 872 } 873 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) { 874 sdp->srcu_gp_seq_needed_exp = s; 875 needexp = true; 876 } 877 spin_unlock_irqrestore_rcu_node(sdp, flags); 878 if (needgp) 879 srcu_funnel_gp_start(sp, sdp, s, do_norm); 880 else if (needexp) 881 srcu_funnel_exp_start(sp, sdp->mynode, s); 882 } 883 884 /** 885 * call_srcu() - Queue a callback for invocation after an SRCU grace period 886 * @sp: srcu_struct in queue the callback 887 * @rhp: structure to be used for queueing the SRCU callback. 888 * @func: function to be invoked after the SRCU grace period 889 * 890 * The callback function will be invoked some time after a full SRCU 891 * grace period elapses, in other words after all pre-existing SRCU 892 * read-side critical sections have completed. However, the callback 893 * function might well execute concurrently with other SRCU read-side 894 * critical sections that started after call_srcu() was invoked. SRCU 895 * read-side critical sections are delimited by srcu_read_lock() and 896 * srcu_read_unlock(), and may be nested. 897 * 898 * The callback will be invoked from process context, but must nevertheless 899 * be fast and must not block. 900 */ 901 void call_srcu(struct srcu_struct *sp, struct rcu_head *rhp, 902 rcu_callback_t func) 903 { 904 __call_srcu(sp, rhp, func, true); 905 } 906 EXPORT_SYMBOL_GPL(call_srcu); 907 908 /* 909 * Helper function for synchronize_srcu() and synchronize_srcu_expedited(). 910 */ 911 static void __synchronize_srcu(struct srcu_struct *sp, bool do_norm) 912 { 913 struct rcu_synchronize rcu; 914 915 RCU_LOCKDEP_WARN(lock_is_held(&sp->dep_map) || 916 lock_is_held(&rcu_bh_lock_map) || 917 lock_is_held(&rcu_lock_map) || 918 lock_is_held(&rcu_sched_lock_map), 919 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section"); 920 921 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) 922 return; 923 might_sleep(); 924 check_init_srcu_struct(sp); 925 init_completion(&rcu.completion); 926 init_rcu_head_on_stack(&rcu.head); 927 __call_srcu(sp, &rcu.head, wakeme_after_rcu, do_norm); 928 wait_for_completion(&rcu.completion); 929 destroy_rcu_head_on_stack(&rcu.head); 930 931 /* 932 * Make sure that later code is ordered after the SRCU grace 933 * period. This pairs with the spin_lock_irq_rcu_node() 934 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed 935 * because the current CPU might have been totally uninvolved with 936 * (and thus unordered against) that grace period. 937 */ 938 smp_mb(); 939 } 940 941 /** 942 * synchronize_srcu_expedited - Brute-force SRCU grace period 943 * @sp: srcu_struct with which to synchronize. 944 * 945 * Wait for an SRCU grace period to elapse, but be more aggressive about 946 * spinning rather than blocking when waiting. 947 * 948 * Note that synchronize_srcu_expedited() has the same deadlock and 949 * memory-ordering properties as does synchronize_srcu(). 950 */ 951 void synchronize_srcu_expedited(struct srcu_struct *sp) 952 { 953 __synchronize_srcu(sp, rcu_gp_is_normal()); 954 } 955 EXPORT_SYMBOL_GPL(synchronize_srcu_expedited); 956 957 /** 958 * synchronize_srcu - wait for prior SRCU read-side critical-section completion 959 * @sp: srcu_struct with which to synchronize. 960 * 961 * Wait for the count to drain to zero of both indexes. To avoid the 962 * possible starvation of synchronize_srcu(), it waits for the count of 963 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first, 964 * and then flip the srcu_idx and wait for the count of the other index. 965 * 966 * Can block; must be called from process context. 967 * 968 * Note that it is illegal to call synchronize_srcu() from the corresponding 969 * SRCU read-side critical section; doing so will result in deadlock. 970 * However, it is perfectly legal to call synchronize_srcu() on one 971 * srcu_struct from some other srcu_struct's read-side critical section, 972 * as long as the resulting graph of srcu_structs is acyclic. 973 * 974 * There are memory-ordering constraints implied by synchronize_srcu(). 975 * On systems with more than one CPU, when synchronize_srcu() returns, 976 * each CPU is guaranteed to have executed a full memory barrier since 977 * the end of its last corresponding SRCU-sched read-side critical section 978 * whose beginning preceded the call to synchronize_srcu(). In addition, 979 * each CPU having an SRCU read-side critical section that extends beyond 980 * the return from synchronize_srcu() is guaranteed to have executed a 981 * full memory barrier after the beginning of synchronize_srcu() and before 982 * the beginning of that SRCU read-side critical section. Note that these 983 * guarantees include CPUs that are offline, idle, or executing in user mode, 984 * as well as CPUs that are executing in the kernel. 985 * 986 * Furthermore, if CPU A invoked synchronize_srcu(), which returned 987 * to its caller on CPU B, then both CPU A and CPU B are guaranteed 988 * to have executed a full memory barrier during the execution of 989 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B 990 * are the same CPU, but again only if the system has more than one CPU. 991 * 992 * Of course, these memory-ordering guarantees apply only when 993 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are 994 * passed the same srcu_struct structure. 995 * 996 * If SRCU is likely idle, expedite the first request. This semantic 997 * was provided by Classic SRCU, and is relied upon by its users, so TREE 998 * SRCU must also provide it. Note that detecting idleness is heuristic 999 * and subject to both false positives and negatives. 1000 */ 1001 void synchronize_srcu(struct srcu_struct *sp) 1002 { 1003 if (srcu_might_be_idle(sp) || rcu_gp_is_expedited()) 1004 synchronize_srcu_expedited(sp); 1005 else 1006 __synchronize_srcu(sp, true); 1007 } 1008 EXPORT_SYMBOL_GPL(synchronize_srcu); 1009 1010 /* 1011 * Callback function for srcu_barrier() use. 1012 */ 1013 static void srcu_barrier_cb(struct rcu_head *rhp) 1014 { 1015 struct srcu_data *sdp; 1016 struct srcu_struct *sp; 1017 1018 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head); 1019 sp = sdp->sp; 1020 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1021 complete(&sp->srcu_barrier_completion); 1022 } 1023 1024 /** 1025 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete. 1026 * @sp: srcu_struct on which to wait for in-flight callbacks. 1027 */ 1028 void srcu_barrier(struct srcu_struct *sp) 1029 { 1030 int cpu; 1031 struct srcu_data *sdp; 1032 unsigned long s = rcu_seq_snap(&sp->srcu_barrier_seq); 1033 1034 check_init_srcu_struct(sp); 1035 mutex_lock(&sp->srcu_barrier_mutex); 1036 if (rcu_seq_done(&sp->srcu_barrier_seq, s)) { 1037 smp_mb(); /* Force ordering following return. */ 1038 mutex_unlock(&sp->srcu_barrier_mutex); 1039 return; /* Someone else did our work for us. */ 1040 } 1041 rcu_seq_start(&sp->srcu_barrier_seq); 1042 init_completion(&sp->srcu_barrier_completion); 1043 1044 /* Initial count prevents reaching zero until all CBs are posted. */ 1045 atomic_set(&sp->srcu_barrier_cpu_cnt, 1); 1046 1047 /* 1048 * Each pass through this loop enqueues a callback, but only 1049 * on CPUs already having callbacks enqueued. Note that if 1050 * a CPU already has callbacks enqueue, it must have already 1051 * registered the need for a future grace period, so all we 1052 * need do is enqueue a callback that will use the same 1053 * grace period as the last callback already in the queue. 1054 */ 1055 for_each_possible_cpu(cpu) { 1056 sdp = per_cpu_ptr(sp->sda, cpu); 1057 spin_lock_irq_rcu_node(sdp); 1058 atomic_inc(&sp->srcu_barrier_cpu_cnt); 1059 sdp->srcu_barrier_head.func = srcu_barrier_cb; 1060 debug_rcu_head_queue(&sdp->srcu_barrier_head); 1061 if (!rcu_segcblist_entrain(&sdp->srcu_cblist, 1062 &sdp->srcu_barrier_head, 0)) { 1063 debug_rcu_head_unqueue(&sdp->srcu_barrier_head); 1064 atomic_dec(&sp->srcu_barrier_cpu_cnt); 1065 } 1066 spin_unlock_irq_rcu_node(sdp); 1067 } 1068 1069 /* Remove the initial count, at which point reaching zero can happen. */ 1070 if (atomic_dec_and_test(&sp->srcu_barrier_cpu_cnt)) 1071 complete(&sp->srcu_barrier_completion); 1072 wait_for_completion(&sp->srcu_barrier_completion); 1073 1074 rcu_seq_end(&sp->srcu_barrier_seq); 1075 mutex_unlock(&sp->srcu_barrier_mutex); 1076 } 1077 EXPORT_SYMBOL_GPL(srcu_barrier); 1078 1079 /** 1080 * srcu_batches_completed - return batches completed. 1081 * @sp: srcu_struct on which to report batch completion. 1082 * 1083 * Report the number of batches, correlated with, but not necessarily 1084 * precisely the same as, the number of grace periods that have elapsed. 1085 */ 1086 unsigned long srcu_batches_completed(struct srcu_struct *sp) 1087 { 1088 return sp->srcu_idx; 1089 } 1090 EXPORT_SYMBOL_GPL(srcu_batches_completed); 1091 1092 /* 1093 * Core SRCU state machine. Push state bits of ->srcu_gp_seq 1094 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has 1095 * completed in that state. 1096 */ 1097 static void srcu_advance_state(struct srcu_struct *sp) 1098 { 1099 int idx; 1100 1101 mutex_lock(&sp->srcu_gp_mutex); 1102 1103 /* 1104 * Because readers might be delayed for an extended period after 1105 * fetching ->srcu_idx for their index, at any point in time there 1106 * might well be readers using both idx=0 and idx=1. We therefore 1107 * need to wait for readers to clear from both index values before 1108 * invoking a callback. 1109 * 1110 * The load-acquire ensures that we see the accesses performed 1111 * by the prior grace period. 1112 */ 1113 idx = rcu_seq_state(smp_load_acquire(&sp->srcu_gp_seq)); /* ^^^ */ 1114 if (idx == SRCU_STATE_IDLE) { 1115 spin_lock_irq_rcu_node(sp); 1116 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1117 WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq)); 1118 spin_unlock_irq_rcu_node(sp); 1119 mutex_unlock(&sp->srcu_gp_mutex); 1120 return; 1121 } 1122 idx = rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)); 1123 if (idx == SRCU_STATE_IDLE) 1124 srcu_gp_start(sp); 1125 spin_unlock_irq_rcu_node(sp); 1126 if (idx != SRCU_STATE_IDLE) { 1127 mutex_unlock(&sp->srcu_gp_mutex); 1128 return; /* Someone else started the grace period. */ 1129 } 1130 } 1131 1132 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN1) { 1133 idx = 1 ^ (sp->srcu_idx & 1); 1134 if (!try_check_zero(sp, idx, 1)) { 1135 mutex_unlock(&sp->srcu_gp_mutex); 1136 return; /* readers present, retry later. */ 1137 } 1138 srcu_flip(sp); 1139 rcu_seq_set_state(&sp->srcu_gp_seq, SRCU_STATE_SCAN2); 1140 } 1141 1142 if (rcu_seq_state(READ_ONCE(sp->srcu_gp_seq)) == SRCU_STATE_SCAN2) { 1143 1144 /* 1145 * SRCU read-side critical sections are normally short, 1146 * so check at least twice in quick succession after a flip. 1147 */ 1148 idx = 1 ^ (sp->srcu_idx & 1); 1149 if (!try_check_zero(sp, idx, 2)) { 1150 mutex_unlock(&sp->srcu_gp_mutex); 1151 return; /* readers present, retry later. */ 1152 } 1153 srcu_gp_end(sp); /* Releases ->srcu_gp_mutex. */ 1154 } 1155 } 1156 1157 /* 1158 * Invoke a limited number of SRCU callbacks that have passed through 1159 * their grace period. If there are more to do, SRCU will reschedule 1160 * the workqueue. Note that needed memory barriers have been executed 1161 * in this task's context by srcu_readers_active_idx_check(). 1162 */ 1163 static void srcu_invoke_callbacks(struct work_struct *work) 1164 { 1165 bool more; 1166 struct rcu_cblist ready_cbs; 1167 struct rcu_head *rhp; 1168 struct srcu_data *sdp; 1169 struct srcu_struct *sp; 1170 1171 sdp = container_of(work, struct srcu_data, work.work); 1172 sp = sdp->sp; 1173 rcu_cblist_init(&ready_cbs); 1174 spin_lock_irq_rcu_node(sdp); 1175 rcu_segcblist_advance(&sdp->srcu_cblist, 1176 rcu_seq_current(&sp->srcu_gp_seq)); 1177 if (sdp->srcu_cblist_invoking || 1178 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) { 1179 spin_unlock_irq_rcu_node(sdp); 1180 return; /* Someone else on the job or nothing to do. */ 1181 } 1182 1183 /* We are on the job! Extract and invoke ready callbacks. */ 1184 sdp->srcu_cblist_invoking = true; 1185 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs); 1186 spin_unlock_irq_rcu_node(sdp); 1187 rhp = rcu_cblist_dequeue(&ready_cbs); 1188 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) { 1189 debug_rcu_head_unqueue(rhp); 1190 local_bh_disable(); 1191 rhp->func(rhp); 1192 local_bh_enable(); 1193 } 1194 1195 /* 1196 * Update counts, accelerate new callbacks, and if needed, 1197 * schedule another round of callback invocation. 1198 */ 1199 spin_lock_irq_rcu_node(sdp); 1200 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs); 1201 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, 1202 rcu_seq_snap(&sp->srcu_gp_seq)); 1203 sdp->srcu_cblist_invoking = false; 1204 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist); 1205 spin_unlock_irq_rcu_node(sdp); 1206 if (more) 1207 srcu_schedule_cbs_sdp(sdp, 0); 1208 } 1209 1210 /* 1211 * Finished one round of SRCU grace period. Start another if there are 1212 * more SRCU callbacks queued, otherwise put SRCU into not-running state. 1213 */ 1214 static void srcu_reschedule(struct srcu_struct *sp, unsigned long delay) 1215 { 1216 bool pushgp = true; 1217 1218 spin_lock_irq_rcu_node(sp); 1219 if (ULONG_CMP_GE(sp->srcu_gp_seq, sp->srcu_gp_seq_needed)) { 1220 if (!WARN_ON_ONCE(rcu_seq_state(sp->srcu_gp_seq))) { 1221 /* All requests fulfilled, time to go idle. */ 1222 pushgp = false; 1223 } 1224 } else if (!rcu_seq_state(sp->srcu_gp_seq)) { 1225 /* Outstanding request and no GP. Start one. */ 1226 srcu_gp_start(sp); 1227 } 1228 spin_unlock_irq_rcu_node(sp); 1229 1230 if (pushgp) 1231 queue_delayed_work(rcu_gp_wq, &sp->work, delay); 1232 } 1233 1234 /* 1235 * This is the work-queue function that handles SRCU grace periods. 1236 */ 1237 static void process_srcu(struct work_struct *work) 1238 { 1239 struct srcu_struct *sp; 1240 1241 sp = container_of(work, struct srcu_struct, work.work); 1242 1243 srcu_advance_state(sp); 1244 srcu_reschedule(sp, srcu_get_delay(sp)); 1245 } 1246 1247 void srcutorture_get_gp_data(enum rcutorture_type test_type, 1248 struct srcu_struct *sp, int *flags, 1249 unsigned long *gpnum, unsigned long *completed) 1250 { 1251 if (test_type != SRCU_FLAVOR) 1252 return; 1253 *flags = 0; 1254 *completed = rcu_seq_ctr(sp->srcu_gp_seq); 1255 *gpnum = rcu_seq_ctr(sp->srcu_gp_seq_needed); 1256 } 1257 EXPORT_SYMBOL_GPL(srcutorture_get_gp_data); 1258 1259 void srcu_torture_stats_print(struct srcu_struct *sp, char *tt, char *tf) 1260 { 1261 int cpu; 1262 int idx; 1263 unsigned long s0 = 0, s1 = 0; 1264 1265 idx = sp->srcu_idx & 0x1; 1266 pr_alert("%s%s Tree SRCU per-CPU(idx=%d):", tt, tf, idx); 1267 for_each_possible_cpu(cpu) { 1268 unsigned long l0, l1; 1269 unsigned long u0, u1; 1270 long c0, c1; 1271 struct srcu_data *counts; 1272 1273 counts = per_cpu_ptr(sp->sda, cpu); 1274 u0 = counts->srcu_unlock_count[!idx]; 1275 u1 = counts->srcu_unlock_count[idx]; 1276 1277 /* 1278 * Make sure that a lock is always counted if the corresponding 1279 * unlock is counted. 1280 */ 1281 smp_rmb(); 1282 1283 l0 = counts->srcu_lock_count[!idx]; 1284 l1 = counts->srcu_lock_count[idx]; 1285 1286 c0 = l0 - u0; 1287 c1 = l1 - u1; 1288 pr_cont(" %d(%ld,%ld)", cpu, c0, c1); 1289 s0 += c0; 1290 s1 += c1; 1291 } 1292 pr_cont(" T(%ld,%ld)\n", s0, s1); 1293 } 1294 EXPORT_SYMBOL_GPL(srcu_torture_stats_print); 1295 1296 static int __init srcu_bootup_announce(void) 1297 { 1298 pr_info("Hierarchical SRCU implementation.\n"); 1299 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF) 1300 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff); 1301 return 0; 1302 } 1303 early_initcall(srcu_bootup_announce); 1304